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Abstract  

 

      Results of the semi-analytical modelling of the interaction of laser-initiated airborne shock 

waves with an infinite horizontally positioned elastic plate are presented. The impact of the 

airborne shock waves on the plate is approximated by a cylindrically diverging surface force 

resulting from the pressure of the incident and reflected shock waves. This force is then 

represented in the wavenumber-frequency domain by means of Hankel and Fourier transforms 

that are carried out numerically so that the interaction problem can be solved using the 

Green’s function method. The resulting frequency spectra and time histories of generated 
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flexural wave pulses are calculated for different values of laser pulse energy and for different 

heights of the laser beam focusing above the plate surface. The theoretical results obtained are 

compared with the results of laboratory measurements of the interaction of laser-generated 

acoustic shocks with a large plastic plate. The comparison shows reasonably good agreement 

between the semi-analytical predictions and data.  

 

Keywords:  Flexural waves in plates, wave generation, laser-initiated airborne shock waves, 

semi-analytical approach.  

________________________________________________________________________ 

 

 

1. Introduction  

 

      Controlled explosions that take place above ground surface during military testing 

generate not only shock waves in air but also strong ground vibrations [1, 2]. Experimental 

studies of the propagation of such shock waves and shock-induced ground vibrations are 

relatively scarce because field trials with explosions are expensive and difficult. It is 

convenient and much less expensive to study the associated sound and vibration phenomena 

using the reduced-scale laboratory simulations using sparks produced by a focused high 

energy pulsed laser as sources of airborne shock waves interacting with large elastic plates 

modelling the ground [3, 4].  

       Although there have been several investigations of laser-generated elastic waves in plates 

in the past [5-7], in all these investigations a focused laser beam interacted directly with a 

plate, and flexural and quasi-longitudinal plate waves were generated by means of the so-

                                                                                                                                        
* Corresponding author. Tel.: +44 1509 227216; E-mail address: V.V.Krylov@lboro.ac.uk 

mailto:V.V.Krylov@lboro.ac.uk


 3 

called thermo-optical generation mechanism associated with the conversion of light energy 

into heat and subsequent thermal expansion of the heated area. Due to a small size of the 

heated area of the resulting thermo-optical sources, the physical nature of this situation is very 

similar to wave generation in plates by mechanical concentrated forces [8-10]. However, this 

picture is not adequate for experiments [3,4], where a laser beam is focused in the air outside 

a plate, since laser-initiated air-shock wave interaction with a plate involves a rather complex 

and essentially distributed source.  

       The use of a strong shock wave in air as a distributed source for elastic wave generation 

in solids has been investigated in respect of generation of Rayleigh surface waves by electric 

spark discharge near the surface [11]. In that investigation, a semi-analytical model describing 

interaction of air shock waves with an elastic half space was developed using an exponential 

function to approximate the air pressure in the shock wave.  

       The aim of the present paper is to develop the above-mentioned semi-analytical model 

[11] further and to apply it to the interaction of laser-initiated airborne shock waves with 

elastic plates. Some of the results of this paper have been presented at the UK Institute of 

Acoustics Spring Conference 2008 in Reading [12] and at the conference ‘Acoustics –08’ in 

Paris [13].  

       The impact of the incident shock wave is approximated by an equivalent cylindrically 

diverging surface force resulting from the surface pressure of the incident and reflected shock 

waves. The effect of non-linear reflection of a shock wave is included into the theoretical 

model as well. The well-known analytical expressions for air particle velocity and pressure in 

the front of a shock wave are used to describe this surface force as a function of time and 

distance from the epicentre. The shock wave pressure behind the front is approximated as a 

combination of two exponential functions in order to model positive and negative phases of a 

shock wave typical for larger distances between the shock wave origin and the point of 
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observation (see also [12, 13]). The problem is then solved using the Green’s function method 

applied to an infinite plate. The resulting frequency spectra and time histories of the generated 

flexural wave pulses are calculated for different values of the height of the laser-generated 

spark above the plate surface. The theoretical results for time histories and frequency spectra 

of generated flexural waves are compared with the results of the reduced-scale model 

experiments on laser-initiated air shock wave interaction with a large plastic plate.  

 

 

2. Theoretical background  

 

2.1 Specification of the equivalent surface force  

 

      According to [11], the pressure in the strong spherically diverging airborne shock wave 

can be approximated by the following analytical expression: 

 















 −














∫

′

′













∫

′

′
−−














∫

′

′
−=

1

0 )(0 )(
exp

0 )(
)(),(

r

rshv

rdr

rshv

rdt
r

rshv

rdtHrshPtrshP ε ,           (1) 

 

Here )(tH is a Heavyside step function, )(rv sh and )(rP sh are wave velocity and pressure in 

the front of a shock wave [14] and 5.0=ε  is a constant controlling the duration of the 

pressure pulse: 
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E  is the energy instantly released in the origin of the shock wave, 0ρ  is the mass density of 

the air, 41.1≈γ  is the ratio of specific heats, and 0ζ  ≈ 0.93 is a dimensionless parameter 

characterizing the self-similar motion of the wave front [14].  

      As a result of interaction of the shock wave with an infinite plate, a considerable part of 

the incident wave energy is reflected back into the air, whereas the remainder is transformed 

into the energy of flexural plate vibrations. To evaluate the air pressure acting on the plate 

surface, the latter can be approximated as absolutely rigid. In this case, the surface pressure 

can be considered as the sum of the incident and reflected pressures. Using the usual linear 

acoustic reflection coefficient from a rigid surface (equal to 1), the resulting surface pressure 

can be expressed simply as twice the pressure in the incident wave. Thus, the equivalent 

normal surface force per unit area sh
nF  created by the shock wave can be expressed, using 

Eqns (1) - (3), as 
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In Eqn (4), the distance r from the origin of laser-induced acoustic shock to a point of 

observation on the surface is equal to 22 h+ρ (see Fig. 1).  

      For further analysis, the frequency spectrum of the normal force ),( ρtF sh
n  is required:  
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Substituting Eqn (4) into Eqn (5), this frequency spectrum can be expressed as follows: 
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2.2 Modified equivalent surface force  

 

      In the previous section, the equivalent surface force (Eqn (4)) has been specified using 

Eqns (1)-(3). The pressure due to the air shock wave in this description is an exponential 

function with its maximum value depending on the distance to the center of the laser-induced 

spark. The time history of the air pressure pulse calculated according to Eqns (1)-(3) can be 

seen in Fig. 2 (a). Note however that for larger distances between the shock wave origin and a 

surface, which are of primary interest in this paper, both analytical modeling and 

measurements show that pressure pulses induced by shock waves behave in a more complex 

way. In particular, when the shock front approaches a given point, the pressure initially 

undergoes a discontinuous jump above atmospheric pressure before decreasing below 
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atmospheric pressure (positive and negative phases), and finally returning to its initial value 

[14].  

     Consequently, Eqn (1) has been modified to model shock wave pulses for larger distances 

by adding an additional exponential term, that helps to describe the negative pressure phase 

The air pressure can then be expressed as follows (see also Fig. 2 (b)): 
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Using the above-mentioned modified expression for air pressure (Eqn. (7)) and the acoustic 

approximation for the reflection coefficient, the equivalent surface force is given by: 
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Following Fourier transform, the frequency spectrum of the above function can be expressed 

as follows: 
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      Note that the above expressions for the equivalent surface force (Eqns (6) and (8)) have 

been derived using Eqns (2) and (3) for the velocity and pressure of a strong air shock wave 

[8]. However, for distances, r, that are large enough, say 0rr > , where  r0  is the distance at 

which the velocity of a shock front becomes equal to the speed of sound 0v , the above-

mentioned expressions for surface forces are no longer valid. Figure 3 (a) shows how the 

velocity of the shock front changes with the distance from the origin. In this Figure, the 

velocity of a shock wave front has been plotted as a function of horizontal distance from the 

epicentre  ρ  according to Eqn (2) in which  22 hr += ρ   (height  h  was considered as a 

parameter). 

      In this case, beyond the distance 0084.00 =r  m (defined from Eqn (2) by assuming  vsh(r) 

= 3400 =v m/s and 8.0=E J (the laser energy per pulse)), the air particle velocity and 

pressure have to be calculated using the characteristics of a normal acoustic wave propagating 

with the speed of sound, 0v . As is well known, the wave pressure in this case is inversely 

proportional to the distance: rArP /)( = , where the constant A  should be determined by 

equalizing the air pressure in the shock wave to the acoustic wave pressure at 0rr = . 

Moreover, the time duration of a pressure pulse for a strong shock wave increases 

proportionally to the distance from the origin, whereas in a normal acoustic wave this duration 

is constant. Thus the time duration of the pressure pulses at distance r=r0 should be equalized 

as well. For an acoustic wave, Eqns (2) and (3) should be replaced by the following 

expressions: 
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Using the above equations, one can obtain the following expression for r > 0r : 

 

    














































−
















−−−−

−















−
















−−−

=

2.0
)0(0

36.0)0(exp2.1))0(05.20(

2.0
)0(0

1)0(exp2.1)0(

)(),(

rsht
acttrshtacttH

rsht
acttacttH

racPtracP

ε

ε
,      (10) 

 

where 
0

0
000 )(

v
rr

rtt shac −
+= .  

       Figure 3 (b) shows the pressure pulse calculated according to Eqn (10) at distances of 2 

and 4 cm from the laser-initiated spark. For comparison, Fig. 4 (a) shows the corresponding 

experimental pressure pulse generated by a Q-switch Surelite III-10 Nd: YAG laser with the 

same energy of 0.8 J per pulse [4] and at the distance of 3 cm from the spark (see the 

experimental section of this paper for more details of the laser source). It can be seen that 

while the predicted and measured waveforms agree with each other quite well, both in shape 

and duration of positive parts, the measured peak amplitude is about two times smaller than 

the predicted one. However, given the approximations used in the process of modelling, 

especially in the transition zone from a strong shock wave to an acoustic wave, and the 

neglect of material losses during wave propagation, this agreement is considered reasonable.  

       Using again the linear acoustics approximation for the reflection coefficient, the 

equivalent normal surface force can assumed, initially, to be the doubled incident pressure, 

and the frequency spectrum of the equivalent surface force can be expressed as: 
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2.3 Accounting for non-linear reflection  

 

      So far the equivalent surface force has been expressed using a linear coefficient of 

reflection equal to 1, which means that the pressure on the infinite plate is assumed to be 

twice the pressure in the incident shock wave. For shock waves, the problem of reflection is 

non-linear, and the reflection coefficient depends on the amplitude of the shock wave. Figure 

5 shows the reflection coefficient as function of the incident overpressure, 01 / pp , where 1p  

is the pressure in the shock wave, whereas 0p  is the atmospheric pressure. The graphs 

correspond to air, 41.1=γ , and to monatomic gas, 3/5=γ . 

      The graphs in Fig. 5 have been calculated using a simple formula given by Wright [15]: 
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where 01 / ppy =  and )1/()1( +−= yyµ . 

      In the experimental work presented in Section 3, the maximum strength of the incident 

overpressure has been achieved for the height of the spark 0.003 m and laser energy 0.8 J per 
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pulse, and it can be evaluated to be about 27. Thus, for further consideration, the reflection 

coefficient could be approximated using a simple linear function, such as: byaR += . The 

coefficients a and b can be determined from Fig. 5 (a = 1, b = 0.21). In this case the resulting 

surface pressure can be expressed in the form: 

 

atm

in
inininsurf P

PbPaRPPP
2

)1( ++=+=             (13) 

 

      For the sake of simplicity, the effect of non-linear reflection will be studied here using the 

simpler pressure expression, Eq. (1) (see [11]). In this case the equivalent surface force taking 

the nonlinear reflection into account can be written as: 
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whereas its frequency spectrum is given as follows: 
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2.4 Flexural wave generation in an infinite plate  

 

      Since the problem under consideration is axi-symmetric, the flexural response of the 

infinite plate to the spectral component of the applied normal force ),,( ωyxFn  due to the 
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airborne shock wave can be described by the plate equation in cylindrical coordinates, with 

the origin at the epicentre [16]: 
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Here )1(12/~ 23 ν−= dED  is bending stiffness of the plate, E~  is the Young’s modulus, d and 

ρs are the plate thickness and mass density respectively, and ν  is the Poisson’s ratio. 

Equations (16) and (17) can be solved using Green’s function method, which yields the 

following expression for bending displacement in the wavenumber-frequency domain [16]: 
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Here 4/12 )/( Ddk sf ωρ=  is the plate flexural wavenumber, and ),( kFn ω  is the Hankel 

transform of Eqn (17), which is to be calculated numerically:  
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      The inverse Hankel transform describes the plate response to the acoustic shock in the 

space-frequency domain: 
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Expressing the Bessel function in terms of Hankel functions and using the properties of 

Hankel functions, the bending displacement can be rewritten as: 
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      The integral in Eqn (21) can be evaluated using the method of residues:  
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where the term in brackets represents the residue at fkk = . Using the usual asymptotic 

formula for the Hankel function at 1>>ρfk , the expression for plate vertical displacement 

can be written as follows: 
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This expression, combined with the harmonic time factor tie ω− , represents a cylindrical 

flexural wave propagating from the epicenter of the acoustic shock. Obviously, the vertical 

components of plate particle velocity and acceleration can be obtained from Eqn. (23) as: 

 

     ),(),( ρωωρω wiw −=   and  ),(),( 2 ρωωρω ww −=   

 

The time history of the displacement can be calculated from Eqn (23) using the inverse 

Fourier transform: 
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      Note that in our choice of the elementary Kirchhoff theory of plate vibrations (see Eqn 

(16) and the resulting Eqns (20-(23)) we followed the widely used criterion of its 

acceptability:  (d/λt) < 0.05 , where  λt  is the shear wavelength and  d  is the plate thickness 

(e.g. [16]). For the parameters of the experimental plate (see Section 3 for more detail) and for 

a typical frequency of 10 kHz, the value of  λt  at this frequency is 14.6 cm. For the plate of 5 

mm thickness, this gives  (d/λt) = 0.034,  which satisfies the above criterion. For frequencies 

higher than 15 kHz though, Eqns (16) and (20)- (23) may result in noticeable errors. 

Therefore, the use of the more precise Timoshenko-Mindlin plate theory would be 

recommended at such higher frequencies.  

 

 

3. Experimental results and their comparison with predictions  
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      The rig used for the model experiments is shown in Fig. 1 (b). Sparks were generated by 

focusing a beam from a Q-switch Surelite III-10 Nd: YAG laser with a 1064 nm wavelength 

and with the energy of 0.8 J per pulse [3,4]. The gas breakdown induced by the laser had a 

duration of between 4 and 6 nanoseconds. For this duration of the pulse the pulse power is 

between 133 and 200 MW. A convex lens with focal length of 10 cm has been used to focus 

the beam to a spot of diameter of about 0.3mm so that the light intensity in the focused spot is 

between 1.88×1011 and 2.83×1011 W/cm2. At the distance of 3 cm from the spark, the peak 

pressure of the laser-generated airborne shock wave measured by a microphone was 181 dB re 

20 µPa (22683 Pa), as can be seen in Fig. 4 (a). As was mentioned above, for these values of 

laser pulse power and distance, the shock wave becomes in fact the acoustic wave. The 

frequency spectrum of this wave lies between 3 kHz and 159 kHz, with a peak at 20 kHz (see 

Fig. 4 (b)).  

       The analysis system used in the experiments consisted of a conditioning amplifier, B&K 

Type 2636; an NI 5911 data acquisition card enabling sampling rates as high as 100 million 

samples per second and LabView software.  

      For the measurements of flexural vibrations, a DJB A/20 accelerometer with the mass 18 g, 

sensitivity 35 pC/g and resonant frequency of 28 kHz was used. The plate was made of 

laminated plastic material. Its horizontal dimensions and thickness were 1 x 1 m2 and 0.005 m 

respectively. The support for the plate was provided by a porous foam layer. Strictly speaking, 

the boundary conditions on the bottom side of the plate supported by the foam are not stress 

free. However, the effect of the foam is rather small and can be neglected. Further details about 

the laboratory equipment and test rig can be found elsewhere [3,4].  

       Some of the results of the theoretical modelling and experimental simulations are 

presented and compared in Figs. 6 and 7. The material characteristics used in the calculations 
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are as follows: mass density 900=ρs  kg/m3, Young’s modulus 81050~ ⋅=E N/m2, Poisson’s 

ratio 3.0=ν  and speed of sound in air 3400 =v  m/s.  

      The results shown in Figs. 6 and 7 represent the time histories and amplitude spectra of 

the plate acceleration at distances 0.3 m and 0.6 m away from the epicenter. The heights of 

the laser-generated spark above the plate surface, h , were 0.003 m and 0.039 m.  

      It can be seen from Figs. 6 and 7 that the theoretical results agree well with the 

experimental ones for h = 0.039 m at both values of the distance from the epicenter. Note that 

in the theoretical time histories the time delay is shown due to the air shock wave propagation 

from the spark area to the plate surface. In the measured time histories this time delay is not 

shown. Both theoretical and experimental time histories and frequency spectra reveal 

oscillations at frequency about 5 kHz. Apparently, this behavior is due to the well-known 

coincidence phenomenon. The latter can occur when sound waves incident on a plate from the 

air at a particular angle have a trace wavelength matching exactly to that of the plate bending 

waves. The coincidence frequency is determined by the well-known formula (see e.g. [16]): 
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       According to the above expression, the coincidence frequency for the case under 

consideration is 5160 Hz, which is in a very good agreement with the experimental and 

numerical results shown in Figs. 6 and 7.  By changing thickness of the plate, one can easily 

demonstrate that the effect of the coincidence phenomenon on generated acceleration pulses 

could be eliminated. Figure 8 shows the numerically calculated acceleration responses and 

their spectral components for different values of plate thickness. For a plate thickness equal to 

0.005 m, as above, the coincidence-related oscillations are clearly seen (Fig. 8 a), and the 
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coincidence frequency is about 5 kHz (Fig. 8 b), as mentioned above. For the values of 

thickness 0.05 and 0.5 m, the spectral peak frequency gradually reduces to zero, in line with 

Eqn (25), and the oscillations disappear. In particular, Fig. 8 (e) shows a single pulse induced 

by the shock wave (the small oscillations after the pulse are due to the numerical 

calculations).  

       The agreement of the theory with the experiments for h = 0.003 m is not as good as for h 

= 0.039 m. It is seen from Figs. 6 (c) and 7 (c) that, for h = 0.003 m, the measured frequency 

spectra, in addition to the above-mentioned peaks at the coincidence frequency, also have 

strong additional frequency peaks near 9 kHz and 14 kHz. The nature of these additional 

peaks is yet unclear. As they are not present in the case of h = 0.039 m, it is likely that these 

additional peaks at h = 0.003 m may be caused by nonlinear effects associated with the much 

larger amplitude of the shock wave at lower heights.  

        One of the possible causes for these additional peaks could be attributed to non-linear 

effects associated with reflection of shock waves. To check this assumption, the non-linear 

reflection of shock waves has been taken into account, according to Eqns (14) and (15). 

Figure 9 shows the comparison between acceleration responses calculated at distance 0.3 m 

from the epicenter due to the equivalent surface force without non-linear effects, Eqn (6), and 

with non-linear effects, Eq. (15).  

      It can be seen from Fig. 9 that, the non-linear reflection is predicted to only increase the 

amplitude and slightly change the shape of the pulse. This is because the non-linear reflection 

is important only in the zone of a strong shock wave. Beyond the critical distance 0r , the 

reflection coefficient is again linear and equal to 1. As a result of this, the calculated time 

histories and amplitude spectra of generated plate flexural waves do not differ significantly 

from those calculated using linear reflection.  
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      Another possible cause of the above-mentioned peaks at 9 and 14 kHz in the case of h = 

0.003 m  could be non-linear effects associated with propagation of plate waves of high 

amplitude generated by a shock wave in this case. This includes the effect of nonlinear 

distortion of the initially time-harmonic flexural waves during their propagation in the plate 

after their excitation by a laser-initiated shock wave. It is known that as a result of such non-

linear distortion caused by deviation of stress-strain relations in the plate material from the 

linear Hook’s law the wave front is steepening with distance, which is associated with the 

emergence of wave harmonics, thus giving additional components in the observed frequency 

spectra. This assumption needs further investigation, including additional experiments for 

different values of  h, which is beyond the scope of the present work.  

 

 

5. Conclusions  

 

      In the present paper, a semi-analytical model of flexural wave generation in infinite plates 

by laser-initiated air shock waves has been developed. Analysis of the obtained results shows 

that the coincidence condition plays an important role in the observed phenomena, being 

responsible for harmonic oscillations of generated flexural wave signals around the 

coincidence frequency.  

      The comparison of the theoretical results with the laboratory measurements using laser-

generated sparks has shown reasonably good agreement, especially for the larger value of 

spark height over the plate surface (h = 0.039 m). This implies that the proposed semi-

analytical model is reliable enough for prediction of flexural wave generation in plates due to 

laser-initiated airborne shock waves. The observed discrepancy between the experimental and 

theoretical results for the case of h = 3 mm – the presence of two additional frequency peaks 
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in the experimental spectra, may be caused by non-linear effects for generated plate waves. 

These effects will suggest the need for a substantial amount of additional theoretical and 

experimental study.  
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Figure captions  

 

Fig. 1  Interaction of laser-initiated airborne shock waves with a plate: (a) – geometry of the 

problem, (b) – experimental scheme. 

 

Fig. 2  Air pressure pulses calculated according to Eqn (1) - (a) and to Eqn (7) – (b).  

 

Fig. 3  Shock front velocity as a function of height h  of the laser spark and distance ρ  from 

the epicenter – (a);  pressure pulse in an acoustic wave according to Eqn (10) – (b). 

 

Fig. 4  Measured laser-generated acoustic pulse (a) and the corresponding frequency spectrum 

(b) at a source-receiver distance of 3 cm [4]; the peak pressure is 181 dB (22683 Pa) 

and the positive duration is 12 μs  (reproduced from [4]).  

 

Fig. 5  Reflection coefficient of a shock wave as function of the incident overpressure. 

 

Fig. 6  Time histories ((a), (b)) and amplitude spectra ((c), (d)) of the plate acceleration at 

distance 0.3 m away from the epicenter: measured ((a), (c)) and calculated ((b),(d)). 

 

Fig. 7  Time histories ((a), (b)) and amplitude spectra ((c), (d)) of the plate acceleration at 

distance 0.6 m away from the epicenter: measured ((a), (c)) and calculated ((b),(d)). 
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Fig. 8  Time histories (right) and amplitude spectra (left) of the acceleration for different 

values of plate thickness 

 

Fig. 9  Effects of linear (solid curves) and non-linear reflection (dashed curves) on time 

histories (a) and amplitude spectra (b) of plate acceleration.  
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Figures  

 

 

 

 

Fig. 1  Interaction of laser-initiated airborne shock waves with a plate: (a) – 

geometry of the problem, (b) – experimental scheme. 
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Fig. 2  Air pressure pulses calculated according to Eqn (1) - (a) and to Eqn (7) – (b). 
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Fig. 3  Shock front velocity as a function of height h  of the laser spark and distance ρ  from 

the epicenter – (a);  pressure pulse in an acoustic wave according to Eqn (10) – (b). 

 

 

 

 a) 

b) 



 28 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Measured laser-generated acoustic pulse (a) and the corresponding frequency 

spectrum (b) at a source-receiver distance of 3 cm [4]; the peak pressure is 

181 dB (22683 Pa) and the positive duration is 12 μs  (reproduced from [4]).  
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Fig. 5  Reflection coefficient of a shock wave as function of the incident overpressure. 
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Fig. 6  Time histories ((a), (b)) and amplitude spectra ((c), (d)) of the plate acceleration at 

distance 0.3 m away from the epicenter: measured ((a), (c)) and calculated ((b),(d)). 
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Fig. 7  Time histories ((a), (b)) and amplitude spectra ((c), (d)) of the plate acceleration at 

distance 0.6 m away from the epicenter: measured ((a), (c)) and calculated ((b),(d)). 
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Fig. 8  Time histories (right) and amplitude spectra (left) of the acceleration for different 

values of plate thickness 
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Fig. 9  Effects of linear (solid curves) and non-linear reflection (dashed curves) on time 

histories (a) and amplitude spectra (b) of plate acceleration. 
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