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ABSTRACT 

A novel method of measuring the self-diffusion coefficient of a 

pe~etrant molecule in various polymers was devised. This method 

makes use of a permeation experiment, where the radioactively 

labelled moleculee exchange with the chemically identical but non­

radioactive molecules through the polymer membrane specimen. The 

rate of permeation is measured by the excitation of the non-radio­

active molecules which act as the solvent in a liquid scintillation 

mixture, with subsequent excitation and fluorescence of the 

dissolved scintillator solutes. By maintaining the concentrations 

of the radioactive and non-radioactive molecules in the vapour phase at 

the same level, a self-diffusion coefficient D* at one precise 

penetrant concentration level can be determined. 

The diffusion coefficients measured were compared to those 

obtained from conventional sorption-desorption methods, and the 

comparison was discussed in terms of the basic definitions of the 

different diffusion coefficients. 

The diffusional behaviour in silico01e rubber and S-B-S block 

copolymer was discussed mainly with reference to the free volume theory 

and the activated zone theory, with particular emphasis on chain 

mobility. Dynamic mechanical studies were also obtained in these 

polymers and related to the diffusion characteristics through chain 

mobility and free volume concepts. 

Diffusion in filled systems and the two-phase S-B-S copolymers was 

discussed with the help of mathematical models derived for analogous 

electrical conductivity through hetereogeneous medium, and a certain 

order of polystyrene domain distribution was indicated in the latter. 

Silica-silicone rubber interaction was considered and some 

conclusions were made. 
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1.1. General. 

CHAPTER I 

INTRODUCTION 

The diffusion of molecules, both large and small, in high 

polymers is a widely studied subject not only because of its 

commercial importance, but also because of its connection with 

the structural study of the polymers themselves. 

Industrially the high flexibility and physical toughness 

of polymer films have made them ideal materials for the packaging 

of foodstuffs and other industrial items, such as cosmetics, 

detergents, etc. However, one important requirement for such 

applications is that the package should prevent the loss of 

volatile constituents from the contents, or prevent the ingress 

of gases and vapours, particularly water vapour. In the case 

of liquid mixtures, the partial loss of contents by permeation 

through the container walls may lead not only to changes in 

chemical composition of the contents, but also the collapse 

or deformation of the packages themselves. The storage of 

foodstUffs in plastic containers may lead to sorption of undes­

irable flavours and odours through the package. Similarly, the 

sorption,of odours and flavours from the previous contents into 

the walls of the container may discourage its use for other 

materials. In the manufactUFe of inflatable items, such as rubber 

tyre inner tubes, the permeability to gases of the polymer used 

is of obvious importance. The resistance of polymers to chemicals 

and water is also vital in such applications as paints, coatings 

and electrical insulants. Furthermore, the property of selective 

transmission of gases has made it possible to employ a polymer as 

part of biological system where, for instance, simple gases such 

-1-



as oxygen, are transmitted to the exclusion of larger molecules 

like water. By careful selection of' the polymers, compounding 

ingredients, and processing conditions, it is possible to meet 

the practical requirements of physical adaptability and low 

permeability. However, some of the means used to achieve this 

end have been costly and therefore uneconomical, and it is the 

continual aim of industrial research to find a material which 

satisfies all the requirements. 

The use of fillers in piymers has been well known to increase 

the mechanical durability and elastic properties, and since in most 

cases it also reduces the permeability of the polymer to gases (1), 

it would seem a reasonable proposition in some applications such 

as rubber hoses and plastic containers. The mechanism of filler­

polymer interaction is not a clearly understood subject, as the 

filler perticles if not entirely "wetted" by the polymer may 

provide large surface areas for the absorption of the gas or the 

vapour involved. The concept of "bound rubber" (2), where the 

filler particles and the rubber form strong, possibly chemical 

bonds (3), is especially evident in the case of silica-reinforced 

silicone rubber (4), and it is hoped that this work will throw more 

light on the matter. 

Apart from the technological importance, diffusion of molecules 

in polymers can also be used to study the behaviour of the polymer 

chains themselves; since the thermal motions of polymer chain 

segments is one of the controlling influences on the rate by which 

a diffusing molecule can translate through the polymer. This is 

similar to the molecular theory advanced for the dyn!llllic mechanical 

relaxation in polymers, where the displaced polymer chains after 

the removal of the external stress tend to diffuse back to their 

undisturbed equilibrium position by Brownian motion at a rate which 
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depends on the displacement and the nature of the polymer (5). 

When very small diffusant molecules are used, their thermal 

motions are rapid compared with those of the polymer chains, their 

rate of pe~ion will therefore depend entirely on the latter. 

Molecules comparable in size with the polymer segments involved 

in thermal motion of the polymer diffuse by more complicated 

mechanisms which are dependent on both the diffusant and the 

polymer. By using varying sizes of the diffusant, it is therefore 

possible to study in some detail the mechanisms involved in 

polymer segmental motions. 
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1.2. Major features of diffusion through polymeric systems. 

The permeation of gases and vapours through polymeric systems 

can occur by two entirely different processes. In the case of porous 

media, such as paper, fabrics and glass-like substances, the main 

form of transfer is by capillary flow or convective flow. ~f no 

porosity is present, as in homogeneous amorphous polymeric 
j ... -rf-o/~ cw\. I" ,-,)-a_L .s, 

materials, ~he transmission mechan~~m is of-the activated d~ffusion 

j;y.pe-,-t";e. a process in which the gas or vapour dissolves into the 

polymer at the inflow surface and diffuses through the polymer 

under a concentration gradient. and evaporates from the surface at 

the lower concentration. Whereas capillary flow shows a slightly 

negative temperature dependence, (due mainly to changes in gas 

A 
viscosity),. activated diffusion is characterised by a large 

positive temperature dependence./)Also, in capillary flow, the 
/ 

transmission rate is not dependent upon the nature of the diffusant 
'[ t,OgQ/t1-er- w4 

molecule, but in the case of activated diffusion'l\both_t~ solubility 
..- __ Le"),,...,) 

and diffusivity ~e h~ghr-y dependent ~n ~he- ~ture 9.fI'~ge'd:i,ffii.sant 

molecule.j In most investigations of diffusion of gases and vapours 

in polymers, the polymers are assumed to be structurally homogeneous 

and diffu~ion occurs by an activated mechanism; however, evidence 

has been advanced for the presence of microporous structures in 

certain a~orphous polymers below or near their glass transition 

temperatures, in semi-crystalline polymers above the glass 

temperature, and in filled polymers. In these cases it is necessary 

to assume a combination of these mechanisms. 
/ 

In the absence of porosity, ~he diffusion of a molecule through 

the polymer can be regarded as the movement of the molecule through 

the free volumes formed between adjacent polymer molecules by 

thermal motion. In elastomers the kinetic motion of the segments 

is comparable to that of molecules in a normal liquid, in short-range 
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respects, nnd the energy required to form such "holes" is low. 

Thus diffusion is n fast process. In other polymers with high 

glass transition temperature, such as polystyrene, much higher 

energy is required for the formation of free volumes large enough 

to accommodate the diffusing molecule, and diffusion is a 

relatively much slower process. This is because on approaching 

the glass tempGrature the movements of the polymer segments 

become more and more restricted, and more energy is required to 

displace the polymer chains. It is generally true that raising 

the glass transition temperature of a polymer will lead to a 

slower diffusion process:J 
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1.3. The Diffusion of small molecules as a means of evaluating 

chain mobility. 

In the molecular theories of polymer viscoelasticity (Chapter 

2.8), it is assumed that polymer chains, if free to do so, undergo 

translational diffusion through their surroundings. This movement 

occurs as a result of random translations of sub-chain units 

(segments). Co-operation of several neighbouring segments is 

necessary for the re-arrangement process to occur. A term, 

monomeric friction coeffiCient, may be defined as the force on a 

chain monomer unit due to viscous resistance when travelling at 

1 cm/sec. through its surroundings at rest. Thus n66 is the friction 

coefficient governing the motion of the segment of n monomer units. 

fo is usually calculated from the viscoelastic relaxation spectrum, 

H, or the retardation spectrum, L. (6). 

There have been attempts to measure fp from self-diffusion 

experiments of the polymer by using radioactively labelled polymers 

(7) and spin-echo nuclear magnetic resonance methods (8). But in 

these cases the friction coefficient of the entire molecule is 

measured. 

The use of small molecules (each comparable in size to a re-

arranging segment) in trace amounts as penetrant in a diffusion 

experiment may be interpreted more meaningfully. These molecules 

diffusing down a concentration gradient may be regarded as pushing 

their way individually past the polymer segments. The frictional 

resistance they encounter will be closely related to that experienced 

by the polymer segments themselves, in their random thermal motions, 

(i.e. fo). Under these conditions the friction coefficient of the 

penetrant, ~" may be expressed by the relationship (See Chapter 2.8):-

1.1 

-6-



where ~ is the diffusion coefficient of the penetrant 

extrapolated to zero concentration, and k is the Bo!tzmann 

constant. 

The variation of ~,With the size of the penetrant has been 

investigated by several workers (9-12). It was found that for 

large molecules there was marked dependence, and for smaller 

molecules (C4, C5 hydrocarbous) the dependence was less (12). 

By comparing the friction coefficient of a penetrant of 

suitable size in the polymer medium with the monomeric friction 

coefficient (13), the latter may be evaluated from a diffusion 

experiment, which is usually quicker and easier to perform than 

a viscoelastic experiment. 

Following the same logical argument the activation energy 

of viscoelastic relaxation, A~Cl ' should also correspond to the 

activation energy of diffusion,lI HD , of a foreign molecule at 

temperatures above the glass transition point, Tg, since the 

activated processes involved in both cases can be similarly 

interpreted (See Chapter 2.4 and 2.8). 
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1.4. Present Study. 

Silicone rubber and styrene-butadiene-styrene three-block 

copolymer are the polymers chosen for study in this work. 

The very mobile silicone rubber chain segments make this 

polymer highly permeable to gases and vapours (14). The study 

of the concentration dependence of the diffusion coefficient 

of a penetrant, of a size comparable to that of a polymer segment, 

would be interesting because of the possibility that the polymer 

chains may be even more mobile than the penetrant. High mobility 

of chain segments also means low activation energy for chain 

rearrangement, and diffusion and viscoelastic processes in this 

polymer should not be too temperature dependent. Also silicone 

rubber has been known to have special interaction with silica 

fillers, with the formation of "bound rubber" as mentioned 

previously. The proportion of this "bound" rubber is known to 

increase on storage (4). It is hoped that the present study will 

explain some of the intriguing behaviour of this polymer. 

Three block copolymers, such as the most commonly known 

styrene-butadiene-styrene copolymer, are a recent addition to the 

list of commercially available polymers. These polymers possess 

rubbery properties at normal ambient temperature, but at elevated 

temperatures become thermoplastic. Therefore, they require no 

vulcanization, and processing operations can be carried out auto-

matically at highly economic speeds. 

The requirements of a A-B-A type three block copolymer are 

that A is a thermoplastic block" ".:.\11,< 'j (with a high Tg value), and 

B is an elastomeric block,.o ,M, " A two-phase system is formed, 

with the middle-block phase constituting a continuous three-

dimensional elastomeric network and the dispersed end block phase 

serving as multi-junction points for the ends of the middle blocks. 

This is diagramatically illustrated in Fig.1. A good balance between 
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processir~ performance and elastomeric character can be obtained 

at a range of selected molecular weights for A and B. It is desirable 

to have a discreet thermoplastic phase and a continuous elastic 

phase. Considering a styrene-butadiene-styrene (S-B-S) copolymer, the 

styrene domains as illu~trated in Fig.1. serve both as multiple 

cross-links and as filler particles. The diffusion of gases and 

vapours in this polymer has not been well studied up to date by other 

workers. It is worth noting that the morphology of the styrene 

domains actually vary with the way by which the polymer film is 

prepared (15). Casting the film from "good" and "bad" solvents 

has a considerable ~nce on the structure of these polymers, and 

this should,be rett:cted in the diffusion studies. 

The design of the experiment in this work enables a self-

diffusion coefficient of the penetrant in the polymer to be measured. 

This is clearer in interpretation than, for instance, a normal 

permeation experiment where the mutual diffusion coefficient is 

measured. A mutual diffusion coefficient involves mass flow as 

well as true diffusion (see 2.1), and although it is of great 

practical significnnce (because it ena'blos the actual amount trans-

ferred to be calculated), it does not describe fully the movement 

of the penetrant in the polymer. A self-diffusion coefficient of 

the penetrant in the polymer indicates exactly the frictional 
I' _ _ _, __ _ 

resistance i t experi~nces "n t.h& circumstan"e2,; 
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CHAPTER 2 

THEORETICAL 

2.1. Definition of diffusion coefficients. 

~~ Diffusion is defined ~ the process by which molecules are 

transported from one part of the system to another as a result of 

random motions. Fick (16) analysed the diffusion of isotropic 

substances by comparing it with the mathematical treatment of heat 

conduction earlier derived by Fourier (17). According to this 

theory, the rate of transfer of the diffusing substance across 

unit area of a section is proportional to the concentration 

gradient measured normal to the section, i.e. 

F = -D L£ d x 2.1. 

where F is the rate of transfer per unit area of 

section per second, 

c is the concentration of the diffusing substance 

x is the space coordinate measured normal to the section, 

and D is called the diffusion coefficient. 

The differential form of Eqn. 2.1 can easily be derived as 

(18):-

dc 
dt = D 

2.2 

Equ~tions 2.1 and 2.2 are popularly known as Fick's first 

and second laws of diffusion. 

In cases where the diffusion coefficient is itself a function 

of concentration, as in many cases of organic vapours in polymers, 

dc 
dt 2.3 

For a two component system, i.e. a mixture of substances A 

and B, the diffusion coefficient relating to the movement of A and 

B must be defined with a certain frame of reference. A few important 
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definitions of different diffusion coefficients are listed below:-

Volume-fixed reference. 

The section across which the rates of transfer of A and B are 

measured is so chosen that the total volume on either side of it 

remains constant. 

The volume transfer of A and B per unit time across unit area 

of the section are, respectively: 

_ DV 
VA~ A d x 2.4 

v 
and - DB V ~ 

B d x 2.5 

where VA is the "artial specific volume of A 

VB is the partial specific volume of B 

By definition of the frame of reference 

2.6 

Since only A and B are present 

2.7 

or differentiating 

dC. V dCB ~ 0 
VA d x + Bd x 2.8 

In order that both Eqn. 2.6 and ~~n. 2.7 be satisfied, it must 

follow thnt 

" - D B 2.9 

Thus the behaviour of two components on mixing with no volume 

change may be defined by a single diffusion coefficient, referred 

to conveniently as the mutual diffusion coefficient and denoted by 

Mass-fixed reference. 

By defining the section across which transfer of A and B are 

measured as one where there is no change in mass on either side of 

m 
it, we can define a mass-fixed mutual diffusion coefficient DAB in 

a similar manner. 

-11-



One component-fixed reference. 

If a section fixed with respect to one component, say the 

b polymer component, B, is used, then clearly DB ; O. Only one 

diffusion coefficient D~ is then needed to describe the behaviour. ,. 
V.JD b 

Relations between DA~A' and DA• 

The three diffusion coefficients as defined above are related 

to each other as follows (19) :-

b 
DA ; ~ (V~ ~)2 2.10 

0 
where VB is an arbitrary specific volume of B, 

depending on the reference used for its definition. 

b 
DA ; DV 

A (VB Cv)2 
B 2.11 

~ DV 2 
i.e. ; (volume fraction of B) 2.12 

A 

and 
m 

D" ; DV 
t. (C;;Cm) 2 

B 
v 

(basic total volume/true total ; D" 

volume) 2 2.13 

Intrinsic diffusion coefficients. 

\'ihen the ()cmpcnents A and B as discussed above in the volume-

fixed frame of reference are of different mass and size, the rates 

of transfer of it by random motions may then become greater or less 

than that of B. To compensate for this, so that the volumes on 

either side of the section are equal, a whole solution of A and B 

will flow together in the appropriate direction (20). This effect 

has been observed in polymer-solvent systems by Robinson (21). Since 

the polymer molecules diffuse much more slowly in this case than the 

solvent molecules, the movement of the polymer measured from the 

mutual diffusion coefficient is mostly mass-flow. Thus the overall 

rate of transfer of either component across a volume-fixed section 

is a combilli~tion of mass-flow and true diffusion resulting from 

random molecular motions. The mutual diffusion coefficient D:n 
.l.u.J is 

-12-



therefore unnecessarily complicated by the presence of this mass-

flow, hence arises the necessity of defining a new coefficient 

known as the intrinsic diffusion coefficient. ThG reference section 

is defined as one so fixed th~t no mass flow OCCur3 through it, 

and it mU3t move with the mass-flow to maintain this condition. 

When the partial volumes of A and B are constant, the intrinsic 

diffur;ion coefficients ~ and ~ can be related to the mutual diffusion 

coefficient D~B in a polymer-solvent system by the following 
" 

expression (22):-

DJ, = D':B/(1-Vj C,) 
• i~ ... 11. 

= D;J!(VBCB) 

= D;B/(volume fraction of B) .. 2.14 

2.15 

(if B is sluggish compared to [.) 

and D~ = D~!(Volume fraction of B)3 2.16 

It is evident from Eqn.2.14 that at low penetrant concentration 

the mutu~ diffusion coefficient approaches the same value as the 

intrinsic diffusion coefficient of the penetrant. 

Self-diffusion coefficient. 

By using radioactively lubelled molecules it is possible to 

observe the rate of diffusion of one component in u'two component 

system of uniform chemical composition. This involves the inter-

change of labelled and unlabelled molecules which are otherwise 

identical and so no m::tss flow occurs. However, these "self-diffusion 

coefficients", although involving no muss flow, are different from 

the intrinsic diffusion coefficients if the thermodynamic activity 

of component it is not equal to its concentration. Johnson (23) has 

demonstrated this point experimentally for metal systems. 

1. relationship between the intrinsic diffusion coefficient D '., .. 
and the self-diffusion coefficient - denoted by D • exists as follows. 

/;, 

(24) :-
-13-



d 111 nil. 
DA= D,: d In C~ 2.17 

where aA is the thermodynamic activity of component A 

and CA is the concentration of component A. 

DA' is also related to the thermodynamic mobility, Md' by the 

expression 

D'=RTrn A d 

Therefore Dj. 

-
d 

= RTrnd d 

-14-
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2.2. Steady stata permeation through a plane ~~eet. 

l~ thin membrane approximates to an infinite plane sheet across 

which diffusion occuro in a linear direction X. After a certain 

time a steady state is reached when the concentration remains 

constant at all points in the membrane. Fick's "second law" 

(Eqn.2.2) then reduces to: (if 0 is constant) 

= 0 2.20 

The frame of reference is:-

x = 0, t = ~~ c = c, 
x=l t=t,c=c2 

2.21 

where 1 is the thickness of the membrane, 

C
1 

and C
2 

are the concentrations of the 

penetrant at the two faces respectivaly, 

t is the time. 

On integrating Eqn. 2.20 with respect to x, we have 

dc 
d:X= constant 2.22 

On further integration, and applying the reference frame 2.21, 

C - C1 x 
= C

2 
- C

1 
1 

Since (Eqn. 2.1) F = -0 dc 
dx 

2.23 

2.24 

Thus, if the thickness 1, and the surface concentrations C1 , 

C
2 

are known, 0 can be clearly deduced from a single observation of 

the flow rate, F. 

In deriving Eqn. 2.24 an assumption has been made that 0 does 

not vary with concentration. Thus th" concentration varies linearly 

with distance from C
1 

to C
2 

through the sheet. In the Case of con­

centration dependent diffusion coefficients, as is indeed the case 
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in most polymer-organic vapour systems (Chapter 2.4), the simple 

value of D deduced from c measurement of the steady state of flow 

is some kind of mean value over the range of concentrations 

involved. If D is a function of C, Eqn. 2.20 must be replaced by 

d (D d c) ° d x = dx 2.25 

Hence 
d c 

F = -D-d x = constant 2.26 

still holds, as is expected in the steady state. 

Integrating Eqn. 2.26 between C
1 

and C
2 

1 
C ".. 

F = c
2
JDdC = D (C1 - C2)/1 I 

1 . 

where D 1 ~~rDdC 2.28 = C
1

-C2 2 

and this is the mean value deduced from a measurement of F. It 

follows from 2.26 that if D varies with concentration, the concentration 

will not vary linearly with distance in the membrane. 

The concentration dependence of D can be obtained experimentally 

by measuring F for a series of C
1 

values with C
2 

fixed at a low value 

which may be zero. Differentiating the curve relating F and C
1 

will 

show this dependence. If C2 = 0, 

- dD 
= D + C

1 
de 

1 
can be conveniently used. 

a relationship (25) 

2.29 

Barrer (26) obtained a series of typical steady-state concentration 

distribution curves across a membrane by deriving a solution for Eqn. 

2.25, applying the right boundary conditions, and evaluating the flow 

rate F (C) at different concentrations. Knowing the concentration 

distribution through the membrane, the concentration dependence of D 

can be deduced from a single experiment using Eqn. 2.26, since 

~ at different concentrations can be measured from the slopes of 

the concentration distribution curves. 
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The Concept of 'Permeability Constant' or 'PermeabiJity Coefficient'. 

In some systems the actual concentratio~C1 and C
2 

are not known, 

but onl] the vapour or gas pressures P1 and P2 on two sides of the 

membrane. It is then possible to define a term, P, referred to as 

the permeability constant, as the amount of gas or vapour at some 

standard temperature and pressure, passing per unit time through unit 

area of a membrane of unit thickness, when the pressure difference 

across the membrane is of a unit measure (say 1 cm Hg). The rate of 

transfer then can be expressed as: 

P(P1 - P2) 
F = 

1 
2.30 

If the external vapour pressure is linearly proportional to the 

equilibrium concentration within the membrane, i.e. if Henry's law is 

obeyed, then 

C = Sp 

where C is the concentration within the material of the 

membrane in equilibrium with an external pressure p, 

and S is the solubility. 

Substituting Eqn. 2.31 into Eqn. 2.24, 
DS (P1 - P2) 

F = 1 

Combining Eqn. 2.30 and Eqn. 2.32 

P = DS 

2.32 

2.33 

Thus for a system where the diffusion coefficient does not var:r 

with concentration, and Henry's linear sorption isotherm is obeyed, 

the diffusion coefficient may be determined by measuring the 

permeability constant and the solubility. This is known as the steady 

state permeation method of obtaining diffusion coefficient. 

Diffusion coefficients may also be obtained from the "time-lag" 

method and the "early time" method. (27-30). These methods also 

involve permeation througr. a polymer membrane and are therefore included 

here. 
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The time-lag method:-

From the moment the diffusant is admitted to one side of the 

sheet and prior to the establishment of a steady state, both the 

rate of flow and concentration at any point of the sheet vary with 

time. If the diffusion coefficient is constant, t.he amount of 

diffusant which emerges from the low concentration side of the 

membrane, (actually C
2 

= 0), per unit time, Qt is given by the 

expression (31):-

Q. 
t 

lC
1 

= 
Dt 1 

?- ~ 
2 

7[2 
(-1) 

2 
n 

n 
expo 

As t ~ 00, the steady state is approached, and the 

exponential terms bacome negligibly small, so that the graph of Qt 

against t tends to the asymptote 
2 

Q = DC1 (t - 1) 
t"1 to 

2.35 

which has an intercept, L, on the time (t) axis given by 
12 

L = Go 2 • .36 

Thus the diffusion coefficient can be easily calculated from the 

time lag L, 1 being the thickness of the membrane: 

By measuring the time-lag and the steady-state rate of permeation, 

or permeation constant, in one experiment, it is possible to obtain 

all the three parameters P, D and S by using equations 2.33 and 2.36 

(32, 33). This is subjected to the conditions stated earlier of 

constant D (with respect to time and concentration) and Henry's linear 

sorption isotherm. 

The early-time method (27-30). 

An alternative expression for the solution of Eqn. 2.34 is 

(27) 

2ASB !!Eo: ( -
dt - v 

where S is the solubility, 
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~ is the rate of increase of pressure in an initially evacuated 

vessel of volume V due to vapour leaving one face of a plane sheet 

of area A and thickness 1 • The other face is in contact with a 

vapour at pressure P1. 

11hen t is small, Eqn. 2.37 approximates to:-

ln (t 1/2 .1£ ) 
dt = (

. 1/2} 12 

ln ~1· (t). . 1illt 2.38 

Therefore a graph of in (t1/ 2 £t) against i should be a straight 
.~ 

line of slope (-1 <-/4D) from which the value of D is obtained. Again 

this method applies strictly to a constant D. 

The attraction of this method lies in the fact that since the 

extrapolution is towards t = 0, a value of D~o is obtained. c 

Thus the diffusion coefficient at zero concentr~tion can be obtained 

from one experiment instead of the lengtrrextrapolation to zero 

concentration, otherwise needed. 

ship 

Meares (30) obtained 

D=D ePC 
o 

all the parameters involved in the relation-

2.39 

by first determining D using the Qarly time method and then using 
o 

Frisch's equation for time-lag (34, 35) to obtain the term (>C, from 

which ~ may be <!oto;rlllir"ld. The early-time method, though not very 

widely practised, is seen as a very flexible and fast method of 

extracting substantial information on diffusion of small molecules 

at very low concentrations in a polymer system unperturbed. 

An interesting comparison of three diffusion coefficients 

obtained from steady-state per.neation, time-lag, and early time for 

the same penetrant-polymer system was made by Barrel' and Chio (36). 

The three procedures for measuring D refer to different time 

intervals. The steady-state measurements give the coefficient 

appropriate for ~ime = 00, the time-lag method gives a mean value 

over a time interval comparing with the time-lag, L. The early time 

-19-



procedure gives an average value over a still shorter period. 

If the diffusion coefficient is time dependent, the three 

coefficients would, therefore, be expected to differ. Barrer 

and Chio, however, did not find any significant difference between 

these diffusion coefficients for n-butane in silicone rubber. 
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2.3. Sorption and ~esorption in a plane sheet. 

The steady-state permeation method as described previously 

can be very time-consuming, as the diffusion coefficients of some , 

-10 2 -1 
vapours in polymers can be as low as 10 cm sec. This perhaps 

was the reason for the search of transient methods which would give 

rapid results. The kinetic study of the sorption and desorption of 

gases and vapours can be made both simple and rapid. 

The polymer membrane is maintained initially at a uniform 

concentration C (C may be zero). At the start of the experiment, 
o 0 

both sides of the membrane are simultaneously exposed to a vapour 

of fixed pressure, at a constant temperaturE. Assuming that the 

surfaces of the polymer exposed to the vapour immediately attain a 

concentration value equal to the equilibrium concentration value, 

the mass uptake of the vapour by the polymer can be expressed as 

(37) :-
!!O 

Mt 
MoO = 1 

8 --r ,f" 7(2m:::-1:"'+-::'"1 "'j1exp. [~D(2m 
11=0 

where M is the total amount of the vapour sorbed 
t 

at time t, and Mpais the equilibrium ~orption attained 

after infinite time. 

by the sheet 

theoretically 

The same equation holds also for desorption if MgG is the amount 

desorbed at infinite time, and M
t 

is the amount lost up to time t. 

Eqn. 2.40 for short times approximates to 

Mt = i {~}1/2 
Mt)O .". 

Therefore, a plot of Mt 

4 D 1/2 M 
has a slope of I: (g) from 

2.41 

, t t1/2, 0 't' 11 1 0 d agaLns LS LnL La y 1Rear an 

which D may be calculated. 

If the "half-time" Le. the time, t o.5 ' at which Mt/M.oo= 0.5 

is measured, then 

D = 2.42 
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The equations 2.40, 2.41, 2.42 apply to systems where the 

diffusion coefficient, D, remains constant with respect to con-

centration and time. In cases where D is a function of concentration, 

the value of D obtained from these equations is a mean value over 

the concentration range involved. 

Prager et al (42.) have shown that the "integral diffusion 

coefficient", is, over the range 0 to C, is given to a good 

approximation by the average of the values of D obtained from 

absorption to, and desorption from, the same equilibrium amount 

sorbed, 'bo Thus, 

t=~ (Da + Dd) 2.43 

where na is the mean absorption value 

Dd is the mean desorption value 

A series of sorption and desorption experiments for different 

values of M enables is to be determined as a function of C
1

• is is 

related to DC = C by 
1 

a relationshiP 

DC = C = is + C1 
1 

dD 
dC

1 

Hence DC _ C can be evaluated. 
- 1 

(see Eqn. 2.29). 

2.44 

Crank and Park (39) have derived a method to determine the 

quantitative dependence of diffusion coefficient upon concentration 

from sorption data by the use of successive approximations. They 

assumed the relationshi~: 
1 e1( 

i5~c1 01 DdC 2.45 

Thus if is C1 is plotted against C , the gradient of the tangent 
1 . 

at a point corresponding to a certain value of C
1 

will give a first 

approximation of the value of D at that concentration. Using this 

first approximation value of D, a theoretical sorption-time curve 

can be constructed, and a value of is from the calculated curve is then 

obtained according to Eqn. 2.42, and compared with the experimental 
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value of D. There will be a difference because Eqn. 2.45 is not 

exactly correct. Thus a second approximation is carried out by 

plotting D C
1 

(D is now the value obtained from the first approx­

imation) against C
1 

again, and differentiating. By repeating the 

procedure until the value of D from the theoretical curve is almost 

equal to the experimental one, a real D - C relationship can be 
" 

obtained. 

This method is applicable no matter what the D - C re1ation-

ship is, but it is tedious and lengthy. 

Other methods of determining concentration dependence include 

Kokes' (40) method 0.:- approximation from Da and Del over small 

concentration ranges; Bar~er and Brooks' (41) method of using 

successively smaller concentration intervals in a series of 

sorption experimenu; Prager's (42) step-function approximation; 

Fujita and Kishimotos' (43) method of moments, Huang's (44) 

polynomial approximation; and Crank's (45) weighted-mean 

diffuGion coefficient approximations. 

These methods will not be dealt with in detail here as they 

are of no direct bearing to the main work described in this thesis, 

where the diffusion coefficient is obtained from permeation 

experiments. Sorption experiments were carried out mainly to 

determine the vapour pressure-concentration isotherms. 

Summary. 

In sections 2.1, 2.2 and 2.3, the definitions of the diffusion 

coefficients, and the methods of obtaining diffusion coefficients 

from permeation and sorption experiments have been ( 

discussed. However, it is essential to understand which of the 

numerous diffusion coefficients defined in 2.1 are the ones 

measured experimentally. The presence of the penetrant in the 

polymer causes a change in the position of local volume centre, 
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and local mass centre, as well as causing a mass flow of the 

solution. These effects give rise, therefore, to differences in 

the various diffusion coefficients defined by different reference 

frames. 

In a permeation experiment where the gas or vapour is allowed 

to diffuse from a high concentration to a lower concentration 

across the polymer membrane, a mutual diffusion coefficient, with 

a fixed-volume reference (if there is no volume change on mixing), 

v 
DAB' is measured. 

In an absorption-desorption type of experiment, a polymer 

fixed mutual diffusion coefficient is measured. 

The diffusion coefficient obtained from the exchange of labelled 

and unlabelled molecules in the polymer, as is the case in this work, 

• is a self-diffusion coefficient, DA, as defined before (Eqn. 2.17). 

It is obvious from the relationships (derived in Section 2.1) 

between these coefficients, that at zero penetrant concentration, 

they should all have the same value. If only limiting behaviour 

is required, it is advisable, in experiments of this kind, to keep 

the penetrant concentration as low as possible and to extrapolate to 

zero concentration. 
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2.4. The free-volume theory as applied to solvent diffusion 

in polymers. 

The dependence of diffusion coefficients of organic solvent in 

polymers on concentration has been found to be very pronounced in 

many cases (46-51). Many authors have attempted to explain this 

pheno~eQon; early suggestions included explanations of thermo-

dynamic non-Ldeality in polymer-diluent mixtures (52), and of 

immobilization of penetrant molecules in the polymer network (53). 

These theories have later been found to be insufficient to account 

for the actual data. The zone theories of Barrer (24) and Brandt 

(54) which will be discussed, are also not useful in the temperature 

range just above the glass transition temperature because of the 

rapid variation of activation energy with temperature, and the 

consequently large number of degrees of freedom, g, involved in the 

calculation (see section 2.5). The free volume approach (49," 51, 

55, 56) is a useful qUE>I1titative treatment which explains both the 

temperature and concentration dependence of D. 

The origin of the free volume concept was the equation derived 
r (, 

by Doo!ittle (57, 58) to explain the dependence of ,iscosity of 

simple liquids on temperature. A liquid is pictured as a mixture 

of free volume and occupied volume. The larger the free volume, 

." the easier it is for molecular motion to occur (59, 60). Simply, 

it can be expressed as 

'1 = A expo (B / f ) 2.46 

where A and B are constants independent of temperature, and 

f is the fractional free volume which increases with temperature, 

'1 is the viscosity. 

\oIilliams, Landell, and Ferry (61) have derived, from the 

Doolittle concept, a similar expression, (WLF expression), for the 

dependence of viscosity of a bulk polymer on temperature. 
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With the presence of a diluent, the viscosity of the subsequent 

concentrated solution has been shown to be dependent on the diluent 

concentration, if the fractional free volume is assumed to be 

proportional to the diluent concentration (62). Further work by 

Ferry and 3tratton (63), on the dependence of viscosity on pressure 

and tensile strain analysed in the free volume concept, indicate that 

the polymer segmental mobility (bulk Viscosity) depends on the. free 

volume in a manner suggested by Doolittle. 

Fujita, Kishimoto and Matsumoto (49) considered that the mobility 

of the diluent molecules (hence the diffusion coefficient of the 

diluent-polymer system) should also be controlled by the free 

volume of the system, and derived an expression for the dependence 

of D on concentration. 

It is best to begin the derivation of an expression for the 

diffusion coefficient in terms of the fractional free volume by 

using Cohen and Turnbull~1 concept of identioal molecules (64). 

A liquid is envisaged as consisting of "hard spheres" where 

molecules reside within cages bound by their neighbours. Occasionally 

a void is opened up because of therma~ fluctuations to allow a con­

siderable displacement of the molecule. Diffusion occurs as a 

result of redistribution of the free volume within the liquid. 

The total probability,P(v·) of finding a free volume exceeding a 

given volume v· is represented by 

P (v·) = exp (-bv·IV) 2.47 

where b is a numerical factor near unity, introduced to 

correct for overlap of free volume, 

and v is the average free volume of one molecule, 

i.e. the total free volume divided by the total number 

of molecules. 
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To apply Eqn. 2.47 to polymer systems the various parameters 

need to be re-interpreted. Thus following Fujita (55) v is regarded 

as the average free volume per unit volume of the system, and 

deSignated by the symbol f; the product bv' is written as Band 

is interpreted as the measure of the hole size. 

Then we have, for polymer systems, 

P (B) = exp (-B/f) 2.48 

Now the mobility of a diluent in the polymer medium should 

depend upon the probability of its finding a hole in its neigh-

bourhood large enough to allow its displacement. If the minimum 

hole size for a ~~rtjcular diluent displacement is Bd' then 

2.49 

where md is the mobility of the diluent molecule, 

Ad is a constant depending upon the size and shape 

of the diluent. 

Ad and Bd' by their definitions, should be independent of 

temperature and diluent concentration, thus the mobi-lity of a diluent 

is primarily determined by the average fractional free volume of 

the system. It is interesting to note that by comparing Eqn.2.49 

to Eqn. 2.46, the viscosity (although a simple liquid is referred to 

in Eqn. 2.46), an expression for a polymer system can be similarly 

derived (65) ) is found to be inversely proportional to the mobility. 

The thermodvnrunic diffusion coefficient, D
th

, (66), of the . ~ 

diluent is related to»6 molar mobility md by the expression (67): 

where R is the gas constnnt, and T is t:,e absolute temperature 

of the system. 

Combining equations 2.49 and 2.50, therefore 

f, the fractional free volume, is dependent on the temperature 
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and diluent concentration, and is hence written as f(v1,T), v" being 

the volume fraction of the diluent. 

Fujita and Kishimoto (65) have established that if the increase 

in free volume of the system is proportional to the volume of the 

added diluent, then f(~,T) turns out to be a linear function of ~, 

given by the expression:-

where 

f (v
1

,T) = f (o,T) + (J(T) v1 2.52 

~(T) = '1 (T) - f (o,T) 2.53 

and )(T) is the proportionality factor between the free volume 

increase and the volume of added diluent; and f (o,T) is the value 

of f at zero diluent concentration. 

Substituting Eqn. 2.52 into Eqn. 2.51, we obtain 

= Bd~(T) v1 /{{r(O,Ti +f(T)f(O,'l')VJ 

Note Dth tends to Do at zero diluent concentration. 

At a fixed temperature, Bd' f!(T), f(O,T) are all constants, 
• I f! 11/, 

•• In (Dth/Do) = K v1 / (K + K 'v1) 2.55 

where K I, Kit, and Kill are constants. 

Since v 1 is small in practice, the term K'" v 1 in the 

denominetor is negligible compared with K", 
K' 

In (Dth/Dol : K" v1 
• . . 

K' 
i.e. Dth = Do exp ( K" v1) 2.57 

This represents the concentration dependence of diffusion 

coefficient often observed in prnctice. 

Eqn. 2.54 can also be expressed reciprocally as 

1 f(O,T) Cf(O,T( 2 1 2.58 1n(DthID) = + 
Bd Bdp T) v1 

Experimentally a plot of 1/ (1n(Dth/Do)] against 1/,\, should 

give a straight line. From the intercept at 1/v1 = ° and the slope, 

respectively, va:'ues of f(O,T)/Bd and (f(O,T)}2/Bd fi'T) can be 
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obtained. Thus knowing either f(O,T) or.Bd from~he(experiments, 

all the three parameters may be evaluated. f(O,T) should be 

independent of the diluent species. 

It shuuld be noted that the thermodynamic diffusion coefficient, 

Dth , as defined by Eqn. 2.50 is equivalent to the self-diffusion 

coefficient DI as defined in section 2.1. At low concentrations, 

therefore, D approximates to the intrinsic diffusion coefficient 
th 

DA, since 

D D (d In..£A.) 
th = 2. d1.n aA 

2.59 

where CA and a
A 

are the concentration and activity of 

component A (dil"ent) respectively in the polymer-diluent 

mixture (5&e section 2.1) 

Temperature dependence. 

For amorphous polymers above the glass transition temperature 

(61, 68), 

f(O,T) = f(O,O) + cif (T-To) 2.60 

where f(O,T) and f(O,O) are the fractional free volumes at 

temperature T and the reference temperature To; ~f is the thermal 

expansion coefficient of the free voltJue and is roughly equal to the 

difference between its liquid-like and glass-like thermal expansion 

coefficients. 

Eqn. 2.51 becomes (writing D for D
th

) , 

D = AdRT exp{ -Bd/ (f(O,o) + oC.f(T-TO»)} 2.61 

at reference temperature To, 

! t 
Do = AdRTo expt -Bd/f(O,o).I 2.62 

Assuming AdRT and AdRTo to be almost equal and combining Eqn. 

2.61 and 2.62, we have 

2.63 

Therefore (T-To)/1n(D/Do) is linearly related to (T-To). 
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Since f(o,o), Bd' otr are independent of temperature, 

(T-To)/1n(D/D) = K1 + K2 (T-To) 

• • 
T-To 

1n(D/Do ) = -K~1=--+'='Kl~(;';T;--'-T:;;-0""'\)-

I,here ll:1 and K2 are constants. 

2.64 

Eqn. 2.64 resembles the \fLF eqU4tion derived from viscvsity 

considerations (61), and it has been shown to be experimentally 

valid in various diluent-polymer systems (9). 

Relation of Do with Tg. 

Newns and Park (69) have recently derived an expression linking 

Tg with the diffusion coefficient of benzene at zero concentration 

in various elastomer~ by using the free volume concept. Sub-

stituting Tg for the reference temperature To, Eqn. 2.61 can be 

written 

D = AdRT exp{ -B~ (f(O,Tg) + e/..f (T-Tg))} 2.65 

Bd 66 Rearranging InD = In(AdRT) - (f(o,Tg) + (T-Tg») 2, 

at a constnnt temperature T, 

Ad' Bd' ~f, Rand f (O,Tg) are constant, 

therefore, 

Tg = C
1 

+ C2 / (C
3 

+ log D) 2.67 

C
3 

is small in mllgni tude compared to lo@. For polymethyl­

acrylate-benzene system, C
3 

was found to be only 0.53 (70). A 

linear plot was obtained, using ten different polymers, of Tg against 

(C
3 

+ log Dy1, I,here D is the diffusion coefficient of benzene at zero 

concentration. Polyisobutene did show a rather large deviation and 

t~is was explained by the large Bd value in this polymer caused by the 

steric hindrance of the two methyl groups. 

It is seen, therefore, that the free volume theory can be 

applied successfully to explain the concentration and temperature 

dependence of diffusion of organic diluents in polymers, and possibly 
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to predict the diffusion coefficient from a knowledge of the glass 

transition temperature, or vice versa. 
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2.5. The activated zone theory. 

This theory is due to Barrer (71-78), according to which 

transport of a molecule in a polymer medium takes place. when 

local conditions are favourable, i.e. when the concentration of 

thermal energy is sufficient to enable the localized chain 

environment to acquire the transition (activated) state necessary 

for any rearrangement of molecules. 

Suppose the assembly of hydrocarbon chains in the rubber 

contain N1 degrees of freedom (oscillators and restric~.ed 

rotators require two squared terms each to specify the vibrat-

ional or rotational degres of freedom). 

The chance of an energy ~ E being distributed among g degrees 

of freedom, is (78):-

g-1 
1 2.68 

(g-1H 

Since there are N1 possible places where the zone centre maY 

be located, the chance of these g degrees of freedom being 
1 g 

together in a group =(-) N 
N1 1 

Number of such group~whiCh maY be chosen from N1 degrees.of 

. freedom is N1 
g 

Therefore, the number of 

_ U'(E)t;-1_'1 
- N1 ~RT g1 .. . 

these activated groups 

1 J -E/RT 
(N

1
) g-1.e 2.69 

Since g may vary from 1 to N
1

, total number of activated 

zones 'N 
= L. ~E/RT 
= N1 e 

.; ..... . 2.70 

However, the above derived equation tends to give a "clustering" 

picture of the process, as it is evident from Eqn. 2.70 that only 

zones of 1 degree of freedom are present in large numbers. If one 

assumes that an average region contains n degrees of freedom and 
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g-1 
then rePlaCing(N

1
) in Eqn. 2.70 by 

1 

g-1 n 
(N) , 

1 
one can then 

shift the pattern closer to experimentally extrapolated ones 

where the largest number present are zones containing 10 - 20 

degrees of freedom (76). 

However, size n « N1 the same difficulty remains. 

Thus a segmental behaviour of polymer is next assumed where 

the rubber is divided into small regions (or quasi-molecules) 

whose identity may change, but whose number NE is constant. 

Then the number of zones activated becomes: 

= -E/RT e 
g-1 

1 
cg:1)! 2.71 

The activated quasi-molecules may then undergo internal 

reorientation processes. Eqn. 2.71 has the correct form to 

explain the experimental data. The terms of the summation lead 

to a maximum value for an intermediate value of g. (See Fig.2). 

The most likely number of degrees of freedom as indicated by the 

peak increases the larger the activation energy term E/RT. This 

suggests firstly that the motion of many polymer segments is 

involved in the diffusion process, ~nd secondly more degrees 

of freedom are excited the higher the activation energy. The 

average energy in the chosen g degrees of freedom, represented 

by E = gRT, varies with g as shown by the locus of maxima in 

Fig.2. Zones which are "hotter" than average in total energy 

content (E> gRT) and zones which are "colder" than average 

(E<gRT) are both less probable than zones containing average 

total energy (E a gRT). 

In an activated region, many sets of H':::brations of -CH
2 

units are possible, but only a fraction,~, may be successful 

in producing net transport of a solute molecule in one direction. 

The chance of a translation in the x-direction, in the absence 
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of external forces, is 1/2. Also, however,.;/' may include the 

possibility that for a successful translation there must be a 

synchronisation with time and direction of sets of libi;'rations. 

Such synchronisation is an improbable event and the value of ~~ 

would therefore be reduced This is corrected by multiplying 

each summation term by f' where f c::: 1 but remains to be 

determined. 

If the mean lifetime of the activated state isT, and the 

period of a lib .. ration is To, the number of sets of libl'ration 
" 

during the period of activation is cl. T per zone. 
. la 

The total number 

of sets of succ~ssiul lib rations in the activated regions 
\/ 

involving N1 solute molecules is then, (from Eqn. 2.71), 

g-1 
1 

In each second this becomes 

-..t.. 
1"0 

g-1 
1 

rg::i)! 

·rhe diffusion coefficient (78) then becomes 

f g=1 
D = 7f e -E/RT 

E g-1 

CiiT) 
1 

rg:n! 

2.72 

2.73 

2.74 

where 7\.. is the average distance moved in the x-direction 

by the solute per unit act of diffusion. 
_9 

If the mean value of 7\. is 3 x 10 cm.·7P ,..., -12 10 sec., 

1 
and d..." /2, 

D-:a: 4.8 x 17ft aE/ HT 
g-1 

...IJt E 
~ RT) 
8=1 

1 
2 

(g_1)!cm sec. 

2.75 

Barrer (71) considered only a few terms in the summation are 

likely to make contributions to D, and without serious errors 

a single term ~n g will suffice. 
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A similar expression can be derived for the self-diffusion 

coefficient in rubber (71), thus 

~. ( E ~g-1 1 

b-. lR T' (g-1)! 

2 -1 
cm sec. 

2.76 

Thus the diffusion coefficient is derived for penetrant-

:l'ubber and rubber-rubber systems from consi~ering the statistical 

probability of finding an activated zone involving several seg-

mental motions. 

Barrer and Skirrow (77) have fitted experimental values of 

D in the expression 
o 

D = D o 
-E!RT e 2.77 

into Eqn. 2.75 and found for hydrocarbons diffusing in rubber the 

degrees of freedom vary around 20, increasing with decreasing 

temperature. 

It is apparent that an appreciable zone of activation is 

necessary in order for a unit diffusion to take place. This 

view is supported by the large energies ~nd entropies of 

activation for diffusion and flow in elastomers observed (71) 

as compared with monomeric liquids even when cohesive energy 

densities of polymer and liquid are similar. 
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2.6. Brandt's Theory. 

Brandt (54) proposed a molecular model for the diffusion 

of small molecules in high polymers, and obtained from it an 

activation energy term. Although the value of his calculated 

activation energy turned out to be too low compared with the 

experimentally determined one, it is nevertheless interesting to 

consider his theory in some detail as it gives an insight into 

the molecular movements involved in the polymer segments during 

diffusion. 

Basically Brandt agreed with Barrer's zone theory, but 

whereas &~rrer assl~ed one of the summation terms in Eqn.2.75 

was large enough so that the others could be neglected without 

substantial error (as mentioned in section 2.5), Brandt considered 

this an unwarranted assumption, and actually evaluated Eqn. 2.75 

numerically by substituting mathematically derived values for 

the parameters involved in the equation. 

The assumptions made can be summarised as follows:-

1. The activated state is considered as the case in which two 

polymer chains, originally app'oxima tely parallel, have 

moved apart to accommodate the passage of a penetrant 

molecule (Fig.3). 

2. The activation energy is thought to consist of two con­

tributions (a and b):-

(a) An intermolecular term due to the repulsion which 

the chains experience from their neighbours on 

making room for the penetrant molecule. This 

energy term can be taken as the product of the 

internal pressure and the volume that has to be 

swept out by the chains to allow the penetrant 

molecule to pass through. 
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(b) An intramolecular term due to the resistance of 

the chains themselves to "bending." It is 

assumed that the bending of the chains involves 

a partial rotation of chain units out of their 

equilibrium position against a hindering 

potential of internal rotation. 

3. The activated state as shown in Fig.3 is formed by the 

partial rotation of each backbone chain unit against the 

hindering potential, such that the total torsional strain 

is distributed evenly over the whole segment. 

4. The number of degrees of freedom in a segment is proportional 

to the segmental length. 

5. The probability that the g degrees of freedom contained in 

a segment will co-operate in a diffusion step is 
1 g 

Pg =(-) 2.78 
m 

where m is a term corresponding to the number of different 

directions of motion, and in this case is tal<en to be two, since 

a rotation against a hindering potential may proceed in only two 

different directions (24). 

The total energy found >lith g degrees of freedom in the 

activated state can be expressed as:-

where E is the intermolecular term 
i 

~ is the intramolecular term 

2.79 

Eth is the thermal energy which is not part 

of the activation energy but of the total 

energy. 

Now, 

E. = P. A V 
~ ~.w 

2.80 

where Pi is the internal pressure, 

AIIV tis the volume swept out by chains to accommodate 

the penetrant molecule. 
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2s 
~=}\ t 2.81 

where S is the length of the segment 

7lis the length of one back bone chain bond 

measured along the chain axis, 

\11 is the potential of hindered rotations for an 

angular displacement. 

Eth = g RT 2.82 

Since the number of degrees of freedom available to a 

segment is proportional to the length of that chain (assumption 

I1 above) 

2.83 

where Z is the proportionality factor "hich represents the 

number of degrees of freedom associated with one backbone 

chain. Brandt has justifi ably used Z = 1 for most of his 

cal~ulations (79). 

Furthermore, the term,dV·may be represented by 

A'.Y, = i (Cp _t~/2)2 (s2/( Op _'f~/2)2_1) ~6'CN 
2.84 

where fip is the diameter of tile penetrant molecule 

~ is the average diameter of the polymer molecule 

4P is the free volume per unit length cf the polymer. 

The potential of hindered angular rotation 

+ = 9 if tC 82 Ls2/( bp - +/~ 2)2 - 1J:.85 

Substituting Eqn. 2.83, 2.84, 2.85 into 2.80, 2.81, 2.82, 

E = Ei + ~ + Eth 

= i ( Gp -tJ/2)2{( b 7\12 Z (Op -+~/2>! - ~r~NPi 
+ 36 %Z L\-1{[~1V 2 Z (6P -~~/2)J 2 _ 1}-1 

+ J RT 2.86 
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From Eqn. 2.86 it is possible to plot the energy factors 

against the numbers of degrees of freedom g. Brandt found that 

Ei and Eth increased linearly with increasing degrees of freedom, 

but ~ varied from a high value for small g, to a much diminished 

value at higher g's. Consequently E has a distinct minimum value 

at an intermediate number of degrees of freedom, g min. 

By substituting different values of g, and therefore E, into 

the right hand side of the Barrer equation (Eqn.2.75), value of 

D at a fixed temperature can be obtained. The activation energy 

term can be evaluated from the Arrhenius relationship 

D = D cyRT 

• Brandt also proceeded to prove his point that more than one 

term in the summation series in Eqn. 2.75 give equally large 

contributions to the diffusion coefficient, D. He plotted 

rE g-1 1 1 g -E/RT against the number 
log t(iiT) ~l ' log (0() and log e .. ... 
of degrees of freedom g, and then adding the three terms to give 

a sum plot against g. This is shown in Fig.4. It is evident 

from the sum plot that several terms of the series in Eqn.2.75 

are of nearly the same magnitude • 

. ~ interesting observation is made by the author in 

comparing Brandt's ~nd Barrer's 

(E g-1 1 J . 
log~iiT) Tg:1)l aga~nst g. 

respective plots of 

Barrer assumed constant E/RT 

with respect to g, and obtained a maximum as shown previously in 

Fig.2. Brandt, howover, assumed E/RT to be itself a function of g, 

1lIld his plot shOl.ed a minimum (Fig.4). If Barrer's log 

rE g-1 1 J 
.(iiT) (g-1)! against g plot is used in Brandt' s addition 

(Fig.4), a shnrp peak in the sum will be observed, thus illustrating 

Barrer's assumption that only a few terms in the summation are 

significant contributors. 
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Another point of arbitration is Brandt·s assumption 

(Assumption 3 listed above) that the activated state is formed 

by the partial rotation of the backbone chain. This mcy be the 

case when very small penetrant molecules are involved. With 

larger molecules compl~te rotational transition may occur, and 

the energy required is much higher. This may account for the 

lower evaluated activation energy from Brandt's model, compared 

to the experimental value. 
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2.7. Theory of P~ul and Di Benedetto (80,81). 

In their approach the ~ymer is pictured as consisting of 

cell models which contain polymer segments arranged more or less 

parallel to each other, i.e. some kind of short range order is 

assumed. As the chains fluctuate, due to thermal motions, a 

volume is swept out, and the intermolecular forces, or van der 

Waals bond energies, will be altered. The variation in this 

intermolecular ener~J, whioh is taken as the average potential 

energy of molecular interaction which accompanies a volume change, 

is related to the activation energy of diffusion. The process of 

diffusion of a sma:l molecule in the polymer may be visualised 

as follows. A gas molecule is originally trapped by parallel 

bundles of n-centre segments, each centre being a back-bone 

carbon atom. The gas molecule has a collision 

it is undergoing vibration. After some time a 

diameter r , and 
g 

uni t cell right 

next to the trapped gas molecule slowly, with respect to the 

vibrational motion of the gas molecule, will increase in volQ~e 

due to normal thermal motion. Once the unit cell's volume has 

increased by enough to accommodate .he gas molecule the latter 

can pass through the unit cell. The volume of the unit cell 

that will just permit this unit diffusional jump is taken as a 

cykinder whose diameter is rg and whose length is 2nll (82). 

(2/l is the distance of the effective carbon-to-carbon bond). 
( 1T' 2 

Le. ()(nv) = T rg 27\.n 2.87 

The amount of excess energy required to produce this volume 

fluctuation is the activation energy for the fluctuation. This 

activation energy is related to the variation in the average 

potential energy of molecular interaction which accompanies a 

volume change of 27\n (T )r~ 
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Paul and Di Benedetto assumed that a Lennard-Jones (6-12) 

potential energy of interaction ~ 

Thus 2.88 

where E * and f· are energy and distance parameters, and 

rl is the distance apart between centres. 

By assuming a picture mode for chain interaction, Fig. 5, 

it is clear that 

Pi 2 = ;02 + i 2 (2/\.)2 2.89 

where jOo is the nearest neighbour distance, and!1 

distance between centres. 

is the 

Substituting Eqn. 2.89 into 2.88, and arbitrarily summing 

up for 10 centres on either side of the centre in question, the 

total interaction energy 

+c = £" (c (f}12 - 2D (y,) 6J 

where C and D (~e terms lineafin fIO/2A 
! 

2.90 

Eventually, .~ 

E- ~ r .... , V* J1/2 (v* ~5/21 
.pC = (It' ... 0.77 (-;- - 2.32 \ V] .) 2.91 

~ *2 where V* = 2"p 2.92 

the ac ti va tion energy ,4 E d is given by 

AEd = No (A~) 2.93 

where A cl> is the additional energy required to create a void 

whose excess volume is 27lo (~) r2 , and N is the Avogadro's 
't g 0 

number. 

The unit cell volume in the activated state V is related 
a 

to the average effective volume (nv) by the equation 

V = V ( 1 + r* 2) 
a g 

Combining equations 2.91, 2.93, and 2.94 1 
411Nf* *r r V* 11/2 V· 11 / 2 

L1 Ed = 24 f ,_ 0.7~ ... (V) - (V) ." -2.32 

g~: p/2 (V; )5/2 J} a 

-42-



,-

.. \:;: 

iC27\.) 

~;:;;:-:-..\, - - - -cha i n a)( is 
,-' 

P. 
I 

- - - - - - - - - - - - - - - -cho in ox is 

FIG. 5 



By plotting 

for various gases 

Ed values against 

2 whose r* values 
g 

• 2 (r) for each polymer system 
g 

have been calculated, and then 

superimposing plots of Eqn.2.95 with V substituted from Eqn. 2.94, a 

and with appropriately substituted values for the other parameters, 

the theory may be validated. This has indeed been done by Di 

Benedetto and Paul (83) for polyvinyl acetate. 

Again the assumptions made in this model approach does not 

allow for complete segmental rotation which is necessary for large 

diffusing molecules. However. this, and Brandt's theory, show that 

it is possible to work out an energy term for diffusion purely by 

using molecular models, and applying the right values to the 

parameters involved. 
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2.8. Some aspects of viscoela~tic behaviour in polymers. 

When a polymer molecule is subjected to an external force, 

it will assume a new equilibrium state in which segments occupy 

new positions liith respect to the centre of gravity of the 

molecule •. VJhen the stress is removed, the segments diffuse 

back to their unstressed positions, (which are positions of 

minimum free energy and maximum entropy), with reference to the 

centre of gravity of the molecule, which in the meantime may have 

moved as a result of viscous flow. The ability of the segments 

to return to their previous configuration is referred to as the 

elastic property. The readiness of the segments to flow past 

each other is related to the viscous property. In high polymers, 

both these properties are inherent, hence the behaviour is 

referred to as viscoelastic. 

In the pheno~enological description of viscoelasticity 

(6, 84-90), which will not be dealt with here in detail, 

mathematical models are made which consist·of perfectly elastic, 

"Hockeo.n," springs, and perfectly viscous, "Newtonian" dashpots, 

to represent the combination of elastic and viscous responses 

exhibited by polymers. From these models it is possible to work 

out values for relaxation and retardation times, which are 

respectively, the time taken for the stress in the polymer to 

relax to 1/ its initial value when the polymer is held under 
e 

constant strain, and the time taken for the strain to "decay" to 

an equilibrium value when the polymer is held under constant 

stress. The viscoelastic behaviour of a polymer is too complex 

to be represented by a single model, and can be described by a 

large number of these models either in series or in parallel. 

Thus, a generalised model has a distribution of relaxation times, 

instead of a single relaxation time. 
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For a single model under a sinusoidal strain, the stress 

is also sinusoidal but lags behind the strain because energy is 

dissipated. A sinusoidal strain may be \<ritten: 

e = e exp (iwt) 
o 

where w is the angular frequency which equals 2.". f (f is 

the frequency). The relationship between stress and strain when 

the stra~ is alternating is 

F .. G* (w) e 2.97 

where F is the force 

G* (w) is a complex shear modulus; or complex 

rigidity. 

G*(w) in turn may be expressed as 

G*Cw) = G'Cw) + i G" (w) 2.98 

where G'(w) is the component of shear stress that is in 

phase with the strain, divided by the strain, and 

G"(w) is the component of shear stress that is 900 out of 

phase with the strain, divided by the strain. 

G'(w) is a measure of energy storage, 

G"(w) is a measure of energy aissipation. 

If 1r is the relaxation time, as defined before, of the single 

model (the model used here contains a spriag and a dashpot in 

series - called a Maxwell element), then the real and imaginary 

parts of the complex rigidity may be represented as:-

G'(w) = (G w2 -r;2 ) / ( 1 + w2 r i? ) 2.99 

G"(w) = (G w'r') / ( 1 + w2 r2 ) 2.100 

where G is the spring rigidity. 

For a generalized model containing an array of Maxwell 

elements in parallel, the corresponding equations are 

G'(w) = r i 

G"(w) =~ 

(Gi w
2 1i2 ) / (1 + w

2 Ti2 
) 

(G
i 

w7; ) / ( 1 + w
2 ~2) 
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Thus the behaviour of the system in static or dynamic 

strain experiments may be calculated, once the distribution 

functions G' (w) and G"(W) are known, and conversely, the 

possibility arises of determining the distribution function 

from the observed mechanical behaviour. 

This lauer problem is a difficult one as it is complicated 

by the very wide range of relaxation times which have to be 

taken into account when dealing with most polymers. Experiments 

are necessary whose time-scales cover a range comparable with 

the relaxation times. Since no single experimental method is 

capable of covering the time range of the order of 105 sec to 

105 sec, a combination of methods is required. 
, , 1 '5 ' 

In the longest time range (10 - 10 seconds) the study 

of creep under static load or stress relaxation at const'ant 

strain has proved most useful. 

employing alternating stresses 

used. For very short times ( 

For shorter times methods, 

or strains are almost invariably 

-4 10 second) wave propagation 

methods and mechanical impedence methods are employed. Ferry (6) 

has given an excellent review of all the experimental methods 

used in these time scales. In an apparatus used by the author 

(87) a dynamic mechanical instrument is employed which measures 

the stress response, in-phase and out-of-phase, when a sinusoidal 

.; -1 
stress input in the frequency range 1C1 - 10 cycles per 

second, (time range 193 - -101 seconds), is applied. In all 

experiments accurate thermostating is essential, ss the visco-

elastic behaviour of polymers is strongly dependent on temperature 

(see later section). One of the advantages of methods which make 

use of electro-mechanical transducers like the one employed by 

the author is that the sample is subjected to only very small 

stresses and strains so that the conditions of linear visco-
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elasticity (88), on which are based the stated equations 2.99 -

2.102, are fully satisfied. 

Temperature dependence of viscoelastic properties. 

It is a well known observation that visco-elastic parameters 

like G'(w) when plotted against log w and log t separately, show 

similar shapes (t is the absolute temperatUTe). They can be 

superimpused by shifting them along the log w or log taxis. 

This is known as the time-temperature super position principle, 

and it can be applied to curves of stress relaxation (89), 

creep (90), G' (w) and G"(w) (91,92), as well as the relaxation 

time spectra derived therefrom. The superposition principle is 

important practically because it enables data obtained at 

different temperatures to be translated into those at corres-

ponding frequencies, and vice versa. Therefore if experimental 

conditions limit the frequency applicable to a narrow range, 

the viscoelastic behaviour can be measured within t~is frequency 

range over several temperatures, and the data converted to a 

fixed reference temperature, and combined to give a master 

curve (93). 

The kinetic theory of rubber elasticity (94) showed that 

the modulus of the polymer network at equilibrium was proportional 

to the density f ' and the absolute temperature T. Therefore to 

convert the complex moduli obtained at T to a reference temperature 

To, it is necessary to apply a "vertical shift", i.e. for instance, 

( ) To ,~o 
G' t must be multiplied by a factor T'f ,before the 

"Horizontal shift" of ± log aT is added, where aT is known as 

the shift factor, and is measured by the horizontal distance apart 

between the reference temperature curve and the curve at temperature 

T. 
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rlilliam, Landell, and Ferry (61) in their important work 

published in 1955 have found that for a variety of polymers, 

and also for polymer solutions and some non-polymeric sub-

stances, aT can be expressed in the form:­

-17 .44 (T-Tg) log EL = -r.~-r,;"",:,;;",,;"'-:-.,.... 
'1' (51.6 + T - Tg) 2.103 

where Tg was chosen as the reference Temperature, To, 

a This equation fits well over the range from Tg to (Tg + 100) C. 

A physical significance may be given to the numerical 

coefficients in Eqn. 2.103 by making use of Doolittle's free 

volume equation for viscosity (57, 58) (see section 2.4). 

Doolittle's equatio~ may be modified to express aT in the form:-

log "Ir = 2.104 

where fg is the fractional free volume at Tg 

and (or - u() is the difference between the coefficients 
. 1 g 

of thermal expansions above and below Tg. Comparison between 

Eqn. 2.103 and Eqn. 

8 -4 -1 4. x 10 deg. 

2.104 gives fg = 0.025 and (~ - Oc) = 
1 g 

The latter is close to the observed value 

for many polymers, and the former is certainly of the right 

order of magnitude. 

A theoretical justification of .the superposition principle 

can be shown in Bueche's molecular theo~of viscoelasticity 

(95). 

Molecular interpretation. 

Earlier theory by Kirkwood (96) assumes a molecular model 

in which the chain atoms lie on a cubic lattice of James and 

Guth (97), containing n bonds of length b. If there are ~ 

chains per unit cross section area, and an alternating tensile 

stress r 6 exp (iwt)l , tI / 
is applied to the terminal planes of 

the cubic netl<ork, each chain in the direction of stress will 

experience a force given by: 
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• 

F = ~ exp (iwt) 2.105 

Browninn motion of the chains allows a strain to develop 

in the direction of the stress. It is assumed that this is 

accompanied by a contraction of half the longitudinal strain 

in chain perpendicular to the stress. 

By postulating a probability distribution of a chain, a 

generalized diffusion equation of Brownian motion was derived 

(98), and this is 

by 

) ~j 
= at 

2.106 

wlaere j is tt.e probability distribut ~on function 

t is the time 

D is the internal rotatory diffusion tensor given 

D = kT/& 2.107 

where t is the resistance tensor. 

Kirkwovd and Fuoss (98) derived a rotatory diffusion tensor 
,,,.r , 

abo.xt: bond S, to replace the general diffusion tensor, D, 
~..J 

in Eqn. 2.106. Kirkwood's final expression for the retardation 

time is 

L (r) = 

where M is 
c 

f is 

L is m 

Mc 
8pRT # , 

J/Vh 2.108 

the molecular weight between junction points, 

the density 

the retardation time of maximum loss compliance. 

In the theory of Rouse (99), a polymer chain is regarded as a 

succession of 'submolecules', each long enough to obey the 

G~ussian distribution function for random chain configurations 

(94). In the presence of a shearing force, the unstressed 

equilibrium configuration is disturbed, and the free energy is 

increased. Thus by co-ordinated Brownian motion of chain segments, 
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the molecules continually drift back towards their most 

probable distribution of configuration at a rate proportional 

to their displacement from equilibrium Rouse has obtained 

expressions for the complex viscosity of a polymer solution by 

calculating the free energy stored in the distorted molecules 

according to Gaussian distribution of the chains. The shearing 

force was considered to vary sinusoidally with time. From his 

expressions the relaxation spectrum of the molecules may be 

derived. It was assumed by Ferry (100) that for an undiluted 

polymer above its Tg, Rouse's Theory might be obeyed over a 

useful range of relaxation times. The relaxation and retardation 

time spectra Can then be expressed as:-

PN 
H <[) = 2'1rM (ro2 n kT to 1/2 -1/2 

:.:::....~6 =":::"::;) r 2.109 

r 2M 6 1/2 1/2 
L ( ) ='1fPN (---''----) "'i 2.110 

"2 '~~' ... 
ro n It Tt. 0 

where 2 is the unperturbed mean square displacement 
r 

o 
length of n monomer units, 

eo is the monomer friction coefficient which is equal to 

the force (in dyneo) on a chain monomer unit due to the viscous 

resistance when travelling at 1 cm/sec through its surroundings 

at rest. <~o is therefore characteristic of the perticular 

polymer and temperature), 

M is the monomeric molecular weight 

N is the Avogadro's number. 

Over the frequency range where the theory is applicable, a 

plot of 1n H er) against k T should be linear with a slope of 

1 
- /2· Nrom comparison with experimental curves over this 

region, the monomeric friction (;0 can be evaluated provided 
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f ' M, and ;-2 are known. 
o 

(~ may be obtained from the intrinsic 
r o 

viscosity in a 9 solvent). 

The theory of Bueche (95) was formulated directly to apply 

to solid polymers. Brownian motion is not as directly applied 

as in the case of Rouse. Successive 'submolecules' are directed 

in sequence parallel to the x-" y- and z- ax',s of a rectangular 

co-ordinate system, thus a force applied in the x-direction 

extends only one-third of the submolecules. These extended 

submolecules behave like springs with moduli given by the 

Gaussian chain theory, so that Brownian motion within the sub-

molecules is the source of the restoring forces. The whole 

molecule is pictured as consisting of masses of submolecules 

connected by identical springs. If a force is applied to such 

a system; a complicated set of vibrations will be executed by 

the springs as the model extends. Bueche then calculates the 

changes in positions of the masses with time when their 

vibrational motions are damped by a viscous medium. It is 

interesting that his final expression, approximated to short 

times (101) are:-

H (t> - .J2 
1 

L (T) = 12' 
H (1:) (Rouse) 

L (t) (Rouse) 

Activated molecular movements. 

2.111 

2.112 

It is worthwhile to note that in all the preceding 

expressions for relaxation and retardation time spectra, the 

temperature appears only in a minor role in the rubber elasticity 

term. Yet the sensitivity of viscoelastic properties to changes 

in temperature is one of the striking features of viscoelastic 

behaviour. It is fairly apparent that the temperature influence 

must be exerted through the frictional constants invoked by all 
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the molecular theories. 

The monomeric friction coefficient, £0, as defined under 

Eqn. 2.110 can be related to the diffusion coefficient D by 

the Einstein expression (102):-

D = 2.113 

Bueche (103) has obtained an expression for the diffusion 

coefficient by a direct walk analysis as:= 

2.114 

where a is the average distance moved by a chain atom in 

a single 'jump,' 

J is the jump frequency 

n is the number of atoms 

From Eqn.2.114 and 2.114 therefore, 

, 21Cr 
(::00 = 2 

a J 
2.115 

Bueche then proceeded to estimate the average jump frequency 

(J) with which u polymer segment moves. This is taken as to be 

proportional to the probability of an entha1py greater than 

some minimum activ~tion energy being localized on neighbouring 

segments, the co-operation of which is necessary for rearrange-

mentto occur. Bueche's expression for J based on Einstein's 

distribution function (102) is difficult to apply directly. 

Fox et a1 (104) by analogy with ~ring's basic equation 

(105) :-

2.116 

obtained Eqn.2.117 below 
aB ",g 6H/RT 

J = ~~ (er;RT ) e 2.117 
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where K is the chance of the activated state passing 

forward into "reacted' state" rather than back to· the "unreacted 

state", and this can be taken as 0.5 in the present application. 

The term dg expresses the total number of degrees of freedom of 

the rearranging zone, as g is the number of co-operating monomers 

and d is the C1,!R per mole of monomer. 

Combining Eqn.2115 and 2.117, 

2 h bH -elk L\ H/RT 

%0 = a2K Ca:RT) e 2.118 

Barrer's activated zone theory as described in Section 2.4 

can be equally well applied here. Eqn. 2.75 describes the 

movement of a polymer segment through its surroundings. 

It is seen therefore that the activated process in the 

diffusion of a foreign molecule, and that of the polymer chains 

themselves are very similar and comparable processes. 
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2.9. Theory of liquid scintillation counting. 

In recent years a method has been developed to detect weak 

beta emission from isotopes like 14C, or carbon-14, by dissolVing 

or suspending the radioactive sample in a 'scintillating' liquid. 

This method is known as liquid scintillation counting, and it 

eliminates, or greatly reduces, the effects of self-absorption 

and window absorption (106). It has been shown to be capable of 
.' 

high sensitivity and to provide high efficiency for large samples 

in low-level counting (107). In a bi~ary system, i.e. a liquid 

scintilla tor consisting of a fluorescent aromatic solute in a 

usually aromatic solvent, the passage of an ionizing particle 

through the solution causes ionization and excitation primarily 

of the solvent molecules. Subsequently the excitation energy 

may be transferred to the solute, the fluorescence of which 

represents the scintillation emission of the binary solution. 

The emission may be shifted in the wavelength to match the 

response curve of the photomultiplier tube (which is the 

detector), by the use of a 'secondary' solute. These processes 

will now be considered in more detail. 

Fluorescence of aroF.atic compoundS. 

When an aromatic molecule absorbs ultraviolet radiation, 

its ~'electron system is excited from its ground singlet state 

So into one of the excited singlet states S1' S2' S3 ••• Sn 

(Fig.6), Superimposed on each of the electronic levels are 

vibrational sub-levels, but these are not important and are not 

considered. There is, however, also a sequence of excited 

1T electron triplet states T
1

, T2 , T
3 

••• each lower in energy 

than the corresponding singlet state. A singlet state is one 

in which all spins are paired and has no net electro·····: magnetic 

moment, atriplet is formed by spin inversion of an excited singlet 

state - called 'intersystem crossing' - and is aatually a com­
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bination of three states which differ in orientation of the 

magnetic moment with respect to arbitrary chosen reference 

axes (108). At higher energies there is also a series of 

~~electron excited states. 

The excited singl~and triplet states undergo transition 

to the ground state 8 by the process of fllooorescence, 
o 

phosphorescence, and delayed fluorescence. Fluorescence 

corresponds to a radjallll:ire % transition from 8
1 

to 8
0

, 

following absorption. The radiative lifetime of 8
1 

is 

approximately 10-8 to 109 second, which is long compared with 

th 0 d f 1 ul Ob to ( 10-12 sec.) so that the e pe~o 0 mo ec ar V1 rn 10ns ca. 

molecule reaches thermal equilibrium before emission, and the 

transition occurs from 8
10

, (the symbol 0 denotes ground 

vibrational level). 

Phosphorescence is an emission at longer wavelengths than 

fluorescence, ,.hich decays exponentially with a much longer 

-4 decay time (ca. 10 sec. or longer). This process is due to 

the transition of the triplet state T1 to the ground state 8
0

, 

Alternatively the triplet state T1 may acquire sufficient 

thermal energy to return to 81 , leading to delayed emissions. 

The subsequent 8 - 8 luminescence has the same spectrum as 
1 0 

the normal fluorescence, but its decay period is increased to 

-6 ca. 10 sec. or longer. 

The fluorescence quantum efficiency, g, of an aromatic 

compound is defined as the ratio of the number of fluorescent 

photons emitted to the number of molecules originally excited. 

For aromatic solvents, such as toluene, g is about 0.1, but for 

efficient fluorescent solutes used in liquid scintillators, 

g approaches unity. 
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The scintillation process (Fig.7) 

The scintilla tor solution consists of a main solvent in 

which are dissolved a primary solute (scintilla tor) and in some 

cases a secondary solute (wavelength shifter). When ionizing 

radiation falls on this solution, the radiation transfers its 

energy to the solvent - denoted by X. The concentrations of 

the solutes are sufficiently small and direct excitation can be 

neglected. As a result of this energy transfer, the processes 

occurring in the molecule of X are:-

(1 ) Excitation into 7T'_singlet states, 

(2) 71" electron ionization 

(3) Excitation of other electron states, and 

(4) Ionization of electrons other than 'f1 electrons. 

Process (1) is the cause of main fast scintillation emission. 

Recombination of ions as a result of process (2) also leads to 

singlet 1f excitations, and on de-excitation this also produces 

scintillations. About 12% of the excited molecules are in 

excited IT-electronic singlet states, the remainder, as in 

process (3), dissipate their energy therm~lly and do not 

therefore contribute to the scintillation. Process (4) leads to 

temporary or permanent damage. Normally process (1) leads to 

excitation into 8
2 

and 8
3 

singlet states, and the first of the 

secondary processes is the de-excitation of these states to the 

81 state. This process is known as internal conversion, and is 

common to all types of organic scintillator systems. 

The solvent excitation, 81X ' does not remain stationary 

within the solution. There is thermal diffusion (Brownian 

motion) of the solute and solvent molecules, and there is also 

excitation migration between the solvent molecules. This 

-56-



IONISING PARTICLE 

E ,~ x\e-

RC 
Sn 

, 11 V 
X 

" 

IC 

\/ -~ -Slx,-----ST,. 
I 

SF sa 
TF TO 

Sox 
\ 1 11 

SOX------~SOI~----~ 
solvent molecules solutemoleculG 

. . . . 

FIG.7 SCINTILLATION PROCESS 
IN A BINARY SYSTEM 

E SOLVENT EXCITATION 

I SOLVENT ION ISATlON 

RC ION RECOMBINATION 

,M . SOLVENT- SOLVENT· MIGRATION AND DI FFUSION 

SF SOLVENT FLUORESCENCE 

Sa SOLVENT INTERNAL QUENCHING 

ST SOLVENT-SOLUTE TRANSFER 

'C INTERNAL CONVERSION 

TF SOLUTE FLUORESCENCE 

TQ . SOLUTE INTERNAL QUENCHING 



migration process is due to the successive rapid formation and 

dissociation (in about 1012 sec.) of excited dimers ("excimers") 

between adjacent excited (51) and unexcited (50) solsnt 

molecules. Due to the diffusion and migration processes, the 

solvent excitation 5'IX moves quickly through the solution until 

it comes out into the proximity of a solute molecule Y. The 

latter is chosen to have its lowest excited singlet energy 51y 

below 5 • On close approach of the excited solvent molecule 
1X 

and Y, the excitation 51X undergoes solvent-solute energy transfer 

to Y, where it is rapidly internally converted 

molar concentration of Y is sufficiently high, 

to SlY. If.tQe. 
. -1 

(1-2 gl ), the 

energy transfer quantum efficiency is of the order of unity, so 

that practically all the excited solvent molecules transfer their 

energy to the solute, rather than dissipating it by the competing 

processes of solvent internal quenching or solvent fluorescence 

(Fig.7). 

If a secondary solute (Z) is added, having an S1Z state of 

energy less than that of Y, this would lead to an extension of 

the process as described in Fig.7, with further transfer etc. 

between Y and Z, similar to those between X and Y. 

Quenching. 

Any soluble material, other than the scintillator solvent and 

solutes, present in a liquid scintillator may cause a reduction 

in the scintillation efficiency. This is due to the interference 

of the impurity which competes with either solute Y or Z for the 

excitation energy of X, and absorbs this energy but does not give 

rise to light emission when de-excited. Dissolved oxygen is a 

quenching agent and does effect considerable pulse height 

attenuation (109). It must, therefore, be removed by, for 
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instance, degassing under high vacuum. 

Apart from impurity quenching, the addition of highly 

coloured or opaque materials to the scintillator solution may 

be deleterious. These substances absorb some of the 

scintillation light flashes before it reaches the photo-

multiplier, therefore reducing the output pulse amplitude. 

Secondary solutes can be advantageous in such circumstances by 

shifting the spectrum of the scintillation emission to a region 

in which the specimen is more transparent. 

A similar effect, leading to a diminution in the scintillation 

signal, is produced by dirt or by condeasation of water vapour 

on the specimen vial or the photomultiplier window, and these 

should be avoided. 

The scintillation signal is detected by a photomultiplier 

tube assembly, the working of which is described in detail in 

Chapter 4.4. 

Choice of scintillator solution and solutes. 

Hayes et al (110) compared the relative scintillation 

efficiencies of 49 carefully purified solvents, each containing 

-1 3 gl of 2,5-diphe:.1Yloxazole (PPO). All but anisole of these 

solvents were alkyl benzenes. It is therefore rather 

interesting that n-decane, a s.turated hydrocarbon, as used in 

this work, was found to exhibit good characteristics as asolvent 

with fair efficiency. It is suggested that excitation of non-,1r 

bonds must have been responsible for the excited solvent state, and 

this is quickly transferred to the solute molecules. 

The main compounds which have been used as primary solutes 

fall into two groups, firstly the oxazole and oxadiazole 

derivatives, and secondly the substituted p-oligophenylenea. 



The practical. requirements of a primary solute are good 

solubility in the solvent, and high quantum efficiency of 

fluorescence. 

A secondary solute does not vary in basic chemical nature 

from that of a primary solute, and its inclusion in the scintillator 

mixture to improve the emission spectrum has several advantages. 

Primarily, it enables more efficient matching of the photo­

multiplier sensitivity curve .(Chapter 4.4); it also lowers 

the adsorption by the optical system and the walls of the 

counting vials. A popular secondary solute is 1,4 bis-phenyl 

oxazolyl benzene (POPCP), which has an emission maximum of 

4320 AO
• This matches quite well with the sensitivity msYimum 

of about 4000 AO for most E M I photomultiplier tubes (111). 
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CHAPTER 3 

PRELIMINARY INVESTIGATIONS INTO INSTRUMENTATION 

AND EXPERIMENTATION 

3.1. Existing metho~s of measurement. 

The measurement of organic vapour diff1:sion in polymers 

can be broadly classified by three methods:-

(1) Membrane permeation methods; 

(2) Sorption and desorption methods; 

(3) Radiotracer methods; 

although some radiotracer methods may involve (1) and (2). 

In the permeation method, the polymer in the form of a 

membrane is placed in such a position within the experimental 

set up so that the diffusion of the penetrant in the polymer 

may be followed by measuring the flux, or amount permeated per 

second, through the membrane. The calculation of the diffusion 

coefficient, D, from the flux, F, has been given in Chapter 2.2. 

In the simplest case, 

F = D ~C -r 
where 4c is the concentration difference across the 

membrane, and 1 is the membrane thickness. 

There are many methods of measuring the flux, F. One of 

the best known methods is the one used by Barrer (77), where 

the flux is measured by the increase in pressure in an initially 

evacuated and degassed chamber separated " from the solvent vapour 

chamber by the polymer membrane. A sensitive Macleod gauge is 

used for measuring the pressure increase. Alternatively, a 

Bourdon gauge may be used (112). The flux may also be obtained 

by condensing the vapour permeated, and then transferring it 
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periodically to vapourise in a known space where the pressure 

is then measured (113). Most recently Pasternak et al (114) 

have devised-and patented a method where the flux is measured 

by using a carrier gas which sweeps away the permeated vapour 

continuously, the amount of which is detected by a thermo-

conductivity cell • Other methods include the use of mass 

. spectrometry (115), chemical analysis (116), radiotracers (117), 

and gas chromatography. All these methods require a con-

centration gradient of the penetrant across the polymer 

membrane. The concentration is determined separately usually 

by the equilibrium uptake of the vapour by the polymer under 

steady conditions, in a sorption method. 

The sorption method is a rapid method of determining 

the diffusion coefficients, ·as during the early stages the 

mass uptake of the vapour (Mt ) at time t, and the equilibrium 

mass uptake (M~.) are related to the diffusion coefficient 

D by the expression (See Eqn.2.41) 

= 
4 
1 

(!2L) 1/2 
rr 

where I is the thickness of the membrane. 

3.2 

The quantitie,; M
t 

and tt,n can be determined by a wide 

variety of methods. The use of a sensitive helical quartz 

spring from which the plymer is suspended, is probably the most 

common (118). The increase in weight is given by the extension 

of the spring, which Can be measured by using a cathetometer. 

Other methods which have been used to determine the amount 

sorbed or desorbed involve the following:- dielectric measure-

ments (119), tungsten helical spring (120-122), sensitive 

stress gauge (123), electrical balance (124,125), measurement 

of the volume change of t.e ambient vapour (126), use of radio-

isotopes (118-127), and direct weighing (39, 52). 
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The use of radio tracers in permeation and sorption methods 

have already been mentioned (117, 118, 127). In the case of 

permeation, the radioactive vapour permeated is transferred by a 

current of alcohol vapour to the measuring apparatus. In the 

sorption method of Park (127) the polymer is first "saturated" 

with a radioactive vapour, and the amount sorbed is determined 

by replacing the radioactive with the non-radioactive vapour, 

and analysing the vapour periodically by counting with a Geiger 

tube. 

Another method of employing radiotracers to measure the 

diffusion coefficient at a fixed concentration level is the 

so-called "composite layer" method (9,10,128-131). In a typical 

case a very thin film of ~adioactive-labelled penetrant saturated 

polymer was appliod on top of a thicker film of unlabelled 

penetrant saturated polymer. Assuming that the p-particle 

absorption follows a logarithmic law, theoretical curves of 

log D against I can be constructed, where I is the observed 

activity and D is the diffusion coefficient. By comparison 

of these curves with the experimental oneS of log (time) 

against log I, ValU·.6 of the diffusion coefficient can be 

calculated (9). With soft beta emitters and thick polymer 

specimens, it is sometimes sufficiently accurate to assume that 

the measured activity is directly proportional to the con­

centration of the labelled compound at the surface (132). 
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3.2. Introduction of present method. 

The permeation method described in 3.1 has the disadvantage 

that a concentration gradient is required. Thus besides the 

p~sical difficulties of membrane distortion due to the pressure 

difference, incomplete degassing which may lead to "false" 

pressure increases, and other complications involved with 

measuring vapour pressure with a delicate instrument like the 

Macleod gauge, the value of the diffusion coefficient obtained, 

(which may be concentration dependent), is the mean diffusion 

coefficient over the concentration range involved (see Chapter 

2.2). 

The sorption method has the same problem. Alao if the 

diffusion coefficient is large, then the kinetics cannot be 

adequately followed. 

The "composite layer" method of Moore and Ferry (132) 

appears to give a result for diffusion coefficient at a fixed 

concentration level. However the mathematics involved is 

complicated, and not fully justifiable, since the counting 

efficiency of the Geiger counter itself may vary as the labelled 

molecules move near~r (133). Also the efficiency of a thjn 

end-window Geiger-Muller tube when detecting beta-emitters is 

very low, and a high margin of errors has been allowed in such 

an experiment (129). 

Thus a new method has been designed which it is hoped will 

provide a simple, preCise, and efficient way of measuring :tJ.. 

diffusion coefficient of an organic vapour in polymers. The 

method involves the exchange of labelled and unlabelled solvent 

molecules through the polymer membrane. Schematically the 

method is illustrated in Fig.B. The dark dots represent the 
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radioactively labelled molecules, and the white circles 

represent the otherwise identical but unlabelled molecules. 

In Fig. 8(a) the polymer membrane separates the two types of 

molecules in contact with their liquid reservoirs which 

control their vapour pressures, i.e. concentrations in the 

gaseous phase. These molecules undergo random thermal motions 

and after a time t, some mutual eXChange through the polymer 

will occur, the molecules first dissolving in the polymer then 

evaporating. This is shown in Fig. 8(b). Again by random 

motion, as shown in Fig. 8(c), the permeated molecule goes into 

solution in the opposite reservoir. Since the motion of molecules 

in the gaseous phase (in the abspnce of all other gas molecules) 

is mar.y times faster than the motion of the moleculcs in either 

the liquid phase or the polymer, and provided the liquid 

reservoirs contain many more molecules than the oneS exchanged, 

thG rate of increase of, say, the dark molecules in the non­

labelled reservoir can be taken as the rate of permeation 

through the polymer. This rate of increase is measured by 

employing a solute in the liquid reservoir which becomes 

fluorescent when in contact with radioactive molecules (see 

Chapter 2.9). 

The non-radioactive molecules act as the solvent in the 

liquid scintillation mixture. The whole liquid scintillator 

reservoir is enclosed in a completely light-tight compartment 

which enables the photons emitted as a reBult of fluorescence to 

be counted by a photomultiplier-counter assembly. 

Since there is a uniform concentration of the penetrant 

molecules throughout the polymer, with a concentrijtion gradient 

of the radioactive molecules, the self diffusion coefficient of 
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the penetrant mo18cules at a precise concentration level can 

be evaluated, because the movement of the radioactive molecules 

can be followed. 

The method involves no pressure difference, no necessity 

of employing complicated measuring devices, and it is rapid 

and accurate. The limitation of the present apparatus is the 

temperature range practicable (See Chapter 4), but this can 

be improved with further design. 
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3.3. The Apparatus. 

The apparatus is shown diagramm~tically in Fig. 9. A 

glass diffusion line was used, and the temperatures of the 

penetrant reservoir, diffusion cell, and 'collecting' cell 

were controlled by different water baths thermostated to 

o + 0.1 C. 

The radioactive penetrant is placed in the container R 

which is joined to the main frame by a cone-and-socket 

connection, H
2

, which is sealed. by mercury. The temperature 

of the liquid in R is controlled by the thermostat bath A. 

The diffusion cell D consists of two flatly ground glass 

flanges held together by three th~eaded bolts and nuts, as 

shown in Fig.10. The polymer membrane is placed between the 

flanges. The whole cell is immersed in a thermostat bath B. 

The liquid scintilla tor is placed in the collecting 

vessel C, which is also connected to the main frame by a cone-and 

socket joint H
1

, sealed by mercury. The temperature is controlled 

by Circulating water from a thermostat bath through the jacket J. 

The exposed parts of the diffusion line are heated by 

electro-thermal tapes, to prevent the existence of "cold" areas 

where vapours may condense. 

The whole diffusion line is separated from the high vacuum 

line by two grease-less taps G
1 

and G
2

, which are made of poly 

(tetrafluoroethylene) (PTFE) plungers and seals fitted within 

glass containers (Jencons). 

The 'collecting' vessel C is situated above the photo-

multiplier assembly PM, which in turn is situated within the 

lead castle P. The whole of the vessel C is painted black, 

so that there is no transmission of light to the photomultiplier 
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tube from the surroundings. A polyester disc DB is "cemented" 

to the vessel C by applying a polyester resin which is then 

crosslinked by amines. This disc rests exactly on top of the 

lead castle, and black ",dhesive tape is wrapped round the 

junction to ensure nL light is penetrated. 

The photomultiplier tube (see Chapter 4) is connected 

through an emitter follower to the ~lectronic counter E. 

The high vacuum line (see Chapter 4) produces a vacuum 

of 163 mm Hg, and the pressure is measured by a vacuostat 

gauge. 
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3.4. Procedure. 

The apparatus is assembled by first pipetting.1 ml of 

radioactive penetrant into the vessel R, and 6 ml of scintillator 

into C, which are then inserted onto the main frame line. The 

polymer membrane, in the form of a circular disc with a diameter 

equal to the outer diameter of the diffusion cell is carefully in­

serted between the flanges in the diffusional cell, and cautiously 

clamped. The penetrant and the scintilla tor are then frozen by 

methanol/solid carbon dioxide mixture (-70oC), after which the 

system is opened to the high vacuum line whereby the air is 

removed. The system is then closed to the vacuum line, and the 

frozen liquids allowed to melt, when most of the dissolved gases 

will vapo_rise into the evacuated space. This degassing 

procedure is repeated four or five times until no significant 

increase in pressure is observed on melting of the solvents; 

The three thermostat baths are brought into operation, and 

a short time lapse (10 minutes) is allowed for the various 

parts of the system to reach thermal equilibrium. 

The increase in count rate wioh time is then noted and 

plotted to give a linear relationship the slope of which 

represents the permeation rate. 
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3.5. Polymer specimens and materials. 

The polymer used for this part of the work was silicone 

rubber (polymethylvinylsiloxane) crosslinked with 2% 

"Perkadox" (containing 2,4 Dichlorobenzoyl peroxide in 

plasticizer) • This l·ubber was moulded in a press for .. 

minutes and 230oF, and the product was in the form of a memb~ 

of uniform thickness 0.5 mm ± 0.02 mm. 

The radioactive penetrant was 1 _14C labelled n-decane 

with an activity of 0.3 mCi/mM, diluted to about 4 x 10
4 

times its original volume with non~active n-decane. 

The scintillator was prepared in a similar way as 

described in Chapter 4. This consists of 0.5% by weight of 

2,5 - diphenyloxazole (PPO) dissolved in redistilled n-decane. 

The suitability of this solution as a scintillator was tested 

by adding known quantities of active penetrant, as prepared 

above, to the scintillator, and measuring the count rate 

increase. A linear relationship was observed (Fig.11). The 

calibration was repeated with a more universal scintillator 

solution 

oxazolyl 

containing 0.5% PPO and 0.03% POPOP (1,4 bis-phenyl­
t(\ tol\4tll.t. 

benzene). .'!lvidently the n-decane scintillator was round 
A 

to be less efficient. The reason for this has been explained in 

section 2.9. It is satisfactory to note that there is no self-

quenching which, if present,will be shown by a "tailing off" 

shape in the calibration curve. 

The vapour pressure-temperature relationship of n-decane was 
/ 

calculated from Marsden's (134) experimental data using the 

Clausius-Clapeyron equation 

log P = -2336/T + 8.1228 
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where P is the vapour pressure in mm. of Hg 

and T is thQ absolute temperature. 

The relationship is shown graphically in Fig.12. 
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3.6. Counter Characteristics. 

The presence of noise in electronic circuits is always a 

source of interference and error in taking measurements. The 

detailed construction and working of the photomultiplier tube 

and the counter is given in Chapter 4, and will not be repeated 

here. It is sufficient to give a summary of the process of 

-detecting photons being liberated in the liquid scintillator 

solution due to radioactivity. 

Each radioactive disintegration will result in outgoing 

- photons which, after striking the cathode in the photomultiplier 

tube, will be accelerated downwards through a series of dynodes 

to produce an electron current of certain strength. This 

electron current is then sent to the counter by an emitter 

follower in the form of an electronic pulse signal. The pulse 

height will be proportional to the number of photons which hit 

the cathode, and the voltage applied across the photomultiplier. 

The number of counts per second measured will be proportional to 

the number of disintegrations per second, i.e. the strength of 

the radioactivity. Noise in the electronics will give rise to 

pulses which may also be registered in the counter. But since 

theee noise pulses usually have smaller pulse heights than the 

corresponding pulse heights due to radioactive disintegrations, 

they may be eliminated by using a discriminator or screen device 

which eliminates pulses below a certain set magnitude. The 

optimum high tension voltage (H.T.V.) and the discriminator bias 

setting (D.V.) may be determined as follows: 

The efficiency of count (given by the ratio of counts per 

second measured to the actual no. of disintegrations per second) 

is plotted against increasing H.T.V. (Note that the source count 

is obtained by substracting the background count from the total 
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count observed). This will assume the shape shown in Fig!13). 

where a plateau region is reached after sufficiently high 

voltage is reached. The final H.T.V. chosen must lie within 

this region for two reasons:-

(1) The plateau region indicates that all pulses 

due to radioactive disintegrations are detected; 

(2) A fluctuation in the H.T.V. will not cause any 

great change in the count rate measured. 

The discriminator bias voltage is introduced, at a fixed 

H.T.V., and the source and background counts are measured with 

increasing discriminator voltage. The introduction of the 

discriminator bias voltage wrrl not only eliminate most of the 

noise pulses, ,b.t it will also prevent some of the smaller 

source pulses from being detected. Thus the efficien~y of 

count may be lowered with increasing discriminator voltage. 

From a plot of background count against discriminator setting, 

a value of n.v. is selected which eliminates most background 

noise (Fig.14). 

The optimum H.T.V. is then selected using this discriminator 

setting, ,by plottin~ (source count)2/(Background) against 

increasing H.T.V. (Fig.15). A peak is shown, the position of 

which gives the optimum H.T.V. 
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3 • .7 External factors affecting the photomultiplier tube signal. 

The noise pulses inherent in the photomultiplier tube are not 

constant but vary with temperature primarily. If the collecting 

vessel C in Fig. 9 is in physical contact with the top of the 

photomultiplier tube, (as was originally the case to improv~ 

optical transmission), any variation in the temperature of the 

circulating water in the jacket J will have a drastic effect on 

the noise pulse level measured. This is illustrated in Fig.16. 

To minimise heat transfer from the temperature jacket to the 

photomultiplier tube, an air gap is introduced. This reduces 

the number of photons reaching the cathode and so lowers the 

efficiency of count in the presence of a discriminator. The loss 

in efficiency with the bottom of the scintilla tor cell approximately 

1.5 mm. away from the cathode face was found to be about 20% of 

the original efficiency. This is a necessary sacrifice. Although 

the conduction of heat through air is poor, a stream of cooled 

air was circulated in the space between the collecting vessel and 

the photomultiplier tube to ensure constant low noise level. 

This was done by drilling two holes through the polyester disk 

(DS in Fig. 9) and inserting two darkened rubber tubeS,.:"~, which 

acted as inlet and outlet of the cooled, dried air respectively. 

A compressed ~itrogen gas cylinder may be used, and it may be 

cooled by passing through a methanol/carbon dioxide cold trap. 

The use of nitrogen has another advantage. It fiushes out 

the atmospheric air within the lead castle, so that condensation 

of water vapour on the collecting cell and photomultiplier tube 

is not a problem. Water condensation, otherwise a likely 

occurrence especially on freezing the scintillator, not only 

causes a "colour quenching" effect (see S.9), i.e. poor photo 
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trnnamission, but it may also causa short .contacts in the 

electronic circuits within the ass.embly. 

The exposure of the photomultiplier tube to flIP;! light 

"leaks" will not only cause a sudden and large increase in 

the count rate, but it will also damage the instrument. 

Thus it is very important that the whole system on the 

collecting cell side must be perfectly light-tight. 
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3.8. Limitations and errors of the method. 

The long and winding path which the penetrant molecules 

have to travel from the solvent reservoir to the collecting 

cell makes it difficult to assume that the time taken for this 

gaseous diffusion is so short compared to the diffusion in the 

polymer as to be insignificant, especially if the vacuum is not 

sufficiently high. Thus the count rate increase will measure 

the combined permeation of the molecules through the polymer and 

through the gas. In the case of mass flow where the collecting 

cell is kept at a lower temperature than that of the solvent 

reservoir, the flow of the molecules in the gaseous state will 

be very much faster due to a "distillation" type of behaviour, 

and the rate of permeation measured will correspond to the 

permeation rate in the polymer. But since this involves a con­

centration gradient of penetrant across the polymer, one of the 

basic aims of the experiment is not satisfied, and a new 

experimental design is required. 

Also in this method it was a tedious process to assemble and 

clean the diffusion line. The greaseless taps used which 

employed PTFE plungf>rs and screw threads were rather fragile 

and were found to distort out of alignment after a period of 

use. The glass apparatus makes itffipecially vulnerable to 

light penetration into the photomultip;tier compartment, as light 

can be reflected from the inside walls of the diffusion line which 

is painted black. The diffusion cell, too, needs improvement, as 

no prOVision was made to fix the polymer in position, and hard 

clamping of the polymer may do physical damage to the polymer 

around the edges. 
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A new permeation appaRtus was designed and is described 

in the next chapter. This apparatus is made from metal, which 

eliminates the light leruc problem. It is geometrically compact 

and easy to assemble, and is fixed in position with respect to 

the photomultiplier tube. The diffusion path of the gas 

molecules is short, wide and straight, and the permeation 

rate measured is the per~eation rate through the polymer. 

Metal greaseless high vacuum taps were used, which are not 

physically distortable. A metal grid support was inserted to 

prevent the polymer sagging, should there be any swelling. 
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CHAPTER 4 

ElCPERINENTAL 

4.1. Construction of the permeation cell. 

The cross-section view of the assembled apparatus (to 

scale) is shown in Fig.17. The top section of the cell 

consists of two brass components which have been hollowed and 

shaped from solid brass cylinders on a lathe. These components 

(the light and heavy right-slanting shaded parts in Fig.17) 

were joined together by 'sweat' soldering. 

The bottom section was similarly machined from a solid 

brass cylinder. In addition holes were drilled through the 

sides for vacuum, water, and nitrogen inlets. This main 

section was joined to the metal part of a glass-to-metal seal, 

MG, by soldering. The glass part of the seal was in fact 

fused on to a flat glass plate to form the bottom "window" of 

the scintillator cell, L. 

The top and bottom sections are assembled by the metal 

collar, R. Four diagonally placed screws, A, can be tightened 

into the main bottom block, thus clamping the polymer specimen, 

P, which has been placed in position. A metal grid, G, is 

placed beneath the polymer, and this serves two purposes. 

It defines the exact area across which transfer occurs, and it 

keeps the polymer horizontal, i.e, prevents any "sagging." 

The whole apparatus is connected to the high vacuum line 

via two metal high vacuum stopcocks GT1 and GT2 (Hoke 4111M2B), 

1/16" copper pipings were used as the connectors, and joints 

were made by soft-soldering. 

Three copper-constantan thermocouples T1, T2, and T3 

were placed respectively in the positions shown in Fig.17. T1 
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was inserted in the centre of a screw, X, (This was done by 

carefully drilling a hole down the middle of the screw without 

thorough penetration, and placing T1 in this hole). X is 

removed when filling or emptying the solvent reservoir S. 

T2 was placed in a little groove by the side of the polymer 

specimen as shown. T3 was attached to the side of the 

scintillation cell L. 

Thin walled copper pipings (J) were used to control the 

temperatures of the solvent reservoir and the scintillation 

cell. These pipings were coiled round the respective parts 

of the system, and good thermal contact made by poly (dimethyl 

siloxane) applied in benzene solution and cross~linked in situ 

with benzoyl peroxide, using a hot-air blower. 

The solvent reservoir was then further thermally insulated 

from the surroundings by a covering of asbestos "paste." This 

is shown in the photograph in Fig.18. 

The coiled piping around the scintillation cell was con­

nected to the "inlets" drilled through the main brass block, 

by two silicone rubber tubes, as illustrated in Fig.19. 

In addition, two other holes were drilled through the main 

bottom section to accommodate two copper tubes. One was used 

as inlet for the dried and cooled nitrogen gas (its use is 

explained in a later section), the other served both as an outlet 

for this gas, and as an insert for the third thermocouple, T3. 

Also a passage was drilled horizontally to connect the bottom 

compartment of the cell to the high vacuum line through the 

metal stopcock TC2. 

The middle part of the assembly is heated electrically 

by the element H as shown in Fig. 17. Theelement was made by 
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wrapping 'nichrome' heating wire vertically round a former, and 

then insulating it with asbestos paper paste. The former was 

made of a thin nickel strip bent into a circle, and insulated 

again by asbestos paper paste. The resistance of the wire was 

approximately 33 ohms, and the, input was controlled by a 

transformer variac, which stepped 'down the nains voltage to about 

70 volts for maximum hea'ting. This corresponds to a maximum 

power input of 140 watts. 

A separate electrical cord was wrapped round the top of 

the bottom brass block to ensure the temperature of the inter­

mediate parts of the system did not fall below that of the top 

or bottom reservoir, otherwise condensation problems might occur. 

The whole apparatus when assembled is situated in an exact 

position relative to the lead castle and the photomultiplier tub. 

as shown in Fig.17, and Fig. 18. By wrapping some dark rubber bands 

flat round the brass support, the cell is held firmly in place 

with a light tight seal between the cell and the lead castle. 

A small gap is left between the bottom of the scintillation cell 

L, and the top of the photomultipiier tube PM (Fig.17). This 

is constant, and is of the order of 1-2 mm; its introduction 

to prevent thermal conduction to the photomultiplier ,tube has 

already been mentioned previously (Chapter 3.7). 
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4.2. Temperature control. 

Ideally the temperatures of the three main parts of the 

system, i.e. the active reservoir, the polymer specimen, and 

the liquid scintillator reservoir, should be independently 

adjustable. This, experimentally, is difficult to achieve because 

of heat conduction through the metal sides of the apparatus 

itself. The liquid scintilla tor cell is the easiest to control, 

as this is glass insulated, and it is possible to adjust the 

temperature of this part to any convenient value without 

affecting the rest of the system. In practice the top reservoir 

needs to be 'cooled' to maintain it at a ~emperature near to the 

temperature of the 6cintillator. The higher the polymer 

temperature, the greater the need for cooling, because the 

electrica~ heating element is situated adjacent to it. 

The difference in temperature between the centre of the 

polymer membrane and the edge of the specimen (where in 

practice th~ thermocouple T 2 in Fig.17 is located) Was tested 

by attaching thermocouples to these places and performing a 

"dummy" run. It was found that after an equilibrium state 

had been reached, the difference was only about 10 C. 

Thermocouples "ere also attached to the areas near the 

glass-to-metal seal MS in Fig.17, in a "dummy" run to ensure 

that,Do 'cold' spots existed (i.e. colder than the solvent or 

scintillator reservoirs), which might cause condensation of 

the vapours. 

The time taken for the polymer to reach the equilibrium 

temperature after the application of heat Was also noted. This 

was found to vary between 10 and 30 minutes, depending on the 

temperature, which is well within manoeuverable limits. 
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The temperature of the photomultiplier tube is kept cool 

by a continuous stream of cooled, dry nitrogen which is 

applied from one of the inlets. The variation of photo­

multiplier noise level with temperature was discussed 

previously (see Fig. 16.). 
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4.3. High vacuum techniques. 

The high vaCuum line used employs a straightforward mercury 

diffusion pump followed by a rotary backing pump. The pressure 

is measured by a vacuostat gauge which ~s sensitive to 103mm. 

of mercury. The line is illustrated in Fig.20. 

High vacuum silicone grease was used for all the glass 

stop cocks, (but not inside the diffusion apparatus). 

Regreasing of the stopcocks and re-oiling of the rotary pump 

were carried out from time to time. The vacuum produced was, 

103 mm Hg. 

The high vacuum line is connected to the diffusion cell 

by two thick-walled rubber tubes. The whole cell was tested 

intensively for vacuum-tightness by evacuating to 103 mm, 

leaving for a period of time (1-24 hours), and measuring the 

increase in pressure. When a leak was suspected, the whole 

cell was pressurised with compressed nitrogen and placed under 

water, and carefully observed for the escape of 'any tiny 

bubbles. It was found th~t the worst loc~tion for leaks (in 

fact the only one in the present system) was the soft solder 

interface in the top section of the cell. This was readily 

resoldered. Presently no appreciable increase in pressure 

was observed after 10 hours. 
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4.4. Photomultiplier tube and counting eguipment. 

The scintilation counter consists of the scintillator cell, 

photomultiplier tube and emitter follower, high tension voltage 

(H.T.V.) suppy, discriminator bias device, a timarand scaler 

detection unit, and a chart recorder. It is represented 

schematic ally in Fig.21. 

The photomultiplier tube (E.M.I. type 60975) used has a 

"venetian-blind" structure where the dynodes (D), are arranged 

-in rows as shown. The cathode (C) is made of a semi-conducting 

compound, in this case a caesium-antimony compound, which has 

good photoemissive properties. Photoelectrons impinging on the 

first dynorle produce a number of secondary electrons which are 

accelerated onto the next dynode of the multiplier, where they 

in turn produce secondaries. The overall multiplication factor 

of the photomultiplier tube, or gain, is dependent on the number 

of dynodes and on the applied potential. The counter therefore 

operates as a spectrometer in which the anode current is 

proportional to the energy dissipated in each "scintillation." 

Although the pulse size of this anode current signal may be 

affected by geometry and other factors, the number of pulses will 

be equal to the number of scintillations occuring in the 

scintillator, provided that at least one photon for each 

emission is observed by the photomultiplier tube. 

High gain and low dark current are two important require­

ments of a photomultiplier tube. (Dark current is the measure 

of electrons emitted from the cathode even in complete darkness 

due to thermionic emission, etc.) The photomultiplier tube 

used also has a maximum quantum efficiency at approximately 

3700 AO
, which corresponds very well with the fluorescence quantum 
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emission maximum of 36500 shown by the scintillator solute 

2-5-Oiphenyloxazole (PPO). For more details on photomultiplier 

tube designs and theories, an excellent series of documents 

published by E.M.I. is referred (135-137). 

The signal from the photomultiplier tube is sent to the 

counter U via an emitter follower E. A chart recorder R is 

used for registeo:Cing automatically the increase of acti vi ty 

with time. 

All experiments were carried out at a H.T. voltage of 

1030 volts, and a discriminator voltage of 8 milli-volts~ 

The choice of these values was based on the investigations 

performed in Chapter 3. 
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4.5. Materials. 

(a) Chemicals. 

1-C-14 labelled n-decane (Radiochemical centre, Amersham) 

of 3 mCi!mM activity was used. The amount purchased was 

equivalent to 0.1 mCi (0.005 ml approximately), and it was 

delivered in a sealed glass tube. This was frozen in liquid 

nitrogen before it was broken open and diluted with 2 ml. of 

distilled A oR. n-decane. 0.1 ml of this solution was further 

diluted with 20 ml of n-decane, and this was used as the 

diffusant. 

Since the Curie (Ci) is defined as t:le quantity of any 

radioactive ~aterial in which 3.7 x 1010 disintegrations occur 

per spcond, 1 ml of the above solution, which is approximately 

the amount used in each run, would correspond to 9.2 x 103 

disintegrations per second. 

The actual count rate of 1 ml of n-decane diffusant 

calibrated in situ, at 1030 volts high tension supply and 8 mV 

discriminator setting, was 12 6:l counts per second (C.P.S.) 

See Fig.23.· 

Thus the absolute counting efficiency of the system was. 

found to be about 14%. 

The efficiency was lowered by many factors, a few of 

which are listed as follows:-

(1) The use of a discriminator voltage to reduce 

background noise leads to loss in efficiency. 

(2) The presence of a small air gap between the 

photocathode and the scintillator cell also 

reduces the efficiency of transmission of 

the photons. 
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(3) The chemical nature of the solvent itself 

(n-decane) may lead to low solvent-solute 

transfer of excitation (see Chapter 2.9). 

However the 14% efficiency waS found to be sufficient 

experimentally for the necessary measurements to be taken. 

The scintillator consists of non-active, redistilled 

n-decane (British Drug Houses) as the solvent containing 0.5% 

by weight of 2,5-diphenyloxazole (PPO) as the primary solute. 

PFO has a fluorescence quantum emission maximum at 36500 A, and 

this matches well with the maximum sensitivity of the photo-

multiplier tube used at 37000 A (See Chap~er 4.4). Thus, there 

is no need for a secondary solute (wavelength shifter). In 

any case the secondary solute 1,4 bis-phenyloxazolyl benzene 

(POPOP) was found to be insoluble in n-decane. 

(b) Polymer Specimens. 

The silicone rubber used, I.C.I. low shrinkage grade, is 

poly (dimethyl siloxane), ~ Si (CH
3

) -01 , with about 0.5 
2 n 

mole % vinyl substituted side groups introduced to promote 

cross-linking. 

The cross-linking agent used is 2,4-dichlorobenzoyl 

peroxide dissolved in equivalent amount of silicone oil 

(nPerkadoxn -50). 2% of Perkadox -50 is the amount used to 

vulcanize the rubber. The rubber was press moulded at 2300 F 

for 7 minutes, and the membranes were in the form of moulded 

sheets 0.5 mm thick, uniform within + 0.02 mm. 

The filled samples were prepared by compounding the rubber 

with fine silica filler (nAerosil 2491") in 5 parts per 
by ~~j'j~t 

hundred parts of rubberl\(5 phr), 10 phr, 20 phr, and 30 phr 

amounts. These samples were similarly vulcanized as above. 
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The characters of the silicone rubber (E303) used are 

summarised in Table 4.1 below: 

TABLE 4.1 

Density· 

800,000 
-1 0.98 gr .. l 

Percentage vinyl struotures,(approx.) 0.5 mole % 

These moulded samples of silicone rubber were extracted of 

all low molecular weight impurities by boiling acetone in a 

Soxhlet apparatus for 6-7 hours. They were then dried in a 

warm oven (4QoC)before use. 

The styrene-butadine-styrene (S-B-S) block copolymer used 

is a commercial polymer marketed by the Shell Chemical Company 

under the name KRATON 101. 

The properties of this polymer are given in Table 4.2: 

TABLE 4.2 

Density 

Weight of styrene 

M 
n 

Diene microstructure (138) 

Cis - 1,4 

Trans - 1,4 

1,2 (vinyl) 

-1 0.94 gml 

28% 

78,000 

The number-average molecular weight (M ) was determined 
n 

with a Hew·lej;t;Parkard 502 high speed membrane osmometer, 

using toluene as solvent, at 250 C. 
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The weight fraction of styrene was determined using 

Kolthoff's method (139). 

Cast Samples. 

Films of uniform thickness were cast from toluene and 

methylene chloride. The polymer was weighed and dissolved in 

the solvent. The concentration of the solution was about 

10%. After the polymer was dissolved, the homogeneous 

solution was poured onto clean mercury contained in a 

crystallizing dish. 

The solvent was allowed to evaporata slowly at room 

temperature and atmospheric pressure. Complete evaporation 

of solvent took about a I<eek. The films after being removed 

from the mercury were air dried for at least 10 days before 

beiilg used. 
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4;6. Procedure of Measurement. 

4.6.1. Assembly. 

The permeation cell is thoroughly cleaned by soaking in 

acetone and then evacuated to 103 mm Hg. 6 ml of the prepared 

liquid scintillator is transferred to the bottom cell. The 

polymer specimen, which is cut out to size, is placed on top 

of the lower flange and accurately aligned. The top half of 

the cell is then carefully lowered on to the bottom helf with 

the thermocouple T 2 (Fig.17) in position. The four clamping 

screws and the collar (R) are then slowly tightened. The top 

eG·ll is then cha.!'ged with about 1.5 ml ef active n-decane 

solution by using a long drawn glass pipette through the 

screw hole, X in Fig.17. The screw is then replaced, and 

tightened onto a soft lead washer in between the bottom of the 

screw heed and the cell, to ensure a vacuum seal. The cell is now 

assembled. 

4.6.2. Degassing. 

To degas the polymer, sCintillator, and diffusant, the 

liquids involved must be frozen before the application of high 

vacuum. This is done by employing a solid CO
2
/methanol mixture, 

which is pumped through the temperature jackets round the top 

and bottom reservoirs by a peristaltic pump via silicone 

rubber tubing. Since the freezing point of n-decane is -290 C, 

it is sufficient to pump the methanol mixture at a temperature of 

-50oC in the vacuum flask. The viscosity of the methanol 

increases rapidly with decreasing temperature, and at _720 it 

becomes a slurry. The speed at which the mixture can be 

pumped through the system, therefore, decreases at such low 

temperatures, the maximum cooling efficiency being achieved at 

o around -50 C. 
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To prevent condensation of water vapour from the air on 

and around the photomultiplier tube, which could interfere 

with the electronics and optical properties, a continuous 

stream of cooled dry nitrogen from a compressed oxygen-free 

nitrogen cylinder is applied to the chamber to flush out 

atmospheric air. The coolant is thus circulated until the 

thermocouples T ·r and T 3 (Fig.1?) register temperatures 

lower than the freezing point of n-decane. The high vacuum 

line is then slowly opened to both compartments of the cell, 

care being taken not to cause either the rupture of the 

membrane due to qneven pressure, or spilling of the active 

decane from the top reservoir due to a sudden upward motion 

of the air originally above it. The pressure is reduced to 

about 0.5 mm of Hg for the first evacuation. The cell is then 

isolated from the high vacuum line and the n-decane allowed to 

warm up. This operation is allowed about 20 minutes, by 

which time most of the dissolved oxygen from the decane 

should have left by degassing into the partial vacuum above 

it. The n-decane systems are then frozen again, and the cell 

evacuated to 103 mm Hg. This procedure is repeated four or 

five times until on opening the isolated system to the high 

vacuum line after a period of about 20 minutes, no appreciable 

increase in the pressure occurs. 

4.6.3. Tabulation of Readings. 

After de gassing , temperature controls are started. The 

electrical heating element H (Fig.1?), and the heating cord, 

are set at the required voltages. The bottom cell is heated 

o directly by circulating water from a large water bath (! 0.1 C) 

with the peristaltic pump, which also pumps through a separate 
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coil on the top cell above the active decane reservoir. 

For high sample temperatures, the active reservoir itself 

is cooled by ~ing chilled tap water through the coiled 

;.' p,ping (see 4.2), the temperature of the reservoir being con-

trolled by the rate of tap water circulation. It is possible, 

especially at low polymer temperatures, to control the 

temperature of the top reservoir to within 10 of the bottom 

one. 

The H.T. supply to the photomultiplier tube was switched 

on after the cell had been assembled on top of the photo-

multipli<or. 100 second counts are taker as soon as the 

various thermostat devices are operating. A lapse of about 

30 minutes is allowed before thermal equilibrium is reached and 

from then onwards the readings are tabulated as below:-

-
.. Thermo-.. Thermo- Thermo-, 100sec'~:: Activity 

Relative. couple .. : couple couple counts (counts 
Time froril l' 1 T 2 T 3 (cp 100s) per sec.) 
start (mirs. ) Reading Reading Reading c.p.s. 

(IlIV) (mV) (mV) 

- - - - - -

A straight line plot of activity against relative time 

represents the permeation of the active n-decane through the 

polymer, and the slope of this plot is proportional to the 

permeation rate. The rate of decane vapour transfer from and to 

the liquid reservoirs through the evacuated space is very much 

faster by comparison. A typical eXperimental 

plot with the limits of statistical error included, is shown 

in Fig.22. 

-91-



COUNTSr-_______________ -. 
PER 
SECON 

CC.P. 5.) 

140 

120 

100 

80 

60 

40 

20 

o~--~--~--~~--~--~ 
·0 to .20 30 40 50 

TIME (MINUTES) 

FIG.22 A TYPICAL PERMEATION 
PLOT 



It is important that a steady state is reached both in 

terms of temperature and flow for the rate to be meaningful. 

Occasionally the system can be opened to the vacustat gauge 

to check that no external gas has diffused. 

After a satisfactory plot has been obtained at a certain 

temperature, the temperature can be raised to a new value by 

increasing the voltage supply to the heater. However, a 

corresponding increase in the top reservoir will also be 

observed because of heat conduction, and this is corrected, 

or in some cases partly reduced, by increasing the flow rate 

of the cooling wuter. The water is chic led by passing through 

a coil immersed in ice. In cases where it is impossible to 

maintain exactly equal temperatures between the top and bottom 

reservoirs, the respective temperatures are noted and taken 

into consideration in the calculation. 

Thus a series of permeation rates at different specimen 

temperatures can be obtained with a fixed penetrant activity. 
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4.7. Calibration of active n-decane. 

Calibration of the radioactive diffusant in air was carried 

out in the cell, by adding known quantities of active decane 

to 6 ml of liquid scintillator solution, and taking counts at 

the set H.T. The presence of dissolved oxygen in the 

scintillator reduces the efficiency of cou~t due to quenching 

(2.9). Therefore, a second calibration was carried out in 

high vacuum. This was done by adding a certain amount of 14C 

lebelled n-decane to the cell, which was then assembled and 

thoroughly de gassed in a manner as described in section 4.6.2. 

The count per sec. of the degassed scin':illstor was then 

noted. Air was then let in, and the system left for about an 

hour for the count rate to drop to its equilibrium value. 

The count per sec. of the scintilla tor with dissolved oxygen 

wan then recorded, and the weight of active n-decane can 

be read from the first calibration. By cross-plotting the 

weight of n-decane thus obtained against the count rate in 

high vacuum, an accurate calibration curve in high vacuum 

was obtained. Direct attempt to weigh an exact amount of 

active decane into the system and counting the activity after 

four or five evacuations is bound to lead'to innacurate results 

because some of the decane invariably is removed on evacuation. ' 

The two calibrations are shown in Fig.2l-
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4.8. Possible errors. 

There are a few errors which may arise from inaccuracy 

of measurement or limitations of the measuring instruments, 

and these are listed below:-

(1) Counting error. 

When a single count is taken of a raJloactive source, the 

standard deviation from the true value will be equal to the 

square root of the mean count taken (140). The percentage 

error can be expressed as equal to ( 
1 <. / Hi' r x 100, where n 

is the number of counts read within the period. Thus the 

higher the count rate, the smaller will be the percentage 

error. High count rate can be achieved by either having a 

highly radioactive source or counting for a long period of 

time. In an actual permeation run the count rate is actually 

changing with time, a long counting period is therefore not 

suitable, and a compromise has to be reached. 

(2) Temperature error. 

The thermocouple readings can be read to 0.01 mV 

accurately, and this represents a maximum error of about 0.5% 

o for the temperature range 30 - 50 C, for each thermocouple 

reading. 

(3) Error in measurement of thickness. 

The thickness of the polymer membrane was measured by a 

micrometer screw gauge, and this is accurate up to 0.01 mm. 

Therefore for a film about 0.5 mm thick, the maximum error is 2%. 

(4) Error in measurement of cross-section membrane area. 

The radius of the circular section of the cell through which 

permeation occurs is measured with a pair of internal Vernier 

callipers, and this is accurate up to 0.1 mm. The percentage 
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error here has a maximum value of about 3%. 

The maximum error for the whole system is estimated at 

about 7%. 
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4.9. Sorption Apparatus - electro micro-balance. 

A commercial (C.1. Electronics Mark 2B Ser.No. 1412B) 

electro micro-balance was employed in a modified vacuum 

housing. This balance works on the principle of a moving 
/ 

vane interrupting a light beam to two photo-cells, the 

variation in light intensity resulting in a change in the 

output electric current. There are five ranges on the 

measuring scale viz 0 - 100 mg, 0 - 10 mg, 0 - 2.5 mg, G .. 250 ~g, 

and 0 - 25jUg. However, the more sensitive scales are 08" 

really useful in practice because the slightest vibration \1ill 

cause a large swing of the needle on the scaler. Ranges of 

o - 10 mg and 0 - 100 mg were used. 

The whole apparatus is shown in Fig.24. The balance B is 

situated in a glass housing with the polymer sample P sus-

pended from one arm and a counterbalancing weight on the other 

arm. 

The temperatures of the polymer and of the solvent reservoir 

were controlled by running water from a thermostat bath through 

the glass jackets, J. 

The balance was carefully calibrated as follows. The two 

arms of the balance were brought into exact equilibrium by 

attaching small weights to the pans and using the zero 

adjuster on the scaler. After this had been achieved, standard 

weight samples which had been cleaned and dried were added to 

the sample pan one at a time. The needle on the scale was then 

adjusted to its correct value by altering the potentiometer 

setting on the side of the scale. The same procedure was then 

repeated for the other range. 

After the balance had been calibrated, the polymer, in the 

form of a long ,rectangular film, was attached to the sample arm· 
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of the balance by a fine wire after the sample pan was removed. 

Again the two arms were brought into balance by adding or 

removing small weights (in the form of short lengths of fine 

wire) on the right-hand pan. The weight of the polymer before 

it was inserted was measured and recorded. The thickness was 

also measured if the kinetics of sorption (i.e. diffusion 

coefficient by sorption) was reqUired to be examined. 

The temperature jacket was then fitted round the polymer, 

and a corresponding jacket on the right hand side of the 

balance. The solvent reservoir was then filled with sufficient 

amount of n-deca.'1e, "bout 10 ml, and fi"ted on to the vacuum 

line. The apparatus was then ready for the start of the 

experiment. 

The whole system except the cold trap and the pumps was 

enclosed in a hard wood box with a perspex window front with 

holes cut out for vacuum taps, as shown by the dotted line in 

Fig.24. The box acted as a hot air oven, being heated by two 

200 watt light bulbs. This was necessary if the solvent 

reservoir temperature was higher than room temperature other­

wise the "exposed" parts of the system would act as cold 

surfaces for condensation to occur. The temperature of the 

chamber was controlled by a step-down transformer which controlled 

the potential supplied to the l·ight bulbs. 

The system was degassed by evacuating and pumping for 

12 hours. This could not be applied to the solvent reservoir 

because of inconvenience in freezing the n-decane. The n-decane 

was out-gassed by pumping out most of the air above it together 

with some of the solvent, and isolating it for the dissolved 

oxygen to have time to escape the liquid phase. This was 

repeated several times. 
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After evacuating and heating the polymer and the solvent 

to the required temperatures, tap X was closed, and taps Y and 

Z opened. n-Decane vapour at a fixed pressure would then 

,p!,-,SS.'<f through the vacuum to reach the polymer. Sorption 

of the molecules on the polymer would then cause an increase 

in weight, and the readings on the scaler ,,'ere taken with 

time until an equilibrium uptake was reached. Temperature 

of the solvent reservoir was then increased, and a new 

equilibrium uptake value obtained. Therefore at one polymer 

temperature, the equilibrium sorption values were obtained 

for various n-decane activities (vapour pressures). The 

whole procedure was repeated for different polymer temperature~, 

and a series of concentration vs vapour pressure isotherms 

were obtained. 

From the plot of ~t against 
00 

1/2 t where Mt • uptake at 

time t, M = equilibrium uptake, a diffusion coefficient 
OD 

could also be worked out. (See Chapter 2.3). 
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4.10. Quartz spring baJ.ance. 

This experiment was performed to supplement the 

electromicro-balance results for high vapour activities. The 

maximum temperature to which the hot air chamber C (in Fig.24) 

could be heated in the electromicro-balance work was around 

45°C. At reservoir temperatures near or m.gher than this 

value, inaccurate activity of the vapour would result, and it 

would not be correct to take measurements. 

A diagram of the quartz-spring apparatus is shown in 

l'Jig.25 , and it is sufficiently self-explanatory. The polymer 

is suspended at the end of a helical quartz spring Q, and its 

temperature is controlled by the thermostat bath A. The 

solvent is contained in the reservoir S, the temperature of 

which is controlled by bath B. R is a vapour reservoir to help 

the solvent vapour attain a steady pressure quickly. High 

vacuum stopcocks X, Y and Z, separate different parts of the 

system from the high vacuum line. 

The working principle is simple. The uptake of the vapour 

is measured by the extension of tile quartz spring which is 

measured by a cathetometer C. The extension-weight calibration 

of the quartz spring was previously ob:/a.ined< by using 

standard weights, and the calibration is given in Fig.26. 

The exposed parts of the system are heated by electro­

thermal cords (H), the temperature of which is controlled by 

a voltage transformer. 

The experimental procedure is the same as the one 

described for the electromicro-balance, the only difference 

being the actual method of measurement of the weight increase, 

and also in this case the n-decane can be readily frozen by 

immersing the reservoir in a HeOH/C0
2 

mixture. 
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4.11. The RYnamic Mechanical Apparatus. 

The dynamic mechanical apparatus (87. 161) will not be 

described in detail here, and only the basic working PljDciples 

are given. The polymer in the form of a rectangular beam specimen, 

is clamped rigidly at both ends and is oscillated in bending 

geometry by a central clamp. The central clamp is driven by a magnet 

suspended on thin wires in the centre of a coil. The force is 

produced by the action of a sinusoidal current in the coil of the 

magnet. It is resisted by the mass of the moving system, the 

rigidity of the specimen"and the rigidity of the suspension .. ire. 

The equation of moticn for such a system may be worked out, and 

the resulting solution for E' and E" at low frequencies of input 

current (i.e. less than one-fifth of the resonant frequency) may 

be simply given as:-

1 F 
E' 0 Cos,g 4.1 = K X 

1 FO 

E' , X
o 

Sin/3 4~2 = K 
0 

where F is the maximum driving force 
o 

X is the maximum linear displacement of the driven clamp. 
o 

K is a geometric factor for the specimen given by 

(where b is the width, h the thickness and 1 the length 

of each half of the specimen between each rigid clamp and 

the oentral clamp.) 

-1 rS c te.l 
I 

E" 
E' (where tan6is the loss factor) 

An essential step in the measuring process is the conversion of 

the linear displacement into a proportional voltage. This is done 

with a Bently transducer, operating in conjunction with a Bently 

proxima tor circuit and a power supply, The Bently system produces 

an output voltage proportional to gap and gap variation from the 

probe face to the observed surface. That is 
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" 

x = FW 4.4 
o 

where ~ 'is the peak linear displacement 

V is the HMS value of the output voltage 

and B is a constant of the transducer system. 

In principle, the dynamic properties of a specimen are given 

in terms of quantities which are measurable. 

The peak driving force is proportional to the R.M.S. value of 

the driving current, thus: 

F = N i. o ' 4.5 

where N is a constant dependent on the strength of the magnet 

and the properties of the coil; Similarly, the peak displacement is 

proportional to the output voltage as giv~~ by Equation (4.4). 

Combining Equations 4.1 and 4.2 with Equations 4.4 and 4.5 

gives E' and E' , in terms of actual measurements. 

E' 
N i 

cos~ 4.6 =KB v 

E' , N i Sin~ 4.7 =5 v 

At some high frequencies, depending on the rigidity of the 

sample, the vibrating system will possess an amplitude resonance. 

The condition for a maximum in X witt varying frequency is (161):­
o 

KE' = M w 2 
o 4.8 

where w is the resonant frequency,Measurement of w thus o 0 

gives an accurate value of E' at that frequency. 

In order to convert the amplitude of the output voltage (V) 

to absolute values it is necessary to know the value of the constant 

Ni/KB. If the transducer system could be calibrated, at varying 

settings of transducer sensitivity, the constant B could be obtained. 

N" Then, knowing the values of N, K and i, the constant 1/KB could be 

calculated. 

It~a5 not possible to calibrate the transducer as in practice 

it was not quite linear and it proved difficult to exactly reproduce 

a particular sensitivity setting. Also with change of temperature 
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slight distortion of the samples occurred, thus altering the 

transducer setting. 

The results were, therefore, converted to absolute values in 

the following way. Equation ~.8 states that KE' = MWo2. The 

geometrical factor, K, is determined by direct measurement of the 

specimen and the mass, M, of the vibrating system by weighing. 

The resonant frequency may be determined accurately and thus the 

absolute value of E' can be obtained at this frequency. 

At a given temperature the time required to take measurements 

over the complete frequency range is about 30 minutes; The trans­

ducer setting remaine constant at a constant temperature. Thus the 

term Ni/KB in Equations ~.6 and ~.7 is constant for a set temperature, 

and it only remains to determine its absolute value. A plot of 1/V' is 

made against the logarithm of frequency in the region where the 

inertial term isnegligible. V' is the n-phase component of the 

output voltage and equals veos p. This plot is extrapolated to 

the resonant frequency where the exact value of E' is known. Thus 

the 1/V' curve is calibrated, i.e. a value is given to the constant 

Ni/KB. 

During the experiment, the apparatus was placed in a cylindrical 

brass container which was then sealed off by assembling the ground 

flange of the plate attached to the top of the apparatus, and 

the similar flange of the container. The apparatus was then 

evacuated, and placed in a temperature bath. Measurements were 

obtained at the resonant frequency and frequencies of 30, 10, 3, 

1, 0.3 and 0.1 cycles per second, at selected constant 

temperaturee. 
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CHAPTER 5 

RESULTS 

5.1. Sorption Results. 

The equilibrium uptake. of the n-decane by the polymer at fixed 

experimental conditions was measured by both the quartz-spring and 

electromicro-balance methods described in Chapter 4. The reason for 

,using both methods, besides ,for' checking purposes, was as' mentioned 

in Chapter 4, Le: tha,t at high vapoUr pressures the electromicro-

balance method becomes unreliable owing to the possibility of vapour 

.condensation on the wa;l.ls of the apparatus. The concentration 

measured was expressed as the weight of the n-decane Borbed per unit 

weight of the polymer. (gig) •. The concentration measured by the two 

methods was found to be the same under similar experimental' con-

di tions. The data obtained from the'se experiments were, therefore, 

tabulated together. 

The.vapour pressure of n-decane at a constant liquid temperature 

is obtained from the vapour pressure-temperature relationship as 

expressed in Fig.12. 

The calibration graph for the quartz-spring is shown in Fig.26. 

This was then used to correct observed extensions into the we'ight 

increase. 

The equilibrium sorption results for silicone rubber, filled and 

unfilled, and S-B-S block copolymer are shown in Tables 5.1 - 5.5. 

(Note that g represents data obtained from ,quartz-spring, e denotes 

electromicro-balance data, and b denotes data from both methods.) 
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TABLE 5.1. Silicone rubber (without filler) 

Weight of polymer sample = 17.5 milligramrnes (m.g.) 

Polymer Liquid Vapour Equilibrium 
Temperature Temperature pressure uptake (mg) Concentration 
(oC) (oC) (mmHg) (gig) 

40.0 28.0 2.3 1.93 0.110 b 

32.0 2.9 2.63 0.150 b 

34.0 3.3 3.43 0.195 b 

35.5 3.55 4.04 0.23 b 

37.0 3.9 5.45 0.31 b 

46.8 29.0 2.45 1.31 0.075 g 

31.6 2.85 1.59 0.091 g 

35.2 3.50 2.50 0.142 g 

38.2 4.15 3.60 0.205 g 

42.6 5.25 5.40 0.307 g 
44.0 5.65 6.68 0.380 g 

50.5 35.0 3.46 1.62 0.093 g 

36.4 3.73 1.92 0.110 g 

41.0 4.82 3.15 0.180 g 
44.0 5.68 3.35 0.218 g 
441 5.90 4.14 0.236 g 

45.5 6.15 4.72 0.269 g 

47.5 6.90 6.85 0.392 g 
48.8 7.35 9.36 0.534 g 

53.0 36.0 3.66 1.71 0.098 g 

39.5 4.45 2.29 0.131 g 

41.8 5.00 2.85 0.163 g 

45.0 6.00 3.56 0.204 g 

47.8 7.00 4.93 0.283 g 

50.4 8.00 7.90 0.452 g 

55.75 32.6 3.02 1.22 .0.070 g 
36.6 3.80 1.38 0.079 g 
41.0 4.80 1.61 0.092 g 
46.5 6.50 2.65 0.154 g 
49.2 7.50 3.94 0.225 g 
51.2 8.30 5.00 0.285 g 
53.0 9.10 1.45 0.424 g 
44.5 5.82 2.13 0.121 g 
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TABLE 5.1 (Continued) 

Polymer Liquid Vapour Equiiibrium 
Temperature Temperature pressure uptake (mg) Concentration 
(oC) (oC) (mrnHg ) (g/g) 

60.0 35.4 3.55 1.05 0.060 g 

38.2 4.15 1.26 0.074 g 

42.6 5.25 1.45 0.083 g 

46.7 6.55 2.17 0.124 g 

50.2 7.90 2.87 0.164 g 

53.5 9.30 3.78 0.216 g 

55.1 10.1 4.80 0.273 g 

56.8 11.4 5.78 0.330 g 
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Polymer 
Temperature 
(oC) 

43.0 

43.6 

47.0 

49.3 

51.0 

55.5 

59.8 

TABLE 5.2. Silicone rubber (5 phr filler) 

Weight of polymer sample = 16.90 mg. 

Vapour Vapour §quilibrium 
Temperature pressure uptake (mg) Concentration 
(oC) (mmHg) (gig) 

31.4 2.80 1.37 0.081 g 

32.a 3.05 2.13 0.126 g 

34.5 3.35 3.12 0.184 g 

36.8 3.84 4.50 0.266 g 

32.5 3.0 2.58 0.153 g 

35.2 3.50 3.14 0.186 g 

37.6 4.00 3.97 0.235 g 

40.6 4.70 5.92 0.350 g 

33.5 3.20 2.43 0.144 g 

37.7 4.05 3.24 0.192 g 

42.0 5.10 5.55 0.327 g 
, 

45.0 6.00 8.50 0.505 g 

34.0 3.28 1.645 0.097 g 

37.0 3.90 2.43 C.144 g 

40.1 4.60 3.14 0.186 g 

43.0 5.36 4.05 0.240 g 

46.2 6.36 6.15 0.363 g 

33.5 3.20 1.44 0.085 g 

37.5 4.00 2.10 0.124 g 

41.5 4.95 2.80 0.165 g 

45. 1+ 6.10 5.45 0.322 g 

48.0 7.05 6.10 0.360 g 

38.4 4.20 1.525 0.0917 g 

42.3 5.14 2.17 0.129 g 

45.0 6.00 2.60 0.154 g 

48.0 7.04 3.25 0.192 g 

51.0 8.20 5.05 0.298 g 

38.5 4.20 1.14 0.067 g 

43 5.35 1.50 0.089 g 

46.8 6.60 1.69 0.100 g 

51.0 8.20 3.14 0.186 g 

56.0 10.50 5.10 0.301 g 
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Polymer 
Temperature 
(oC) 

40.0 

44.0 

44.6 

47.0 

50.0 

TABLE 5.3. Silicone rubber (10 phr filler) 

Weight of polymer sample = 18.00 mg 

Vapour Vapour Equilibrium Concentration 
Temperature pressure uptake (mg) (gig) 
(oC) . (mmHg) 

2.7 2.20 1.83 0.102 b 
3.1 2.75 2.07 0.143 b 

35.6 3.60 4.56 0.254 b 

37.6 4.0 7.45 0.414 b 

2.5 1.95 1.35 0.075 g 

27.8 2.30 1.71 0.095 g 

33.8 3.25 2.67 0.149 g 
38.4 4.20 4.53 0.252 g 
41.5 4.95 7.10 0.395 g 

30.6 2.70 1.22 0.068 g 
34.5 3.35 2.17 0.121 g 
35.2 3.50 2.58 0.144 g 

36.5 3.75 3.25 0.181 g 
40.0 4.55 3.30 0.212 g 

40.8 4.75 5.20 0.289 g 
41.6 4.95 5.52 0.307 g 

42.9 5.35 8.10 0.450 g 

27 2.20 1.27 0.071 g 
28.5 2.36 1.44 0.080 g 
31.1 2.76 1.80 0.100 g 

33.5 3.20 2.28 0.127 g 
34.6 3.40 2.46 0.137 g 
36.0 3.65 2.58 0.144 g 
40.6 4.72 4.33 0.241 g 
43.2 5.42 5.56 0.309 g 
4f.5 6.50 13.0 0.725 g 

30.0 2.60 0.521 0.029 g 
33.2 3.12 0.955 0.055 g 
37.8 4.06 1.64 0.092 g 
40.2 4.60 2.25 0.125 g 
44.0 5.68 3.25 0.181 g 
47.0 6.70 5.85 0.326 g 
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TABLE 5.3 Continued. 

Polymer Vapour Vapour Equilibrium 
Temperature Temperature pressure uptake (mg) Concentration 
(oC) (oC) (mmHg) (gig) 

5.40 30.5 2.70 0.521 0.029 g 

34.2 3.32 0.88 0.049 g 

38.7 4.25 1.49 0.083 g 

40.8 4.76 1.91 0.106 g 

42.5 5.22 2.03 0.113 g 

43.8 5.60 2.65 0.147 g 

47 6.68 3.27 0.182 g 

50 7.80 4.85 0.269 g 
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Polymer 

TABLE 5.4 Silicone rubber (20 phr filler) 

Weight of polymer sample = 20.0 mg. 

Vapour Vapour Equilibrium 
Temperature Temperature Pressure uptake (mg) 
(oC) (oC) (mmHg) 

35.0 24.5 1.9 2.60 

29.5 2.5 3.50 

32 2.9 4.50 

34 3.3 6.20 

41.0 26.4 2.1 1.70 

30.0 2.6 2.20 

32.5 3.0 2.80 

34.6 3.4 3.80 

35.8 3.6 4.70 

45.2 28.0 2.3 1.30 

31.0 2.75 1.66 

33.5 3.2 2.10 

35.0 3.5 2.68 

36.2 3.7 3.00 

48.0 29.4 2.5 1.10 

33.5 3.2 1.64 

35.2 3.5 2.06 

37.5 4.0 2.70 . 

38.5 4.2 3.50 

51.5 28.5 2.4 0.70 

34.0 3.3 1.20 

35.8 3.6 1.56 

37.5 4.0 1.80 

39.0 4.3 2.20 
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Concentration 
(gig) 

0.130 b 

0.175 b 

0.225 b 

0.310 b 

0.085 b 

0.110 b 

0.140 b 

0.190 b 

0.235 b 

0.065 g 

0.083 g 

0.105 g 

0.134 g 

0.150 g 

0.055 g 

0.082 g 

0.103 g 

0.135 g 

0.175 g 

0.035 g 

0.060 g 

0.078 g 

0.090 g 

0.110 g 



TABLE 5.5. Styrene-butadiene-styrene, 

3-block copolymer 

(Films cast from toluene and methylene chloride showed exactly similar 

results). 

Weight of polymer sample = 139.2 mg. 

Polymer Vapour Vapour Equilibrium 
Temperature Temperature Pressure uptake (mg) Concentration 
(oC) (oC) (mmHg) (gig) 

35.0 26.5 2.12 14.8 0.106 e 

29.0 2.45 21.2 0.152 e 

31.0 2.76 27.8 0.200 e 

33.2 3.15 42.8 0.308 e 

38.0 25.2 2.00 14.0 0.~01 e 

30.0 2.60 21.0 0.151 e 

33.0 3.10 26.4 0.190 e 

36.5 3.80 48.4 0.349 e 

42.0 26.5 2.12 10.4 0.075 e 

30.0 2.60 14.6 0.105 e 

36.0 3.66 26.1 0.188 e 

38.5 4.20 37.6 0.270 e 

41.0 4.80 58.6 0.421 e 

45.0 25.5 2.05 8.42 0.061 e 

30.0 2.60 12.10 0.087 e 

35.0 3.48 17.60 0.127 e 

38.5 4.20 25.80 0.186 e 

42.0 5.10 38.40 0.276 e 

44.0 5.70 51.10 0.367 e 

49.0 25.0 1.95 6.2 0.045 e 

29.5 2.50 7.7 0.055 e 

37.0 3.90 14.6 0.105 e 

41.5 4.92 22.6 0.162 e 

45.0 6.00 32.6 0.234 e 
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The results as tabulated from Tables 5.1 - 5.5 were plotted as 

concentration against vapour pressure of decane, and a series of 

isotherms were obtained. As it would be easier to check a value at 

a known temperature rather than at a known vapour pressure value, 

these curves were plotted as concentration against polymer 

temperature at different vapour pressure values. Thus a series of 

"isobars" were obtained for each polymer, and these are shown in 

Fig. 28 - 31. The n-decane polymer concentration was found to be 

related to the temperature by the relationship 

1 
log C = m (T) + K 

where C is the concentration 

T is the absolute temperature 

and m, K are constants 

This is shown by the plot for unfilled silicone rubber shown in 

Fig. 27. 

Determination of diffusion coefficients from absorption and desorption. 

The diffusion coefficient, D, may be obtained from the rate of 

absorption and desorption by the relationship (see Eqn.2.41) 

where 

4 Dt 1/2 - (-) 
1 11 

5.2 

M
t 

is the mass uptake of the decane vapour at time t, M 

is the equilibrium uptake, and J is the thickness of the membrane. 

Therefore a plot of Mt against t 1/ 2 should present a straight line, 
Mao 

from the slope of which the diffusion coefficient may be calculated. 

Such plots for unfilled silicone rubber are given in Fig. 32 - 39. 
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5.2. Permeation Results. 

The rate of pc:nneation, denoted as P, was measured as (counts per 

second) increase per minute (c.p.s. min1). The results were tabulated 

in four columns, viz. diffusant liquid temperature (T
1
), polymer 

temperature (T
s
)' liquid scintillator temperature (T

2
), and permeation 

• 
rate P. From T1 , (and Ts )' the concentration (C ) of the 14c labelled 

decane at the radioactive face of the polymer membrane can be obtained. 

Similarly from T
2

, the concentration (Cs) of the decane at the non­

active face is known. T1 and T2 were kept as close in value to each 

other, as experimental conditions allowed. In reali ty T was i" 
1 

general a little larger than T2 (see Chapter 4.2). In the most extreme 

case this difference reached aOC. The error invoked in taking the 

• 
arithmetic meari of C. and C as the average concentration, increases s 

with larger differences between T1 and T
2

• Therefore in some cases 

it is necessary to estimate the average concentration from a graphical 

method as outlined in Chapter 2.2. 

The permeation rate P Was obtained by measuring the slope of the 

count rate increase versus time plot after a steady state has been 

reached. Some of the steady state permeation plots are shown in Fig.40 -

44, for the different polymer samples used. The polymer temperature in 

°c is given by the number at the end of the straight line plot, and the 

two figures within the bracket represent respectively T1 and T
2

• 

Table 5.6 - 5.9 contain the full permeation results as well as the 

exact temperature measurements taken for each run. 

-112-



TABLE 5.6. Silicone rubber (no filler) 

-
Polymer Diffusant liquid Scintillator liguid Permeation -1 ' 0 Tem8erature temperature T1 ( ,C) temperature T2( C) Rate c.p.s.min 

( C) 

30.5 24.0 23.5 2.6 
30.5 27.8 20.0 3.8 
30.5 27.5 24.0 4.0 
30.5 26.0 22.0 3.4 
34.0 26.5 23.5 3.3 
34.0 29.0 26.5 3.9 
34.0 30.0 28.5 5.3 
34.0 29.8 27.0 4.8 
38.0 28.0 24.0 2.8 
38.0 29.5 24.0 3.5 
38.0 30.0 28.0 3.5 
38.0 32.5 26.5 4.3 
39.0 31.0 26.5 4.3 
45.0 35.0 27.5 5.6 
49.0 37.0 23.5 4.9 
30.0 26.0 22.0 3.4 
48.0 33.5 28.5 6.3 
40.0 29.5 28.5 5.2 
38.5 30.5 29.5 3.7 
43.0 30.5 29.0 3.75 
42.0 33.5 27.0 5.1 

Tnickness of polymer membrane = 0.052 cm (! 0.002 cm). 
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TABLE 5.7. Silicone rubber (10 phr filler) 

Polymer Diffusant liquid Scintilla tor liquid Permeation -1 0 0 Temgera ture temperature ( C) temperature ( C) Rate c.p.s.min 
( C) 

24.5 21.0 19.5 3.8 

28.5 27.0 22.0 5.0 

30.0 27.8 22.0 4.2 

32.5 30.5 23.0 6.0 

41.5 36.0 26.0 7.0 

42.0 38.5 ·30.0 15.0 

Thickness of membrane = 0.062 cm (~ 0.00 2 cm). 

TABLE 5.8. Silicone rubber (20 phr filler) 

Polymer Diffusant liquid Scintillator liquid Permeation -1 0 0 Temgerature temperature ( C) temperature ( C) rate c.p.s.min 
( C) , 

27.5 21.0 19.2 3.9 

32.5 2:::.0 19.2 4.0 

35.5 25.0 19.5 5.0 

41.0 31.5 25.0 5.8 

44.0 34.0 26.0 7.2 

~ickness of membrane = 0.038 mm. 
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TABLE 5.9. S-B-S copolymer cast from toluene 

Polymer Liffusant liquid Scintillator liquid 
Temperature temperature (oC) temperature (oC) 
(oC) 

32.0 28.0 28.0 

32.0 24.5 20.0 

32.0 24.0 18.0 

32.0 27.5 26.0 

32.0 25.0 25.0 

26.0 21.0 19.5 

36.0 29.0 21.5 

36.5 29.2 21.5 

38.0 32.5 21.5 

39.5 32.5 26.5 

Thickness of membrane = 0.0735 cm. 

TABLE 5.10. S-B-S copolymer cast from methylene 
chloride. 

Polymer Diffusant liquid Scintilla tor liquid 
temperature (oC) ° T8mperature temperature ( C) 

( C) 

28.0 24.5 19.5 

31.0 26.5 24.0 

31.0 22.5 20.0 

31.0· 2').5 21.0 

31.0 27.5 26.0 

35.5 29.5 25.5 

36.5 30.0 26.0 

40.0 32.5 28.0 

Thickness of membrane = 0.c625cm. 

-115-

Permeation -1 rate c.p.s.min 

1.90 

1.06 

1.00 

1.50 

1.22 

1.00 

1.25 

1.35 

1.60 

1.55 

Permeation -1 rate c.p.s.min 

1.20 

1.40 

0.85 

1.1 

1.60 

1.55 

1.60 

1.75 
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Calculation of the diffusion coefficients. 

Using Eqn. 2.24, the diffusion coefficient, D, is related to the 

flux F by the relation 

F = 5.3 

where C
1 

and C
2 

are the concentrations of the diffusant at 

the ingoing and outgoing faces respectively, and )[ is the thickness 

of the polymer membrane. 

Theref,.e, applying Eqn. 5.3 to the permeation of the radioactive 

molecules, C
1 

becomes the concentration of the radioactive molecules 

C* at ",e ingoing face, and C
2 

= O. The actual concentration of the 

solvent molecules in the polymer, regardless of radioactivity, is the 

average of C* and C measured. If C* and C are close in value, then an s s 

arithmetic mean is taken to represent the average concentration, denoted 

bi c. 
Thus the value of D Calculated from Eqn. 5.3 is the self-diffusion 

coefficient of the penetrant in the polymer at concentration C. This 

is represented as, simply 

FI 
D = C­

C 
5.4 

F is obtained from the experimentally measured permeation rate, P, 

as follows:-

From the weight/radioactivity calibration of n-decane (Fig.23), 

1 count per second (cps) ; 5.8 x 16
4
g n-decane 

Since P is expressed in cps min1 

8 -4 
F = P !i. x 10 

x 60 
1 

x --'="A- -1 
g sec -2 cm 5.5 

where . A . - is the cross section area of the polymer membrane 

2 across which diffusion takes place. (A = 4.5 cm .) 

Expressing C" in Eqn. 5.4 in gciii3 

it becomes PC", r being the density of the polymer. 

(r = 0.986) 
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Substituting F from Eqn.5.4 into Eqn. 5.3 

D_ = ~.l 2.18' x 1r? 
c 
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5.3. Dynamic Mechanical Results. 

The polymer measured was the unfilled silicone rubber. The 
V4t""a~ 

results are tabulated in Table 5.1l. E ~modified by the rubber 

elasticity correction term To~ are also tabulated These will be Tf . 
required later for the William, Landel and Ferry shift procedures. 

The reference temperature was taken as 39°C. 

The tan J values near the glass transition point are also 

tabulated in Table 5.12. The lUosiifted .E', and. the tan b· v<.1.1ue,s were 
'. , 

plottod agninst log (f~qu,"ncy).and these <;lre.shown in Fig. 45 and 

Fig. 46 respectively. From these plots the activation energy terms 

at these temperatures can be derived. 
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Table 5J.il 

Input E' E' TfO 
TEMP °c. FRID;tUENCY (f) Log f (volts) x 107 

x 107 

0 30 1.477 12.8 1.050 1.140 

10 1.000 11 1.015 1.086 

3 0.477 11 1.00 1.053 

1 0 11 0.960 1.028 

0.3 -0.523 11 0.935 1.001 

22.5 30 1.477 11.05 1.04 1.091 

10 1.000 11 1.01 1.069 

3 0~477 11 0.992 1.043 

1 0 11 0.965 1.011 

0.3 -0.523 11 0.940 0.989 

29.0 30 1.477 5.?5 1.075 1.092 

10 1.000 ,. 1.032 1.066 

3 0;477 11 1.010 1.046 

1 0 11 0.99 1.011 

0.3 -0.;23 11 0.955 0.978 

0.1 -1.000 11 0.940 0.961 

,35.0 30 1.477 7.2 1.080 1.086 

10 1,OCO 11 1.035 1.059 

3 0.477 11 1.02 1.031 

1 0 " 1.00 1.007 

0.3 -0.523 11 0.96 0.973 

0.1 -1.,::00 11 0.945 0.956 

39.0 30 1.477 8.0 1,.086 1.080 
(To) 10 1.COO 11 1.062 •. .1 •. 062 

3 0.477 11 1.028 1.028 

1 0 11 1.00 1.000 

0.3 -0.523 " 0.975 0.975 

0.1 -1.000 11 0.950 0.950 
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Table 5.12 

! 

TEMP °c. FREXtUENCY f. Log.f. I~t(volts) Tan l 
-114 300 2.477 13.0 0.042 

200 2.303 " 0.039 
100 2.000 " 0.036 

30 1.477 " 0.036 
10 1.000 " \ 0.032 

3 0.477 " 0.02(: 

1 0 " 0.0'::[: 
-116 300 2.477 " O.O~:; 

200 2.303 " 0.0;;"; 

100 2.000 " 0.04'; 

30 1.477 " O.0~::' 

10 1.000 " 0.')3:; 

3 0.477 " 0.026 
1 0 .; 0.026 

-119 300 2.477 " 0.053 
200 2.303 " 0.054 
100 2.000 " 0.057 

30 1.477 " I 0.056 
10 1.000 " i 0.051 

3 0.477 " 0.045 
1 0 " 0.040 

-124 300 2.477 " 0.036 
I 200 2.303 " 0.038 
I 100 2.000 " I 0.040 

30 1.477 " I 0.048 
10 1.000 " 0.054 

3 0.477 " 0.051 
1 0 " 0.045 
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6.1. Srrption discussion. 

CHAPTER 6 

DISCUSSION 

When penetrant molecules are apsorbed by a polymer sample, the 

amount sorbed, or solubility, will at·a constant temperature, depend 

upon the pressure of the gas or vapour. Four prinCipal types of 

solubility isotherms have been observed for polymer-penetrant systems 

(141). These are shown in Fig.47 and are denoted as Types I, 11, III 

and IV. 

Type I is a linear isotherm exemplified by Henry's law which is 

characteristic of simple solutions. This behaviour is common when no 

interaction occurs between the penetrant and the polymer, as in the 

case of a permanent gas permeating natural rubber. The Lan~ir-type 

isotherm represented by Type 11 does not involve solution of penetrant 

but only adsorption in a Bingle layer on any adsorption site. An ex­

ample of this is the sorption of hydrogen sulphide in ethyl cellulose. 

Type III involves multilayer surface adsorption characterised by strong 

penetrant-polymer interaction as in the ~ase of water sorption in rigid 

hydrophilic polymers. Type IV involves absorption into systems showing 

positive deviation from Henry's law. This is the case in most organic 

vapour-polymer systems. 

Our results for n-decane sorption isotherms in filled and unfilled 

silicone rubber, and S-B-S block copolymer all follow the type IV 

behaviour. This is in agreement with the general classification of sorption 

beh~viour described above, as decane is a solvent for these polymers. 

The temperature dependence of the solubility, S, is governed by 

the Clausius-Clapeyron equation in the form 

~H = -R d ln S / d (1/T) 6.1 
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where .6 H, (the heat of solution), is the enthalpy change when 

a gramme molecule of gaseous penetrant is placed in solution. This 

equation allows the heat of solution to be determined. 

The sorption process may be pictured in two stages: (1) the 
" 

liquefaction of the penetrant from the vapour phase (an exothermic 

process), and (2) the mixing of the liquified penetrant with the 

polymer molecules (an endothermic process). 

The heat of solution may be therefore written as 

6.2 

where llHI is the heat of liquefaction, and ~Hm ~s the 

heat of mixing. 

For simple gases above their critical point, the heat of 

liquefaction is small (otherwise they would be condensible), and the 

heat of solution can be approximated to the heat of mixing, which, 

according to Hilderbrand (162), is given by 

hHm = V ( 01 
r 2 

6.3 -~ ) v1 v
2 v2 

where 0" t2 are the solubility parameters 

V is the total volume 

and v
1

, v2 are the respective volume fractions. 

Therefore, for permanent gases the heat of solution is small 

and positive, and solubility increases with temperature. 

For larger molecules, such as organic solvents, the heat of 

liquefaction usually outweighs the heat of mixing (given by Eqn.6.3) 

and the heat of solution is therefore negative, and solubility 

decreases with increasing temperature. This is evidenced in our 

results for n-decane in silicone rubber and S-B-S copolymer systems 

as illustrated in Fig.28-31. 

The heats of solution of deoane in the different samples 

measured as calculated from Eqn. 6.1 are tabulated in Table 6.1 
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TABLE 6.1 

Pol:i!!!er samEle 

Silicone rubber (unfilled 

~H (K cals/mole). 

- 13.4 

Silicone rubber (5phr silica filled) - 14.0 

Silicone rubber (10 phr silica filled) - 20.2 

Silicone rubber (20 phr silica filled) - 20.2 

S-B-S block copolymer - 14.8 

Since the AH measured is predominantly the heat of lique-

faction, it is governed by the strength of the vari der Waals bond formed 

between penetrant molecules in the liquid state, and is not expected 

to be sensitive to different polymer structures. Apart from the filled 

samples (which will be discussed in Section 6.8), our ~H values for 

silicone rubber and S-B-S are nearly the same. 

Barrer et al (142) measured the heats of solution of n-butane and 

n-pentane in silicone rubber, and his values are tabulated in Table 

6.2 with our value also inserted for comparison. 

TABLE 6.2 

Penetrant AH (K cals/mole) i!H/ n 

n - C4 H10 
(142) - 5.27 - 1.41 

n - C5 H12 (142) - 6.26 - 1.26 

n - C'0 H?? - 13.40 - 1.34 

This shows a good linear relationship between the heat of solution 

and the length of a homologous molecule. The actual heat of mixing 

determined by Barrer (142) was found to be about 200 cals. for 

n - C4 H10 and n - C
5 

H12, and the~ H measured must be mainly the 

heat of liquefaction. Barrer, however, found that the ~H values 

for iso-butane and neo-pentane did not correlate so simply to their 

structure. He concluded that the linear addition of a CH2 group to 
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a hydrocarbon will increase ~H by a fixed amount, whereas with non­

linear addition, the effective contribution to ~H will be less as a 

result of screening and steric effects. 

Th~ apparently large heats of solution for the filled silicone 

rubber may be due to the sorption of the vapour in the pores or 

microstructures within the silica particles. The curious 

temperature dependence of this filler sorption effect observed and 

discussed in Section 6.8 may be a reason for the large heat of 

solution for the filled sample given in Table 6.2. 
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6.2. Permeation features. 

In a penetrant-polymer system where Henry's law is not obeyed, 

it is inconvenient to make use of the relationship between "permeability 

coefficient", P, and "solubility" coefficient"" S, to calculate the 

diffusion coefficient D as given by(Eqn. 2.33). 

P = DS 6.4 

This is because S is defined by (Eqn. 2.31) 

C = Sp 6.5 

and for a type IV sorption isotherm as mentioned in the last 

section, S varies with p. 

Also, if D is a function of the concentration C, Eqn. 6;4 becomes 

unnecessarily complicated by having to "back-paddle" the S term to the 

concentration term. 

Therefore we have left the pressure term out of our calculations, 

by using directly the equation (Eqn. 2:24) 

F = D (C1- C2) 
1 

6.6 

where F is the flux, or rate of transfer per unit cross-section 

area, C
1 

and C
2 

are the concentrations of the penetrant at the two 

faces of the membrane, and 1 is the thickness. 

Referring the flux to the transfer of the radioactive molecules, 

Eqn. 6.6 becomes ' 

D* C* 
F* = 1 6.7 

The diffusion coefficient D* may be calculated from the exper-

imentally measured values of flux and concentration, in the manner 

shown in the Chapter 5. By employing a non-active penetrant to make 

the concentration uniform throughout the polymer, a self-diffusion 

coefficient is measured, and may be extrapolated to zero concentration 

(See Section 6.3). 

Increasing the polymer temperature will increase D but decrease 

C. This fact, plus the fact that D is actually dependent on C, will 
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lead to F· in Eqn. 6.7 not having a single trend in values with 

varying temperature and concentration. The experimentally measured 

permeation rates as given in Tables 5.6 - 5.10 by themselves have 

no significant relationship with, for instance, temperature, and 

these results will only be Jiscussed in terms of the derived 

diffusion coefficient and its related activation energy parameter. 

At high concentrations of penetrant the polymer membrane will be 

swollen in the direction of diffusion, because the edges are fixed by 

the cell. Thus the thickness, 1, will increase and cause an error 

in the calculation of the diffusion coefficient from Eqn. 6.7, if 1 is 

taken as that for the unswollen sample. Assuming no buckling of the 

sample, the swollen thickness l1can be related to the unswollen thickness 

1 by thG relationship 
0 v 

1 = 1 (_1_)1/3 6.8 1 0 v 
0 

where v
1 is thG volume of the swollen system 

v is the volume of the unswollen system. 
0 

Owing to the practical difficulty of kGeping our pclymer 

temperature and the active solvent liquid temperature independently 

constant because of thermal conduction along the permeation cell (see 

Section 4.2), we haveocvered a wide range of possible combinations of 

pclymer temperature, "active" concentration and "inactive" concentration. 

Strictly a computer programme is required to process the data hence 

collected (shown in Tables 5.6 ,.,;e, 5.10). However, we have managed to 

hold the polymer temperature constant at some intermediate values, for 

the permeation rate at different "average" (See Section 5.2) concentration 

to be determined. A relationship between diffusion coeffiCient and con-

centration is derived and is assumed to hold within the narrow 

temperature range (300 
- 500

C) used experimentally. 
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6.3. Diffusion coefficients. 

The diffusion coefficient of a penetrant polymer system may be 

calculated from both sorption and permeation experimental data. 

It is appropriate at this point, before proceeding to discuss the 

derived diffusion coefficients in detail, to emphasize that the 

sorption method is not a suitable method for measuring fast diffusion 

kinetics. This is due to the temperature changes on the polymer 

surface caused by the heat of condensation of the vapour. Since the 

sorption method is not a steady state method, and the rate of uptake 

is determined over a very short period (~OO sec.) for a fast 

diffusion process, it is by no means justifiable to assume the polymer 

temperature is staying constant at the pre-sorption value. It is, 

however, interesting to consider our sorption kinetics with the view 

of interpreting and illustrating the significance of various diffusion 

coefficients defined in different manners, as shown in Section 2.1. 

The sorption diffusion coefficients will be treated in this conte~t 

and they will be compared to the diffusion coefficients obtained from 

our permeation method. 

The maximum possible temperature change caused by the condensation 

of the vapour may be estimated roughly as follows. If we assume that 

sorption of the vapour onto the polymer takes place instantaneously 

(i.e. ddiabatic conditions), and the heat of solution (as calculated 

from section 6.1) consists almost entirely of the heat of condensation, 

then the temperature rise (!T) corresponding to sorption of 0.01 g of 

de cane onto 0.1 g. of pclymer with a specific heat of 0.5 will be 

given by 

/0.1 x 0.5 

In reality the temperature change will not be so drastic, as 

sorption takes place OVer a period of about 100 seconds, and some of 
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the heat evolved by vapour condensation is lost by radiation, and, to 

a lesser extent, convection. Crank (142) gave a full mathematical 

treatment on this subject, and actually plotted the variation of sur-

face temperatu~e with time. This has the general shape shown 

graphically in Fig.48. 

The increase in temperature of the polymer will cause an 

increase in diffusion coefficient and a decrease in the solubility. 

Usually the increase in D has a smaller effect than the decrease in 

surface concentration. The diffusion coefficient calculated will 

thus be either higher or lower than the true value, depending partly 

on the concentratl.on dependence of the diffusion coefficient. 

There have been attempts to remove this heat of condensation 

by using for~ed convection methods to increase the rate of heat 

loss. Downes and Mackay's "Vibroscope" (143) is an example where they 

made use of the transverse vibration of a filament, the frequency of 

which varies as the square root of the mass. On the whole, however, 

it is not advisable to employ a sorption method to study the kinetics 

of a fast diffusion process, and a steady state method - where thermal 

equilibrium is allowed enough time to be reached - is much preferred. 

Diffusion coefficient calculated from sorption data. 

A diffusion coefficient may be obtained from the rate of uptake 

of vapour by the polymer at a fixed temperature and pressure. This 

diffusion coefficient, D, given in the expression (see Eqn. 2.41) 

M 
M~ = t (~) 1/2 6.9 

can be considered as the diffueion coefficient of the penetrant with 

a polymer-fixed reference, defined as D~ in section 2.1. This is 

because the centre of the mass of the polymer is considered as 

fixed in space, so that only the mass flow of the penetrant is 
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considered. To interpret the diffusion coefficient in terms of true 

molecular mobility, it becomes necessary to convert this polymer-

fixed diffusion coefficient into the intrinsic diffusion coefficient, 

deDted by DA, which is defined with reference to a plane across which 

there is no mass flow (Section 2.1). D! is related to DA by the 

expression (Eqn. 2.16) 

DA = D!/(volume fraction of polymer)3 6.10 

If the diffusion coefficient is concentration dependent, it is 

necessary first to establish the D-C relationship. As mentioned in 

Section 2.3, an "integral" diffusion coefficient, D, over the range 

o to C (where C is the equilibrium sorption concentration), is given 
o 0 

to a good approximation by the average of the values of D obtained from 

absorption to and desorption from, the same equilibrium amount sorbed, 

C. Thus (Eqn. 2.43) 
0, 

- 1 - -D = 2' (Da + Dd) 6.11 

Using the relationship (Eqn. 2.45) 

D = ~ C1 D d C 
o 0 

6.12 

therefore, if D Co is plotted against C
Q

' the gradient of the 

tangent at a point corresponding to a certain value of C will give a 
o 

first approximation of the value of D at that concentra.tion. 

From our sorption results (Fig.}2-39) it is readily observed 

that the rate of absorption is slower than the rate of desorption, 

especially at higher vapour pressure. This might be due to our D! 

(i.e. sorption diffusion coefficient), value decreasing With increasing 

pe~etrant co~oentration (Table 6.3). Fujita et al (144) have 

observed that for a positive concentration dependence of diffusion 

coefficient, the rate of absorption is, in general, for an organic 

vapour-polymer system, larger than the rate of desorption. Thus the 

reverse may be true for our results. However, since in our experimental 
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technique (which is the electromicro-balance method described in 

Section 4.9), there is a high probability that the decane liquid 

in the reservoir in contact with the vapour may not have been com-

pletelY degassed, the rate of absorption may have been retarded 

because of the interference of the oxygen or other dissolved gas 

molecules with the gaseous diffusion of decane vapour in the system. 

Since the desorption method involves the direct transference of the 

sorbed molecules from the polymer to the cold trap, no liquid de cane 

is in contact with the vapour, and the diffusion coefficient calculated 

from it may be more genuine. 

D = Da + Dd' 
and Dd 

We have, therefore, included both 

in our calculation for the intrinsic diffusion coefficient, and they 

will be compared and discussed. 

We have performed our sorption runs starting from a zero con-

centration of the penetrant in the polymer because of the rapidity 

of the process. It is not possible to observe the rate of uptake over 

a small concentration range if it takes, for instance, only 10 secs. 

In Tables 6.3 and 6.4 are shown the various stages involved in 

determining a relationship between the intrinsic . diffusion coefficient 

and the concentration. The average diffusion coefficients over the 

range 0 to Co as calculated from Eqn. 6.9 for absorption and desorption 

are tabulated as D and 
a 

then plotted against C o 

Dd. The mean value is denoted by D. Dco is 

(Fig.49), and the tangents drawn to the curve 

at the chosen C values represent the first approximation of the 
o ,~ 'ei 

diffusion coefficient at concentration C , and this is denoted by 0\.­
o 

More accurate approximations may be carried out by plotting D'C against 
o 

C and repeating the differentiation, which will give D-i';-' (see Section 
o 

2.3) • In view of the not too high accuracy of our sorption data, we 

have assumed the first approximation to be sufficient for our purposes. 
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D' is then converted to the intrinsic diffusion coefficient DA by 

(Eqn. 6.10). 

:! = D~ / (volume fraction of polymer)3 

The intrinsic diffusion coefficients based on desorption data 

alone are also worked out in Table 6.4. 
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I 
-' 

'r<l 
I 

Polymer 
0 Temp C 

43.0 

47.5 

57.0 

Decane Concent-
liquid ration 

0 (gig) Temp C 

26.0 0.078 

30.0 0.106 

34.2 0.160 

39.5 0.30 

26.0 0.058 

30.0 0.080 

34.4 0.12 

41.0 .. 0.26 

32.0 0;045 

35.5 0.060 

37.5 0.070 

43.0 0.108 

, 

Volume fraction Da 
C polymer 
pllntrt. V slope r 

0.104 0.896 0.060 

0.142 0.858 0.058 
0.214 0.786 0.046 

0.40 0.60 0.038 

0.078 0.922 0.070 

0.107 0.893 0.070 
0.161 0.839 0.062 

0.350 0.650 0.044 

o.Ofl) 0.940 0.072 
0.081 0.919 0.070 . 
0.094 0.906 0.064 

0.145 0.855 0.061 

x 1t? Dd ° DC ~IJx 1t> DA x 1t? 
0 

2 -1 slope x106 x 1tf x 106 -2 -1 Cm sec first.approx cm sec. 

1.77 0.072 2.54 2.16 0.225 1.9 2.642 -5.578 
1.65 0.072 2.54 2.10 0.298 1.75 2.770 -5.55? 
1.04 0.0711 2.54 1.79 0.384 1.365 2.821 -5.549 

0.71 0.068 2.27 1.49 0.595 0.178 3.610 -5.442 

2.41 0.078 2.99 2.70 0.210 2.40 3.063 -5.513 
2.41 0.078 2.99 2.70 0.289 2.30 3.228 -5.491 

1.89 0.~>7E 2.99 2.44 0.392 1.90 3.217 -5.492 

0.95 0.078 2.99 1.97 .0.69 1.35 4.089 -5.388 

2.54 0.081 3.22 2.88 0.173 2.60 3.127 

2.41 0.081 3.22 2.81 0.228 2.53 3.260 

2.01 0.081 3.22 2.61 0.246 2.42 3.255 

1.83 0.081 3.22 2.52 0.365 2.98 3.328 

TABLE 6.3 



TABLE 6.4. Diffusion coefficient from desorption results. 

Polymer - 6 
DdCo x 106 Dd' x 106 6 0 V Temp. C C I'd x 10 !!A x 10 

0 r 

43.0 0.104 0.896 2.54 0.255 2.60 3.615 

0.142 0.858 2.54 0.360 2.40 3.799 

0.214 0.786 2.54 0.592 2.20 4.531 

0.40 0.60 2.27 0.908 1.50 6.942 

47.5 0.078 0.922 2.99 0.237 3.00 3.828 

0.107 0.893 2.99 0.320 2.95 4.141 

0.161 0.839 2.99 0.483 2.80 4.741 

0,,350 0.650 2.99 1.045 2.60 9.469 

• 
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These diffusion coefficients will now be compared to the self-

diffusion coefficients (D·) obtained from the permeation method. 

D· is calculated from the expression (Eqn. 5.6) 

Pl 8 -6 2 -1 D· = C. x 2.1 x 10 cm sec 6.13 

where P is the experimentally observed count rate increase 

C· is the concentration of the radioactive molecules at 

the "ingoing" face 

1 is the thickness of 

and the factor 2.18 x 

the polymer 

-6 10 is the radioactivity weight 

calibration term. 

The variation of D· with the mean "overall" concentration (Le. 

regardless of radioactivity) can be worked out knowing the concentration 

of the inactive molecules C. (see section 5;2). 
s 

In Fig.50 can be seen the three diffusion coefficients, viz: 

intrinsic from mean sorption, intrinsic from desorption, and self, 

plotted on the log scale against the penetrant concentration. A 

reasonably justifiable linear relationship is established for each case, 

their values will now be discussed. 

The self-diffusion coefficient, D·, as measured by our permeation 

experiment, is a direct measure of the penetrant mobility in the polymer. 

It is in fact equivalent to the thermodyqamic diffusion coefficient 

defined in section 2.4 by (Eqn. 2.50) 

Dth = R T md 6.14 

where md is the molar mobility 

D· and Dth are related to the intrinsic diffusion coefficient 

by a thermo?ynamic function as follows (Eqn. 2.18, 2.50). 

D· ;; Dth = DA ~ i ~ ;! 6.15 

where CA is the penetrant concentration 

and aA is the penetrant activity. 

-134-



FIG. 50 

-5·1 

-5'2 

-5,3 

-5'4 

-5:5 

-5'6 

- 5·7 

-58 

-'-, :T'­
i t,1 

47·5 
o 

o 
43 
,..I!-

INTRINSIC DIFFUSION 
--- COEFFICIENT FROM 

DESORPTION 

INTRINSIC. DIFFUSION 
COEFFICIENT 
FROM MEAN 

_.-' _._ SELF 01 FFUS ION 
COEFFICIENT 

-8'~ ____________ ~~ __________ ~~ ________ ~~ 

00.1 0.2 O. 

CONCENTRATION .,( g/ g) 



d In ~ 
The term d InCA can be evaluated from an 

empirical relation of the form (67) 

Ll!L~­
d In CA -

6.16 

where A, E, C, D are empirical constants 

used to fit the experimental curve. 

Alternatively the Flory-Huggins equation leads 

.to 

Ll!.l._~A = 1 - (2X+l)cW 2:{:civ ... 'l 
d In CA 

6.17 

at- low p'<"-e.~ro. ... t:- c-c"~"tre.t;",,, 
where X is the interaction. parameter. 

The factor ~_!.!l_~1J. is normally close to unity, 
d In CA 

and will be taken as such in our discussion~ This 

means that (self-diffusion coefficient)/(intrinsic 

diffusion coefficient) should also be close to 

unity, or these coefficients should be nearly 

equal to each other. 

It is interesting to note that although 

the polymer-fixed mutual diffusion coefficient 

(given by D' in Table 6.3) decreases slightly 

with increasing penetrant concentration, the 

intrinsic diffusion coefficient actually increases 

exponentially with concentration (Fig. 50). This 

arises as follo~s. At very low penetrant conc-

entrations, mass flow results in negligible back 
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flow of the penetrant and so the measured diffusion 

coefficient is very little affected. At higher 

penetrant concentrations, however, an appreciable 

back flow of the penetrant results from the mass 

flow, and so the measured diffusion coefficient is redu.ced 

below the correct value given by the intrinsic 

diffusion coefficient. 

Having dealt with mass flow, it is 

now appropriate to compare the various diffusion 

coefficients, viz: DA(mean), DA(desorption), and 

D which are all supposed to be related to the true 

mobility of the penetrant molecule in the polymer 

system. 

Firstly we shall compare values 

of intrinsic diffusion coefficients derived 

from sorption and desorption rates. As mentioned 

previously it is suspected that the rate of 

absorption is controlled by the transport rate 

from the reservoir to the polymer, and it may 

have been retarded by dissoloved gases, which 

had not been completely removed, or 
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even by the self-diffusion process in the vapour state at high vapour 

pressures. The desorption experiment involved direct transfer of 

sorbed molecules from the polymer to the cold trap. The liquid 

penetrant reservoir was isolated from the polymer so that there was 

no possibility of interference from any other undesirable gas molecules 

and the whole process occurs at near zero penetrant vapour pressure. 

The rate of aesorption would also not be affected even if adsorption 

onto the stopcocks or glass vessel walls ,lid occur. As seen in 

Fig.50 the DA value from the mean sorption and desorption data is 

lower than that fromdesorption data alo&e. In addition the dependence 

on concentration is much smaller than that of e:.ther the DA (desorption) 

or the D* values. CFo~· if;'r{iea§ofJ ·~e.-I;-;'d;-d[ S ",ht/lij di re;j'~ ~ ." ~ ./ - .~- ~ _.. ~~ ';' .. ~~~==-_~*----/ .. ~-:~~;.--' .- --- -~~-~ ~,_ r" . 

"C etl)" -t1\e ';-el.ttt.~,,_ r~f ~JaCeli!-"l.~"D ""M,I~'fl!~ ".#~';Ji'C._-'·e{ff~j/.~:...,-·;,:-,,~,,·· 

~~'C(lcff ... c;r;,f-.~iil,hi;;) !_,:~s·~'I,IJ~·~f ..... _t~l,1.~,!-;;t~~TS',:~ :00ef~' ~~" ~.<;: 1)· .. 

From Fig.50 we can see that the concentration dependence of DA 

and of D* are, within experimental limitations, nearly equal. The D* 

value can be extr~polated to zero concentration, and applying the 

derived Arrhenius relation for temperature dependence (see Section 6.5) 

the values of DA and ~ at zero concentration and at a fixed temperature 
o . 

(43 C) are evaluated, the ratio DA/D* is determined and is approximately 

equal to 1.5. Theoretically this is considerably higher than the value 

of near unity predicted by our definitions (Eqn.6.15). There are a few 

reasons which may be forwarded to account for this difference. 

The possibility of temperature variation on t~e polymer surface in 

a sorption experiment has already been discussed. Exactly how DA is 

affected is not known,but we can assume this as a source of inaccuracy. 

In the permeation experiment the Same amount of heat of condensation would 

be given out by the vapour but a steady state was allowed to be reached 

before readings were taken (Section 4.6), so this is less of a source of 

error. 
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The relation DA = D~ /(volume fraction of polymer)3 assumes 

that on sorption of the vapour, the polymer swells only in thickness 

but not in cross-section area, i.e. anisotropic swelling is assumed. 

This is probably true if the centre of the polymer is still in the 

unswollen state. As the penetrant diffuses further in the polymer, 

the stresses, which previously maintained anisotroric swelling, will be 

relaxed and sweLling will become more isotropic. For pure isotropic 

b swelling, DA is related more accurately to DA by a relation (.145). 

DA = D~/~olume fraction of polymer)5/3 6.18 

Garrett and Park (145) have proposed that since for most systems 

the swelling is neither isotropic nor anisotropic, a geometric mean 

should be adopted, and this corresponds to 

DA = D~/(volume fraction of polymer)7/3 6.19 

Thus the better approximated DA would be lower than the one cal-

culated from the previous relationship (Eqn.6.10). This could be 

another contributory factor in our ~ value being higher. 

Striotly we ~an go ahead and estimate the quantity )C in the 

relation 

.!?I\\= D~(volume fraction of pOlymerf 6.20 
1 __ :':"', 

if we. assume 
X 

true D+h = D· 
1/-" .j 

b D /(volume fraction of polymer) 
A 

6.21 

The measured DA = D~/(volume fraction of polymer)3 

Therefore 

measured 

D· dIn C,. ( )3 -)t. 
-- - h volume fraction of polymer 
DA - dIn aA 

Since all the other terms can be determined experimentally, ~ 

can be evaluated. Therefore, it may be possible to discover the true 

swelling behaviour of the polymer under the experimental conditions. 
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It was, however, decided not to apply Eqn. 6.22 to our data 

because of the larger disparity between our D* and DA values than even 

6.22 can predict. 

Another possible reason for this difference could be the actual 

silicone rubber samples used for these experiments. For the permeation 

experiment, sample "E303" as characterised in Chapter 4 was used. The 

sorption experiment was performed earlier with "E302" with the same 

molecular weight and other physical characters as "E303" but is described 

technologically as the higher "shrinkage" grade. The term "shrinkage" 

refers to the physical change in size of vulcanised rubbers, due to the 

removal of volatile cyclic compounds from the poljmer. In a "low 

shrinkage" sample, most of these volatile substances have been removed 

by the manufacturers. The molecular mobility, however, should not be 

affected to any significant degree by this physical effect. 

A small differonce in the molecular mobility between the labelled 

and unlabelled molecules would be caused by the "isotope" effect. 

This is because the mass of the nucleus in a c-14 atom is heavier than 

that in a C-12 atom, and the rate of movement of the former should, 

therefore, be fractionally slower (146). Although this effect is 

important to the actual gas velocity, it should not affect molecular 

movements which are relaxation controlled, such as diffusion in a polymer 

medium. 

In conclusion to this section it can be said that the relationships 

between the mutual diffusion coefficient, intrinsic diffusion coefficient 

and the self-diffusion coefficient, have been quite thoroughly explored. 

From these relationships it is possible to gather more information on the 

polymer swelling and penetrant activity behaviour. The experimental disparity 

between DA and D* can be partly attributed to the experimental inaccuracy 

in a sorption experiment, wrong assumption that swelling is entirely 

anisotropic, and the difference in "grades" between the polymer samples 

used. 
-139-



6.4. Interpretation of concentration dependence of diffusion coefficient. 

It is a well knOlm phenomena that the diffusion coefficients in many 

organic molecule-polymer systems are clearly concentration dependent 

(55, 38, 69). This dependence varies from a ten-fold increase of the 

diffusion coefficient (in increasing the concentration from zero to 0.1 

volume fraction of penetrant) for n-butane-polyisobntylene system (38), 

to an almost independent relationship reported by Newns and Park (69) 

for a benzene-silicone rubber system. Many theories or explanations have 

been put forward to account for these observed concentration dependences 

of the diffusion coefficient, a few of these will be uriefly summarised 

before interpreting our results in terms of the _ree volume theory as 

outlined in Section 2.4 which the author feels is the most fundamental and 

direct approach of all the presently available theories. 

Barrer and Ferguson (67) by making use of a model representation of 

the zo'ne theory (Section 2;5), derived an expression for the thermo-

dynamic mobility, md' in terms of the volume fraction of the penetrant, 

and a parameter Z defined as the number of either the polymer segments 

or the penetrant molecules which must be displaced outwards simultaneously 

for diffusion to take place. Their final expression was 

where K is a proportionality constant 

PB, PA are probability terms for A and B. 

vA is the volume fraction of A (penetrant). 

6.23 

By choosing a suitable value for Z, md can be calculated and matched 

with the experimental diffusion coefficients, beaing in mind that 

It is always difficult to justify, without fundamental reason, the 

choice of a parameter to fit an equation so that it may correspond with 

the experimental value. Barrer and Ferguson have shown thalt the zone 

theory can be used to explain the concentration dependence of D, but they 
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have not shown how it can be used to predict this dependence in other 

systems. No definitive conclusion is offered, and certainly no evidence 

is advanced for the chosen value of Z in Eqn. 6.23. 

Prager and Long (38) in their experiment on the diffusion of 

hydrocarbons in polyisobutylene, found a drastic dependence of the 

sorption diffusion coefficient (denoted by D in the last section) on the 

penetrant concentration. They did not convert their D values to the 

intrinsic diffusion coefficient, D
A

, which, if they had, would have 

made the concentration dependence even more pronounced. It is a pity 

that in their publication (38) , they have not interpreted their 

results quantitatively, and no numerical solutic~ or mathematical model 

was forwarded to explain their findings. The explanation presented by 

Prager and Long for the concentration dependence of the diffusion 

coefficient was based on Eyring's "hole" theory (147). According to this 

theory there are in any liquid or solid a number of holes arising from 

thermal fluctuations; diffusion takes place by a molecule leaving its 

current position and jumping into one of these holes. In order to form 

a hole a certain number of van der \llaals "bonds" must be broken. These 

"bonds" are assumed to be either between two polymer segments, a polymer 

segment and a molecule of the diffusing hydrocarbon, or between two 

molecules of the hydrocarbon. The last case is the least probable at low 

penetrant concentrations. Prager and Long assumed that the polymer-

hydrocarbon bonds are weaker than the polymer-polymer bonds, consequently 

the energy required to form a hole of a certain size decreases linearly 

with increasing hydrocarbon concentration, and the number of such holes 

should therefore increase exponentially with increasing hydrocarbon 

concentration. The diffusion coefficient, being dependent on the "jump" 

frequency, is directly proportional to the number of available holes, and 

is, therefore, given by 

D = D exp (aC) 
C 0 

6.24 

-141-



where DC and Do are diffusion coefficients at concentration C 

and zero respectively, and a is a constant. 

The above treatment resembles, in basic assumptions, the free volume 

theory as given in Section 2.4. The number of "holes" big enough to allow 

diffusant molecule displacement, corresponds to the probability of 

finding a hole large enough in the vicinity of the diffusing molecules, 

and is given by(Eqn. 2.48) 

P(B) = expo (-B/f) 

where f is the average free volume per unit volume ?f the system, 

B is a measure of the hole size. 

The thermodynamic diffus~on coefficient, Dth , is in turn related to this 

probability by the expression (Eqn.2.51) 

6.25 

If the free volume increases linearly with penetrant concentration 

(165), theu Dth depends exponentially on C. 

Comparing the free volume theory to Prager and Long's hypotheSiS, 

it is clear that the former consists of fundamental parameters which may 

be derived and substituted into the main relationships, and the latter 

consists only of a qualitative assessment, nlthough in both cases, an 

experimental depengence is predicted. 

From the free volume theory, the following expression has been 

derived (Eqn. 2.58) 

1 
In(D /b) = 

th 0 

+ 6.26 

The parameters have already been defined in section 2.4. 

A plot of 1/ln(Dth/Do) against 1/v1 should, if the theory is obeyed, 

yield a straifsht line, the slope and intercept will represent the obvious 

terms in Eqn. 6.26 respectively. 

Since our data for concentration variation of the diffusion 

coefficient in silicone rubber do not cover a large enough temperature 

-142-



range for it to show the temperature dependence, we have only plotted 

this relationship for one temperature (30.4°c). This is shown in 

Fig.52. From the slope, [f (o,T)] 2 /Bd.~(T) is known. The intercept 

1 when /VA = 0 is so small that it is difficult to be evaluated graphically. 

However, if we assume that the linear relationship is accurate enough 

we may substitute the straight line by an empirical equation derived 

by substituting values in the equatien: 

y = mx + c 

m, the gradient, is determined by the Sbpe and is equal to 

2,85. Table 6.5 shows the various values of c obtained by substituting 

the chosen values of x and y. 

Table 6.5 

x y 

0.5 1.5 

0.75 2.2 

1.0 2.92 

1.5 4.36 

c 

.075 

.070 

0.070 

0.078 

Thus the average extrapolated y-intercept value = 0.075 

From Eqn. 6.26 therefore 

0.075 6.27 

and 2 = 2-f5' 6.28 

f (o,T), the fractional free volume at temperature T, may 

be derived from the relation 

f (o,T) = f (o,Tg) + ~f (T-Tg) 6.29 

where f (o,Tg) is the fractional free volume at Tg. 

. '" ~ A "universal" value for f (o,Tg) may be assumed (6), and thl.s equal_ 

to 0.025. 

<if' which is the coefficient of thermal expansion, has a "universal" 

value of 4.8 x 164 deg.-1 
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We have, therefore, from Eqn. 6.27, 6.28 and 6.29, with "universal" 

values of f (o,Tg) and ar substituted, 

Bd = 1.39 

~(T) = 2.34 x 103 
.•. :-:3 

6.29 

6.30 

These values are only very rough approximations of the true value, 

as we have assumed the "universal" values in our calculations, and the 

graphical intercept obtained is only an extrapolated value. Strictly 

a more accurate estimation of the free volume parameters f (o,T) and 

CZ'r may be made by plotting Fig.52 at two temperatures far enough apart 

for the temperature dependence in these terms to become significant. 

From the intercepts of the two plots, the exact value of f (0, T) may be 

determined by substituting a known value of cr
f 

for silicone rubber (163), 

and subsequent values of Bd and fiT) may be determined from the 

respective slopes. In the temperature range covered by us, (30-500 C), 

the free volume plot (Fig. 52) for all the temperatures very nearly all 

fall on the same straight line, this is the reason we have assumed the 

"universal" free "01um8 parameters. 

Since the corresponding B value for viscosity is near unity (6), 

it would appear, (Bd/B.) 1.), that the minimum hole size required for 

diffusion is slightly larger than the minimum hole size for polymer 
_RT 

segmented motion. B Jis also approximated to AHnI·Lwa, where L.\HD 

and ~H are the activation energies for diffusion and polymer 
a 

viscoelastic relaxation respectively (see later section). We have 

obtained values of 6H and AH at 5.75 and 5.3 K cals/mole 
. D a 

respectively (see Section 6.5 and 6.9). Thus Bd from activation energy 
./ -~ -. /' 

comparison is abou t l' ". 
"j 

Thus from both observations Bd is 1.'?~~) 

It appears, therefore, that the penetrant molecule 

(n-decane) is Sim;./rir in size' ·.to;:· a silicone rubber Chain "segment" 
~ j '"V/ 

which is taking part in thermal motions. 
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P (T) is given by the expression (Eqn.2.52) 

f (v1,T) = f (o,T) + ~(T) v1 6.31 

and is, therefore, a measurement of the concentration dependence 

of the free volume in silicone rubber. Its small value suggests that 

the effect of diluent on the free volume of silicone rubber is rather 

insignificant. The concentration dependence of the diffusion 

coefficient of n-decane in silicone rubber is small and is given to a 

good approximation by 

log D = log D + c 0 
2.0C. 

NewQs and Park (69) have in fact found no concentration dependence 

of the diffusion coeffic:Lent in a benzene-silic',ne rubber system. 

This point will be discussed further under section 6.6. 

For extrapolation to zero concentration purposes, we have plotted 

the concentration dependence of D of n-decane in silicone rubber and 

S-B-S block copolymers as log D against C in Fig.53 and Fig.54 

respectively. \~ithin the narrow temperature range there was no 

noticeable change in the gradient of the linear plots, and relation 

like Eqn.6.32 for silicone rubber, and 

log D = log D + 2.5 c c 0 

for the S-B-S block copolymer may be assumed for extrapolation purposes. 

The diffusion behaviour of this later polymer will be discussed in 

Section 6.7. 
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The temperature dependence of the diffuDion coeff-

iCient is one of the most valuable source. of information 

on the mechanism of diffusion. We have already seen how 

the free volume theory can be applied to account for the 

concentration dependence of the diffusion coefficient, by 

a similar argument the temperature dependence can also 

be illustrated by the free volume concept. In the case 

of concentration, the fractional free volume has been 

shown to increase,.ith increasing, penetrant concentration 

(Eqn. 2052) in the manner 

Temperature also increases the fractional free volume 

of a polymer, and at zero penetrant concentration this is 

given by (Eqll. 2.60) 

f (O,T)=f(O,O)+ <\-(T-To ) 6.35 

where f (O,T) and g (0,0) are the fractional free 

volumes at temperature T and a reference temperature To 

respectivelYI ~f is the coefficient of expansion of the 

free volume. 

In section 2.4 it has been shown that the diffusion 

coefficient is dependent on the free volume in the manner 

(Eqn. 2.61) 

D= 

By differentiating In D in Eqn. 6.36 with respect 

to (liT), 

d InD _ -T -
df17T)-

6.37 

If we define the activation energy of diffusion'~D' as 

I1HD - - R dlnD 
, - d'f17T) 
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2 

then 
T Bd/C<f 

-I1HD RT + 6.39 
+f(O ,0 )/O<f]2 [T - T 

0 
D 

and C
2 If we further define two parameters CJ. as 

D 
B/f(O ,0) Cl 6.40 

C - f(O ,0 )/o(.f . 6~41 
2 

then 
RCDC' T2 

LlHD RT + 1 2 
6.41a -

[C2 + T -TJ 2 

From parallel arg~lent Ferry(6) has derived a similar 

expression for the apparent activat·ion energy of viscoelastic 

relaxation 

where 

[C 2 + T -

Cl- B/f(O,O) 

6 iven by 

and C
2 

is given by E~n. 6~41 

From E~n. 6.41a and E~n. 6.41b 

6~41b 

6. 41c 

Fig.55 shows the variation of theoreticalAHa with temperature 

,11Ha being calculated using the universal values of f(O,O) and 

~f.LlHD' as apparent from E~n.6.41c, should also vary in a 

simila~ manner with temperature. 

Over the range of temperature used in our eXperiments, the 

variation of tho diffusion coefficient with temperature seems 

to. follow an Arrhenius type of relation, and 10gD agai~st liT 

is plotted for each of our polymer samples, these are shown in 

Figs.56-59. 
". 0 

'·Table 6.6 shol7s thell.lID and D values hence obtained. 

TABLE 6 6 • 
silicone r. silicone ro silicone r S-B-S S-B-S 
(unfilled) (lOphr fo) (20phr f.) (toluene (Cl'2 Cl 2 ) 

An 
Kcafs/mole 5.75 7.40 8.80 7.65 10.60 

o 2- -1 
D cm sec 0.015 0.23 2.16 0021 14.13 
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Since the Arrhenius relationship can be represented also by 

log D = log DO _ AHb 6.41 
2.303 R T 

The value of DO which is the diffusion coefficient at "infinite 

temperature"can also be determined from extrapolation of the Arrhenius 

plots, and these values are also tabulated in Table 6.6. Both of 

these parameters may be interpreted as follows. 

The activation energy of diffusion may be interpreted in general 

as the energy to be overcome for the penetrant molecule to move from 

one site to a new position. Brandt (section 2.5) has split this term 

into two contributions - viz: an intermolecular term due to the repulsion 

the polymer chains experience from their neighbours when displacing them-

selves to accommodate the penetrant molecule, and an intramolecular term 

due to the r-3sistance of the chains themselves to "bending" (restricted 

rotation), The activation energy term therefore depends on the size of 

the penetrant molecule, and, more important, on the ease of segmental 

rotation of the polymer chains (especially for diffusion of large 

molecules). The activation energy for the different polymers listed 

in Table 6.6 will be dealt with again under the respective sections later 

on. 

o The interpretation of the constant D is less clear. The theory 

of rate processes (147) o relates D to the entropy of activation for 

a diffusional jump As' through the equation 
. 0 l2 . 
D = (ea k T / h) exp (~S'/R) 6.42 

where S is the length of a unit jump 

k and h are Boltzmann and Planck constants respectively, e 

is a numerical constant. 

o Log D has been observed by Barrer and Skirrow (77) to vary 

linearly With.6~T in several cases. Since the latter is also related 

to the number of degrees of freedom involved in a diffusion process (see 

Section 2.5), it would appear a linear log DO against ~~T relationship 

would justify the zone theory. 
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Barrer et al (141) in their work on the diffusion of butanes 

and pentanes in silicone rubber as compared to natural rubber found 

a linear log DO against LlHn/T plot for natural rubber, but the points 

for silicone rubber seemed to have • much higher log DO values than the 

linear relationship would p,>edict. The author, however, after checking 

the mathematics involved in their calculation, found that this was in 

fact due to the omission of the factor 2.303 in Barrer's calculation for 

log DO in the expression 

olD _~6.;;:H~l>,"= log D - og + 2.303 HT 

Making the due correction, a good linear relationship was estdiished. 

We have also inCluded log DO against ~.HnfT plots for the polymers listed 

in Table 6.6 at 300 e, and these points fit in beautifully with Barrer's 

plot, forming a "master" plot involving diffusion of n-butane, neo-butane, 

n-pentane, iso-pentane and n-decane in natural rubber, filled and 

unfilled silicones, and S-B-S block copolymers cast from different 

solvents. This isehown in Fig.60. This plot suggests that the energy of 

activation is proportional to the entropy of activation in a diffusional 

process, and in terms of the zone theory. a greater activation of energy 

requires the co-operative movement of a larger number of segments. A few 

interesting observations ~re made from Fig.60 and these are listed below, 

and they will be discussed further in the later sections respectively: 

o For unfilled silicone rubber, log D increases with larger penetrant 

molecules in the orJer 

n-decane > n-pentane/ n-butane, 

for filled silicone rubber, log If increases with filler content 

in the order 

20 phr >-10 phr > unfilled. 

for S-B-S block copolymer, ~he diffusion of n-decane has a higher 

log DO value in the sample with the more diffused morphology than ~he 
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one with better phase separation (see Section 6.7), 

o and for similar penetrants, the log D values for silicone rubber 

~~very much lower than those for natural rubber. This is probably due 
"/ 

again to the segmental mobility of the former. 
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6.6. Silicone rubber (unfilled). 

In this section we shall summarize some of the results observed 

in the previous sections and try to gather a complete picture on this 

polymer. 

The first indication of the very mobile nature of the silicone cbain 

segments is the negative concentration dependence of the mutual diffusion 

coefficient measured from sorption (see section 6.3). Interpreted in 

terms of maSs flow this has been attributed to the polymer chains being 

more mobile than the penetrant molecule (section 6.3, Fig.51). Later on, 

from free volume theory considerations we have shown that the free volume 

in silicon~ rubber is not affected to any significant extent by the 

presence of the penetrant (Eqn.6.31). l~lis again reflects an inherent 

high chain mobility. Our results for the diffusion of n-decane will now 

be tabulated together with Barrer's results (141) for n-butane and 

n-pentanc in the same polymer, so that a fuller discussion can be made 

on the various parameters involved. These data are shown in Table 6.7. 

Diffusing 
molecule 

n-butane 
( 141.) 

n-pentane 
(141) 

n-decane 

" 

TABLE 6.7 , 

I AH ! ° 
DOff ' solo !D 2 1 , l. USl.on ji -

Concentration 'I' coe!fici20t_1 ~KCalsjmole ~~~!~ jO cm sec 
{30 C)cm sec 

small,assumeu 
zero 

" 

extrapolated 
to zero 

5.4 x 1ff 

\ 4.48 x 166 

x 166 
1 1•07 
I , 

4.2 -5.27 0.00168· 

4.3 -6.26 0.00185· 

5.75 \ -13.4 1°.015 

• These values are the "corrected" values from Barrer's published data 

(141) (see last section). 

The diffusion coefficient is essentially a measurement of the 

velocity of translation of the penetrant through the polymer, but it is 

not by itself a mea.ure of the polymer character. Since the thermodynamic 
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diffusion coefficient is related to the mobility term md' 

by the relation (Eqn.2.50) 

D = RTm
d 

and mobility is inversely proportional toth~ frictional 

force existing in the system, a Stoke-Einstein type of relation 

can be used to relate D to the friction coefficient 
kT 

as follows 

D = 6.43 
nE. 

where & is the friction coefficient of a 'single -CH
2

-

unit in the penetrant molecule, and n is the number of such 

units in a penetrant molecule. Thus in a homologous series 

of chemical compounds, this predicts that the friction experienc 

'-ed by the diffusing molecule increases with its length, and 

the diffusion coefficient to decrease accordingly as shown 

by Eqn. 6.43. Therefore the ratio of the diffusion coefficient 

of n-butane, n-pentane, and n-decane should be 2.512.0:1. 

Table 6.7 shows a ratio of about 514.211. The value for n-decane 

seems to be lower than the predicted value, which indicates 

that n~decane diffuses by a ~ifferent mechanism from tha~ of 

n-butane and of n-pentane. 

The activation energy of diffusion as given in Table 

6.7 is best 
o 

interpreted by considering the related 10gD 

parameter (see section 6.5). SinceLlH/T is linearly related 

to 10gDO (Fig. 60), and logDO is related to the number of degrees 

of freedom('i7), a greater /lHD means cooperation of polymer 

seGments involving a greater number of degrees of freedom 

is required'. 
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It is readily seen, therefore, that although the actual friction 

experienced by n-decane in the polymer is much higher compared with 

the lower hydrocarbons, the rearrangement process of the polymer segments 

needed for the penetrant translation is not appreciably more complicated. 

This supports the theory t~3t diffusion of a penetrant molecule in the 

polymer medium occurs with the penetrant molecule participating in the 

thermal motion of the polymer chains themselves. Diffusion does not 

necessarily involve the penetration of the entire mOlecule into a new 

"hole," but possibly one portion of it followed by the rest as soon as 

further thermal fluctuations of the polymer segments have formed additional 

voids along the direction of translation. As the size of the penetrm:t 

increases the activation energy (and so the number of· degrees of freedom) 

will increas; until a certain limiting value, when the activation energy 

~ should become constant. The size of the penetrant molecule before 

this value is reached should correspond to the size of the polymer segment 

involved in thermal fluctuations. Flexible molecules larger in size than 

that of a polymer rearranging segment will diffuse by segmental mutions 

themselves, and the energy of activation should not be higher than the 

energy requi.red for polymer chain relruetion. Chen and Ferry (9) using 

Moore and Ferry's "composite" method (132) measured the diffusion of radio­

actively labelled n-hexadecane in silicone rubber, and obtained an 

activation energy of about 5 K cals/mole. They have stated in their 

publication that the error involved in their method for silicone rubber 

was large because of the high diffusion coefficient, so - allowing for 

this and our own errors, we can assume .t.~ for n-decane and n-hexadecane 

in silicone rubber to be nearly equal. This suggests that at de cane we are 

very near to this "limiting" value as mentioned above. 

TIe variation of 1YIn with the! size of penetrant is shown in Fig.61; 

in section 6.9 this will be further discussed in relation to our results 

for dynamic mechanical data fer this polymer. 
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It is interesting to note that in Barrer's experiment (141) he 

compared the diffusion of n-butane and n-pentane in silicone rubber with 

that in natural rubber, and found that in natural rubber the diffusion 

coefficient of an identiBl hydrocarbon is about 25 times lower and the 

activation energy is about 3 times higher. This means that the 

frictional resistance encountered by the diffusing molecule in natural 

rubber is higher and more co-operation of the polymer segments is 

necessary (g = 20) for penetrant translation. This again emphasizes 

the ease of segmental rotation in silicone rubber. 

The heat of solution term, ~H l' in Table 6.7 is not important so n 

as far as molecular motions are concerned. As mentioned in Section 6.1 

it is dependent essentially on the size of the penetrant molecule, when 

expressed per mole , since it consists mainly of the heat of liquefaction. 

The heat of solution per CH
2 

unit from Table 6.7 in fact works out to be 

roughly constant, and is about - 1.3 kcals. 

The DO value in the last column of Table 6.7 has already been 

described primarily as an entropy of activation term. Log DO is in 

fact directly related to the degrees of freedom g in the zone theory. 

DO is seen to increase with larger penetrant size. This would be 

expected as larger penetJ'''''nt molecules require greater disturbance of 

the surrounding molecules which have to rearrange to permit diffusion 

to take place. 
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6.7. Styrene-butad~e-styrene 3-block copolymer. 

The styrene-butadiene-styrene 3-block copolymer, as the name 

suggests, consists of a block of polybutadiene chain terminated at each 

end by closely identical polystyrene blockS. This copolymer, referred to 

as S-B-S, exhibits the uni'l'le property of being rubbery at room 

temperature and thermoplastic at higher temperatu:es. This is due to 

the vast difference in the glass transition temperatures (T ) between 
g 

these respective blocks. For the polystyrene component the T is about 
g 

100oC, and for the polybutadiene component, about -990 C. (87). From 

low angle X-ray diffraction (149) and electron micrography (138)studies, 

a two phase structure with the polystyrene phase immobilized and 

distributed in some form of order. (see J.ater notes) is indicated at least 

at room temperature. The glassy regions can be considered as impermeable 

to the penetrant molecules, so that transport only takes place in the 

amorphous ~hase. 

Our permeation experiments were performed on samples of S-B-S 

cast from two dif:erent solvents, toluene and methylene chloride. 

The effect of casting this polymer from different solvents on the 

morphology of the resulting film is discussed in detail elsewhere 

(87, 138), here it is sufficient to present the evidenced result, with 

little discussion on the mechanism of structure formation. 

The solubility parameters of the various components involved in the 

film-casting process are given in Table 6.8. 

Component 

Polystyrene 

Polybutadiene 

Toluene 

Methylene chloride 

TABLE 6.8 
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Since the enthalpy of mixing is expected to be proportional to the 

square of the difference in the solubility parameters, as given by 

(Eqn.6.3) 

AH = .U m 
the closer they are th~ better is the mixing process. 

Methylene chloride is therefore a better solvent for the poly-

styrene phase than the polybutadiene phase, whereas toluene is an equally 

good solvent for both components. 

The sample cast from toluene has been observed by low angle X-ray 

diffraction (LAXS) to possess a discreet phase separation with spherical 

polystyrene phases distributed on a cubic lattice structure (149). The 

sample cast from methylene chloride, hc"'ever, has been shown from the 

same evidenc~ to possess a less ordered structure with the polystyrene 

domains having a more diffused pattern of distribution, with some 

continuous polystyrene phase. These two types of morphology are 

represented in Fig.62. 

The diffusion results obtained for each of these samples are 

presented in Table 6.9. 

TABLE 6.9 

'Diffusion coefficient extra-\ 
-AHD 

0 polated to zero penetrant I 2D -1 
co~cen!ljation at 3O

o
C. I K clls/ cm BOC 

Sample Cm sec mole 

x 1C? 
i 

Cast from toluene 5.55 I 7.65 0.210 

107 
j 

Cast from CH2 c1
2 3.89 x 110•60 14.13 

The complete Arrhenius plots for the diffusion coefficients (extra-

polated to zero concentration using Eqn. 6.33) for both these samples are 

shown in Fig.59. 

To interpret these results, and the difference between the two 

samples varying only in morphology, it is necessary to assume that the 
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polystyrene domains act as geometrical obstructions in the path of the 

diffusing molecules, and introducing a structure far.tor, k, which can 

be worked out quantitatively if the "filler" (polystyrene) particles are 

assumed to be arranged in some form of model structure. 

In the case of zero so"'ption by the polystyrene 

6.45 

where D(S-B_S) is the diffusion coefficient in the copolymer 

DB is the diffusion coefficient in the pure polybutadiene 

phase alone. 

Various expressions derived for the anal~ous problem of electrical 

conductivity may be used to determine k. Thus Lord Rayleigh (50) and 

later Runge (151) considered the case of a cubic lattice of uniform 

spheres for obtaining an expression which may hold to high "filler" 

concentrations, 

1(2+vA-0.394 VA10/3») 

6.46 

whereas it was derived by Thirion (152, 153) that 

k = (1-vA)-1 (1 + v
A
/(1-v

4
2/'») 6.47 

Many other expressions, often more complicated, are known either 

for spheres (154), for cylinders (151), or for oblate or prolate ellipsoids, 

the former approaching the lamellae type of filler (155). 

Evidence (87, 149) has shown that o~~ toluene cast S-B-S film 

sample has a cubic lattice structure of spherical polystyrene domains. 

It would, therefore, be appropriate to apply the Rayleigh and Runge model, 

and determine a value for the structure factor k. 

The volume fraction for the polystyrene in the S-B-S sample used 

is 0.28 (sec section 4.5), substituting this in Eqn. 6.46, we obtain 

k = 0.78 

Now the diffusion coeffiCient of n-decane in the pure polybutadiene 

has not been obtained by us, but a good approximation may be derived from 

Newns and Park's "master plot" relating diffusion coefficients of a fixed 
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penetrant in various polymers to the T values of these polymers (69). 
g 

They derived a relationship (Eqn. 2.67) (D = Diffusion coefficient 
o 

~rAf~~ie to zero concentration at 25°C) 

T = C + g 1 
6.48 

where C has a small value of about 0.53 and ·"herefore does not 
3 

affect log D to any large extent. T therefore is related linearly 
0 g 

to (log D -1 Assuming (PBD) + C
3

) • T of pure poly-butadiene to be 
0 g 

-99°C quoted earlier, and that of silicone rubber (PDMS) to be .;.123OC 

(69), the ratio of D in PBN/D in PDMS can be worked out from Newns 
o ° 

and Parks' linear plot. This was in fact found to be 0.58. since we 

know the diffusion coefficient of n-decane in silicone rubber 

-6 2 -1 ° (1.07 x 10 cm sec at 30 C - see section 6.6), it can be reasonably 

assumed that the diffusion coefficient of n-decane in PBN D 0.58 x 1.07 

x 106 cm2 sec1 at 3OoC, which is 6.22 x 167 cm2 se~1. 

Thus D = 6.22 x 107 cm2 se~1 
B 

Applying Eqn. 6.45 therefore 

D(S_B-S) = 0.78 x 6.22 x 107 cm
2 

sec
1 

.2 -1 
cm sec 

-7 2 -1 From Table 6.9, the measured experimental value = 5.55 x 10 cm sec. 

The comparison ie good considering the approximations taken, and this 

seems further justification of the·~ubic lattice structure in the 

toluene cast sample, and of the non-sorption by the polystyrene phase. 

The result for the methylene Chloride cast sample seems best 

approximated by Bottcher's model of suspended ellipsoids (156). We 

have not actually calculated the value of D(S_B_S) directly from his 

model, but since the ratio of the D/DB value for Rayleigh's model and 

Bottcher's model is 0.38/0.25 (157). therefore 

-158-



Predicted D GH2Cl2 cast 0.25 0 66 
D toluene cast = 0-38 = • • 

The experimental ratio as given by Table 6.9 = §:~§ = 0.70 

A reasonable comparison can, therefore, be made. 

We have thus shown that the two phase structure in S-B-S can be 

represented reasonably well by assuming a cUbic-lattice distribution 

of the spherical polystyrene domains in the toluene-cast sample, and a 

suspended ellipsoid polystyrene structure in the methylene-chloride 

sample. FjJ~"5'7 seems to indicate either the collapse of the cubic lattice 

structure or the conversion of the ellipsoid structure to the cubic with 

increasing temperature. LAXS investigations of the sample at higher 

temperatures under the same physical conditions may reveal more about 

this phenomena. 

The a~tivation energy, ~HD' is observed to be higher in the more 

randomly distributed sample (Table 6.9.) This again suggests that 

the structure may be changing slightly with temperature. 
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6.8. Filled Systems. 

The use of silicone rubber industrially invariably includes the 

compounding of a filler, as the gum rubber is so weak in mechanical 

strength as to be useless in most applications. The interaction between 

fine silica fillers and sil~cone rubber is chemically and struct~ally 

a complicated process. It is not well understood despite much work 

done in this field (see for example, 4, 142, 158, 159). The sorption 

and diffusion data obtained in this work are discussed in the light of 

current theories (4,142) and it is hoped a few conclusions may be drawn 

from this. 

There are two main considerations in discussing the role of a rigid 

filler in the polym"er in a vapour permec.tion experiment. Firstly the 

actual solub~lity of the vapour in the filled system will be affected 

in a manner depending on: 

A. The preforential"adsorption of either the polymer molecules 

or the vapour molecules onto the filler surface. 

B. The existence of vacuoles or porosity in the filler particles 

which may absorb the vapour. 

Secondly, tre diffusion coefficient is dependent on a structural factor 

(see last section), which allows for the fact that the average diffusion 

path is increased by the presence of the filler particl~s because the 

localized direction of flow is not always normal to the geometrical 

cross-section of the membrane (159). This structural factor can be 

estimated from analagous solutions of conductivity in a hetereogeneous 

medium as discussed in Section 6.7. 

Sorption considerations. 

When fine silica such as "Aerosil 2419" (particle diameter approx. 

180Ao ) is mixed with silicone rubber on the mill, the filler particles 
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may experience two or perhaps three types of interactions with the 

silicone rubber. They may be attached "chemically" to the polymer 

chains, thus forming additional "cross-link" points, or the polymer 

can be physically absorbed on the filler surface, forming "coated 

silicas." (4). In addition it is conceivable that the filler particles 

themselves may form "clusters." 

For "cross-linked" silicas, the filler particles can be con­

~D" 
sidered as an independent phase ter the rubber phase, and the 

equilibrium sorption of a vapour by the whole system can be written 

S = Vr Sr + Vf Sf 6.49 

where Sr and Sf are the equilibrium sorption coefficient of the 

vapour in rubber and the filler. Vr an~ Vf are the respective volume 

fractions. 

If the polymer completely "wets" the filler surface, i.e. for 

"coated silicas," the filler particles may preferentially absorb the 

polymer rather than the penetrant, and Eqn. 6.49 then reduces to 

S = S V r r 6.50 

However, it is conceivable that absorption of the decane vapour 

may still teke place in the internal pores of the filler, which are not 

accessible to the siloxanp but may be to the penetrant molecules, which 

have smaller cross section areas. 

In our data, as expressed by Fig.63, a curious behaviour is observed 

which may be related to the porous sorption effect as mentioned above. 

At low temperatures (below 40°) there is little difference in the amount 

sorbed between the filled and unfilled samples. As the temperature is 

raised, the second model (Eqn. 6.50) is progressively more obeyed until 

ultimately the sorption of the vapour is expected to become proportional 

to the volume fraction of the rubber. If we envisage most of the silica 

as being "wetted" by the polymer, and only a small portion in the cross-

linked form, the total sorption will be equal to the sorption by the 
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rubber, the sorption by the small amount of "non-wetted" silica, ·and 

the sorption in the pores of the filler. If the sorption by the silica 

is strongly temperature dependent, and this is evidenced by the high 

heat of solution in the filled samplo (see soction 6.1), then Fig.63 

can be explained if the adsorption on the "free" filler varies from a 
I 

value higher than the rubber sorption coefficient at low temperatures, 

to a value approaching zero at temperatures higher than 5OoC. 

Diffusion parameters. 

The Arrhenius relationship is found to be reasonably obeyed in the 

filled samples (Fig. 57-58). From the Arrhenius plots, the usual 

parameters are derived and these are tabulated be10w (the unfilled 

sample is inserted for reference.) 

TABLE 6.10 

I 
I.b,Hsoln 

I, 
Silicone !AHD DO Diffusion c~eff~qient (30oC) 
rubber I ~~s:~,.sl 

I (Kcals! 2 -1 cm Rec 
sample I mole) 

cm sec 

Unfilled - 1;>.4 5.75 0.015 -6 1.12 x 10 

10 phr. I filled 
166 

(v =0.955~ - 20.2 

I 
7.4 0.229 1.12 x 

r I 
20 phr. t 

-6 (V =0.91) I - 20.2 ! d.8 2.158 1.04 x 10 r , 

It is quite significant that the diffusion coefficient of the filled 

sample is not reduced as would be predicted from structural considerations. 

On closer examination, however, we discover that the structure factor, k, 

(as defined in section 6.7), assuming a Rayleigh model (150), would work 

out to about 0.98 and 0.93 for the 10 phr and 20 phr filled samples 

respectively. Thus the diffusion coefficient should not be greatly 

reduced anyway. It is alsc possible that some filler particles may 

have "through" porous holes, which may shorten the diffusion path of 

the diffusing molecule. The "clustering" of the filler particles may 
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also create microstructures between particles equivalent to pores. 

The larger heat of solution in the filled systems is obviously 

linked to the sorption by the "free"silica as described above. That 

there is no difference between the 10 phr and 20 phr samples may be 

further evidence of the "clustering" behaviour of the silica particles 

as mentioned previously. 

The DO value describes the entropy of activation, and since it is 

seen to increase with filler content, it seems likely that the polymer 

segments become more restricted with increasingly filled samples, and 

this in turn is reflected by the higher activation energy of diffusion 

observed, :i. e. h~gher number of degrees of freedom is involved). 

There may have been an error in th~ evaluation for the activation 

energy of diffusion in the filled samples because of the "free" silica 

sorption effect described previously. At low temperatures some of the 

sorbed vapour which is sorbed onto these silicas may not particjpate in 

the diffusion, and the diffusion coefficient obtained thus gives some 

mean value between the diffusivity in the polymer phase and the zero 

diffusivity of the vapour absorbed on the filler. The overall measured 

diffusion c~efficient would be therefore smaller than the real value. 

Since this absorption on ~·he silica is shown to gradually disappear at 

higher temperatures, the diffusion coefficient then approaches the true 

value. The activation energy should, therefore, be lower than the 

measured value. This problem is, however, deemed not too serious, and 

the general picture of diffusion of n-decane in silica-filled silicone 

rubber remains as described. 
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6.9. Comparison of diffusion and viscoelastic relaxation parameters. 

Two parameters can be meaningfully used to correlate diffusion 

behaviour of a penetrant molecule in a polymer to the thermal chain 

mobility behaviour of polymer chains themselves. These are the 

friction coefficient, f~, w.d the related activation energy term. 

'" The monomeric friction coefficient, ~o' is defined as the measure 

of frietional resistance per monomer unit encountered by a chain segment 

in translatory motions. 

The friction coefficient, 6
1

, of the penetrant molecule in the 

polymer matrix, is given by the expression (Eqn. 1.1) 

6.50 

where D is the diffusion coefficient at vanishing concentration 
o 

of penetrant, and k is the Bolt~nann constant. 

Therefore, if a penetrant similar in size to the monomer unit is 

used, l,; 1 should be very near to £'0. Ferry (160) has in fact 

tabulated &1 values for various penetrants in the size range near to 

tha t of the monomer unit, and compared them favourably with & o. Thus 

he confirmed that the force experienced by a monomer unit in the "relaxing" 

polymer se~ent is almost exactly the same as that experienced by a 

[; penetrant molecule in pusr.ing its way through the polymer medium. 

can, therefore, be estimated from a knowledge of ~1' and diffusion 

may therefore be used to predict the time scale of transition zone of 

o 

viscoelastic properties. 

1rt'e 
From the. volume theory, t;; 0 may be expressed in the following manner: 

S · s:-_ ... ~ 
~nce \;, J.A...­

o m 

(where m is the mobility) 

and m = A exp (-B/f) 

therefore, log Go = const. + B/f 
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where B, f have been defined previously (Section 2.4). 

A similar expression may be derived for diffusion (49,55) 

log t1 = const. + Bd/f 6.52 

The ratio B/BJ can be determined from the measurement of the 

activation energies of relaAation and diffusion, since (6) 

where ~ is a shift 

In -T = B (1-

6.53 

factor and can be defined as 

1 ) 
fo 

Over a narrow temperature range 

6.55 

Bd is found to be usually smaller than B, and this means that the 

minimum hole size required for the translation of a penetrant molecule 

is smaller than that required for a polymer segment. Thus if ~'1 = Go 

and ~HD<~a' this suggests that more than one monomer unit isinvolved 

in a polymer relaxing segment. HYpothetically if we can increase the 

size linJa homologous series of penetrant until b.Rn-RI"= ~H , then the 
a 

ratio of ~1/&0 should approXimatetthe number of monomer units involved 

in one rearranging 8egment. 

In our data for silicone rubber the activation energy of viscoelastic 

relaxation was found to be 5.30 K cals/mole from the WLF shift procedure 

(Fig.64). The activation energy of diffusion of n-decane was found to 

be 5.15 K cals/mole. 

If we assume that this is near enough for unity, and further taking 

~ to be 8.9 x 109 (160), then "0 t: C' 0 
~1/ b o at 25 C works out to be about 7. 

Each rearangang segment in silicone rubber consists therefore of seven 

monomer units. The above assumptions need to be substituted by more 

data for hydrocarbons in between C
5 

and C10 and even higher ones, so 
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that a value of ~1 can be chosen which gives a AHD value which is a 

good match to the tlHa value. Nevertheless it is shown that from a 

combination of diffusion and mechanical data, an estimation of the size 

of the very popularly referred to "polymer segment" can be made. 

For the S-B-S polymer, the liH value was found to be 12 K cals/ 
a 

mole (87). Since our diffusion value for n-decane is 7.65 K cals/mole 

(Table 6.9), BiB is about 0.6, j The polymer segment involved in 

thermal motions appears to be therefore larger in size than the 

penetrant (n-decane) molecule. 
o " 

At 25 the ratio [,1/ ~ 0 works out to 

be about unity. This seems to indicate that the polybutadiene segment 

involved in its own relaxation is about 1 - 2 mono~er units in size. 

The value of 1; used to estimate the above ratio is the one quoted for 
o 

1,4 - polytutadiene with a cis:trans:vinyl ratio 43i50:7 (160), this 

value may not be completely true when applied to our polymer, and some 

errors may have been incurred. 

The activation energy (about 18 K cals/mole) measured from the loss 

peak at and near th2 glass-transition temperature (Fig. 46 , Chapter 5), 

of silicone rubber may be interpreted as follows. It is much higher 

than the Arrhenius activation energy measured at ambient temperature, 

due to restricted segment.~ motions (Section 6.5), and to a lesser degree 

the crystallisation of the silicone rubber at _50oC (163). The 

quantity corresponds in magnitude to that predicted by the free volume 

theory (Fig.55), the fact that it is larger may be due to the deviation 

of the true free volume parameters from the "universal" values, and the 

effect of crystallization. 
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6.10. Development of the Apparatus. 

The main problems facing the design of a permeation apparatus with 

the principles described for our method can be listed under the 

following headings: 

1. Light (photomultiplier) 

2. Temperature control 

3. Good vacuum 

4. Efficient transfer of penetrant 

5. Non-interference with electronics of counting instrument 

In our glass diffusion line (Chapter 3), we initially concentrated 

on 2 and 5, with the result that the apparatus performed well on 2, fair 

on 5 and 3, but poor on 1 and 4 (reasor.s given in Chapter 3). 

To improve 4, and 1, we designed the metal permeation cell 

(Chapter 4). This we achieved with some success, with 3 and 5 remaining 

good. However, we underestimated the rate of heat conductton along the 

metal walls of the cell, with the inevitable consequence that our 

temperature control became less precise, the temperature of one part 

of the system being affected by heat changes in another part (see 

Chapter 4, Section 2). Therefore, a third design (based on our metal 

cell design) becomes des~-,able which concerns mainly the elimination 

of problem 2 listed above. 

Since our major problem is the heat conducted between the active 

reservoir and the rolymer membrane (See Fig. 17 and 65), with the 

scintillator cell reasonably well thermally insulated by the metal-to-

glass seal, the solution lies in the search of a way to insulate the top part 

of the system thermally from the middle part. This must be done without 

affecting conditions 1, 3, 4, 5 listed above. One way in which this 

can be done would be to use a tough thin stainless steel tube to 

separate the top anc middle parts of the cell,as shown in Fig.65. Since 
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the amount of heat conducted is proportional to the cross-section area, 

this will be reduced greatly, and the remaining small amount of heat 

which may still manage to be conducted should be eliminated by efficient 

thermostating. 

It must be pointed ou~ that the problem of membrane distortion due 

to uneven pressure applied on two sides of the m8mbrane in a "normal" 

permeation experiment, should hot be one in our method, where there 

should be no pressure gradient whatsoever across the membrane. 
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Conclusions. 

We have shown that a simple, rapid and accurate method can be 

used to determine directly the self-diffusion coefficient D* of a 

penetrant in the polymer matriX; the design of the apparatus is 

to date not perfect but it can be readily further improved. The 

working of the method depends on the penetrant being also functionable 

as the solvent medium in a liquid scintillator mixture. This should 

impose no great limitation as many organic molecules can act as 

primary solvents for liquid scintillation counting (106). 

Theoretical definitions of various diffusion cpefficients have 

been illustrated by comparing diffusion coefficier.ts We obtained from 

sorption methods and our permeation experiment. From these comparisons 

it is possible to gather more information on the manner of swelling 

(i.e. isotropic or uni-directional), and the thermodynamic behaviour 

regarding penetrant activity etc. 

The concentration dependence of the diffusion coefficient was 

explained by the free volume concept, and a few "free volume parameters" 

have been estimated and interpreted accordingly. Barrer's zone theory 

w~s found to be a convenient way of describing the activation energy 

variation among different polymers, and a linear log DO versus 

relation was found to hold for all our data. 

The morphology of S-B-S block copolymers was looked at from the 

diffusion coeffici~nt variation, and from the assumptions of Rayleigh's 

and other hetereogeneous models used for conductivity, good comparisons 

were observed regarding the structural distributions of the styrene 

phases between our study and low angle X-ray diffraction evidence$. 

Silica filler-silicone rubber interaction, an up-to-date not 

fully comprehensible subject, was looked at from the sorption and 

diffusion data. The data could only be explained if sorption of decane 
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into the silica (pores) was assumed large at ambient temperatures and 

low at high temperatures. 

The free volume theory can be used to correlate diffusion data 

with dynamic-mechanically obtained data to yield new information on 

polymer chain mobility. TI.e length of the motional segment in the 

polymer can be estimated, and for silicone rubber this was estimated 

at 7 monomer units. Further work in this and other fields mentioned 

above should provide more fruitful contributions to present-day 

knowledge of molecular motion in and morphology of polymer systems. 
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