This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.Iboro.ac.uk/) under the following Creative Commons Licence conditions.

(c) creative

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY Attribution. You must attribute the work in the manner specified by the author or licensor

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer $\left.{ }^{[}\right]$

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

The Meatgrinder: an Efficient Current-Multiplying Inductive Energy Storage and Transfer Circuit

by
M G Pimperton B.Sc., AMIEE

A Doctoral Thesis
 Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy: of the Loughborough University of Technology.

December 1990

Supervisor: Dr V V Vadher Department of Electronic and Electrical Engineering

(C) by M G Pimperton 1990

Loughborough University
of Technology Library
Date $/ 10 / 91$
Alass
Acs 40040810

Abstract

The meatgrinder is a high-efficiency inductive energy storage and transfer circuit which may be used to supply high-current pulsed power requirements in applications such as electromagnetic propulsion. It overcomes the inherent 25\% efficiency limit when transferring energy between uncoupled inductors and simultaneously provides current multiplication.

An unloaded six-step demonstration circuit has been used to multiply current from 7A to 76A at an efficiency of 44%, and a single-step demonstration circuit has been used to multiply the current in an uncoupled load inductor from 10A to 30A, the efficiency of energy transfer being 31\%. Both circuits use power MOSFETs for switching.

These circuits have been used in conjunction with theoretical analysis and computer simulation to study the design and performance of the meatgrinder. Investigations have been carried out in order to confirm the basic theory, to clarify the details of circuit operation, and to provide the information necessary for future feasibility studies.

ACKNOWLEDGEMENTS

My thanks go to Professor I R Smith, my Director of Research, for making this work possible and for suggesting many improvements to the text of the thesis. My thanks also to my supervisor $D r$ V V Vadher for his guidance, encouragement and constructive appraisal of the thesis. I am very grateful also to Mr H R Stewardson, who provided much guidance in the initial stages of the research.

Assistance with equipment and measurements was provided by Mr J R Rippon and Mr A J Spencer, and Mr P Cherry produced some of the circuit diagrams. Thanks are due to Mr K Gregory for the use of his graph plotting programs. The assistance of the following members of the Department's mechanical workshop is also gratefully acknowledged: Mr P Barrington, Mr A Booton, Mr D Michelson and Mr G Wagg.

I am grateful to Mr p Senior for valuable technical discussions and for much-needed moral support.

For final production of the thesis, the computing, printing and copying facilities were provided by Campbell Scientific Limited.

My grateful thanks go to my wife Fiona, who laboured long and hard at the drawing board to mount and annotate the illustrations.

Finally, this research could not have been completed without the constant love and support of both my wife and friends at Herbert Street Independent Methodist Church.

This thesis is dedicated to my parents.

CONTENTS

Abstract i
Acknowledgements ii
Contents iv
List of Symbols xvii
CHAPTER 1 BACKGROUND TO RESEARCH 1
1.1 INTRODUCTION TO PULSED POWER 1
1.1.1 Definition 1
1.1.2 Applications 1
1.1.3 Important Factors in Pulsed Power 2
1.2 INDUCTIVE ENERGY STORAGE 4
1.3 THE MEATGRINDER 6
1.3.1 Important Features 6
1.3.2 Previous Work 9
1.4 AIMS OF RESEARCH 10
CHAPTER 2 COIL DESIGN AND CONSTRUCTION FOR A 12 SIX-STEP MEATGRINDER
2.1 SPECIFICATIONS 12
2.1.1 Number of Steps 12
2.1.2 Current and Current Multiplication 12
2.1.3 Coil Geometry 14
2.2 DESIGN FORMULAE 14
2.2.1 Meatgrinder 14
2.2.2 Inductance Calculations 17
2.3 DESIGN PROCEDURE 19
2.3.1 Notation for Total Inductance 19
2.3.2 Preliminaries 20
2.3.3 Calculation Sequence 22
2.3.4 Design Figures 24
2.4 PHYSICAL CONSTRUCTION OF THE MEATGRINDER 26
2.5 MEASUREMENTS 30
CHAPTER 3 CONTROL ELECTRONICS FOR THE SIX-STEP 36 MEATGRINDER
3.1 INTRODUCTION 36
3.2 TIMING CIRCUIT 36
3.2.1 Specification 36
3.2.2 Description of Operation 40
3.3 POWER CIRCUIT COMPONENTS 45
3.3.1 Switching Devices 45
3.3.2 Voltage Clamp Devices 47
3.3.3 Blocking Diodes 49
3.3.4 Power Supply 50
3.3.5 Mounting 50
3.4 INTERFACE CIRCUIT 51
3.4.1 Specification 51
3.4.2 Description of Operation 51
CHAPTER 4 DISCUSSION OF EXPERTMENTAX RESULTS 54 FROM THE SIX-STEP MEATGRINDER
4.1 EXPERIMENTAL PROCEDURE 54
4.1.1 Apparatus 54
4.1.2 Steps Taken to Reduce Noise 54
4.2 VERIFICATION OF MEATGRINDER PRINCIPLE 61
4.3 EFFICIENCY 61
4.3.1 Comparison With Predicted 61
Performance
4.3.2 Effect of Resistance 62
4.3.3 Transfer Times and Switch Voltages 75
4.4 VOLTAGES ACROSS IN-CIRCUIT INDUCTORS 97
4.4.1 Theory 97
4.4.2 Six-Step Circuit Waveforms 106
4.4.3 Possible Breakdown of Blocking 110 Diodes
4.4.4 Terminology 110
CHAPTER 5 ANALYSIS OF THE EFFECTS OF 112
TRANSFORMER ACTION CLAMPING
5.1 INTRODUCTION 112
5.2 EXTERNAL INDUCED VOLTAGES WITHOUT CLAMPING 112
5.2.1 Theory 112
5.2.2 Verification 116
5.3 INVESTIGATION OF EXTERNAL TRANSFORMER 116
ACTION CLAMPING
5.3.1 Introduction 116
5.3.2 Algebraic Analysis 117
5.3.3 Computer Simulation 135
5.3.4 Experimental Results 136
5.4 INVESTIGATION OF INTERNAL TRANSFORMER 139
ACTION CLAMPING
5.4.1 Simulation of Negative ITAC 139
5.4.2 Positive ITAC 147
5.5 EFFECT OF TRANSFORMER ACTION CLAMPING ON 149 TRANSFER TIME
5.5.1 Analysis for ETAC 149
5.5.2 Principle 153
5.5.3 Simulation Results 155
5.5.4 Conclusion 156
5.6 DESIGN IMPLICATIONS OF TRANSFORMER ACTION 158CLAMPING
5.6.1 Introduction 158
5.6.2 ETAC 158
5.6.3 ITAC 162
CHAPTER 6 OPTIMISATION OF MEATGRINDER DESIGNS 164
6.1 INTRODUCTION 164
6.2 ANALYSIS OF UNLOADED SINGLE-STEP 165
MEATGRINDER
6.3 ANALYSIS OF LOADED SINGLE-STEP MEATGRINDER 167
6.4 ANALYSIS OF SINGLE-STEP MEATGRINDER WITH 175 DECOMPRESSION
6.4.1 Introduction 175
6.4.2 Mathematical Analysis 176
6.5 EXPERIMENTAL RESULTS FOR A SINGLE-STEP 180 MEATGRINDER
6.5.1 Objective 180
6.5.2 Coil Design 182
6.5.3 Other Circuit Components 187
6.5.4 Results 189
6.5.5 Comments 194
6.6 OPTIMISATION STUDY FOR A TWO-STEP 197 MEATGRINDER
6.6.1 Introduction 197
6.6.2 Problem to be Studied 198
6.6.3 Computer Program 201
6.6.4 Results 204
6.6.5 Comments 211
CHAPTER 7 CONCLUSIONS 212
7.1 ACHIEVEMENTS OF THE RESEARCH 212
7.2 SUGGESTIONS FOR FURTHER WORK 215
7.2.1 Optimisation 215
7.2.2 Reverse Operation 217
7.2.3 Reduction of Induced Voltages 220
7.2.4 Secondary Topics 221
7.3 THE FUTURE OF THE MEATGRINDER 222
REFERENCES 224
APPENDIX A ENERGY TRANSFER BETWEEN UNCOUPLED 235 INDUCTANCES
APPENDIX B ELECTRONIC CIRCUIT DETAILS 238
B. 1 INTRODUCTION 238
B. 2 TIMING CIRCUIT 238
B.2.1 Introduction 238
B.2.2 Stored Switching Sequence 244
B.2.3 Description of Operation 249
B. 3 INTERFACE CIRCUIT 256
APPENDIX C COMPUTER SIMUIATION USING PSPICE 259
C. 1 INTRODUCTION 259
C. 2 METHOD OF USE 260
C.2.1 Input 260
C.2.2 Output 261
C. 3 USES IN RESEARCH 261
C. 4 RUN TIME 262
C.4.1 Use of Initial Condition Facility 263
C. 5 EXAMPLE INPUT FILES 268
C.5.1 Idealised Six-Step Meatgrinder 268 Using Initial Condition Technique
C.5.2 Six-Step Meatgrinder With MOSFET 272 and Diode Models
C.5.3 Two-Step Meatgrinder Used in 276 Investigation of ETAC
C.5.4 Two-Step Meatgrinder Used in 277
Investigation of ITAC
APPENDIX D EFFECT OF UNCOUPLED LOAD ON 279 COUPLING COEFFICIENT
APPENDIX E FORTRAN PROGRAMS USED IN THE 281 RESEARCH
E. 1 IDEAL MEATGRINDER CALCULATIONS 281
E. 2 TWO-STEP MEATGRINDER EFFICIENCY 321
INVESTIGATION
APPENDIX F USE OF COMPUTER ALGEBRA PACKAGE 330
F. 1 INTRODUCTION 330
F. 2 EVALUATION BY HAND 331
F. 3 USE OF "REDUCE" COMPUTER PACKAGE 334
APPENDIX G CONFERENCE PUBLICATION 338

LIST OF ILLUSTRATIONS

1.1 Idealised Meatgrinder Load Current 8 Waveform
2.1 Six-Step Meatgrinder 13
2.2 Basic Meatgrinder Action 15
2.3 Calculation of Coupling Coefficient 18
2.4 Coil Winding Rig (Photograph) 26
2.5 Completed Coil (Photograph) 28
3.1 Operation of Two-Step Meatgrinder 37
3.2 Timing Diagram: Two-Step Meatgrinder 39
3.3 Timing Diagram: Six-Step Meatgrinder 41
3.4 Timing circuit (Photograph) 42
3.5 Timing Circuit Block Diagram 43
3.6 Circuit Diagram: Six-Step Meatgrinder 46
3.7 Clamping Characteristic of MOV 48
3.8 Internal Diode in MOSFET 49
3.9 Interface Circuit (Photograph) 52
3.10 Interface Circuit Functional Diagram 53
4.1 Experimental Apparatus (Photograph) 55
4.2 Noise Generated at Turn-Off of TRI 57
Current
4.3 Corresponding Voltage Across TR1 at 57 Turn-Off
4.4 Reduction of Noise by Slowing Down 58 Turn-Off of TR1
4.5 Current in L_{7} Showing Current 59 Multiplication
4.6 Current in L_{7} Showing Pulse Compression 60
4.7 Simulated L_{7} Current Waveform 64
4.8 Current in TR2 65
4.9 Current in TR3 66
4.10 Voltage Across L 67
4.11 Fifth and Sixth Step Currents With Low 70Coil Resistance
4.12 Fifth and Sixth Step Currents - Idealised 71 Circuit
4.13 Increased Multiplication With Lower 72 Initial Current
4.14 Single-Step Meatgrinder With Resistance 74
4.15 Decay of Current in Inductor 76
4.16 Equivalent Circuit of Single-step 77
Meatgrinder
4.17 Waveforms for Second Transfer 81
4.18 Voltage Waveforms 84
4.19 Current Waveforms 85
4.20 Simulated Voltage Waveforms 86
4.21 Simulated Current Waveforms 88
4.22 TRI Voltage and Current With 200V Device 91 for TR1
4.23 Effect of Making TR2 and TR3 500V Devices 93
4.24 Simulated Voltage Waveforms With 500V 94 Devices for TR2 and TR3
4.25 Switch Voltages During Fifth and Sixth 96 Transfers
4.26 Single-Step Meatgrinder With Uncoupled 97
Load
4.27 Three-Section Meatgrinder 100
4.28 Four-Section Meatgrinder 102
4.29 Simulated In-Circuit Inductance Voltages 104
4.30 Reverse Biasing of Blocking Diode 107
4.31 Experimental Waveforms: In-Circuit 108 Inductance Voltages
4.32 Simulated Voltage at Junction of L_{2} and 109 L_{3} Including Parasitic Effects
5.1 Meatgrinder Circuit Showing External 113
Induced Voltage
5.2 Equivalent Circuit of Figure 5.1 114
5.3 Two-Step Meatgrinder With Notation as 117Used for ETAC Analysis
5.4 Typical Waveforms for Second Transfer of 119
Two-Step Meatgrinder
5.5 Current Flow During Phase One of ETAC 120
5.6 Simulated Waveforms for ETAC 128
Investigation: $V_{S 3}=175.4 \mathrm{~V}$
5.7 Simulated Waveforms for ETAC 129
Investigation: $\mathrm{V}_{53}=100.0 \mathrm{~V}$
5.8 Simulated Waveforms for ETAC 130
Investigation: $V_{S_{3}}=50.0 \mathrm{~V}$
5.9 Simulated Waveforms From Third Energy 131
Transfer of Six-Step Meatgrinder
5.10 Current Flow During Phase Two of ETAC 133
5.11 Prevention of ETAC During Fifth Step of 137 Six-Step Meatgrinder
5.12 Simulated Two-Step Meatgrinder for 139 Investigation of ITAC
5.13 Simulated Two-Step Meatgrinder - No ITAC 141
5.14 Simulated Two-Step Meatgrinder With ITAC 143
5.15 Simualted Two-Step Meatgrinder With ITAC 145 and Incorrect Timing for Second Transfer
5.16 Clamp Current Paths Related to TAC 148
5.17 Variation of Transfer Time Ratio 157

- Simulation of ETAC
5.18 Variation of Transfer Time Ratio 157
- Simulation of ITAC
5.19 Compound Switch to Prevent ETAC 159
5.20 Meatgrinder With Series Switches 161
5.21 Blocking Diode Protection 163
6.1 Operation of Unloaded Single-Step 166
Meatgrinder
6.2 Single-Step Meatgrinder with Uncoupled 167 Load
6.3 Example Showing Variation of Efficiency 170 With $L_{2} / L_{\text {LOAD }}$
6.4 Single-Step Transfer Efficiency at 172
Optimal Conditions (No Decompression)
6.5 Use of Decompression Switch 175
6.6 Effect of Decompression on Example of 178 Figure 6.3
6.7 Single-Step Transfer Efficiency at 179 Optimal Conditions (With Decompression)
6.8 Efficiency Values for Mult. $=3$, $k=0.9$, No 181 Decompression
6.9 Coils for Single-Step Meatgrinder 184 (Photograph)
6.10 Single-Step Meatgrinder With Load Coil 185 (Photograph)
6.11 Circuit Diagram for Single-Step 188
Meatgrinder
6.12 Waveforms for First Experiment 190
6.13 Current•Waveforms Without Additional Gate 191 Resistor
6.14 Waveforms Showing Non-Ideal Behaviour of 192 MOSFET
6.15 Waveforms for Second Experiment 195
6.16 Waveforms for Third Experiment 196
6.17 Loaded Two-Step Meatgrinder 199
6.18 Plots From Mgeff_01: First Test 205
6.19 Plots From Mgeff_01: Second Test 206
6.20 Plots From Mgeff_01: Third Test 207
6.21 Plots From Mgeff_01: Further Examination 209 of Third Test
6.22 Example of Optimum Condition in Two-Step 210 Meatgrinder
7.1 Reverse Operation of Meatgrinder 218
7.2 Inductance Matching by Reverse Operation 219 of Meatgrinder
A. 1 Energy Transfer Between Uncoupled 235 Inductors
B. 1 Circuit Diagram: Timing Circuit 239
B. 2 Circuit Diagram: Delay Extension Circuit 240
B. 3 Timing Circuit Ribbon Cable Connector: 242
Output to Interface Circuit
B. 4 Timing Circuit Ribbon Cable Connector: 243Output to Delay Extension Board
B. 5 Timing Circuit Ribbon Cable Connector: 244Input to Delay Extension Board
B. 6 Timing Diagram for EPROM Programming 245
B. 7 Ilustration of EPROM Output Latch 251 Operation
B. 8 Circuit Diagram: Interface circuit 255
B. 9 Interface Circuit Ribbon Cable Connector: 256
Input From Timing Circuit
B. 10 Interface Circuit Ribbon Cable Connector: 257
Output to Power Circuit
C. 1 PSpice Circuit for Idealised Six-Step 267 Meatgrinder
C. 2 PSpice Circuit for Six-Step Meatgrinder 271
With MOSFET and Diode Models
D. 1 Single-Step Meatgrinder With Uncoupled Load 279

LIST OF TABLES

1.1 Comparison of Energy Storage Techniques 5
2.1 Results of Initial Rough Calculations 21
2.2 Design Data for Windings 25
2.3 Expected Current Multiplication Using 25
Inductance Figures From Table 2.2
2.4 Inductance Matrix (Measured Values in 32 Microhenries)
2.5 Coupling Coefficient Matrix Derived From 33
Table 2.4
2.6 Resistance Matrix (Values in Ohms) 34
2.7 Inductance Remaining in Circuit at Each 34 Step
2.8 Revised Values for Expected Meatgrinder 35
Performance Based on Measured Coil
Parameters
4.1 Performance of Six-Step Meatgrinder 62
4.2 Effect of Changing Initial Current 73
4.3 Time Constants of Closed Loops 75
4.4 Transfer Details 82
4.5 Example Showing Conservation of Flux 100
Linkage in Circuit of Figure 4.27
5.1 Comparison of Results from Theoretical 132
Equations and Computer Simulation
5.2 Maximum Current in Simulated Two-Step 136
Meatgrinder
6.1 Winding Details 186
6.2 Inductance Figures 187
6.3 Efficiency Figures for Single-Step 194 Experiments
B. 1 Description of Timing Circuit ICs 241
B. 2 Extracts From Typical Contents Listing: 248IC17
B. 3 Extracts From Typical Contents Listing: 249 IC18
C. 1 Variation of Initial Current For Circuit 3 265

LIST OF PRINCIPAL SYMBOLS

This list contains symbols which are used frequently in the thesis. Many of these symbols are used with several different subscripts. Where a particular variation does not appear in this list, the specific quantities to which the subscripts refer are defined in the text.

Symbol	Definition	Unit
α	inductance ratio L_{1} / L_{2}	-
β	current multiplcation ${ }^{1}$	-
$\delta \mathrm{x}$	change in quantity x	units of x
η	efficiency	-
$\eta \mathrm{d}$	efficiency of decompression	-
η	meatgrinder step efficiency	-
η_{t}	total meatgrinder efficiency	-
$\eta{ }_{\text {td }}$	total meatgrinder efficiency with decompression	-
$\eta{ }_{u}$	efficiency penalty due to uncoupled load	-
σ	ratio of meatgrinder coil inductance to load inductance	-
a	mean coil radius	cm
b	coil width	cm
c	radial coil thickness	cm
i	instantaneous value of current	A
k	coupling coefficient	-
k^{\prime}	coupling coefficient with uncoupled	-
	load	
t	time	s
Φ	magnetic flux	Wb
C	capacitance	F
E	energy	J
I	current	A

Symbol	Definition	Unit
K	coupling coefficient	-
	(in PSpice input files)	
L	inductance	H
M	mutual inductance	H
N	number of turns	-
R	resistance	Ω
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	saturation drain-source resistance of mOSFET	Ω
V	voltage	v
$\mathrm{v}_{\text {sw }}$	voltage across opening switch	V
$\mathrm{v}_{\text {ind }}^{\text {in }}$	induced voltage across previously switched-out coil section	v
$\mathrm{v}_{\mathrm{o} / \mathrm{c}}$	total open-circuit voltage across previously switched-out coil section	v

CHAPTER ONE

BACKGROUND TO RESEARCH

1.1 INTRODUCTION TO PULSED POWER

1.1.1 Definition

Pulsed power generally refers to that area of technology which investigates the generation and application of short bursts of electrical power by means other than direct connection to a.c. or d.c. electrical sources.

The need for a pulsed power system arises when the current or voltage requirements of a load exceed the practical capabilities of available power sources. The solution to such problems can usually be divided into three parts [1,2]:
(a) Drawing the energy required from the source at a rate within the capability of the source.
(b) Storing the energy.
(c) Delivering the energy to the load at the required rate.

1.1.2 Applications

Systems generating instantaneous powers exceeding 1MW are in use or under development in fields such as fusion research, atomic particle research and defence [1,2]. Other applications include welding [3], lightning simulation [4] and fracturing of rock [5].

Work published in the literature concentrates on applications requiring currents of many thousands of amperes. It should be noted, however, that there could also be benefits in applying this technology at more modest current levels.

This could apply, for example, to a load requiring 50A in short bursts, which it draws from a lead-acid battery. Now the ampère-hour capacity of such batteries depends on the discharge rate. If, therefore, the required energy could be drawn from the battery at a lower current (and by implication over a longer period of time) then the battery would be able to supply the load for a longer time before becoming discharged. This could be achieved by interposing an energy storage and delivery circuit between the battery and the load, thus creating a pulsed power system. The system could draw energy from the battery over several milliseconds, the maximum current being restricted to 5A, for example, and deliver the energy to the load in microseconds, with the peak current being the required 50A. There would, of course, be penalties in terms of cost, complexity, size and weight, but this does not preclude such an application being viable in the future.

1.1.3 Important Factors In Pulsed Power

The design or investigation of a pulsed power system can be divided into two main parts. These are:
(a) the parameters which make up the performance specification of the system
(b) the components and techniques used to achieve the specification.

1.1.3.1 Performance

The performance specification is usually given in terms of the following major parameters:
(a) load current - up to megampères [6]
(b) load voltage - up to megavolts [7]
(c) risetime of load current or voltage - down to nanoseconds [8]
(d) efficiency, that is (energy delivered to load) / (energy drawn from source)
(e) pulse repetition rate - up to tens of kHz [9]. ...

It is also common to quote figures for energy or instantaneous power.

1.1.3.2 Components and Techniques

The list below indicates a selection of the areas to which attention is paid by workers in this field.

The primary sources of energy may be:
(a) a.c. electrical sources, such as a 3-phase supply from the mains or a dedicated synchronous generator
(b) d.c. electrical sources, such as lead-acid batteries
(c) explosives, propellants or plasmas [1,10].

Energy may be stored:
(a) by charging a capacitor ($\mathrm{E}=\frac{2}{2} \mathrm{CV}^{2}$)
(b) in the form of the magnetic field of an inductor ($E=\frac{1}{2} \mathrm{LI}^{2}$)
(c) as kinetic energy in a flywheel ($E=\frac{1}{2} I \omega$).

Energy delivery requires switching to reconfigure the circuit appropriately. Devices used to achieve this include:
(a) solid-state semiconductor devices, such as GTOs [9]
(b) explosively-operated opening switches [11,12,13]
(c) spark gaps [9]
(d) various types of gas-filled tubes, such as thyratrons or crossatrons [9]
(e) saturable inductors (magnetic switches) [14].

The technology of pulsed power can be thought of as being divided into energy supply, energy storage and energy delivery. It is important to remember, however, that such divisions are purely arbitrary. This is because a capacitor bank, for example, whilst obviously being a means of storage, is often regarded as the energy source for a system. Or, as another example, an explosive flux compressor [1] may have two sources of energy: a capacitor bank to charge the storage inductor and the chemical energy of the explosive to effect the flux compression and deliver the energy to the load.

Results from pulsed power research are published extensively, and there are many papers available on each of the topics mentioned above. In addition, specialist conferences such as the American IEEE Pulsed Power Conference are held at regular intervals. The proceedings of these conferences often include review papers $[2,9,15,16]$.

1.2 INDUCTIVE ENERGY STORAGE

Inductors offer high energy density (measured in Jkg^{-1} or Jm^{-3}). Their resistance can be reduced by cooling (although this may
not always be beneficial [1]). For some applications they may offer the best compromise between energy density, speed and efficiency [17].

When compared to capacitors the energy density of inductors is particularly attractive, as shown in table 1.1 [2]. Zucker [18] compared inductive and capacitive systems by regarding them as transmission lines subject to the same electric field limit. His analysis shows that, in such cases, inductive systems are inherently superior for power density (and by implication energy density).

STORAGE MODE/ DEVICE TYPE	ENERGY DENSITY		TIME SCALE TO DELIVER TO LOAD
	$\mathrm{Jm}^{-3} \times 10^{6}$	Jkg^{-1}	
ELECTROSTATIC Capacitors	0.01-1	300-500	μs
MAGNETIC/INDUCTORS			
Conventional	3-5		
Cryogenic	10-30	$10^{2}-10^{3}$	ms to $\mu \mathrm{s}$
Superconducting	20-40		
CHEMICAL			
Batteries	2000	10^{6}	minutes
Explosives	6000	5×10^{6}	$\mu \mathrm{s}$
INERTIAL			
Flywheel	400	$10^{4}-10^{5}$	seconds

Table 1.1 Comparison of Energy Storage Techniques
(1981 figures)

However, whereas a capacitor can be discharged by closing a switch onto a load, energy can only be transferred from an inductor by interrupting the current with an opening switch. This is a major problem, and much research is underway both to increase switch capabilities and to find circuit techniques which reduce the duty on the switches. The meatgrinder [20] is one such technique.

1.3 THE MEATGRINDER

1.3.1 Important Features

1.3.1.1 Efficiency

Energy compression theory $[19,20]$ shows that for an energy transfer process to be 100% efficient it must either employ complementary forms of energy or be continuous and incremental.
"Complementary" means, for example, electromagnetic (inductive) and electrostatic (capacitive) energy. Thus when considering energy transfer between uncoupled inductors the 25% efficiency limit (see Appendix A) can theoretically be removed by using an intermediate capacitor. The disadvantage of this method is the size of the capacitor required [21]. Other schemes using kinetic energy as the complementary form have been suggested, but they too suffer from practical problems [17].

The most well-known continuous energy transfer system is the whip [19]. Its behaviour inspired Zucker [20,23], and later Wipf [24], to propose an electromagnetic equivalent. Zucker named his circuit the meatgrinder. Legentil and Rioux $[13,21]$
had already shown the benefit of incremental processes and performed preliminary experiments.

Zucker $[20,23]$ showed that a meatgrinder with an infinite number of coil sections would be 100% efficient when used to transfer energy to an uncoupled load inductor. Thus it was expected that practical circuits with very high efficiencies could be designed.

Lototskii [25] has proposed an alternative high-efficiency inductive energy-transfer circuit. It too aims to provide current multiplication and to transfer energy to uncoupled loads at efficiencies greater than 25%. The circuit appears to consist of several strings of series-connected inductors, the strings being connected in parallel with the load sequentially. The description of operation, however, is not particularly clear and Lototskii states that mutual inductance is a hindrance to the operation of his circuit rather than a help. The paper contains no experimental results and a recent literature search did not reveal any follow-up publications.

1.3.1.2. Current Multiplication

When open-circuiting one inductor into another in the "conventional" manner, the current falls (see Appendix A). In contrast, the basic meatgrinder action always leads to an increase in current for any non-zero coupling coefficient between the coil sections [20].

Transformers may be used to produce this type of current multiplication by first establishing a current in the primary winding with the secondary winding open-circuit, then shortcircuiting the secondary winding and immediately open-circuiting
the primary winding [11]. However, with an uncoupled inductive load this technique is again subject to the 25% efficiency limit [26], the energy being lost in the primary side opening switch.

1.3.1.3 Pulse Compression

The essence of pulsed power is that energy is delivered to the load much faster than it is drawn from the source. In the meatgrinder, after a relatively slow charge, this pulse compression occurs simultaneously with the current multiplication as the sequential switching proceeds. This means that the load current waveform resembles that shown in figure 1.1 .

Load Current

Figure 1.1 Idealised Meatgrinder Load Current Waveform

In figure 1.1:

and hence it follows that if

$$
\begin{array}{ll}
\text { Initial energy } & =\mathrm{E}_{1} \\
\text { Final energy } & =\mathrm{E}_{2}
\end{array}
$$

then

$$
\text { Efficiency } \quad=\mathrm{E}_{2} / \mathrm{E}_{1}=\eta
$$

and therefore

Power multiplication $=\frac{\mathrm{E}_{2}}{\mathrm{t}_{2}} / \begin{aligned} & \mathrm{E} \\ & \mathrm{t}_{1} \\ & \\ & t_{2}\end{aligned}$

1.3.2 Previous Work

Since Zucker and Long first proposed the meatgrinder, they and their co-workers at the Energy Compression Research Corporation (ECRC), California, have published several papers on the topic $[20,23,26-33,35-38]$. The papers have recently begun to acknowledge the work of Legentil and Rioux [13,21,22]. Their work in the early 1970 addressed several of the issues currently being studied.

The meatgrinder principle was first demonstrated with a fourstep loaded circuit which multiplied current from 15A to 45A at
an efficiency of 47.5% [27]. Experiments with a single-step meatgrinder [28] showed that the theory was equally applicable at high currents.

Theoretical designs of meatgrinders for use with electromagnetic (EM) guns have been published [30-33]. These designs include multi-step meatgrinders which provide current multiplication and constant current during launching, and a single-step meatgrinder which works in reverse to recover the energy left in the gun barrel. The energy recovery proposal has a smaller component count than the technique proposed by Ness and Chu [34]. Recent experiments [33] have confirmed the advantage of a single-step meatgrinder over a conventional technique which uses no switching.

A further recent design [38] uses a capacitor to eliminate the opening switch in a single-step circuit. The objective of this is to make "lost" energy recoverable, as proposed by Rioux [13].

Meatgrinders have also been proposed for use with explosive generators [35] and resistive loads such as radar or lasers requiring a pulse of constant current $[30,31]$.

1.4 AIMS OF RESEARCH

Work on the meatgrinder in the UK was first started at LUT. The initial aim of the research was simply to gain familiarity with the concepts and techniques involved. It was recognised that this could best be done by building a working meatgrinder, which would serve both to confirm existing results and to fill in any gaps as regards characterising the circuit behaviour.

This initial work would then pave the way for examining the potential of the meatgrinder in existing proposed applications, and equally in novel applications yet to emerge.

CHAPIER TTWO

COIL DESIGN AND CONSTRUCTION FOR A SIX-STEP MEATGRINDER

2.1 SPECIFICATIONS

In designing the experimental meatgrinder, the sole objective was to produce a working circuit which would allow the various principles to be investigated. This was the only basis on which the design parameters were chosen.

2.1.1 Number of Steps

This was fixed at six, i.e. seven meatgrinder coil sections. This number is, of course, somewhat artificial; normally the objective would be to keep the circuit as simple as possible by achieving the required performance in the minimum number of steps.

The circuit to be investigated is therefore as shown in figure 2.1. The last coil section L_{7} acts as the load, which in this case is magnetically coupled to the meatgrinder coil. (See Chapter 6 for a discussion of the effect of an uncoupled load.)

2.1.2 Current and Current Multiplication

An arbitrary target of ten was chosen for the overall current multiplication. A current limit of l00A was chosen so that semiconductor switches could be used.

FIGURE 2.1 SIX-STEP MEATGRINDER CIRCUIT

2.1.3 Coil Geometry

It was decided to wind the coil as a continuous spiral of copper strip, with appropriate tappings to divide it into the seven sections. The spiral strip construction has a number of advantages as it offers low resistance (due to the large crosssectional area of the copper) and tight magnetic coupling.

A potential disadvantage of the spiral geometry is that it does not confine flux. This means, firstly, that the inductance can be degraded by eddy currents induced in nearby metalwork and, secondly, that the coil can become a source of electromagnetic interference (EMI). For the purposes of this investigation, however, these problems are not particularly important.

2.2 DESIGN FORMULAE

2.2.1 Meatgrinder

Figure 2.2 shows the operation of a single meatgrinder step, in which it is assumed that winding resistance is negligible and that the switches are ideal (i.e., they have zero on-state resistance, infinite off-state resistance and switching between the two states occurs instantaneously). In figure 2.2(a) the initial current I_{1} is established in the meatgrinder. Closure of S_{2} (figure 2.2(b)) has no effect because the current is constant and there is therefore no voltage in the circuit.

Figure 2.2 Basic Meatgrinder Action

Figure 2.2(c) shows how opening S_{1} diverts the current into S_{2}, thus transferring energy from L_{1} to L_{2} via the mutual inductance M. When the transfer is complete the ratio of the final and initial currents is [23], by flux linkage conservation considerations:

$$
\begin{equation*}
\frac{I_{2}}{I_{1}}=\frac{L_{2}+M}{L_{2}} \tag{2.1}
\end{equation*}
$$

If the initial and final magnetically stored energies are respectively E_{1} and E_{2} then

$$
E_{1}=\frac{1}{2}\left(L_{1}+L_{2}+2 M\right) I_{1}^{2}
$$

and

$$
E_{2}=\frac{2}{2} L_{2} I_{2}^{2}
$$

Substituting for I_{2} from equation (2.1) gives the efficiency of the energy transfer (η) as

$$
\begin{equation*}
\eta=\frac{L_{2}^{2}+M^{2}+2 M L_{2}}{L_{2}^{2}+L_{1} L_{2}+2 M L_{2}} \tag{2.2}
\end{equation*}
$$

On substituting $M=k \sqrt{L_{1} L_{2}}$ (where k is the coupling coefficient) and dividing by L_{2} throughout, equation (2.2) becomes

$$
\begin{equation*}
\eta=\frac{1+k^{2} \alpha+2 \sqrt[3]{\alpha}}{1+\alpha+2 k \alpha}=\frac{(1+k \sqrt{\alpha})^{2}}{1+\alpha+2 k^{\prime} \alpha} \tag{2.3}
\end{equation*}
$$

where $\alpha=L_{1} / L_{2}$.

2.2.2 Inductance Calculations

The coil is designed from a formula given by Grover [39]. For a circular coil with a rectangular cross-section the inductance is

$$
\begin{equation*}
\mathrm{L}=0.019739(2 \mathrm{a} / \mathrm{b}) \mathrm{N}^{2} \mathrm{aK} \text { ' } \tag{2.4}
\end{equation*}
$$

where

- a is the mean coil radius in cm
- b is the coil width in cm
- N is the number of turns
- K' is a tabulated correction factor accounting for end and insulation effects (function of a, b and the radial coil thickness c).

Note: Grover also gives a formula specifically for spirals of strip. However, this is not applicable in this case because it refers to coils whose width does not exceed their radial thickness.

The coupling coefficient between coil sections can be obtained to a good approximation by considering the ratio of the crosssectional areas (see figure 2.3, in which the spacing between coils is exaggerated for clarity).

The area common to both coils is

$$
A_{1}=\pi r_{1}^{2}
$$

and the area enclosed by coil 2 is

$$
A_{2}=\pi r_{2}^{2}
$$

The coupling coefficient is then approximately

$$
\begin{equation*}
k=A_{1} / A_{2} \tag{2.5}
\end{equation*}
$$

Figure 2.3 Calculation of Coupling Coefficient

This method is only approximate as it takes no account of any flux which links the whole of one coil but only part of the other; it also yields different results according to whether the coil radius used is the minimum, mean or maximum value. These differences are small, however, provided that the radial thickness is small in comparison to the radius of the coil.

2.3 DESIGN PROCEDURE

2.3.1 Notation for Total Inductance

In this work it is often necessary to calculate the total inductance of two or more inductors connected in a series-aiding configuration. These values are derived from the expression

$$
\left[\begin{array}{c}
\text { total } \\
\text { inductance }
\end{array}\right]=\left[\begin{array}{c}
\text { sum of } \\
\text { self-inductances }
\end{array}\right]+2\left[\begin{array}{c}
\text { sum of mutual } \\
\text { inductances }
\end{array}\right]
$$

In this thesis, total inductances are denoted as follows:

The total inductance of two inductors L_{a} and L_{b} in series is denoted as $L_{a b}$. Where more than two inductors are connected in series a hyphen is used in the notation to separate the first and last inductors in the chain. Thus the total inductance of four inductors L_{c}, L_{d}, L_{e} and L_{f} in series is denoted L_{c-f}.

Coupling coefficients are denoted in a similar way. For example, the coefficient of coupling between L_{g} and the total inductance L_{h-j} is denoted by $k_{g(h-j)}$.

2.3.2 Preliminaries

2.3.2.1 Initial Calculations

The objective of these calculations is to check that the figures being considered for parameters such as the inductance and efficiency of the meatgrinder are of the right order of magnitude.

The first step is to make the simplifying assumption that for each switching step, the coupling coefficient between the coil section to be switched out and the rest of the coil remaining in circuit is 0.8. It is also assumed that each step has the same efficiency η_{s} so that

$$
\eta_{t}=\left(\eta_{s}\right)^{6} \quad \text { (overall meatgrinder efficiency) }
$$

If η_{t} is arbitrarily chosen to be 70%, then η_{s} is 94.2%.
The final energy is calculated from the initial energy (arbitrarily set at 50 mJ) and the overall efficiency (70\%). Since the final current (100A) flows only in the last coil section L_{7}, the inductance can be calculated from $E=\frac{1}{2} L I$ and is found to be $7 \mu \mathrm{H}$. By applying equation (2.3) to the sixth step, the inductance of L_{6} is then obtained as $2.7 \mu \mathrm{H}$.

Since k_{67} is known to be 0.8 , the total inductance L_{67} can be calculated, and since the step efficiency is known the energy before the sixth step can be determined. From these two values the current before the sixth step is found to be 66.9A.

Repeating these stages for steps 5, 4, 3, 2 and 1 yields the figures given in table 2.1. Although arrived at without reference to physical construction, the figures do serve to
indicate that the targets for current multiplication and efficiency can be reached.

STEP	CURRENT (A)	ENERGY (mJ)	INDUCTANCE SWITCHED OUT $(\mu \mathrm{H})$	INDUCTANCE REMAINING $(\mu \mathrm{H})$
-	7	50	-	2029
1	10	47	$\mathrm{~L}_{1}=327$	856
2	16	44	$\mathrm{~L}_{2}=138$	361
3	23	42	$\mathrm{~L}_{3}=58$	152
4	35	39	$\mathrm{~L}_{4}=26$	64
5	67	37	$\mathrm{~L}_{5}=6$	17
6	100	35	$\mathrm{~L}_{6}=63$	$\mathrm{~L}_{7}=7$

Table 2.1 Results of Initial Calculations (for each step $k=0.8$ and $\eta_{S}=94 \%$)

2.3.2.2 Choice of Coil Radius and Width

Equation (2.4) shows that increasing the radius reduces the number of turns required for a given inductance. Fewer turns leads to a reduction in radial thickness, and this reduced thickness is also a smaller proportion of the coil radius. The coupling coefficients between the coil sections are thereby increased.

The upper limit on the radius is determined by physical factors such as the method of construction of the coil former and winding of the coil. With this in mind, the inner radius was restricted to 20 cm .

The width of the coil was set at 10 cm , although it is recognised that this is not necessarily optimum in terms of minimising the coil resistance.

2.3.3 Calculation Sequence

After carrying out the initial calculations described above, the next step is to produce a physical coil design as follows:

2.3.3.1 Design of L_{7}

This is achieved simply by estimating, to the nearest whole number, the number of turns required to give an inductance of approximately $7 \mu \mathrm{H}$ (as indicated by the initial rough calculations). Equation (2.4) is then applied to find the actual inductance provided by this number of turns. This is $9.3 \mu \mathrm{H}$ from four turns.

2.3.3.2 Design of L_{6}

It was decided that L_{6} should consist of one turn, giving an inductance of $0.6 \mu \mathrm{H}$. This was in order to make the last switching step small, thereby maximising the efficiency (see equation (2.3)) and minimising the duty on the opening switch during the switching of a relatively high current. (The tradeoff in this decision is, of course, that the current multiplication falls. As described below, this is compensated for by higher multiplication in the fifth step.)

Having found the value of L_{6}, the value of k_{67} is calculated. This subsequently allows the efficiency to be found from equation (2.3). Finally the current before the sixth step (I_{6}) is calculated.

2.3.3.3 Design of Remaining Coil Sections

The design of the remaining sections is dealt with in the same way as that of the first section, the only difference being that the coupling coefficient calculation becomes longer.

As an example, consider the fifth step, where L_{5} is switched out to leave L_{6} and L_{7} in series as the inductance in circuit. To calculate the transfer efficiency, the coupling coefficient required is that between L_{5} and L_{67} (the series combination of L_{6} and L_{7}). In order to maintain a reasonable accuracy in the "ratio of areas" method, $k_{5(67)}$ is calculated by first finding k_{56} and k_{57} separately.

Now the total value of all three inductances is

$$
\begin{aligned}
L_{5-7} & =L_{5}+L_{6}+L_{7}+2\left(M_{56}+M_{57}+M_{67}\right) \\
& =L_{5}+L_{67}+2\left(M_{56}+M_{57}\right)
\end{aligned}
$$

which must be the same as

$$
L_{5-7}=L_{5}+L_{67}+2 M_{5(67)}
$$

$$
\begin{equation*}
M_{5(67)}=M_{56}+M_{57} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{5(67)}=\frac{k_{56}{\sqrt{L_{5} L_{6}}+k_{57} \sqrt{L_{5} L_{7}}}_{\sqrt{L_{5} L_{67}}} \text {. }}{\text { (6) }} \tag{2.7}
\end{equation*}
$$

2.3.4 Design Figures

Design data for the various winding sections are given in table 2.2. The current multiplication figures in table 2.3 show the expected performance without any coil or supply resistance in the circuit.

SECTION	INDUCTANCE ($\mu \mathrm{H}$)	TURNS	DC RESISTANCE (Ω)
	387.0 244.8 134.6 47.7 21.0 0.6 ------ 9.3	25 20 15 9 6 1 ---- 4	$\begin{aligned} & 0.058 \\ & 0.045 \\ & 0.033 \\ & 0.020 \\ & 0.013 \\ & 0.002 \end{aligned}$

Inner coil radius $=20 \mathrm{~cm}$
Total radial thickness $=1.1 \mathrm{~cm}$
Coil width $=10 \mathrm{~cm}$

Table 2.2 Design Data for Windings

STEP	CURRENT (A)
-	5
1	8
2	12
3	20
4	37
5	80
6	100

Table 2.3 Expected Current Multiplication Using Inductance Figures From Table 2.2

2.4 PHYSICAL CONSTRUCTION OF THE MEATGRINDER

The coil was wound by hand on the rig shown in figure 2.4. The inter-turn insulation is two layers of 10 cm -wide "Mylar", each layer being 0.1 mm thick. The Mylar was dispensed from the two upper reel holders and the copper from the bottom one. Doublesided adhesive tape was used at regular intervals to secure the Mylar to the copper.

Figure 2.4 Coil Winding Rig

The copper used was 0.1 mm thick and 8 cm wide. This width ensures that the insulation overlaps properly on both sides. The change in inductance caused by this change of width is only a few percent and is therefore not critical.

A former was constructed from "Darvic" insulating material and was suspended on the winding rig by means of temporary end plates.

Figure 2.5 shows the completed coil. Access to the junctions between sections is provided by copper strips secured to the main winding by silver-loaded heat-cured epoxy adhesive. These are brought out through slots in the end cheek and are clearly visible in figure $2.5(\mathrm{a})$. The end of L_{7} is brought through a slot in the former and connected to a copper ring (figure $2.5(\mathrm{~b})$) which provides a common return for the switches. The ring is mounted so as to present the minimum cross-sectional area to the flux passing through the centre of the former, and it also has a break at one point on the circumference. Both of these measures are designed to minimise eddy currents in the ring during transients.

Figure 2.5(a) Completed Coil - Front

Figure 2.5(b) Completed Coil - Rear

2.5 MEASUREMENTS

Resistance measurements were made at d.c. and inductance measurements at 1 kHz . Tables 2.4 to 2.8 show the results and the consequent changes in predicted performance. The method of construction used meant that the coil could not be wound very tightly, which explains the significantly lower coupling coefficients. Other figures are in reasonable agreement with the design values. (Because of the loose winding, only 22 turns were obtained on L_{1} instead of the design figure of 25 . The inductance is acceptable despite this, because of the increased radius.)

Table 2.4 shows that for the outer coils (which have the largest number of turns), the self-inductance is approximately proportional to the number of turns squared. For example, L_{1} has 22 turns whilst L has 20 , giving an approximate inductance ratio of $22^{2} / 20^{2}=1.2$ to 1 , compared with the ratio of measured inductances of $403 / 289=1.4$ to 1 . Coil section L_{3} follows the same approximate law, whereas for sections L_{4} to L_{7} the correlation is less good. This is probably due to a combination of measurement inaccuracy and the increasing significance of the factors a, b and K^{\prime} in equation (2.4).

The coupling coefficients given in table 2.5 might be expected to fit approximately with the "ratio of areas" method of calculation described earlier. Since it was not possible to measure the radius of individual coil sections (because of the cheeks on the coil former), it is, however, difficult to verify this. It is clear, though, that the coupling coefficients with very low values (e.g. $k_{16}=0.29, k_{17}=0.2$) are significantly lower than predicted by even a rough calculation. This can be attributed to measurement inaccuracy (which leads to the need for the adjustments referred to in table 2.5) and the
limitations of the "ratio of areas" method, which were described earlier. About half of the coupling coefficients fit with the " $k-k$ " coupling coefficient model described by Giorgi et al [28].

Table 2.7 lists the inductance remaining in circuit after each energy transfer. It is this inductance, together with the inductance of the section to be switched out, which is used to calculate the current multiplication and efficiency of a meatgrinder switching step.

The performance figures given in table 2.8 show how the expected current multiplication and efficiency are degraded by the lower coupling coefficients.

403	289	168	84	63	6	40
289	289	173	88	57	13	26
168	173	147	78	48	10	33
84	88	78	52	32	5	22
63	57	48	32	24	4	15
6	13	10	5	4	1	2
40	26	33	22	15	2	11

Dotted lines separate inductors which are switched out (L_{1} to $L_{6)}$ from the coupled load L_{7}.

Table 2.4 Inductance Matrix (Measured Values in $\mu \mathrm{H}$)
$\left[\begin{array}{ccccccc}- & 0.85 & 0.69 & 0.58 & 0.55 & 0.29 & 0.20 \\ 0.85 & - & 0.84 & 0.71 & 0.68 & 0.50 & 0.44 \\ 0.69 & 0.84 & - & 0.89 & 0.80 & 0.75 & 0.70 \\ 0.58 & 0.71 & 0.89 & - & 0.91 & 0.74 & 0.65 \\ 0.55 & 0.68 & 0.80 & 0.91 & - & 0.76 & 0.70 \\ 0.29 & 0.50 & 0.75 & 0.74 & 0.76 & - & 0.71 \\ 0.20 & 0.44 & 0.70 & 0.65 & 0.70 & 0.71 & -\end{array}\right]$

Note: Some of the values in this matrix had to be changed in order to make them physically consistent with the neighbouring figures. In other words, k must be greater than k_{13}, which must be greater than k_{14} and so on. The figures given are those used in computer simulations and give sufficiently accurate results. The inconsistencies are attributable to inaccuracy in measurements.

Table 2.5 Coupling Coefficient Matrix Derived From Table 2.4

Table 2.6 Resistance Matrix (Values in Ohms)

STEP	INDUCTANCE REMAINING IN CIRCUIT $\quad(\mu \mathrm{H})$
-	$\mathrm{L}_{1-7}=3390$
1	$\mathrm{~L}_{2-7}=1721$
2	$\mathrm{~L}_{3-7}=718$
3	$\mathrm{~L}_{4-7}=244$
4	$\mathrm{~L}_{5-7}=77$
5	$\mathrm{~L}_{67}=18$
6	$\mathrm{~L}_{7}=11$

Table 2.7 Inductance Remaining in Circuit at Each Step

PARAMETER	DESIGN VALUE	REVISED VALUE
I_{1}	5 A	7 A
I_{2}	8 A	9 A
I_{3}	12 A	14 A
I_{4}	20 A	23 A
I_{5}	37 A	40 A
I_{6}	80 A	80 A
I_{7}	100 A	100 A
η_{1}	98%	95%
η_{2}	98%	94%
η_{3}	98%	95%
η_{4}	98%	96%
η_{5}	98%	92%
η_{6}	99%	98%
η_{t}	89%	73%

Table 2.8 Revised Values for Expected Meatgrinder Performance Based on Measured Coil Parameters

5

CHAPTER THREE

CONTROL ELECTRONICS FOR THE SIX-STEP MEATGRINDER

3.1 INTRODUCTION

This Chapter describes the electronic components and circuits used to provide switching control for the six-step meatgrinder.

3.2 TIMING CIRCUIT

3.2.1 Specification

3.2.1.1 Principle

The operation of a two-step meatgrinder can be explained by reference to the circuit shown in figure 3.1, in which each step consists of a "make-before-break" switching sequence. The parameters to be specified are the timing of the "break" relative to the "make", and the timing of the start of one sequence relative to the end of the previous one.

Figure 3.1 (a) assumes that a constant current I_{1} has been established, so that S_{2} can be closed without affecting the circuit [20]. Once $S_{2}{ }^{2}$ is closed, S_{1} can be opened at any time, and since the objective is for the whole process to be rapid, s_{1} should be opened with minimum delay.

(a) Initial Current Established

(b) 52 Closed

(c) S1 Opened: First Transfer

(d) S3 Closed

(e) S2 Opened: Second Transfer

Figure 3.1 Operatlon of Two-Step Meatgrinder

If S_{3} is closed before the current in L_{1} has fallen to zero, i.e. before the energy transfer from $L_{1}{ }^{1}$ to L_{2} and L_{3} is complete, S_{2} will open immediately afterwards to initiate the second energy transfer into the final loop. However, current in the largest loop (flowing through L_{1}, L_{2} and L_{3}) will now also be forced to transfer to the final loop. Since this transfer involves a larger change of inductance it will be less efficient (see equation (2.3)) and so the final current in L_{3} will be less than predicted.

In order to avoid this situation, S_{3} should not be closed until the previous transfer is complete and the current I_{2} has stabilised. There should again be no unnecessary delay, in order that the total energy delivery time is minimised. In addition, any such delay would result in an energy loss due to the resistance present in all practical circuits.

Figure 3.2 is the resultant timing diagram for the two-step circuit. The switching time $t_{s w}$ is the same for both steps (assuming the same type of switch is used in each case). It is a fixed time, determined from the turn-on time of the switches, to ensure that the switch resistance is at its on-state value before the previous switch is opened.

The energy transfer time t delay must be optimised as described above. For a circuit with n steps there are clearly $n-1$ delays to be optimised.

3.2.1.2 Charging

A practical meatgrinder circuit must initially be connected to a current source. Referring to figure 2.1 , in which the source is labelled "Power Supply", the first task of the timing circuit is
to close S_{1} and to allow the current to build up to the required value before the first energy transfer is initiated. This process is called charging the coil.

$$
\begin{aligned}
& 0=\text { switch open } \\
& 1=\text { switch closed }
\end{aligned}
$$

Note: It has been stated that switches should only be closed when the current is constant. For the first sequence, however, this is not necessary because the use of a blocking diode in series with S_{2} (not shown in figure 2.1) prevents any unwanted current flow through S_{2}, even if this is closed whilst the current is still rising (see reference [27] and below).

Based on the above discussion, the timing diagram for a six-step meatgrinder is as shown in figure 3.3. The timing circuit must generate a two-state logic signal for each switch and also provide a means of manually varying the transfer delays so that they can be optimised.

3.2.2 Description of Operation

The physical layout of the timing circuit is shown in figure 3.4. The main board is on the left and the delay extension board on the right. The circuit is supplied from a lov d.c. regulated power supply and the isolated logic signal outputs are fed out via the ribbon cable connector on the lower edge of the main board.

A detailed circuit description is given in Appendix B; the following description is based on the block diagram of figure 3.5 .

Figure 3.3 Timing Diagram - Six-Step Meatgrinder

Figure 3.4 Timing Circuit

FIGURE 3.5 TIMING CIRCUIT BLOCK DIAGRAM

3.2.2.1 Manual Controls

The manual controls can be seen at the upper edge of the main board in figure 3.4. They are:
(1) A toggle switch to apply power to the circuit.
(2) A Reset pushbutton to initialise the circuit.
(3) A Run pushbutton which initiates the output sequence by turning on the clock via the clock Control function.

3.2.2.2 Main Signal Path

The main signal path through the block diagram is indicated by the heavy lines in figure 3.5 .

Normally the Clock Gating function feeds clock pulses to the Counter. The counter output is fed to the Sequence Generator, which in turn produces the required set of two-state logic signals. The state of each signal corresponds to the switching requirements in the power circuit at that particular time.

When the sequence is complete the Sequence Generator stops the clock via the Clock Control function, with the output signals being frozen in their last state.

3.2.2.3 Variable Delays

Whenever a variable delay is needed the Sequence Generator sends a signal to the Clock Control function. This causes the Clock Gating function to remove the clock pulses from the counter and to reroute them to the Variable Delay function. The counter then stops counting, thus preventing any further change in the state of the output signals.

The delay ends when the desired number of clock pulses has been received by the Variable Delay function. This number is determined by the position of the flying leads visible in figure 3.4, there being one lead for each delay. After the delay, clock pulses are returned to the Counter and the sequence continues.

3.3 POWER CIRCUIT COMPONENTS

The term "power circuit" is used to distinguish between the actual meatgrinder circuit (as shown in figure 3.6) and the control circuits also described in this Chapter. This section describes the components present in the circuit shown in figure 3.6 , other than the coil itself.

3.3.1 Switching Devices

Since the experimental meatgrinder carries relatively low currents (under 100A), switching can be carried out by semiconductor devices. The devices considered were MOSFETs, GTOs and bipolar transistors (BJTs). Each has advantages and disadvantages [40-42], but the MOSFET was chosen for its simple

Figure 3.6 Circuit Diagram - Six-Step Meatgrinder
drive requirements, its high switching speed and its ability to work up to the surge current rating without incurring penalties in terms of drive power or on-state resistance.

Although the power level in the six-step meatgrinder is very low, it has been suggested [43] that MOSFETs could be used to obtain an output pulse of up to 750 kW from a meatgrinder. Santamaria and Ness [44] have in fact carried out tests on MOSFET arrays designed to switch 700A at 6 kV .

3.3.2 Voltage Clamp Devices

A MOSFET is likely to be damaged if its drain-to-source voltage exceeds the breakdown value. Protection against this must normally be provided by an external component, although the latest generation of International Rectifier devices has builtin protection which can be relied upon up to the continuous current rating [45].

Following the example of Giorgi et al [27], metal oxide varistors (MOVs - also known as constant voltage resistors or CVRs) are used where external protection is needed. These are rugged devices available in a wide variety of ratings, although when used at very high currents they can present an explosion hazard [46]. Selection is on the basis of the maximum current and the speed at which current is diverted from the MOSFET into the MOV [47].

Figure 3.7 compares the response of an ideal clamp device with that of a typical MOV (Power Development Z320C). It can be seen that although the voltage pulse is not flat-topped, the current decay is still approximately linear. The main problem is the initial overshoot, which is a function of the rate of current
rise in the MOV (i.e. the turn-off time of the protected device) and any stray inductance present in the MOV leads. Devices must be selected conservatively, because manufacturers' data on overshoot does not account for the sub-microsecond turn-off times produced by a MOSFET.

There is an alternative device known as a transient voltage suppressor (TVS). This is a special-purpose zener diode which has a flatter clamping characteristic than the MOV and is not so prone to overshoot [48]. It is recommended for semiconductor protection but in this case no devices with suitable voltage ratings were available.

Voltage across protected device

Net
current

(a) Ideal

(b) Typical MOU

Figure 3.7 MOV Clamping Characteristics

3.3.3 Blocking Diodes

Inherent in the construction of a power MOSFET is the antiparallel drain-soure diode depicted in figure 3.8. This means that the blocking diodes D_{2} to D_{7} in figure 3.6 are necessary to prevent the power supply being shorted out during charging. Diode D_{1} is simply to protect against reverse connection of the power supply.

During charging, when the coil current is increasing, diodes D_{2} to D_{7} are reverse biased. This ensures that turning on TR2 does not have any effect on the circuit, the current path only changing when TR1 turns off.

Figure 3.8 Internal Diode in MOSFET

The reverse voltage across any one of the diodes D_{2} to D_{7} during charging is, of course, a proportion of the power supply voltage, with the highest proportion being across D_{2}. The diodes need to be rated accordingly. The device used for all seven blocking diodes is the Motorola type MR752, which has a reverse voltage rating of 200 V and a non-repetitive surge current rating of 400 A .

3.3.4 Power Supply

The power supply consists of two standard 12 V car batteries connected in series. The use of these batteries in preference to a mains-powered unit reduces the noise level in the experimental voltage and current waveforms obtained from various parts of the meatgrinder circuit.

The time allowed for charging is programmed into the timing circuit (see Appendix B). The current level at the end of this time can be adjusted by means of the 10Ω potentiometer $R_{\text {ext }}$.

3.3.5 Mounting

The MOSFETs are mounted on steel brackets attached to the coil (see figure 2.6). The MOVs are connected directly across the MOSFETs so as to minimise stray inductance. The blocking diodes can also be seen in figure 2.6 , connected between the MOSFETs and the coil.

3.4 INTERFACE CIRCUIT

3.4.1 Specification

An interface circuit is needed to convert the logic signals from the timing circuit into signals suitable for driving the MOSFETs in the power circuit. The MOSFET drive signal voltage must be sufficiently high to keep the on-state resistance down when drain current flows. Current capability is also important, since the rate at which the MOSFET capacitances are charged or discharged affects the switching speed $[49,50]$.

3.4.2 Description of Operation

The physical layout of the interface circuit is shown in figure 3.9. The supply required is 20.5 V d.c. (see Appendix B). Input and output connections are via the right- and left-hand ribbon cable connectors respectively.

Figure 3.10 represents a single channel of the circuit. The MOSFET driver is a special-purpose integrated circuit (IC) which draws current from the supply V drive. A complete circuit diagram and further details are given in Appendix B.

Figure 3.9 Interface Circuit

Figure 3.10 Interface Circuit Functional Diagram

CHAPTER FOUR

DISCUSSION OF EXPERIMENTAL RESULTS FROM THE SIX-STEP MEATGRINDER

4.1 EXPERIMENTAL PROCEDURE

4.1.1 Apparatus

Figure 4.1 shows the experimental apparatus. From left to right it comprises:
(a) the control electronics and d.c. supplies (see Chapter 3 and Appendix B)
(b) the meatgrinder coil with the switching components mounted on it (see Chapters 2 and 3)
(c) the Tektronix A6302 current probe (used in conjunction with a $x 20$ multiplier to prevent saturation)
(d) the two 12 V batteries
(e) the Gould 160420 megasample/second digital storage oscilloscope.

4.1.2 Steps Taken to Reduce Noise

In this context, "noise" refers to any unwanted disturbance on the circuit waveforms. It usually takes the form of spikes or oscillations and is caused by current flow in parasitic (stray) capacitances or pick-up by parasitic inductances [51,52].

Figure 4.1 Experimental Apparatus

Any experimental results obtained are affected by whether or not the ground end of the coil is earthed. Generally this is beneficial, though not consistently so. Specifically, the results change when the apparatus is moved to a different laboratory, due presumably to differences in the impedances of the mains earth in the different laboratories.

A specific example of the noise generated by parasitic components is shown in figures 4.2 to 4.4 , which all relate to the turn-off of current in TR1 (see figure 3.6) at the beginning of the switching sequence. Figure 4.2 shows the current waveform with the gate drive signal connected directly to the gate terminal of TR1. Figure 4.3 is the corresponding drainsource voltage shown on an expanded time scale to illustrate the very rapid rising edge. Figure 4.4 shows the improvement obtained in the noise level when the turn-off is slowed down by the insertion of a 100Ω resistor in series with the gate of TR1. By restricting the rate-of-change of voltage experienced by parasitic capacitors and the rate-of-change of current experienced by parasitic inductors, the noise level may be substantially reduced.

Although each MOSFET requires a separate drive signal, only a single ground return conductor is used. This prevents ground loops [51,52] which can generate large circulating currents, and seriously disturb the circuit operation.

Current 2A/div Time $2 \mu s / d i v$

Figure 4.2 Noise Generated at Turn-Off of TR1 Current

Figure 4.3 Corresponding Voltage Across TR1 at Turn-Off

Top: Current $2 A /$ div Time $2 \mu s / d i v$ Bottom: Voltage $200 \mathrm{~V} / \mathrm{div}$ Time $2 \mu \mathrm{~s} / \mathrm{div}$

Figure 4.4 Reduction of Noise by Slowing Down Turn-off of TR1

Current 10A/div Time $10 \mu \mathrm{~s} / \mathrm{div}$

Figure 4.5 Current in L_{7} Showing Current Multiplication

Top: Current 20A/div Time $400 \mu \mathrm{~s} /$ div Bottom Current 20A/div Time $20 \mu \mathrm{~s} / \mathrm{div}$

Figure 4.6 Current in L_{7} Showing Pulse Compression

4.2 VERIFICATION OF MEATGRINDER PRINCIPLE

The results shown in figures 4.5 and 4.6 confirm that as each coil section is switched out, the current in the remaining inductance increases, energy having been transferred forwards into fewer coil sections via the mutual inductance.

Figure 4.5 confirms that the current in the final coil section is over ten times greater than the input current to the meatgrinder. The final current (approximately 76A) and the corresponding efficiency (approximately 42\%) are lower than predicted, as is discussed in detail in the next section.

Pulse compression is also achieved, as shown by figure 4.6. The input current is raised to 7 A (corresponding to 83 mJ of stored energy) in 1.7 ms , giving an input power of about 49 W . Of this initial energy, less than 1 mJ is stored in the self inductance of L_{7}. After the meatgrinder switching, the circuit energy (about 32 mJ) is stored entirely in the self inductance of L_{7}. An energy increase of 31 mJ in about $80 \mu \mathrm{~s}$ corresponds to an output power of about 387 W .

4.3 EFFICIENCY

4.3.1 Comparison With Predicted Performance

From table 4.1 it can be seen that the current and efficiency figures for the experimental meatgrinder deviate from the predicted values only in the last two steps. As described below, further investigation has shown that the cause of this is circuit resistance, the chief component of which is the on-state resistance of the MOSFETs:

STEP	CURRENT (A)		EFFICIENCY (\%)	
	PREDICTED	MEASURED	PREDICTED	MEASURED
0	7	7	-	-
	9	9	95	95
2	14	14	94	94
3	23	23	95	95
4	40	40	96	96
5	80	70	92	70
6	100	76	98	74

Table 4.1 Performance of Six-Step Meatgrinder

4.3.2 Effect of Resistance

4.3.2.1 Computer Simulation

Much benefit was gained in this research from computer simulation of the meatgrinder circuit. Appendix C describes the "PSpice" simulation package used for this purpose and provides an overview of how results were obtained.

Simulated current waveforms are identified by the component through which the current passes. I(D6), for example, means the current through D6. Simulated voltage waveforms are identified by a node number, so that $v(22)$ means the voltage at node 22
with reference to ground (node zero). Reference should be made to figures C. 1 and C. 2 as necessary.

(i) Existing Circuit

In order that the simulation results can be relied upon, the first step taken is to model the circuit as built. This process produces the simulated current waveform of figure 4.7, which corresponds to the experimental waveform of figure 4.5. Figures 4.8 and 4.9 are further examples of current waveforms in the circuit which show that predictions produced by the model are reasonably accurate.

The model includes coil capacitance, although the effect of this is not significant. It is represented as a lumped component connected across each coil section, with the values used being simply an estimation of what the true values might be. Adding these capacitances does not significantly affect the current waveforms, although the simulation of the high-frequency ringing in some of the voltage waveforms is improved slightly, as is clear from figure 4.10. Evidently the inclusion of the coil capacitance is not a critical factor in this case.

Figure 4.7 Simulated L_{7} Current Waveform

(a) Simulated

Current 5A/div Time $10 \mu s / d i v$
(b) Experimental

Figure 4.8 Current in D2

Figure 4.9 Current in D3

Voltage $10 \mathrm{~V} / \mathrm{div}$ Time $10 \mu \mathrm{~s} / \mathrm{div}$
(a) Experimental

(b) Simulated; Including coil capacitance

Figure 4.10 Voltage Across L_{7}

(c) Simulated, Excluding Coil Capacitance

Figure 4.10 Voltage Across L_{7}

It was found that the inclusion of the parasitic inductance of the MOSFET and clamp device leads had no discernible effect on the results obtained, but it did significantly increase the simulation run-time.

(ii) Low Resistance Circuit

Figure 4.11 is a simulated result which illustrates the effect of reducing the coil resistance to a negligibly small value. The peak currents at the fifth and sixth steps are increased, but are still not as high as their predicted values. This result may be contrasted with that of figure 4.12 , in which the current rises to over 94A - within a few percent of the predicted value of 100A. The waveforms in figure 4.12 are from the idealised circuit model, with no coil resistance and with the transistors replaced by simple switches with extremely low on-state resistance.

It should be noted that the 100A figure itself is purely a nominal figure. The computer program described in Appendix E, which implements the theoretical expression for current multiplication, gives a final current of about 96A.

4.3.2.2 Effect of Reducing Initial Current

Table 4.2 and figure 4.13 show how the current multiplication can be increased by a reduction in the initial current. This phenomenon is a further pointer to the effect of resistance in the circuit and is explained below.

Figure 4.11 Fifth and Sixth Step Currents With Low Coil Resistance

Time

Figure 4.12 Fifth and Sixth Step Currents - Idealised Circuit

Current 10A/div Time $10 \mu s / d i v$
(a) Initial Current 4A

(b) Initial Current 2A

Figure 4.13 Increased Current Multiplication With Lower Initial Current

INITIAL CURRENT (A)	TOTAL CURRENT MULTIPLICATION	TOTAL TRANSFER TIME ($\mu \mathrm{S})$
7	10.9	80
4	13.0	60
2	13.5	48

Theoretical current multiplication $=14.3$

Table 4.2 Effect of Changing Initial Current

The energy transfer times in the experimental meatgrinder were not minimised, but there is clearly a trend for the process to speed up.as the initial current falls. This arises because less time is required to transfer a smaller amount of energy for a given set of switch voltages; this subject is also discussed later in the Chapter.

4.3.2.3 Conclusion

The various simulation and experimental results discussed above show that the current multiplication is degraded by any resistance in the circuit. In this particular instance the effect is apparent only in the last two steps, and it is the MOSFET on-state resistance which is dominant.

In the single-step meatgrinder circuit shown in figure 4.14, the resistor $R_{L 2}$ dissipates energy continuously during the transfer of energy ($R_{L l}$ simply adds to the off-state resistance
of the opening switch). At the same time, energy is supplied to the closed loop from L_{1} by the mutual inductance M. The final current I_{2} therefore depends on the net energy stored in L_{2}, which is the difference between the energy supplied and the energy lost in $\mathrm{R}_{\mathrm{L} 2}$.

Figure 4.14 Single-Step Meatgrinder With Resistance

Although the meatgrinder current multiplication is independent of time (equation (2.1)), the losses in the resistance are not. Thus in a given resistive circuit the final current will vary according to the speed of the energy transfer. It is in fact possible to design the circuit such that the current actually remains constant throughout the transfer [30,31,43].

In the first four steps of the six-step meatgrinder the resistance losses are insignificant because of the relatively low currents and large time constants. (See table 4.3, which shows how the time constant of the closed loop decreases by a factor of nearly 1000 between the initial state and the fifth step.) In the last two steps the higher current means, however, that these losses become significant, even over a few microseconds. When the initial current is reduced, less time is
required for the energy transfer (see table 4.2 and below) and a smaller proportion of the energy is dissipated in the resistance.

STEP	TIME CONSTANT $(\mu \mathrm{s})$
0	11453
1	7648
2	4199
3	1821
4	681
5	175
6	182

(Based on $R_{\text {DS (ON) }}=0.085 \Omega$)

Table 4.3 Time Constants of Closed Loops

4.3.3 Energy Transfer Times and Switch Voltages

Having established the importance of the speed of energy transfer, the factors which govern this speed are now discussed.

4.3.3.1 Analysis for Single-Step Circuit

In the two-section coil shown in figure 2.2 , the requirement is to determine the time taken for the current in L_{1} to fall to zero after S_{1} has opened. zucker et al [23] originally modelled the open state of S_{1} as a constant resistance. However, as was
observed subsequently [27] the analysis is simpler if S_{1} has a constant voltage characteristic in its open state because the current decay is then linear rather than exponential.

In the present research, and in experiments carried out elsewhere $[27,28,43]$, voltage clamp devices have been used which exhibit an almost constant voltage characteristic (see Chapter 3). An analysis based on such a characteristic is therefore both realistic and simple.

Figure 4.15 Decay of Current in Inductor

In the circuit shown in figure 4.15 the voltage across the opening switch is clearly

$$
\mathrm{v}_{\mathrm{sw}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}
$$

from which the rate-of-change of the current is

$$
\begin{equation*}
\frac{\mathrm{di}}{\mathrm{dt}}=\frac{\mathrm{v}_{\mathrm{sw}}}{\mathrm{~L}} \tag{4.1}
\end{equation*}
$$

which is a constant. This being so, the time for the current to fall from an initial value I to zero is

$$
t_{\text {decay }}=\frac{L I}{v_{s w}}
$$

Following the example of Zucker [20], the meatgrinder circuit can be represented by the addition of a second loop to the circuit of figure 4.15 and the inclusion of further voltage sources to account for the mutual inductance. Figure 4.16 is thus an equivalent circuit for the single-step meatgrinder of figure 2.2.

Figure 4.16 Equivalent Circuit of Single-Step Meatgrinder

Summing voltages around the two loops yields

$$
\begin{align*}
\mathrm{v}_{\mathrm{sw}} & =\mathrm{L}_{1} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+\mathrm{m} \frac{\mathrm{di}_{2}}{\mathrm{dt}} \tag{4.2}\\
0 & =\mathrm{L}_{2} \frac{\mathrm{di}_{2}}{\mathrm{dt}}+\mathrm{m} \frac{\mathrm{di}{ }_{1}}{\mathrm{dt}} \tag{4.3}
\end{align*}
$$

Using equation (4.3) to eliminate $\mathrm{di}_{2} / \mathrm{dt}$ from equation (4.2) leads to

$$
\begin{align*}
\mathrm{v}_{\mathrm{sw}} & =\frac{\mathrm{di}}{\mathrm{dt}}\left[\mathrm{~L}_{1}-\left(\mathrm{M}^{2} / L_{2}\right)\right] \\
& =\frac{\mathrm{di}_{1}}{\mathrm{dt}}\left[\mathrm{~L}_{1}\left(1-\mathrm{k}^{2}\right)\right] \tag{4.4}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{di}_{1}}{d t}=\frac{v_{s w}}{L_{1}\left(1-k^{2}\right)} \tag{4.5}
\end{equation*}
$$

where k is the coupling coefficient between the self inductances L_{1} and L_{2}.

For a given initial current I_{1} and a constant switch voltage $V_{s w}$ the energy transfer time is then

$$
\begin{equation*}
t_{\text {trans }}=I_{1} \frac{L_{1}\left(1-k^{2}\right)}{v_{s w}} \tag{4.6}
\end{equation*}
$$

This expression agrees with Zucker's analysis for the exponential case $[23]_{\mathcal{L}}$ which leads to a time constant for the decay of I_{1} of $L_{1}(1-k) / R$, where R is the relevant circuit resistance.

It will be noticed by comparison with equation (4.1) that the meatgrinder action reduces the apparent inductance "seen" by the opening switch by a factor of ($1-k^{2}$), which illustrates well how the efficiency of energy transfer is really a measure of the leakage inductance between L_{1} and L_{2}. This is so because as k increases from zero, the effective inductance $L_{1}(1-k)$ falls, and the energy transfer time for a given switch voltage and initial current therefore also falls. The switch consequently experiences the same change of current in a shorter time and dissipates less energy.

In conclusion, the only way to speed up an energy transfer without changing the inductances is to raise the switch voltage.

4.3.3.2 Behaviour of Multi-Step Circuit

(i) First Energy Transfer

Current and voltage waveforms for the first energy transfer are shown in figure 4.4, and table 4.4 shows that the theoretical and experimental values for the energy transfer time are in good agreement.

(ii) Second Energy Transfer

Current and voltage waveforms for the second transfer are shown in figure 4.17. It can be seen that although the TR2 voltage is not perfectly flat-topped the current decay is still reasonably linear.

It should be noted that the time predicted by equation (4.6) is sensitive to the value of the coupling coefficient. Changing this from 0.79 to 0.71 , for example, yields a theoretical time of 8.5μ s rather than $6.5 \mu \mathrm{~s}$. Given that the coupling coefficients in table 4.4 are derived from several inductance values, there could easily be significant uncertainties of between five and ten percent. If inaccuracies of a few percent in the experimental time values are added to this, the agreement between theoretical and experimental values is again reasonable.

Top: TR1 voltage $200 \mathrm{~V} / \mathrm{div}$ Time $10 \mu \mathrm{~s} / \mathrm{div}$ Bottom: TR2 voltage $50 \mathrm{~V} / \mathrm{div}$ Time $10 \mu \mathrm{~s} / \mathrm{div}$
(a)

Top: TR2 current 5A/div Time $10 \mu \mathrm{~s} / \mathrm{div}$ Bottom: TR3 current 10A/div Time $10 \mu \mathrm{~s} / \mathrm{div}$
(b)

Figure 4.17 Waveforms for Second Transfer

STEP	INDUCTANCE SWITCHED OUT $(\mu \mathrm{H})$	COUPLING COEFFICIENT		TRANSFER TIME ($\mu \mathrm{s})^{*}$	
			EXPERIMENTAL		
1.	403	0.76	2.2^{++}	2.5	
2	289	0.79	6.5^{++}	8.5	
3	147	0.86	3.5^{++}	11.0	
4	52	0.90	1.5^{++}	11.0	
5	24	0.86	1.7^{++}	20.0	
6	1	0.81	0.2^{+++}	4.0	

* using equation (4.6)
+ based on constant clamp voltage of 550 V
++ based on constant clamp voltage of 150 V
+++ based on constant clamp voltage of 150 V and 70A current

Table 4.4 Transfer Details

It is evident from figure 4.17 that the voltage across TR1 rises again during the second transfer. (The ringing is due to the effect of parasitic components in the MOSFET. This is illustrated by figure 4.20 which shows the simulated waveforms when the MOSFET is replaced by a simple switch (voltagecontrolled resistor).)

Clearly this voltage on TR1 is present for the duration of the second transfer and is less than the clamping value of about 550 V .

After TR1 has turned off, L_{1} is still connected electrically to the remainder of the meatgrinder coil. More importantly, however, it is still magnetically coupled to the remainder of
the coil. Therefore, when TR2 turns off and the voltage across L_{2} rises, L_{1} experiences an induced voltage by transformer action. This induced voltage is added to the voltage already present by virtue of the electrical connection, and the net result (with the small addition of the battery voltage) appears across TR1.

This transformer action is an important phenomenon in the design and operation of multi-step meatgrinders. Its significance in the remaining transfers is discussed below and is analysed in more detail in Chapter 5.

(iii) Remaining Energy Transfers

It can be seen from Table 4.4 that the energy transfer times for the last four steps are much longer than would be expected from the analysis of a single-step meatgrinder. Figure 4.18 shows that the voltage waveforms at turn-off are not simple flattopped pulses, and this leads to longer energy transfer times (see below). Figure 4.19 shows the corresponding current waveforms.

In order that the phenomena discussed below can be seen more clearly, simulated voltage and current waveforms are given in figures 4.20 and 4.21. These results are obtained from a model which uses simple switches rather than MOSFETs, but does include both coil and switch resistance. Stray coil capacitance is not included. (Although the MOSFETs are eliminated, there is still some high-frequency ringing, due probably to diode capacitance.)
(1)

(2)
(3)
(4)

Chapter 4

All traces: Time $10 \mu \mathrm{~s} / \mathrm{div}$
(1) TR2 voltage $200 \mathrm{~V} / \mathrm{div}$ (2) TR3 voltage $200 \mathrm{~V} / \mathrm{div}$
(3) TR4 voltage $50 \mathrm{~V} / \mathrm{div}$
(4) TR5 voltage $20 \mathrm{~V} / \mathrm{div}$
(1) TR2
(2) TR5
(3) TR6
(4) TR7

(1) TR2 voltage $200 \mathrm{~V} / \mathrm{div}$
(2) TR5 voltage $50 \mathrm{~V} / \mathrm{div}$
(3) TR6 voltage $10 \mathrm{~V} / \mathrm{div}$
(4) TR7 voltage $10 \mathrm{~V} / \mathrm{div}$
(b)

Figure 4.18 Voltage Waveforms

All traces: Time $10 \mu s / d i v$

D2 $5 A / d i v$	D3	10A/div	D4	$27.5 A / d i v$
D5 $20 \mathrm{~A} / \mathrm{div}$	D6	$20 \mathrm{~A} / \mathrm{div}$		

Figure 4.19 Current Waveforms

Figure 4.20 Simulated Voltage Waveforms

Figure 4.20 Simulated Voltage Waveforms (continued)

- I (D2)

Time

Figure 4.21 Simulated Current Waveforms

Figure 4.21 Simulated Current Waveforms (continued)

Abstract

In addition to the transformer action described above, another phenomenon occurs in the multi-step meatgrinder, in that during each of the last four energy transfers, the voltage across TR2 reaches the clamp level (150V) and current flows through L_{2} via the clamp device across TR2. Taking the third energy transfer as an example, it will be seen that the current in TR4 has two distinct rates of rise. Corresponding to this are two distinct voltages across TR3, which is the opening switch for the third energy transfer. The voltage across TR3 is at its clamp value for only a small proportion of the energy transfer time, and as a consequence the transfer takes longer. (A detailed analysis of this process is given later, in Chapter 5.)

This phenomenon is repeated during each of the remaining transfers, with the voltage across TR2 remaining at its clamp level and current flowing in inductors which have previously been switched out. When the voltage across TR3, for example, is at its lower value, it is determined not by the clamp device connected across TR3 but by the clamp device connected across a different transistor, which has been forced to clamp by the transformer action of the meatgrinder. This phenomenon will therefore be referred to in this thesis as "transformer action clamping".

(iv) Effect of Switch Voltages on Energy Transfer Times

It was shown previously that where no current flows in previously switched-out inductors, the energy transfer time is controlled by the clamp voltage of the opening switch. When transformer action clamping occurs the clamp voltages of any previous switches are also signifcant.

In this case it would be desirable to speed up the fifth and sixth energy transfers in order to reduce the losses in the circuit resistance, thereby increasing the final current. Changing TR1 from a 200V IRF250 (protected by a MOV which actually clamps at about 150V) to a 500V IRF450 (which actually avalanches at about 550V) did not discernibly increase the final current, but it did reduce the energy transfer times. This would obviously be expected for the first energy transfer. However, the second transfer is also speeded up because the voltage across TR2 is allowed to remain at its clamp level for the entire duration of the transfer (see figure 4.20). Previously it experienced the transformer action clamping now experienced only by TR3 and subsequent MOSFETs.

Figure 4.22 TR1 Voltage and Current With 200V Device for TR1

Figure 4.22 illustrates how using the lower voltage device for TR1 meant that TR1 was the "controlling" device for subsequent transfers. (Note: the waveforms in figure 4.22 are inaccurate because of measurement problems at the time. The rise time of the voltage, for example, should be much less than is indicated. However, the waveforms do serve to illustrate the point being
made.) It can be seen that the voltage across TRI remains at its clamp level throughout the process. With the higher voltage device used for TR1, it is the voltage across TR2 which remains at its clamp level during each transfer.

TR3 experiences transformer action clamping in both cases. With the lower voltage device used for TR1, the transformer action clamp voltage is 150 V across TR1, i.e. about 126 V (150V less the battery voltage) at the end of L_{1}. With the higher voltage device, the clamp voltage is 150 V across TR2, i.e. 150 V at the junction of L_{1} and L_{2}. Since the transformation ratios are unchanged, this corresponds to a higher voltage at the junction of L_{2} and L_{3}, i.e. across TR3.

Similar reasoning applies to subsequent transfers. It is clear, however, that the increased speed of the fifth and sixth transfers is insufficient to increase the final current obtained. Figure 4.20 shows that the clamped voltages across TR5 and TR6 during the fifth and sixth energy transfers respectively are very low - of the order of 10 V . This is because of the high turns ratios by the time these transfers are reached. As a result, a large increase in the voltage at the end of L_{1}, for example, results in only a small increase in the voltage at, for example, the junction of L_{5} and L_{6}.

Computer simulation was used to test the effect of making both TR2 and TR3 500V devices. The corresponding results are shown in figures 4.23 and 4.24. Transistor TRI once again becomes the "controlling" device and the final current is nearly 90A. Figure 4.25 shows that the voltage across TR5 during the fifth transfer is increased significantly by the increased clamp voltages of TR2 and TR3. The voltage across TR6 during the sixth transfer is not significantly altered, but by implication it could be increased by raising the switch voltages even further.

Figure 4.23 Effect of Making TR2 and TR3 500V Devices

Figure 4.24 Simulated Voltage Waveforms With 500V Devices for TR2 and TR3

Time

Figure 4.24 Simulated Voltage Waveforms With 500V Devices for TR2 and TR3 (continued)

Figure 4.25 Switch Voltages During Fifth and Sixth Transfers

The conclusion to be drawn from this discussion is that in a multi-step circuit, just as in the simple case, the energy transfer times are dictated by the switch voltages. The difference in a multi-step circuit is that the result is affected by the clamp voltage of previously-opened switches, in addition to the clamp voltage of the opening switch itself. This topic has been addressed by other workers [13,27,30,43] and is discussed further in Chapter 5.

4.4 VOLTAGES ACROSS IN-CIRCUIT INDUCTORS

4.4.1 Theory

4.4.1.1 With Uncoupled Load

The single-step meatgrinder shown in figure 4.26 has a magnetically uncoupled load $\mathrm{L}_{\text {LOAD }}$. (The meatgrinder is assumed to be charged, and the current source is omitted for clarity.)

Figure 4.26 Single-Step Meatgrinder With Uncoupled Load

The voltage across the load is given by

$$
v_{\text {LOAD }}=L_{\text {LOAD }} \frac{d I}{d t}
$$

Substituting for $d I / d t$ from equation (4.5) gives

$$
\begin{equation*}
v_{\text {LOAD }}=v_{S W} \frac{L_{\text {LOAD }}}{L_{1}\left(1-k^{2}\right)} \tag{4.8}
\end{equation*}
$$

where k ' is the coupling coefficient modified to account for $L_{\text {LOAD }}$ (see Appendix D).

If there is no circuit resistance, the voltage across L_{2} is at all times equal and opposite to that across $L_{\text {LOAD }}$.

The change in flux linkage experienced by $L_{\text {LOAD }}$ is obtained from

$$
\begin{equation*}
\delta(N \Phi)_{\text {LOAD }}=\int_{0}^{\delta t} v_{\text {LOAD }} d t \tag{4.9}
\end{equation*}
$$

where δt is the energy transfer time.

The change in flux linkage experienced by L_{2} is similarly

$$
\begin{equation*}
\delta(N \Phi)_{L 2}=\int_{0}^{\delta t} v_{L 2} d t \tag{4.10}
\end{equation*}
$$

and since $V_{L 2}=-V_{\text {LOAD }}$ then

$$
\begin{equation*}
\delta(N \Phi)_{\text {LOAD }}=-\delta(N \Phi)_{\text {L2 }} \tag{4.11}
\end{equation*}
$$

This confirms that flux linkage is conserved around the closed loop. The initial and final flux linkages are

$$
\begin{align*}
& (N \Phi)_{1}=I_{1}\left(L_{2}+M_{12}+L_{L O A D}\right) \tag{4.12}\\
& (N \Phi)_{2}=I_{2}\left(L_{2}+L_{L O A D}\right) \tag{4.13}
\end{align*}
$$

and it can be seen that the current increase is balanced out by the loss of the effect of the mutual inductance.

4.4.1.2 With Coupled Load

(i) Coil With Three Sections

If the load is actually the last section of the meatgrinder coil (see figure 4.27), the same principle applies, as illustrated by the following example:

Let the parameters of the circuit in figure 4.27 be

$$
\mathrm{L}_{1}=\mathrm{L}_{2}=10 \mu \mathrm{H}, \mathrm{~L}_{3}=100 \mu \mathrm{H}, \mathrm{k}_{12}=0.9, \mathrm{k}_{23}=0.5, \mathrm{k}_{13}=0.3
$$

This means that

$$
\ddots_{12}=9 \mu \mathrm{H}, \mathrm{M}_{13}=9.49 \mu \mathrm{H}, \mathrm{M}_{23}=15.81 \mu \mathrm{H}
$$

and that

$$
\mathrm{L}_{23}=141.62 \mu \mathrm{H}, \mathrm{~L}_{1-3}=188.59 \mu \mathrm{H}
$$

Therefore

$$
\mathrm{k}_{1(23)}=0.49, \mathrm{M}_{1(23)}=18.44 \mu \mathrm{H}
$$

By applying equation (2.1), the final current for an initial current of 10A is found to be 11.3A. This leads to the figures shown in table 4.5 .

Figure 4.27 Three-Section Meatgrinder

FLUX LINKAGE WITH L_{2}			FLUX LINKAGE WITH L_{3}		
INITIAL	FINAL	CHANGE	INITIAL	FINAL	CHANGE
348	292	-56	1253	1309	+56
Flux linkages in weber-turns $\times 10^{-6}$					

Table 4.5 Example Showing Conservation of Flux Linkage in Circuit of Figure 4.27

Flux linkage is again conserved. Since there is a change of flux linkage there must again be a voltage at the junction of L_{2} and L_{3} during the transfer.

The direction of the induced voltage is governed by Lenz's law as before. In this example L_{3} experiences an increase in flux linkage, just as it would do if it were an uncoupled load. Therefore, for the direction of current flow shown in figure 4.27, the polarity of the voltage is as indicated.

The generalised expression for the change in flux linkage experienced by L_{3} is

$$
\begin{equation*}
\delta(N \Phi)_{L 3}=I_{2}\left(L_{2}+M_{23}\right)-I_{1}\left(L_{2}+M_{12}+M_{23}\right) \tag{4.14}
\end{equation*}
$$

Applying equation (2.1) for the three-section case gives

$$
\begin{equation*}
I_{2}=I_{1} \frac{L_{2}+L_{3}+2 M_{23}+M_{12}+M_{13}}{L_{2}+L_{3}+2 M_{23}} \tag{4.15}
\end{equation*}
$$

and eliminating I_{2} from equation (4.14) yields

$$
\begin{equation*}
\delta(N \Phi)_{L 3}=I_{1}\left[\frac{M_{13}\left(L_{2}+M_{23}\right)-M_{12}\left(L_{3}+M_{23}\right)}{L_{2}+L_{3}+2 M_{23}}\right] \tag{4.16}
\end{equation*}
$$

If the transfer of energy occurs at a constant rate in a time δt, the voltage is

$$
\begin{equation*}
V_{L 3}=\frac{\delta(N \Phi)}{L 3}=\frac{I_{1}}{\delta t}\left[\frac{M_{13}\left(L_{2}+M_{23}\right)-M_{12}\left(L_{3}+M_{23}\right)}{L_{2}+L_{3}+2 M_{23}}\right] \tag{4.17}
\end{equation*}
$$

It can be seen that the quantity in brackets can be positive, negative or even zero depending on the values of the different inductances.
(A more general expression, which would also apply to non-linear transfers, would use $\mathrm{di}_{1} / \mathrm{dt}$ in place of $\mathrm{I}_{1} / \delta \mathrm{t}$.)

(ii) Coil With Four or More Sections

When the inductance in the closed loop consists of more than two sections the voltage across any one section can be found by applying the technique described above.

Figure 4.28 Four-Section Meatgrinder

For example, analysing the circuit of figure 4.28 gives

$$
\begin{equation*}
V_{L 2}=\frac{\mathrm{di}_{1}}{\mathrm{dt}}\left[\frac{\mathrm{M}_{12}\left(\mathrm{~L}_{3}+\mathrm{L}_{4}+2 \mathrm{M}_{34}+\mathrm{M}_{23}+\mathrm{M}_{24}\right)-\left(\mathrm{M}_{13}+\mathrm{M}_{14}\right)\left(\mathrm{L}_{2}+\mathrm{M}_{23}+\mathrm{M}_{24}\right)}{\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}+2\left(\mathrm{M}_{23}+\mathrm{M}_{24}+\mathrm{M}_{34}\right)}\right] \tag{4.18}
\end{equation*}
$$

which is similar to equation (4.17) and can again be positive, negative or zero.

As the number of meatgrinder sections increases, the equation becomes longer. This can be avoided, however, if several sections are treated collectively, thereby reducing the circuit to that of figure 4.27. The process is outlined below:

For an n-section meatgrinder, with L_{1} being switched out, the total inductance in the closed loop is L_{2-n}. If the voltage across a particular section, say L is required, the total inductance of the remaining sections, L_{y}, is

$$
L_{y}=L_{2-n}-\left[\begin{array}{c}
a=(x-1) \tag{4.19}\\
L_{x}+\underset{a=2}{\Sigma M_{a x}}+\underset{a=(x+1)}{\sum M_{a x}}
\end{array}\right]
$$

that is, it is the total inductance less the self inductance of L_{x}, less all the mutual inductances associated with L_{x}. Thus the ($n-1$) sections which form the closed loop can now be considered as two sections L_{x} and L_{y}.

Figure 4.29 Simulated In-Circuit Inductance Voltages

Figure 4.29 Simulated In-Circuit Inductance Voltages (continued)

If the voltage across the last coil section L_{n} is required, L is replaced by $L 2-(n-1)$. In other words, to find the voltage ${ }^{Y}$ across L_{4} in figure $4.28, L_{2}$ and L_{3} are treated collectively as L_{2-3}.

4.4.2 Six-Step Circuit Waveforms

According to the theory above, an "in-circuit inductance voltage" is expected at each of the junctions between coil sections (see figure 3.6), except for that between L_{1} and L_{2} because this junction is either shorted to ground (first energy transfer) or out of circuit (remaining transfers). The simulated waveforms given in figure 4.29 show these voltages. The effect is particularly noticeable during the first transfer.

It will be noted that the voltage waveforms given previously (figure 4.20, for example) do not show this effect because they are on the cathode side of the blocking diode (see figure 4.30). A negative voltage on the anode reverse biases the diode and is therefore not seen at the cathode.

The voltage across L_{7} during the first energy transfer is about 65V, which agrees with the figure obtained by working out the flux linkage change and dividing by the energy transfer time. (The figure was obtained from a Fortran program which, although useful in other respects, was largely supplanted for this type of calculation by the "PSpice" simulation program as the research progressed. The Fortran program is described in Appendix E.)

Experimental voltage waveforms for the six-step meatgrinder are given in figure 4.31. The expected "in-circuit inductance" voltages can be seen, although these are somewhat obscured by noise. The noise is significant because it increases the maximum reverse voltage experienced by the blocking diodes:

Negative voltage at A not seen at B

Figure 4:30 Reverse Biasing of Blocking Diode

In the simulated waveforms of figure 4.29 the peak negative voltage at the junction of L_{2} and L_{3} is about 180V. This represents the peak reverse voltage across the blocking diode D3.* Figure 4.31 indicates, however, that the ringing causes this reverse voltage to reach almost 240 V , which is the peak non-repetitive reverse voltage rating of the MR752 diode.

* see Figure 3.6

Figure 4.31 Experimental Waveforms: In-circuit Inductance Voltages

Figure 4.32 is the simulated waveform from the model which uses MOSFETS rather than simple switches. This predicts that the ringing will cause a reverse voltage greater than 180V. In fact the voltage is clamped at 200 V , which is the value used for the breakdown voltage in the MR752 component model. (PSpice does not model destructive breakdown, but assumes that zener action takes place when the breakdown voltage is exceeded. Also, it is not possible to distinguish between a repetitive and a nonrepetitive rating as only one value can be specified.)

Time

Figure 4.32 Simulated Voltage at Junction of L_{2} and L_{3} Including Parasitic Effects

This illustrates how it can be beneficial both to simulate an idealised circuit (in order that the phenomenon under investigation is not obscured by noise), and to simulate the behaviour of real components in the same circuit (in order to assess the significance of noise).

4.4.3 Possible Breakdown of Blocking Diodes

The discussion above raises two points. Firstly, it seems that in the experimental meatgrinder circuit (see figure 3.6), diodes D3 and D4 are only surviving by chance, since their reverse voltage approaches the maximum rating. This means that it is not simply the voltage experienced during charging which must be considered when selecting such diodes.

Secondly, if the diodes were capable of non-destructive breakdown, the consequences of such breakdown would need to be examined. In such a case the voltage across the diode is clamped and current flows through the device. Since the clamping action is caused by an induced voltage related to the voltage across the opening switch, this can again be referred to as transfomer action clamping (TAC).

4.4.4 Terminology

For clarity, the phenomenon discussed earlier relating to previously switched-out inductors will be referred to as external TAC (ETAC). Similarly, the phenomenon relating to incircuit inductors will be referred to as internal TAC (ITAC).

ETAC is due to clamping by the devices across the MOSFETs. It has already been shown that in-circuit inductance voltages may be of either polarity. There is thus no reason why ITAC cannot occur in this mode, meaning that a further sub-division of ITAC is required to distinguish between the two possible modes. ITAC due to the MOSFET clamp device will be referred to as positive ITAC (since current then flows in the same direction as it does
when the MOSFET is turned on), whilst that due to the blocking diodes (or the devices performing that function) will be referred to as negative ITAC.

Further analysis of TAC, together with a discussion of its implications, is given in Chapter 5.

CHAPTER FIVE

ANALYSIS OF THE EFFECTS OF TRANSFORMER ACTION CLAMPING

5.1 INTRODUCTION

The meatgrinder relies on magnetic coupling between coil sections in order to transfer energy forwards as each section is switched out. As a system of coupled coils the circuit can be regarded as a transformer, although it is not usually described in such terms. Consequently, a changing flux associated with one section will generate induced voltages across other sections, and corresponding currents will flow whenever a closed path exists. This will be referred to in this thesis as transformer action.

Transformer action in the meatgrinder has been demonstrated both by computer simulation and by practical experimentation. The results of this work were presented in Chapter 4, along with a certain amount of discussion and theoretical analysis.

This Chapter builds on the material already given in Chapter 4. It is shown that transformer action clamping (TAC) is detrimental to the meatgrinder efficiency only in the sense that it slows down the energy transfer process, thereby allowing greater resistive losses. The Chapter also includes a discussion of design implications in terms of maximising the speed of energy transfer and protecting the circuit components.

5.2 EXTERNAL INDUCED VOLTAGES WITHOUT CLAMPING

5.2.1 Theory

In the circuit of figure $5.1, L_{1}$ and L_{2} are the coil sections involved in the energy transfer process, and L_{3} is the section previously switched out. (This notation means that the coil sections are not numbered consecutively from, left to right, but is used so that L_{1} and L_{2} are the sections still in circuit. Note also that L_{2} and L_{3} could be the total inductance of several sections in series.)

Figure 5.1 Meatgrinder Circuit Showing External Induced Voltage

The voltage across the opening switch is $V{ }_{S W}$, whilst V ind is the voltage induced across L_{3} by transformer action during the energy transfer. The electrical connection means that the opencircuit end of L_{3} rises to a voltage ($\mathrm{V}_{\text {ind }}+\mathrm{V}_{\mathrm{SW}}$).

The relationship between $V_{i n d}$ and $V_{S W}$ can be found by analysing the equivalent circuit shown in figure 5.2. This is an extension of figure 4.16, with an additional loop added to account for I_{3} and extra voltage sources to account for the
extra mutual inductances. It is assumed that no current is flowing in L_{3}.

Figure 5.2 Equivalent Circuit of Figure 5.1

Summing voltages around the L_{1} and L_{2} loops yields the expressions given in equations (4.2) and (4.3) respectively. Summing voltages around the L_{3} loop yields

$$
\begin{equation*}
v_{\text {ind }}=M_{13} \frac{\mathrm{di}_{1}}{d t}+M_{23} \frac{\mathrm{di}_{2}}{d t} \tag{5.1}
\end{equation*}
$$

Using equation (4.3) to eliminate $\mathrm{di}_{2} / \mathrm{dt}$ from equation (5.1) leads to

$$
v_{\text {ind }}=\left[\begin{array}{lll}
M_{13} & -M_{23} & \frac{M_{12}}{L_{2}} \tag{5.2}
\end{array}\right] \frac{\mathrm{di}_{1}}{d t}
$$

or

Finally, substituting for $\mathrm{di}_{1} / \mathrm{dt}$ from equation (4.5) gives

$$
\begin{equation*}
v_{\text {ind }}=v_{s w} \sqrt{\frac{L_{3}}{L_{1}}}\left[\frac{k_{13}-k_{12} k_{23}}{1-k_{12}^{2}}\right] \tag{5.4}
\end{equation*}
$$

Thus, because L_{3} is connected electrically to L_{1}, the total open-circuit voltage produced is

$$
\begin{equation*}
v_{o / c}=v_{s w}\left[\sqrt{\frac{L_{3}}{L_{1}}}\left[\frac{k_{13}-k_{12} k_{23}}{1-k_{12}^{2}}\right]+1\right] \tag{5.5}
\end{equation*}
$$

5.2.2 Verification

Equation (5.5) was implemented in the Fortran program "Ideal" described in Appendix E. As the sample output shows, the program predicts an open-circuit voltage of 318 V with respect to ground at the end of L_{1} (that is, the end not connected to L_{2}) during the second energy transfer in the six-step meatgrinder.

The experimental waveform of this same voltage was shown in figure $4.17(\mathrm{a})$. Although the mean value of the voltage can only be estimated, it does appear to be approximately of the right order.

The simulated waveform $V(21)$ in figure 4.20 is free from oscillation. The open-circuit induced voltage as measured from this waveform is 320 V - very close indeed to the theoretical value from the "Ideal" program.

5.3 INVESTIGATION OF EXTERNAL TRANSFORMER ACTION CLAMPING

5.3.1 Introduction

As described in Chapter 4, external transformer action clamping (ETAC) occurs in the last four energy transfers of the six-step meatgrinder. The current waveforms in figure 4.19 clearly show the induced currents flowing in previously switched-out coil sections as the MOV across TR2 breaks down. (Some current also flows via the MOVs across TR3 and TR4.)

Giorgi [27] was obviously aware of ETAC. He states that in his experiment he obtained the same current multiplication when ETAC occurred as when it was somehow deliberately prevented. In
later work with Long et al [43], regarding an induced voltage in a previously switched-out section, it is stated that,
> "This voltage could cause a current to flow....which would cause energy to flow backward in the system and reduce the efficiency."

An analysis was carried out in an attempt to clarify whether or not ETAC degrades efficiency. The analysis is for an ideal circuit and is described below.

5.3.2 Algebraic Analysis

Figure 5.3 shows the circuit to be considered. It will be assumed that the first energy transfer has been completed and that ETAC occurs during the second transfer.

Figure 5.3 Two-Step Meatgrinder With Notation as Used for ETAC Analysis

Assuming that voltage clamping is ideal, the waveforms for the second transfer are as presented in figure 5.4. (Waveforms like this can be seen, for example, in the third energy transfer in the six-step meatgrinder - see figures 4.18 to 4.21.) The transfer can conveniently be divided into two parts, referred to as phase one and phase two respectively. It can be seen from figure 5.4 that phase one ends when the current in the clamp device across the opening switch has fallen to zero. Until this instant, the voltage across the opening switch is constrained to be the clamp voltage of the clamp device across it. When the clamp device no longer carries current, the voltage falls to a value dictated by the clamp voltage across $S 3$ and the inductances of the meatgrinder coil.

Phase two of the energy transfer is complete when the current in D3 reaches zero. (It should be remembered that throughout the process, current flow in L_{3} or $D 3$ is via the clamp device across S3, rather than via the switch itself.)

Figure 5.4 Typical Waveforms for Second Transfer of Two-Step Meatgrinder

5.3.2.1 Phase One

In the first phase, current flows in all three inductors, as indicated in figure 5.5. The voltages across S1 and S3 are both at their clamp values and are represented as voltage sources.

(Blocking diodes omitted for clarity)

Figure 5.5 Current Flow During Phase One of ETAC

The current paths form three overlapping loops, and when the voltages are summed around each of these, the expressions obtained are:
(i) Loop including L_{2} only:

$$
\begin{equation*}
\left(L_{2}+M_{12}\right) \frac{\mathrm{di}_{1}}{d t}+\mathrm{L}_{2} \frac{\mathrm{di}}{\mathrm{dt}}+\left(\mathrm{L}_{2}+\mathrm{M}_{12}+\mathrm{M}_{23}\right) \frac{\mathrm{di}}{\mathrm{dt}} \frac{3}{d t}=0 \tag{5.6}
\end{equation*}
$$

(ii) Loop including both L_{1} and L_{2} :

$$
\begin{gather*}
\left(L_{1}+L_{2}+2 M_{12}\right) \frac{d i_{1}}{d t}+\left(L_{2}+M_{12}\right) \frac{d i_{2}}{d t}+\left(L_{1}+L_{2}+2 M_{12}+M_{13}+M_{23}\right) \frac{\mathrm{di}_{3}}{d t} \\
+V_{S 1}=0 \tag{5.7}
\end{gather*}
$$

(iii) Loop including $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} :

$$
\begin{align*}
& \left(\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}_{12}+\mathrm{M}_{13}+\mathrm{M}_{23}\right) \frac{\mathrm{di}}{\mathrm{dt}}+\left(\mathrm{L}_{2}+\mathrm{M}_{12}+\mathrm{M}_{23}\right) \frac{\mathrm{di}_{2}}{\mathrm{dt}} \\
& \quad+\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+2 \mathrm{M}_{12}+2 \mathrm{M}_{13}+2 \mathrm{M}_{23}\right) \frac{\mathrm{di} 3}{\mathrm{dt}}+\mathrm{V}_{\mathrm{S} 3}=0 \tag{5.8}
\end{align*}
$$

Equations (5.6), (5.7) and (5.8) respectively can be abbreviated as

$$
\begin{align*}
& \mathrm{Ax}_{1}+\mathrm{Bx}_{2}+\mathrm{Cx}_{3}=0 \tag{5.9}\\
& \mathrm{Dx}_{1}+\mathrm{Ax}_{2}+\mathrm{Ex}_{3}+\mathrm{F}=0 \tag{5.10}\\
& \mathrm{Ex}_{1}+\mathrm{Cx}_{2}+\mathrm{Hx}_{3}+\mathrm{J}=0 \tag{5.11}
\end{align*}
$$

where

$$
\begin{aligned}
& x_{1}=\mathrm{di}_{1} / \mathrm{dt} \\
& \mathrm{x}_{2}=\mathrm{di}_{2} / \mathrm{dt} \\
& \mathrm{x}_{3}=\mathrm{di}_{3} / \mathrm{dt} \\
& \mathrm{~A}=\mathrm{L}_{2}+\mathrm{M}_{12} \\
& \mathrm{~B}=\mathrm{L}_{2} \\
& \mathrm{C}=\mathrm{L}_{2}+\mathrm{M}_{12}+\mathrm{M}_{23} \\
& \mathrm{D}=\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}_{12} \\
& \mathrm{E}=\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}_{12}+\mathrm{M}_{13}+\mathrm{M}_{23} \\
& \mathrm{~F}=\mathrm{V}_{\mathrm{S} 1} \\
& \mathrm{H}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+2 \mathrm{M}_{12}+2 \mathrm{M}_{13}+2 \mathrm{M}_{23} \\
& \mathrm{~J}=\mathrm{V}_{\mathrm{S} 3}
\end{aligned}
$$

and they are simultaneous equations which can be manipulated to solve for the unknowns x_{1}, x_{2} and x_{3}.
(i) Solution for $X_{1}\left({ }^{(d i} / d t\right)$

Eliminating x_{2} and x_{3} from equations (5.9) to (5.11) leads to

$$
\begin{align*}
{[(\mathrm{CE}-\mathrm{AH})} & \left.\left(\mathrm{A}^{2}-\mathrm{BD}\right)-(\mathrm{CD}-\mathrm{AE})(\mathrm{AC}-\mathrm{BE})\right] \mathrm{x} \\
& -\left[(\mathrm{CF}-\mathrm{AJ})(\mathrm{AC}-\mathrm{BE})+\mathrm{BF}\left(\mathrm{CE}-\frac{1}{\mathrm{~A}} \mathrm{H}\right)\right]=0 \tag{5.12}
\end{align*}
$$

The algebra required to convert this expression back to the original notation is extensive but not complex, and it is not reproduced here. The final result, adopting some further shorthand, is

$$
\begin{equation*}
\frac{\mathrm{di}_{1}}{\mathrm{dt}}=\frac{\mathrm{v}_{\mathrm{S} 3} \mathrm{X}-\mathrm{V}_{\mathrm{S} 1} \mathrm{Y}}{\mathrm{~L}_{1} \mathrm{~L}_{3}\left(2 \mathrm{k}_{12} \mathrm{k}_{13} \mathrm{k}_{23}-\mathrm{k}_{13}^{2}-\mathrm{k}_{12}^{2}-\mathrm{k}_{23}^{2}+1\right)} \tag{5.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& x=\sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}\right)+L_{1}\left(1-k_{12}{ }^{2}\right) \\
& Y=2 \sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}\right)+L_{1}\left(1-k_{12}^{2}\right)+L_{3}\left(1-k_{23}{ }^{2}\right)
\end{aligned}
$$

An initial check on the validity of this expression can be carried out by making $\mathrm{V}_{\mathrm{S} 3}$ equal to the open-circuit value given by equation (5.5). For this purpose, equation (5.5) can be rearranged as
and inserting this result into equation (5.13) gives

$$
\begin{equation*}
\frac{\mathrm{di}_{1}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{S} 1}}{\mathrm{~L}_{1}\left(1-\mathrm{k}_{12}{ }^{2}\right)}\left[\mathrm{X}^{2}-\mathrm{YL} \mathrm{I}_{1}\left(1-\mathrm{k}_{12}^{2}\right)\right] / \mathrm{W} \tag{5.15}
\end{equation*}
$$

where

$$
\mathrm{W}=\mathrm{L}_{1} \mathrm{~L}_{3}\left(2 \mathrm{k}_{12} \mathrm{k}_{13} \mathrm{k}_{23}-\mathrm{k}_{13}^{2}-\mathrm{k}_{12}^{2}-\mathrm{k}_{23}^{2}+1\right)
$$

The definitions of X and Y are as given for equation (5.13). By expanding the expression

$$
X^{2}-Y L_{1}\left(1-k_{12}^{2}\right)
$$

it can be shown that

$$
X^{2}-Y L_{1}\left(1-k_{12}^{2}\right)+W=0
$$

and thus that

which is identical to equation (4.5), where there is no ETAC.
(ii) Solution for $\mathrm{x}_{2}\left(\mathrm{di} \mathrm{I}_{2} / \mathrm{dt}\right)$

The unknown x_{2} is found in a manner similar to that for x_{1} above, using equations (5.9) to (5.11). Extensive manipulation of the expressions obtained leads to a final result of

$$
\begin{equation*}
\frac{\mathrm{di}_{2}}{d t}=\frac{\mathrm{V}_{\mathrm{S} 3}[\mathrm{M}-\mathrm{L}]+\mathrm{V}_{\mathrm{S} 1}[\mathrm{~J}+\mathrm{K}+\mathrm{L}-\mathrm{M}]}{\mathrm{WL}_{2}\left(1-\mathrm{k}_{12}^{2}\right)} \tag{5.17}
\end{equation*}
$$

where

$$
\begin{aligned}
& J=L_{2} L_{3}\left(1-k_{12}{ }^{2}-k_{23}{ }^{2}+k_{12}{ }^{2} k_{23}{ }^{2}\right) \\
& K=L_{3} \sqrt{L_{1} L_{2}}\left(k_{12}-k_{13} k_{23}-k_{12}^{3}+k_{12}{ }^{2} k_{13} k_{23}\right) \\
& L=L_{2} \sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}-k_{12}{ }^{2} k_{13}+k_{12}{ }^{3} k_{23}\right) \\
& M=L_{1} \sqrt{L_{2} L_{3}}\left(k_{23}-k_{12} k_{13}-k_{12}{ }^{2} k_{23}+k_{12}{ }^{3} k_{13}\right) \\
& W=L_{1} L_{3} \quad\left(2 k_{12} k_{13} k_{23}-k_{13}{ }^{2}-k_{12}-k_{23}^{2}+1\right)
\end{aligned}
$$

(iii) Solution for $\mathrm{x}_{3}(\mathrm{di} / \mathrm{dt})$

Starting from equations (5.9) to (5.11), x_{3} may be found in terms of x_{1} as

$$
\begin{equation*}
x_{3}=-\frac{v_{S 1}+L_{1}\left(1-k_{12}^{2}\right) x_{1}}{x} \tag{5.18}
\end{equation*}
$$

where X is as defined for equation (5.13).

The validity of this equation can be confirmed by setting x_{1} ($\mathrm{di}_{1} / \mathrm{dt}$) to the value it assumes when ETAC does not occur (as given by equation (5.16)). When this is done x_{3} becomes zero, because there is then no current flow in the switched-out loop. Completing the solution of equations (5.13) and (5.18) gives

$$
\begin{equation*}
\frac{\mathrm{di}_{3}}{\mathrm{dt}}=-\left[\frac{\mathrm{v}_{\mathrm{S} 3} \mathrm{~L}_{1}\left(1-\mathrm{k}_{12}^{2}\right)-\mathrm{v}_{\mathrm{Sl}} \mathrm{X}}{\mathrm{w}}\right] \tag{5.19}
\end{equation*}
$$

with X and W again as previously defined.

(iv) Final Current Values

At the end of phase one, i has fallen to zero, and for a linear energy transfer the duration of phase one δt can therefore be found from equation (5.13). With the initial value of i_{1} denoted by I_{1}, the result obtained is

> W

$$
\begin{equation*}
\delta t_{1}=I_{1} \frac{}{V_{S 3} x-v_{S 1} Y} \tag{5.20}
\end{equation*}
$$

The changes in i_{2} and i_{3} during phase one may now be found by substituting equation (5.20) into equations (5.17) and (5.19) respectively. This leads to

$$
\begin{equation*}
\delta i_{2}=\left[\frac{v_{S 3}[M-L]+v_{S 1}[J+K+L-M]}{v_{S 3}[L+N]-v_{S 1}[2 L+J+N]}\right] I_{1} \tag{5.21}
\end{equation*}
$$

where J, K, L and M are as defined for equation (5.17) and $N=L_{1} L_{2}\left(1+k_{12}^{4}-2 k_{12}^{2}\right)$
and

$$
\begin{equation*}
\delta i_{3}=-\left[\frac{V_{S 3} L_{1}\left(1-K_{12}^{2}\right)-V_{S 1} x}{V_{S 3} x-V_{S 1} Y}\right] I_{1} \tag{5.22}
\end{equation*}
$$

(v) Numerical Examples

Equations (5.21) and (5.22) may be tested by comparing the values they provide for the changes in i_{2} and i_{3} during phase one of an energy transfer with the values obtained from a circuit simulation using pSpice (see Appendix C). To achieve this, the equations are implemented as Fortran routines in the program "Ideal" (see Appendix E).

The first example is a two-step meatgrinder (see figure 5.3) designed purely for test purposes. The PSpice input file giving the circuit parameters is given in Appendix C.

The results for three different cases are given in table 5.1, with the corresponding current and voltage waveforms being shown in figures 5.6 to 5.8 . Table 5.1 also includes the results of a similar test carried out for the third energy transfer of the (simulated) six-step meatgrinder. The waveforms for this test are given in figure 5.9.

- $V(6)$

ㄱ 等

Ous	5 s	1045
- I (01)	E 1 (02)	
	Time	

Figure 5.6 Simulated Waveforms for ETAC Investigation: $\mathrm{v}_{\mathrm{S} 3}=175.4 \mathrm{~V}$

- V(6)

- V(3)

Ous	545	10us	15us
- 1 (01)	- I (02)	- I (03)	
	Time		

Figure 5.7 Simulated Waveforms for ETAC Investigation: $\mathrm{v}_{\mathrm{S} 3}=100 \mathrm{~V}$

- V(6)

$$
0 \quad 4(5)
$$

Figure 5.8 Simulated Waveforms for ETAC Investigation: $\mathbf{V}_{\mathbf{S 3}}=50 \mathrm{~V}$

- V(22)

\square V(23)

3045	35 s	40 us
- 1 (02)	(DS) $\cdot 1$ (04)	
	me	

Figure 5.9 Simulated Waveforms From Third Energy Transfer of Six-Step Meatgrinder

CLAMPING VOLTAGE v (V)	PHASE ONE DURATION ($\mu \mathrm{s}$)		FINAL VALUE OF i_{2} AFTER PHASE ONE (A)		FINAL VALUE OF i_{3} AFTER PHASE ONE (A)	
	THEORY	SIM'N	THEORY	SIM ${ }^{\text {N }}$	THEORY	SIM'N
175.4^{*}	7.52	7.57	14.08	14.04	0.00	0.00
100.0	4.18	4.22	9.35	9.37	2.52	2.52
50.0 **	3.24	3.26	8.00	8.00	3.24	3.23
150.0	1.16	1.26	16.19	16.02	3.40	3.38

(SIM'N=SIMULATION)

* open-circuit value calculated from equation (5.5)
** result from third transfer of six-step meatgrinder

Table 5.1 Comparison of Results from Theoretical Equations and Computer Simulation

5.3.2.2 Phase Two

In phase two the circuit is as shown in figure 5.10. Clearly this is the same configuration as for a normal energy transfer except that the initial value of i_{2} is now not zero.

For convenience, let the total inductance of L_{3} and L_{1} be denoted as L_{a}, that is

$$
L_{a}=L_{1}+L_{3}+2 M_{13}
$$

Figure 5.10 Current Flow During Phase Two of ETAC

Summing voltages around the two loops of figure 5.10 yields

$$
\begin{align*}
& \mathrm{Ax}_{3}+\mathrm{Bx} \tag{5.23}\\
& 2 \tag{5.24}
\end{align*}=00
$$

where

$$
\begin{aligned}
& x_{2}=\mathrm{di}_{2} / \mathrm{dt} \\
& \mathrm{x}_{3}=\mathrm{di}_{3} / \mathrm{dt} \\
& \mathrm{~A}=\mathrm{L}_{2}+\mathrm{M}_{\mathrm{a} 2} \\
& \mathrm{~B}=\mathrm{L}_{2} \\
& \mathrm{C}=\mathrm{L}_{\mathrm{a}}+\mathrm{L}_{2}+2 \mathrm{M}_{\mathrm{a} 2} \\
& \mathrm{D}=\mathrm{V}_{\mathrm{S}}
\end{aligned}
$$

Note also that $\mathrm{M}_{\mathrm{a} 2}=\mathrm{M}_{12}+\mathrm{M}_{32}$.

Eliminating x_{2} from equations (5.23) and (5.24) gives

$$
\begin{equation*}
x_{3}=\frac{d i_{3}}{d t}=-\frac{v_{S 3}}{L_{a}\left(1-k_{a 2}^{2}\right)} \tag{5.25}
\end{equation*}
$$

From equation (5.23), if the initial value of i_{3} is I_{3} and the transfer is linear, the change in i_{2} during phase two is

$$
\begin{equation*}
\delta i_{2}=-\left[\frac{L_{2}+M_{a 2}}{L_{2}} I_{3}\right] \tag{5.26}
\end{equation*}
$$

which is of the same form as equation (2.1). The minus sign indicates that i_{2} rises as i_{3} falls, and the value of I_{3} is given by equation (5.22).

5.3.2.3 Total Current Increase

The final value of i_{2} is found by adding the separate increases given by equations (5.21) and (5.26). This is again an exercise which is laborious rather than complex.

Appendix F gives a sample of the working necessary to obtain the final result. The Appendix also describes how the same task was subsequently performed in a fraction of the time using REDUCE, a computer algebra package.

The final result from the algebraic manipulation is

$$
\frac{I_{2}}{I_{1}}=\frac{L_{2}+M_{12}}{L_{2}}
$$

where

$$
\begin{aligned}
& I_{1}=\text { initial value of } i_{1} \\
& I_{2}=\text { final value of } i_{2}
\end{aligned}
$$

which is identical to the current multiplication when ETAC does not occur. Although this may seem surprising, it is logical when considered in terms of the conservation of flux linkage.

Equation (5.27) may be derived by applying the principle of flux linkage conservation to the loop containing L_{2} only. This loop remains closed throughout the transfer and therefore flux linkage must be conserved. The final result depends only on the initial and final current paths and is unaffected by any intermediate state such as occurs with ETAC.

5.3.3 Computer Simulation

Table 5.1 above gives results which refer only to phase one of the second energy transfer in a simulated two-step meatgrinder (see circuit diagram, figure 5.3). (The first transfer is of no interest in this case because ETAC cannot occur.)

The same simulated circuit was used to test the validity of equation (5.27). Table 5.2 gives the maximum current obtained in L_{2}, which in all but the first test is the current at the end of phase two. In the first test there is only one "phase" because ETAC does not occur.

CLAMPING VOLTAGE $\mathrm{V}_{\text {S3 }}$ (V)	DOES ETAC OCCUR?	MAXIMUM CURRENT (A)
175.4	no	14.04
100.0	yes	14.00
50.0	yes	13.92
25.0	yes	13.76

Table 5.2 Maximum Current in Simulated Two-Step Meatgrinder

It can be seen from table 5.2 that the final current is the same in each case, to within two percent, which confirms the validity of equation (5.27).
5.3.4 Experimental Results

The effect of preventing ETAC during the fifth step of the experimental six-step meatgrinder was investigated.

Figure 5.11(a) shows voltage and current waveforms in the unmodified circuit. It can be seen that for each energy transfer, the voltage across TR2 rises to its clamp value and current flows back through MOV2 as ETAC occurs.
(1)

D2 current
(2)

TR5 voltage
(3)

TR2 voltage
(1)

D2 current
(2)

TR5 voltage
(3)

L7 current

TR2 voltage

(a) No extra clamp applied

(b) With 10V zener diode across TR5

Figure 5.11 Prevention of ETAC During Fifth Step of Six-Step Meatgrinder

Figure 5.11(b) shows the effect of deliberately clamping the voltage across TR5 to a very low value with a 10 V zener diode. There is now no current flow back through MOV2 during the fifth and sixth transfers; the fifth transfer becomes an "ordinary" one with no ETAC, and whilst ETAC again occurs during the sixth transfer, it is controlled by the voltage across TR5.

Clearly, however, the current multiplication at the fifth step is reduced, with the current rising to less than 60A compared to 70A previously. This is attributable to the effect of resistance, as described in Chapter 4. Comparing figures $5.11(\mathrm{a})$ and $5.11(\mathrm{~b})$ it will be seen that the voltage across TR5 is lower throughout the transfer. Therefore, again as explained in Chapter 4, a longer time is required to transfer the energy. Whilst energy is transferred forward more slowly than before, the circuit resistance dissipates energy through copper loss at the same rate as before. Thus allowing extra time has no beneficial effect because the current levels off and then begins to fall.

The simulated two-step circuit referred to earlier has no coil resistance, but the constraints of the simulation program mean that there has to be a non-zero switch resistance in the onstate. (Specifically, the maximum value of $R_{o f f} / R_{\text {on }}$ is 10^{12}.) This accounts for the very gradual fall in maximum current as the clamp voltage is reduced, because, as figures 5.6 to 5.8 show, reducing the clamp voltage increases the total time necessary for the energy transfer. The energy dissipated in the resistance increases because of the increased transfer time, thereby reducing the efficiency of the meatgrinder.

5.4 INVESTIGATION OF INTERNAL TRANSFORMER ACTION CLAMPING

It has been shown previously that ETAC does not degrade the efficiency of a meatgrinder because it has no effect on the initial and final flux linkages. If the same were true of ITAC, then it too would have no effect on the final current obtained.

5.4.1 Simulation of Negative ITAC

To investigate the effect of negative ITAC, the circuit of figure 5.12 was simulated, using the PSpice input file given in. Appendix C. Zener diode DZ4 allows for simulation of negative ITAC when switched in by 54 . This circuit arrangement (rather than simply replacing $D 3$ with a zener diode) was found to be necessary in order to force PSpice to generate the correct initial conditions.

Figure 5.12 Simulated Two-Step Meatgrinder for Investigation of ITAC

Figure 5.13 shows the results when there is no ITAC. It can be seen that node 3 goes 150V negative during the first transfer and that the final current after the second transfer is 20A.

To force ITAC to occur, DZ4 is given a breakdown voltage of 50V and switched in when the first transfer starts. Figure 5.14(a) shows the negative current in DZ4 rising to a peak and then falling to zero. When it has done so, the current in D2 is at the same level as in the non-ITAC case - just over 14A.

It is clear that, as with ETAC, the transfer now occurs in two phases. As before, the first phase ends when the current in the first loop (that is, the loop with the opening switch) has fallen to zero. At the end of the second phase there is no current in DZ4 and the current path is identical to the non-ITAC case. Thus the same flux linkage considerations described for ETAC apply. The current multiplication is consequently unchanged.

The second transfer proceeds as normal, leading to a final current of 20A.

It will be noted from figure 5.14(a) that at the end of phase one of the first energy transfer, the current in D2 is higher than it is at the end of phase two (17A compared to 14A). This is because the clamp current through DZ4 also flows through D2.

A third simulation was carried out in which the second energy transfer was initiated at the end of phase one of the first transfer. The results are shown in figure 5.15 , from which it can be seen that the final current is significantly less than 20A. This is not a resistance effect, however, because the whole process now takes less time. The reduced efficiency must therefore be due to the current still flowing in DZ4 when the

(a) Currents

Figure 5.13 Simulated Two-Step Meatgrinder - No ITAC

Time
(b) Voltages

Figure 5.13 Simulated Two-Step Meatgrinder - No ITAC

(a) Currents

Figure 5.14 Simulated Two-Step Meatgrinder With ITAC

(b) Voltages

Figure 5.14 Simulated Two-Step Meatgrinder With ITAC

(a) Currents

Figure 5.15 Simulated Two-Step Meatgrinder With ITAC and Incorrect Timing for Second Transfer

(b) Voltages

Figure 5.15 Simulated Two-Step Meatgrinder With ITAC and Incorrect Timing for Second Transfer
energy transfer is initiated. Effectively this means that the first energy transfer is incomplete when the second one starts and this leads to additional energy loss. (See Chapter 3 for the first discussion of this principle.)

5.4.2 Positive ITAC

Positive ITAC can occur if an in-circuit inductance voltage causes the clamp device across one of the switches to break down. clamp current would then flow around the loop indicated in figure 5.16(c).

This phenomenon has not been investigated in detail because the principles discussed previously for ETAC and negative ITAC also apply to positive ITAC. In other words the energy transfer occurs in two phases, the second phase being complete when the clamp current has fallen to zero. At this point the circuit conditions are the same as in the non-ITAC case, and the current multiplication is identical.

(a) ETAC

(b) Negative ITAC

(c) Positive ITAC

Note: For clarity, only relevant diodes etc, . are shown. Arrows indicate path of clamp current.

Figure 5.16 Clamp Current Paths Related to TAC

5.5 EFFECT OF TRANSFORMER ACTION CLAMPING ON TRANSFER TIME

5.5.1 Analysis for ETAC

The analysis below again refers to the two-step meatgrinder shown in figure 5.3, although the result is applicable to any meatgrinder energy transfer where ETAC can occur. Much of the notation used is as defined previously, but in addition t_{1}, t_{2} and t_{3} are defined as:

```
\(t=\) duration of second transfer with no ETAC
\(t^{1}=\) duration of phase one of second transfer with ETAC
\(t_{3}^{2}=\) duration of phase two of second transfer with ETAC
```

Assuming a linear energy transfer, t_{1} is found from equation (5.16) to be

$$
\begin{equation*}
t_{1}=I_{1} \frac{L_{1}\left(1-k_{12}^{2}\right)}{V_{S 1}} \tag{5.28}
\end{equation*}
$$

where I_{I} is the initial value of i_{1}.

Similarly, t_{2} follows from equation (5.13) and is

$$
\begin{equation*}
t_{2}=I_{1} \frac{-W}{V_{S 3} X-v_{S 1} Y} \tag{5.29}
\end{equation*}
$$

(The minus sign results from the fact that $\delta i_{1}=-I_{1}$ during phase one.)

Equation (5.25) gives t_{3} in terms of I_{3} as

$$
\begin{equation*}
t_{3}=I_{3} \frac{L_{a}\left(1-k_{a 2}^{2}\right)}{v_{S 3}} \tag{5.30}
\end{equation*}
$$

where I_{3} is the value of i_{3} at the beginning of phase two.
Now $L_{\text {a }}$ was defined previously in section 5.3.2.2 as

$$
\begin{equation*}
L_{a}=L_{1}+L_{3}+2 M_{13} \tag{5.31}
\end{equation*}
$$

and $k_{a 2}$ is the coupling coefficient between L_{a} and L_{2}. The constant term $k_{a 2}$ can be eliminated from equation (5.30) by considering the mutual inductance $M_{a 2}$, which is, of course,

$$
\begin{equation*}
M_{a 2}=M_{12}+M_{32} \tag{5.32}
\end{equation*}
$$

where M_{12} and M_{32} are the mutual inductances between L_{1} and L_{2}, and between L_{3} and L_{2} respectively.

Expressing the mutual inductances in equation (5.32) in terms of coupling coefficients and self inductances (e.g. $M_{12}=k_{12} \sqrt{L_{1} L_{2}}$) yields an expression for $\mathrm{k}_{\mathrm{a} 2}$. It is found subsequently that

$$
\begin{equation*}
1-k_{a 2}^{2}=\frac{Y}{L_{a}} \tag{5.33}
\end{equation*}
$$

where Y is as defined for equation (5.13).

Equation (5.30) can now be expanded, with the value of I_{3} being obtained from equation (5.22) (the minus sign is unnecessary, since this refers to the change in I_{3}). The result obtained is

$$
\begin{equation*}
t_{3}=I_{1}\left[\frac{v_{S 3} L_{1}\left(1-k_{12}^{2}\right)-v_{S 1} x}{v_{S 3} x-v_{S 1} y}\right] \frac{y}{v_{S 3}} \tag{5.34}
\end{equation*}
$$

Adding equations (5.29) and (5.34) shows that the total transfer time when ETAC occurs is

$$
\begin{equation*}
t_{2}+t_{3}=\frac{I_{1}}{v_{S 3}}\left[\frac{v_{S 3} B-v_{S 1} x y}{v_{S 3} x-v_{S 1} y}\right] \tag{5.35}
\end{equation*}
$$

where

$$
\mathrm{B}=\mathrm{YL}_{1}\left(1-\mathrm{k}_{12}^{2}\right)-\mathrm{W}
$$

In deriving equation (5.16) it was noted that

$$
\mathrm{YL}_{1}\left(1-\mathrm{k}_{12}^{2}\right)-\mathrm{W}=\mathrm{X}^{2}
$$

and it therefore follows that equation (5.35) can be rewritten as

$$
\begin{align*}
t_{2}+t_{3} & =\frac{x I_{1}}{v_{S 3}}\left[\frac{v_{S 3} x-v_{S 1} Y}{v_{S 3} x-v_{S 1} y}\right] \\
& =\frac{X I_{1}}{v_{S 3}} \tag{5.36}
\end{align*}
$$

The ratio of the total transfer times in the ETAC and non-ETAC cases is found, by dividing equation (5.36) by equation (5.28), to be

$$
\begin{equation*}
\frac{t_{2}+t_{3}}{t_{1}}=\frac{v_{S 1}}{v_{S 3}}\left[\frac{x}{L_{1}\left(1-k_{12}^{2}\right)}\right] \tag{5.37}
\end{equation*}
$$

The definition of X, as given for equation (5.13), is

$$
x=\sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}\right)+\dot{L}_{1}\left(1-k_{12}^{2}\right)
$$

and this enables equation (5.37) to be rewritten as

$$
\begin{equation*}
\frac{t_{2}+t_{3}}{t_{1}}=\frac{v_{S 1}}{v_{S 3}}\left[\sqrt{\frac{L_{3}}{L_{1}}}\left[\frac{k_{13}-k_{12} k_{23}}{1-k_{12}^{2}}\right]+1\right] \tag{5.38}
\end{equation*}
$$

Finally, reference to equation (5.5) shows that

where V is the open-circuit voltage across $s 3$ in the non-ETAC case and ${ }^{/} \mathrm{V}_{\mathrm{S} 3}$ is the voltage at which a clamp device across 53 breaks down, thereby allowing ETAC to occur.

If ETAC is able to occur, $v_{0 / c}$ must by definition be greater than $\mathrm{V}_{\mathrm{S} 3}$. The transfer time ${ }^{\circ} \mathrm{C}$ when ETAC occurs will therefore always be greater than when it does not.

It will be noted that equation (5.39) is only meaningful if the clamp voltage of the clamp device across S_{3} is less than $V_{o / c}$.
5.5.2 Principle

5.5.2.1 ETAC

The equation for the voltage induced in an inductive circuit, if neither the inductance nor the current is constant, is

$$
V=\frac{d(L I)}{d t}
$$

from which the time for a linear change in the flux linkage LI is

$$
\begin{equation*}
\delta t=\frac{\delta(\mathrm{LI})}{\mathrm{V}} \tag{5.40}
\end{equation*}
$$

Equation (5.40) shows that the time required to bring about a given change in flux linkage is inversely proportional to the voltage causing the change. Such a relationship is expressed by equation (5.39) because the change in flux linkage is identical whether ETAC occurs or not. In both cases, the change in inductance is the same because the same coil section is switched out, and in both cases the current multiplication is the same, as was demonstrated in section 5.3.

Equation (5.36) shows that when ETAC occurs, the energy transfer time is controlled by the clamp voltage of 53 . Hence it is this voltage which is to be regarded as "causing the change", even though the transfer is initiated by opening $\mathbf{S 1}$.

Figure 5.4 shows that the clamp device across 53 (which is in series with D3) has current flowing through it for the whole of the transfer, which is the distinguishing characteristic marking out the "controlling" voltage. Thus when there is no TAC, it is the voltage across the opening switch itself which controls the transfer time because it is the clamp device across this switch which carries current for the whole transfer. (See the previous discussion in Chapter 4.)

5.5.2.2 ITAC

It has been shown that with regard to current multiplication, the same considerations apply to ITAC as to ETAC. This is also true for the effect of ITAC on transfer time, since the change in flux linkage is the same whether ITAC occurs or not. For a given opening switch voltage, therefore, the transfer time is again controlled by (i.e. is inversely proportional to) the voltage across the device which carries current for the whole transfer.

For the example circuit of figure 5.12, DZ4 is the clamp device which carries current for the whole transfer when ITAC occurs (see figure 5.14(a)). Thus, if other parameters remain unchanged, the transfer time is inversely proportional to the clamp voltage of DZ4 (see below).

If positive ITAC were to occur (see figure 5.16(c)), the same reasoning would again apply. For example, in the circuit of figure 5.12, the transfer time would be controlled by the breakdown voltage of DZ3.

5.5.3 Simulation Results

Simulations based on the circuits of figures 5.3 and 5.12 were used to obtain transfer time figures for three cases of ETAC and three cases of ITAC respectively. The corresponding transfer
time in each circuit with no TAC was also obtained. Figures 5.17 and 5.18 show the theoretical values of the ratio $\left(t_{2}+t_{3}\right) / t_{1}$ for the transfers considered in both circuits. The curves are derived by assuming that

$$
\begin{equation*}
\frac{t_{2}+t_{3}}{t_{1}}=\frac{v_{0 / c}}{v_{c}} \tag{5.41}
\end{equation*}
$$

where V_{c} is the clamp voltage of the device causing TAC, and $V_{o / c}$ is the corresponding unclamped voltage. Equation (5.41) is a/generalised form of equation (5.39), and applies to both ETAC and ITAC.

The transfer times given by the simulations are marked on figures 5.17 and 5.18, and it can be seen that they lie on the theoretical curve. This shows that equation (5.41) is correct.

5.5.4 Conclusion

The occurrence of TAC in any mode slows down the energy transfer process, with the new transfer time being inversely proportional to the clamp voltage of the device causing the TAC. This confirms Giorgi's observation [27] that when ETAC occurred in his circuit, he obtained the same current multiplication but an increased transfer time.

In practical circuits an increased transfer time may in fact reduce the efficiency because of the resistance effect (see Chapter 4). The statement made by Long et al [43] to the effect that ETAC could reduce efficiency is thus also valid.

Figure 5.17 Variation of Transfer Time Ratio - Simulation of ETAC
(Symbols indicate simulation results)

Figure 5.18 Variation of Transfer Time Ratio

- Simulation of ITAC
(Symbols indicate simulation results)

5.6 DESIGN IMPLICATIONS OF TRANSFORMER ACTION CLAMPING

5.6.1 Introduction

It has been shown that for a given opening switch voltage, the energy transfer process is completed most rapidly if TAC does not occur. Although slowing down the transfer can increase the resistive losses, as described above, of equal importance is the fact that even if the same energy is delivered to the load, the increased time of delivery reduces the output power.

It could be said that there is an advantage to TAC, in that the energy dissipated during a transfer is shared between two or more clamp devices, thereby reducing the demand on each individual device. Although this could be important at high energy levels, it will generally be far less significant than the drawbacks outlined above. Thus the approach normally would be to attempt to minimise the effect of TAC.

5.6.2 ETAC

To avoid ETAC during any given transfer it is first necessary to calculate (or obtain by simulation) all external induced voltages for the opening switch voltage to be used. It must then be ensured that in the practical circuit, all clamp devices are rated sufficiently high to prevent breakdown. This can, however, be difficult to achieve in a practical circuit because of the cumulative effect of the induced voltages.

In the six-step meatgrinder, for example, it was necessary to clamp TR5 to about 10 V in order to prevent TR2 causing ETAC
during the fifth transfer (see above). Recalling that TR2 clamps at about 160V, this means that if the voltage across TR5 was allowed to rise to 100 V (in order to obtain reasonable transfer speed), then TR2 would have to withstand about 1600V without breaking down if ETAC was to be prevented. The problem then would be to find a switch with the combination of high breakdown voltage, low on-state resistance, and sufficient current-carrying and current-breaking capacity. Long et al [43] comment that the voltage ratios involved tend to lead to "impractical results", i.e. the open-circuit induced voltages are so high that it is not possible to find suitable switches.

5.6.2.1 Compound Switch

As a posssible solution to obtaining the desired switch characteristics, Lindner [30] proposed the compound switch shown in figure 5.19. The switch element 51 has the required current capacity and on-state resistance but only a relatively low breakdown voltage. Both elements are closed whilst that particular branch is conducting, and $S 1$ is opened to effect the energy transfer in the normal way. Once the current has fallen to zero, $S 2$ is opened. Element $S 2$ cannot break current but has a sufficiently high breakdown voltage to prevent ETAC.

Figure 5.19 Compound Switch to Prevent ETAC

5.6.2.2 Series Switches

Long et al [43] have demonstrated an alternative approach which reduces the external induced voltage problem. This involves placing the opening switches in series with the coil sections, as illustrated in figure 5.20.

Initially all the series switches S1, S3 etc. are closed and all the parallel switches $\mathrm{S} 2, \mathrm{~S} 4$ etc. open. Operation then proceeds as follows: close S2 - open S1 - close S4 - open S3...close Sn open Sn-1. The difference between this and the normal method of operation is that the series switches break the electrical connection between the coil sections. Thus, although each switched-out coil section still experiences an induced voltage, there is no cumulative effect and the breakdown voltage requirement is thereby reduced.

The disadvantage of this method of switching is that since the on-state resistances of the series switches add up, they must be very low. In addition, twice as many switches are required as in the normal circuit configuration. (Long et al [43] present a circuit diagram in which the closing switches $52, \mathrm{~S} 4$ etc. are replaced by diodes. They do not, however, explain how multiple current paths are avoided in such a circuit. In figure 5.20, for example, if $S 2, S 4$ etc. are replaced by diodes, then when $S 1$ is opened, current will flow simultaneously in several loops, rather than flowing only in the loop containing S2.)

If ETAC cannot be avoided, it is clear that the principle to be followed is simply to use switches with as high a voltage rating as is practicable.

Figure 5.20 Meatgrinder Kith Series Switches

5.6.3 ITAC

Of the authors referred to in this research, only Legentil and Rioux [13] acknowledge the possibility of ITAC. However, as has been reiterated several times, ITAC is in principle the same phenomenon as ETAC. The same design principle applies: that is, that in order to avoid or minimise the speed reduction caused by ITAC, voltage ratings should be as high as practicable.

5.6.3.1 Component Protection

As described previously in Chapter 4, negative ITAC means that the blocking diodes must be capable of non-destructive breakdown. Even if ITAC is not expected, the unpredictable effects of noise mean that protection is still required.

The ordinary diode cannot simply be replaced because zener-type devices tend to have insufficient forward current rating. It is also often the case that no data is given for turn-on time for forward conduction. Therefore an arrangement such as that shown in figure 5.21 is required.

The protection device could be a zener diode, a transient voltage suppressor or a non-linear resistor such as a MOV (see component descriptions in Chapter 3). The purpose of the series diode is to prevent forward conduction via the protection device.

Figure 5.21 Protection for Blocking Diode

Protection should also be provided for the last switch in a multi-step circuit (such as TR7 in the six-step meatgrinder), even though it does not break current. This is to protect the switch from either predicted positive ITAC or unexpected noise spikes.

CHAPTER SIX

OPTIMISATION OF MEATGRINDER DESIGNS

6.1 INTRODUCTION

There will be many possible meatgrinder designs which can meet a given performance specification. This Chapter provides an introduction to the area of optimisation; that is, finding the best design possible rather than simply one which works.

A typical design requirement could be to minimise the number of steps required to produce a given current multiplication and efficiency. As this is a very broad problem, the approach taken was to examine the more specific question of maximising the efficiency for a given number of steps and a fixed current multiplication. Solving this problem should provide data which can be used to meet the more usual type of design requirement.

The single-step meatgrinder is considered first. This implementation is both simple and potentially very useful [26,28,32,33,35]. For the case of a series-connected uncoupled load it is shown that the efficiency of energy transfer may be maximised by the correct choice of meatgrinder inductances. Experimental work which supports this finding is described. It is further shown that the use of a decompression switch [27] to short out the load during charging of the meatgrinder coil does not change these optimum inductance values.

The possibility of optimisation is further demonstrated for the case of a two-step circuit.

6.2 ANALYSIS OF UNLOADED SINGLE-STEP MEATGRINDER

Figure 6.1 shows an unloaded single-step meatgrinder, the operation of which was introduced in Chapter 2. From Chapter 2, the current multiplication β is

$$
\begin{equation*}
\beta=\frac{I_{2}}{I_{1}}=\frac{L_{2}+M}{L_{2}} \tag{6.1}
\end{equation*}
$$

and the step efficiency is

$$
\begin{equation*}
\eta_{s}=\frac{1+k^{2} \alpha+2 k \alpha}{1+\alpha+2 k \alpha}=\frac{(1+k \sqrt{\alpha})^{2}}{1+\alpha+2 k \alpha} \tag{6.2}
\end{equation*}
$$

where $\alpha=L_{1} / L_{2}$.
From equation (6.1) the inductance ratio α can be expressed as

$$
\begin{equation*}
\alpha=\frac{(\beta-1)^{2}}{\mathrm{k}^{2}} \tag{6.3}
\end{equation*}
$$

since $M=k \sqrt{L_{1} L_{2}}$. Substituting equation (6.3) into equation (6.2) then yields

$$
\eta_{s}=\frac{\mathrm{k}^{2} \beta^{2}}{\beta^{2}+\left(\mathrm{k}^{2}-1\right)(2 \beta-1)}
$$

Figure 6.1 Operation of Unloaded Single-Step Meatgrinder

6.3 ANALYSIS OF LOADED SINGLE-STEP MEATGRINDER

The addition of an uncoupled load inductance in series with L_{2} (figure 6.2) does not affect the operation of the circuit. However, the coupling coefficient k must be modified to account for the load. As described in Appendix D, this leads to the result

$$
\begin{equation*}
k^{\prime}=k\left[\frac{L_{2}}{L_{2}+L_{\text {LOAD }}}\right]^{\frac{1}{2}} \tag{6.5}
\end{equation*}
$$

Figure 6.2 Single-Step Meatgrinder With Uncoupled Load

In addition to calculating the step efficiency, account must also be taken of the fact that some of the final circuit energy remains stored in L_{2}. This leads to a further efficiency penalty η_{u}, where

$$
\begin{equation*}
\eta_{u}=\frac{L_{\text {LOAD }}}{L_{2}+L_{\text {LOAD }}} \tag{6.6}
\end{equation*}
$$

Now, let the inductance ratios $L_{1} / L_{\text {LOAD }}$ and $L_{2} / L_{\text {LOAD }}$ be referred to as σ_{1} and σ_{2} respectively. Equation (6.5) shows that as σ_{2} increases, the value of k^{\prime} approaches that of k . This means that for a given value of current multiplication β, the step efficiency η_{s} improves. The uncoupled load penalty η_{u}, however, simultaneously becomes smaller (equation (6.6)). The optimisation requirement is to determine the net effect on the total efficiency η_{t}, where

$$
\begin{equation*}
\eta_{\mathrm{t}}=\eta_{\mathrm{s}} \eta_{\mathrm{u}} \tag{6.7}
\end{equation*}
$$

To analyse the effect of σ_{2} on η_{t}, equation (6.7) is expanded. The step efficiency η_{s} is given by equation (6.4), but with k^{\prime} in place of k. If η_{u}^{s} is expressed in terms of σ_{2}, then multiplying the expressions for η_{s} and η_{u} yields

$$
\begin{aligned}
& \eta_{t}=\frac{\mathrm{k}^{2} \beta^{2} \sigma_{2}}{\sigma_{2}^{2}\left[\beta^{2}-2 \beta\left(1-\mathrm{k}^{2}\right)+\left(1-\mathrm{k}^{2}\right)\right]+\sigma_{2}\left[2 \beta^{2}-2 \beta\left(1-\mathrm{k}^{2}\right)-2 \beta+\left(1-\mathrm{k}^{2}\right)+1\right]} \\
&+\left[\beta^{2}-2 \beta+1\right]
\end{aligned}
$$

Differentiating this result with respect to σ_{2} yields

$$
\begin{equation*}
\frac{d \eta_{t}}{d \sigma_{2}}=\frac{k^{2} \beta^{2} A-k^{2} \beta^{2} \sigma_{2}\left(d A / d \sigma_{2}\right)}{A^{2}} \tag{6.9}
\end{equation*}
$$

where

$$
A=\left[\beta^{2}\left(\sigma_{2}+1\right)+\left(k^{2} \sigma_{2}-\sigma_{2}-1\right)(2 \beta-1)\right]\left[1+\sigma_{2}\right]
$$

The stationary points of equation (6.8) are located by equating its derivative to zero. This leads to a non-imaginary value of the inductance ratio σ_{2} of

$$
\sigma_{2(\text { stat })}=\frac{\beta-1}{\left[\beta^{2}-2 \beta\left(1-k^{2}\right)+\left(1-k^{2}\right)\right]^{\frac{1}{2}}}
$$

The nature of this stationary point may be determined from the following observations:
(a) Differentiation of equation (6.8) shows that the function for σ_{2} has only one stationary point in the region of interest between zero and infinity. This means that the stationary point cannot be a local minimum or maximum and must either be an absolute maximum, an absolute minimum or a point of inflexion.
(b) When $\sigma_{2}=0, \eta_{t}=0$ (except for the special case $\beta=1$, when η_{t} is indeterminate, but this case is not of interest because it has no physical meaning).
(c) As σ_{2} tends to infinity, η_{t} tends to zero.
(d) It follows from (b) and (c) that the function has a lower value at the extremes of the region of interest than it does at the stationary point. Hence the stationary point is an absolute maximum.

Equation (6.10) thus provides the optimum value of σ_{2}, for which the energy transfer efficiency η_{t} is maximised.

An example of the variation of η_{t} with σ_{2} for given values of current multiplication and coupling coefficient is shown in figure 6.3. As σ_{2} increases, the increase in η_{s} is initially much more significant than the decrease in η_{u} and the overall efficiency η_{t} rises rapidly. The function is such that as the peak efficiency is approached, the curve begins to level off

Figure 6.3 Example Showing Variation of Efficiency With $L_{2} / L_{\text {LOAD }}$ (Multiplication $=2$, No Decompression)
before subsequently rising to a slightly higher peak. The peak is not sharply defined, σ values either side of the true optimum only affecting the efficiency by one or two percent. As σ_{2} increases further, η_{t} rolls off slowly as the decrease in η_{u} becomes more significant.

The analysis is completed by determining σ_{1} in terms of σ_{2}, so that both meatgrinder self inductances are known in terms of the load inductance. This is achieved by modifying equation (6.3) to account for the load inductance so that it becomes

$$
\begin{equation*}
\frac{L_{1}}{L_{2}+L_{\text {LOAD }}}=\frac{(\beta-1)^{2}}{k^{\prime 2}} \tag{6.11}
\end{equation*}
$$

Substituting equation (6.5) into equation (6.11) gives

Figures 6.4(a) to 6.4(c) are sample curves derived from the above equations. They indicate at a glance the capability of an ideal single-step meatgrinder circuit.

Figure 6.4(a) Single Step Transfer Efficiency at Optimal Conditions (Uncoupled Load, No Decompression)

Figure 6.4(b) Optimum Values of $\mathrm{L}_{2} / \mathrm{L}_{\text {LOAD }}$ for Single Step,
No Decompression

Figure 6.4(c) Optimum Values of $L_{1} / L_{\text {LOAD }}$ for single step,
No Decompression

6.4 ANALYSIS OF SINGLE-STEP MEATGRINDER WITH DECOMPRESSION

6.4.1 Introduction

In some cases it is undesirable for load current to flow whilst the meatgrinder is storing energy from the source, since this process may take a relatively long time. In such cases a switch (referred to as a decompression switch) is used to short out the load during charging. Once the desired current has been reached, the switch is opened in order to bring the load into circuit (see figure 6.5); operation then proceeds as before.

(a) Charging

(b) Load Brought into Circuit by Opening Decompression Switch Figure 6.5 Use of Decompression Switch
"Decompression" means that the flux is initially generated by the current in a single inductor; a second inductor is then brought into circuit and generation of the flux is divided between the two. The process leads to both a reduction in current and a loss of energy in the switch.

Defining the decompression efficiency η_{d} as the ratio of the total circuit energy after decompression to the initial circuit energy, and the decompression current ratio β_{d} as the ratio of the corresponding currents, it follows that

$$
\begin{equation*}
\beta_{d}=\eta_{\mathrm{d}}=\frac{\mathrm{L}_{\mathrm{T}}}{\mathrm{~L}_{\mathrm{T}}+\mathrm{L}_{\mathrm{LOAD}}} \tag{6.13}
\end{equation*}
$$

where L_{T} is the total meatgrinder inductance.

6.4.2 Mathematical Analysis

The decompression current ratio β_{d} simply serves to indicate the initial charge current necessary to give the required initial load current. The meatgrinder action again multiplies the current in the load by a factor β.

The overall efficiency with decompression $\eta_{t d}$ is given by

$$
\begin{equation*}
\eta_{\mathrm{td}}=\eta_{\mathrm{s}} \eta_{\mathrm{u}} \eta_{\mathrm{d}}=\eta_{\mathrm{t}} \eta_{\mathrm{d}} \tag{6.14}
\end{equation*}
$$

where the other symbols have their previous meaning.

The total efficiency η_{t} may be derived as described previously. By expanding L_{T} and using equation (6.13) to substitute for L_{1}, the decompression efficiency η_{d} may be expressed in terms of $\boldsymbol{\beta}^{\prime}$
and σ_{2}. The total efficiency with decompression $\eta_{t d}$ may subsequently be expressed as

$$
\begin{equation*}
\eta_{t d}=\frac{k^{2} \beta^{2} \sigma_{2}}{A} \cdot \frac{\left(A-k^{2} \sigma_{2}\right)}{A} \tag{6.15}
\end{equation*}
$$

Again, it is the stationary points of this function which are of interest. Differentiating equation (6.15) with respect to σ_{2} and equating the derivative to zero leads to the condition:

$$
\begin{equation*}
\left[A-2 k^{2} \sigma_{2 d}\right] \cdot\left[A k^{2} \beta^{2}-k^{2} \beta^{2} \sigma_{2 d}\left(d A / d \sigma_{2}\right)\right]=0 \tag{6.16}
\end{equation*}
$$

where $\sigma_{2 d}$ is the stationary point value of σ_{2} with decompression.

The values of $\sigma_{2 d}$ are found by equating each of the two brackets in turn to zero. It can be seen that the second bracket then yields exactly the same result as the non-decompression case (equation (6.10)). Substituting for A in the first bracket and equating to zero leads to a quadratic in σ_{2} the roots of which are imaginary and therefore not of interest.

There is therefore again only one stationary point of interest, and as before it is a maximum. This shows that the optimum value of σ_{2} is the same with or without decompression.

Figure 6.6 refers to the same example as figure 6.3 and shows how decompression degrades the efficiency without shifting the point at which the maximum occurs.

Figure 6.7 is derived from figure 6.4(a) by multiplying each efficiency value by η_{d}. It can be seen that there is a peak in the curve for the case $k_{12}=0.9$. This is a consequence of the fact that as the current multiplication rises, the meatgrinder

Figure 6.6 Example Showing Optimum Efficiency of a Single Step (Current Multiplcation $=2$)

Figure 6.7 Single Step Transfer Efficiency at Optimal Conditions (Uncoupled Load, With Decompression)
efficiency η_{t} falls (see figure 6.4(a)), whereas the decompression efficiency η_{d} rises because the meatgrinder inductance becomes larger relative to the load inductance. The shape of the optimal efficiency curve therefore depends on the net effect of these two trends.

6.5 EXPERIMENTAL RESULTS FOR A SINGLE-STEP MEATGRINDER

6.5.1 Objective

The theory given above shows that, for a given coupling coefficient between the meatgrinder coil sections, the same current multiplication can be achieved with many different sets of meatgrinder inductances. Although the current multiplication is the same, however, the efficiency is different in each case. An optimum set of inductances exists which maximises the efficiency.

The purpose of the experiments discussed below is to provide a demonstration of this principle in operation.

6.5.1.1 Specification

The case arbitrarily chosen for the demonstration has the following parameters:

```
Current multiplication = 3
Coupling coefficient = 0.9
Load inductance = 100\muH
```

Figure 6.8 shows the theoretical efficiency curve for this case, as derived from equation (6.8). The three representative values of σ_{2} (i.e. $L_{2} / L_{L O A D}$) chosen for the experiments are indicated. Also shown are the three experimental results (see discussion below).

Figure 6.8 Values for Multiplication $=3, k=0.9$, No Decompression

An initial current of loA was selected so that switching could again be carried out with MOSFETs. (The advantages of MOSFETs were described in Chapter 3.)

6.5.2 Coil Design

6.5.2.1 Choice of Geometry

It was decided that the meatgrinder should consist of two concentric single-layer solenoids. Concentric solenoids have been successfully used in other meatgrinder work $[27,28]$, and the single-layer type are relatively simple to design and construct. High magnetic coupling can be obtained by making the coils large, so that the difference in cross-sectional areas is small. Even if the two inductances are very different, a high coupling coefficient can still be obtained by using different wire or strip sizes to produce coils of roughly equal width.

6.5.2.2 Design Procedure

The inductance formula used is that given by Welsby [53]. It approximates the coil to a cylindrical current sheet, and is appropriate where the turns are close together and the radial thickness of the winding is small compared to the coil radius.

The formula is

$$
\begin{equation*}
L=\frac{a^{2} N^{2}}{b} \cdot \frac{1}{1+0.9(a / b)-0.02(a / b)^{2}} \cdot 4 \pi^{2} \times 10^{-3} \mu H \tag{6.17}
\end{equation*}
$$

where
a $=$ coil radius in cm
$\mathrm{b}=$ coil width in cm
$\mathrm{N}=$ number of turns

In order to minimise constructional difficulties, the radius of the outer coil (L_{1}) was restricted to 25 cm . A convenient nominal coil width of 10 cm was chosen. Equation (6.17) was then applied on a trial and error basis in order to find the number of turns needed to give the required inductance. The wire diameter or strip width required was given by the coil width divided by the number of turns.

In each of the three cases, L_{1} and L_{2} were designed to have the same width.

The load inductor was designed in a similar manner.

6.5.2.3 Mechanical Construction

Coil formers were constructed from wood and "Darvic" insulating material. Winding was carried out manually by suspending the former on a lathe and securing the winding with polyester adhesive tape at regular intervals.

The meatgrinder coils are shown in figure 6.9. The outer coil L_{1} is on the right and is wound with enamelled copper wire,
whilst the inner coil L_{2}, on the left, is wound with copper strip insulated with polyester film. In this particular case, L_{2} was not wound as a single layer, the required inductance being obtained by trial and error. This was due to the required srip width being unavailable.

Figure 6.9 Coils for Single-Step Meatgrinder

With L_{2} fitting snugly inside L_{1}, adjustment of the coupling coefficient is provided by a screw arrangement constructed so as to enable L_{2} to be moved along the common axis of the two coils. To make the arrangement functional, the threaded rod and handle assembly is first removed from $L_{2} . L_{2}$ is then placed inside L_{1},
with the legs underneath L_{2} sliding through holes in the base of L_{1}. The lid shown just behind L_{1} is then screwed in place and the threaded rod re-inserted. The rod screws into a threaded plate on the base of L_{2}, and the handle on the end of the rod bears down on the top lid. Thus when the handle is turned, L_{2} is forced to move relative to L_{1}.

Figure 6.10 shows the assembled meatgrinder connected to the load coil.

Figure 6.10 Single-Step Meatgrinder With Load Coil

6.5.2.4 Measurements

The coil inductances were measured at 10 kHz (the highest frequency available on the instrument used), care being taken to keep the coils well away from stray metalwork. The physical dimensions produced were not exactly as designed, but the results were nevertheless satisfactory (see tables 6.1 and 6.2).

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
EXPERIMENT \\
NUMBER
\end{tabular} \& \(\mathrm{L}_{1}\) \& \(\mathrm{L}_{2}\) \\
\hline 1
2

3 \& \begin{tabular}{l}
59 turns

1. 6 mm dia. wire

48.5 turns

1.6 mm dia. wire

52 turns

2 mm dia. wire

 \&

6.25 turns 15 mm strip

12.5 turns

8 mm strip

(2 layers)

9 turns

8 mm strip
\end{tabular}

\hline
\end{tabular}

L radius $=25 \mathrm{~cm}$
L_{2}^{1} radius $=24.1 \mathrm{~cm}$
Load coil: radius 25 cm , wound with 11 turns of 8 mm strip

Table 6.1 Winding Details

EXPT. NO.	$\mathrm{L}_{1}(\mu \mathrm{H})$		$\mathrm{L}_{2}(\mu \mathrm{H})$		$\mathrm{L}_{12}(\mu \mathrm{H})$	k
	DESIGN	MEAS' D	DESIGN	MEAS' D	(MEAS'D)	
1	2782	2740	30	30	3283	0.89
2	2039	2016	70	70	2740	0.87
3	2009	2012	130	136	2950	0.77

(MEAS'D = MEASURED)
Note: L_{12} is the total inductance of L_{1} and L_{2} in series.
Table 6.2 Inductance Figures

The coupling coefficient for experiment 3 is rather low because an error in positioning the L winding meant that the coils could not overlap sufficiently to reduce the leakage flux to the required level. The experiment was not repeated because the current multiplication was still satisfactory. (It should be remembered that the value of coupling coefficient obtained is highly sensitive to small changes in the inductance figures. In this particular case, for example, an increase of only 4% in the total inductance would raise the coupling coefficient to 0.88.)

6.5.3 Other Circuit Components

Figure 6.11 shows the circuit diagram for the single-step meatgrinder experiments; the electronic components can be seen mounted on the small circuit board in figure 6.9.

Transistor TR1 is a high voltage (1000V) device with a 2Ω on-state resistance. A circuit simulation showed that because

COMPONENTS NOT SHOWN: 18 V gate-source zener diodes
for TR1 and TR2
13A fuse in series with R ext

TR1: International Rectifier IRFPG50
TR2: International Rectifier IRFP044
D1, D2: Motorola MR756
MOV1: Power Development z320C

Figure 6.11 Circuit Diagram for Single-Step Meatgrinder
of the circuit resistance, an opening switch voltage of about 800 V was necessary to obtain a final current of 30A. The high on-state resistance is unimportant for the purposes of the experiment because it simply increases the energy dissipated during charging. The clamp device MOV1 is necessary to restrict the drain-source voltage during turn-off when the MOSFET is operating above its continuous current rating [45].

By contrast, transistor TR2 has a low on-state resistance (0.02Ω) so that the loop resistance is kept to a minimum for the energy transfer. Although this device does not break current the possibility of unexpected voltage spikes still has to be considered. No external drain-source voltage limiting is required, however, because TR2 operates within its continuous current rating and is therefore able to self-avalanche if necessary.

The transistors are driven by the same timing and drive circuits as were used for the six-step meatgrinder (see Chapter 3 and Appendix B). The "TR1" and "TR2a" outputs are used to drive TR1 and TR2 respectively; the other outputs are not required. The same charge time (1.7 ms) is used and, with a 48 V supply, adjustment of R allows the current after this time to be set to 10A. The power supply consists of four 12V car batteries.

6.5.4 Results

6.5.4.1 First Experiment

Figure 6.12 shows that the circuit operates as expected: the voltage on TR1 is clamped by MOV1, and the current in L LOAD rises to about 28A - quite close to the predicted value of 30 A .

All traces: Time $10 \mu s / d i v$

Figure 6.12 Waveforms for First Experiment

As in the six-step meatgrinder, noise was reduced (and the final current slightly increased) by inserting a 100Ω resistor in series with the gate to slow down the turn-off of TRI (see figure 6.13).

Time: $10 \mu s / d i v$

Figure 6.13 Current Waveforms Without Additional Gate Resistor

The oscillations present in the voltage waveform are due to the non-ideal behaviour of the MOSFET, as shown by the simulated waveforms of figure 6.14. These waveforms compare the behaviour of a MOSFET with that of an ideal switch.

(a) MOSFET

(b) With Ideal Switch in Place of MOSFET

Figure 6.14 Waveforms Showing Non-Ideal Behaviour of MOSFET

6.5.4.2 Second and Third Experiments

Figures 6.15 and 6.16 show waveforms corresponding to figure 6.12 for the second and third experiments respectively. As expected, the current multiplication is approximately 3 in each case.

Table 6.3 gives the efficiency figures for all three experiments; these values are also indicated on figure 6.8.

EXPT. NO.	INITIAL CIRCUIT ENERGY (mJ)	FINAL LOAD ENERGY (mJ)	EFFICIENCY (\%)
1	169.2	$39.2 *$	23.2
2	142.0	42.1^{*}	29.6
3	152.5	39.2	25.7

* final current was slightly higher in experiment 2

Table 6.3 Efficiency figures for Single-Step Experiments

6.5.5 Comments

The experiments served firstly as a further demonstration of the meatgrinder principle, this time with an uncoupled load. The results showed clearly that a given current multiplication in the load can be achieved with different sets of meatgrinder inductances, only one of which maximises the efficiency. In this case it is the second experiment which corresponds to the maximum efficiency indicated in figure 6.8.

TR1 voltage 200V/div

TR1 current 5A/div

Load current 5A/div

TR1 current 5A/div

All traces: Time $10 \mu s / d i v$

Figure 6.15 Waveforms for Second Experiment

TR1 current 5A/div

Time: $10 \mu \mathrm{~s} / \mathrm{div}$

Time: $5 \mu \mathrm{~s} / \mathrm{div}$

Figure 6.16 Waveforms for Third Experiment

Figure 6.8 shows that the trend of the experimental results is the same as that of the theoretical values. The efficiencies are lower because the coupling coefficient was less than 0.9 and because energy is lost in the circuit resistance. (To reduce this loss it would be necessary to increase the speed of energy transfer by using a higher switch voltage.)

In conclusion, the experimental results clearly support the theoretical analysis presented earlier. This includes the third experiment because although the coupling coefficient was a little low, the current multiplication was not noticeably affected. In the light of the first two experiments, it is reasonable to assume that even if the correct total inductance were to be obtained, the performance would not be significantly different.

6.6 OPTIMISATION STUDY FOR A TWO-STEP MEATGRINDER

6.6.1 Introduction

It has been shown that for a single-step circuit with a given current multiplication and coupling coefficient, there is a unique optimum design which maximises the efficiency. It is logical to consider next whether or not such an optimum design exists for a circuit with more than one step.

With more than one step, any analysis will clearly be more complex. There will be at least three coupling coefficients, and the overall current multiplication is achieved in two or more steps.

In early work [23,27], the team at ECRC adopted the approach of assuming an equal efficiency per step, although this was not presented as an optimum design. Later [28], however, they presented curves showing the "maximum efficiency for a given number of steps", although they did not indicate how they were derived.

The objective of this section is simply to show one approach which could be used in starting a general optimisation study for multi-step meatgrinders.

6.6.2 Problem to be Studied

This study considers a loaded two-step meatgrinder without decompression (see figure 6.17). The coupling coefficients are constrained according to the model proposed by Giorgi et al [28]. In this model the coupling coefficient is k between adjacent coil sections, k^{2} between sections separated by one other section, and so on. In a two-step meatgrinder this gives

$$
\begin{aligned}
& \mathrm{k}_{12}=\mathrm{k} \\
& \mathrm{k}_{23}=\mathrm{k} \\
& \mathrm{k}_{13}=\mathrm{k}^{2}
\end{aligned}
$$

(In a three-step, four-section circuit, this model would give, for example, $k_{14}=k^{3}$.)

Giorgi states that his model fits well with measured and calculated values for real coil designs. In fact, in the present work about one half of the coupling coefficients for the
six-step meatgrinder fit with the model (see table 2.5). The model is referred to subsequently in this thesis as the $k-k^{2}$ model.

Figure 6.17 Loaded Two-Step Meatgrinder

Any sensible values could be used for the coupling coefficients, but the $k-k^{2}$ model seems a reasonable starting point. such a starting point is even more important in studies of circuits with more than two steps; a six-step circuit, for example, has 21 coupling coefficients.

For the two-step circuit, let the overall current multiplication be β, and let the first and second step current multiplications be β_{1} and β_{2} respectively. Thus

$$
\begin{equation*}
\beta=\beta_{1} \beta_{2} \tag{6.18}
\end{equation*}
$$

6.6.2.1 Approach

Initially, a generalised algebraic analysis (as carried out for the single-step circuit) was attempted. It did not seem possible, however, to obtain universal expressions for an optimum set of meatgrinder inductances. It was therefore decided to adopt a less general approach and to consider certain specific numerical examples.

Using the additional notation

$$
\begin{aligned}
& \mathrm{L}_{1} / \mathrm{L}_{\text {LOAD }}=\sigma_{1} \\
& \mathrm{~L}_{2} / \mathrm{L}_{\text {LOAD }}=\sigma_{2} \\
& \mathrm{~L}_{3} / \mathrm{L}_{\text {LOAD }}=\sigma_{3}
\end{aligned}
$$

the procedure followed was:
(1) Choose values for the overall current multplication β and the coupling coefficient k.
(2) Choose a value for β_{2} (any value such that $1<\beta_{2}<\beta$).
(3) Choose a value for σ_{3}. This gives the value of σ_{2} since β_{2} is already fixed.
(4) Find the value of σ_{1} from the values of β_{1}, σ_{2} and σ_{3} (β_{1} is fixed by β and β_{2}).
(5) Calculate the individual step efficiencies and the overall efficiency.

These five steps yield a set of meatgrinder inductances and the associated values of efficiency. These inductances are only one possible way of achieving the step current multiplications β_{1} and β_{2}, and β_{1} and β_{2} are in turn just one way of achieving the overall current multiplication β. The analysis can therefore be continued as follows:
(1) Leave β_{1} and β_{2} unchanged and find efficiency values for several different sets of σ_{1}, σ_{2} and σ_{3}, i.e. repeat the procedure above from step (3) onwards.
(2) Divide β up differently, i.e. choose a new value for β_{2}, and then repeat the entire analysis as before.

In order to carry out some examples of this type of analysis, a Fortran program was written.

6.6.3 Computer Program

The program "mgeff_01" ("meatgrinder_efficiency_01") is listed in Appendix E. To reiterate, the program has two loops and operates as follows:

1. β and k are fixed (although they may be altered by editing the program)
2. Read and validate upper and lower limits and step sizes for both β_{2} and σ_{3}
3. For each value of β_{2}, step through all the values of σ_{3}, calculating the corresponding values of $\sigma_{2}, \sigma_{1}, \eta_{s 1}, \eta_{s 2}$ and η_{t} in every case.
4. Stop

An example of output from the program is given below. The amount of data in this example is very small; normally the figures would be fed to a plotting program to produce the type of curves given later in this Chapter.

The equations used by mgeff_01 are based on expressions already given in this or earlier Chapters of the thesis.

6.6.3.1 Example Output

mgeff_01

GAPLOT filename? test

X2 lower limit?	1.2
X2 upper limit?	1.8
X2 step size?	0.2
r3 lower limit?	0.1
r3 upper limit?	0.5
r3 step size?	0.1

$\mathrm{X} 1=1.667 \quad \mathrm{X} 2=1.200$

$r 3$	$r 2$	$r 1$	eff1	eff2	efftot	Result No.
0.100	0.988	3.924	71.5	57.0	40.7	1
0.200	0.588	4.001	67.8	63.5	43.0	2
0.300	0.460	4.184	66.6	63.2	42.1	3
0.400	0.400	4.370	66.4	61.0	40.5	4
0.500	0.367	4.555	66.5	58.4	38.8	5

$\mathrm{X} 1=1.429 \quad \mathrm{X} 2=1.400$

r3	r2	r1	eff1	eff2	efftot	Result No.
0.100	3.951	2.702	88.2	33.0	29.2	6
0.200	2.351	2.238	86.7	43.4	37.7	-7
0.300	1.839	2.163	85.9	46.9	40.3	8
0.400	1.600	2.182	85.5	47.6	40.7	9
0.500	1.469	2.236	85.3	47.0	40.1	10

$\mathrm{X} 1=1.250 \quad \mathrm{X} 2=1.600$

r3	r2	rl	eff1	eff2	efftot	Result No.
0.100	8.890	1.590	95.2	22.6	21.6	11
0.200	5.290	1.175	94.8	32.3	30.6	12
0.300	4.139	1.069	94.5	36.6	34.6	13
0.400	3.600	1.039	94.4	38.3	36.2	14
0.500	3.306	1.040	94.3	38.8	36.5	15

$\mathrm{X} 1=1.111 \quad \mathrm{X} 2=1.800$

$r 3$	$r 2$	$r 1$	eff1	eff2	efftot	Result No.
0.100	15.804	0.498	98.9	17.4	17.2	16
0.200	9.404	0.346	98.8	25.9	25.6	17
0.300	7.358	0.303	98.7	30.2	29.8	18
0.400	6.400	0.287	98.7	32.3	31.9	19
0.500	5.878	0.283	98.7	33.1	32.7	20

6.6.4 Results

This section gives results which show how the program can be used to investigate a particular design requirement. The parameters chosen are for illustration only, but could equally well represent a real design problem.

In figures 6.18 to $6.21, \mathrm{X}$ is used for the overall current multiplication of the meatgrinder (β) and $X 2$ for the current multiplication of the second step $\left(\beta_{2}\right)$. (The different notation was necessitated by the limitations of the computer used to produce the curves.) Each curve represents the variation of efficiency with σ_{3} for a particular value of β_{2}. The corresponding values of σ_{1} and σ_{2} are available in the output file, and either one could be used as the independent variable for the efficiency plots instead of σ_{3}.

Figures 6.18 to 6.20 are results for the same values of β and β_{2}, but with different sets of coupling coefficients. To distinguish between the curves, it should be remembered that the step 1 efficiency is always highest for the highest value of β_{2}. The symbols enable the corresponding curves on the other two graphs to be identified.

In all three cases the trends are similar, except that when $\mathrm{k}=0.5$ (figure 6.18), the maximum overall eficiency does not increase as β_{2} falls, as it does for the other values of k. This phenomenon could be investigated further, although with efficiencies of less than 10%, it is unlikely to be of interest.

FIGURE 6.18 Two-Step Meatgrinder Efficiency for:
$X=5, \times 2: 1.5,2.0,2.5,3.0,3.5,4.5 ; k 12=k 23=0.5, k 13=0.25$

FIGURE 6.19 Two-Step Meatgrinder Efficiency for:

FIGURE 6.20 Two-Step Meatgrinder Efficiency for:

The overall efficiency is significantly higher in the other two cases (figures 6.19 and 6.20). As β_{2} falls, and more of the current multiplication is achieved in the first step, the maximum overall efficiency rises consistently. To find out how far this trend continues, the case when $k=0.9$ is analysed further by running the program with different values of β_{2}.

The results are shown in figure 6.21. In this case, the lowest value of $\beta_{2}(1.1)$ actually corresponds to the lowest maximum overall efficiency. It is worth noting that the efficiency curve for that particular case exhibits two maxima: the overall maximum which occurs first at a low value of σ_{3}, followed by a local maximum at about $\sigma_{3}=4.5$. This emphasises the importance of covering a wide range of σ_{3} values.

To find the best value of β_{2}, the maximum efficiency from each curve is plotted on a separate graph. The optimum value can be seen clearly in figure 6.22. To achieve this maximum requires the following inductance ratios:

$$
\begin{aligned}
\sigma_{1} & =41 \\
\sigma_{2} & =1 \\
\sigma_{3}^{2} & =0.33
\end{aligned}
$$

To implement this design it would be necessary to find a physical coil design which produced these ratios whilst maintaining the required coupling coefficients.

FIGURE 6.21 Two-Step Meatgrinder Efficiency for:

Figure 6.22 Example of Optimum Condition in Two-Step Meatgrinder:

$$
\begin{aligned}
& x=5 \\
& k_{12}=0.9 \\
& k_{23}=0.81 \\
& \text { No decompression }^{2}
\end{aligned}
$$

6.6.5 Comments

This section has shown how optimisation might be achieved by fixing some of the variables and then investigating the variation of efficiency empirically rather than analytically. It seems likely that this method could also be used to investigate circuits with three or more steps.

One method of optimising the design of multi-variable systems is called factorial design [54]. The technique involves varying parameters one at a time, two at a time and so on, and examining the effect on the system output. This method has been applied to the study of electrical machines $[55,56]$ but does not appear to be appropriate for multi-step meatgrinder circuits. The reason for this is that if the overall current multiplication is fixed, then inductances, for example, cannot be varied one at a time. In other words, the variables are interdependent. It should be noted, however, that this research has not addressed factorial design in detail, and its use in future optimisation work is therefore not excluded.

CHAPTER SEVEN

CONCLUSIONS

7.1 ACHIEVEMENTS OF THE RESEARCH

The work described in this thesis constitutes a thorough investigation of the major principles associated with the meatgrinder concept. A firm foundation has now been laid for further research on this topic.

The initial objective stated in Chapter 1 was to gain familiarity with the concepts and techniques involved in the meatgrinder idea. This has been achieved. The fundamental circuit characteristics are now clearly understood, which leaves the way open for more detailed studies into the many possible applications of this type of circuit.

It has been confirmed that the meatgrinder concept offers a means of transferring energy between uncoupled inductors at efficiencies greater than 25\%. The higher efficiency reduces the demand on both the power supply and the opening switches, thereby simplifying the design of a pulsed power system. It has also been verified that this technique of transferring energy between magnetically-coupled coils provides current multiplication. This avoids the need for conventional transformers, which are also subject to the 25% efficiency limit when transferring energy to an uncoupled load [25].

For a sufficiently large number of meatgrinder coil sections, the theoretical efficiency tends towards 100\%. In practice the efficiency is limited by the coupling coefficients which can be obtained, the number of stages used and the circuit resistance,
but there appears to be no reason why circuits should not be built which operate at efficiencies of well over 75%.

The effect of induced voltages in the meatgrinder has been studied at length in this research. Of particular importance is the fact that the induced voltages can be sufficiently high to cause voltage protection (clamp) devices to break down. This is the phenomenon referred to in the thesis as transformer action clamping (TAC). Previous work on this topic [13,27,43] has been confirmed and extended. A mathematical proof has been presented which shows that the theoretical current multiplication is unaffected by the occurrence of external transformer action clamping (ETAC - when the clamping is due to voltages induced across previously switched-out coil sections). It has been shown that this is simply an instance of the principle of the conservation of flux linkage, and that the same principle applies to internal transformer action clamping (ITAC - when the clamping is due to voltages induced across coil sections which are still in the circuit).

It has further been demonstrated that the occurrence of TAC always increases the transfer time, thereby leading to additional energy loss if the circuit resistance is significant. This has led to two general design requirements: firstly, that the resistance should be minimised (it is worth noting that in the low-current experiments carried out for this research, and in similar low-current work carried out elsewhere [43], it is the on-state resistance of the switches, rather than the coil resistance, which dominates), and secondly that the higher the voltages in the system are allowed to rise, the greater will be the energy transfer speed.

The work carried out on optimisation has shown that a singlestep meatgrinder can be designed so as to maximise the efficiency for a given current multiplication. Such
optimisation will be of vital importance in applications such as the proposed 100TW experiment [35], and will enable this simple implementation of the meatgrinder concept to be exploited to the full.

As far as multi-step circuits are concerned, the research has demonstrated one possible approach to optimisation. The results indicate that for a given set of constraints (for example, the overall current multiplication, the individual step current multiplications, and the coupling coefficients), it will again be possible to produce designs which maximise the efficiency.

The use of a commercial circuit simulation package has clearly been of great value. This will continue to be the case where the principles of circuit operation are being studied, but may become less appropriate as other factors need to be included in the simulation. These factors could include transient behaviour, parasitic components, or the characteristics of highenergy switches; these factors are not available in existing commercial packages.

Computer simulation needs to be complemented by experimental results, and the low-current experiments carried out have shown the appropriateness of power MOSFETs for switching. They are simple to drive and, because they carry current for such a short time, need no heatsinks. At present it seems likely that other switching techniques (see Chapter 1) will be necessary for anything other than demonstration circuits, although MOSFETs (or other semiconductor devices) may be of value if used in multiple arrays [44].

7.2 SUGGESTIONS FOR FURTHER WORK

7.2.1 Optimisation

Further work is required on design methods for multi-step meatgrinders. There are two major aspects to this problem.

The first aspect is the type of analysis shown in Chapter 6, where the approach is to find inductance values (or ratios) without reference to physical implementation. studies could be carried out for circuits with two, three or more steps, covering a wide range of coupling coefficients and current multiplications. The results of such studies should provide a guide as to performance capabilities, which can then act as a starting point for more detailed investigations.

The second aspect concerns the physical implementation of coil designs. A physical design must produce the required inductances and coupling coefficients. This in itself can present significant problems, even laying aside the initial problem of choosing which geometry to use. This is because, as other authors have observed $[57,58]$, inductance formulae usually yield an inductance value for a given set of dimensions. The designer, on the other hand, needs to know what dimensions to use to obtain a given inductance. The problem is compounded when the aim is to design a multi-section coil with given coupling coefficients between the sections. Computers can be of great asssistance [36], but there will often be an element of trial and error in the procedure.

Choice of geometry is a problem facing all coil designers, and there is consequently an abundance of literature on this topic [57-74]. The first major choice is between geometries such as the toroid, which largely confine flux to within the volume of
the coil, and geometries such as the solenoid which do not. The choice is not always obvious, and several authors have published papers [59-61] which include comparisons between coil types on the basis of other factors such as resistance, coupling coefficient and mechanical forces.

Literature can be found on most different coil geometries, such as solenoid [58], spiral [62], coaxial [63] and toroidal [64]. In particular, a toroid known as a cage coil has been investigated in detail at Loughborough [65-68] and is worthy of investigation as a meatgrinder coil because of its fluxconfining property and its ease of construction in comparison to more conventional toroids.

An area which has been largely untackled in this research is that of the transient current distribution in coils when they are subjected to very fast voltage or current pulses. As the currents and voltages involved increase, and the pulse rise times are reduced, it will become necessary to account for the fact that the resistance, stray capacitance, and even the inductance of a coil all vary with frequency.

The principles governing these variations are described in several texts on electromagnetism [69-71], and authors have also considered the a.c. response of specific coil geometries [63,65,72,73]. Work is required, however, to turn this information on the steady-state a.c. response into knowledge of the single-shot response. This may not be very straightforward: Grover [39], commenting simply on a.c. response, states:
"...the high frequency resistance and inductance of coils cannot be accurately calculated and should be measured at the desired frequencies."
and Zowarka [74], recognising the difficulty of predicting dynamic behaviour, adopts the approach of building physical scale models to verify parameters.

Note also that the effect of mechanical forces during transients will need to be studied.

The experimental results obtained in this research agree well with computer simulations, despite measurements having been made at a relatively low frequency (1 kHz for the six-step meatgrinder, 10 kHz for the single-step meatgrinder). This is a good indication that transient effects have not been very significant to date. It is likely, however, that an understanding of transient effects will be important in constructing full-scale meatgrinder circuits.

7.2.2 Reverse Operation

When the meatgrinder was proposed [20] it was introduced as a reversible circuit. This refers to the fact that because the efficiency can theoretically be 100\%, the circuit could be operated "forwards" (i.e. in the normal manner) and then "backwards" (i.e. re-introducing coil sections, thereby causing the current to fall), leaving the circuit in its original state with the same amount of energy.

Practical circuits are not 100% efficient, but the possibility of operating the circuit in reverse still remains (see figure 7.1).

There appears to be no published work on this aspect of the meatgrinder operation, other than the proposal to use a singlestep circuit for recovering the energy left in the barrel of an electromagnetic gun [32].

(a) Initial Current

(b) Switch Opened, Current Falls

Figure 7.1 Reverse Operation of Meatgrinder

A meatgrinder changes inductance as well as current. It may be possible to utilise this fact in inductance matching applications. Figure 7.2 illustrates how this might work, with the objective being to transfer energy from the energy source to L LOAD ${ }^{\circ}$

(a) Energy From source Stored in L1

(b) Energy Source Disconnected

(c) First Reverse Meatgrinder Step

(d) Second Reverse Meatgrinder Step, Energy Transferred to Load

Figure 7.2 Inductance Matching by Reverse Operation of Meatgrinder

If, for example, the energy source is an explosive generator, the voltage it produces exists for only a short time, and the energy which can be extracted in this time will vary according to the inductance connected to it. L_{1} can be made as small as necessary in order to extract the required amount of energy, the meatgrinder then being operated as shown in order to transfer energy to the final load. With the circuit in the condition shown in figure $7.2(d)$ there will, of course, still be energy stored in the inductances L_{1} and L_{2}. It may be possible to subsequently operate the meatgrinder in the forward or normal mode, thus switching L_{1} and L_{2} out of the circuit and transferring more energy to the load.

Investigations of this and any other possible use of reverse operation will require analysis, computer simulation and experimentation.

7.2.3 Reduction of Induced Voltages

In Chapter 5 it was concluded that in a multi-step meatgrinder with the usual parallel switches, the switch voltage ratings need to be as high as possible in order to maximise the speed of energy transfer. This approach will lead to satisfactory solutions as long as appropriate switches can be obtained and all the circuit components are suitably insulated. It is inevitable, however, that some implementations will be impractical because of very high induced voltages.

The use of series switches, as discussed in Chapter.5, is one possible solution [43]. It does, however, have the drawback of the extra switch resistance. It is suggested that work could be carried out in order to find an alternative solution.

The essence of the problem is that once a coil section is switched out it serves no further purpose, but still remains magnetically coupled to the rest of the circuit. Equation (5.5) shows that the induced voltage could be made smaller either by reducing the inductance of the switched-out section or by reducing the coupling coefficient between this section and the rest of the coil.

Coupling coefficients can be changed by mechanically altering the relative orientation of the coils. This could be investigated, but would probably only be of value for applications working in the millisecond/second time regime. In addition, it should be noted that the process of changing the mutual inductances would itself induce voltages in the circuit.

Aboltin'sh [75] has indicated that the inductance of a coil can be varied by the nearby presence of a semiconductor, the variation being achieved by the current flow in that semiconductor. It is possible that this technique could be used to reduce the inductance of a switched-out section. A further possibility is the use of an additional winding to generate an equal and opposite induced voltage. Such a "cancellation winding" would be wound in the opposite sense to the main winding and would be switched in when required. This approach would admittedly add considerable complexity to the meatgrinder, thereby making it appreciably less attractive as a pulsed power device.

7.2.4 Secondary Topics

This section discusses two areas which could usefully be studied in conjunction with the more important topics referred to above.

7.2.4.1 Coil Width Optimisation

In Chapter 2 it was noted that the width of the spiral strip coil used for the six-step meatgrinder was not optimised to minimise the resistance. Future designs using this design could benefit from such an optimisation study.

7.2.4.2 Timing Circuit

The timing circuit designed for this research serves its purpose well and has been used for both six-step and single-step meatgrinders. Should there be a need for more outputs or longer delays, however, it would become rather unwieldy.

A more elegant design could provide simple expansion of the number of outputs and a more compact method of programming delays. It may be appropriate to use a microprocessor, which would also offer the potential of implementing more sophisticated functions. These could include sensing the meatgrinder currents to enable the microprocessor to optimise the delays over a number of shots.

7.3 THE FUTURE OF THE MEATGRINDER

Analysis and successful experiments have shown the potential of the meatgrinder in a range of pulsed power applications [23,26-36,38,43]. A member of the team at the Energy Compression Research Corporation has observed [76], however, that the technique has not attracted as much interest as might have been expected.

One reason for this may be the apparent complexity of multi-step circuits. There máy be a perception that any benefits offered by the circuit would be outweighed by the need for multiple switches and multiple coils. If this is the case, then more emphasis needs to be placed on the value of the single-step circuit $[26,28,32,33,35]$. If the use of this circuit became an established technique, researchers would be more willing to investigate the advantages of adding more steps. In this respect, it is clear also that optimisation studies are important because they will enable the design of multi-step circuits to be systemised and made less daunting.

The potential of the meatgrinder has neither been fully explored nor fully exploited. With its high efficiency, its current multiplication and its ability to work in reverse, there are potentially many areas of application in pulsed power
technology. Perhaps in time the meatgrinder will take its place in this field alongside the Marx generator and the simple transformer. Alternatively, it could be that the concept will find a niche in an area as yet unconsidered, in one of the "novel applications" spoken of in Chapter 1.

REFERENCES

(1) WELDON, W.F., "Pulsed Power Packs a Punch", IEEE Spectrum March 1985, pp 59-66
(2) ROSE, M.F., "Techniques and Applications of Pulsed Power Technology", Proc. 16th Intersociety Energy Conversion Engineering Conf. ("Technologies For The Transition"), Atlanta 1981, Vol 1, pp 146-154
(3) YABLOCHNIKOV, B.A., "An Inductor for Magnetic Pulse Welding of Thin-Walled Large Diameter Pipes", Automatic Welding (GB) Vol $36(1), 1983, p p$ 50-53
(4) HERBERT, J.L. et al, "Pulsed Power Applications in Aircraft Qualification Testing", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 326-329
(5) GRAY, E.W., MOENY, W.M. et al, "Pulsed Power Fracturing of Rock", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 330-331
(6) FRAZIER, G.B., ASHBY, S.R. et al, "EAGLE: A 2TW Pulsed Power Research Facility", Proc. 3rd IEEE Pulsed Power Conf. 1981, pp 8-14
(7) NEAU, E.L., "COMET: A 6MV 400kJ Magnetically-Switched Pulsed Power Module", Proc. 4th IEEE Pulsed Power Conf. 1983, pp 246-250
(8) HARRISON, J., MILLER, R. et al, "Design of Very Fast Rise and Fall Time Low Impedance Megavolt Pulse Generators for Laser Excitation", Proc. Ist Int. Conf. on Energy Storage, Compression and Switching 1974, pp 51-56
(9) LEVY, S., FARBER, J. et al, "Advances in Repetitive Pulsed Power Technology", Proc. l7th IEEE Power Modulator Symposium 1986, pp 9-20
(10) FOWLER, C.M., ZIMMERMAN, E.L. et al, "Railguns Powered by Explosive Driven Flux Compression Generators", IEEE Trans. Magnetics Vol $22(6), 1986$, pp 1475-1480
(11) TRIPOLI, G.A. et al, "Design and Operation of a 0 to 4 MJ Current Multiplier Inductive Store With Multiple Exploding Foil Switching", Proc. 5th IEEE Pulsed Power Conf. 1985, pp 22-25
(12) SALGE, J., BRAUNSBERGER, U. et al, "Circuit Breaking by Exploding Wires in Magnetic Energy Storage Systems", Proc. 1st Int. Conf. on Energy Storage, Compression and Switching 1974, pp 477-480
(13) LEGENTIL, M., RIOUX, C., "Caracteristiques des Transferts Inductifs à Haut Rendement par Procede Dissipatif", ("Characteristics of a High Efficiency Inductive Transfer System Using a Dissipative Transfer Procedure"), Revue de Physique Appliquee Vol 11(2), 1976, pp 337-342
(14) BALL, S.E., BURKES, T.R., "Saturable Inductors as HighPower Switches", Proc. 3rd IEEE Pulsed Power Conf. 1981, pp 269-272
(15) SARJEANT, W.J., ROHWEIN, G.J., "A Review of Repetitive Pulse Power Component Technology", Proc. 4th IEEE Pulsed Power Conf. 1983, pp 631-637
(16) BELL, W.R., "An Electrical Engineer's Perspective of High Voltage Pulsed Power", Proc. Universities Power Engineering Conf., Sunderland Polytechnic 1987, paper 12/06
(17) WIPF, S.L., "Reversible Energy Transfer Between Inductances", Proc. 1st Int. Conf. on Energy Storage, Compression and Switching 1974, pp 469-475
(18) ZUCKER, O., "Fundamental Concepts of Energy Compression", Proc. 2nd Int. Conf. on Energy Storage, Compression and Switching 1978, pp 55-73
(19) ZUCKER, O., BOSTICK, W.H., "Theoretical And Practical Aspects of Energy Storage And Compression", Proc. lst Int. Conf. on Energy Storage, Compression and Switching 1974, pp 71-93
(20) ZUCKER, O., LONG, J., "The Meatgrinder: a Reversible Inductive Storage and Transfer System", Proc. 4th IEEE Pulsed Power Conf. 1983, pp 375-379
(21) RIOUX, C., "Theorie Simplifiee des Procedes de Transfert Inductif a Haut Rendement", ("Simplified Theory of High Efficiency Inductive Transfer Procedures"), Revue de Physique Appliquee Vol 10(2), 1975, pp 75-79
(22) ALLANO, S., RIOUX, C. et al, "Study of a Non-Dissipative Transfer System and Tests on Related Vacuum Switches", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 449-452
(23) ZUCKER, O. et al, "The Meatgrinder: Theoretical and Practical Limitations", IEEE Trans. Magnetics Vol 20(2), 1984, pp 391-394
(24) WIPF, S.L., "High-Current Pulses From Inductive Stores", Proc. 9th Symp. on Engineering Problems of Fusion Research 1981, pp 1442-1446
(25) LOTOTSKII, A.P., "On the Effectiveness of Magnetic Energy Transmission From Inductive Stores", Electric Technology USSR (USA) No. 2, 1985, pp 119-124
(26) GIORGI, D., LINDNER, K. et al, "Enhancing the Transfer of Inductive Energy to an Imploding Plasma Load With a Single-step Meatgrinder Circuit", IEEE Trans. Magnetics Vol 23(3), 1987, pp 1913-1918
(27) GIORGI, D., LINDNER, K. et al, "Proof of Principle Experiment of the Meatgrinder: an Inductive Energy Storage and Transfer Circuit", Proc. 5th IEEE Pulsed Power Conf. 1985, pp 295-298
(28) GIORGI, D., LONG, J. et al, "New High-Current Meatgrinder Experiments", IEEE Trans. Magnetics Vol $22(6), 1986$, pp 1485-1488
(29) LINDNER, K., LONG, J. et al, "Fuse Opening Switch Performance Enhancement", Proc. 6th IEEE Pulsed Power Conf 1987, pp 565-568
(30) LINDNER, K., LONG, J. et al, "A Meatgrinder Circuit for Energising Resistive and Varying Inductive Loads (EM Guns)", IEEE Trans. Magnetics Vol 22 (6), 1986, pp 1591-1596
(31) LINDNER, K., LONG, J. et al, "Novel Inductive Energy Storage and Transfer Circuit for Energising Resistive and Varying Inductive Loads (EM Guns)", Proc. 17th Power Modulator Symp. Seattle USA 1986, pp 305-310
(32) ZUCKER, O., LONG, J. et al, "Theory, Experiments and Applications of Meatgrinder Circuits", Proc. 4th Conf. Megagauss Field Generation and Related Topics 1986, pp 609-618
(33) LINDNER, K., LONG, J. et al, "Enhanced Energy Transfer to an EM Gun", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 749-752
(34) NESS, R.M., CHU, E.Y., "Multicycle Resonant Energy Recovery for Inductive Energy Applications", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 38-41
(35) ZUCKER, O., LONG, J. et al, "The Generation of 100TW With an Explosive Generator-Driven Single-Step Meatgrinder", Proc. 4th Conf. Megagauss Field Generation and Related Topics 1986, pp 619-629
(36) GIORGI, D., LINDNER, K. et al, "The Design and Analysis of a Multistage Meatgrinder Circuit", Proc. 5th IEEE Pulsed Power Conf. 1985, pp 615-618
(37) LONG, J., LINDNER, K. et al, "Analysis and Comparison of Circuits Undergoing a Change of Inductance via Continuous Sequential Switching", Proc. 4th Conf. Megagauss Field Generation and Related Topics 1986, pp 593-607
(38) GIORGI, D., HELEVA, H. et al, "The Ringer: An Efficient, High Repetition Rate Circuit for Electromagnetic Launchers", IEEE Trans. Magnetics Vol 25(1), 1989, pp 203-206
(39) GROVER, F.W., "Inductance Calculations", Instrument Society of America 1973
(40) YOUDAN, P., "How the Semiconductor War was Won", Electrical Review Vol 217(13), 1985, pp 38-42
(41) CARLISLE, B.H., "GTOs Challenge SCRs and Darlingtons", Machine Design Vol 57 (267), 1985, pp 70-74
(42) MOORE, J., "The Continuing Relevance of the Bipolar Transistor", Electronic Engineering Vol 56(694), 1984, pp 79-87
(43) LONG, J., GRIFFIN, A. et al, "Experimental Demonstration of Novel All-Inductive Modulator", Energy Compression Research Corp. report, 1988
(44) SANTAMARIA, G.T., NESS, R.M., "High Power Switching Using Power FET Arrays", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 161-164
(45) GRANT, D., "HEXFET III: A New Generation of Power MOSFETs", HEXFET Power MOSFET Designer's Manual HDB-4, pp I5-I19, International Rectifier Corp. 1987
(46) DE LORENZI, A., GAIO, E. et al, "Performances of $2 n 0$ Varistors in Parallel Operation", Proc. 6th IEEE Pulsed Power Conf. 1987, pp 623-626
(47) GENERAL ELECTRIC CO., "Transient Voltage Suppression", General Electric Co. 1978
(48) GENERAL SEMICONDUCTOR INDUSTRIES INC., "Product Data Book", loth edition, General Semiconductor Industries Inc.
(49) CLEMENTE, S., "Gate Drive Characteristics and Requirements for Power HEXFETs", HEXFET Power MOSFET Designer's Manual HDB-4, pp I67-I74, International Rectifier Corp. 1987
(50) CLEMENTE, S., PELLY, B.R. et al, "Understanding HEXFET Switching Performance", HEXFET Power MOSFET Designer's Manual HDB-4, pp I85-I98, International Rectifier Corp. 1987
(51) MORRISON, R.,"Grounding and Shielding Techniques in Instrumentation ", Wiley Interscience 1986 (3rd Edition)
(52) JONES, B.K., "Electronics for Experimentation and Research", Prentice-Hall International 1986
(53) WELSBY, V.G.,"The Theory and Design of Inductance Coils", Macdonald 1964
(54) KEMPTHORNE, O.,"The Design and Analysis of Experiments", Wiley 1952
(55) SMITH, I.R., HAMILL, B., "Effect of Parameter Variations on Induction Motor Transients", Proc. IEE Vol 120(12), 1973, pp 1489-1492
(56) KETTLEBOROUGH, J.G. et al, "Simulation of a Dedicated Aircraft Generator Supplying a Heavy Rectified Load", Proc. IEE Part B Vol 130(6), 1983, pp 431-435
(57) BERTINI, S. et al, "Optimised Design of Air-Core Inductors for Applications in Power Electronics", Proc. IASTED Int. Symp., Lugano, Switzerland 1987, pp 27-29
(58) MURGATROYD, P.N., "The Brooks Inductor: a Study of Optimal Solenoid Cross Sections", Proc. IEE Part B, Vol 133(5), 1986, pp 309-314
(59) MURGATROYD, P.N., "Some Optimum Properties for Air-Cored Chokes", IEE Journal on Electrical Power Applications, Vol 1(4), 1978, pp 117-118
(60) MURGATROYD, P.N., "Electromagnetic Fields Around Power System Inductors and Possible Methods of Reducing Them", Proc. IEE Colloquium on EMI and Cardiac Pacemakers, 1985, pp 6/1-6/6
(61) SADEDIN, D.R., "Geometry of a Pulse Transformer for Electromagnetic Launching", IEEE Trans. Magnetics, Vol 20(2), 1984, pp 381-384
(62) REEVES, R., "Air-Cored Foil-Wound Inductors", Proc. IEE, Vol 125(5), 1978, pp 460-464
(63) SPANN, M.L., PRATAP, S.B., "Fabrication of a Compact Storage Inductor for Railguns", IEEE Trans. Magnetics, Vol 20(2), 1984, pp 215-218
(64) MURGATROYD, P.N. et al, "Economic Designs for Single-Layer Toroidal Inductors", Proc. IEE Part B, Vol 132(6), 1985, pp 315-318
(65) MURGATROYD, P.N. et al, "The Toroidal Cage Coil", Proc. IEE Part B, Vol 127(4), 1980, pp 207-214
(66) MURGATROYD, P.N., "Optimised Designs of Toroidal Cage Coils", Proc. IEE Part B, Vol 128(4), 1981, pp 195-200
(67) MURGATROYD, P.N., "Some Optimum Shapes for Toroidal Inductors", Proc. IEE Part B, Vol 129(3), 1982, pp 168-176
(68) BELAHRACHE, D., "Studies of Air-Cored Toroidal Inductors", M. Phil. Thesis, Loughborough University of Technology, 1987
(69) RAMO, S., WHINNERY, J.R. et al, "Fields and Waves in Communications Electronics", Wiley 1965
(70) PARTON, J.E., OWEN, S.J., "Applied Electromagnetics", Macmillan 1975
(71) POPOVIC, B.D., "Introductory Engineering Electromagnetics", Addison-Wesley 1971
(72) EVANS, P.D., AUGLA, K.H., "High-Frequency Losses in Multiturn Foil-Wound Air-Cored Inductors", Proc. IEE Part A, Vol 134(1), 1987; pp 31-36
(73) EL-MISSIRY, M.M., "Calculation of Current Distribution and Optimum Dimensions of Foil-Wound Air-Cored Reactors", Proc. IEE, Vol 124(11), 1977, pp 1073-1077
(74) ZOWARKA, R.C., "Physical Scale Modelling to Verify Storage Inductor Parameters", IEEE Trans. Magnetics, Vol 20(2), 1984, pp 219-222
(75) ABOLTIN'SH, E.E., "Inductance Coil With a Semiconductor", Radio Engineering and Electronic Physics (USA), Vol 26(5), 1981, pp 99-102
(76) Dr.O.Zucker, Energy Compression Research Corporation, in informal conversation with a member of staff from LUT, July 1989
(77) LENK, J.D., "Handbook of Digital Electronics", PrenticeHall 1981
(78) WATSON, J., "Cost-Effective Electronic Construction", Macmillan 1985
(79) PHILIPS COMPONENTS LTD., "Technical Handbook Book 4: ICs Part 5: High-Speed CMOS Logic HC/HCT Family", Philips Components Ltd. 1988
(80) TUINENGA, P.W., "SPICE: A Guide To Circuit Simulation and Analysis Using PSpice", Prentice-Hall 1988
(81) MICROSIM CORP., "PSpice User's Guide", MicroSim Corp. 1989
(82) MONTEITH, D.O., SHAW, W.S., "Using PC-Based SPICE for Power System Design and Analysis", Proc. Power Conversion International, 1987, p 336-352
(83) PRIGOZY, S.,"Novel Applications of SPICE in Engineering Education", IEEE Trans. Education Vol $32(1), 1989$, pp 35-38
(84) HU, C., KI, F.K., "Toward a Practical Computer Aid For Thyristor Circuit Design", Proc. Power Electronics Specialists Conf., 1980, pp 174-179
(85) AMARASINGHE, K.A., MANNING, C.D., "Computer Simulation of a High Frequency Zero-Current Switching Quasi-Resonant Flyback Converter", Int. Journal of Electronics Vol 67(1), 1989, pp 161-170
(86) ELLIS, T.M.R., "Structured Fortran", University of Sheffield Computing Services 1980
(87) LEDGARD, H.F., CHMURA, L.J., "Fortran with Style: Programming Proverbs", Hayden 1978
(88) KREITZBERG, C.B. et al, "The Elements of Fortran Style: Techniques for Effective Programming", Harcourt Brace Jovanovich Inc. 1972
(89) DAVENPORT, J.H., SIRET, Y. et al, "Computer Algebra", Academic Press 1988
(90) MANCHESTER COMPUTER CENTRE, "REDUCE Package For Algebraic Computations", CMS Note 007 July 1988
(91) SEWARD, L.R., "REDUCE User's Guide For IBM 360 and Derivative Computers: Version 3.3", RAND Corporation, Santa Monica USA, July 1987
(92) Private communication with Dr.D.Harper, Computer Algebra Support Officer, Liverpool University

APPENDIX A

ENERGY TRANSFER BETWEEN UNCOUPLED INDUCTORS

(b)

Figure A. 1 Energy Transfer Between Uncoupled Inductors

By reference to figure A.1, it can be seen that energy transfer is accomplished by open-circuiting the source inductor L_{s} into the load inductor L_{L}. In this process the current in L_{S} falls from an initial value I_{i} to a final value $I_{f^{\prime}}$ and energy is lost in the opening switch.

The initial and final flux linkages in the two inductors are

$$
(N \Phi)_{i}=L_{S} I_{i}
$$

and
$(N \Phi)_{f}=\left(L_{S}+L_{L}\right) I_{f}$
respectively. Since flux linkage is conserved around a closed, loss-free loop, these two must be equal. The final current is therefore

$$
\begin{equation*}
I_{f}=I_{i} \frac{L_{S}}{L_{S}+L_{L}} \tag{A.1}
\end{equation*}
$$

The initial energy in the circuit is

$$
\begin{equation*}
E_{i}=\frac{1}{2} L_{S} I_{i}^{2} \tag{A.2}
\end{equation*}
$$

and the final energy in L_{L} only is

$$
\begin{equation*}
E_{L}=\frac{1}{2} L_{L} I_{f}^{2} \tag{A.3}
\end{equation*}
$$

Dividing equation (A.3) by equation (A.2) and substituting for I_{f} from equation (A.1), it follows that the efficiency is

$$
\begin{equation*}
\eta=\frac{L_{L} L_{S}}{\left(L_{L}+L_{S}\right)^{2}} \tag{A.4}
\end{equation*}
$$

By differentiating equation (A.4) with respect to L_{S} it is found that $\eta_{\max }$ occurs when the source and load inductances are equal. on substit
$\mathrm{L}_{\mathrm{S}}=\mathrm{L}_{\mathrm{L}}$ into equation (A.4), $\eta_{\text {max }}$ i is obtained as 25\%.
of the initial energy stored in $L_{s}, 50 \%$ is dissipated in the switch, 25% is transferred to L_{L} and 25% remains in L_{S}.

From equations (A.1) and (A.2) it can be shown that the energy dissipated in the switch is

$$
\begin{equation*}
E_{\text {dis }}=\frac{L_{L}}{L_{S}+L_{L}} \tag{A.5}
\end{equation*}
$$

This expression shows that as the source inductance increases relative to the load inductance, the energy dissipated in the switch falls. The energy transferred to L_{L} also falls, however, because more energy remains in L_{S}.

APPENDIX B

ELECTRONIC CIRCUIT DETAILS

B. 1 INTRODUCTION

This Appendix describes the electronic circuits used in the meatgrinder project. It is intended to enable their operation to be understood and to facilitate future modifications. In reading this Appendix, reference should be made to Chapter 3, in which the circuits were introduced and their purposes described. The circuits were designed with the aid of references [77] to [79].

B. 2 TIMING CIRCUIT

B.2.1 Introduction

The timing circuit is physically divided between two circuit boards, the two circuits being referred to as the main circuit and the delay extension circuit. Figures B. 1 and B. 2 are circuit diagrams of the main circuit and the delay extension circuit respectively. Table B.l gives details of the ICs whilst figures B. 3 to B. 5 are "maps" of the ribbon cable connectors.

Most of the ICs are from the 74 HCxx high-speed cMOS family, which offers low power consumption and better noise immunity than standard TTL [79].

STOR-A-FILE IMAGING LTD

PLANS
 TAKEN

FIGURE B. 2 DELAY EXTENSION CIRCUIT

The clock runs at just over 2 MHz , giving a minimum time between output states of 477 ns , or roughly $0.5 \mu \mathrm{~s}$. This was selected to give a good balance between flexibility during experiments and ease of circuit design. (As the clock rate increases in digital circuits the design becomes more difficult because the propagation delays of the gates become comparable with the clock period.)

Provision is made for up to seven variable delays, although experiments on the six-step meatgrinder used only five of these. Similarly, the devices TR2a, TR3a, TR4a, TR5a, TR6a, TR7a and TR8 were not used in experiments, but their drive signals are used internally by the timing circuit logic.

IC NUMBER	TYPE	DESCRIPTION
1	7805	+5V regulator
2	ICM72091PA	clock generator (Intersil)
3,11,12,13	$74 \mathrm{HCO8}$	2-input AND gate $\times 4$
4,5,6	74 HCl 61	4-bit synchronous counter
7,19	74 HCO 2	2-input NOR gate $\times 4$
8	$74 \mathrm{HC32}$	2-input OR gate $\times 4$
9,10,10a-10t	$74 \mathrm{HC164}$	8-bit SIPO shift register
14,15	74 HCO 4	hex inverter
16	$74 \mathrm{HC4} 002$	4-input NOR gate $x 2$
17,18	HN27C64G-15	$8 \mathrm{k} \times 8$ l50ns EPROM
20,21,25	74HC244	octal line driver
22	74HC123	dual monostable
23,24	74HC273	D-type flip-flop x 8
OPla-7b	HCPL-2631	dual optocoupler

Table B. 1 Description of Timing Circuit ICs

(viewed from underside of circuit board)

KEY:

1	GND	6	TR8	11	TR4	16	TR6a
2	VCC	7	TR2	12	TR4a	17	TR7
3	spare	8	TR2a	13	TR5	18	TR7a
4	spare	9	TR3	14	TR5a	19	spare
5	TR1	10	TR3a	15	TR6	20	spare

Figure B. 3 Timing Circuit Ribbon Cable Connector: Output to Interface Circuit

(viewed from underside of circuit board)

KEY:

1	GND	6	cascade	11	spare	16	spare
2	VCc	7	spare	12	spare	17	spare
3	reset	8	spare	13	spare	18	spare
4	clock	9	spare	14	spare	19	spare
5	spare	10	spare	15	spare	20	spare

Figure B. 4 Timing Circuit Ribbon Cable Connector: Output to Delay Extension Board

(viewed from underside of circuit board)

KEY:

1	GND	6	cascade	11	spare	16	spare
2	Vcc	7	spare	12	spare	17	spare
3	reset	8	spare	13	spare	18	spare
4	clock	9	spare	14	spare	19	spare
5	spare	10	spare	15	spare	20	spare

Figure B. 5 Timing Circuit Ribbon Cable Connector: Input to Delay Extension Board

B.2.2 Stored Switching Sequence

ICs 17 and 18 are EPROMs which store the output sequence as a series of eight-bit digital words. Twelve address lines are used, giving access to 4096 memory locations.

The timing diagram used to programme the EPROMs is shown in figure B.6. Chapter 3 explains the principle behind the diagram.

The first stage is charging, which begins when TR1 turns on. This occupies the first 3542 memory locations, which corresponds to approximately 1.7 ms . (The choice of charge time was arbitrary, the requirement being simply to leave plenty of memory space to programme the meatgrinder switching.)

[^0]To obtain an initial current of 7A the expression for exponential charging is applied:

$$
I(t)=I_{m}\left(1-e^{-t / T}\right)
$$

where

$$
\begin{array}{ll}
T=L / R & \\
L=L_{\text {coil }} & \left(L_{\text {coil }}=3390 \mu H\right) \\
R=R_{\text {coil }}+R_{\text {ext }} & \left(R_{\text {coil }}=0.28 \Omega\right)
\end{array}
$$

and

$$
I_{m}=\frac{V_{s}}{R_{R}}
$$

where V_{s} is the supply voltage.
Thus for $V_{S}=24 V$ and $R_{\text {ext }}=2 \Omega$, for example, the current after 1.7 ms is

$$
\begin{aligned}
I & =\frac{24}{2.28}\left(1-e^{-(2.28 \times 1700 / 3390)}\right) \\
& =7.17 \mathrm{~A}
\end{aligned}
$$

The meatgrinder switching begins when TR2 turns on. The "turn-on-before-turn-off" sequence described in Chapter 3 then proceeds using devices TR3, TR4, TR5, TR6, TR7 and TR8 (note: TR8 was not used in the experiments).

The output for TR2a goes high at the same time as that for TR2, but stays high when TR2 turns off. A similar comment applies to TR3a,TR4a TR5a,TR6a and TR7a. These outputs are used internally by the delay select logic (see below) but are also available externally to drive switches if required.

The INITIATE DELAY output is pulsed high once per energy transfer to trigger a user-adjusted variable delay.

Finally, END SEQUENCE goes high at the end of the sequence to ensure that the outputs remain frozen in their final state.

The digital words to be programmed are obtained by referring to figure B. 6 and reading vertically upwards for each memory location, counting a high state as 1 and a low state as 0. Thus the first word required in IC17 is 00000100 (binary) or 04 (hexadecimal). Similarly the first word in IC18 is 00000000.

Each word is repeated as many times as required: 3542 times for the first word in IC17, for example. It will be recalled that delays are required during the switching sequence to allow each energy transfer to finish before the next one starts. For each transfer a certain amount of fixed delay has been programmed in, with the remainder being obtained from the variable delay circuit. This is due to the way the circuit design evolved. The programmed-in delays could easily be removed if, for example, more charge time was required. The entire delay would then be provided by the variable delay circuit.

Tables B. 2 and B. 3 are extracts from typical listings of the contents of ICs 17 and 18. Re-programming to change the contents was carried out according to the requirements of the experiments.

Table B. 2 Extracts From Typical Contents Listing: IC17

ADDRESS	HEX DATA
0000	00000000000000000000000000000000
0010	000000000000000000000000000000
-	- - . - . - . -
-
\cdot	- • • • • • • • • • • • • • •
ODFO	
Oeoo	00000303030303030303030303030303
0E10	030303 OF OE OE OE OE OE OE OE OE 3E 3A 3A 3A
OE20	3A 3A 3A 3A 3A FA EA EA AA AA AA AA AA AA AA AA
OE30	AA AA ma
-	- - . . . - - .
-	- • - . - . - . - . - . - .
	$\cdot \cdot . \cdot$ -
oeao	an ma

Table B. 3 Extracts From Typical Contents Listing: IC18

B.2.3 Description of Operation

B.2.3.1 Initialisation and Start-Up

Power is first applied via SW1, which illuminates LED1. C3 and R1 provide the POWER UP signal, a 5 V spike with a time constant of 47 ms . The spike occurs whenever C3 charges up: either when power is first applied, or if the "Reset" pushbutton PB2 is momentarily pressed, thereby discharging C3 via R22. D2 limits any negative spike to approximately 0.4 V to protect the ICs.

POWER UP (or its inverted equivalent) has the following functions:
(a) Reset the shift register (ICs 9,10 and 10a to 10t), the counter (ICs 4,5 and 6), the monostable (IC22a) and the EPROM output latches (ICs 23 and 24) to zero. This is done by the inverted version of POWER UP.
(b) Reset flip-flop B (FFB) via IC8d to disable the clock.
(c) Reset flip-flop A (FFA) via IC8a to direct clock pulses to the counter (ICs 4,5 and 6) when the clock is enabled.

Momentarily pressing the "Start" pushbutton PB1 sets FFB, thus enabling the clock. Clock signals are gated to the counter via IC3a. The counter consists of three four-bit synchronous counters in cascade, these being used in preference to a ripple counter to prevent any timing problems. As the first count is zero, the highest count is 4095 (twelve bits $=4096$ states).

B.2.3.2 Output

Each clock pulse received by the counter increments the output. This in turn addresses the next memory location in the two EPROMs. During the actual change of address the state of the EPROM outputs cannot be predicted because the address lines all change state at slightly different speeds. The result is that the outputs can momentarily assume an arbitrary state totally unrelated to the desired output.

To solve this problem the outputs are latched by ICs 23 and 24. These are D-type latches which are clocked with the same clock edge as the counters. Thus on each clock edge the data "clocked in" and read to the latch outputs is actually that from the
previous address (see figure B.7, in which the duration of the indeterminate state is exaggerated for clarity).

Clock pulses

Sample EPROM output showing indeterminate state during change of address

Corresponding latch
output showing stable data

Figure B. 7 Illustration of EPROM Output Latch Operation

Non-inverting buffers ICs $20 a$ to $21 f$ provide the current for high-speed optocouplers OP1 to OP7. The optocouplers protect the circuit from noise which may be fed back from power circuitry. Should it be required, they also provide electrical isolation to enable switches to be driven with respect to different ground references.

B.2.3.3 Variable Delays

(i) INITIATE DELAY Signal

As described in Chapter 3, a variable delay is required each time a switch opens to initiate an energy transfer. The

INITIATE DELAY output from IC17 triggers a monostable (IC22a) which in turn applies a "set" pulse to FFA. This has the effect of diverting clock pulses from the counter to the shift register.

Note that INITIATE DELAY has to be converted to a pulse, otherwise the "reset" pulse to FFA at the end of the delay would simply turn off the clock pulses to the shift register without re-directing them to the counter.

(ii) Delay Circuit

The delay circuit (shift register) is made up of twenty-two eight-bit serial-in-parallel-out shift registers in cascade. The devices on the delay extension board (ICs 10a to 10t) are buffered by ICs 25 a to 25 h in order to stay within fan-out limitations.

At the start of a delay all outputs are low, a reset pulse having been applied from IC13d either at power-up or at the end of a previous delay. Each clock pulse received causes the data at the serial input (IC9 pins 1 and 2) to be read in and read out to the least significant parallel output (IC9 pin 3). The data previously on pin 3 is shifted to pin 4, that previously on pin 4 to pin 5 and so on. Since there is a permanent high on the serial input, the effect is to cause each output to go high in turn.

The delays are set by linking each delay line to a shift register output. If, for example, DELAY 2 (IC12b pin 5) is linked to IC10 pin 6, the second delay will end when enough clock pulses have been received to cause Iclo pin 6 to go high. (Detection of when a particular delay is required is achieved by the delay select logic - see below.)

(ii) (a) Available Range of Delay

If the enabled delay line is connected to IC9 pin 3, then as soon as the first clock pulse is received by the shift register, the delay select logic generates END OF DELAY, which in turn puts a high on IC7b pin 5. It is likely that the INITIATE DELAY pulse from IC22b will still be present and therefore that there will also be a high on IC7a pin 3. This leads to a "0-0" output from FFA.

The next state depends on which of the inputs to FFA first goes low, and this is purely a function of the propagation delays in the system. If END OF DELAY goes low first (as it will once the shift register has been reset) the effect will be to direct clock pulses to the shift register once more. The other possibility is that the clock is correctly re-routed to the counter, which will receive two clock edges separated only by propagation delays. It is therefore best to avoid using this shift register output.

Using IC9 pin 4 gives zero delay, with each subsequent shift register output adding one clock cycle to the delay. Thus the maximum delay is 174 cycles or $83 \mu \mathrm{~s}$.

(iii) Delay Select Logic

The delay select logic serves two purposes. It firstly detects which delay is required according to the point in the switching sequence. It then detects when that particular delay is complete.

From figure B. 6 it can be seen that when the first delay is required, DRIVE TR2a is high whereas DRIVE TR3a is low. Similarly, when the second delay is required, DRIVE TR3a is high and DRIVE TR4a low. This pattern is repeated for the remaining delays and is the basis of delay selection.

As an example consider the first delay. When this is required, both inputs to IC3C are high and therefore the output SELECT DELAY 1 is high. Examination of figure B. 6 shows that all other SELECT DELAY signals are low. Thus of the AND gates ICs 12a to 13c, only IC12a is enabled. This means that only DELAY 1 has any effect on the output from the delay select logic.

ICs 16a,16b,15e,15f and 19c form an OR gate. When the selected delay line goes high the output of the OR gate goes high, thus causing the shift register to be reset and the clock to be rerouted to the counter. (The length of the END OF DELAY pulse depends only on propagation delays; this is a design weakness, but no problems have resulted from it.)

B.2.3.4 End of Sequence

When the END SEQ signal goes high FFB is reset via IC8d, thus disabling the clock. In addition LED2 is illuminated via IC14b and TR9. The EPROM latch outputs finish with the data in address 4095 whilst the counter returns to zero.

B. 3 INTERFACE CIRCUIT

Figure B. 8 is a circuit diagram of the interface circuit and figures B. 9 and B. 10 are "maps" of the ribbon cable connectors.

(viewed from underside of circuit board)

KEY:

1	GND	6	TR8	11	TR4	16	TR6a
2	VCC	7	TR2	12	TR4a	17	TR7
3	spare	8	TR2a	13	TR5	18	TR7a
4	spare	9	TR3	14	TR5a	19	spare
5	TR1	10	TR3a	15	TR6	20	spare

Figure B. 9 Interface Circuit Ribbon Cable Connector: Input From Timing Circuit

(viewed from underside of circuit board)

KEY:

1	GND	6	TR2a	11	TR5	16	TR7a
2	spare	7	TR3	12	TR5a	17	+19V
3	TR1	8	TR3a	13	TR6	18	spare
4	TR8	9	TR4	14	TR6a	19	spare
5	TR2	10	TR4a	15	TR7	20	spare

Figure B. 10 Interface Circuit Ribbon Cable Connector: Output to Power Circuit

The incoming 20 V d.c. supply is used to provide the following non-isolated regulated d.c. supplies using individual regulators:
(1) A 5V supply for the optocouplers in the timing circuit. The optocoupler outputs are open collector, and so pullup resistors R5-R18 are provided to enable the signals to swing between 0 V and 5 V .
(2) 10V, 15V and 18V supplies for the MOSFET drivers ICs 6 to 19. Each driver is connected to the appropriate supply according to the gate drive voltage required.
(3) A 19V supply used for MOSFET gate-source protection where the nominal gate drive voltage is 18 V . Diodes such as D10 are used to connect the driver output to the 19V supply, thus preventing the output voltage exceeding 19V plus the forward bias voltage of the diode. D10-D14 are Schottky diodes with a low forward bias voltage of about 0.3V.

For the other drive voltages, gate-source protection is provided by ordinary zener diodes. However, the tolerance on an 18 V zener diode is too great to guarantee limiting the gate-source voltage to 20 V .

The MOSFET drivers have an inverting action, but this is cancelled out by the inverting action of the open collector outputs of the timing circuit optocouplers. Thus as the inputs to the optocouplers swing between $O V$ and 5 V the outputs of the drivers swing between $0 V$ and the appropriate gate drive voltage. The drivers can produce very rapid MOSFET switching as they are capable of sourcing or sinking up to 6A.

Note: The incoming supply must be at least 20.5 V to ensure proper regulation of the 18 V and 19 V supplies. Raising the input voltage further should be avoided because it increases the dissipation in the other regulators, particularly the 5 V one. Obviously this could be dealt with by mounting the regulators on heatsinks but in the longer term it would be preferable to find a more elegant circuit design.

APPENDIX C

COMPUTER SIMULATION USING PSPICE

C. 1 INTRODUCTION

PSpice [80] is a simulation package which may be used to test the response of a circuit without working on the circuit hardware itself. Several different types of analysis may be carried out, including a.c. response, d.c. response, transient response and noise analysis.

The package is derived from the SPICE family of mainframe programs. SPICE is an acronym for Simulation Program with Integrated Circuit Emphasis, but PSpice is equally suitable for simulation of power circuits [81,82]. Version 4.0 also includes simulation of digital circuits.

Reference [83] provides other examples of the use of PSpice.

The simulation work described in this thesis was carried out using version 3.3 on an IBM-compatible personal computer; versions are also available for use on other types of computer [81].

In addition to the references quoted, new users will benefit from viewing the disk-based "slide show" included with version 4.0. This provides a comprehensive introduction to all aspects of the package.

C. 2 METHOD OF USE

This section contains only an overview of how PSpice is used. See the quoted references for further details.

C.2.1 Input

The circuit is described by first allocating a number to each node, the ground reference always being node zero. The input file is then created using a text editor, and consists of lines describing the components and indicating the nodes to which they are connected. Further lines are required to specify the analyses required, the output required and various other options.

C.2.1.1 Models

Components such as transistors and diodes must clearly have their characteristics fully described if their behaviour is to be simulated. The collection of numerical values which serves this purpose is known as a component model. A diode model, for example, must include values for junction capacitance, saturation current and reverse breakdown voltage.

The equivalent circuits and associated parameters used in PSpice are described in reference [81]. The default parameter values can be used to simulate the response of a typical device (a typical diode, for example), but the resulting model will not relate to any specific device (a 1 N 4002 diode, for example). More often the user will either specify one of the pre-defined
models in the PSpice component library (such as the IRF250 MOSFET) or custom-build a model using the "Parts" program in conjunction with data sheet values. This latter method was used to model the Motorola MR752 diode.

Devices not covered by any of the above methods can be modelled by means of a user-defined subcircuit. This technique has been used successfully to model SCRs [84] and GTOs [85].

C.2.2 Output

Results are available in numerical and graphical form. Graphical output is produced by the "Probe" program which acts as the equivalent of an oscilloscope. Examples of this type of output appear in several Chapters in this thesis.

C. 3 USES IN RESEARCH

Computer simulation has been used in this research to:
(a) simulate circuits which have already been built and tested. This may be done either to confirm the suitability of the simulation program for a particular purpose or to validate the input file used to represent the circuit.
(b) vary circuit parameters to test their significance. This could be used, for example, to check whether a stray capacitance is affecting the output or to make a coil more nearly ideal by reducing its resistance to a very low value.
(c) assess the effect of changing to a different device (a different MOSFET, for example) without the need to do it physically.
(d) check the validity of theoretical analysis.
(e) avoid the need for theoretical analysis. In some cases it is quicker to find a result by trial and error than to calculate it.
(f) measure quantities such as clamp device currents, which are physically unaccessible in the real circuit.

C. 4 RUN TIME

As described in Chapter 1 the operation of the meatgrinder consists of a relatively long charge time followed by a much shorter time of switching and energy transfer. In order to avoid losing detail in the latter part of the process (which is the part of most interest) it is necessary to impose an upper limit on the internal time step used by PSpice. This is because the built-in time step control can cause aliasing [81] when a circuit runs freely, i.e. without a driving voltage or current source. The meatgrinder forms such a circuit once the power supply is disconnected. This means that during charging, whilst PSpice would normally allow the time step to rise to $36 \mu \mathrm{~s}$, for example, it may be restricted to only 100ns. Consequently, out of a run time of an hour it may only be the final five or ten minutes which provide information of interest.

The simplest way to alleviate this problem is to use a faster computer. It has been found, for example, that the same simulation runs two-and-a-half times faster on a PC running an 80386 processor at 16 MHz than on a similar machine running an

80286 processor at 8 MHz . Clock speeds of up to 33 MHz are now becoming available.

A much more satisfactory solution, however, would be to find a way of running the first part of the simulation without the time step limit. Variation of the time step limit during a run is not available in PSpice at present. It would therefore be necessary to run the two parts of the simulation separately and to have a means of using the results of the first part to establish initial conditions for the second part.

C.4.1 Use of Initial Condition Facility

When using PSpice it is possible to specify the initial current in an inductor. This is done by using the "IC=" statement in the inductor specification and the "UIC" (Use Initial Conditions) qualifier in the .TRAN statement.

It has been found that in certain cases this facility can be used to avoid the need for simulation of the charging phase. It should be noted, however, that this has only been successful in specific simple cases. This means, for example, that there must be no capacitors across the coils and that diodes must be ideal (that is, the built-in default diode model must be used). Obviously this limits the usefulness of the technique. Furthermore, it has been found that a flaw in PSpice necessitates an adjustment of the value used in the "IC=" statement. The next sections describe this problem and its solution.

C.4.1.1 Problem Description

The adjustment is only required when dealing with seriesconnected inductors which are mutually coupled. To demonstrate this, consider the two following PSpice descriptions for a series L-R circuit:
(Note: These circuit descriptions are in the form required by PSpice. Numbers such as "1 0", "1 2" and so on are node numbers. Also, "u" must be used in place of " μ ".)

```
Circuit 1 Circuit 2
```

L1 10 100uH IC=10A \quad	L1	1	2	$50 u H$	IC=10A
L2	2	0	$50 u H$	$I C=10 A$	

R	1	0	10

$$
\begin{array}{llll}
\mathrm{R} & 1 & 0 & 10
\end{array}
$$

Transient analysis yields the same result in both cases; an initial current of 10 A decaying exponentially.

If now the circuit is changed to:

Circuit 3

L1	1	2	25 uH	$\mathrm{IC}=10 \mathrm{~A}$
L 2	2	0	25 uH	$\mathrm{IC}=10 \mathrm{~A}$
k 12	L 1	L 2	0.9999	

$\begin{array}{llll}\mathrm{R} & 1 & 0 & 10\end{array}$
this gives the same total inductance (L1+L2+2M12) but an initial current of only 5A.

As the coupling coefficient is changed the initial current produced varies as shown in table C.1.

COUPLING COEFFICIENT	INITIAL CURRENT (A)
0.1	9.091
0.3	7.692
0.5	6.667
0.7	5.882
0.9	5.263

Table c. 1 Variation of Initial Current For Circuit 3

C.4.1.2 Solution

It appears that PSpice calculates the initial total flux linkage from the inductor specifications alone, regardless of whether or not there is any coupling. If coupling exists, PSpice subsequently adds the mutual inductance and adjusts the initial current to give the same total flux linkage.

Example:-

L1	1	2	25 uH	IC=10A
L2	2	0	25 uH	IC=10A

$k 12$ L1 L2 0.9999
(a) Total flux linkage $=2 \times 25 \mathrm{E}-6 \times 10=500 \mathrm{E}-6$
(b) Total inductance $=25+25+(2 \times 25)=100 \mu \mathrm{H}$
(c) Hence initial current $=500 / 100=5 \mathrm{~A}$

Thus the desired current value can be obtained by calculating the value to use in the "IC=" statement, I(ic), from:

```
    total inductance
    I(ic) = I(desired)
        x total self inductance
```

This holds for any number of series sections.

Figure C.1 PSpice Circuit For Idealised Six-Step Meatgrinder

C. 5 EXAMPLE INPUT FILES

C.5.1 Idealised Six-Step Meatgrinder Using Initial Condition Technique

(The circuit diagram from which this input file is derived is shown in figure c.1.)

IDEAL MEATGRINDER: NO CHARGE (IC=-25.096A)

```
*coil
L1 2 4 403.0uH IC=-25.096A
L2 4 6 289.0UH IC=-25.096A
L3 6 8 147.0uH IC=-25.096A
L4 8 10 52.0uH IC=-25.096A
L5 10 12 24.0uH IC=-25.096A
L6 12 14 0.9uH IC=-25.096A
L7 14 0 11.5uH IC=-25.096A
K12 L1 L2 0.85
K13 L1 L3 0.69
K14 L1 L4 0.58
K15 L1 L5 0.55
K16 L1 L6 0.29
K17 L1 L7 0.2
K23 L2 L3 0.84
K24 L2 L4 0.71
K25 L2 L5 0.68
K26 L2 L6 0.5
K27 L2 L7 0.44
K34 L3 L4 0.89
K35 L3 L5 0.8
```

```
K36 L3 L6 0.75
K37 L3 L7 0.7
K45 L4 L5 0.91
K46 L4 L6 0.74
K47 L4 L7 0.65
K56 L5 L6 0.76
K57 L5 L7 0.7
K67 L6 L7 0.71
```

```
*supply
Vbatt 16 1 PULSE (0 24V 0 0 0 1 2)
Rext 1 2 2.25 ;use to set initial current
*blocking diodes
D1 16 21 IDEAL
D4 8 24 IDEAL
D5 10 25 IDEAL
D6 12 26 IDEAL
D7 14 27 IDEAL
```

*clamps (represented by zeners)
DZ1 021 CLAMP1
DZ2 022 CLAMP2
DZ3 023 CLAMP2
DZ4 024 CLAMP2
DZ5 025 CLAMP2
DZ6 026 CLAMP2
DZ7 027 CLAMP2
*switches
Sl 2101000 SW
S2 22010100 SW
S3 $23 \quad 0 \quad 1020$ SW
$\begin{array}{llllll}\text { S4 } & 24 & 0 & 103 & 0 & \text { SW }\end{array}$

```
S5 25 0 104 0 SW
S6 26 0 105 0 SW
S7 27 0 106 0 SW
```

VCON1 1000 PULSE (10V 0 1.0us Ons Ons 1s 2s)
*delay to see II
VCON2 1010 PULSE (0 10V 1.0us Ons Ons 10.0us 1s)
*off at 11
VCON3 1020 PULSE (0 10V 11.0us Ons Ons 20.0us 1s)
*off at 31
VCON4 103 0 PULSE (0 10V 31.0 us Ons ons 20.0us 1s)
*off at 51
VCON5 1040 PULSE (0 10V 51.0 us ons ons 20.0us 1s)
*off at 71
VCON6 1050 PULSE (0 loV 71.0 V O Ons ons 30.0 us 1s)
*off at 101
VCON7 1060 PULSE (0 10V $101.0 u s$ Ons Ons 0.5s 1s)
*stays on
*models
. MODEL IDEAL D (VJ=1E-6)
*Trr defaults to 0 and $B v$ to infinity
. MODEL CLAMP1 D (BV=500V)
. MODEL CLAMP2 D ($B V=150 \mathrm{~V}$)
. MODEL SW VSWITCH (Ron=1E-6 Roff=1E6 Von=10V Voff=0)
. OPTIONS LIMPTS $=20000$ ITL4 $=20$ ITL5=0 RELTOL=0.01 ABSTOL=1E-3
$+\mathrm{VNTOL}=1 \mathrm{E}-3$
.TRAN lons l20us 0.0us 50ns UIC
. PROBE I(L7) I(L6) I(L5) I(L4) I(L3) I(L2) I(L1)
$+\quad I(D 1) I(D 2) I(D 3) I(D 4) I(D 5) I(D 6) I(D 7)$
$+\quad V(2) \quad V(4) \quad V(6) \quad V(8) \quad V(10) V(12) V(14)$
$+\quad \mathrm{V}(21) \mathrm{V}(22) \mathrm{V}(23) \mathrm{V}(24) \mathrm{V}(25) \mathrm{V}(26) \mathrm{V}(27)$
$+\quad \mathrm{V}(100)$
. END

Figure C. 2
PSpice Circuit For Six-Step Meatgrinder With MOSFET and Diode Models

C.5.2 Six-Step Meatgrinder With MOSFET and Diode Models

```
(The circuit diagram from which this input file is derived is
shown in figure C.2.)
```

MEATGRINDER WITH MOSFETS AND ARBITRARY CAPACITANCES

coil			
L1	3	4	403.0 uH
L2	5	6	289.0 uH
L3	7	8	147.0 uH
L4	9	10	52.0 uH
L5	11	12	24.0 uH
L6	13	14	0.9 uH
L7	15	0	11.5 uH

K12 L1 L2 0.85
K13 L1 L3 0.69
K14 L1 L4 0.58
K15 L1 L5 0.55
K16 L1 L6 0.29
K17 L1 L7 0.2
K23 L2 L3 0.84
K24 L2 L4 0.71
K25 L2 L5 0.68
K26 L2 L6 0.5
K27 L2 L7 0.44
K34 L3 L4 0.89
K35 L3 L5 0.8
K36 L3 L6 0.75
K37 L3 L7 0.7
K45 L4 L5 0.91
K46 L4 L6 0.74

```
K47 L4 L7 0.65
K56 L5 L6 0.76
K57 L5 L7 0.7
K67 L6 L7 0.71
RL1 2 3 0.071
RL2 4 5 0.054
RL3 6 7 0.037
RL4 8 9 0.021
RL5 10 11 0.013
RL6 12 13 0.004
RL7 14 15 0.011
*coil capacitances
CL1 2 4 50pF
CL2 4 6 50pF
CL3 6 8 40pF
CL4 8 10 30pF
CL5 10 12 20pF
CL6 12 14 2pF
CL7 14 16 10pF
*supply
Vbatt 16 1 PULSE (0 24V 0 0 0 1 2)
Rext 1 2 1.95 ;use to set initial current
*blocking diodes
D1 16 21 MR752
D2 4 22 MR752
D3 6 23 MR752
D4 8 24 MR752
D5 10 25 MR752
D6 12 26 MR752
D7 14 27 MR752
```

```
*clamps (represented by zeners)
DZ1 0 21 CLAMP1
DZ2 0 22 CLAMP2
DZ3 0 23 CLAMP2
DZ4 0 24 CLAMP2
DZ5 0 25 CLAMP2
DZ6 0 26 CLAMP2
DZ7 0 27 CLAMP2
```

*transistors (gate terminals 100,101......)
M1 $21100 \quad 0 \quad 0 \quad$ IRF450
M2 22101000 IRF250
$\begin{array}{llllll}\text { M3 } & 23 & 102 & 0 & 0 & \text { IRF250 }\end{array}$
$\begin{array}{llllll}\text { M4 } & 24 & 103 & 0 & 0 & \text { IRF250 }\end{array}$
$\begin{array}{llllll}\text { M5 } & 25 & 104 & 0 & 0 & \text { IRF250 }\end{array}$
M6 26105000 IRF250
M7 $27 \begin{array}{lllll}106 & 0 & 0 & \text { IRF250 }\end{array}$
Vg1 1000 PULSE (0 loV 0 100ns 100ns 1700.5us 1s)
*Tcharge+overlap
Vg2 1010 PULSE (0 10V 1700.0us 100ns 100ns 5.0 Gs 1s)
*off at 1705
Vg3 1020 PULSE (0 10V 1704.5us 100ns loons 10.0us 1s)
*off at 1714.5
Vg4 1030 PULSE (0 15V 1714.Ous 100ns 100ns 10.0us 1s)
*off at 1724
Vg5 1040 PULSE (0 15V 1723.5us 100ns 100ns 10.0us 1s)
*off at 1733.5
Vg6 1050 PULSE (0 18V 1733.0us 100ns 100ns 26.0us 1s)
*off at 1759
Vg7 1060 PULSE (0 18V 1758.5us 100ns 100ns 0.5s 1s)
*stays on


```
C.5.3 Two-Step Meatgrinder Used for Investigation of ETAC
(The circuit diagram from which this input file is derived is
shown in figure 5.3.)
```

3 SECTIONS; $\mathrm{V}_{\mathrm{S} 3}=100 \mathrm{~V}$

L1	3	4	100 uH	IC $=-14.9 \mathrm{~A}$
L2	4	0	150 uH	IC $=-14.9 \mathrm{~A}$
L3	6	3	200 uH	

```
K12 L1 L2 0.5
K13 L1 L3 0.6
K23 L2 L3 0.4
```

*clamps
Vsw $1 \quad 0$ PULSE (0 loov lus 0012)
R1 21 1E-9 ; just to avoid voltage loop
VS3 78 PULSE (0 100V 1us 0012)
*diodes
D1 32 DIODE
D2 $4 \quad 5 \quad$ DIODE
D3 67 DIODE
*switches
$\begin{array}{llllll}\text { S1 } & 5 & 0 & 100 & 0 & \text { SW }\end{array}$
$\begin{array}{llllll}\text { S2 } & 8 & 0 & 101 & 0 & \text { SW }\end{array}$
VCON1 1000 PULSE (0 10V 1us 0012$)$
VCON2 1010 PULSE (0 10V lus 0012$)$;brings VS3 into circuit
*models
.MODEL DIODE D
.MODEL SW VSWITCH (Ron=1E-6 Roff=1E6 Von=10V Voff=0)
.TRAN 10ns lyus 0 50ns UIC
. PROBE
. END

C.5.4 Two-Step Meatgrinder Used for Investigation of ITAC
 (The circuit diagram from which this input file is derived is shown in figure 5.12.)

3 SECTIONS; Bv(DZ4)=50V

L1	1	2	200 uH	IC $=-19.57 \mathrm{~A}$
L2	2	3	100 uH	IC $=-19.57 \mathrm{~A}$
L3	3	0	150 uH	IC $=-19.57 \mathrm{~A}$

K 12	L 1	L 2	0.6

$\begin{array}{llll}\mathrm{K} 13 & \text { L1 } & \text { L3 } & 0.4\end{array}$
K23 L2 L3 0.5
*diodes
D1 14 DIODE
D2 25 DIODE
D3 $3 \quad 6 \quad$ DIODE

```
*zener clamps
DZ1 0 4 CLAMP1
DZ2 0 5 CLAMP2
DZ3 0 6 CLAMP3
DZ4 3 7 7 CLAMP4
```

*switches

S1	4	0	100	0	SW
S2	5	0	101	0	SW
S3	6	0	102	0	SW
S4	7	6	103	0	SW

VCON1	100	0	PULSE (10V	0	$2 u s$	0	0	1	$2)$
VCON2	101	0	PULSE $(0$	10 V	2 us	0	0	1	$2)$
VCON3	102	0	PULSE $\left(\begin{array}{ll}0 & 10 V \\ 1 & 1\end{array}\right.$	0	0	1	$2)$		
VCON4	103	0	PULSE $\left(\begin{array}{ll}0 & 10 V \\ 2 u s & 0\end{array} 0\right.$	1	$2)$				

*models
.MODEL DIODE D
.MODEL CLAMP1 D (BV=1000V)
.MODEL CLAMP2 D (BV=500V)
. MODEL CLAMP3 D (BV=100V)
.MODEL CLAMP4 D ($\mathrm{BV}=50 \mathrm{~V}$)
.MODEL SW VSWITCH (Ron=1E-6 Roff=1E6 Von=10V Voff=0)
.OPTIONS RELTOL=0.01 ABSTOL=1E-3 VNTOL=1E-3 ITL5=0 ITL4=20
.TRAN 5ns 8us 1.5 us 25 ns UIC
. PROBE
.END

APPENDIX D

EFFECT OF UNCOUPLED LOAD ON COUPLING COEFFICIENT

Figure D. 1 Single-Step Meatgrinder With Uncoupled Load

Figure D.l shows a single-step meatgrinder with an uncoupled load in series with the second coil section L_{2}. Although the addition of such a load does not affect the operation of the circuit, the final inductance becomes

$$
\begin{equation*}
\mathrm{L}_{2}^{\prime}=\mathrm{L}_{2}+\mathrm{L}_{\mathrm{LOAD}} \tag{D.1}
\end{equation*}
$$

and the coupling coefficient must be modified as follows:

The total circuit inductance L_{0} is

$$
\begin{equation*}
\mathrm{L}_{0}=\mathrm{L}_{1}+\mathrm{L}_{2}^{\prime}+2 \mathrm{M}_{12}{ }^{\prime} \tag{D.2}
\end{equation*}
$$

Since the load is magnetically uncoupled, it has no effect on the mutual inductance in the circuit. Hence

$$
M_{12} \quad=M_{12}
$$

or

$$
k^{\prime}{\sqrt{L_{1} L_{2}}}^{\prime}=k \sqrt{L_{1} L_{2}}
$$

and therefore

$$
k^{\prime}=k \sqrt{L_{2} / L_{2}},
$$

from which

$$
\begin{equation*}
k^{\prime}=k\left[\frac{L_{2}}{L_{2}+L_{\text {LOAD }}}\right]^{\frac{1}{2}} \tag{D.3}
\end{equation*}
$$

The modified coupling coefficient k ' may now be used in expressions developed for the unloaded circuit, with \dot{L}_{2} being replaced by $\mathrm{L}_{2}+\mathrm{L}_{\text {LOAD }}$.

APPENDIX E

FORTRAN PROGRAMS USED IN THE RESEARCH

E. 1 IDEAL MEATGRINDER CALCULATIONS

The program "Ideal" was written with the intention of providing a general-purpose tool for investigation of the meatgrinder concept. The calculations for multi-step circuits did prove useful, but the program was replaced by use of the PSpice simulation package (see Appendix C). PSpice is ideal for simulating the meatgrinder circuit, and is able to cope with phenomena such as transformer action clamping, which "Ideal" does not include.

The other function of "Ideal" is to evaluate certain algebraic expressions, rather like a sophisticated programmable calculator. The expressions relate to the theoretical investigation of transformer action clamping described in Chapter 5.

The following pages contain a listing of the program followed by some example outputs.
program title: ideal meatgrinder calculations
WRITTEN BY: M.G.PIMPERTON
DATE WRITTEN: MARCH 1988
WRITTEN FOR: DEPT. OF ELECTRONIC AND ELECTRICAL ENGINEERING.
LoUGHBOROUGH UNIVERSITY OF TECHNOLOGY
PROGRAM INTENT:
THE PROGRAM IS INTENDED FOR USE IN INVESTIGATIONS OF
THE MEATGRINDER CONCEPT.
the algorithms are based on analysis of the ideal circuit: no
resistance, no capacitance, ideal switches. furthermore. two
SIMPLIFYING ASSUMPTIONS ARE MADE:
(a) the switches have ideal voltage clamps across them
so that the transfers are linear, i.e. di/dt is
CONSTANT.
(b) THE MULTISTAGE CALCULATION TAKES NO ACCOUNT OF TRANSFORMER
action clamping.
this assumption means that the transfer time depends only
on the clamp voltage of the opening switch in question.
IT is recognised that this limits the usefulness of some of
the calculations.
INPUT/OUTPUT DEVICES: 0 INTERACTIVE TERMINAL
1 DATAFILE
2 RESULTS FILE
UNITS COMMONLY USED:
inductance microhenries
time microseconds
voltage kilovolts
energy joules
current amps
NOTE ON GLOBAL VARIABLES:
THE PROGRAM PERFORMS TWO DIFFERENT TASKS: CALCULATIONS FOR MULTI-
STEP MEATGRINDER CIRCUITS, WHICH USE DATAFILE DATA AND ARE
AUTOMATIC. AND CALCULATIONS IN WHICH
THE COMPUTER IS USED AS A SOPHISTICATED CALCULATOR.
THE MULTI-STEP CALCUZATIONS CONSIST OF TWO MAIN FUNCTIONS:
datarile editing, and actual calcuilation. the calculation
FUNCTION TREATS THE DATAFILE ITEMS
HOWEVER. THEY ARE PASSED AS ARGUMENTS.
THE MAIN PROGRAM PRESENTS THE AVAILABLE CHOICES AND DIRECTS TO
ONE OF THE TWO LEVEL 2 ROUTINES.
program ideal
implicit double precision (a-h.o-z)
call sfc(">udd>EL>MGPimperton>mg>mgideal>ideal")

```
integer secopt.sec
parameter (maxopt=3)
STC
common/option/mnopt
data intro.main,sec/1.1.2/
c
c SET TERMINAL
```



```
open(0.defer=.true.,prompt=.false.)
call mesage (0,intro)
call menu (main,mnopt)
if (mnopt.eq.maxopt) goto 50
call menu (sec.secopt)
if (secopt.eq.1) then
    call data
    goto 20
else if (secopt.eq.2) then
    call rncalc
    goto 20
else
    goto 10
endif
C
c RESET TERMINAL
c
50
open(0.deferm.false.)
    stop
    end
    *** LEVEL 2 ROUTINES ***
```



```
    "data" SIMPLY PROVIDES A CHOICE BETWEEN EDITING AN EXISTING FILE
    OR CREATING A BRAND NEW ONE.
    CALLING ROUTINE: main program
    (This routine is rather superfluous but cannot be removed without
    altering the structure of the rest of the program.)
    subroutine data
    implicit double precision (a-h,o-z)
    integer datmod
    logical newdat
    data datmod/1/
    call menu2 (datmod, newdat)
    if (newdat) then
        call datnew
    else
        print*,"Modify existing data:"
        call mdexst
    endif
    return
    end
128
```

```
c
c
c
c
c
c
c
136
137 c
138 c
139 c
140 c
141 c
142
143
144
145
146
147
148
149
150
151 c
152 c
153 c
154 10
155 c
156 c
157 c
158 20
159
160
161
162
163
164
165 c
166
167
168
call oldfle (caller,x)
```



```
CALL APPROPRIATE CALC. ROUTINE.
if (mnopt.eq.1) then
    call calcl
else if (mnopt.eq.2) then
    call calc2
endif
```



```
RUN AGAIN?
call menu2 (rerun,again)
if (again) then
    call menu2 (newfle,nwfile)
    if (nwfile) then
        close(1)
        goto }1
    else
```



```
    THE READ STATEMENT IS USED TO POSITION THE FILE CORRECTLY
        (AS THOUGH "oldfle" HAD BEEN CALLED). "x" IS JUST A DUMMY NAME.
```



```
            rewind(1)
            read(1) x
            goto 20
        endif
        endif
        close(1)
        return
        end
        **** LEVEL 3 ROUTINES ****
```



```
        "datnew" CREATES A NEW DATAFILE AND INTERACTIVELY READS
        APPROPRIATE DATA ACCORDING TO THE MAIN OPTION.
c
```


implicit double precision (a-h,o-z)
integer rerun
character*10 caller
logical again.nwfile
common/option/mnopt
data rerun. newfle/2.3/
data caller/"runcalc"/

GET FILE NAME, CHECK IT IS SUITABLE AND CONNECT TO IT.

```
CALLING ROUTINE: data
c
subroutine datnew
implicit double precision (a-h,o-z)
parameter(maxns=50)
integer create
double precision ind(maxns),idl
character caller*10
common/option/mnopt
dimension cf(maxns,maxns),vs(maxns)
data idl.create/1.1.2/
data caller/"datnew"/
c
c CREATE NEW FILE
c
call newfle (caller)
c
c
c
c
c
c
c
c
c
c
c
c
    nsunsect(maxns)
    call getind (ns,ind)
    call getcf (ns,cf)
    call gtswvt (ns.vs)
    call ldvolt(vload)

```

GET DATA
if (mnopt.eq.1.or.mnopt.eq.2) then

```

```

GET THE FOLLOWING: no. of coil sections
coil inductances
coupling factors,
switch voltages (for use when load voltage is
not specified)
load voltage (for specifying a maximum when
appropriate)

```


```

 WRITE DATA; "id1" IS AN IDENTIFICATION NO. TO SHOW THAT THE FILE IS
 SUITABLE FOR THAT PARTICULAR OPTION.
    ```

```

 write(1) idl
 write(1) ns
 write(1) (ind(i).i=1,ns).((cf(j,i).j=1,ns),i=1,ns).
 + (vs(i),i=1,ns).vload
 endif
 call mesage (mnopt, create)
 close(1)
 return
 end
 "mdexst" CONNECTS TO AN EXISTING DATAFILE, VERIFIES ITS
 SUITABILITY AND ACCEPTS MODIFICATIONS.
 CALLING ROUTINE: data
 subroutine mdexst
    ```
```

implicit double precision (a-h,o-z)
parameter(maxns=50)
double precision ind(maxns),idnum
character caller*10.reply*1
common/option/mnopt
dimension cf(maxns,maxns), vs(maxns)
data modify/3/
data caller/"modexist"/
CONNECT TO A FILE. "idnum" IS RETURNED SO THAT IT CAN BE WRITTEN
AFTER REWINDING.
call oldfle (caller,idnum)

```

```

PRINT PRESENT DATA AND ACCEPT MODIFICATIONS.
if (mnopt.eq.1.or.mnopt.eq.2) then
FIRST ITEM TO BE READ IS "ns" BECAUSE "idnum" WAS READ BY
"oldfle".

```

```

 read(1) ns
 read(1) (ind(i),i=1,ns),((cf(j,i),i=1,ns),j=1,ns),
 (vs(i),i=1,ns).vload
 call modind (ns,ind)
 call modcf (ns,cf)
 call mdswvt (ns.vs)
 write(0.*)
 write(0,*)"Max. load voltage: ",vload."kV Modify? "
 read*,reply
 if (reply.eq."Y") call ldvolt(vload)
    ```

```

 WRITE BACK TO FILE
    ```

```

 rewind(1)
 write(1) idnum
 write(1) ns
 write(1) (ind(i),i=1,ns).((cf(j,i),i=1,ns),j=1,ns),
 (us(i),i=1,ns).vload
 endif
 call mesage (mnopt,modify)
 close(1)
 return
 end
 "calc1" IS THE MAIN CALCULATION ROUTINE FOR OPTION 1. THE
 ROUTINES IT CALLS ARE LABELLLED "1" OR "12" ETC. TO ALLOW
 FOR FURTHER OPTIONS.
 THE PROCEDURE IT FOLLOWS IS:
 1. ESTABLISH THE LOAD AND THE OPERATION MODES REQUIRED.
 2. CALCULATE THE INITIAL ENERGY AND CURRENT.
    ```

c
c
do \(20 . \mathrm{i}=1 . \mathrm{ns}\)
ind(i) =ind (i) *1E-6
vs(i)=vs(i)*1E3
continue vload=vload*1E3
c GET MODES. DECOMPRESSION IS ONLY AVAILABLE IN FORWARD.

call menu2 (dir,fwd)
call load(uload)
c NORMALISE LOAD

uload*uload*1E-6
if (fwd.and.uload.ne.0.0) then
call menu2 (dcmprs. decomp)
else
decomp=.false.
endif
call menu2 (fixldv,ldvfix)
c INITIAL CONDITIONS

call initl (ns,uload, fwd, decomp, curr(1).en(1))
C
c MAIN CALCULATIONS

if (fwd) then
cald fdadjl (ns, cumind, transk, 1three, indvtk)
call fwdil (ns. decomp, uload. cumind.transk,
+ curr,cmult,en,stpefy)
call fwall (ns, decomp, ldvfix, uload, curr, cumind.
\(\begin{array}{ll}+ & \text { transk.lthree,indvtk, } \\ + & \text { effind,swolt, loadv.trtime,indced) }\end{array}\)
else
ctemp call rdadj1 (ns, cumind,transk,lthree,indvtk)
ctemp call rev11 (ns,uload. cumind, transk.
ctemp \(+\quad\) curr.cmult.en.stpefy)
ctemp call revil (ns,ldvfix, uload, curr,transk,lthree,indvtk.
ctemp + effind.swvolt.loadv,trtime.indced)
print*, "rdadj1,rev11.rev12 all called" TEMP
endif
call miscl (ns,fwd, decomp, uload, curr (1), curr(ns+1), en(1), en(ns+1).
\(+\) trtime.
+ pnalty, totefy, totmit, power)

c RESULTS

10 call pdatal (fwd,uload,ns)
call rsltil (ns, decomp, curr, cmult, en, stpefy.pnalty, totefy, totmlt.
\(+\quad\) power)
call rsitl2 (ns, decomp, fwd, swoolt, loadv, trime, indced)
call menu2 (see.review)
if (review) goto 10
ctemp call menu2 (reswr, rwrite)

```

return
end
"calc2" IS THE CONTROLLING ROUTINE FOR THE EXPRESSION EVALUATION OPTION. IT FIRST READS THE NECESSARY DATA FROM THE.FILE AND THEN PRESENTS THE APPROPRIATE MENU. "calcl" AND "calc2" ARE MUTUALLY EXCLUSIVE.

```
```

CALLING ROUTINE: rncalc

```
CALLING ROUTINE: rncalc
subroutine calc2
implicit double precision(a-h,o-z)
double precision ind
integer calc,calopt
parameter (maxns=50)
data calc/3/
common/coill/ind(maxns), cf(maxns,maxns)
```



```
c READ DATA. FILE IS CONNECTED AND POSITIONED AT "ns".
```



```
read(1) ns
read(1) (ind(i),i=1.ns).((cf(j,i),i=1,ns),j=1,ns)
```



```
c NORMALISE DATA FOR CALCULATIONS
```



```
do 20.i=1.ns
            ind(i)=ind(i)*1E-6
        continue
```



```
PRINT MENU AND CALL ROUTINES
call menu (calc.calopt)
    if (calopt.eq.1) then
        call calc21 (ns)
        goto 10
        else if (calopt.eq.2) then
        call calc22
        goto }1
        else if (calopt.eq.3) then
        call calc23
        goto 10
        endif
        return
        end
            **** LEVEL 4 ROUTINES ****
```



```
        "nsect" GETS THE NUMBER OF SECTIONS IN THE MEATGRINDER COIL.
        THE MINIMUM HAS TO BE 2 TO ALLOW ANY TRANSFERS.
    CALLING ROUTINE: datnew
```



```
    function nsect(maxns)
    implicit double precision (a-h.o-z)
```

```
write(0,*)
write(0,*)
write(0,*)"No. of coil sections? "
read*,n
if (n.lt.2.or.n.gt.maxns) goto 10
nsect=n
return
end
```



```
"getind" FILLS THE COIL INDUCTANCE ARRAY.
CALLING ROUTINE: datnew
subroutine getind (ns.ind)
implicit double precision (a-h.o-z)
parameter(maxns=50)
double precision ind(maxns),indmin
```



```
MIN. VALUE (0.1nH) IS AN ARBITRARY CHOICE.
parameter(indmin=1E-4)
write(0,*)
write(0.*)
print*."COIL INDUCTANCES (microhenries):"
write(0,*)
do 10.i=1,ns
    write(0,*)"L",i,"m"
    read*,ind(i)
    if (ind(i).lt.indmin) goto 5
continue
return
end
"getcf" FILLS THE NON-DIAGONAL ELEMENTS OF THE
COUPLING FACTOR ARRAY. THIS ARRAY IS MADE SYMMETRICAL
FOR CONVENIENCE. THE LIMITS ENSURE REASONABLE VALUES
AND prEvENT ANY REAL ARITHMETIC PROBLEMS.
CALLING ROUTINE: datnew
    subroutine getcf (ns,cf)
    implicit double precision (a-h.o-z)
    parameter(maxns=50,cfmin=0.1,cfmax=0.99)
    dimension cf(maxns,maxns)
    write(0.*)
    write(0.*)
    print*."COUPLING FACTORS:"
    write(0.*)
    do 10,j=1,ns-1
        do 10.i=j+1.ns
            write(0.*)"k(",j,"_",i,")="
            read*,cf(j.i)
```

```
        cf(i,j)=cf(j,i)
```

 cf(i,j)=cf(j,i)
 continue
 return
 end
 "gtswvt" ("get_switch_voltages") FILLS THE SWITCH VOLTAGE
 ARRAY; THE DECOMPRESSION SWITCH vOLTAGE IS IN THE FIRST
 ELEMENT.
 THE OPTIONS SELECTED DETERMINE WHICH OF THE VALUES IN THIS
 ARRAY ARE ACTUALLY USED IN CALCULATIONS.
 MIN. VALUE (10V) IS ARBITRARY.
 CALLING ROUTINE: datnew
 subroutine gtswvt(ns,vs)
 implicit double precision (a-h,o-z)
 parameter(maxns=50,vsmin=0.001)
 dimension vs(maxns)
 write(0.*)
 write(0.*)
 print*,"CLAMP VOLTAGES (kV):*
 write(0,*)
 print*."Decompression switch:"
 write(0,*)
 write(0,*)"Vsw.decomp="
 read*.vs(1)
 if (vs(1).1t.vsmin) goto 10
 write(0,*)
 print*,"Meatgrinder switches:"
 write(0.*)
 do 20.i=2,ns
 write(0,*)"Vsw",i-1,"="
 read*.vs(i)
 if (vs(i).lt.vsmin) goto }1
 continue
 return
 end
 "ldvolt" GETS THE MAXIMUM LOAD VOLTAGE. THIS VALUE IS
 USED IN ACCORDANCE WITH THE SELECTED OPTIONS AND
 OPERATING MODES.
 MIN. VALUE 10V.
 CALLING ROUTINES: datnew
 mdexst
 subroutine ldvolt(vload)
 implicit double precision (a-h,o-z)
 double precision minidv
    ```

641
```

parameter(minldv=0.01)
write(0.*)
write(0.*)
write(0.*)"Max. Load voltage (kV)? "
read*,vload
if (vload.lt.minldv) goto 10
return
end
"modind" ACCEPTS MODIFICATIONS TO THE COIL INDUCTANCE ARRAY.
CALLING ROUTINE: mdexst
subroutine modind(ns.ind)
implicit double precision (a-h,o-z)
double precision ind,indmin
parameter(maxns=50.indmin=1E-4)
dimension ind(maxns)
write(0.*)
write(0.*)
print*."COIL INDUCTANCES (microhenries):"
write(0,*)
do 10 i=1.ns
write(0,*)"L",i,"n".ind(i)
continue
write(0.*)
write(0,*)"Subscript of value to be changed (0 to quit)? "
read*,n
if (n.lt.0.or.n.gt.ns) goto 20
if (n.ne.0) then
write(0,*)"L",n,"="
read*,ind(n)
if (ind(n).lt.indmin) goto }3
goto 20
endif
return
end

```

```

"modcf" ACCEPTS MODIFICATIONS TO THE COUPLING FACTOR ARRAY.
CALLING ROUTINE: mdexst
subroutine modcf(ns.cf)
implicit double precision (a-h,o-z)
parameter(maxns=50.cfmin=0.0.cfmax=0.99)
dimension cf(maxns,maxns)
write(0,*)
write(0.*)
print*,"COUPLING FACTORS:"
write(0,*)

```
```

do 10.j=1.ns-1
do 10.i=j+1,ns
write(0.*)"k(".j," ",i,")=".cf(j,i)
continue
THE ODD-LOOKING STRUCTURE IS USED SO THAT THE USER
ONLY HAS TO ENTER A SINGLE O TO QUIT.
write(0.*)
write(0,*)"Value to be changed:"
write(0,*)"lst subscript (0 to quit)? "
read*,m
if (m.lt.0.or.m.gt.ns) goto 25
if (m.ne.0) then
write(0.*)"2nd subscript (0 to quit)? "
read*,n
if (n.lt.0.or.n.gt.ns) goto 30
if (n.ne.0) then
DIAGONAL ELEMENTS ARE NOT DEFINED
if (n.eq.m) then
goto 20
else
write(0,*)"k(",m,"_".n,")="
read*.cf(m,n)
if (cf(m,n).lt.cfmin.or.cf(m,n).gt.cfmax) goto 40
cf(n,m)=cf(m,n)
goto 20
endif
endif
endif
return
end

```

```

 "mdswvt" ("mod_switch_voltages") ACCEPTS MODIFICATIONS
 TO THE SWITCH VOLTAGE ARRAY.
 CALLING ROUTINE: mdexst
 subroutine mdswvt(ns.vs)
 implicit double precision (a-h,o-z)
 parameter(maxns=50.vsmin=0.001)
 dimension vs(maxns)
 write(0,*)
 write(0,*)
 print*,"CLAMP VOLTAGES (kV):*
 write(0,*)
 write(0.*)"1 Vsw.decomp=".vs(1)
 do 10,i=2.ns
 write(0.*)i." Vsw",i-1."=".vs(i)
 continue
 write(0.*)
    ```
```

write(0.*)"Ref. no. of value to be changed (0 to quit)? "

```
write(0.*)"Ref. no. of value to be changed (0 to quit)? "
read*,n
read*,n
if (n.lt.0.or.n.gt.ns) goto 20
if (n.lt.0.or.n.gt.ns) goto 20
if (n.ne.0) then
if (n.ne.0) then
    if (n.eq.1) then
    if (n.eq.1) then
        write(0,*)"Vsw.decomp="
        write(0,*)"Vsw.decomp="
        read*,vs(1)
        read*,vs(1)
        if (vs(1).lt.vsmin) goto 30
        if (vs(1).lt.vsmin) goto 30
        else
        else
        write(0,*)"Vsw",n-1,"="
        write(0,*)"Vsw",n-1,"="
            read*.vs(n)
            read*.vs(n)
            if (vs(n).1t.vsmin) goto 40
            if (vs(n).1t.vsmin) goto 40
        endif
        endif
        goto 20
        goto 20
    endif
    endif
    return
    return
    end
    end
    "load" GETS THE UNCOUPLED LOAD.
    "load" GETS THE UNCOUPLED LOAD.
    CALLING ROUTINE: calcl
```

 CALLING ROUTINE: calcl
    ```


```

 subroutine load (uload)
    ```
    subroutine load (uload)
    implicit double precision (a-h,o-z)
    implicit double precision (a-h,o-z)
    write(0,*)
    write(0,*)
    write(0.*)"Uncoupled load (microhenries)? "
    write(0.*)"Uncoupled load (microhenries)? "
    read*,uload
    read*,uload
    if (uload.eq.0.0) then
    if (uload.eq.0.0) then
        print*,"Last section of meatgrinder coil will be taken as load.
        print*,"Last section of meatgrinder coil will be taken as load.
+
+
    endif
    endif
    return
    return
    end
    end
    "init1" PROVIDES THE INITIAL CURRENT AND ENERGY.
    "init1" PROVIDES THE INITIAL CURRENT AND ENERGY.
    HAVING READ THE INITIAL CURRENT. THE ENERGY IS SIMPLY
    HAVING READ THE INITIAL CURRENT. THE ENERGY IS SIMPLY
    CALCULATED ACCORDING TO THE OPERATION MODES SELECTED.
    CALCULATED ACCORDING TO THE OPERATION MODES SELECTED.
    VARIABLE DICTIONARY:
    VARIABLE DICTIONARY:
    mincur minimum current (arbitrary limit)
    mincur minimum current (arbitrary limit)
    mtgndr total meatgrinder inductance
    mtgndr total meatgrinder inductance
    induct inductance in which initial energy resides
    induct inductance in which initial energy resides
    CALLING ROUTINE: calcl
    CALLING ROUTINE: calcl
    subroutine init1 (ns,uload, fwd.decomp.
    subroutine init1 (ns,uload, fwd.decomp.
* curr1,enl)
* curr1,enl)
    implicit double precision (a-h,o-z)
    implicit double precision (a-h,o-z)
    double precision ind.mincur,mtgndr,induct
    double precision ind.mincur,mtgndr,induct
    logical fwd.decomp
    logical fwd.decomp
    parameter(maxns=50,mincur=0.01)
```

 parameter(maxns=50,mincur=0.01)
    ```
10
c
```

common/coil1/ind(maxns), cf(maxns,maxns)

```
write ( \(0, *\) )
write(0.*)"Initial current (amps)?
read*.curr1
if (curr1.lt.mincur) goto10
\(m\) tgndr=totind(1,ns)
if (.not.fwd) then
    inductrind(1)
else if (fwd.and. decomp) then
    induct \(=m\) tgndr
else
    induct \(=m t g n d r+u l o a d\)
endif
en1=0.5*induct*curr1*curr1
return
end

"fdadj1" ("forward_data_adjust1") TAKES THE RAW COIL DATA
AND PRODUCES ARRAYS WHICH CAN MORE EASILY BE APPLIED TO THE
VARIOUS FORMULAE. THESE ARRAYS ARE DEFINED IN THE INTRO. TO
"calc1".
CALLING ROUTINE: calci
subroutine fdadj1 (ns, cumind, transk, lthree,indvtk)
    implicit double precision (a-h,o-z)
    double precision ind,indvtk,1three, mut12,mut13
    parameter(maxns=50)
    common/coil1/ind(maxns). cf(maxns, maxns)
    ARRAY SIZES:
    cumind same as no. of coil sections because last element
        is just a single inductance, i.e. ind(ns)
    transk same as no. of switching steps, i.e. ns-1
    lthree there are ns-2 switching, steps which produce induced
        voltages (fwa or rev), with a maximum of ns-2 nodes
        involved
        indvtk calculation of the induced voltage at any node requires three
        coupling factors, one of which is the "normal" one
        involved in the energy transfer; hence two more have to
        be calculated, and the array has an extra dimension
        NOTE: ARRAYS HAVE TO BE DIMENSIONED TO "maxns" TO ENSURE
        CONSISTENCY BETWEEN ALL ROUTINES.
        dimension cumind(maxns), transk(maxns-1), 1three(maxns-2,maxns-2).
        + indvtk(2,maxns-2,maxns-2)
C CALC. CUM. INDUCTANCES FOR FORWARD TRANSFERS
do \(10, i=1 . n s\)
    cumind(i) \(=\) totind(i,ns)
    continue
    CALC. TRANSFER COUPLING FACTORS ACCORDING TO:
    k12=(L12-L1-L2)/(2*sqrt[L1*L2])
    do \(20, \mathrm{j}=1, \mathrm{~ns}-1\)
    transk \((j)=(\operatorname{cumind}(j)-\operatorname{cumind}(j+1)-i n d(j)) /(2 * s q r t(c u m i n d(j+1)\)
    + *ind(j)))
    continue
    LOOP TO CALCULATE "lthree" AND "indvtk" VALUES.
    " \(i\) " IS THE VOLTAGE-INDUCING STEP NUMBER (N.B. THE FIRST STEP WHICH
    PRODUCES AN INDUCED VOLTAGE IS ACTUALLY THE SECOND SWITCHING STEP).
    " \({ }^{\prime \prime}\) " IS THE NODE NUMBER DURING STEP "i". NODE 1 IS NEAREST TO THE
    SECTION BEING SWITCHED OUT. FOR EXAMPLE, IN THE SECOND
    VOLTAGE-PRODUCING STEP. L3 IS SWITCHED OUT (REGARDED AS "L1" IN
    THE GENERAL FORMULA). NODE 1 IS THE JUNCTION BETWEEN L2 \& L1
    AND NODE 2 IS THE END OF L1.
    FOR EACH NODE, "L3" IS THE TOTAL NON-PARTICIPATIVE INDUCTANCE.
    AND THIS LEADS TO THE EXPRESSION FOR lthree(j,i).
    i=1
    \(\mathrm{j}=1\)
    do \(40, i=1, n s-2\)
        do \(40, j=1, i\)
        1three( \(j, i)=\) totind (i-j+1,i)
    indvtk(1,j.i) HOLDS WHAT IS REGARDED AS "k31" IN THE GENERAL FORMULA.
    "L3" HAS JUST BEEN CALCULATED, "L1" IS THE SECTION BEING SWITCHED
    OUT (ind(i+1)). AND THE TOTAL IS AGAIN FOUND BY "totind".

        tempasqrt(ithree(j,i)*ind(i+1))
        indvtk(1,j,i)=(totind(i-j+1,i+1)-1three(j,i)-ind(i+1))/
    + (2*temp)
    indvtk(2,j,i) HOLDS "k32" AND SINCE "L3" (THE NON-PARTICIPATIVE
    INDUCTANCE WHICH EXPERIENCES THE INDUCED VOLTAGE) AND "L2" (THE
    INDUCTANCE REMAINING IN CIRCUIT AFTER THE TRANSFER) ARE NOT
    ADJACENT. THE TOTAL OF THREE INDUCTANCES MUST BE USED TO
    EVALUATE IT.
    "L2" IS cumind(i+2). "L123" IS A "totind" FUNCTION AND muti2, mut13
    ARE TWO OF THE THREE MUTUALS. "M32" IS USED TO FIND "k32".
    NOTICE THE USE OF transk(i+1) AS "k12".
    mut12=transk(i+1)*sqrt(ind(i+1)*cumind(i+2))
    mut13=indvtk(1,j.i)*temp
    top=totind(i-j+1,ns)-ind(i+1)-cumind(i+2)-1three(j,i)-
    \(+\quad 2 *(\) mut \(12+\) mut13 )
        bottom=2*sqrt(1three(j,i)*cumind(i+2))
        indvtk(2,j,i)=top/bottom
    continue
```

return
end

```

```

"fwd1l" PRODUCES THE fIRST BATCH OF RESULTS ARRAYS.
CALLING ROUTINE: calc1
subroutine fwdll (ns,decomp,uload,cumind,transk.

+ curr.cmult.en,stpefy)
implicit double precision (a-h,o-z)
double precision ind.ltwo,mutual,mtgndr
logical decomp
 * parameter(maxns=50)
common/coill/ind(maxns), cf(maxns,maxns)

```

```

 ARRAY SIZES:
 THERE ARE ns-1 TRANSFER STEPS AND POSSIBLY A DECOMPRESSION STEP.
 the Energy and Current arrays must also store the initial values.
 dimension cumind(maxns),transk(maxns-1), curr(maxns+1).
 + cmult(maxns),en(maxns+1),stpefy(maxns)
 DECOMPRESSION STEP FIRST
 if (decomp) then
 mtgndr=cumind(1)
    ```

```

 CURRENT RATIO FOR DECOMP. IS LIKE A REVERSE STEP WITH k=0.
 cmult(1)=mtgndr/(mtgndr+uload)
 curr(2)=curr (1)*cmult (1)
    ```

```

 CALCULATION OF ENERGY alwAYS USES I*I RATHER THAN I**2
 (MORE EFFICIENT). ENERGY IN JOULES.
    ```

```

 en(2)=0.5*(mtgndr+uload)*curr(2)*curr (2)
 stpefy(1)=en(2)/en(1)
 else
    ```

```

 IF NO DECOMP.. THESE VALUES ARE NEEDED FOR OTHER CALCULATIONS
 but are not printed at the results stage.
 cmult(1)=1.0
 curr (2)*curr (1)
 en(2)=en(1)
 stpefy(1)=1.0
 endif
 TRANSFER STEPS
 do 10.i=1,ns-1
    ```

```

 BASIC FORMULA IS I2/I1=(L2+M12)/L2.
 Itwo WILL BE ACCURATE WHATEVER THE VALUE OF uload, whEREAS
 THE ADJUSTMENT FACTOR FOR THE COUPLING FACTOR MAY NOT BE
 evaluated to exactly one IF uload=0.0.
    ```

```

 ltwo=cumind(i+1)+uload
    ```
        ltwo=cumind(i+1)+uload
    if (uload.ne.0.0) then
    if (uload.ne.0.0) then
            cfact=transk(i)*sqrt(cumind(i+1)/ltwo)
            cfact=transk(i)*sqrt(cumind(i+1)/ltwo)
        else
        else
            cfact=transk(i)
            cfact=transk(i)
        endif
        endif
        mutual=cfact*sqrt(ind(i)*1two)
        cmult(i+1)=(1two+mutual)/1two
        curr(i+2)=curr(i+1)*cmult(i+1)
        en(i+2)=0.5*1two* curr(i+2)*curr(i+2)
        stpefy(i+1)=en(i+2)/en(i+1)
continue
    return
    end
    "fwd12" CALCULATES THE TRANSFER DYNAMICS QUANTITIES,
    i.e. EFFECTIVE INDUCTANCE. LOAD VOLTAGE (IF NOT SPECIFIED)
    OR SWITCH VOLTAGE (IF LOAD VOLTAGE SPECIFIED). AND
    TRANSFER TIME (ASSUMING LINEAR TRANSFER).
    THE CALCULATIONS ARE COMPLICATED GY THE NEED TO CONSIDER
    CAREFULLY WHETHER THE LOAD VOLTAGE IS FIXED AND WHETHER
    THE LOAD IS COUPLED OR UNCOUPLED. THE ROUTINE IS STRUCTURED
    TO MAKE THE LOGIC EASY TO FOLLOW AND CONEQUENTLY THERE
    ARE SOME INEFFICIENCIES, i.e. REPEAT TESTS OR CALCULATIONS.
    REMEMBER THAT THE ARRAYS loadv AND swvolt ARE THOSE WHICH
    APPEAR IN THE RESULTS.
    CALLING ROUTINE: calcl
    subroutine fwdl2 (ns,decomp,ldvfix,uload,curr,cumind.
    + transk,lthree,indvtk.
    + effind.swvolt,loadv,trtime,indced)
    implicit-double precision (a-h,o-z)
    double precision ind,lthree,indvtk,loadv.indced,mtgndr,mutld
    logical decomp,ldvfix
    parameter(maxns=50)
    common/coill/ind(maxns), cf(maxns .maxns)
    common/volt1/vs(maxns), vload
    THE ARRAY mutId (IF EVALUATED) CONTAINS, FOR EACH STEP, THE TWO
    MUTUAL INDUCTANCES REQUIRED TO CALCULATE THE VOLTAGE ON AN
    UNCOUPLED LOAD. AS THERE IS NO DECOMPRESSION AND THE LAST
    TRANSFER PRODUCES ZERO VOLTAGE ON A COUPLED LOAD. THERE ARE
    ns-2 STEPS REQUIRING SUCH MUTUALS.
```



```
    dimension curr(maxns+1), cumind(maxns), transk(maxns-1).
    * 1three(maxns-2,maxns-2).indvtk (2,maxns-2,maxns-2).
    * effind(maxns).swvolt(maxns), loadv(maxns),trtime(maxns).
    4 indced(maxns-2,maxns-2),mutld(2,maxns-2)
    INITIALISE LOAD VOLTAGE AND SWITCH VOLTAGE ARRAYS
    if (ldvfix) then
```

c

| 1089 | | do $10 . i=1 . \mathrm{ns}$ |
| :---: | :---: | :---: |
| 1090 | | loadv(i) = vload |
| 1091 | 10 | continue |
| 1092 | | else |
| 1093 | | do 20.j=1.ns |
| 1094 | | swvolt (j) =vs (j) |
| 1095 | 20 | continue |
| 1096 | | endif |
| 1097 | c | * |
| 1098 | c | THIS TEST APPLIES WHETHER LOAD VOLTAGE IS FIXED OR NOT. |
| 1099 | c | |
| 1100 | | if (uload.eq.0.0) then |
| 1101 | | call cldmut (ns, cumind,mutld) |
| 1102 | | endif |
| 1103 | c | |
| 1104 | c | In this Case, the array elements containing the decompression |
| 1105 | c | VALUES do not have to be defined if there is no decompression |
| 1106 | c | (they are just not printed at the results stage). |
| 1107 | c | |
| 1108 | c | DECOMPRESSION IS A REVERSE STEP WITH $k=0$. |
| 1109 | c | |
| 1110 | | if (decomp) then |
| 1111 | | mtgndr=totind(1,ns) |
| 1112 | | effind(1) = (mtgndr*uload)/(mtgndr+uload) |
| 1113 | c | |
| 1114 | c | IN DECOMPRESSION, SWITCH VOLTAGE=LOAD VOLTAGE. THIS BLOCK ASSIGNS |
| 1115 | c | WHICHEVER ONE HAS NOT BEEN DEFINED. |
| 1116 | c | $=\mathrm{=}$ |
| 1117 | | if (ldvfix) then |
| 1118 | | swvolt(1) = vload |
| 1119 | | else |
| 1120 | | loadv(1) =swvolt (1) |
| 1121 | | endif |
| 1122 | | |
| 1123 | | trtime (1) $=($ effind (1)*($\operatorname{curr}(1)-\operatorname{curr}(2))$)/swvolt (1) |
| 1124 | | endif |
| 1125 | c | |
| 1126 | c | MAIN LOOP |
| 1127 | c | |
| 1128 | | call fwdl21 (ns.ldvfix,uload, curr, cumind, transk,mutld, |
| 1129 | | + effind, swvolt.loadv.trtime) |
| 1130 | | |
| 1131 | | call fndcel (ns,uload, cumind, transk, lthree, indvtk, swvolt, |
| 1132 | | + indced) |
| 1133 | | |
| 1134 | | return |
| 1135 | | end |
| 1136 | | |
| 1137 | c | |
| 1138 | c | "miscl" ("miscellaneous_calculationsl") PRODUCES FOUR SINGLE |
| 1139 | c | RESULTS. |
| 1140 | c | |
| 1141 | c | CALLING ROUTINE: calcl |
| 1142 | c | |
| 1143 | | subroutine miscl (ns.fwd, decomp, uload. curr1, curr2, en1.en2.trtime, |
| 1144 | | + pnaity, totefy,totmlt, power) |
| 1145 | | |
| 1146 | | implicit double precision (a-h.o-z) |
| 1147 | | double precision ind.mtgndr,mutual. |
| 1148 | | logical fwd, decomp |
| 1149 | | |
| 1150 | | parameter (maxns=50) |
| 1151 | | |
| 1152 | | common/coill/ind(maxns), cf(maxns, maxns) |

.
c
dimension trtime (maxns)
NOT ALL THE FINAL ENERGY RESIDES IN THE LOAD
if (fwd) then
if (uload.ne. 0.0) then
pnalty=uload/(uload+ind(ns))
else
pnalty=1.0
endif
else
mtgndretotind(1.ns)
if (uload.ne. 0.0) then
pnalty=uload/(uload+mtgndr)
else

COUPLED LOAD IN REVERSE: THE ENERGY ASSOCIATED WITH
THE LAST SECTION OF THE MEATGRINDER [ind(ns)] IS STORED IN THE
SELF INDUCTANCE AND IN THE MUTUAL INDUCTANCE OF
THAT SECTION WITH EVERY OTHER SECTION.
(NO PENALTY FOR A COUPLED LOAD IN FORWARD.)
totmut $=0.0$
do $10, \mathrm{i}=1 . \mathrm{ns}-1$
mutual=cf(i.ns)*sqrt(ind(i)*ind(ns))
totmut $=$ totmut + mutual
continue
pnalty=(ind(ns) + totmut)/mtgndr
endif
endif
en1, curr1, en2, curr2 ARE THE INITIAL AND FINAL ENERGIES AND CURRENTS.
totefy=(en2/enI)*pnalty
totmlt=curr2/currl
TOTAL TRANSFER TIME IS NEEDED TO CALCULATE INSTANTANEOUS LOAD
POWER. FIRST ELEMENT OF TIME ARRAY ONLY ADDED IF THERE WAS
DECOMPRESSION.
time 0.0
do $20, \mathrm{j}=2 \mathrm{~ns}$
time-time+trtime(j)
continue
if (decomp) then
time=time+trtime(1)
endif
power=(en2*pnalty)/time
return
end
"pdata1" ("print_data1") GIVES A REMINDER OF THE MOST IMPORTANT
DATA BEFORE THE RESULTS ARE PRINTED.
1219 c
1220 c
1221 c
1222
1223
CALLING ROUTINE: calc1
subroutine pdatal (fwd,uload,ns)
implicit double precision (a-h,o-z)
double precision ind
logical fwd
character*40 fname
parameter(maxns=50)
common/coill/ind(maxns).cf(maxns.maxns)
write(0.*)
write(0,*)
print*."* * * * * * * * * * * * * * **
write(0,*)
write(0,*)
inquire(1, name=fname)
print*."Datafile: ".fname
if (fwd) then
print*,"Forward operation"
else
print*."Reverse operation"
endif
if (uload.eq.0.0) then
write(0.100) ind(ns)*1E6
100 format(/" Coupled load=".f9.2," microhenries")
else
write(0.200) uload*1E6
format(/" Uncoupled load=",f9.2." microhenries")
endif
return
end
"rslt11" PRINTS THE RESULTS GENERATED BY "fwdli" AND "miscl".
CALLING ROUTINE: calci
subroutine rslt11 (ns.decomp.curr,cmult,en,stpefy.pnalty.totefy,
+ totmlt,power)
implicit double precision (a-h,o-z)
logical decomp
parameter(maxns=50.nlines=22)
dimension curr(maxns+1), cmult(maxns), en(maxns+1), stpefy(maxns+1)
open(0.defer=.false.)
write(0,*)
print*."(A) CURRENT/ENERGY/EFFICIENCY:"
TABLE HEADING

```
\begin{tabular}{|c|c|c|}
\hline 1.281 & c & write (0,100) \\
\hline 1283 & 100 & format (/"Step". 5 x . "New Current (A)", 2 x , "Current Mult.". 2 x , \\
\hline 1284 & & "New Energy (J)".4x."Step Efficiency (\%)") \\
\hline 1285 & c &  \\
\hline 1286 & c & INITIAL CONDITIONS \\
\hline 1287 & c &  \\
\hline 1288 & & write(0,200) curr(1).en(1) \\
\hline 1289 & 200 &  \\
\hline 1290 & c &  \\
\hline 1291 & c & DECOMPRESSION \\
\hline 1292 & c &  \\
\hline 1293 & & if (decomp) then \\
\hline 1294 & & write(0,300) curr(2), cmult (1), en (2), stpefy (1)*100.0 \\
\hline 1295 & 300 & format ("Decomp.", 3x,f11.2,2x,f11.2,4x,f15.6.11x.f5.1) \\
\hline 1296 & & endif \\
\hline 1297 & c &  \\
\hline 1298 & c & TRANSFERS \\
\hline 1299 & c &  \\
\hline 1300 & & do 10,i=1.ns-1 \\
\hline 1301 & c &  \\
\hline 1302 & c & CHECK IF NEW HEAdING NEEDED \\
\hline 1303 & c &  \\
\hline 1304 & & if (modic.nlines).eq.0) write(0.100) \\
\hline 1305 & & \\
\hline 1306 & & write(0,400) i, curr (i+2).cmult (i+1), en(i+2).stpefy (i+1)*100.0 \\
\hline 1307 & 400 & format (i3.7x,f11.2.2x,f11.2,4x,f15.6.11x.f5.1) \\
\hline 1308 & & \\
\hline 1309 & 10 & continue \\
\hline 1310 & & \\
\hline 1311 & & write(0.500) pnalty*100.0 \\
\hline 1312 & 500 & format (/"Percent of final energy in loadz", f5.1."\%") \\
\hline 1313 & & \\
\hline 1314 & & write(0.600) totmlt \\
\hline 1315 & 600 & format (/"Total Current Multiplication: x".f7.1) \\
\hline 1316 & & \\
\hline 1317 & & nefymanint (totefy*100.0) \\
\hline 1318 & & write (0,700) nefy \\
\hline 1319 & 700 & format ("TOTAL EFFICIENCY: ".i3,"\%") \\
\hline 1320 & & \\
\hline 1321 & & write(0.800) power*1E-3 \\
\hline 1322 & 800 &  \\
\hline 1323 & & \\
\hline 1324 & & open(0.defer=.true.) \\
\hline 1325 & & \\
\hline 1326 & & return \\
\hline 1327 & & end \\
\hline 1328 & & \\
\hline 1329 & c &  \\
\hline 1330 & c & "rslt 12 " PRINTS THE TRANSFER DYNAMICS RESULTS. CALLING A \\
\hline 1331 & c & SEPARATE ROUTINE (res121) FOR THE INDUCED VOLTAGES. \\
\hline 1332 & c & . \\
\hline 1333 & c & CALLING ROUTINE: calci \\
\hline 1334 & c &  \\
\hline 1335 & & subroutine rsitl2 (ns, decomp, fwd, swvolt, loadv, tritime, indced) \\
\hline 1336 & & \\
\hline 1337 & & implicit double precision (a-h.o-z) \\
\hline 1338 & & double precision loadv,indced \\
\hline 1339 & & logical decomp.fwd \\
\hline 1340 & & \\
\hline 1341 & & parameter (maxns=50,nlines=22) \\
\hline 1342 & & \\
\hline 1343 & & dimension swvolt (maxns), loadv (maxns), trtime (maxns). \\
\hline 1344 & & indced (maxns-2,maxns-2) \\
\hline
\end{tabular}
    open(0.defer=.false.)
write (0.*)
write(0.*)
print*."(B) TRANSFER DYNAMICS:*
print*."(B)(i) Switching Voltages \& Times:"
TABLE HEADING
C
write(0.100)
100 format(/"Step". 4x, "Load Voltage(kV)", 2x,"Switch Voltage(kV)", 3x,
    - "Transfer Time(microseconds)")

DECOMPRESSION

if (decomp) then
        write(0.200) loadv(1)*1E-3.swvolt(1)*1E-3,trtime (1)*1E6
        format ("Decomp.", 3x,f9.3.9x,f9.3.15x.f14.5)
    endif

c TRANSFERS

do \(10 \mathrm{i}=1, \mathrm{~ns}-1\)

        NEW HEADING?
        if (mod(i,nlines).eq.0) write(0.100)
        write(0.300) i, loadv(i+1)*iE-3,swvolt(i+1)*1E-3.
    \(+\quad\) trtime \((i+1) * 1 E 6\)
300 format(i3.5x,f11.5.9x,f9.3.15x,f14.5)
    continue
    write(0.*)
    print*."(B)(ii) Induced Voltages(kV):"
    call res121 (ns,fwd,indced)
    open(0.defer=.true.)
    return
    end

    "calc21" deals WITH A USER-DIRECTED TOTAL INDUCTANCE CALC..
    CALLING ROUTINE: calc2
    subroutine calc21 (ns)
    implicit double preciaion(a-h.o-z)
    integer start.finish

    VALIDATE gtart,finish
    write (0,*)
    write ( \(0, *\) ) "No. of start inductance?
    read*.start
    if (start.1t.1.or.start.gt.ns) goto 10
    20 write \((0, *)\) "No. of finish inductance? *
read*.finish
if (finish.lt.l.or.finish.gt.ns) goto 20
if (start.gt.finish) goto 10
c
c
RESULT
```



```
total=totind(start,finish)
write(0.100) total*1E6
100 format(/"Total inductance is ",f10.3." microhenries"/)
return
end
```



```
"calc22" DEALS WITH USER-DIRECTED COUPLING FACTOR CALCULATIONS.
CALLING ROUTINE: calc2
subroutine calc22
implicit double precision(a-h.o-z)
```



```
"L1" AND "L2" ARE UNRELATED TO SPECIFIC DATA FLlES - THEY ARE JUST
GENERAL AS IN
                                    k12=(L12-L1-L2)/(2*sqrt[L1.L2]).
write(0,*)
write(0,*)"L1="
read*,one
write(0.*)"L2="
    read*,two
    write(0,*)"Ltot="
    read*,total
```



```
DATA IS ONLY VALIDATED TO PREVENT CRASH DUE TO NEGATIVE OR ZERO
c SQUARE ROOT, I.E. YOU CAN STILL GET A NONSENSE ANSWER.
    if (one.le.0.0.or.two.le.0.0) goto 10
    cfact=(total-one-two)/(2*sqrt(one*two))
    write(0.100) cfact
100
    format(/"Coupling factor is ".f4.2./)
    return
    end
c
"calc23" CALCULATES THE FOLLOWING, AS APPLIED TO THE FIRST PHASE OF
c BACK CLAMPING:
c
ratio2 (value of i2 when il=0)/(ilmax)
```



```
DICTIONARY:
```



```
c
c
c
c CALLING ROUTINE: calc2
```

```
C
1474
1475
1476
1477
1478 c
1479 c
1480 c
1481
1482
1483
1484
1485
1486
1487
subroutine calc23
implicit double precision(a-h,o-z)
double precigion k12.k13.k23
c
c INPUT DATA AND VALIDATE (TO AN EXTENT).
c
write(0.*)
print*."Enter voltages in volts, inductances in microhenries:"
10
wite(0.*)
write(0,*)"LI="
read*,one
write(0,*)"L2="
read*,two
write(0.*)"L3="
read*,three
if (one.le.0.0.or.two.le.0.0.or.three.le.0.0) goto 20
write(0.*)
write(0.*)"k12="
read*,k12
write(0.*)"k13="
read*,k13
write(0.*)"k23="
read*,k23
if (k12.lt.0.0.or.k13.1t.0.0.or.k23.1t.0.0) goto 30
if (k12.gt.1.0.or.k13.gt.1.0.or.k23.gt.1.0) goto 30
```



```
NORMALISE
```



```
one=one*1E-6
twowtwo*1E-6
three=three*1E-6
```



```
CALCULATE rate & ratio3
```



```
temp1=(sqrt (one*three))*(k13-(k12*k23))
temp2=one*(1-(k12*k12))
temp3= three*(1-(k23*k23))
x=temp1+temp2
Y=(2.0*temp1) +temp2+temp3
top=(vback*x)-(vswtch*Y)
bottom=(one*three)*((2.0*k12*k13*k23)-(k13*k13)-(k12*k12)
+ -(k23*k23)+1.0)
rate=top/bottom
ratio3=((vback*one*(1-(k12*k12)))-(vswtch*x))/top
CALCULATE ratio2
c1-two *three
c2=three*sqrt (one*two)
c3-two *sqrt(one*three)
    c4-one *sqrt(two*three)
```

```
c5zone *two
```

c5zone *two
c6 =1 -(k12*k12) -(k23*k23) +(k12*k12*k23*k23)
c6 =1 -(k12*k12) -(k23*k23) +(k12*k12*k23*k23)
c7 =k12 -(k13*k23) -(k12*k12*k12) +(k12*k12*k13*k23)
c7 =k12 -(k13*k23) -(k12*k12*k12) +(k12*k12*k13*k23)
c8 =k13 -(k12*k23) -(k12*k12*k13) +(k12*k12*k12*k23)
c8 =k13 -(k12*k23) -(k12*k12*k13) +(k12*k12*k12*k23)
c9 =k23-(k12*k13) -(k12*k12*k23) +(k12*k12*k12*k13)
c9 =k23-(k12*k13) -(k12*k12*k23) +(k12*k12*k12*k13)
c10*1 -(2.0*k12*k12) +(k12*k12*k12*k12)
c10*1 -(2.0*k12*k12) +(k12*k12*k12*k12)
a=c1*c6
a=c1*c6
b=c2*c7
b=c2*c7
c=c3*c8
c=c3*c8
d*c4*c9
d*c4*c9
e=c5*c10
e=c5*c10
ratio2--((vback*(d-c)) +(vswtch*(a+b+c-d)))/
ratio2--((vback*(d-c)) +(vswtch*(a+b+c-d)))/

+ ((vback*(c+e))-(vswtch*((2.0*c)+a+e)))
+ ((vback*(c+e))-(vswtch*((2.0*c)+a+e)))
c
c
c
print*,"* * * * * * * * * * * * * **
print*,"* * * * * * * * * * * * * **
write(0.100) rate*1E-6
write(0.100) rate*1E-6
100 format(/"di1/dt=",f12.5," amps/microsecond")
100 format(/"di1/dt=",f12.5," amps/microsecond")
write(0,200) ratio2
write(0,200) ratio2
200 format(/"(i2 at il=0)/i1max=".f7.4./)
200 format(/"(i2 at il=0)/i1max=".f7.4./)
write(0,300) ratio3
write(0,300) ratio3
format("(i3 at i1=0)/i1max=",f7.4./)
format("(i3 at i1=0)/i1max=",f7.4./)
print*,"* * * * * * * * * * * * * **
print*,"* * * * * * * * * * * * * **
return
return
end
end
**** LEVEL 5 ROUTINES ****
**** LEVEL 5 ROUTINES ****
"cldmut" ("coupled_load_mutual_inductances") GENERATES AN ARRAY
"cldmut" ("coupled_load_mutual_inductances") GENERATES AN ARRAY
CONTAINING. FOR EACH TRANSFER EXCEPT THE LAST. THE TWO MUTUAL
CONTAINING. FOR EACH TRANSFER EXCEPT THE LAST. THE TWO MUTUAL
INDUCTANCES NECESSARY TO CALCULATE THE VOLTAGE ON A COUPLED LOAD
INDUCTANCES NECESSARY TO CALCULATE THE VOLTAGE ON A COUPLED LOAD
(THE LAST SECTION OF THE MEATGRINDER COIL). THESE ARE:
(THE LAST SECTION OF THE MEATGRINDER COIL). THESE ARE:
m13: BETWEEN THE INDUCTANCE BEING SWITCHED OUT AND THE LOAD
m13: BETWEEN THE INDUCTANCE BEING SWITCHED OUT AND THE LOAD
m23: BETWEEN THE REMAINING IN-CIRCUIT INDUCTANCE AND THE LOAD
m23: BETWEEN THE REMAINING IN-CIRCUIT INDUCTANCE AND THE LOAD
m23 IS FOUND FROM THE TOTAL IN-CIRCUIT INDUCTANCE AND m13 FROM THE
m23 IS FOUND FROM THE TOTAL IN-CIRCUIT INDUCTANCE AND m13 FROM THE
TOTAL OF THE THREE INDUCTANCES INVOLVED (m12 IS A REQUIRED
TOTAL OF THE THREE INDUCTANCES INVOLVED (m12 IS A REQUIRED
INTERMEDIATE VALUE)
INTERMEDIATE VALUE)
(NOTE: VALUES ARE NOT PRODUCED FOR THE LAST STEP BECAUSE BY DEFINITION
(NOTE: VALUES ARE NOT PRODUCED FOR THE LAST STEP BECAUSE BY DEFINITION
vload=0. SINCE, HOWEVER, m13 IS NOT ZERO DURING THIS STEP. THIS LEADS
vload=0. SINCE, HOWEVER, m13 IS NOT ZERO DURING THIS STEP. THIS LEADS
TO A NON-ZERO VALUE FOR dltflx IN "fwd121". THIS DOES NOT ACTUALLY
TO A NON-ZERO VALUE FOR dltflx IN "fwd121". THIS DOES NOT ACTUALLY
MATTER BECAUSE THIS VALUE OF dltflx IS NOT USED IN ANY CALCULATION.)
MATTER BECAUSE THIS VALUE OF dltflx IS NOT USED IN ANY CALCULATION.)
CALLING ROUTINE: fwd12
CALLING ROUTINE: fwd12
subroutine cldmut (ns,cumind,mutld)
subroutine cldmut (ns,cumind,mutld)
implicit double precision (a-h,o-z)
implicit double precision (a-h,o-z)
double precision ind.mutld.1two.m23.m12,m13
double precision ind.mutld.1two.m23.m12,m13
parameter(maxns=50)

```
    parameter(maxns=50)
```

c
c
c
dimension cumind(maxns), mutld(2,maxns-2)
do 10.i=1, ns-2
ltwo=totind(i+1,ns-1)
m23=(cumind(i+1)-1two-ind(ns))/2
m12=(totind(i,ns-1)-ind(i)-1two)/2
m13=(cumind(i)-ind(i)-1two-ind(ns)-(2*(m12+m23)))/2
mutld $(1, i)=m 13$
mutld(2.i) $=m 23$
continue
return
end
c ONCE THE EFFECTIVE INDUCTANCE HAS BEEN CALCULATED. THE BASIC
c DIVISION IN THE STRUCTURE IS BETWEEN A MAXIMUM LOAD VOLTAGE
c DETERMINING THE SWITCH VOLTAGE AND A SPECIFIED SWITCH VOLTAGE
c DETERMINING THE LOAD VOLTAGE. WITHIN THOSE TWO CASES THE LOAD
c MAY BE UNCOUPLED OR COUPLED; IN THE LATTER CASE. THE LAST LOAD VOLTAGE
c MUST EE ZERO, EVEN IF THE USER HAS ASKED FOR HIS SPECIFIED
c MAXIMUM TO BE USED.
c N.B. THE CHANGE OF CURRENT EXPERIENCED BY THE OPENING SWITCH IS
c EQUAL TO THE INITIAL CURRENT FOR THAT STEP. I.E. curr (i+1).
c WHEREAS THAT EXPERIENCED BY ANY LOAD IS "deltai".
c I.E. curr $(i+2)-\operatorname{curr}(i+1)$.
c CALLING ROUTINE: fwd12
subroutine fwdl21 (ns,ldvfix, uload, curr, cumind.transk,mutld,

+ effind, swvolt, loadv,trtime)
implicit double precision (a-h,o-z)
double precision mutld, loadv,ind
logical Idvfix
parameter $(\operatorname{maxns}=50)$
common/coill/ind(maxns), cf(maxns, maxns)
common/volt1/vs (maxns), vioad
dimension curr(maxns+1), cumind(maxns), transk(maxns-1).
+ mutld(2,maxns-2), effind(maxns), swvolt(maxns).
+ loadv(maxns).trtime (maxns)
do $10, i=1, \mathrm{~ns}-1$
deltai-curr(i+2)-curr(i+1)
c ditflx (delta_flux) IS THE FLUX-LINKAGE CHANGE EXPERIENCED BX
A COUPLED LOAD. THE SAME PRINCIPLE IS USED FOR THE UNCOUPLED
c LOAD, EXCEPT THAT THE EXPRESSION BECOMES THE SIMPLE

```
1000
```

 c
    ```
ditflx CAN BE POSITIVE OR NEGATIVE. A POSITIVE VALUE IS
REGARDED AS CORRESPONDING TO A "POSITIVE" LOAD VOLTAGE. I.E. ONE
IN THE SAME DIRECTION AS THAT ALWAYS EXPERIENCED BY AN
UNCOUPLED LOAD. NOTE. HOWEVER. THAT SUCH A "POSITIVE" VOLTAGE
ACTUALLY MEANS OPPOSING CURRENT FLOW.I.E. THE NON-GROUND END
GOES NEGATIVE W.R.T. GROUND IN THE NORMAL CIRCUIT CONFIGURATION.
        else
    cfact=transk(i)*sqrt(cumind(i+1)/(cumind(i+1)+uload))
        endif
        effind(i+1)=ind(i)*(1-(cfact*cfact))
```



```
        MAIN "IF" BLOCK.
        if (ldvfix) then
        if(uload.ne.0.0) then
            trtime(i+1)=uload*deltai/vload
            swvolt(i+1)=effind(i+1)*curr(i+1)/trtime(i+1)
        else
        LAST STEP IS DIFFERENT IF LOAD IS COUPLED
            if (i.ne.ns-1) then
C (a)
TIME CANNOT BE NEGATIVE BUT SIGN OF VOLTAGE INDICATES
c DIRECTION. OBVIOUSLY A NEGATIVE SWITCH VOLTAGE IS
MEANINGLESS. AND THIS THEREFORE HAS IMPLICATIONS
FOR FIXING THE VOLTAGE ON A COUPLED LOAD, SINCE THE
REAL INTENTION IS TO SPECIFY A MAXIMUM.
                    time=dltflx/vload
                    trtime(i+1)=abs(time)
                    swvolt(i+1)=effind(i+1)*curr(i+1)/time
            else
                    trtime(ns)=effind(ns)* curr(i+1)/vs(ns)
                    swvolt(ns)evs(ns)
                    loadv(ns)=0.0
            endif
        endif
        else if (.not.ldvfix) then
        trtime(i+1)=effind(i+1)* curr(i+1)/swvolt(i+1)
        if (uload.ne.0.0) then
            loadv(i+1)=uload*deltai/trtime(i+1)
        else
            if (i.ne.ns-1) then
```

 THIS QUANTITY CAN LEGITIMATELY BE NEGATIVE.

loadv(i+1)=ditflx/trtime(i+1)
else
loadv(ns) $=0.0$
endif
endif
endif
continue
return
end
Аन
"fndce1" ("forward_induced_voltages1") CALCULATES THE INDUCED
VOLTAGE AT EACH NON-PARTICIPATIVE NODE (I.E. THOSE IN THE
SWITCHED OUT OR "BACK" LOOPS). THE CORRECT DATA HAVING BEEN
PROVIDED BY OTHER ROUTINES. THE CALCULATION IS SIMPLE.
NOTE THAT TO GET THE NODE VOLTAGE W.R.T. GROUND, THE SWITCH
VOLTAGE MUST BE ADDED TO ACCOUNT FOR THE ELECTRICAL CONNECTION.
REFER ALSO TO COMMENTS FOR "fdadj1" ETC. .
CALEING ROUTINE: fwd12
subroutine fndcel (ns,uload, cumind,transk,lthree,indvtk, swvolt.

+ indced)
implicit double precision (a-h,o-z)
double precision ind.1three.indvtk.indced, k12,k31.k32
parameter (maxns=50)
common/coill/ind(maxns), cf(maxns,maxns)
dimension cumind(maxns), transk(maxns-1), 1three(maxns-2, maxns-2).
+ indvtk(2,maxns-2,maxns-2).swvolt (maxns).
+ indced(maxns-2,maxns-2)
INITIALISE FOR PRINTING PURPOSES
do $10 . \mathrm{i}=1 . \mathrm{ns}-2$
do $10, j=1, n s-2$
indced (j, i) $=0.0$
continue
i-1
j=1
do 20,i=1,ns-2
do $20, j=1, i$
if (uload.ne.0.0) then
factor-sqrt(cumind(i+2)/(cumind(i+2)+uload))
k12=transk $(i+1)$ *factor
k32=indvtk(2,j,i)*factor
else
k12=transk (i+1)
k32-indvtk(2.j.i)
endif
k31=indvtk(1,j,i)

a=sqrt(ithree(j.i)/ind(i+1))
$b=(k 31-(k 12 * k 32)) /(1-(k 12 * k 12))$
indced (j,i)=swvolt (i+2)*((a*b)+1)
continue
return
end
"resi21" PRINTS THE INDUCED VOLTAGES FOR BOTH DIRECTIONS OF
OPERATION. THE FOLLOWING SHOULD BE REMEMBERED:

1. THE ARRAY IS TRIANGULAR, THE NO. OF NODES INCREASING WITH
STEP NO. IN FORWARD. DECREASING WITH STEP NO. IN REVERSE.
2. THE VOLTAGE-INDUCING STEP NO. ("i") DIFFERS FROM THE ACTUAL
TRANSFER NO. BY ONE.
3. FOR EACH DIFFERENT STEP, THE SAME NODE NO. CORRESPONDS
TO A DIFFERENT CIRCUIT JUNCTION: HENCE THE NEED FOR THE
BACKWARD COUNTING (I.E. BECAUSE. IN FWD. L1 IS ALWAYS
THE LAST NODE, AS OPPOSED TO ALWAYS BEING NODE 1). THE
EXPRESSIONS USED TO GIVE THE CORRECT LABELS ALSO RESULT
FROM THIS FACT.
CALLING ROUTINE: rsiti2
subroutine resi21 (ns,fwd,indced)
implicit double precision (a-h,o-z)
double precision indced
logical fwd
parameter(maxns=50)
dimension indced(maxns-2,maxns-2)
if (fwd) then
write(0.*)
print*."No induced voltages for step 1"
do $10, i=1 . \mathrm{ns}-2$
write ($0 . *$)
print*,"Step ", i+1

" $\mathbf{j "}^{\prime \prime}$ IS THE NODE NO. .
do $10, j=i, 1,-1$
if (j.eq.1) then
print*."L1: ",indced(j.i)*1E-3
else
print*,"L",i-j."/L",i-j+1,": ".indced(j,i)*1E-3
endif
continue
REVERSE
else

1913 c THE LOOP TO CALCULATE MUTUALS IS NOT EXECUTED

```
        do 20,i=1,ns-2
            write(0,*)
            print*,"Step ".i
            do 20,j=(ns-1-i),1,-1
                if (j.eq.ns-1-i) then
                print*,"L".ns,": ".indced(j.i)*1E-3
```

 else
 print*."L", \(i+j+1, " / L ", i+j+2, ": \quad n, i n d c e d(j, i) * 1 E-3\)
 endif
 continue
 write(0,*)
 print*."No induced voltages for step *.ns-1
 endif
return
end
**** CALCULATION ROUTINES CALLED BY MORE THAN ONE LEVEL ****

"totind" TAKES AN INDUCTANCE ARRAY AND ITS CORRESPONDING
COUPLING FACTOR ARRAY AND CALCULATES THE TOTAL INDUCTANCE
OF ANY SUB-SET OF ADJACENT INDUCTANCES. THE SUB-SET IS
DELINEATED BY "start". AND "finish". AND MAY CONSIST OF
A SINGLE INDUCTANCE.
CALLING ROUTINES: init1
fdadj1
fwd11
fwd12
cldmut
function totind (start,finish)
implicit double precision (a-h,o-z)
double precision ind, mutual
integer start,finish
parameter (maxns=50)
common/coil1/ind(maxns) , cf(maxns, maxns)
$\operatorname{totsle}=0.0$
do $10,1=s t a r t . f i n i s h$
totslfutotslf+ind(i)
continue
c
c THE LOOP TO CALCULATE MUTUALS IS NOT EXECUTED
IF startefinish.
totmut $=0.0$
do 20.k=start. finish-1
do $20, j=k+1$, finish
mutual $=c f(k, j) * s q r t(i n d(k) *$ ind $(j))$
totmut=totmut + (2*mutual)

```
continue
```

1922

```
totind=totslf+totmut
```

return
end
**** I/O ROUTINES (LEVEL A) ****
"mesage" PRINTS AN INFORMATIVE MESSAGE ACCORDING TO THE
MESSAGE NUMBER.
CALLING ROUTINES: \quad main program
newcreate
modexist
subroutine mesage(refnum,msgnum)
integer refnum
write (0,*)
if (msgnum.eq.1) then
write ($0, *$)
write(0,*)
print*," $+++{ }^{*}{ }^{*}$
print*." + IDEAL MEATGRINDER CALCULATION PROGRAM + ${ }^{*}$
print*," + +"
print*," + mgp $1.27 .88 \quad{ }^{\prime \prime}$
print*," $++{ }^{\prime \prime}$
write (0.*)
write (0.*)
write(0,*)
else if (msgnum.eq.2) then
print*,"+++ Option ".refnum." datafile created."
else if (msgnum.eq.3) then
print*,"+++ Option ", refnum," datafile modified."
endif
return
end
"menu" PRINTS A MENU ACCORDING TO THE MENU NUMBER, READS A CHOICE
AND RETURNS IT AS AN INTEGER.
CALLING ROUTINES: main program
calc2
subroutine menu(mennum, choice)
integer choice
write(0 .*)
if (mennum.eq.1) then
print*,"1 Automatic multistage calculation"
print*."2 User-directed expression evaluation"
print*."3 stop"
write(0.*)"Enter choice: "
read*. choice
if (choice.1t.1.or.choice.gt.3), goto 10
else if (mennum.eq.2) then
print*."1 Edit data"

```
    print*."2 Run calculation"
```

 print*."2 Run calculation"
 print*."3 Return to main menu"
 print*."3 Return to main menu"
 endif
return
return
end

```
end
```



```
"menu2" ASKS A QUESTION ACCORDING TO THE MENU NUMBER, READS THE REPLY
```

"menu2" ASKS A QUESTION ACCORDING TO THE MENU NUMBER, READS THE REPLY
AND RETURNS IT TO THE CALLING PROGRAM AS A LOGICAL VALUE.
AND RETURNS IT TO THE CALLING PROGRAM AS A LOGICAL VALUE.
CALLING ROUTINES: data
CALLING ROUTINES: data
rncalc (x2)
rncalc (x2)
calc1
calc1
subroutine menu2 (mennum,flag)
subroutine menu2 (mennum,flag)
logical flag
logical flag
character*1 reply
character*1 reply
write(0,*)
write(0,*)
if (mennum.eq.1) then
if (mennum.eq.1) then
write(0.*)"Create new datafile? "
write(0.*)"Create new datafile? "
else if (mennum.eq.2) then
else if (mennum.eq.2) then
write(0.*)"Run again? *
write(0.*)"Run again? *
else if (mennum.eq.3) then
else if (mennum.eq.3) then
write(0,*)"New datafile? *
write(0,*)"New datafile? *
else if (mennum.eq.4) then
else if (mennum.eq.4) then
write(0,*)"Forward operation? "
write(0,*)"Forward operation? "
else if (mennum.eq.5) then
else if (mennum.eq.5) then
write(0.*)"Decompression? "
write(0.*)"Decompression? "
else if (mennum.eq.6) then
else if (mennum.eq.6) then
write(0.*)"Use max. load voltage? "
write(0.*)"Use max. load voltage? "
else if (mennum.eq.7) then
else if (mennum.eq.7) then
write(0,*)"Review results? "
write(0,*)"Review results? "
else if (mennum.eq.8) then
else if (mennum.eq.8) then
write(0.*)"Write to results file? "
write(0.*)"Write to results file? "
endif
endif
read*.reply
read*.reply
if (reply.eq."Y") then
if (reply.eq."Y") then
flag=.true.
flag=.true.
else
else
flag=.false.
flag=.false.
endif
endif
return
return
end

```
    end
```



```
    "oldfle" ("get_old_file") READS A FILENAME AND CONNECTS TO
```

```
    "oldfle" ("get_old_file") READS A FILENAME AND CONNECTS TO
```


c
c
THE FILE. IT CHECKS FOR TWO ERROR CONDITIONS: OPENING ERROR
AND UNSUITABLE FILE. EITHER ERROR CAUSES THE REQUEST TO BE
c REPEATED UNLESS THE MAXIMUM ERROR COUNT IS EXCEEDED. IN
WHICH CASE THE PROGRAM STOPS COMPLETELY.

CALLING ROUTINES: rncalc mdexst
subroutine oldfle (caller,idnum)
implicit double precision (a-h.o-z)
parameter (maxerr=5)
integer errors, opnerr, flopen.fltype
double precision idnum
logical wrong
character caller*10. fname*20
common/option/mnopt
data mxfler.flopen,fltype/1,2.3/
errors:0
write($0, *$)
write(0,*)"Datafile name? "
read*,fname
c OPEN FILE
open(1,file=fname, iostat=opnerr, status""old", forms"unformatted")
if (opnerr.ne.0) then
errors:errors+1
if (errors.eq.maxerr) then
call errmsg (caller.i,mxfler)
write(0.*)
goto 50
endif
call errmsg (caller, $1, f l o p e n)$
goto 10
endif
read(1) idnum
call chkfle (idnum, wrong)
if (wrong) then
errors=errors +1
if (errors.eq.maxerr) then
call ermsg (caller, $2, m x f l e r$)
write(0.*)
goto 50
endif
call errmsg (caller, i.fitype)
close (1)
goto 10
endif

```
return
open(0.defer=.false.)
stop
end
"newfle" ("get_new_file") CREATES A NEW DATAFILE. THE PROGRAM
STOPS IF THE MAX. NO. OF OPENING ERRORS IS EXCEEDED.
VARIABLE DICTIONARY: opnerr file_open_error_indicator
mxfler max._file _errors
flopen file_open_error
CALLING ROUTINES: datnew
subroutine newfle (caller)
implicit double precision (a-h,o-z)
integer errors.opnerr,flopen
character caller*10,fname*20
parameter(maxerr=5)
data mxfler,flopen/1,2/
errors=0
CONNECT TO FILE
write(0.*)
write(0,*)"Name of new datafile? "
read*, fname
open(1,file=fname,iostat=opnerr,status="new".form" "unformatted")
if (opnerr.ne.0) then
        errors=errors+1
        if (errors.eq.maxerr) then
            call errmsg (caller.1.mxfler)
            write(0,*)
            goto 50
        endif
        call errmsg (caller,l,flopen)
        goto 10
    endif
    return
    open(0.defer=.false.)
    stop
    end
    **** I/O ROUTINES (LEVEL B) ****
```



```
    "errmsg" PRINTS AN ERROR MESSAGE IDENTIFIED BY THE INITIATING
ROUTINE AND A REF. NUMBER WHICH DISTINGUISHES BETWEEN
    DIFFERENT OCCURENCES OF THE SAME ERROR WITHIN THAT ROUTINE.
        CALLING ROUTINES: oldfle
            newfle
    subroutine errmsg (caller,refnum,errnum)
    integer refnum,errnum
    character caller*10.text*50
```

```
if (errnum.eq.1) then
        text="Max. file errors exceeded: program stop."
    else if (errnum.eq.2) then
    text="File open failed."
    else if (errnum.eq.3) then
    text="File unsuitable for this option."
    endif
    write(0.*)
    print*."**** ",caller.refnum," ",text
    return
    end
    "chkfle" ChECKS that a datafile is SUITABLE fOR USE WITh the
    option SElected.
    "idnum" IS READ FROM THE FILE AND COMPARED TO THE EXPECTED
    value. these values are STORED IN THE ARRAY "ident".
    subroutine chkfle (idnum,wrong)
    logical wrong
    double precision idnum,ident(10)
    common/option/mnopt
    data ident(1).ident(2)/1.1.1.1/
    if (idnum.ne.ident(mnopt)) then
    wrong=.true.
    else
        wrong=.false.
        endif
        return
        end
```

1 Automatic multistage calculation
2 User-directed expression evaluation
3 Stop
Enter choice: 1
1 Edit data
2 Run calculation
3 Return to main menu
Enter choice: 1
Create new datafile? n
Modify existing data:
Datafile name? mgl
COIL INDUCTANCES (microhenries):
$\mathrm{L} 1=403.0$
$L 2=289.0$
L3 $=147.0$
L4 = 52.0
$L 5=24.0$
$L 6=0.9$
$L 7=11.5$
Subscript of value to be changed (0 to quit)? 0
COUPLING FACTORS:
$k\left(1 _2\right)=0.85$
$k\left(1 _3\right)=0.69$
$k\left(1 _4\right)=0.58$
$k(1,5)=0.55$
$k(1-6)=0.29$
$k(1-7)=0.2$
$k(2,3)=0.84$
$k\left(2 _4\right)=0.71$
$k(2,5)=0.68$
$k\left(2 _6\right)=0.5$
$k\left(2 _7\right)=\dot{0} .4 \dot{4}$
$k\left(3 _4\right)=0.89$
$k\left(3 _5\right)=0.8$
$k\left(3 _6\right)=0.75$
$k\left(3 _7\right)=0.7$
$k\left(4 _5\right)=0.91$
$k\left(4 _6\right)=0.74$
$k\left(4 _7\right)=0.65$
$k\left(5 _6\right)=0.76$
$k\left(5 _7\right)=0.7$
$k\left(6 _7\right)=0.71$
Value to be changed:
1st subscript (0 to quit)? 0

CLAMP VOLTAGES (kV):

```
1 Vsw.decomp=1.0
2 Vsw1=0.55
3 Vsw2=0.15
4Vsw3=0.15
5 Vsw4=0.15
6 Vsw5=0.15
7 Vsw6=0.15
Ref. no. of value to be changed (0 to quit)? 0
Max. load voltage: 5.0kV Modify? n
+++ Option 1 datafile modified.
1 Edit data
2 Run calculation
3 Return to main menu
Enter choice: 2
Datafile name? mgl
Forward operation? Y
Uncoupled load (microhenries)? 0
Last section of meatgrinder coil will be taken as load.
Use max. load voltage? n
Initial current (amps)? 7
Datafile: >udd>EL>MGPimperton>mg>mgideal>mg1
Forward operation
Coupled load= 11.50 microhenries
```

(A) CURRENT/ENERGY/EFFICIENCY:


```
(B) TRANSFER DYNAMYCS:
(B)(i) Switching Voltages & Times:
\begin{tabular}{cccc} 
Step & Load Voltage (kV) & Switch Voltage(kV) & Transfer Time(microseconds) \\
1 & 0.06476 & 0.550 & 2.28116 \\
2 & 0.01261 & 0.150 & 7.27140 \\
3 & 0.00242 & 0.150 & 3.01475 \\
4 & 0.03660 & 0.150 & 2.02844 \\
5 & 0.00986 & 0.150 & 2.97368 \\
6 & 0.00000 & 0.150 & 0.24041
\end{tabular}
(B)(ii) Induced Voltages(kV):
No induced voltages for Step 1
Step 2
L1: 0.317862384617421227
Step 3
亡1: 0.643778829426506347
L1/L2: 0.37571145595952722
Step 4
L1: 0.920574403088797163
L1/L2: 0.565962050321608928
L2/L3: 0.325435708554778516
Step 5
L1: 1.45967735721775622
L1/L2: 0.92887476489132329
L2/L3: 0.544839254072142929
L3/L4: 0.342601097616620486
Step 6
L1: 4.14332887174678882
L1/L2: 3.196023202965606
L2/L3: 2.17917142311552343
L3/L4: 1.20113487031438651
L4/L5: 0.560806463155683678
```

```
Review results? n
Run again? Y
New datafile? n
Forward operation? Y
Uncoupled load (microhenries)? 10
Decompression? n
Use max. load voltage? n
Initial current (amps)? 7
Datafile: >udd>EL>MGPimperton>mg>mgideal>mg1
Forward operation
Uncoupled load= 10.00 microhenries
(A) CURRENT/ENERGY/EFFICIENCY:
\begin{tabular}{ccccc} 
Step & New Current(A) & Current Mult. & New Energy (J) & Step Efficiency (\%) \\
0 & 7.00 & - & 0.081705 & - \\
1 & 9.53 & 1.36 & 0.077281 & 94.6 \\
2 & 14.22 & 1.49 & 0.071980 & 93.2 \\
3 & 23.88 & 1.68 & 0.068298 & 94.9 \\
4 & 39.48 & 1.65 & 0.063362 & 92.8 \\
5 & 61.68 & 1.56 & 0.051299 & 81.0 \\
6 & 68.23 & 1.11 & 0.050049 & 97.6
\end{tabular}
Percent of final energy in load= 46.5%
Total Current Multiplication: x 9.7
TOTAL EFFICIENCY: 28%
```


E. 2 TWO-STEP MEATGRINDER EFFICIENCY INVESTIGATION

The program "mgeff_01" was written as part of the optimisation investigation described in Chapter 6.

The following pages contain a listing of the program.

Note: The Fortran programs were written with the aid of references [86] to [88].
mgeff_01 INVESTIGATES THE EFFICIENCY OF A.TWO-STEP IDEAL
MEATGRINDER WITH AN UNCOUPLED LOAD AND NO DECOMPRESSION WITH
a View to finding optimal inductance values w.r.t. the load
inductance.
SINCE there has not been any obvious rigorous mathematical
SOLUTION, AN EXPERIMENTAL, STATISTICAL-TYPE INVESTIGATION WILL
be done. this program is the first step in the investigation:
there may be other programs- hence the numbering.
the overall current multiplication x and the three coupling factors
are fixed, and various x1:x2 COMBINATIONS ARE TRIED. WITHIN EACH SUCH
COMBINATION THE EFFICIENCY IS CALCULATED AS A FUNCTION OF r3 (L3/Lioad).
VARIABLE DICTIONARY:
$x \quad$ overall multiplication $13 / 11$
$x 1$ 12/I1
$\times 2 \quad 13 / 12$
$r 1$ L1/Lload
r2 L2/Lload
$r 3$ L3/Lload
$r 23$ (L2+L3+2M23)/Lload =L23/L1oad
cf123 coupling beteween L1 and L23
effi efficiency of first m / g step
eff2 (eff. of $2 \mathrm{nd} \mathrm{m} / \mathrm{g}$ step)*(uncoupled load penalty)
enld2 (load en. after 1st step)/(initial load en.)
enld3 (load en. after 2nd step)/(initial load en.)
mgp 15.9.88
program mgeff_01
implicit double precision (a-h,o-z)
double precision k12,k13,k23
parameter (maxlin=21)
data intro/1/

OVERALL MULTIPLICATION AND k VALUES

data $\mathrm{x} . \mathrm{k} 12 . \mathrm{k} 13 . \mathrm{k} 23 / 5.0 .0 .9 .0 .81,0.9 /$
open(0.defer=.true..prompt=.false.)
call mesage (intro)
call ofile(nsets)

GET SWEEP LIMITS/STEP SIZES
call swplim(x,x2min,x2max, deltx2,r3min,r3max, deltr3)
nrslts=0

CALCULATION LOOPS. N.B. UPPER LIMIT OF DO VARIABLE IS INCREASED
by half the increment to prevent miscalculation of trip count due
TO REAL ARITHMETIC ROUNDING ERRORS.
c TABLE HEADING IS PRINTED EVERY TIME $\times 2$ CHANGES AND WHENEVER THERE
WOULD OTHERWISE BE NO HEADING VISIBLE ON THE SCREEN.
do 20.x2-x2min, (x2max+(deltx2/2.0)), deltx2
$\mathrm{x} 1 \mathrm{l} \mathrm{x} / \mathrm{x} 2$
call headg ($\mathrm{x} 1, \mathrm{x} 2$)
do $10, r 3 a r 3 m i n,(r 3 \max +(d e l t r 3 / 2.0))$, deltr3
nrsltannrslts+1
if (mod(nrslts,maxlin).eq. 0) call headg($\times 1, \times 2$)
r2=ratiol(x2,k23.r3)
call adjust(r2,r3,k12,k13,k23,
r23.cf123)
r1=ratiol(x1, cf123, r23)
eff1=effy1 (x1,cf123.r23)
eff2=effy2 (x2,k23,r3)
efftot=eff1*eff2
en1d2=x2*x2
enld3 $=x^{*} x$

RESULTS
write (0.100) r3.r2,r1. (eff1*100.0). (eff2*100.0),
c
(efftot*100.0).nrslts
100

c i5)
GAPLOT REQUIRES SINGLE PRECISION DATA

write(1) sngl(r3), sngl(r2), sngl(r1), sngl(effl*100.0),
c
sngl(eff2*100.0), sngl(efftot*100.0)
nsets is for plotting purposes from the output file.
nsets=nsets +1
continue
continue
rewind(1)
write(1) nsets
close (1)
open(0.defer=.false.)
stop
end
*** LEVEL 2 ROUTINES ***
mesage PRINTS A MESSAGE ACCORDING TO A MESSAGE NUMBER.
122 c
123 c
CALLING ROUTINES: main program
124 c

subroutine mesage (msgnum)
write(0,*)
if (msgnum.eq.1) then
write(0.*)
write(0.*)
print*," $+++"$
print*," + , $+\cdots$
print*." * MGÉFF_01 +*
print*," + +"
print*." + Optimisation investigation: +"
print*," + Two-step ideal meatgrinder with *"
print*." + uncoupled load and no decompression. +"
print*." + +"
print*." $+\bmod 128.9 .88 \quad \operatorname{mgp} 9.88+$ "
print*, " $+++^{*}$
write(0.*)
write(0,*)
endif
return
end
ofile CONNECTS TO A BINARY RESULTS FILE. nsets IS THE NO. OF SETS
OF DATA (REQUIRED BY K.G. PLOTTING PROGRAMS).
CALLING ROUTINE: main program
subroutine ofile(nsets)
integer opnerr.file
character*20 filenm
data file/1/
write(0.*)
write($0, *$)"GAPLOT filename? "
read*.filenm
open(1,file=filenm,iostat=opnerr, status="new", mode="out".
c form="unformatted",binary streamm.true.)
if (opnerr.ne. 0) then
call errmsg(file)
goto 10
endif
write(1) 0.6.3
nsets=0
return
end
swplim reads the limits and step sizes for the two loops

INTERACTIVELY. THE LIMITS OF $x 2$ ARE ALWAYS 1 AND x

CALLING ROUTINE: main program
subroutine swplim(x,x2min,x2max,deltx2.r3min,r3max,deltr3)
implicit double precision(a-h.o-z)
write ($0, *$)
write(0.*)"X2 lower limit? "
read*.x2min
if (x2min.le.1.0.or.x2min.ge. x) goto 5
write(0,*)"X2 upper limit? "
read*, x2max
if (x2max.le.x2min.or.x2max.ge.x) goto 6
write (0.*)"X2 step size? "
read*, deltx2
if (deltx2.le.0.0.or.deltx2.gt.(x2max-x2min)) goto 10
write(0,*)"r3 lower limit? "
read*, r 3 min
if (r3min.le.0.0) goto 20
write(0.*)"r3 upper limit?
read*,r3max
if (r3max.le.r3min) goto 30
write(0.*)"r3 step size?
read*, deltr3
if (deltr3.le.0.0.or.deltr3.gt.(r3max-r3min)) goto 40
return
end
headg REPRINTS THE VALUES OF X1 AND X2 AND A FRESH TABLE HEADING.

CALLING ROUTINE: main program
subroutine headg(x1.x2)
implicit double precision(a-h.o-z)
print*." \qquad "
write (0.100) x1.x2
format (/"X1=", f7.3.2x."X2=", f7.3/)
write (0.200)
200 format ($8 x, " r 3 ", 9 x, " r 2 ", 9 x, " r 1 ", 5 x, " e f f 1 ", 4 x, " e f f 2^{\prime \prime} .4 x, " e f f t o t "$,
c 6x,"Result No.")
return
end
adjust MAKES STEP 1 DATA SUITABLE FOR USE BY ratiol TO FIND rl.

CALLING ROUTINE: main program

```
subroutine adjust(r2,r3.k12,k13.k23.
c r23,cf123)
implicit double precision(a-h,o-z)
double precision k12,k13,k23
r23=r2+r3+(2.0*k23*sqrt(r2*r3))
cf123=((k12*sqrt(r2))+(k13*sqrt(r3)))/sqrt(r23)
return
end
```



```
ratiol CALCULATES "L1/L(LOAD)", WHERE L1 IS THE INDUCTANCE
SWITCHED OUT.
CALLING ROUTINE: main program
```



```
function ratiol(mult,cfact,indrat)
implicit double precision(a-h,o-z)
double precision mult,indrat
ratiol=(((mult-1.0)**2.0)*((indrat+1.0)**2.0))/
c (cfact*cfact*indrat)
return
end
effy1 FINDS THE STEP EFFICIENCY, NOT INCLUDING THE UNCOUPLED
LOAD PENALTY.
CALLING ROUTINE: main program
function effy1 (mult,cfact,indrat)
    implicit double precision (a-h,o-z)
    double precision mult.indrat,mltsqd
mltsqdemult*mult
    factor=1.0-(cfact*cfact)
    top*indrat*cfact*cfact*mitsqd
    templ=mltsqd-(2.0*mult*factor) + factor
    temp2=mltsqd-(2.0*mult) +1:0
    bottom=(indrat*temp1) +temp2
    effyl=top/bottom
    return
end
```



```
c effY2 CALCULATES THE STEP EFFICIENCY, INCLUDING THE UNCOUPLED
c LOAD PENALTY.
```

301
C

```
CALLING ROUTINE: main program
function effy2 (mult.cfact,indrat)
implicit double precision(a-h,o-z)
double precision mult,mltsqd,indrat
mltsqd*mult*mult
factor*1.0-(cfact*cfact)
top=indrat*cfact*cfact*mltsqd
templ=mltsqd-(2.0*mult* factor) + factor
temp2=(2.0*mltsqd) - (2.0*mult*factor)-(2.0*mult) +factor +1.0
temp3=mltsqd-(2.0*mult) +1.0
bot tom=(indrat*indrat* temp1) + (indrat* temp2) + temp3
effy2=top/bottom
return
end
*** LEVEL 3 ROUTINES ***
errmsg PRINTS AN ERROR MESSAGE ACCORDING TO AN ERROR NUMBER.
CALLING ROUTINE: ofile
subroutine errmsg (errnum)
integer errnum
if (errnum.eq.1) then
        print*."*** File open failed"
endif
return
end
```


APPENDIX F

USE OF COMPUTER ALGEBRA PACKAGE

F. 1 INTRODUCTION

This Appendix relates to the investigation of ETAC described in Chapter 5.

The requirement is to determine the total current increase in the final meatgrinder coil section. This is done by adding the results of equations (5.21) and (5.26), which are reproduced below as equations (F.1) and (F.2).

For phase one:

$$
\begin{equation*}
\delta i_{2}=\left[\frac{v_{S 3}[M-L]+v_{S 1}[J+K+L-M]}{v_{S 3}[L+N]-v_{S 1}[2 L+J+N]}\right] I_{1} \tag{F.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{J}=\mathrm{L}_{2} \mathrm{~L}_{3} \quad\left(1-\mathrm{k}_{12}{ }^{2}-\mathrm{k}_{23}{ }^{2}+\mathrm{k}_{12}{ }^{2} \mathrm{k}_{23}{ }^{2}\right) \\
& \mathrm{K}=\mathrm{L}_{3} \sqrt{L_{1} L_{2}}\left(\mathrm{k}_{12}-\mathrm{k}_{13} \mathrm{k}_{23}-\mathrm{k}_{12}{ }^{3}+\mathrm{k}_{12}{ }^{2} \mathrm{k}_{13} \mathrm{k}_{23}\right) \\
& \mathrm{L}=\mathrm{L}_{2} \sqrt{L_{1} L_{3}}\left(\mathrm{k}_{13}-\mathrm{k}_{12} \mathrm{k}_{23}-\mathrm{k}_{12}{ }^{2} \mathrm{k}_{13}+\mathrm{k}_{12}{ }^{3} \mathrm{k}_{23}\right) \\
& \mathrm{M}=\mathrm{L}_{1} \sqrt{L_{2} \mathrm{~L}_{3}}\left(\mathrm{k}_{23}-\mathrm{k}_{12} \mathrm{k}_{13}-\mathrm{k}_{12}{ }^{2} \mathrm{k}_{23}+\mathrm{k}_{12}{ }^{3} \mathrm{k}_{13}\right) \\
& \mathrm{N}=\mathrm{L}_{1} \mathrm{~L}_{2} \quad\left(1+\mathrm{k}_{12}{ }^{4}-2 \mathrm{k}_{12}^{2}\right)
\end{aligned}
$$

For phase two:

$$
\begin{equation*}
\delta i_{2}=-\frac{L_{2}+M_{12}+M_{23}}{L_{2}} I_{3} \tag{F.2}
\end{equation*}
$$

Equation (F.2) may be expressed in terms of I_{1} by using equation (5.22) to substitute for I_{3}. The result is

$$
\delta i_{2}=-\left[\frac{L_{2}+M_{12}+M_{23}}{L_{2}}\right][\frac{V_{S 3} L_{1}\left(1-k_{12}^{2}\right)-V_{S 1}}{} \underbrace{V_{1}}_{V_{S 3} X-V_{S 1}} I_{1}
$$

where

$$
\begin{aligned}
& X={\sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}\right)+L_{1}\left(1-k_{12}^{2}\right)}_{Y}=2 \sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}\right)+L_{1}\left(1-k_{12}^{2}\right)+L_{3}\left(1-k_{23}^{2}\right)
\end{aligned}
$$

F. 2 EVALUATION BY HAND

This section gives a sample of the working required to add equations (F.1) and (F.3). The exercise can be regarded as adding two fractions a / b and c / d. The result is
a
-+-
$b \quad d$
b d bd

If equations (F.1) and (F.3) are divided by I_{1} on both sides, then the right-hand sides both have the form

$$
\frac{\mathrm{V}_{\mathrm{S} 3} \theta_{1}+\mathrm{V}_{\mathrm{S} 1_{2}}^{\theta_{2}}}{\mathrm{~V}_{\mathrm{S} 3_{3} \theta}+\mathrm{V}_{\mathrm{S1}}{ }_{4}^{\theta}}
$$

Therefore each of the three products given by equation (F.4) has the form

$$
V_{S 3} \theta_{5}^{2}+V_{S 3} V_{S 1} \theta_{6}+V_{S 1}{ }_{7}^{2}
$$

and there is a total of nine coefficients to evaluate.

Consider the product "bd". This is

$$
\begin{equation*}
b d=\left(V_{S 3}[L+N]-V_{S 1}[2 L+J+N]\right)\left(V_{S 3} L_{2} X-V_{S 1} L_{2} Y\right) \tag{F.5}
\end{equation*}
$$

Thus

$$
\begin{align*}
\mathrm{bd}=\mathrm{V}_{\mathrm{S} 3}{ }^{2}[\mathrm{~L}+\mathrm{N}] \mathrm{L}_{2} \mathrm{X}-\mathrm{V}_{\mathrm{S} 3} \mathrm{~V}_{\mathrm{Sl}}\left(\mathrm{~L}_{2} \mathrm{Y}[\mathrm{~L}+\mathrm{N}]\right. & \left.+\mathrm{L}_{2} \mathrm{X}[2 \mathrm{~L}+\mathrm{J}+\mathrm{N}]\right) \\
& +\mathrm{V}_{\mathrm{Sl}}{ }^{2} \mathrm{~L}_{2} \mathrm{Y}[2 \mathrm{~L}+\mathrm{J}+\mathrm{N}] \tag{F.6}
\end{align*}
$$

The coefficient of $V_{S 3}{ }^{2}$ in equation (F.6) has four terms. First term:

$$
\begin{aligned}
\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}\left(\mathrm{k}_{13}{ }^{2}-2 \mathrm{k}_{12} \mathrm{k}_{13} \mathrm{k}_{23}-\mathrm{k}_{12}{ }^{2} \mathrm{k}_{13}{ }^{2}\right. & +\mathrm{k}_{12}{ }^{2} \mathrm{k}_{23} \\
& \left.-\mathrm{k}_{12}{ }^{4}{ }_{k_{23}}^{2}+2 \mathrm{k}_{12}{ }^{3} \mathrm{k}_{13} \mathrm{k}_{23}\right)
\end{aligned}
$$

Second term:

$$
\begin{aligned}
& L_{1} L_{2} \sqrt{L_{1} L_{3}}\left(k_{13}+k_{12}{ }^{4} k_{13}-2 k_{12}{ }^{2} k_{13}-k_{12} k_{23}\right. \\
&\left.-k_{12}{ }^{5} k_{23}+2 k_{12}{ }^{3} k_{23}\right)
\end{aligned}
$$

Third term:

$$
\begin{aligned}
L_{1} L_{2} \sqrt{L_{1} L_{3}}\left(k_{13}-k_{12} k_{23}-2 k_{12}{ }^{2} k_{13}\right. & +2 k_{12}{ }^{3} k_{23} \\
& \left.+k_{12}{ }_{12}^{4} k_{13}-k_{12}{ }^{5} k_{23}\right)
\end{aligned}
$$

Fourth term:

$$
\mathrm{L}_{1}^{2} \mathrm{~L}_{2}\left(1-3 \mathrm{k}_{12}^{2}+\mathrm{k}_{12}^{4}-\mathrm{k}_{12}^{6}\right)
$$

Adding the above four terms the $V_{S 3}{ }^{2}$ coefficient is

$$
\begin{aligned}
& \mathrm{L}_{1} \mathrm{~L}_{2}^{2}\left\{\mathrm { L } _ { 3 } \left[\mathrm{k}_{13}{ }^{2}-2 \mathrm{k}_{12} \mathrm{k}_{13} \mathrm{k}_{23}-\mathrm{k}_{12}{ }_{\mathrm{k}}^{\mathrm{k}}{ }_{13}^{2}+\mathrm{k}_{12}{ }_{2}^{2} \mathrm{k}_{23}{ }^{2}\right.\right. \\
& +2 k_{12}{ }^{3} \mathrm{k}_{13} \mathrm{k}_{23}-\mathrm{k}_{12}{ }^{4} \mathrm{k}_{23}{ }^{2} \text {, } \\
& +2 \sqrt{\mathrm{~L}_{1} \mathrm{~L}_{3}}\left[\mathrm{k}_{13}+\mathrm{k}_{12}{ }_{12} \mathrm{k}_{13}-2 \mathrm{k}_{12}{ }^{2} \mathrm{k}_{13}-\mathrm{k}_{12} \mathrm{k}_{23}\right. \\
& \left.-k_{12}{ }^{5} \mathrm{k}_{23}+2 \mathrm{k}_{12}{ }^{3} \mathrm{k}_{23}\right] \\
& \left.+L_{1}\left[1-3 k_{12}^{2}+3 k_{12}^{4}-k_{12}^{6}\right]\right\}
\end{aligned}
$$

Similarly, the coefficient of $V_{S 3} V_{S 1}$ is the sum of six terms and that of $V_{S 1}{ }^{2}$ the sum of nine terms.

This process is repeated for the two products "ad" and "bc", which are then added to form the numerator of the final result.

The final stage is to compare the numerator and denominator, extracting and cancelling any common factors. This is again tackled in three stages, considering the coefficients of V_{53} $\mathrm{V}_{\mathrm{S3}} \mathrm{~V}_{\mathrm{SI}}$ and V_{SI}. In each case the ratio is the same and so the final result is

$$
\begin{equation*}
\frac{\delta \dot{I}_{2}}{I_{1}}=-\left[\frac{L_{2}+M_{12}}{L_{2}}\right] \tag{F.7}
\end{equation*}
$$

F. 3 USE OF "REDUCE" COMPUTER ALGEBRA PACKAGE

Computer programs exist for manipulating algebraic expressions [89]. One such program was used to carry out the task described above.

The REDUCE computer algebra package [90,91] was used on an Amdahl 5890 mainframe to generate the output given at the end of this Appendix. The input file is listed first, the expressions $\mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{X}$ and Y corresponding to those defined in Chapter 5. The expressions INCR1 and -INCR2 correspond tq equations (F.1) and (F.3) divided by I_{1}.

The first three lines (Ll: = LLl**2 etc.) are necessary because REDUCE does not simplify square roots very well [92]. These lines define LL1, LL2 and LL3 to be the square roots without actually using the square root function.

The results produced come after the three lines

INCR1;
INCR2;
INCR1-INCR2;
and it can be seen that if the final result is multiplied top and bottom by LL2 (i.e. \sqrt{L}_{2}) the result is identical to equation (F.7).

```
ONON-CONTIGUOUS.
    SLISP : 1466352 BYTES
1
    REDUCE 3.3. 15-Jan-88 ...
    L1:=LL1**2$
    L2:-LL2**2$
    L3:=LL3**2$
    X:= (LL1*LL3) * (K13 - K12*K23) + L1*(1 - K12**2)$
    Y :=2*(LL1*LL3) * (K13 - K12*K23) + L1*(1 - K12**2) + L3*(1 - K23**2)$
    J:=L2*L3** (1 - K12**2 - K23**2 +K12**2 * K23**2)s
    K:=L3 * (LL1*LL2) * (K12 - K13*K23 - K12**3 + K12**2 * K13*K23)$
    L:=L2 * (LL1*LL3) * (K13 - K12*K23 - K12**2 * K13 + K12**3 * K23)$
    M:=L1 * (LL2*LL3) * (K23 - K12*K13 - K12**2 * K23 + K12**3 * K13)$
    N:=L2*L2 * (1 + K12**4 - 2*K12**2)$
    INCRITOP :=VB * (M-L) + VSW * (J + K+L-M)$
    INCR1BOT :=VB * (L+N) - VSW * (2*L + J+N)$
    INCR2TOP1:=L2 + K12*(LL1*LL2) + K23*(LL2*LL3) $
    INCR2TOP2: =VB*L1 * (1 - K12**2) - VSW*X $
    INCR2BOT1:=L2 $
    INCR2BOT2:=VB*X - VSW*Y $
    INCR1:=INCRITOP / INCR1BOT $
    INCR2:=(INCR2TOP1 / INCR2BOT1) * (INCR2TOR2 / INCR2BOT2) $
    ON EXP;
    ON GCD;
    INCR1:
            2
    - (LL3*(VSW*K23 *LL3*LL2 + VSW*K23*K12*LL2*LLI + VSW*K23*K13*LLL3*LL1 + VSW
        VSW*K12*LL2*LL1 - VSW*K13*LL2*LLL1 - VSW*LL3*LLL2 - VB*K23*K12*LL2*
```

222
*LL1 * VB*K13*LL2*LL1))/(LL2* (VSW*K23 *LL3 * 2*VSW*K23*K12*LL3*L

```
22
2 2 2
```


INCR2:

```
            2 2 2
    (LL1*(VSW*K23 *K12*LL3 * 2*VSW*K23*K12 *LL3*LL1 + VSW*K23*K12*LL3*LLL2 - VS
            3 2 ,
                LL1 + VSW*K12 *LL1 + VSW*K12 *LL2*LL1 - VSW*K12*K13*LL3*LLL1 - VSW*K1
                            2 3 2
                *LL2*LLL1 - VB*K23*K12 *LL3*LL1 + VB*K23*LL3*LLI - VB*K12 *LL1 - VB*K
                        2 2 2
                *LL2*LL1))/(LL2*(VSW*K23 *LL3 + 2*VSW*K23*K12*LL3*LLL1 + VSW*K12 *LL1
    2 2 2 2
LL3 - VSW*LL1 - VB*K23*K12*LL3*LL1 - VB*K12 *LL1 * VB*K13*LL3*LL1
    INCR1-INCR2;
        K12*LLl + LL2
    -----------------
            LL2
        QUIT:
*** END OF RUN
```


APPENDIX G

CONFERENCE PUBLICATION

"Optimum Design Criteria For a Single-Step Meatgrinder" by

M G Pimperton, V V Vadher and I R Smith

Presented at the Fourth IEE International Conference on Power Electronics and Variable Speed Drives, Savoy Place, London, 17-19 July 1990.

Fourth International Conference on

POWER ELECTRONICS AND VARIABLE SPEED DRIVES

Power Electronics and Variable-Speed Drives

17-19 July 1990

Organised by the
Power Division of the Institution of Electrical Engineers
in association with the
Institute of Electrical Engineers of Japan
Institute of Electrical and Electronics Engineers Inc
(Industry Applications Society \& Industrial Electronics Society)
Institution of Engineers of Australia
Institution of Engineers of Ireland
Société des Electriciens et des Electroniciens
South African Institute of Electrical Engineers

Venue

The Institution of Electrical Engineers, Savoy Place, London WC2, UK

OPTIMUM DESIGN CRITERIA FOR A SINGLE-STEP MEATGRINDER

M.G. Pimperton, $V V$ Vadher and $I R$ Smith

Loughborough University of Technology, UK

INTRODJCTION

The principle behind the meatgrinder is that of dividing a storage inductor into many mutually-coupled sections; such that switching out each section in turn enables high efficiency energy transfer to be achieved $[1,2]$. In fact, as the number of coil sections approaches infinity the circuit efficiency approaches 100\% [1].

Giorgi et al [3] have demonstrated the soundness of this principal with a five-section coil. Experimental results have been obtained at Loughborough which confirm the theory. Designs for multi-step meatgrinders for specific applications have also been proposed $\{4,5,6]$.

If the meatgrinder coil is divided into just two mutually-coupled sections the circuit is simplified and becomes easier to analyse. Such a circuit has been used to further demonstrate the validity of the meatgrinder theory [7]. It has also been recognised, however, that a single-step meatgrinder may have value in its own right in some applications [8-10]. The study of a single step provides a logical starting point for a more general investigation into the design of multi-step circuits.

ANALYSIS OF UNLOADED SINGLE-STEP MEATGRINDER

Figure 1 shows an unloaded single-step meatgrinder. The initial current flows through $L_{\text {, }}$ and $L_{\text {, }}$ (figure $1(a)$) and the transfer is effected by first closing S_{2} (which has no effect on the current flow figure $1(b)$) and then opening $S_{\text {, }}$ (figure 1(c)). The current multiplication. ${ }^{5}$ is given by [2]

$$
\begin{equation*}
\beta=\frac{I_{2}}{I_{1}}=\frac{L_{2}+M}{L_{2}} \tag{1}
\end{equation*}
$$

where $M=k \sqrt{L_{1} L_{2}}$.
If the initial and final energies are E_{1} and E_{2} respectively then

$$
E_{1}=\frac{1}{2}\left(L_{1}+L_{2}+2 M\right) I_{1}^{2}
$$

and

$$
\mathrm{E}_{2}=\frac{1}{2} \mathrm{~L}_{2} \mathrm{I}_{2}^{2}
$$

Substituting for I_{2} from equation (1), the efficiency of the step. η_{s} is
$\ldots \eta_{s}=\frac{E_{2}}{E_{1}}=\frac{1+k^{2} \alpha+2 k \alpha}{1+\alpha+2 k \alpha}=\frac{(1+k \sqrt{\alpha})^{2}}{1+\alpha+2 k \alpha}$
where $\alpha=L_{1} / L_{2}$.
From equation (1) the inductance ratio α can be expressed as

$$
\begin{equation*}
\alpha=\frac{(\beta-1)^{2}}{k^{2}} \tag{3}
\end{equation*}
$$

and substituting equation (3) into equation (2) yields

$$
\begin{equation*}
\eta_{s}=\frac{k^{2} \beta^{2}}{\beta^{2}+\left(k^{2}-1\right)(2 \beta-1)} \tag{4}
\end{equation*}
$$

ANALYSIS OF LOADED SINGLE-STEP MEATGRINDER

The addition of an uncoupled load inductance in series with L_{2} (figure 2) does not affect the operation of the circuit. However, the final inductance becomes

$$
\begin{equation*}
\mathrm{L}_{2}{ }^{\prime}=\mathrm{L}_{2}+\mathrm{L}_{\mathrm{LOAD}} \tag{5}
\end{equation*}
$$

and the coupling factor must be modified as follows:

The total circuit inductance L_{o} is

$$
\begin{equation*}
\mathrm{L}_{0}=\mathrm{L}_{1}+\mathrm{L}_{2}^{\prime}+2 \mathrm{M}_{12} \tag{6}
\end{equation*}
$$

Since the load is magnetically uncoupled, it has no effect on the mutual inductance. Hence

$$
\begin{gathered}
M_{12}^{\prime}=M_{12} \\
\text { or } k^{\prime} \sqrt{L_{1} L_{2}^{\prime}}=k \sqrt{L_{1} L_{2}}
\end{gathered}
$$

and therefore

$$
\begin{aligned}
& k^{\prime}=k \sqrt{L_{2} / L_{2}^{\prime}} \\
& =k\left[\frac{L_{2}}{L_{2}+L_{L O A D}}\right]^{1 / 2}
\end{aligned}
$$

In addition to calculating the step efficiency, account must also be taken of the fact that some of the final sircuit energy is stored in L_{2}. This leads to a further efficiency pehalty η_{u}, where

$$
\begin{equation*}
\eta_{u}=\frac{L_{L O A D}}{L_{2}+L_{L O A D}} \tag{8}
\end{equation*}
$$

 quation (7) shows that, as 0_{2}^{2} increases, the aluc of k ' approaches that of k. This means hat for a given current multiplication β the tep efficiency η_{s} improves. However, at the ame time, the uncoupled load penalty η_{u} gets maller (equation (8)). The requiremeht is o determine the net effect on the total fficiency η_{t}, where

$$
\begin{equation*}
\eta_{t}=\eta_{s} \eta_{u} \tag{9}
\end{equation*}
$$

o analyse the effect of σ_{2} on η_{t}, equation 9) is expanded. η_{s} is given by' equation 4), but with k ' in 'place of k. η_{p} can be xpressed in terms of σ_{2}. Multiplying the wo expressions together qields

$$
t=\frac{k^{2} \beta^{2} \sigma_{2}}{\alpha_{2}^{2}\left[\beta^{2}-2 \beta\left(1-k^{2}\right)+\left(1-k^{2}\right)\right]+}\left[\begin{array}{c}
\sigma_{2}\left[2 \beta^{2}-2 \beta\left(1-k^{2}\right)-2 \beta+\left(1-k^{2}\right)+1\right]+ \\
{\left[\beta^{2}-2 \beta+1\right]}
\end{array}\right.
$$

ifferentiating the result with respect to o_{2} ields

$$
\begin{equation*}
\frac{d \eta_{t}}{d \sigma_{2}}=\frac{k^{2} \beta^{2} A-k^{2} \beta^{2} \sigma_{2}\left(d A / d \sigma_{2}\right)}{A^{2}} \tag{11}
\end{equation*}
$$

$$
A=\left[\beta^{2}\left(\sigma_{2}+1\right)+\left(k^{2} \sigma_{2}-\sigma_{2}-1\right)(2 \beta-1)\right]\left\{1+\sigma_{2}\right]
$$

tationary points of the function are located y equating the derivative to zero, which ields a non-imaginary value of

$$
\begin{equation*}
a_{2}=\frac{\beta-1}{\left[\beta^{2}-2 \beta\left(1-k^{2}\right)+\left(1-k^{2}\right)\right]^{-1 / 2}} \tag{12}
\end{equation*}
$$

he nature of this stationary point may be etermined by making the following bservations:
quation (12) represents the optimum value of 2 , for which the efficiency η_{t} is maximised.
n example of the variation of η_{t} with σ_{2} is hown in figure 3.
he analysis is completed by finding σ_{1} in erms of σ_{2}, so that both the meatgrinder nductances 2 are known in terms of the load nductance. This can be done by modifying quation (3) to account for the load, so that t becomes
$\frac{L_{1}}{L_{2}+L_{L O A D}}=\frac{(\beta-1)^{2}}{k^{\prime 2}}$
ubstituting equation (7) into equation (13) ives

$$
\begin{equation*}
\frac{L_{1}}{L_{L O A D}}=\sigma_{1}=\frac{(\beta-1)^{2}}{k^{2}} \frac{\left(1+\sigma_{2}\right)^{2}}{\sigma_{2}} \tag{14}
\end{equation*}
$$

Figures $4(a)$ to $4(c)$ are sample curves derived from the above equations. They may be used to indicate at a glance the capability of an ideal single-step meatgrinder circuit.

ANALYSIS OF SINGLE-STEP MEATGRINDER WITH DECOMPRESSION

Introduction

In some cases it is undesirable for load current to flow whilst the meatgrinder is storing energy from the source, since this process may take a relatively long time. In such cases a decompression switch is used to short out the load during charging. Once the desired current has been reached the switch is opened in order to bring the load into circuit (see figure S); operation then proceeds as before.
"Decompression" means that the flux is initially generated by the current in a single inductor; a second inductor is then brought into circuit and the generation of the flux is divided between the two. The process leads to both a reduction in current and a loss of energy in the switch.

Defining the decompression efficiency η_{0} as the ratio of the total circuit energy after decompression to the initial circuit energy, and the decompression current ratio β_{d} as the ratio of the corresponding currents, it is found that

$$
\begin{equation*}
\beta_{\mathrm{d}}=\eta_{\mathrm{d}}=\frac{\mathrm{L}_{\mathrm{T}}}{\mathrm{~L}_{\mathrm{T}}+\mathrm{L}_{\mathrm{LOAD}}} \tag{15}
\end{equation*}
$$

where L_{r} is the total meatgrinder inductance.

Mathematical Analysis

The current multiplication in the load due to meatgrinder action is still β; as β_{d} simply serves to indicate the necessary initial charge current to give the required initial load current.

The overall efficiency with decompression $\eta_{t d}$ is given by

$$
\begin{equation*}
\eta_{t d}=\eta_{s} \eta_{u} \eta_{\sigma}=\eta_{t} \eta_{d} \tag{16}
\end{equation*}
$$

where the other symbols have their previous meaning.

The total efficiency η_{t} may be derived as described in section $2 . \quad \eta$ may be expressed in terms of β and σ_{2} by expanding L_{T} and using equation (15) to substitute for L_{1}. $\eta_{t d}$ may subsequently be expressed as

$$
\begin{equation*}
\eta_{t d}=\frac{k^{2} \beta^{2} \sigma_{2}\left(A-k^{2} \sigma_{2}\right)}{A} \tag{17}
\end{equation*}
$$

Again, it is the stationary points of this function which are of interest. Differentiating equation (17) with respect to σ_{2} and equating the derivative to zero leads to the following condition:

$$
\left[A-2 k^{2} \sigma_{2}\right]\left[A k^{2} \beta^{2}-k^{2} \beta^{2} \sigma_{2}\left(d A / d \sigma_{2}\right)\right]=0(18)
$$

where σ_{2} is the stationary point value with decompression.

The values of σ_{2} are found by equating each of the two brackets in turn to zero. It can be seen that applying this to the second bracket yields exactly the same result as the non-decompression case (equation (12)). Substituting for A in the first bracket and equating to zero leads to a quadratic in σ_{2} the roots of which are imaginary and therefore not of interest.

Thus there is again only one stationary point of interest, and as before it is a maximum. This shows that the optimum value of σ_{2} is the same with or without decompression.

Figure 6 refers to the same example as figure 3 and shows how decompression degrades the efficiency without shifting the point at which the maximum occurs. Figure 7 is derived from figure $4(a)$ by multiplying each efficiency value by η_{d}.

EXPERIMENTAL RESULTS

The purpose of these experiments was to provide a demonstration of the principle described above. The case arbitrarily chosen for the demonstration has the following parameters:

Current multiplication $=3$
Coupling coefficient $=0.9$
Load inductance
$=100 \mu \mathrm{H}$
Figure 8 is the efficiency curve for this case and is derived from equation (10). The three representative values of σ_{2} (i.e. L/LLOAD ' chosen for the experiments are indicated.
An initial current of 10A was selected in order that switching could be carried out with power MOSFETs, for ease of drive circuit design and switching speed compared with GTO's and bipolar transistors.

Coil Design

The meatgrinder consists of two concentric single-layer solenoids. Concentric solenoids have been successfully used in other meagrinder work $\{3,7]$, and the single-layer type is relatively simple to design and construct. High magnetic coupling can be obtained by making the coils large, so that the difference in cross-sectional areas is small. Even if the two inductances are very different, a high coupling coefficient can still be obtained by using different wire or strip sizes to produce coils of roughly equal width.

The inductance formula used is that given by Welsby [11]. It approximates the coil to a cylindrical current sheet, and is appropriate where the turns are close together and the radial thickness of the winding is small compared to the coil radius.

$$
\begin{aligned}
& \text { The formula is } \\
& \qquad L=\frac{r^{2} N^{2}}{b} \cdot \frac{4 \pi^{2} \times 10^{-3}}{1+0.9(r / b)-0.02(r / b)^{2}} \mu H
\end{aligned}
$$

where
$\mathrm{r}=$ coil radius in cm
$\mathrm{b}=$ coil width in cm
$\mathrm{N}=$ number of turns

In order to minimise construction difficulties, the radius of the outer coil (L) was restricted to 25 cm . A nominal coil width of 10 cm was chosen. Equation (19) was then applied on a trial and error basis in order to find the number of turns needed to give the required inductance. The wire diameter or strip width required was given by coil width/number of turns.

In each of the three cases, L_{1} and L_{2} were designed to have the same width.

The load inductor was designed in a similar manner.

Mechanical Construction

The meatgrinder coils are shown in figure 9. L, is on the right and is wound with entamelled copper wire, whilst L_{2}, on the left, is wound with copper strip insulated with polyester film. In this particular case, L_{2} was not wound as a single layer, the required inductance being obtained by trial and error. This was due to the required strip width not being available.
$L_{\text {, fits inside }} L_{1}$. Adjustment of the coupling coefficient is provided by a screw arrangement constructed so as to enable L_{2} to be moved up or down along the common axis of the two coils. To make the arrangement functional, the threaded road and handle assembly is first removed from L_{2}. L_{2} is then placed inside L_{1}, the legs underneath L_{2} sliding through holes in the base of L_{2}, and the handle on the end of the rod bears' down on the top lid. Thus when the handle is turned, L_{2} is forced to move relative to L_{1}.

Figure 10 shows the assembled meatgrinder connected to the load coil, and table 1 gives the inductance values for the three experiments.

The coupling coefficient for experiment 3 is rather low because an error in positioning the L_{1} winding meant that the coils could not overlap to obtain $k=0.9$. The experiment was not repeated because the performance was still satisfactory. (It should be remembered that the value of coupling coefficient obtained is highly sensitive to small changes in the inductance figures.. In this particular case, for example, an increase of only 4% in the total inductance would raise the coupling coefficient to 0.88).

Other Circuit Components

Figure 11 is the circuit diagram for the experiments: the electronic components can be seen mounted on the small circuit board in figure 9.

TRI is a high voltage (1000V) device with a 2Ω on-state resistance. A circuit simulation showed that because of the circuit resistance, an opening switch voltage of about 800 V would be necessary to obtain a final current of 30 A . The high on-stage resistance is unimportant for the purposes of the experiment because it simply increases the energy dissipated during charging. MOV1 is necessary to restrict the drain-source voltage during switching off for protection when operating above its continuous current rating.

Expt. No.	$L_{1}(\mu \mathrm{H})$		$L_{2}(\mu \mathrm{H})$		$\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}(\mu \mathrm{H})$ (Meas'd)	k
	Design	Mcas ${ }^{\text {d }}$	Design	Meas'd		
1	2782	2740	30	30	3283	0.89
2	2039	2016	70	70	2740	0.87
3	2009	2012	130	136	2950	0.77

(Meas'd = Measured)

By contrast. TR2 has a low on-state resistance (0.02Ω) so that the loop resistance is kept to a minimum for the energy transfer: TR2 does not break current but the possibility of unexpected voltage spikes still has to be considered. No external drain-source voltage limiting is required, however, because TR2 operates within its continuous current rating and is therefore able to self-avalanche if necessary.

The transistors are driven by a digital timing circuit. A charge time of 1.7 ms is used, and with a 48 V supply, adjustment of Rext allows the current after this time to be set to 10A. The power supply consists of four 12 V car batteries.

Results

First experiment. Figure 12 shows how the circuit operates as expected: the voltage on TRI is clamped by MOV1, and the current in L oap rises to about 28A - quite close to the predicted value of 30 A . Noise was reduced (and the final current slightly increased) by slowing down the turn-off of TR1 (see figure 13). This was achieved by inserting a 100Ω resistor in series with the gate.

The oscillations in the voltage waveform are due to the non-ideal behaviour of the MOSFET as shown by the simulated waveforms of figure 14. The behaviour of an ideal switch is shown in figure 15 for comparison.

Second and third experiments. Figures 16 and 17 are the waveforms corresponding to figure 12 for the second and third experiments respectively. The current multiplication is approximately 3 in each case, as expected.

Comments

The results show that a given current multiplication in the load can be achieved with different sets of meatgrinder inductances, only one of which maximises the efficiency. In this case it is the second experiment which corresponds to the maximum efficiency indicated in figure 8.

Table 2 shows the measured energy levels and the efficiencies obtained from the single step meatgrinder. Figure 8 also shows the experimental efficiency curve for comparison purposes. The small differences between the experimental and theoretical curves are due to (a) the coupling coefficient of the experimental meatgrinder is not 0.9 , the figure used for predictions and (b) the theoretical model neglects the effect of
winding resistances.
TABLE 2

Expt. No.	Initial Circuit Energy (mJ)	Final Load Energy	(mJ)
1	169.2	39.2	23.2
2	142.0	42.1	29.6
3	152.5	39.2	25.7

CONCLUSIONS

Theoretical analysis and experimental results have been presented which show that a simple technique exists for optimising the design of a single-step meatgrinder feeding an uncoupled load. It has further been shown that the optimum values for the two meatgrinder inductances are unaffected by the inclusion of a decompression switch. The work has shown how energy can be transferred between uncoupled inductors at efficiencies greater than 25\%. The higher efficiency reduces the demand on both the power supply and the opening switches, thereby simplifying the design of a pulse power system.

The meatgrinder has the added advantage of providing current multiplication which avoids the need for conventional transformers which are also subject to the 25\% efficiency limit when transferring energy to an uncoupled load [8].

A single-step meatgrinder has been successfully used to launch projectiles from an electromagnetic gun $\{10\}$, and an experiment has been proposed [9] in which a single-step circuit would be used to generate a load power pulse of 100 TW. Optimisation of the meatgrinder design will be vital in such large-scale experiments.

REFERENCES

1. Zucker, 0.. Long, J., "The Meatgrinder : a reversible inductive storage and transfer system", Proc, 4 th IEE Pulsed Power Conf. 1983, p. 375.
2. Zucker, 0. et al, "The meatgrinder: Theoretical and practical limitations", IEEE Trans. Magnetics March 1984, p.391.
3. Giorgi, D., Lindner, K. et al, "Proof of principle experiment of the meatgrinder: an inductive energy storage and transfer circuit", Proc. 5th IEEE Pulsed Power Conf. 1985, p. 295.

Lindner, K., Long, J et al, "A meatgrinder circuit for energising resistive and varying inductive loads (EM Guns)", IEEE Trans. Magnetics Vol. 22 No. 6 November 1986, p. 1591.

Zucker, O., Long, J. et al, "Theory, experiments and applications of meatgrinder circuits", proc. 4th Conf. Megagauss field generation and related topics 1986, p. 609.

Giorgi, D., Long, J. et al, "New high-current meatgrinder experiments". IEEE Trans, Magnetics Vol. 22 No. 6 November 1986, p. 1485.
8. Giorgi, D. Lindner, K. et al, "Enhancing the transfer of inductive energy to an imploding plasma load with a single-step meatgrinder circuit", IEEE Trans. Magnetics Vol. 23, No. 3 May 1987. p. 1913.
9. Zucker, 0., Long, J. et al, "The generation of 100 TW with an explosive generator-driven single-step meatgrinder", Proc. 4th Conf. Megagauss Field Generation and Related Topics 1986, p. 619.
10. Lindner, K., Long, J. et al, "Enhanced Energy Transfer to an EM Gun", Proc. 6th IEEE Pulsed Power Conf. 1987, p. 749.
11. Welsby, V.G., "The Theory and Design of Inductance Coils", Macdonald 1964.

(o) Initial Current Established

(b) 52 Closed

(c) 51 Openad

Figure 2 Single-Step Hectgrinder Vith Uncoupled toad
Figurs 3 Exarnit Showing Variation of Efficiency With L2/R(NAD)

zure 1 Operotion or Untooded Single-Step Heotgrinder

Figure 4(a) Single Step Inarster Efficiency of Opitnod Conations
(Uncouplod Load. No Decorrpression)

Figure 10 Single step meatgrinder and load coil arrangement

COMPONENTS NOT SHOUN: 18 V goxe-source zener diodes
for IR1 ond TR2
13A ture in eertes with Rext
TR1: Internot Lonal Rectlfler IAFPC50
IR2: Incernotlonal Recclfler IRFP044
D1.02: Mocorola MR756
HOU 1: Power Developmenc 7320C

Figure 11 Circut Diogrom for Single-Step Meat grinder

Figure 12 Waveforms for Experiment No. 1

Time $10 \mu \mathrm{~s} / \mathrm{div}$

Time $10 \mu \mathrm{~s} / \mathrm{div}$

Figure 16 Waveforms for Experiment No. 2 Figure 17 Waveforms for Experiment No. 3 Figure 15 Waveforms showing behaviour of an ideal switch replacing TR1 in figure 11.

[^0]: Figure B. 6 Timing Diagram for EPROM Programming (Not to Scale)

