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CHAPTER 1 

INTRODUCTION 



1.1 

In the ensuing work, we consider several fast direct algorithmic 

methods for the numerical solution of linear matrix equation, 

Au = b (1.1.1) 

where A is a large order (nxn) sparse matrix, b is the corresponding 

right-hand side vector and ~, is the required solution vector. 

Equations of the form (1.1.1) are derived, for example, from the 

finite difference approximation on a finite grid, of well known partial 

differential equations (p.d.e.) which occur frequently in Mathematical 

Physics and Engineering applications. For example, if we let R represent 

a bounded, connected region in the x-y plane with a boundary aR and if 

$(x,y) represents a function defined on aR, then a mathematical formulation 

of many problems in Physics and Engineering leads to the determination of a 

function U(x,y) which is continuous in RUaR, twice differentiable in Rand 

satisfies in R, the general second order p.d.e., 

a2u a-- + 

a/ 
a2u a2u au au 
~+ c--+ d-+ e-+ fU = g 

axay ay2 ax ay 
(1.1.2) 

and on the boundary aR a Dirichlet's condition of the form, 

U(x,y) = $(x,y) . 

h 1 d . . au . h N b d d' . T e norma er1vatlves an' to g1ve t e eumann oun ary con 1t10n, or 

au a linear combination of U and an may also be specified on aR. The 

p.d.e. of the form (1.1.2), (usually denoting in most cases, the model 

form of one of the conservation principles of Physics) represents the 

rate of change of unknown quantities, (e.g. temperature, pressure, 

potential, etc.) with respect to two or more independent variables, 

(e.g. time';:' displacement or angle). 

(1.1.3) 

Equation (1.1.2) is said to be linear if the coefficients a,b,c,d, 
0.,. involve x and ~ Q.Lone.; 

e,f and g are constants (including th~ value zero)/quasi-linear if any 

of the coefficients are functions of the independent. variables x and y 
or involv~ aula" and ~u/a~ Cl.Lone.; 

(e.g., a=a(x,y))! and non-linear if any coefficients are functions of 



2 
~ 

the dependent variable U. Further, equation (1.1.2) is said to be self-

adjoint if it can be written in the form, 

a au a au 
ax(a(x)ax) + ay(c(Y)ay) + fU = g ; (1.1.4) 

and a necessary and sufficient condition for (1.1.2) to be of the form 

(1.1.4) is that 
a 

d = ~(x) and 
a 

e = ;;-c (y) 
y . 

Equations of the form (1.1.2) are also conventionally classified 

with respect to the sign of the quantity of discriminant 6=b2_4ac. 

Specifically, (1.1.2) is said to be 

(a) elliptic if b-4ac<O, 

(b) parabolic if b
2

_4ac=O, 

and (c) hyperbolic if b
2
-4ac>o, 

for all x,y,U in the domain under consideration. 

Typical and respective eXamples of the above class of p.d.e.'s are: 

(a) Poisson equation, } a2u + a2u = } g(x,y), 
Laplace equation, ax 2 ay2 0, 

(1.1.5) 

(b) The heat conduction . au a2u (1.1.6) equat10n at = 
ax2 

l 
a

2
u and (c) The . au (1.1.7) wave equat10n, --2 = 

ax
2 

at 

Equation (1.1.5) is generally associated with equilibrium or 

steady state problems. For example, the velocity potential for the 

steady flow of an incompressible non-viscous fluid satisfies Laplace's 

equation and it is the mathematical model of the conservation principle; 

i.e., the rate at which such a fluid enters any given region is equal to 

the rate at which it leaves it. Equations involving the time(t) as one 

independent variable generally lead to parabolic or hyperbolic problems. 

Such problems usually result from oscillatory, diffusion or equilib~um .. 

processes. The simplest example of a parabolic equation, given by (1.1.6) 

governs the flow of heat in a bar or a rod. The majority of hyperbolic 

equations, on the other hand, arise from vibration problems, or those in 
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which discontinuities, such as shock waves, persist in time. 

In the past, direct methods, e.g. Gaussian elimination, had been 

considered unsatisfactory, mainly on the grounds of storage, for the 

solution of the large order, sparse matrix equations (l.l.l) derived from 

the finite difference discretisation of commonly occurring p.d.e. 's 

(Forsythe and Wasow (1960}). Theoretical investigations have therefore been 

primarily directed towards the development of efficient iterative methods; 

some of the best known schemes are the Jacobi, Gauss-Seidel, Successive 

Overrelaxation (S.O.R.) methods and many variants of these. These methods, 

while they often .require little computer storage, nevertheless, have a 

common feature by implication; i.e., the accuracy of the solution is 

determined by the number of iterative steps; and for most problems it may 

be too expensive on computer time to perform as many iterations as would 

give the desired accuracy. 

Some of the major advances in the development of iterative schemes 

are due, amongst others, to the efforts of Stein and Rosenberg (1948) , 

Frankel (1950), Young (1954) and Varga (1962). We shall however not be 

concerned in this thesis, to any great extent, with iterative methods for 

the solution of (l.l.l). 

On the other hand, in recent years, renewed interest has been shown 

in the development of several direct computational techniques for the fast 

and accurate solution of the finite difference equation of the form (l.l.l). 

By taking advantage of the special block structure of the approximating 

discrete equation on a uniform rectangular mesh, fast methods have been 

proposed which can obtain the solution of the discrete equation with 

striking efficiency and accuracy. Some of the most successful developments 

in this direction, particularly in connection with the solution of Poisson 

equation in a rectangular region, include the use of fast Fourier transforms 

(Hockney (1965,1970}) which relies on the knowledge of a certain set of 
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trigonometric eigenvectors; the cyclic reduction method (Hockney (1965)) 

which takes advantage of the regular block tridiagonal structure of the 

coefficient matrix; a stable modification of the latter by Bunemann (1969); 

its extensions to irregular regions by Buzbee, Dorr, George and Golub (1971) 

and generalisations of the cyclic reduction strategy by Sweet (1974) and 

Swarztrauber (1974). A few other methods amonst others include the spectral 

resolution method (Buzbee, Golub and Nielson (1970» which is a very 

efficient implementation of the idea of separation of variables, the sparse 

factorisation method (Evans (1 971A.) ,md the marching technique employed by 

Bank (1976). A survey of some of these widely used methods is given in 

Dorr (1970). 

Direct methods are attractive because in theory they yield the exact 

solution of the difference equation whereas commonly used iterative methods 

seek to approximate the solution by iterative procedure until convergence 

takes place. Secondly, most direct methods permit the solution of systems, 

Au.=d., with several different right hand sides without having to repeat 
-1 1 

all the computation for each new right hand side, since the operation 

(e.g. factorisation) performed on the coefficient matrix need be done only 

once. Furthermore, in many physical situations accuracy and speed are 

crucial, as would be required i.n the modell ing of physi cal systems; e. g. , 

in Plasma studies, the calculation of the electrostatic potential 

distribution from a given charge distribution; in meteorology, the stream 

function from the vorticity; and in gravitation, the gravitational 

potential from a mass distribution. In these problems, the potential 

function calculation (usually requiring the solution of Poisson equation) 

may be only a necessary step towards the calculation of some other 

functions such as the self magnetic fi~ld; and it is often the case that 

the solution of the Poisson equation is time consuming and forms the 

bottle-neck in the modelling of these physical systems on a computer. In 



such cases, the use of fast direct methods in the determination of the 

potential distribution is preferred to iterative schemes from the point of 

view of speed and accuracy. 

The presentation in this thesis is as follows: 

Chapter 2 contains introductory material in which we present basic 

mathematical concepts required in ~he later parts of this work. 

In Chapter 3, we introduce various new fast algorithms and their 

variants for the solution of the one dimensional periodic tridiagonal 

matrix equation; the methods used being based essentially on different 

strategies, including Gaussian elimination, generalised sparse cyclic 

factorisation, cyclic reduction and rank-one perturbation concepts. This 

5 

is done in order to provide background material for the work in Chapter S. 

Comparisons of these algorithms based on numerical experiments are given. 

Further new fast algorithms and their extensions, based on the reversed 

triangular (or more appropriately rectangular) factorisation and expansion 

(ReTriFE), recursive point partitioning (R.P.P.) and recursive decoupling 

ideas for the solution of tridiagonal and/or other sparse banded matrix 

systems, are presented in Chapter 4. These algorithms can generally be 

applied in the solution of Dirichlet's and Neumann's boundary-value problems 

and thus provide further information to the solution of such problems 

considered in Chapter 6. 

A number of model problems, including parabolic and elliptic p.d.e.'s 

defined over rectangular regions and with periodic boundary conditions are 

considere'd in Chapter S. Specific problems considered include· the Helmholtz 

equation, the one and two space heat conduction equations and a fourth 

boundary. value self-adjoint parabolic problem. For the finite difference 

method of solution of these p.d.e.'s, we introduce direct block methods and 

the spectral resolution schemes for their solution. The:block methods are 

based on the generalisation of the point form algorithms in Chapter 3 while 

the latter technique also makes extensive use of the fast periodic tridiagonal 
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matrix solver algorithms. 

Further, discretiscd matrix equations derived from the transport, 

Poisson, heat-conduction and Biharmonic equations in one or two space 

. dimensions under Dirichlet' sand Neumann' s boundary conditions in a 

rectangular region are considered in Chapter 6 for which block fast direct 

methods based on, or incorporating the ReTriFE and R.P.P. algorithmic ideas 

are developed for their fast solution. 

The eigcnvalue problems, considered as an extension of the equilibrium 

problem, in which critical (eigen-) values of certain parameters are required 

in addition to the steady-state configur<ition, is considered in Chapter 7. 

The Sturm Liouville problem with periodic boundary conditions is used as a 

model probl em. By appl ying a sparse cyclic matrix factorisation involving 

a continued fraction expansion, to the periodic tridiagonal matrix of 

discretised equations, new similarity transformations (which are sparse 

form extensions of the Rutishauser's QD and LR schemes) are proposed and 

used in the determination of the eigenvalues of periodic tridiagonal matrices· 
under certain c:specLCl.L c.ondi.tions. 

Finally, the thesis concludes with a summary and recommendations for 

extension and further work. 



CHAPTER 2 

BASIC MATHEMATICAL CONCEPTS 
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2 • I I NTRODUCTI ON 

In this chapter we shall discuss some of the basic concepts of Numerical 

Analysis that will be made use of in subsequent chapters. The background 

material to be outlined include the following: 

(a) . finite difference schemes in common use for the discrete 

approximation of partial differential equations which occur 

in problems of Mathematical Physics; 

(b) the notation, concepts and properties of matrices and vectors; 

and 

(c) the basic theory of continued fractions. 

In most cases, especially in sections (2.3) and (2.4), basic theorems 

will be introduced without proof. In such circumstances, the theorems 

have been given elsewhere in references which are indicated as appropriate. 
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2.2 FINITE DIFFERENCE APPROXIMATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

In the solution of commonly occurring problems of Mathematical Physics 

it is usual to apply discrete methods of solution. This involves the 

approximation of the governing partial differential equations and the 

associated boundary conditions of the continuous system by finite discrete 

methods, which can be realised either by a physical or mathematical approach. 

In some limited problems, such as in a heat conduction problem, (for example), 

a heat-conducting slab could be replaced by a network of heat conducting 

rods. Such a physical approach can be useful in obtaining a solution if the 

discrete physical model is given the lumped physical characteristics of the 

continuous system. We shall, however, not pursue this approach further. 

On the other hand, when the continuous system can be represented by a 

mathematical formulatlon, usually a partial differential equation (p.d.e.), 

the mathematlcal method of solution is simpler and more flexible. In such 

a case, derivatives are usually replaced by finite difference approximations. 

Some other methods of discretlsation include finite element methods, 

variational methods and methods of llnes but in what follows, our interest 

would be based entirely on the finite difference representation. The latter 

has, not only inherent structural simplicity, but also wide applicabllity. 

The basic aim of the finite difference approximation methods is the 

reduction of continuous systems to dlscrete systems which are more suitable 

for high-speed computer solution. The approximation involves the replace

ment of a continuous closed domain by a network or grid of discrete points 

within the closed domain R so that instead of developing a solution 

defined everywhere in R, we obtain approximations to the continuous 

solution at the isolated grid points. Other intermediate values may 

be obtained from the available discrete solution by additional interpolating 

techniques. 

We consider, for example, and ·without loss of generality, an elliptic 

p.d.e., e.g. the two dimensional Poisson equation, 
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f(x,y) (2.2.1) 

where x and y are the independent variables. The region of the problem 

solution is a connected region R in the x-y plane, subject to given 

boundary conditions on the boundary aR of R (e.g. U(x,y)=O may be 

specified on the boundary aR). 

If we let R=R~R denote the closure of the region R with the 

boundary aR, then we can superimpose onoR a system of rectangular meshes 

formed by two sets of equally spaced lines; one set parallel to the x-axis, 

and the other to the y-axis. An approximate solution to the differential 

equation can now be sought at the points of intersection of these parallel 

1 ines. Such points may be denoted as PI I,P l 2' ... ' P. . ... as shown in 
, J 1, J 

Figure (2.1); and are called mesh (lattice, grid, nodal or pivotal) points. 

The distance h between two parallel lines is the mesh size ass u tned he.e. to be 

uniform ;1\ both dLte.<.tions. 
y 

(0,1) (1,1) 

P. 1,j 
T 

PI 
h 

2 .J:.. 

PI 1 , P2 1 , 

(0,0) (1,0) x 

FIGURE 2.1 
\, 

If there are N mesh points internal to R, then the discrete numerical 

solution sought is obtained by approximating the given partial differential 

equation over the region R by N algebraic equations involving the approximate 

values of U at the N mesh points internal to aR. This approximation consists 

of replacing each derivative of the po.d.e. at the point Pi,j (say) by a 



finite difference approximation in terms of values of U at P .. , and at 
1,) 

the neighbouring mesh and/or boundary points. lI'hen this is repeated for 

each of the internal nodal points the approximating algebraic difference 

equation i"s obtained. Simple approximation schemes for the derivatives 

obtained by the use of Taylor's series expansions will now be discussed. 

Taylor's Series Expansion 

We shall assume that U(x,y) is sufficientL~di fferentiable .in a 

sufficiently large neighbourhood of the point (x,y) and that the mesh sizes, 

h, are uniform in the chosen region. Then, by Taylor's theorem we have, at 

the neighbouring point (x+h,y), 

IQ 

au h2 a2u U(x+h,y) = U(x,y)+hax + 2! ax 2 + (2.2.2) 

Similarly, at the other neighbouring points we have, 

and 

au h2 a2u h3 a3u h4 a4u U(x-h,y) = U(x,y)-h,x + - -- - - -- + --_ 
o 2! ax 2 3! ax3 4! ax4 

U(x,y+h) au 
= U (x,y)+h ax + 

U(x,y-h) au 
= U(x,y)-hay + 

· .. , (2.2.3) 

· " , (2.2.4) 

· .. , (2.2.5) 

where the point (x,y) and its four neighbouring mesh points (x±h,y) and 

(x,y±h) are contained in R. 

Combinations of the formulae in (2.2.2) and (2.2.3) yield the 

following approximations, 

au 
ax 

and 

U(x+h,y)-U(x-h,y) + 0(h2) 
2h 

U(x+h,y)-2U(x,y)+U(x-h,y) 

h2 

Similarly, combinations of (2.2.4) and 

au U(x,y+h)-U(x,y-h) + 0 (h 2) = ay 2h 

and 
a2u U(x,r+h)-2U(x,r)+U(x,r~h) 

a/ = h
2 

(2.2.5) give, 

+ 0 (h 2) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

(2.2.9) 



where these finite difference schemes are second order approximations and 

the quantities 0(h
2

) denote the asymptotic notation for the truncation error 

in these approximations. 

Further, if we denote a general lattice point (x,y) by (ih,jh), and 

a2u a2u . U(x,y) by u .. , then, using the approximations for ---2 and ---2 1n (2.2.7) 
1,J Ox ay 

and (2.2.9) respectively the Poisson equation (2.2.1) can be replaced at 

the point (x. ,y.);(ih,jh) by the linear algebraic difference equation, 
1 1 

-u. 1 . -U .. 1+4U .. -U. 1 . -U .. I 
1-,J 1,J- 1,J 1.+ ,] 1,J+ 

11 

__ 2 _h4{a 4u a4u} 
- h f i · 12 4 ~ 4 

,J ax av.. 
(2.2.10) 

. 1 J J 
2 The terms on the right hand side of (2.2.10) excluding {-h f. .}, are 

1, J 

defined as the local truncation error of furmula (2.2.10) and the asymptotic 

notation 0(h
4

) is the principal part of this error. 

The left-hand side of (2.2.10) is often represented diagramatically 

in the form of a computational molecule or stencil as illustrated in 

Figure (2.2). -1 
i ,j + 1 

~4 ~'l' 1,) 1+ ,J 

i,j-l 

FIGURE 2.2 

If the truncation error is neglected and the computational molecule 

in Figure (2.2) is applied to all the mesh points, we are then able to 

construct a set of linear equations in terms of the unknown functions 

u. . (which denote the finite difference approximation of the exact 
1,J 

solution U .. at the point (ih,jh)). In matrix notation, we denote this 
1, J 
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linear system of equations as 

Au = b (2.2.11) 

where b is a vector whose components are made up of known 

and the values of U. l,j given at the boundary aR. If the 

2 values{-h f .. } 
1,) 

region under 

consideration is square and has N ~iJ2) internal mesh points then the matrix 

A is a square matrix of order 
2 

of the form, n 

~ -1 4 -1 
-) 

-1 4 -1 " 
" -1 4 -1 " " 

, , , , " " , " " 
, , 

" , , 
-1 ' 4 -1 

-1 , 4 -1 -1, 
" 

, 
A= , -1 4 -1 , 

"- , , <- , , , 
" 

, , , , , , , , " , , , , " , , , 
" 

, 
-1 

, , 
-1 4 -1 

-1 4 -1 , 
, " , -1 4 -1 , 

, , , 
, , , ,. , 

" 
, , " " 

, , , , , 
" , , , 

-1 4 -1 , 
-1 -1 4 

, , , , , , 
, , 

L , , , , , 
~e· I YO"'- wise or coLumn-wise orderin~ of +he" m .. sh point> I. ~ssumed. 

A is also written as an (nxn) block matrix of the form, 

B -I 

-I B -I 0 , , , , 
A = , 

" ., , , , 
" " , " , , , , , -I 0 
, , , 

-I B 

whe.re B is an (nxn) tridiagona1 matrix, 

4 -1 

-1 4 -1 0 , ... , 
, , ... , ... , 

B = " , , , ... , , , 
-1 0 ... ... ... , 

-1 ' 4 
and I is the identity matrix. 

-

, 

. 
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2 
Both u and bare (n xl) column vectors. 

Further, we consider a one-space heat conduction (parabolic, initial-

boundary value) problem defined by the equation 

au = 
at 

a2u 
a/ . (2.2.12) 

in the semi-infinite region ~~a; t>O, subject to the initial condition 

U(x,O) = f(x); 

and the boundary conditions 

U(O,t) = gO(t), U(a,t) = ga(t); t~O. 

We shall assume that the partial derivatives of U are continuous 

and uniformly bounded in the semi-infinite region. 

A rectangular grid can be overlayed over the semi-infinite domain 

with spacing h in the x-direction and i in the t-direction as shown in 

Figure (2.3). 

t 

Pi,k+l 

P. k 
1, Pi + l,k 

Pi - l k , 

(0,0) 

Let U. k denote U(ih,ki) 
1, 

represent the space derivative 

Pi, k-l 

x 
(a ,0) 

FIGURE 2.3 

at the point (xi,tk)=(ih,ki). If we 

a2u 
---2 by the central second difference 
ax au formula (2.2.7) and the time derivative at by the forward difference 

approximation 

, 

then the simplest finite difference replacement of (2.2.12) ca~ be written as, 
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U oU + (1 20)U + oU. 1 k + O(,2+· h2) 'kl= 'lk - 'k •• 1,+ 1-, 1, 1+, (2.2.13) 

where o=i./h 
2 

is the mesh ratio',. 

It may be noticed that the U. k 1 is obtained solely in terms of 
1, + 

values of U at the (k)th time level; thus equation (2.2.13) is an equation 

for marching the solution ahead in time. Such a forward difference scheme 

is termed expZicit; and it has the computational molecule shown in Figure 

(2.4). Generally, explicit formulae provi de for non-i terative marching 

techniques for obtaining the solution at each point in terms of the known 

preceding and boundary values; and they are usually applicable to parabolic 

and hyperbolic equations which characteristically have open integration 

domains. 

1 i,k+l 

1-20 

i-l,k i,k i+l,k 

FIGURE 2.4 

Neglecting the truncation error term in (2.2.13) and applying the 

molecule in Figure (2.4) to all the mesh points (in the interval O<x<a), 

in turn, we obtain a set of linear equations, which in matrix form is 

given by, 

~+l = A~, k'!O (2.2.14a) 

where A is a tridiagonal matrix of the form, 

1-20 0 

0 1-20 0 0 , "- . 
"- "- "-

A = , "-, 
"- "- (2.2.14b) 

"- , "-
"- "-

, 
0 "- 0 

0 1-20 



T 
and ~=(ul,k,u2,k, ... ,un,k) denote the finite difference solution 

corresponding to the exact solution ~ at the points (1,k),(2,k), ... ,(n,k). 

Well known stability analysis (see, for example the texts by Smith 

(1969) and von Rosenberg (1969)) shows that a very restrictive value for a 

(a~!) must be satisfied in order for the solution of (2.2.14a) to approach 

that of the p.d.e. (2.2.12). The consequence of this restriction is that 

2 the size of the time increment t must be very small (of order h ) for the 

solution to be stable. A finite difference equation which does not have 

this restriction must therefore be considered. 

15 

2 
We next consider the approximation of the derivative 0 ~ in the (k+l)th 

ox 
row instead of the k th row as proposed in 0' Brien et al (1951), so that we 

now have the p.d. e. (2.2.12) represented by the implicit scheme 

In Crank and Nicolson (1947) an average of the approximations 

1·n the (k)th and (k l)th d + rows was propose . The resulting difference 

scheme becomes, 

-aU·_ l k 1+2(1+a)U. k l- aU . 1 k 1 
1 , + 1, + 1+, + 

2 2 
= aU·_ l k+ 2 (1-a)U. k+aU . 1 k+O(t +h ) 

1. , 1, 1+, 

A weighting factor w can be introduced such that 

represented in a more general form as, 

02U 
-2 = 
oX 

w 
-(U -2U "'U )-h2 i-l,k+l i,k+l i+1,k+l 

l-w 
(--Z)(U·_ 1 k- 2U . k+U. 1 k) for O~w~l. h 1., 1, 1+, 

now 

(2.2.15) 

(2.2.16) 

(2.2.17) 

Then, equation (2.2.12) becomes, on neglecting the local truncation error, 

-awU·_ 1 k 1+(1+2aw)U. k 1-awU . 1 k 1 
1. ,+ 1, + 1+ , + 

= a(l-w)U. 1 k+{1-2a(1-w)}U. k+a (l-w)U. 1 k 
1- , . 1., 1+ , . 

(2.2.18) 

The finite difference equations (2.2.15),(2.2.16) and (i.2.18) are such 

that the unknown values in the (k+1) row are specified in terms of the 
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known values in the kth row. Such schemes are called imp~icit.· The 

weighted implicit scheme in (2.2.18), for example, has the computational 

molecule shown in Figure (2.5). 

__ k+l 

i-l,k+l 

(l-w) 
__ k 

i-l,k 

FIGURE 2.5 

For w=O, (2.2.18) gives the explicit scheme (2.2.13), 

w= I, gives the Crank-Nicolson scheme (2.2.16) 

and w=l, gives the implicit scheme (2.2.15). 

The finite difference matrix equation resulting from the Crank-Nicolson 

implicit scheme is of the form, 

k>O , 

where in the general case (2.2.18), A and Bare tridiagonal matrices 

given by, 

A= 

and 

B= 

1+2wo -wo 

-wo 1+2wo -wo o 
, , 

0 

1-20 (l-w) 

o(l-w) 
, , 

, 
, 

0 

, , , , , , 
, , , , , , -wo , , , , 

-wo 1 +J.J 

o (l-w) , 
l-20(1-w)' , o , 

, 

" 

, , , 
" 

, 

" 

, , 
.... , 

, ..... , 
, .... ' 

.... ,o(l-w) , 
o(l-w) l-20(1-w) 

(2.2.l9a) 

(2.2.l9b) 

(2.2.l9c) 

lhe ilYlplLC·Lt .. ~he_ (Z.2..t5) and the C· ... Qnk-Mi<:;otso" ~~hem" (2..:/..,,) QI'<' boofh 

stQ.bte Clnd co""er~e."t (Smitl." 1%5) to ... Q,,'j VQ.Lue of (J" > o. However, since l"'14 

VCl.lu<!S of If" wout..! i,,~r"Qse +J.,e h·unc-... ti on ...... ro .. terms to 4n unacQopto.ble Le." .. I., ~t i·s 

..... c.olY\"' .. nded tl,,,-t -II-E. ve.lue ot rJ" should ba in 11w. rQnse 0"" (J" ~~. 
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The matrix equation (2.2.19) is a step by step (marching) procedure for 

the numerical integration of the heat conduction equation (2.2.12). 

Next, we consider the two space-dimensional parabolic p.d.e. with 

constant coefficients, i. e. , 

a2u a
2u 3U --+ 

3y2 = at ai (2.2.20) 

in the cylindrical region RX[O~t~Tl where R is a closed, connected region 

in the x-y plane with continuous boundary aR. The initial and boundary 

conditions given at t=O and (aRxO~t~T) respectively are 

U(x,y,O) = g(x,y), x,YER, 

and U(x,y,t) = f(x,y,t), x,YEaR, O~t~T 

where g (x,y), f(x,y,t) are prescribed functions of X,y and t. 

Let the region in the (x,)', t) space be covered by a rectilinear 

with sides parallel to the axes, and let us assume a square grid of 

h in the x-y plane, and a time step of 

points (x. ,y.,t
k

) are given, as usual, 
1 J 

length £ in the t-direction. 

by x.=ih, y.=jh, tk=k£; and 
1 J 

grid 

length 

The 

U(x. ,y., t k) is denoted by U .. k. 
1. J 1,), 

Applying the Taylor's series expansion, 

we can derive finite difference representations of (2.2.20) by using either 

the explicit, implicit or Crank-Nicolson schemes in the same wa~ as for 

the one-space dimensional case. 

An explicit scheme for equation (2.2.20) is given (Mitchel1 (1976)) 

by, 
£ 2 2 2 2 

U .. k l-U .. k = -2(0 +0 )U .. k+O(£ +£h ) 
1,), + 1,), h x Y 1,J, 

where o;,o~ are the central difference operators, i.e., 

2 o U .. k = U. 1 . k- 2U . . k+U. 1 . k' x 1,J, 1- ,), 1,), 1+ ,], 

and 2 o U .. k = U .. 1 k- 2U .. k+ U .. 1 k· Y 1,J, 1,J- J 1,), 1,J+, 

This gives an explicit discretised form of (2.2.20) as, 

U .. k 1 = (1-4a)U .. k + a(U. 1 . k+ U. 1 ' k) + 
1,), + 1,J, 1- ,), 1- ,), 

a(U .. 1 k+U .. 1 k) , 1,)-, 1,J+, 

(2.2.21) 

(2.2.22) 
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where a=R./h 
2 

and 0 (R. 
2 

+R.h 2) truncation error term is neglected. 

Similarly, an implicit finite difference scheme for equation (2.2.20) 

is given, on neglecting the truncation error, by 

-aU. 1 . k 1+(1+4a)U .. k l-aU. 1 . k l-aU .. 1 k 1 1-,),+. 1,),+ 1+,J,+ 1,)-,+ 

-aUi,j+l,k+l = Ui,j,k 

and the Crank-Nicolson scheme by, 

-aU. 1 . k l-aU .. k 1+2(2a+I)U .. k l-aU. 1 . k l-aU .. 1 k 1 1- ,], + 1,J, + I,J, + 1+ ,], + I,J+, + 

(2.2.23) 

= aU. 1 . k+aU .. 1 k- 2(2a-l)U .. k+aU . 1 . k+aU .. 1 k (2.2.24) 1- ,], 1,J-, I,J, 1+ ,], I,J+," 

If we assume that there are N(=n2) internal grid points in the 

closed domain R then on applying. the implicit difference equation (2.2.23) 

to all the mesh points, leads to an (NxN) matrix equation, 

where A which may be denoted in the form, 

A ~ A[-a; -a, 1+40, -0;-0] 

is a sparse quindiagonal matrix, 

r: 1+40 _a 

-a 1+40 ,a , , , , ... , 
... "- -a 

T 
1 -a 1+40 

-a 

A[-a;-a,1+4a,-0;-a]= 
-a 

... 
"- ... 

... 

L 

-a 

-Q 
"- , 

, 

1+40 -a 
... -a ... , 

... , , ., ... 
"- "-

"- "-, 

-a 
... ... ... ... 

'-0 

-0 , 
... 

"-
... 

"--a 

1+40 -a 
... , 

-a '" '" ... , -cr ... ... , 
-0 1+40 

-0 ... 
... 

, , 
"-

(2.2.25) 

(2.2.26) 

-

-0 ... , 
, , 

'-0 

1+40 -a 
'" 

, 
... -a , , 

, ... " ... , 
'" , -

(2.2.27) 
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and ~ = (u l 1,u2 l,···,ll l'u12 ,···,u 2"" ,u l ., ... ,u ", ... 
'J n" n, ,J n,J 

T 
... u

l 
' ... ,u ) ,n n,n (2.2.27) 

th denotes the approximate solution at the k plane; and a similar 

notation applies to the approximate solution ~+l at the (k+l)th plane. 

Similarly, the Crank-Nicolson scheme (2.2.24) gives rise to the 

matrix equation, 

(2.2.28) 

where both A and 8 are sparse quindiagonal matrices of the same form 

as (2.2.27) and may be denoted, using the notation of (2.2.26) as, 

·A = A[-0;-o,2(20+l),-0;-0] 

and B = 8[0;0,-2(20-1),0;0]. (2.2.29) 

Another finite difference scheme of frequent application in the 

numerical solution of problems of Mathematical Physics is the Alternating 

Direction Implicit (A.D.I.) method proposed by Peaceman and Rachford (1955). 

It consists of the use of two forms of difference equations alternately in 

successive time steps; in the first step the finite difference equations 

are implicit in the x-direction (say) and explicit in the y-direction; and 

in the second instance, the directions are interchanged. The method may 

be viewed as a factorised form of the Crank-Nicolson scheme. 

Further discussion of the application of the A.D.l. method is made 

in sections (5.6) and (6.4), where fast algorithmic solutions of parabolic 

problems of the form (2.2.20) with periodic boundary conditions on the one 

hand, and Dirichlet's and Neumann's boundary conditions on the other, are 

discussed. 

From the above discussion we have seen that by applying a specific 

finite difference approxi~ation scheme to a given p.d.e. such as (2.2.1) 

or (2.2.20), leads to the solution of the matrix equation, 

Au = b 

-1 
which has a unique solution u=A b provided that A is non-singular (i.e., 
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the determinant of A is non-zero}. Quite often, the coefficient matrix A 

derived from the finite difference approximation of p.d.e. 's is sparse 

(i.e., many of its elements are zero). The exact structure of A depends 

on the type of p.d.e. under consideration, the finite difference scheme 

applied and the ordering of the mesh points. The techniques developed in 

the solution of the resulting matrix equations depend very much on the 

structure of the coefficient matrix and other computational considerations 

such as the need to minimize either the storage requirements or the 

arithmetic operation counts; or to achieve a high accuracy. We shall, in 

subsequent chapters, present fast algorithmic methods for the solution of 

such matrix systems which arise from the finite difference discretisation 

of the various problems of Mathematical Physics in regular regions. 

The matrix A derived as above, is not only square and sparse, but very 

often has some other special properties such as positive definiteness, 

diagonal dominance and irreducibility. 

In the next section, these and other properties of matrices will be 

defined and inter-related. 
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2.3 NOTATIONS, CONCEPTS AND PROPERTIES OF MATRICES AND VECTORS 

Matrices which will be assumed square (unless otherwise stated) are 

denoted by capital letters. The determinant of a matrix A (say) will be 

denoted by det(A) or IAI. A is said to be singular if det(A)=O.· 

The matrix A is non-singular if its inverse (A-I) exists and is defined 

by, 

where I is the identity matrix. 

T The transpose of a matrix A=(a .. ) is denoted by A and is the matrix 
1, J . 

. . h .th .th l' If' d h whose element In t e 1 row, J co umn IS a. .. A IS complex an t e 
J ,I 

element a~ . is the complex conjugate'of a .. then the matrix A* (the 
1,J 1,J 

. ). h . h 1 . h . th d . th conjugate transpose IS t e matrIx w ose e ement In t e 1 rowan J 

column is a~ .. 
J ,I 

A number of special matrices have their elements inter-related in 

certain ways and may be defined as follows: 

Hermitian A* = A 

Symmetric (real A) AT = A 

Unitary A*A = I 

Orthogonal(real A) ATA = I 

Normal A*A = AA* 

In subsequent chapters we shall be dealing with large order 

sparse matrices. The number of zero elements are large and hence 

cumbersome to write. Large collections of such zero elements will be 

represented by a single O. For example a (6 X6) tridiagonal 

matrix A could be denoted as, 

Cl fl 
e 2 c2 f2 0 

e 3 
c . f3 

A '3 = 
f4 e4 

c 4 

0 
es Cs fs 

e6 
c 6 

(2.3.1) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

(2.3.5) 
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Vectors are denoted by underlined letters if they are column vectors. 

Elements of the vector will have the same letter, but with a lower subscript 

which gives the position of that element in the vector. The corresponding 

row vector will have a superscript T. 

Example, 

if u = 

Vector and Matrix Norms 

The norm of an n-dimensional vector (matrix) gives a measure of 'size' 

of the effect of the vector (matrix) as a linear operator. 

The norm of a vector x (say) is denoted by I I~I I and satisfies the 

following relations; 

11~II>o, unless ~=Q, 

Ilk~II=lkl II~II ,where k is a complex scalar 

and 

The general form of a vector norm 11~llp 

The 

n 
Ilxll = ( L Ix.IP)l/p 

- P i=l 1 

most useful of the norms defined 

p=l, 

p=2, 

n 
L Ix-I 

i=l 1 

n 
( L Ix.1

2)! 
i=l 1 

and called the Euclidean length of ~; and 

p=c:o, Ilxll = maxlx·1 
- CD • 1. 

1 

, 

by 

is given by 

p=1,2, ... ,oo. 

(2.3.6) are those 

(2.3.6) 

for which 

(2.3.7) 

(2.3.8) 

(2.3.9) 

Similarly, the norm of a matrix A·is a non-negative number, denoted 

by IIAII and satisfi.es the following relations: 

IIAII>o unless A=O , 



and 

Definition (2.1) 

IlkA11 = Ikl IIAII, where k is a complex scalar, 

IIA+BII:; IIAII+IIBII 

II AB II :; 11 All .11 B 11 • 
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A matrix norm IIAII is said to be compatjble with a vector norm II~II 

if 
(2.3.10) 

From the above definjtion, matrix norms compatible with the vector 

norms can be derived. Usjng (2.3.10) jt is logical to express 

which is equivalent to 

suii' IIAyl1 
11l'11=1 -

where 'sup' denotes the least upper bound for all ~Q. 

Defini tion (2.2) 

A matrix norm constructed by means of (2.3.12) is said to be 

subordinate to the corresponding vector norm. 

Theorem (2.1) 

(2.3.11) 

(2.3.12) 

The subordinate norms associated with the 1,2 and ~ vector norms are 
n 

max 
j 

L la. ·1 
i=l 1,) 

(maximum absolute column sum) 

I IAI 12 = {maximum eigenvalue of ATA}! (spectral norm) 

IIAII~ = max 
i 

n 

L la. ·1 
j=l 1,) 

(maximum absolute row sum) 

The proof of the above theorem is given in Noble (1969). 

Normalised Vectors 

A vector is normalised if it is multiplied by a scalar to keep the size 



of the components down to fi gures usually less or equal to unity without 

changing the direction of the vector. There are many m!"thods of achi eving 

this. For example. 

then we determine a 

given as. 

if x is an n-component vector with x .• i=1.2 •...• n. 
- 1 

n 2 l 
scalar a=( L x.) and the normalised vector is now 

i=l 1 
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Xl x 2 x = ( a a"··' (2.3.13) 

In this case. the modulus of every element of the normalised vector is 

less than 1. and the sum of squares of the elements add up to 1. Also. 
T 
x x =1. 

Irreducibility Property of Matrices 

Definition (2.3) 

An (nxn) matrix A is said to be irreducible (indecomposable) if for 

n~2 there does not exist an (nxn) permutation matrix P such that PAPT has 

the form. 

= (2.3.14) 

where B. D are square sub-matrices. 

The concept of irreducibility is best illustrated by the use of some 

elementary notions of graph theory. 

Definition (2.4) 

Let A=(a .. ) be an (nxn) matrix and let us consider any n distinct 
1.J 

points NI .N2 ••.•• Nn • called nodes. in the plane. If the element a. . of 
1. J 

the matrix A is non-zero. we connect the node N. to N. as shown in Figure 
1 J 

(2.7a). If a . . FD. we get a loop from N
1
. to itself as shown in Figure (2.7b). 

1.1 

By this process. with every (nxn) matrix A we can associate a finite 

direated graph G(A) of A. 
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Q 
(a) (b) ( cl 

FIGURE 2.7 

Example 

Consider a (4X4) tridiagonal matrix, 

2 1 

A = 121 
(2.3.15) 

1 2 1 

1 2 

The associated graph G(A) of the matrix A in (2.3.15) is given in 

Figure (2.7c). 

Defini tion (2.5) 

A directed graph is strongly connected, if, for every ordered pair 

of nodes N. and N. there exists a directed path 
1 J 

N.Nk ' 
1 1 

connecting N. and N .. 
1 J 

The directed graph G(A) of the matrix in (2.3.15) is strongly connected. 

Theorem (2.2) 

An (nxn) matrix A is irreducible if. and only if its directed graph 

G(A) is strongly connected. 



Corollary 

If A is an (nxn) tridiagonal matrix with a .. ;0 for li-jl~l, then A 
l,J 

is irreducible. 

The proof of Theorem (2.2) and its' Corollary can be established by 

induction and by making use of definition (2.5). The Theorem indicates the 

equivalence of the matrix property of irreducibility with the concept of 

the strongly connected directed graph of a matrix. 

Diagonal Dominance Property of Matrices 

Definition (2.6) 

A matrix A=(a .. ) of order n is said to be diagonally dominant if 
1,J n 

26 

la. ·1 ~ L la. ·1 , l~i~n . (2.3.l6a) 
1,1 . I l,J 

J= 
j;i 

A is said to be strictly diagonally dominant if 

n 
la.·I> Lla··I,l~i~n 

1,1 j=l l,J 
(2.3.l6b) 

j;i 

and A is irreducibly diagonally dominant if A is irreducible and 

diagonally dominant, with strict inequality as in (2.3.l6b) for at least 

one i. 

Positive and Non-Negative Definite Matrices 

Definition (2.7) 

If A is a real matrix and x is a complex vector then A is said to be 

positive definite if 

(~,A~>O for all ~O 

where, for n-component complex vectors x and ~, we define 
n 

(x,y) = L x.Y. ; 
- - i=l 1 1 

where y. is the complex conjugate of y .. 
1 1 
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Defini tion (2.8) 

If A is real and ~ is complex, then A is non-negative (positive-semi) 

definite if (~,A~<:O for all yO with equality for at least one YO(Mitch ... ll{"&7)'pi). 

Theorem (2.3) 

A real matrix A is positive (non-negative) definite if and only if it 

is symmetric and all its eigenvalues are positive (non-negative with at 

least one eigenvalue equal to zero) (su Nobr...(/9b9), P393): 

Theorem (2.3) is sometimes used as a definition of positive (non-

negative) definiteness. Its proof is given in Noble (1969). 

The Jordan Canonical Form \ 
\ 

A general matrix cannot always be reduced to a diagonal form by a 

similarity transformation. The Jordan canonical form of a matrix, even 

though it is of li ttle computational importance, is the most compact form 

to which a matrix may be reduced by a similarity transformation. It helps 
\ 

to illustrate the structure of the systems ofeigenvectors. 

Defini tion (2.9) 

A simple Jordan submatrix of a matrix A is a matrix of the form 

A. I 
1 

0 A. I 
1 , 

... 
... ... 

J (1,.)= ... ... 
... r 1 ... ... 

(2.3.17) 
... ... 

0 ... ... ... 1 
A. 

1 

where J (A.) is an (rxr) matrix with an eigenvalue A. of multiplicity 
r 1 1 

T r, but only one eigenvector x where x = (1,0, ... ,0). 

Theorem (2.4) 

If A is an (nxn) matrix having s distinct eigenva1u~s A1 ,A2 , ... ,As 

of multiplicity ID I ,ID2, .•• ,ms such that 



s 
L m. = n • 

i=l 1 

then there exists a non-singular matrix P such that J=P-lAP has simple 

Jordan sub-matrices J (A.) isolated along the diagonal with all other 
r 1 . 
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elements equal to zero. If there are k submatrices of order r .• j=1.2 •...• k. 
) 

associated with any A. then 
1 

k 
L r. = 

j=l ) 
m. 

1 

The matrix J=P-lAP which is a block diagonal matrix composed of Jordan 

simple matrices is the Jordan canonicaZ form of A and it is unique apart 

from the ordering of the submatrices along the diagonal. The total number 

of independent eigenvectors is equal to the number of sub-matrices in the 

Jordan canonical form. 

If an (nxn) matrix A has n distinct eigenvalues its Jordan canonical 

form is diagonal and its associated eigenvectors are unique and linearly 

independent. If A does not have n distinct eigenvalues. it mayor may not 

possess n independent eigenvectors. If there are fewer than n linearly 

independent eigenvectors then the matrix is said to be defeetive. 

A matrix for which there is more than one Jordan submatrix (which 

implies more than one eigenvector) associated with A. for some value of i 
1 

is said to be derogatory. 

Ei'genvalues and Eigenvectors of a Matrix 

It is often convenient. from both theoretical and practical points of 

view. to locate the eigenvalues of a given matrix in bounded regions of the 

complex plane, Information of this type is useful in the subsequent 

application of a number of iterative methods for obtaining more precise 

eigenvalues. A fundamental result is the following theorem often called 

Gershgorin circZe theorem, It is stated as Theorem (2.5) below; while the 

proof can be found in Varga (1962). or Noble (1969). 



Theorem (2.5) 

If A=(a .. ) is an arbitrary (nxn) matrix, then all the eigenvalues of 
I,J 

A lie within the union of the discs, 

n 
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Iz-a. ·Il: L la. ·1 ,l:oi:on. 
1,1 j=l I,J 

(2.3.18) 

j;li 

If A is an arbitrary (nxn) matrix with eigenvalues A., l:oi:on, and 
1 

v:;: max 
l~i~n 

v' :;: max 
l~j~n 

then p(A):omin(v,v') 

n 

L la. ·1 
j=l I,J 

n 

L la. ·1 
i=l I,J 

where peA) = max lA. I . 
I

. 1 
~1~n 

" T 
This Corollary follows from Theorem (2.5) and the fact that A and A " 

have the same eigenvalues. 

Definition (2.10) 

A set of vectors ~1'~2""'~ are said to form an orthogonal set 

if 
(x.,x.)=0 i;!j. 
-1 -J 

Theorem (2.6) 

(2.3.19) 

"1+ ~matrix has n distinct eigenvalues, then the corresponding 

normalised eigenvectors x. (i=l, 2, ... , n) form an ol'thonormal (orthogonal and 
-1 

normalised) set, i.e., 

and 

T 0 i,£j } x .. x. = 
-1 -J 

T 1 x .. x. = 
-1 -1 

, 
(2.3.20) 

Proof 

If we introduce a matrix X=(~1'~2""'!n) whose columns are the 

orthonormal eigenvectors x., then using (2.3.20) it is easily shown that 
-1 " 



T 
X X = I 

and thus by (2.3.4) X is an orthogonal matrix. 

Theorem (2.7) 

Suppose a matrix A has n linearly independent eigenvectors, i.e., 

Ax. = A.X. 
-1 1-], 

and suppose I<e introduce a matrix, 

X = (~l '~2"" ,~) 

and a diagonal matrix, 

A = 

then 

and 

o 

, , 

X-lAX = A 

A = XAX- l 

, , , , 
'A 

n 

T and if X is orthogonal (i.e. X X=I) then, 

XTAX = A 

and A = XAXT 

Proof 

Since AXi=Axi , i=1,2,.~.,n then using the standard rules for 

manipulating partitioned matrices we have, 

AX = A[xl ,x2,···,x 1 - - --n 

= [A~l ,A~2"" ,~l 

= [Al~1,A2~2,···,An~1 

= XA. 
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(2.3.21) 

(2.3.22) 

Since the x. are independent, X can be inverted and thus the results 
-1 

in (2.3.21) and (2.3.22) follow immediately. 

An important generalisation of Theorem (2.7) is the following: 
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Theorem (2.8) 

A general square matrix A can be reduced to diagonal form by a similarity 

transformation if and only if A possesses n linearly independent eigenvectors. 

An immediate consequence of Theorem (2.8) is that if A is symmetric it 

always has n linearly independent eigenvectors and hence can always be 

diagonii.Lisod? even if it has multiple eigenvalues. 

Similarity Transformation 

-1 
If a matrix A is transformed to the form R AR, where R is a non-singular 

matrix, then this is known as a similarity transformation. and the matrix A and 

R-IAR are said to be similar. 

The main usefulness of similarity transformation is that the eigenvalues 

of a matrix are invariant under such a transformation. This can be shown very 

simply. 

If Ax = AX 

then P-IAX . \ -1 = AP x 

i.e., (p-1AP)p-l~ =A p-l~ 

-1 which shows that P AP has the same eigenvalues A as A but the former has an 

eigenvector which is pre-multiplied by p- l 

Many transformation teChniques form the basis of a number of methods 

for determining eigenvalues. We shall discuss here only the LR transformation 

due to Rutishauser (1958), a specialised form of which is employed in the 

determination of the eigenvalues of periodic tridiagonal matrices as proposed 

in Chapter 7. 

The LR Transformation 

This is a similarity transformation which consists of the factorisation 

of the matrix A (say) into the form, 

A = LR , (2.3.23) 

where usually, L is a unit lower triangular matrix and R is an upper 



triangular matrix. The similarity transformation of A is then defined by 

L-IAL ; L-l(LR)L ; RL . 

Thus if the original matrix is Al then the LR-transformation method results 

in a series of similar matrices {A } such that, 
s 

and 

A ; L R 
s-l s-l s-l 

A s 
; R L 

s-l s-l 

, 
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It is shown in Rutishauscr (1958) that'under certain convergence conditions, 

and 

L ~ I 
s 

R2 ~ upper triangular matrix 

with the eigenvalues of A situated on the main matrix diagonal. This method 

has a number of drawbacks, such as slow convergence. Special techniques 

inCluding a shift of origin and pivoting strategies have been introduced 

(Wilkinson (1965)) to obtain a modified and more efficient algorithm. In 

Chapter 7 a sparse, periodic matrix factorisation strategy will be incorporated 

into the Rutishauser's tyPe of transformation to produce new methods for 

calculating'the eigenvalues of periodic tridiagonal matrices. 



33 

2.4 BASIC TIIEORY OF CONTINUED FRACTIONS 

The theory of continued fraction is treated in detail in the text of 

H.S. Wall (1948). The numerical aspects of the topic. including methods for 

estimating errors when calculating a continued fraction is the subject of 

Blanch (1964). Here we outline the basic ideas of the subject as background 

material which will be useful in Chapters 3 and 7. 

Definition (2.11) 

Let TO(w) = bO+w 

T (w) 
P . 
=~ 

b +00 J 

P 
p= 1 .2 •... 

such that TO.Tl.TZ •... satisfy the linear transformation. 

TOTl(w) = TO(Tl(w)) J 

TOT
I
T

2
(w) = To{T

I
T

2
(w)} = T

O
[Tl {T

2
(w)}] etc. 

Further let us define the quantity r (w) as. -
00 

r (w) = 
00 

= 

where 
00 a 
K ....E. = 

p=l bp 

IT T. (w) 
i=O ]. 

b + K o 
p=l 

a 
p 

b + 
p 

a 
p+l 

b + 
p+l 

and for compactness. may be rewritten as. 
00 

K a 
....E.= 

p=l b 
P 

a 
p 

b + ••• 
P 

Then. r (w) is called an infinite continued fraction~ 00 

Next we define. 

r (w) = 
m 

m 
lim· TTT (00) 

m-- p=O p 

(2.4.1) 

(2.4.2) 

(2.4.4a) 

(2.4.4b) 

(2.4.5a) 



and r (0) = 
m 

m 
lim TIT (0) 
m-- p=O p • 

If r (0) (=r (~), both being limits of an infinite sequence of images m m 
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(2.S.b) 

of a fixed point w at infinity under the transformations T.) exists and 
1 

finite, then, it is defined as the value of the infinite continued fraction. 

The elements a ,b are the elements of the continued fraction and can, 
p p 

in general, be complex numbers. The quotient a Ib is called the pth partial 
p p 

quotient, where a ,b 
p P are the p th partial nwnel'atol' and pal'tial denominatol' 

respectively. 

The quantity r (0) 
n 

n a 
= b

O 
+ K !- or 
p=l p 

th 
is the n appl'oximant or convel'gent. 

It is shown by induction (Wall, (1948)) that 
n A lw+A 

r (w) = TIT. (w) = B
n

- Bn for n=0,1,2, •.. n . 1 w+ 1=0 n-l n 

(2.4.6) 

(2.4.7) 

where A 1,A ,B 1,B are independent of wand are given by the following n- n n- n 

recurrence formulae, 

and 

A p+l 

B p+l 

= b A +a A 
p+l P p+l p-l } 

b B B P=0,1,2, ..• = +a p+l p p+l p-l 

From (2.4.7) it follows immediately that 
A 

n 
rn(O) = B 

n 

where, 
th 

and 

A is called the n numerator of the continued fraction, 
n 

B is the nth denominator of the continued fraction, 
n 

th 
A IB represents the n appro.ximant. n n 

(2.4.8) 
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Theorem (2.9) 

An infinite continued fraction (2.4.3) is said to be conveY'gent and I.its 

value exists if the following conditions are satisfied: . 

(a) At most a finite number of its denominators, ~~iSh. 

(b) Given a positive small number c, there exists a number N, such 

that for n>,N 

I:n -
n 

c , for all positive k. 

Otherwise it is said to be diveY'gent. 

If the continued fraction is convergent, then its value r is given by 

r = lim An 
n-S n 

For a divergent continued fraction, the value is not defined. 

Periodic Continued Fraction 

Defini tion (2.12) 

Let 
T (n) (Ol) 

a
l a 2 a3 a n 

= ----
bl + b 2+ b3+· .. b +Ol 

n 

be a continued fraction of level n. 

Further let, 

'I'(T(n) (Ol)) 
a l a2 a3 

a a l 
a2 a 3 a n n - ---- ----

b
l

+ b2+ b3+··· b + b
l

+ b2+ b3+·, ." bn + ... n 

1st level 2nd level 

(2.4.9) 

(2.4.10) 

(2.4.11) 

be an infinite continued fraction whose partial numerators and denominators 

are periodically repeated after every n levels of division. Then such an 

expression is said to be an infinite peY'iodic continued fT'action. It is 

also said to be generated by the linear fractional transformation, T(n)(Ol), 

given in (2.4.10). 

As in (2.4.7) T(n)(Ol) can be expressed in the form, 



A w+ An 
T (n) (w) = ",n-,---'C-l -,--;;",-

B lW+ B n- n 
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th where A ,B denote the n numerator and denominator of the continued fraction 
n n 

respectively and are given by the expression in (2.4.8) with AO=O. 

Definition (2.13) 

Let the points ° satisfy the equation 

° = 

A 10 + A n- n 

Bn_lo + Bn 

The values of 0, which in general, are the two roots °1 ,° 2 of the quadratic 

equation, 
2 

B ° +(B -A )o-A = 0 , n-l n n-l ."11 
(2.4.12) 

are called the fixed points of the transformation (2.4.10) which generates 

the infinite continued fraction, (2.4.11). 

Finally, we state an important theorem whose proof is in Wall (1948), 

p.37, and which forms the basis of the computational methods adopted later 

in Chapters 3 and 7 for the numerical evaluation of periodic continued 

fractions. 

Theorem (2.10) 

Let 01'02 be the fixed points of the transformation (2.4.10) where 

a. ,b., i=1,2, ... ,n, are any real or complex numbers, with a.#O. Let Ak/Bk 
1 1 1 

denote the kth approximant of the periodic continued fraction (2.4.11). 

Then (2.4.11) converges if and only if 01 and 02 are finite numbers 

satisfying one of the following two conditions: 

(a) 01=02 

A 
(b) I n-l - ° I > B

n
_
l 

2 for p=O,l, ••• ,n-l. 

If the continued fraction converges, its value is equal to 01. 
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Periodic Continued Fraction Associated with Cyclic Factorisation of a Periodic 

Tridiagonal Matrix 

For a periodic tridiagonal matrix A of the form, 

b l cl a l 
a2 b2 c2 0 , , , , , , , , , 

A = , , , (2.4.13) , , , , , , , 
0 

, , , c , , n-l , , 
c 'a b n n n 

let us define and associate with the matrix A the infinite periodic 

continued fraction (P.C.F.), 

r = 
A (2.4.14) 

1st cycle 2nd cycle 

where, 

(2.4.15) Q i = C(n_i+l)a(n_i+2)} 
e b i=2,3, ... ,n 

i = (n-i+l) 

and (j)=j(modul0 n). 

The infinite periodic continued fraction (2.4.14) can arise, for 

example, in a cyclic factorisation of the periodic tridiagonal matrix 

(2.4.13). Our immediate interest is to establish the conditions of the 

matrix A under which the associated P.C.F. (2.4.14) is always guaranteed 

to converge. Before then, we state the following useful theorems: 

Theorem (2. 11) 

A continued fraction is unchanged in value if some partial numerator 

and partial denominator, along with the immediately succeeding partial 

numerator, are multiplied by the same ~on-zero constant. 

Such a transformation is termed in Wall (1948) an equiva~nce 

transformation. 
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Proof 

The proof of this theorem is given in Wall (1948). 

By using successive equivalence transformations, the -P.C.F. (2.4.14) can 

be transformed to a form which has unitary partial denominators and hence can 

be written as, 
Yl Y2 Y3 Yn Y1 Y2 Y3 r' = ---- -----
1- 1- 1- ... 1- 1- 1- 1- ... (2.4.16) 

where 

Y1 = a/el 
} Yi 

= a./e. le. e. ,e. /0, i=2,3, ... ,n. 
1 1- 1 , 

1 1-

(2.4.17) 

Theorem (2. 12) 

A sufficient condition for the convergence of the continued fraction, 

is that 

Yl Y2 Y3 
T = --

I- 1- 1- ... 

1 
O<y i::4 

Yn 
1- ... 

and the value of the continued fraction T satisfies the condition, 

Proof 

(2.4.18) 

The proof of this theorem is given, by"induction, in Blanch (1964). 

Theorem (2.13) 

For any diagonally dominant periodic tridiagona1 matrix of the form 

1 
(2.4.13) such that Ic./b. 1,la./b. I::A' the associated continued fraction 

1111 .• 

of the form (2.4.14) always converges. 

Proof 

On using the continued fraction (2.4.16), obtained from an equivalence 

transformation of the continued fraction (2.4.14), and by applying the 

convergence condition (2.4.18) of Theorem (2.12), we immediately obtain the 

sufficient conditions under which the P.C.F. (2.4.14) is always convergent, 

i. e. , 



and 

o < 

Ui 1 
o < ,,~-;;- I; -4' 

6. 16. 
1- 1 

i·', ... ," ) 

A substitution of u. and 6. from (2.4.15) into (2.4.19) gives, 
1 1 

) 
and Ctn-i+I)~-i+2) < 1 

O<h b '4,i=2,3, ... ,n. 
(n-i + I) Q1-i) 

. cna1 cna l 1 
If bl>O, then ~--<-

b b1 b 4 
n n 

and hence (2.4.20) can be expressed in the unified form, 

'tn-i+l) 1n-i+2) 1 
o < b h 1;4 

(n-i + 1) en-i) 
, i=1,2, ... ,n. 

By definition (2.6) the elements a.,b. ,c. of an (nxn) diagonally 
111 

dominant periodic tridiagonal matrix (2.4.13) satisfy the condition, 

c. a. 
Ib~1 + Ib~1 I; 1, 

1 1 

i=1,2, ... ,n. 

Since A is diagonally dominant and in addition, 
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(2.4.19) 

(2.4.20) 

(2.4.21) 

(2... "!-·a) 

then the sufficient condition (2.4.21) for the convergence of the p.e.F. 

(2.4.14) is immediately satisfied and the proof of the theorem is completed. 



CHAPTER 3 

FAST ALGORITHMIC METHODS FOR THE SOLUTION OF 

PERIODIC TRIDIAGONALMATRIX EQUATIONS 
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3.1 INTRODUCTION 

We shall consider in this chapter, several algorithms for the solution 

of the system of equations, 

Au = d (3.1.1) 

where, in general, A is an (nxn) diagonally domjnant cyclic tridiagonal 

matrix of the form, 

A = 

bl 
a 2 

c 
n 

" 

cl 
b2 

c
2 

" 
" " " " " " " 

o 

a
l 

" 0 
" " 

" " " " " " " 
, 

" " " " " c , ' n-l 
" " 'a 'b 

n n 

The general cyclic tridiagonal matrix equation in which the 

coefficient matrix A is of the form (3.1.2) arises, for example, 

in the solution of elliptic p.d.e.'s with periodic conditions when 

(3.1. 2) 

a non-uniform mesh size is used in the finite difference approximation 

process. They also arise in the finite difference representation of 

self-adjoint parabolic equations (see section 5.6) and in spline 

applications. 

In section (3.2) we present various fast direct algorithmic 

methods for the solution of (3.1.2) by employing the different 

strategies, including Gaussian elimination, generalised sparse 

cyclic factorisation, generalised cyclic reduction and rank-one 

perturbation methods.- A comparison of the speed and. accuracy of the 

resulting algorithms is given numerically in section (3.3). 

In many applications, when a uniform mesh size is used in the 

finite difference approximation of a given p.d.e., we _~btain the more 

usual case in which the coefficient matrix is symmetric and circulant, 

and of the form, 
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b a a 

a b a , , , 
0 , , , , , , , , , , , 

A 
, , , (3.1.3) = , , , , , , , , 

0 
, , , , 

a , , , 
a 'a b 

Quite often such constant term matrix systems have been solved by 

Gaussian elimination or one of its variants with the possibility of 

giving them more generality than is required to obtain fast solutions. 

Thus, in section (3.4), special purpose algorithms are presented which 

take advantage of the constant element structure of the coefficient 

matrix. 

We shall, in general, assume that the system of equations have 

to be solved a number of times with different right-hand sides, but 

with the coefficient matrix unchanged; so that any coefficients 

required by the solution algorithm can be pre-computed and stored. 

We refer to such coefficients, which need to be computed only once, 

as pre-computed coefficients. The number of such coefficients in the 

algorithms presented is indicated, but >is not, in general, included 

in our estimate of the arithmetic operation count required for the 

implementation of each algorithm. 

3.2 ALGORITHMS FOR THE SOLUTION OF THE GENERAL PERIODIC TRIDIAGONAL 

SYSTEMS OF EQUATIONS 

Algorithm (3.1) 

Consider system (3.1.1) which, in matrix form, is written as, 

b
l Cl a

l 
u

l 
d

l 
a 2 b2 c2 0 u2 d2 , I , , , I • , , , 

= , , , , , , , , , , , C I , 
n-l 0 

, , 
I , , 
d c a 'b u 

n n n n n 

(3.2.1) 



4Z 

Let us assume that un is known; then the other elements. ul.uZ •... u
n

_
l 

of the vector u are obtained in terms of u by considering the first (n-l) 
n 

equations of (3.Z.1). 

The first equation of (3.Z.l) can be rewritten in the form. 

(3.2.2) 

where. on denoting PI by I/bl • then we have. 

ql = -cIP l 

sI = -alP l 

and hI = ,dlP l 

By applying the Gaussian elimination method without a pivoting 

strategy the second equation of (3.Z.l). with u
I 

eliminated. is changed 

to the form 

uz-qzu3-sZun = hZ 

where Pz = 11 (bZ+aZql) 

qz = -PZc Z 

Sz = -PZs l a 2 

and hZ = P2(d2-aZhl ) 

Similarly. by using the new second equation (3.Z.3) as the pivotal 

equation. the Uz term is eliminated from the 3rd equation of the 

original system. 

In general; by successive eliminations of 

and finally. 

u l from the second equation, 

Uz from the third equation, 

........................... 
f h th . u 1 rom ten equat10n, n-

we obtain the following reduced systems, 

k=l.Z •.•.• n-l, 

where. 

(3.Z.3) 

(3.Z.4) 



<io = 0, So = 1, hO = 0, 

1 
Pk = 

bk+akqk_l 

qk = -ckPk , k=l, .. "n-l. 

sk = -sk_l akPk 

and hk = (dk-~hk_l)Pk 

Effectively, the matrix equation (3.2.1) has been reduced by 

the above process to the form, 

1 

c 
n 

-ql 
1 ... -q2 

... "-, ... 

-sI 

-s2 

"-
"-... .... 
~ ... 
~... I 

'1 -qn-2 -sn_2 

_1 _ :'(~~l~sU-l). 
a b 

n n 

ul 
Uz 

I 

I 
U 
p:l 

u 
n 

hI 

h2 

= 

from which it is now possible to solve for ~,(k=l, ... ,n-l) in 

terms of u 
n 

Each uk can, in general, be written as 

k= n.-J J ••• J 1...,1, 

hence on substituting (3.2.6) into (3.2.4) we obtain 

tk = qktk+l+sk , 

vk = qkvk+l+~ k = "'.:., ~. J ••• J.' 'Z..i 1 . 

and t = 1, v = 0 n n 

Further, by using (3.2.6) to substitute for ul and 

last equation of (3.2.1) we obtain u n as, 

u = (d -a v l-c vl)/(c tl+a t l+b) n n n n- n n n n- n 

u n-l 

With the value of u now determined, the remaining elements n 

in 

of 

the 

the 
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(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 

solution vector, u l'u 2, ... ,ul can now be obtained by using (3.2.4) 
n- n-

in what amounts to be a backward substitution process.· 

The implementation of algorithm (3.1) is given as program 1 of 

Appendix I, and may be summarised in an algorithmic form as follows: 



44 

(1) First, we compute the quantities, 

<to = 0, So = 1, hO = 0 , 

Pk = 1/ (bk +~qk-I) , 

qk = -ckPk k=l, •.• ,n-1. 

sk = -sk_IakPk 

and hk = (dk -akhk_I)Pk 

( 2) Next, we compute the quantities, 

t = 1, v = 0 
n n ' 

tk = qktk+l+sk k=l, •.• ,n-I. 

and vk = qkvk+I+hk 

(3) The solution vector is then obtained from the formulae, 

u = (d -a v I-c vI)/(c tI+a t l+b) n n n n- n n n n- n 

and finally, ~ = hk+qk~+l+skun k=n-l,n-2, ••. ,1. 

For the given periodic tridiagonaI matrix of order n, the amount 

of arithmetic calculation required by this algorithm is Sn multiplications, 

4n additions and 4n pre-computed coefficients (i.e., Pk,qk,sk and t k , 

k=O,l, ••• ,n-l). The underlying strategy employed in this algorithm 

has been used by Ahlberg et aI (1967) in connection with spline 

In matrix notation, algorithm (3.1) is equivalent to the solution 

of the partitioned matrix equation, 

(3.2.9) 

where E is the tridiagonal matrix of order (n-l) obtained by deleting 

the last row and column of A, and given by, 

bl cl 
a2 b2 c 2 , 0 

, , 
, , 

E = 
, , 

0 
, -c n-2 , , 

.... a ... b 
n-l n-l 
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a l dl 
0 

A , 
f = d = , , , , 

cO 
n-l 

d' 
n-l 

T 
.&. = and u 

Manipulation of (3.2.9) gives, 

(3.2.10) 

T -1 " where v = (v l ,v 2,···,vn_l ) = E d - (3.2.11a) 

and " -1 u = v-E iu :, . 
n (3.2.11b) 

It can be seen that equation (3.2.10) and.(3.2.ll) are mathematically 

equivalent to (3.2.8) and (3.2.4) respectively. 

Al gorithm (3.2) 

The general sparse cyclic factorisation method 

Here we propose a general factorisation of the cyclic tridiagonal 

matrix A given by, 

bl cl a l 
a2 b2 c2 0 , , , , , , , , , , , , , 

, , , 
A = , ~ , (3.2.l2a) , , , , , , , , 

0 
, , , , , c , , n-l , ,. 

c a b 
n n n 

into the product of a 'lower cyclic triangular' matrix,P and an 

'upper cyclic triangular' matrix, Q such that 

A = PQ (3.2.12b) 
where 

1 1, 

12 1 0 , 
" 13 , , , , 

P 
, 

" (3.2.13) = , 
0 " 

, , , - 1 1 n 
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and vI cl 
v2 c 2 

0 " " 
" " 
" " 

Q " " (3.2.14) = 
" " 

" " 0 " " " " c 
" n-l 

" c v-n ,,' 

Therefore, instead of solving (3.1.1) we can now consider the 

alternative form, 

(3.2.15) 

The special merit of the above sparse factorisation approach is 

that both the form and sparsity of the original periodic matrix are 

preserved. 

By forming the product PQ and equating the elements to the 

corresponding elements of A, a set of equations which yield the 

relations for the elements of P and Q is derived to give, 

R.. = a./v. 1 } 1 1 1-
i=1,2, ... ,n 

v. = b.-i.c. 1 , 
1 1 1 1-

(3.2.16) 

and vo-v Co=C .... n , . 

In order to evaluate ii,vi {i=l,2, .•. ,n), and hence complete 

the factorisation, one element (say ill must first be determined in 

some way before the other elements can be determined using the formula 

(3.2.16). We assume for the moment that i
l 

has been determined in an 

efficient manner. Then the factorisation is completed by evaluating 

the other i. and v. terms from (3.2.16). 
1 1 

Derivation of algorithm solution 

The solution of the factorised matrix equation (3.2.15) is obtained 

by considering the two alternatiwsystems of equations, 

(3.2.l7a) 

and (3.2.l7b) 
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where I. is introduced as an auxi 1 iary vector. 

In matrix form, (3.2.17a) can be written as, 

1 11 Yl d
l 

12 1 0 Y2 d2 ... 
" ... ... " 

" " = ... ... 
" 

(3.2.18) 

" " ... " 0 " " I " " ... I d " 1 - 1 Yn n n 

Then to solve for I., we 

multiply the 1
st 

equation of (3.2.18) by -1 2 and add the 

result to the second equation to obtain a new second equation. 

Next, we 

nd 
multiply the new 2 equation by -13 and add the result 

h3
rd . b' 3rd . to t e equat10n to 0 ta1n a new equat10n 

........................................................................................ 

This process is continued as far as the nth equation. 

Hence, the system (3.2.18) is reduced to the matrix form, 

1 4>1 Yl d' 
1 

1 4>2 Y2 d' 
" 0 2 ... I 

" "- I 
(3.2.19) "- I = 

"- ... I 

" 
4> n~ 1 0 " "-

" , 
"- 1 +4> Yn d' n n 

where 
(-1) i-I 

i 
4>. = TI.e.. 1 j=l J 

I 
i=1,2, ... ,n (3.2.20) 

d. = d.-1.d! 1 1 1 1 1-

d' 
0 - 0 

From (3.2.19) , y. (i=1,2, •.. ,n) is easily derived as, 
1 

Yn = d'/(l+4> ) L n n 

y. = d!-4>·Y i=l,2, .•• ,n-l. 
1 1 1 n 

(3.2.21) 

Next, we represent (3.2.l7b) in the normalised matrix form as, 



1 6
1 

u l gl 
1 6 u2 g , 2, 

0 2 ... ... ... ... , , , 
, ... = ... ... 

0 
... ... ... 6

n
_

l ... , 
6 '1 u gn n n 

where 
6. = c./v. } 1 1 1 

i=l, .. "n. 

gi = y/vi 

Then to solve for !:!., we 

multiply the nth equation of (3.2.22) by -6 1 and add this n-

to the (n-lfh equation to obtain a new (n_1jh equation. 

Then we 

multiply the new (n_l)th equation by 

the (n-2) th equation to obtain a new 

-6 2 and add this to 
n-

(n-2fh equation, 

............................................................................ 

This process is continued until finally, we 

~ t multiply the new 2 equation by -6
1 

and add this to the IS 

. b· 1st . equatIon to 0 ta1n a new equatIon. 

The result of the above process is the matrix equation of the 

form, 

l+y 1 u1 g' 
1 

y' 1 u2 g' 2 , 0 2 , ... I 
I ... ... , ... ... = ... 

0 
, ... , 

I 
... , , 

Yn '1 u g' 
n 

(-1) i-I 
n 

Y. = n 6. 
1 j=i J 

i=l, ••• ,n (odd) where 

(_l)i 
n 

= TT 6. 
j=i J 

i=l, ••• ,n (even), 

g' = gn , 
n 

and g~ = gi - 6i g'. , 
1 1+1 

i=n-l,n-2, .•• ,1. 
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(3.2.22) 

(3.2.23) 

(3.2.24) 

(3.2.25) 
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Finally, the solution vector u is obtained from (3.2.24) to give, 

} (3.2.26) 
i=2,3, ... ,n. 

The algorithmic procedure outlined above can be viewed algebraically 

as a variant of Gaussian elimination without pivoting. Both i. (3.2.18) 
1 

and e. (3.2.33) were used as multipliers in the elimination process and 
}, 

therefore to guarantee a stable solution without pivoting for size, each 

one of the multipliers 9.., e. ·must have their absolute val ues less than 
1 1 

unity; a condition readily satisfied from (3.2.16) and (3.2.23) if the 

coefficient matrix A is diagonally dominant. 

The proposed algorithm requires Sn multiplications, 4n additions and 

4n pre-computed coefficients provided that at the factorisation stage one 

element (e.g. i
l
) of (3.2.16) is determined in the most efficient manner. 

One such method involves expressing and evaluating i
l 

(say) as an infinite 

periodic continued fraction, which we now discuss below. 

Determination of i l by the use of periodic continued fraction (p,e.F.) concepts 

·The element i
l 

in equation (3.2.16), can be expressed as a function of 

the elements of the matrix A by a cyclic application of the formula (3.2.16) 

to give an infinite 
alcn 

c i = nib-=
n 

periodic 
a c 

n n-l 
b 1-" . n-

1st cycle 

continued fraction of the form, 
a2c l alcn ancn_l a 2c l alcn 
bl - 0;;::- bn_l -,,· b l -··, bn- .. • 

2nd cycle 

which for simplicity may be written as, 

a l a 2 a 
c

n i l 
n 

= - -6 - 62-" . 6 -1 n 

a l a2 a a l n 
6 - 62" . 6 - 61-, .. 
1 n 

1st cycle 2nd crcle 

where ai = a(n_i+2)c(n_i+l), 

6i = b(n_i+l) , 

and (k) - k (modulo n) . 

(3.2.27) 

(3.2.28) 



so 

The infinite P.C.F. in (3.2.28) is generated by the linear fractional 

transformation, (see Definition 2.12, Chapter 2), given by, 

(3.2.29) 

By theorem 2.10, Chapter 2, the value 0, of the infinite periodic 

continued fraction (3.2.28) is given by 

o = c t = 
n 1 

where wl ,w2 are the roots of the quadratic equation, 

Ek_lw+Ek w = 
Fk_lw+Fk 

The terms E ,F , r=O,l, ••. , are given by the recurrence relations, 
r r 

(see equation (2.4.8) of Chapter 2): 

EO = 0 , FO = 1, 

El = a l , Fl = al 
, 

E = a E -a E 

) 
r r r-l , r r-2 

and F = a F -a F r=2,3, .. . k~n. 
r r r-l r r-2 

The two roots "1' w2 
are the fixed points of the linear trans-

formation (3.2.29) which must either be equal or must have unequal 

4bsoLute vclLue (See Theorem (2.10)). 
E 

The quotient Fr is defined as the rth approximant of the P.C.F. 
r 

in (2.2.28) and the sequence of approximants {E IF } converges after 
,r r 

the kth approximant if 

< c 

for a sufficiently small error tolerance c. 

In practical problems when the coefficient matrix A satisfies a 

(3.2.30) 

(3.2.31) 

(J3-.-2-.-3J-) 

(3.2.32) 

strong diagonal dominance condition the approximants 01 the associated 

P.C.F. form a rapidly convergent sequence; and as a general rule, each 



additional approximant (which implies additional level in the infinite 

division) yields approximately one more correct decimal place than the 

previous approximant. Thus, condition (3.2.32) can be satisfied and 

hence the sequence of approximants converge to the desired value only 

after the order of T levels of the infinite division, where T is the 

maximum number of decimal place accuracy of the computer in use. 

Example 

Consider for illustration the (30 X30) periodic tridiagonal matrix, 

4 1 

1 4 1 
" , , 

" 
, 

" " 
"' A = 

" o 
1 

"' 

"' 
"' 

1 

0 
, 

" 
"' "' "' "' 
" " "' , "' , , , ,1 

"' ' '1 '4 

where A is diagonally dominant. 

The linear fractional transformation which generates the infinite 

periodic continued fraction which we can associate with the matrix A is 

given by (see 3.2.27 and 3.2.29) 
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T(30) (ol) = ~ 1 1 
4 - 4 - . •. 4-", 

(3.2.33) 

By using the recurrence formula (3.2.31), successive approximants 

of the continued fraction (3.2.33) are obtained and their values shown 

in Table (3.1). 

Partial Numerator Partial Denominator Approximants 
r Er F E IF r r r 

1 1 4 0.250 000 000 
2 4 15 0.266 666 666 
3 15 56 0.267 857 142 
4 56 209 0.267 942 583 
5 209 780 0.267 948 717 
6 780 2911 0.267 949 158 
7 2911 10864 0.267 949 190 
8 10864 40545 0.267 949 192 
9 40545 151316 0.267 949 192 

10 151316 .H> 4-"11 6)) ~, - ~ 
0.267 949 192 

TABLE 3.1 
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The above simple example illustrates the point that it is only 

necessary to evaluate the recurrence relation (3.2.31) to a level r=T where 

T -12 10- is the desired truncation error tolerance (e.g. 10 ). This implies 

that despite the order of the matrix (and hence the maximum level of 

recurrence of the approximants) only a few levels of the recursion is 

necessary to achieve convergence of the form (3.2.32). Thus. the 

computational effort required to determine £1' using the proposed continued 

fraction approach is relatively inexpensive. particularly for a large order 

system. 

The generalised cyclic factorisation method for the solution of the 

periodic tridiagonal matrix equation (3.1.1) is implemented as program 2 

of Appendix I. It is denoted as the PQFACT algorithm and may be summarised 

as follows: 

PQFACT Algorithm (3.2) 

Step 1 Determine £1 as follows:-

(a) Evaluate the recurrence relation (3.2.31) 

-T for r=1.2 •••• T (where £=10 ). 

(b) Obtain the real roots. w
1

.w
2 

of the quadratic equation 

1 (3.2.30). and hence compute £1 from £1=c-[max(w
1

.w
2
)]. 

n 
Step 2 Evaluate the fOllowing pre-computed coefficients:-

(a) v. = b.-£.c. l' 
1 1 1 1-

L = a./v. 1 
1 1 1-

i=2,3, .... ,n, 

(_l)i-l 
i 

(b) 4>i = lTL , 
j =1 J 

i=1. 2 •.•• n, 

c. 
(c) e. 1 = 

1 V. i=l,2, ... ,n, 
1 

(_I)i-l 
n 

(d) Yi = TTe .• 
j=i J 

i=I·.2 •... n (odd) 

(-1) i 
n 

= TTe .• 
j=i J 

i=I.2, ••• n (even). 



Step 3 Compute the following:-

(a) 

(b) 

(c) 

(d) 

and finally, 

and 

d! = d. - ~. d! l' 
1 1 1 1-

d' 
0 - 0, 

Yn = d'/(I+, ), 
n n 

Yi = d! -,. y 
1 1 n , 

g. = y/vi , 
1 

g' = gn 1 n 

g! = g.-e.g! l' 
1 1 1 1+ 

u. = g! -y. ul ' 
1 1 1 

i=1,2, ... n, 

i=l,2, ... n-l, 

i=1,2, ... n, 

i=n-l,n-2, ... 1, 

i=2,3,ot. n 

where T 
~ =(u

l
,u2, •.• ,un) is the solution vector. 

Implementation of the PQFACT Algorithm 

In the solution of periodic parabolic p.d.e.'s (e.g. a general 
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diffusion equation with periodic conditions (see Section 5.6)) by the use 

of an implicit finite difference scheme in a marching procedure, there 

occurs the need to solve repeatedly the general cyclic tridiagonal matrix 

equation of the' form (3.1.1). In such a case, the coefficient matrix A 

remains unchanged as the solution is advanced from one time-step to the 

next. With this type of application inmind, the PQFACT algorithm is best 

implemented, as a fast solver, in the form of three simple subroutines 

corresponding to the three computational steps outlined above. The reason 

for the three subroutines (instead of a single one), is that in a typical 

line-by-line solution of the discretised parabolic problem, the factorisation 

of the coefficient matrix (which remains unchanged) and the evaluation of 

the associated continued fraction need to be performed only once. This 

leaves the subroutine for step 3 as the only section of code required for 

a subsequent solution in the marching procedure. 
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Algorithm(3.3) 

The Generalised Cyclic Reduction Method 

Consider further the solution of the system, 

Au = d (3.2.34a) 

k where A is a cyclic tridiagonal matrix of order n=2 (k is any positive 

integer) given by, 

A = 

b l cl 

a
2 

b
2 

c
2 " .... , ....... o 

c 
n 

" " " " " ... 

o 
" " ... " ... ... 

" " .... 
... ... ... 

... .... ""'c 
.... "'... n-l 

'''a .... b 
n n 

Here, 'we introduce a generalisation of the cyclic reduction method of 

Hockney (1965) proposed by Golub to obtain a solution of (3.2.34). 

If we consider any three consecutive equations of the system 

(4 2 34) ' h (. l)th .th d (. l)th . f . •• ,I.e., t e 1- ,.1 an 1+ equatIons or 1 even, 

then we have, 

a. IU' 2+b . l u . l+c. IU' 1- 1- 1- 1- 1- 1 

a.u. l+b.u.+c.u. I 
. 1 1- 1 1 1 1+ 

= 

= 

d. I 1-

d. 
1 

ai+lui+bi+lui+l+ci+lui+2 = di +l 

In order to eliminate the odd terms of the solution vector, i.e., 

(3.2.34b) 

u. l'u. I terms between these three consecutive. equations, we multiply 1- 1+ 

the (i_l)th equation by a constantk
1 

and the (i+l)th equation by 

another constant, k2; and then add all three consecutive equations 

together to obtain a new equation of the form, 

where 

kla. IU' 2+(k l c. l+b.+k 2a. l)u.+k 2c. IU' 2 1- 1- 1- 1 1+ 1 1+ 1+ 

-a. 
k = __ 1_ and 

I b. I 
1-

= kId. l+d.+k 2d. I 
1- 1 1+ 

-c. 
1 

k2 = ~ 
1+1 

After some simplification, the new reduced system of equation becomes, 

(3.2.35a) 



where for i=2, step 2 until 2k_2, (k=log2n), 

(1) 
a. = b. la. a. l' 

1. 1. + 1. 1-· 

b~l) = b. la.c. I-b. lb. Ib.+c.b. la. l' 
1. 1+ 1 1- 1- 1+ 1. 1. 1- 1-

(1) 
c i = bi_lcici+l ' 

and d~l) = bi+laidi_l-\_lbi+ldi+bi_lcidi+l . 

k-l The reduced system of equations represented by (3.2.35a) now has 2 

of the unknown components of the solution vector ~. 

th If this reduction process is continued, then at the s level we 

have the following reduced system, 

a~s)u +b~s)u.+c~s)u 
1 . 2s 1 1 1 . 2S 

1- 1+ 

i=2S .step 2s until l_2s 

where the coefficient terms a~s) ,b~s) ,c~s) are given by, 
111 

and 

(s) 
a. = 

1 
b (s-l) (s-l) (s-l) 

l a. a 1 
· 2s - 1 . 2S-1+ 1-

b~s) = b(s-l) a~s-l)c(s-l) _b(s-l) b(s-l) b~s-l) 
1 . 2s-1 1 . 2s-1 . 2s-1 . 2s-1 1 

1+ 1- 1- 1+ 

(s-l)b (s-l) (s-l) +c. a 
1 . 2s-1 . 2s-1 

1- 1+ 

b (s-l) (s-l) (s-l) 
= lC. c 1 

· 2S- 1 . 2S-1- 1+ 

= b(s-l) a~s-l)d(s-l) _b(s-l) b(s-l) d(s-l) 
· 2s-1 1 . 2s-1 . 2s-1 . 2s-1 i 
1+ 1- 1- 1+ 

b (s-l) (s-l)d(s-l) 
+ lC. I . 2s - 1 . 2s-1- 1+ 

After k levels of reduction, we are left with only one equation 

which is given by, 

By the cyclic nature of the reduction process, uO~un=u2n; 

hence, from (3.2.38) we immediately obtain, 
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(3.2.35b) 

(3.2.36) 

(3.2.37) 

(3.2.38) 

(3.2.39) 



56 

The remaining intermediate values of the solution vector are then obtained 

in a backward substitution process from the recursion formula (3.2.40) 

which is derived from (3.2.36) and given by, 

u. = (d~s)_a~s)u _c~s)u )/b~s) 
1 1 1 . 2s 1 . 2s 1 

1- 1+ 

, (3.2.40) 

s=k-l ,k-2, ••. 0, 
. 2s 2s+ 1 .1 1= step unt1 

where the subscripts are interpreted cyclico.lly, i.e., u .=u .• 
n+1 1 

For an efficient evaluation of the recursive formula (3.2.37) it 

is necessary to compute the quantities, 

b(s-l) a~s-l) , 
· 2s-l 1 

and 

1+ 

b (s-l) b (s-l) , 
· 2s - l . 2s - l 
1- 1+ 

b (S-l) (s-l) 
l c. 

· 2S- 1 
1-

first, then they are used where needed to compute the new variables 

a~s), b~s) ,c~s) and d~S). 
111 1 

The reduction stage, (3.2.37), of the outlined algorithm requires 

11 multiplications, 4 additions per level of reduction, giving for 

k(=logzn) levels, the computational effort as k(ll multiplications, 

4 additions). 

The back substitution process requires 3n multiplications and 2n 

additions. Thus, the entire solution involves (11 log2n+3n) multiplications 

and (4 log
z
n+2n) additions. For repeated solutions, with the coefficient 

matrix remaining unchanged, the arithmetic operation count required 

becomes, (3 log2n+3n) multiplications and (2 log2n+Zn) additions. 

The implementation of this algorithm is given in Appendix I as 

program 3. 

Ouring the reduction stage, the intermediate quantities, d~s)(see 
1 

(3.2.37)), grow rapidly in size because it involves terms which contain 

multiples of b~s) which also grows rapidly. This could result in overflow 
1 
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or create instability in the algorithmic solution. 

We must therefore discuss a modification of the cyclic reduction 

algorithm (see Buzbee et al (1970)) proposed by Buneman to produce a 

revised algorithm in which the right hand side plays the important role 

of determining the stability of solution. The main idea behind the 

Buneman modification strategy is to avoid a multiplication by b~s) in 
1 

evaluating d~s) as in (3.2.37) so as to prevent the right hand side term 
1 

d~s) from becoming excessively large. 
1 

Algori thm (3.4) 

The Buneman- Modified Algorithm 

and 

We introduce the coefficients Pi,qi such that, 

d (s"-tl_ b(s-l) (s-l) (s-l) .- -. p. +q. , 
111 1 

d(S'-I) b(s-l) (s-l) (s-l) 
. = P +q 

i+2s - l i+2s - 1 i+2s - l i+2s - l 

d (s:'l) 
. 2s - l 
1-

b (s-l) (s-l) (s-l) 
= P +q , 

. 2s - 1 . 2s - 1 . 2s - 1 • 1- 1- 1-

By using (3.2.37) the term d~s) can be rewritten to involve the 
1 

(3.2.4la) 

(3.2.4lb) 

(3.2.4lc) 

expression for the term b~s) , reSUlting in an expression for d~s) as 
1 1 

follows: -

= b(s-l) a~s-l)d(s-l) _b(s-l) b(s-l) d~s-l)+b(s-l) c~s-l)d(s-l) 
. 2s - 1 1 . 2s-1 . 2s-l . 2s-1 1 . 2s-l 1 . 2s-l 
1+ 1- 1- 1+ 1- 1+ 

= (b(S-l) a~s-l)c(s-l) +b(s-l) c~s-l)a(s-l) _b(s-l) b~s-l)b(s-l) )( 
. 2s - 1 1 . 2s-1 . 2s-l 1 . 2s-1 . 2s-1 1 . 2s-1 
1+ 1- 1- 1+ 1- 1+ 

_(d~S-l)/b~s-l»(b(s-l) a~s-l)c(s-l) +b(s-l) c~s-l)a(s-l) ). 
1 1 . 25-1 1 . 2s-l . 25-1 1 . 2s-1 

1+ 1- 1- 1+ 

On substituting for (d~S_l)/b~s-l» and d~s)etc. from (3.2.41) we 
11' 1 

have the result, 

b (s) ((S-l) (s-l)/b(s-l)) b(s-l) (5-1) (b(s-l) (5-1) (5-1) 
= . p. +q. . + la. p l+q I 

1 1 1 1 i+2S - 1 i:'2s - 1 i_2s - i_2s-
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+bCs-1) c~s-l) (b(S-l) p(s-l) +q(S-l) )_(b(S-l)la~S-l)c(S-l)l+ 
. 25 - 1 1 . 25-1 . 25+1 1.+25-1 . 25- 1 . 25-1- 1+ 1+ 1+ 1-

b (S-l) c(s-l) (5-1) ) ( (5-1)+ (s-l)/b(s-l)) 
1 · alP. q. . . . 25 - 1 . 25- 1 . 1 1 1- 1+ 

Further. by substituting for b(S-l)lb~S-l)b(s-l)l in terms of b~s)from 
. 25 - 1 . 25- 1 1- 1+ 

(3.2.37). and simplifying the resulting expression. yields. 

d~s) ; b~s)p~s)+q~S) 
111 1 

(3.2.42) 

where, 

and 

(5) 
p. 

1 

(5-1) ((5-1) (5-1) (5-1) (5-1) (5-1) )/b(S-l) 
; p. + q. -a. PI-c. PI. 

1 1 1 . 25- 1 . 25- 1 
1- 1+ 

(5) b(s-l) (5-1) (5-1) b(s-l) (5-1) (5-1) q.; a. q + c. q 
1 . 25-1 1 . 25-1 . 25-1 1 . 25-1 

1+ 1- 1- 1+ (3.2.43) 

(b (S-l) ·(5-1) (5-1) b(s-l) (5-1) (5-1) ) (5) 
l a. c 1+ 1c . alP . . 25 - 1 . 25- . 25- 1 . 25- 1 1+ 1- 1- 1+ 

Hence. if initially we set. 

and 

Pl~O) ; d./b. 
1 1 

q~O) ; 0 
1 

i=1,2, ... n, } 
then the reduction process of the Buneman .i. algorithm becomes: 

for s;1.2 •.•.• k. 

i;2s step 25 until 2k_ 2s. 

and 

(5) 
a. 

1 

(5) 
c. 

1 

(5) 
q. 

1 

b 
(5-1) 

; la. a 1 
· 25 - 1 . 25-1+ 1-

; b(s-l) a~s-l)c(s-l) _b(s-l) b(s-l) b~s-l)+e~s-l) 
· 25 - 1 1 . 25-1 . 25-1 . 25-1 1 1 
1+ 1- 1- 1+ 

b
(s-l) (5-1) (5-1) 

; le. e 1 
· 25 - 1 .' 25-1- 1+ 

b(s-l) a(s-l) 
. 25 - 1 . 25 - 1 
1- 1+ 

b (s-l) (5-1) (5-1) b(s-l) (5-1) (5-1) ; a. q + c. q -
· 25- 1 1 . 25-1 . 25-1 1 . 25-1 1+ 1-. 1- 1+ 

(b la.e l+b(S-l)le~S-I)a(S-l)I)P~S) . 
. 25- 1. 25- . 25- 1 . 25- 1 1+ 1- 1- 1+ 

(3.2.44) 

The solution vector is then obtained by proceeding in a similar manner as 
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for the cyclic reduction method if d~s)is replaced by b~s)p~s)+q~s). Thus, 
1 1 1 1 

using (3.2.39) and (3.2.40), the solution vector is obtained from the 

expressions, 

and 

for s=k-l,k-2, ... 0 

s s+ 1 . 2k 2s and i=2 step 2 unt11 - . 

(3.2.45) 

(3.2.46) 

In order to evaluate the recursive formula (3.2.44) as efficiently 

as possible, it is necessary to calculate the quantities, 

b(s-l) a~s-l) , 
. 2s-1 1 

and 

1+ 

b (s) c~s) 
. 2s-1 1 
1-

first, since they appear at least twice in the subsequent evaluation of 

new values of a~s) ,b~s) ,c~s) ,p~s) and q~s). The reduction formula (3.2.44) 
1 1 111 

requires IS multiplications, 8 additions and 1 division per iteration. The 

backward substitution (3.2.46) requires 2 multiplications, 1 division and 

3 additions for each unknown u.. Altogether, the total computational 
1 

requirement of the Buneman·'·. modified algorithm for the solution of the 

general periodic tridiagonal system is, for k=log2n, (lSk+2n) multiplications, 

(k+n) divisions and (8k+3n) additions for the first solution; and for 

subsequent solutions only (Sk+2n) multiplications, (k+n) divisions and 

(Sk+3n) additions. 

Both the cyclic reduction and Buneman : modified algorithms for solving 

the Poisson equation over a rectangle with periodic boundary conditions have 

appeared in the literature (see, for example, Hockney (.1965), Buneman (1969), 

and Buzbee et al (1970)). Generalisations of these have also been given in 

Sweet (1974) and Swarztrauber (1974). However, the generalisation which 
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applies to the point-form general periodic tridiagonal matrix, as given In a.l,-

.TLi:h~t3:3) is not known to have appeared elsewhere. 

Algorithm(3.S) 

Rank-One Pertur~tion Algorithm 

A general unsymmetric matrix of the form, 

bl cl a l 
a2 b2 c2 0 " 

~, " 
" " " 

" " " A = " " " 
" 

, 
" " " , 

" " 0 " " , , 
" c 

" " n-l , 
'b c a n n n 

a.c.>O 
1 1 

cd.n so",..ti .. es,_ be reduced by a diagonal similarity transformation to a 

symmetric matrix. If we take 

S = DAD-I, D=diag(d.) , 
1 

then B is symmetric if 

d
k 

= (-d-)ck ' 
k+l { 

k=O,l, .•• n-l, 

d =d • o n ~ 

By multiplying these relations together we obtain, 

n 

= TIck 
k=l 

If relation (3.2.48) is satisfied then the dk are determined by the 

relationships, 

Hence, we shall assume that the given general periodic tridiagonal 

(3.2.47) 

~(3~2.48) 

(3.2.48) 

matrix equation has been reduced, using (3.2.47) to a symmetric matrix 

system of the form, 

Bu = d (3.2.49) 

where 



bl a
2 a

l 
a2 b

2 a3 
0 ' .... ... 

.... .... , , .... .... ... .... 
B = ... .... .... 

.... .... .... 
.... .... .... 

.... , .... 

0 .... ... a 
.... ... n .... 

a l 
.... a b n n 

Now the matrix B can be written as a rank one pertubation of a 

symmetric tridiagonal matrix, (Bjorck and Golub (1977)), i.e., 

B = T + wZ zT 

where 
b1+a1 a2 

o a2 b2 a 3 .... ... '" ... 
~ 

'" '" 
~ 

~ ~ 

'" '" ~ ~ ... T = ... ~ '" ... '" "-
'" '" '" 0 '" ... 

'" ... ... ... a n 

w=+a - 1 

and 
'" a 
~ n 

b n+al 

z = 

1 

o 

I 

I 

0 

±l 
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(3.2.50) 

By using (3.2.50) and the well-known Sherman-Morrison formula (Householder, 

(1964)) , 
-1 T -1 

B = (T+w~~) 
T -1 l+wz T z 

the solution of (3.2.49) can be written as a linear combination of the 

solution of two tridiagonal systems of equations. 

Hence, 

where a = 
w~TT-ld 

T -1 l+wz T z 
• 

Since T is symmetric, T-l.is also symmetric; hence 

Let T T -1 v = wz T 

then Tv = Wz 
T .d T 

and a v v .d 
= = 

l+v T 
l+Vl +Vt:>' z 

(3.2.51) 

(3.2.52) 
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Thus, the solution of (3.2.49) is achieved by solving the two tridiagonal 

systems obtained from (3.2.Sl) and (3 .. 2.S2) and given by, 

Tv = Wz , 
vTd } , (3.2.S3) .. 

Tu = ~-Il~ a = 
l+Vl +v n 

For the purpose of estimating the amount of arithmetic operations 

required to implement the algorithm we assume that the two tridiagonal 

matrix equations (3.2.S3) are solved by Thomas algorithm (see Algorithm 

4.1, Chapter 4). Then the rank-one modification algorithm requires 6n 

multiplications, 3n divisions, Sn additions, in addition to the 

calculation necessary to initially convert the non-symmetric matrix A 

to the symmetric matrix B. Subsequent solutions with un.changed 

coefficient matrix but different right-hand sides require a further Sn 

multiplications, 2n divisions and 4n additions. 

A number of other. methods for solving the general periodic 

tridiagonal matrix equation have been proposed (see, for example, Evans 

and Atkinson (1970)). However, the ones presented here are believed to 

be some of the best known strategies for obtaining fast and accurate 

solutions of the matrix equation (3.1.1). 
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3.3 COMPARISONS AND NUMERICAL RESULTS 

The four algorithms presented in the previous section (i.e., 

algorithms (3.1), (3.2), (3.3) and (3.5)) were all programmed in Fortran 

and run using single precision arithmetic, on the Loughborough University 

ICL 190045 computer in order to compare these algorithms on the basis of 

effi ciency and accuracy, We wi 11 generally assume that the periodic 

tridiagonal systems have to be solved a number of times wi th different 

right hand sides, so that any coefficients required by the solution 

algorithms are pre-calculated and stored. This would normally apply, 

for example, in the solution·of time-dependent partial differential equations 

involving the use of marching techniques (e.g. see Section (5.6), or (5.7)). 

For a numerical experiment with each algorithm, the elements of the 

(nxn) coefficient matrix A (a. ,b.,c.) were generated randomly with entries 
111 

in the range O.O~a.,b. ,c.~lO.O, i=l,2, ... n provided A is diagonally 
111 

dominant. A random solution vector ~ was also generated such that O~u.~lO.O. 
1 

The corresponding right hand side vector ~=A~ was then computed and input 

into the algorithms. For each algorithm, the approximate solution was then 

re-computed using this right hand side. 

Each algorithm was timed for 60 randomly generated right-hand ·side 

vectors and for different values of n. In order to accommodate the cyclic 

reduction algorithm (3.3) n was chosen to be a power of 2 even though the 

other algorithms are subject to no such restrictions on the values of n. 

The average execution times (in mill-units) required by each algorithm for 

the 60 right-hand side solutions are presented in Table 3.2. The results 

show that the cyclic reduction method is generally the fastest while the 

rank-one modification algorithm is the slowest with the two other algorithms 

intermediate in speed. However, for smaller values of.n, the cyclic 

reduction is slowed down by its more complicated structurej whilst for 

8 
very large values of n (e.g. n=2 ) there is the problem of overflow and 
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hence the need for the Buneman's modification). The relative cost of 

evaluating an infinite continued fraction in order to obtain one of the 

pre-computed coefficients makes the generalised cyclic factorisation' 

algorithm rather slow if the solution is required for only one right-hand 

side vector. However, since the continued fraction need be computed only 

once, this no longer has very adverse slowing-down effects on the algorithm 

if solution is for many right-hand sides. 

Execution Times (in mill-secs.) for Solution of a Periodic Tridiagonal 

System of Order n for 60 Right-Hand Sides 

Gaussian Generalised Cyclic Rank One 
Elimination Cyclic Reduction Modification 

n Algorithm (3.1) Factorisation Algorithm (3.3) Algorithm (3.5) 
Algori thm (3.2) 

Program (1) Program (2) Program (3) Program (5) 

16 9 10 11 11 

32 20 20 19 21 

64 40 41 39 43 

128 79 82 70 83 
* 256 156 163 - 166 

TABLE 3.2 

*Overf~ow 

The accuracy of the four algorithms was also compared for various 

values of n. The maximum error of the solution vector (i.e. the maximum 

absolute difference between the randomly generated (known) components of 

the solution vector and their computed equivalents) was found; and by 

repeating the process for 60 ·different randomly generated right-hand side 

vectors, the average maximum error was obtained for various values of n. 

The results are summarised in Table (3.3). 



Mean Maximum Errors in the Solution of a Periodic Tridiagonal System'of 

Order n for 60-Right-Hand Sides 

(Unit: 10- 10) 

Gaussian Generalised Cyclic Rank-One 
Elimination Cyclic Reduction Modification 

n Algorithm (3.1) Factorisation Algorithm (3.3) Algorithm (3.5) 
Algorithm (3.2) 

Program (1) Program (2) Program (3) Program (5) 

16 1.7 1.6 1.8 2.6 

32 2.1 1.8 2.6 4.1 

64 2.4 2.0 3.0 5.9 

128 2.6 2.2 3.7 7.3 
* 256 2.9 2.5 - 9.2 

TABLE 3.3 

'OVerflow 

It can be seen that the generalised cyclic factorisation and the 

Gaussian elimination algorithms are about the most accurate and the rank-

one modification method the least. All the algorithms are stable with 

respect to rounding errors under diagonal dominance condition of the 

coefficient matrix; though, as has been pointed out, the cyclic reduction 

algorithm has overflow problems for large values of n (see entry * in 

Tables 3.2 and 3.3). 

For practical purposes, there is very little to choose ,between the 

algorithms. However, for periodic tridiagonal matrix problems of order 

200 or higher with multiple right hand sides, the generalised cyclic 

factorisation method is highly recommended on the basis of a combination 

of speed, accuracy and stability. The complicated recursive structure of 

the cyclic reduction algorithm makes it the most difficult of the four 

algorithms to program. 
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3.4 THE SOLUTION OF CONSTANT TERM CYCLIC TRIDIAGONAL MATRIX SYSTEMS 

Algorithm (3.6) 

Consider the matrix equation, 

Cu = d (3.4.1) 

where C is a constant term, symmetric cyclic tridiagonal matrix of the 

form, 
b a a 

a b a 0 
"- "- "-, "- "-

C "- "- , 
(3.4.2) = , "-, , "- "-, "- , 

0 
, "- , , , a , , 

a 'a 'b 

We seek to obtain algorithms that take advantage of the special 

structure of the coefficient matrix (3.4.2). First, we consider 

simplified variants of the generalised cyclic factorisation method of 

algorithm (3.2). 

Following the cyclic factorisation method in (3.2.12), the matrix 

C can be decomposed into the product of P and Q such that 

where 
1 i-

i- 1 , , 0 , , 
p = , , , , , , , , , 

0 
, , , 

'i- 1 
and 

v a 

v a , , 0 , , , , 
Q = , , 

0 
, , 
, , , 
" a ,. 

a v 

From (3.4.3), the elements i-,v are related in the following form, 

and 

i-v = a 

v+i-a = b. 

(3.4.3) 

(3.4.4) 



Now either £ or v can be expressed as an infinite periodic continued 

fraction. We consider v, which is then expressed in the form, 

v = 
2 

a 2 a 2 a 2 
a 
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b- b- b- b •.• (3.4.-5a) 

with unit cycle length in the periodicity of the continued fraction. 

By definition (2.12), the infinite continued fraction (3.4.5a) 

is generated by the linear fractional transformation, 
2 

T(l) (Ul) = a 
b-Ul 

whose fixed points Ul l ,Ul2 are given by the roots of the quadratic 

equation, 

2 2 
or Ul -bUl+a =0. 

Ul = 
2 a 

b-Ul 

Hence, the value of v, defined as max(Ul
l

,Ul
2

) becomes, 

and 

v = 
b>.2a } 

b>-2a. 
It follows immediately from (3.4.6) that if b>.2a, then £~l. 

(3.4.5b) 

(3.4.6) 

The values of v and £ could simply have been obtained from (3.4.4) 

directly without the need to express any of them as an infinite continued 

fraction, but this has been done to maintain the uniformity of approach 

with the earlier strategy in the generalised factorisation of Algorithm 

(3.2) • 

By following the algorithmic method (3.2.17) to (3.2.26) but 

replacing v.,£.,c. by v,£ and a respectively; and by using the relation 111 

£=a/v, we obtain the following algorithmic SOlution of equation (3.4.1), 

which we shall refer to as the PQFACTl algorithm •. It is summarised below 

and given as program (6) of Appendix I. 

PQFACTl Algorithm (3.6) 

Step 1 Compute: £=(b-1b2_4a2)/2a, 

p=£/a. 

b>-2a (3.4.7) 
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SteE 2: Compute the followi ng pre-computed coefficients. 

~. = t
i if i is odd • 1 i=1.2 •..• n· (3.4.8) 

i 
= -t if i is even 

Yi = ~n-i+l 

SteE 3: Calculate the following:-

(a) d' = O. d! = d.-td! 1 i=1,2, ... ,n 
0 1 1 1-

(3.4.9a) 

(b) Yn = d'/(l+~ ) } n n 

y. = d!-~.y i=2.3, ... n-l, 
1 1 1 n 

(3.4.9b) 

(c) g' = PYn • } n 

g! = py.-tg! I i=n-l,n-2, ... 1, 
1 1 1+ 

(3.4.9c) 

and (d) uI = gi/(l+Y l ) } u. = gi.-Yiul i=2,3, ... ,n 1 

(3.4.9d) 

where ~=(uI,u2 •.•.• un)T is the required solution vector. 

Steps 1 and 2 are computed only once during the first solution; 

thereafter for subsequent solutions only step 3 need be repeated. Thus. 

the algorithm requires Sn multiplications and 4n additions, in addition 

to n pre-computed coefficients. 

The stability of this algorithm is always guaranteed whenever Itl<l. 

(since t is used as a mUltiplier in an elimination process) which is 

easily shown to be satisfied (using (3.4.7)) whenever the coefficient 

matrix is strictly diagonally dominant, i.e. Ibl>12al. 

and 

If a=-l. then t=(-b+~/2. b>2 and hence (3.4.9c) becomes. 
p= -t 

g'=-ty n n 

g!=-t(y.+g! 1) • 
1 1 1+ 

i=n-l.n-2 •••• l 

which results in a saving of n extra multiplications to give the required 

arithmetic operation count as 4n multiplications and 4n additions for the 

solution of (3.4.1) when the coefficient matrix C is of the form. 
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b -1 -1 

-1 b -1 
... ... " o ... ... ... 

C = ... ... ... ... ... 
... ... ... ... , ... ... ... , ... ... , ... 1 

... ...-o 
... ... 

-1 ... -1 ... b 

Similarly, if a=l, then 

i = (b-~/2, b>2, i=p 

and equation (3.4.9c) becomes, 

and g! = Hy.-g! 1), 
1 1 1+ 

i=n-l,n-2, ... 1. 

Algorithm (3.7) 

When the coefficient matrix C is unsymmetric but has constant 

elements of the form, 

b c a 

a b c 
... ... ... 0 , ... ... , ... , 

C = ... ... ... (3.4.10) ... ... ... 
... , ... 

0 ... , ... 
... ... c ... ... 

c 'a b 

then the solution of 

Cu = d (3.4.11) 

can be similarly derived by a further variant of the PQFACT algorithm. 

By applying the factorisation, 
A 11 

C = P Q 

where 
1 

i 1, 0 
1\ " , 
P = , 

'" , , 
... ... 

0 ... ... 
... , 

... i 1 



and v c 

v c 0 " "-
" " " " " " Q = , 

" " " , 

0 " " 

c 

we readily obtain the following relations, 

iv = a 

v+ic = b 

from which we obtain, 

i = 
b-1f)2_4ac 

2c and 

" " 
" .... 
" c .... 

" v 

2 
, b ~4ac v = 

If v.,i.,a.,c. in (3.2.17) to (3.2.26) are replaced by v,i,a,c 
1 1 1 1 

respectively, then the solution of (3.4.11) is obtained as a special 

case of the PQFACT algorithm. We denote this variant as the PQFACT2 

algorithm and is summarised as fOllows: 

PQFACT2 Algorithm 

Step 1 Compute the following quantities, 

p=i/a and jJ=Cp } 
Step 2 Next, compute the following coefficients, 

4>. = .t i , i odd 

) i=1,2, .•• n 1 
_ii = i even , 

y. = ojJn-i+l 
1 

where 0=+1 if nand i are both odd or both even; 0=-1, otherwise. 

Step 3 Evaluate, 

Yi 

(c) g' 
n 

g! 
1 

= 0, d! = d.-R.d! l' i=I,2,.· •• ,n, 
1 1 1-

= d'/(I+4> ) n n 

= d!-4>·Y 
1 1 n i=l,a .. ,n-l, 

= PYn 

= PY· - jJgi + 1 1 
i=n-l,n-2, ••• 1 
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(3.4.12) 

(3.4.13) 

(3.4.14) 

(3.4.1Sa) 

(3.4.1Sb) 

(3.4.1Sc) 
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and finally, 

(d) u l = gi l (l+y 1) 

} u. = gi-Yixl' i=2 •.. n. 
1 

(3.4.1Sd) 

Again, this algorithm requires Sn multiplications, 4n additions, in 

addition to the pre-computed coefficients in steps 1 and 2. 

Al gorithm (3.8) 

In a number of applications such as the solution of the first 

order periodic boundary transport (hyperbolic) equation and in the 

solution of heat-conduction (parabolic) p.d.e. with periodic boundary 

conditions by elliptic boundary-value techniques, it is often necessary 

to solve the matrix equation of the form, 

eu = d (3.4.16) 

where e is a positive definite matrix of order n given by, 

b c -a 

-a b c 0 ... ... , ... , ... ... , ... , 
e = , ... , (3.4.17) , ... , 

0 " 
... , , ... , 

... , c , " c -a b 

Then, we can apply the factorisation, 

e = P Q 

where P and Q are (nxn) cyclic matrices of the form, 

1 -R. v c ... 0 ~ -R. 1, 0 
... 

v " p = and Q = " ... , ... 

" ... ... ... ... ... " ... ... , 0 ... c 
0 "- ... , 

.... -R,' 1 c 'v 

The elements R. and u in the above factorisation process are 

obtained by multiplying P and Q tog~ther and equating to e to give the 

relationships, 

R.v = a 

v-R.c = b 
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from which we obtain, directly or by the periodic continued fraction 

expansion, 

and 

i = (-b+/b
2
+4ac)/2c 

v = (b+.{)2+ 4aC)/2·' 

An algorithm to solve (3.4.16) can again be derived as a simplified 

variant·of the PQFACT algorithm if v.,i. and c. in (3.2.17) to (3.2.26) 
111 

are replaced by v,-i and c respectively; and if we use the relation, 

v=a/i. The resulting algorithm denoted as the PQFACT3 algorithm is 

given below: 

PQFACT3 Algorithm J3.8) 

Step I Compute, 

i = (-b+,.{,2+4ac)/2c 

P = l/v = £la 

jJ = c/v = cp 

Step 2: Determine the following pre-computed coefficients, 

cj>i = (-I) i-I (-i) i = _ii i=I,2, ... n. , 
(_l)i-I n-i+l 

(n odd) 

}. 
y. = jJ 

n-i+l 1 

(_l)i n-i+l = OjJ 
y. = jJ (n even) 

1 

where 0=-1 if nand i are both odd or both even 

and 0=1, otherwise. 

Step 3: Compute: 

(a) dO' = 0, d! = d.+id! , i=1,2, •.• n; 
1 1 1-1 

(b) 

(c) 

(d) 

and 

Yn = d'/(I+cj> ) , n n 

YI' = d! -cj>.y , 
I 1 n 

g~ = PYn 

gi = PYn- jJgi+l 

i=1,2, ... n 

, i=n-l,n-2, ... 1, 

i=2,3, ... n. 

, i=1,2, ... n 

} 

} 

}. 
This algorithm requires, apart from the initial 2n pre-computed 

coefficients only Sn mUltiplications and 4n additions. 

(3.4.18) 

(3.4.l9a) 

(3.4.19b) 

(3.4.20a) 

(3.4.20b) 

(3.4.20c) 

(3.4.20d) 



Algorithm (3.9) 

If the coefficient matrix C is skew-symmetric of the form, 

C = 

b I -1 

" -1 b " 0 
" " ' " " " 

I 

" " " " , 
" " " 

o 
" , " , " , , " ',>,' 11 

'-1 bJ 
(nxn) 
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(3.4.21) 

then a further simplification of Algorithm (3.8) and a reduction in the 

arithmetic operation count can be achieved by putting a=l, c=l (and hence 

p=~=£) in the PQFACT3 algorithm. We denote the resulting algorithmic 

solution of the system (3.4.17) when the coefficient matrix C is. of the 

form (3.4.21) as the PQFACT4 algorithm. It is summarised below and given 

as program (7) of Appendix I. 

PQFACT 4 Algorithm 

Step 1 Compute 

£ = h-b+~) 

SteE 2 Compute 

<Pi 
i 

i=1,2, ... ,n, = -£ , 

y. = 0<Pn_i +1 , i=l,2, ... ,n 
1 

where 0=-1 if n and i are both even or both 

=1, otherwise. 

SteE 3 Compute 

d! = d.+ £d! 1 
1 1 1-

d' 
0 - 0 

Yn = d'/(l+<p ) n n , 

y. = di-<PiYn 1 
i=1,2, ... ,n-l, 

g' = £y n n 

g! = £(yi :-gi+l), 
1 

i=n-l,n-2, ... ,1 

odd, 

(3.4.22) 

(3.4.23a) 

(3.4.23b) 

(3.4.24a) 

(3.4.24b) 

(3.4.24c) 



and finally, 

u l = gi/(l+'l) , 

u. = g!-l.xl 1. 1. 1. 

74 

i=2,3, .... In. (3.4.24d) 

The arithmetic operation count is now 4 multiplications, 4 additions 

per unknown u., in addition to the n pre-computed coefficients. 
1. 

Al gorithm (3.10) 

In Evans (1970) a neat algorithm was proposed which is based on first 

rewriting the given symmetric constant term matrix equation into a form 

whereby a unique Cholesky factorisation of the rewritten coefficient matrix 

is readily obtained. 

We consider the matrix equation, 

eu = d 

or 
b a a u l d

l 
a b a u2 d2 ... , ... 0 ... , ... ... ... , , 

... , , , , = ... ... , 
0 , , , 

... ... ... 
... ... a ... , 

a a b u d 

The system (3.4.25) can be rewritten as, 

or l+i- 2 
-i- _i- u l 

-i- 1+i-2 ... 0 u 2 .... 
"- .... 

"-... .... 
.... .... .... .... ... .... ... -i-0 .... .... 

... .... 
1+i-2 -i- -i- u 

n 

where i-= 
_b±..{2_4a2 -2a b>2a = 2a 

b+/b2 _4a2 

-1 g. = \l d. 
1. 1. 

and \l = bl (1+ i-2) 

I 
g 

(3.4.25) 

(3.4.26) 

(3.4.27) 

(3.4.28) 

(3.4.29) 
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By a simple multiplication process, it can be easily shown that the 

matrix C has a unique Cholesky factorisation of the form, 

C = P pT (3.4.30) 

where 

1 -R. 

-R. 1 
0 " 

, - " 
, 

P = " , , 
" " " , 

0 " " 
" 

, 
-i 1 

is a cyclic matrix of order n. 

Thus, the system- (3.4.27) is now easily solved by rewriting it in 

the form, 

which yields the two alternative systems, 

Pz: = .8. } (3.4.31) 
and -T 

P~=z: 

where z: is an auxiliary (nxl) vector. 

By definition, b>2a. Hence, from (3.4.29), we readily find that 

JiJ<l. 

It is therefore possible to use i as a multiplier to perform simple stable 

Gaussian elimination processes on the systems (3.4.31) without the risk of 

accumulating rounding errors. 

The result of solving (3.4.31) is the following algorithmic solution 

(see Evans (1970 & 1971)): 

(1) Determine Yl from 

n-l 3 2 n 
Yl = (dl+R. d2+···i dn_2+i dn_1+idn)/(1-R. )~ 

(2) Compute the recursive sequence 

(3) 

-1 
y. = ~ d.+R.y. 1 

1 1 1-

Determine u from the formula, 
n 

u 
n 

2 n-l n = (iYl+i Y2+··· i Yn_l+Yn)!(l-i) 

(3.4.32a) 

(3.4.32b) 

(3.4.32c) 
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(4) Finally, obtain the following, 

i=n-l,n-2, ... ,1 .. (3.4.32d) 

Using a nesting technique to compute (3.4.32a) and (3.4.32c) which 

involves i as a multiplier, the algorithm (3.4.32a) to (3.4.32d) requires 

5n multiplications, 4n additions in addition to 3 coefficients, ~,i 

and (I_in), which need to be pre-computed. 

Algorithm (3.11) 

Finally, we outline another method proposed by Temperton (1975) for 

solving the (nxn) matrix equation, 

Cu = d (3.4.32) 

which in matrix form is, 

b I 1 1 - ~ - - - - --
1 ob 1 

I " " o 1 " " 0 I " " '-
I " 

, 
" , 

I '- " 
= (3.4.33) 

" '- " 
" 

'- " 
0 " " " 1 

" " 
" 

, 
1 ,1 b u d n n 

If it is assumed that u1 is already known then (3.4.33) can be 

reduced to a strictly tridiagonal matrix system of dimension (n-l) of 

the form, 

b 1 , 
1 b, 0 ", , ,,' " ,," " , ' 

" " '1 o '1' 'b 

= 

d2-u1 
d3 

I 
d n-l 
d -u n 1 

which can be solved using the standard tridiagonal algorithm 

(see Algorithm 4.1) in 2(n-l) multiplications and 2(n-l) additions 

with (n-l) pre-computed coefficients. 

(3.4.34) 

Let w = (wl ,w2, ••• ,wn) be the first row of C- 1 (which exists since 

C is assumed to be non-singular), then, u1 is given by the scalar product, 
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u
l = w.d 

n 
or u l = I w.d. 0 (3.4.35) 1 1 i=l 

which can be evaluated in n multiplications, (n-l) additions. But 

since C is a symmetric circulant matrix, so is C- l and hence, 

w 2' n+ -1 

Thus we can rewrite the summation (3.3.35) as 

or 

m 
L w.(d.+d 2') 

i=2 1 1 n+-1 

m 

if n is odd, 

L wi(di+dn+2_i)+wm+ldm+l 
i=2 

if n is even 

(3.4.36) 

(3.4.37) 

where m is the integer part of (n+l)/2. The total number' of operations 

in evaluating ul is now reduced to approximately n/2 multiplications and 

n additions. 

The major problem of this algorithm is the accurate determination 

of the vector w. For a constant term matrix C, w. (i=l, •.. ,n) is 
1 

obtained by rewriting C in the form (3.4.28), from which it is shown 

(Temperton (1975)) that, 

i n-l 
W = 0(' +' ), 1'-0 m i+l L L - ,_ •• , 

where 

and R. = 2! 2 
! (-b±(b -4) ) = 2! ' b>2a. 

b+(b -4) 

(3.4.38) 

If ul is evaluated using (3.4.37) instead of (3.4.35), then the total 

number of operations required by this algorithm is 5n/2 multiplications, 

3n additions and approximately 3n/2 pre-computed coefficients. However, 
I 

since this method requires the determination of the first row of the 

inverse of the coefficient matrix, the basic strategy of this algorithm 

cannot easily be extended to general cyclic matrix systems in which the 

coefficient matrix is neither symmetric nor circulant. 



CHAPTER 4 

SOME FAST ALGORITHMS ASSOCIATED WITH THE SOLUTION OF 

DIRICHLET'S AND NEUMANN'S BOUNDARY VALUE PROBLEMS 
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4.1 INTRODUCTION 

In section (4.2), we outline two well-known algorithms for the fast 

solution of a tridiagonal and quindiagonal matrix system due to Thomas (1949) 

and Conte and Dames (1958) respectively. These algorithms are presented 

because they form the basis of our comparison with the new techniques developed 

in this chapter for solving the respective systems of equations. 

A factorisation method, i.e., the reversed triangular factorisation and 

expansion (ReTriFE) (alternatively referred to as 'reversed rectangular 

factorisation') proposed by Evans (1972) for the solution of the constant 

element tridiagonal systems of equation is extended in section (4.3) by a 

generalisation which gives a direct fast solution of the more general tri

diagonal matrix system. A further extension of the same idea is considered 

for the solution of the quindiagonal matrix system; and the special skew

symmetric constant element tridiagonal system which often arise, for example, 

in the solution of the one dimensional transport equation, or in parabolic 

p.d.e.'s solved by boundary value techniques (see section 5.4). 

In section (4.4), another algorithmic approach, the recursive point 

partitioning (R.P.P.) idea, is introduced and developed to obtain fast 

solutions of tridiagonal, quindiagonal and other sparse banded systems 

associated with both Dirichlet's and Neumann's boundary conditions. 

The inherent parallelism of the tridiagonal matrix solver algorithm 

resulting from the R.P.P. strategy, and the implementation of this in a 

program designed for execution on a two processor machine are discussed in 

. section @.5). 

In section (4.6), we establish, by a rounding error analysis, the 

stability of the newly introduced recursive point partitioning (R.P.P.) 

algorithm. 

Finally, by using a varying block-method strategy in a partitioning 

technique, a recursive point decoupling (R.P.D.) scheme, which possesses 

multiple parallelism, is formulated for the solution of a tridiagonal matrix 

equation. 



4.2 THE ALGORITHMS OF mOMAS, AND CONTE AND DAMES FOR SOLVING·TRIDIAGONAL 

AND QUINDIAGONAL MATRIX SYSTEMS 

Al gorithm 4.1 
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We begin with the algorithm which was first presented by Thomas (1949) 

and has since appeared in many other references, such as Varga (1962) and 

Marchuk (1973). It is based on Gaussian elimination method without pivoting 

for size. 

Thus, we consider the system, 

Au = d (4.2.1) 

where A is an (nxn) tridiagonal matrix of the form, 

bl cl 

a2 b2 c2 0 , 
.... '" ... 

A = "- , , , , 
, , , , ... , 

"- c 
0 

.... , n-l , "-
"- , 
'a 'b n n 

The algorithmic solution is as follows (Varga (1962)) 

Define: 
cl c. 

1 a l = b l 
, a. = 

1 b.-a.a. 1 
1 1 1-

dl d.-a.g. 1 i=2,3, ... ,n. (4.2.2) 

and 1 1 1-
gl = b l 

g. = 
1 b. -a. a. I 

1 1 1-

Then, the components u. of the solution vector u are given recursively by, 
1 

u. = g.-a.u. l' i=n-l,n-2, ... ,I. 
1 1 1 1+ 

(4.2.3) 

The above algorithm requires 3n multiplications, 2n divisions and 

3n additions. If the system (4.2.1) needs to be solved more than once 

with the coefficient matrix A unchanged, then the amount of work reduces 

to 2n multiplications, n divisions and 2n additions since the a i (i=l, ••• n) 

terms need only be calculated once in such a situation. 

The direct inversion method of (4.2.2) - (4.2.3) can.· be inunediately 

generalised so as to apply to the block matrix equivalent of (4.2.1) where 

A is now a block tridiagonal matrix of order m given by, 



Bl Cl 

A2 B2 C2 

" ... ... 
... ... ... o 

... ... ... ... ... A = ... ... 
... ... ... ... 

... ... ... 
... ... C 
", ..... , m-I 

'A 'B o 
m m 

where A. ,B. ,C. are square submatrices of order n. 
111 

Hence, if the vectors ~ and ~ are partitioned relative to the matrix 

A then the block form (Varga (1962)) is obtained as" follows: 

Algorithm 4.2 

Define the matrices, 
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(4.2.4) 

W. = 
1 

-1 
(B.-A.W. 1) C. ; i=2,3, ... ,m, (4.2.5) 

1 1 1- 1 

and G. 
1 

= -1 . 
(B.-A.W. 1) (d.-A.G. 1)' 1=2,3, •.. ,m. (4.2.6) 

1 1 1- -1 1 1-

Then, the components u. of the solution vector are given recursively by, 
-1 

~ = Gm ; ~i = Gi-Wi~i+l' i=m-l,m-2, ... ,1. 

The algorithm (4.2.5)-(4.2.7) is quite costly in terms of storage 

(4.2.7) 

and arithmetic operation count because of the 2m matrix inversions involved, 

and the storage of each sub-matrix, W., i=I,2, ... ,m. It is therefore not 
" 1 

computationally feasible to apply this direct plock method for the general 

block tridiagonal matrix (4.2.4). However, in special cases, such as the 

solution of the Poisson equation with Dirichlet's or Neumann's boundary 

conditions in a rectangle, the sub-matrix blocks A. ,B.,C. commute (i.e. 
111 

possess a common set of orthogonal eigenvectors). In such situations, 

simplifications of the cumbersome general algorithm (4.2.5)-(4.2.7) are 

possible, resulting in substantial reductions in both the total computing 

effort and in coefficient storage. In Chapter 6 we shall develop new methods 

for the fast solution of such tridiagonal block matrix systems which possess 

commutative sub-matrix elements. 
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Algorithm 4.3 

Next, we consider the system, 

Au = h (4.2.8) 

where A is an (nXn) quindiagona1 matrix of the form, 

cl dl e l 
b2 c2 

d
2 e2 

a3 b
3 

c
3 

d
3 e 3 , 0 , , , , , , , , , , , , . , , "-, , , "-

A 
, , , 

(4.2.9) = "- "- "- "-, 
"-

, , , , , , , 
"- , "- , , , , , 

0 "-
, , e , , , n-2 "- , 

'd , 
"- , 

"- , "- n-l "- "- "-
, a , b c 

n n n 

The matrix in (4.2.9) can arise in place of the tridiagonal matrix, 

for example, when a 2-line ordering of the mesh points is adopted in the 

finite difference approximation of elliptic p.d.e. 's on a rectangular region, 

under Dirichlet's or Neumann's boundary conditions. 

An algorithmic solution of (4.2.8) based on an elimination scheme 

proposed by Conte and Dames (1958) is given as follows: 

then, 

and 

Let the following quantities be expressed as, 

w = cl ; '\ = 1 d/wl IlO = 0, Iln = 0 

Yl = e/wl , YO = 0, Yn = Yn- l = 0 

we define recursi vely, 

Next', 

O. = b. -a.ll. 2 , J 1 1 1 1-
L = Z,3,··'/"' 

W. = c.-a.y. l-cl.B. 1 
1 1 1. 1- 1. 1-

~ 

, 
Il. = (d.-C.y. l)!w, l : z,~, . . . ,"-1, 

1 1 1 1- 1 

e./w. 
<, 

i:4,3,'" n-1-Yi = 
1 1 

, ." 

we fomi, 

go = 0, gl = h/wl ' 

gl' = (h.-a.g. 2- 0 . g . l)!w., i=2,3, ... ,n. 
1. 1. 1- 1. 1- 1. 

, } 

Finally, the solution vector u is obtained successively from the 

formulae, 

(4.2.10) 

(4.2.11) 

(4.2.12) 
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u = 0, u = g n+l n n 
(4.2.13) 

ui = gi- Bi ui+l-Yi ui+2' i=n-l,n-2, ... ,I. 

This algorithm (4.2.10}{4.2.13) requires 8n multiplications, 3n divisions 

and 8n additions; and a further 4n multiplications, n divisions and 4n 

additions for subsequent applications if the coefficient matrix A remains 

unchanged. 



4.3 FAST ALGORITHMS BASED ON TIiE REVERSED TRIANGULAR FACTORISATION AND 

EXPANSION (ReTriFE) METIiOD 

Algorithm 4.4 
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First, we outline an algorithm given by Evans (1972) for the solution 

of the constant term 'symmetric tridiagonal matrix equation based on the 

rectangular (reversed triangular) factorisation and expansion of the 

transformed coefficient matrix. 

Consider the constant term, diagonally dominant, symmetric tridiagonal 

matrix equation, 

Au = d 

which may be written in matrix form as, 

b a 

a b a , , , 0 , , , , , , 
, , , , , , , 

, , , = , b>.2a. 
, , , , 

0 , , , 

, 
, , 

, , 
a 

a 

b u d 
n 

The system (4.3.1a) can be rewritten as, 

, " 
, l:f. '0) . _ . ..: " 

1+J1.2 -J1. u l 
-J1. 1+J1.2 

-J1. 0 u 2 .... .... , .... , .... , .... , , , 
.... .... , , , , , .... -J1. 

0 
.... .... 

.... , 2 I 

-J1. 1+J1. u 
n 

where the following transformation has been made: 

cl. -J1. i. e. , J1. = 
-20. 

i)= --2 , 
1+J1. ' b+,.{2 -4i 

and 
2 di i=1,2, ... ,n. gi = (1+J1. )1> ' 

gl 

g2 
I 

= 

I 

I 

gn 

It is easy to verify by direct multiplication that the matrix A 
possesses a unique rectangular factorisation of the form, 

(4.3.la) 

(4.3.lb) 

(4.3.2a) 

(4.3.2b) 

(4.3.3) 
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where Q is the (nxn+l) rectangular matrix given by, 

1 -1. 

1 -1. 0 , , 
, , 

, ... 
Q 

, ... 
= , , , , (4.3.5) 

, , 

0 
, ... , , 

, 1 -1. 

1 -1. 
Thus, the system (4.3.2b) is easily solved by rewriting it in the form, 

T 
QQ ~ = £ (4.3.6) 

which, with the introduction of an auxiliary (n+l)-component vector ~, 

yields the two b-c6n9ul~", systems, 

and 

Q~ = £ 
T 
Q~=~ 

which have to be solved to obtain the solution vector u. 

Derivation of Algorithmic Solution 

By definition, b>,2d, hence from (4.3.3) we have 

(4.3.7a) 

(4.3.7b) 

It is therefore sound numerically to use 1. as a multiplier in an elimination 

process without the risk of rounding error accumulation. 

Thus, in (4.3.7a), by multiplying the second equation by 1., the third 

. b 2 h .th . i-I th equat10n yR., •.. , t e 1 equat10n by 1. and finally the n equation 

n-l by 1. ,the following system of equations is obtained, . 

1 -1. 
2 

., 1. -1. 

1.
2 _1. 3 0 
"- , ... ... , 

, , 
, ... 

v l ., i l 1 
v ~g2 2 

1 
,I 

= 1 (4.3.8) ·1 

0 
, , 

, , 
, n-l , -1. 

1 

1 , 
n-l , """in 1. 

If we add together all the n equations of 

. , 
V ego 

n n:- '. 

vn+s) 
(4.3. we obtain an expression, 

relating VI with v 1 in terms of g., and n+ 1 
given by, 
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(4.3.9a) 

By following a similar reduction process applied in the same manner but 

commencing on the second, third, ... and finally nth equation we obtain the 

following sequence of equations, 

n-2 v -i· v 
3 n+l 

v -£v 
n n+l 

n-2 
g2+£g3+"'+£ gn 

n-3 
= g3+.tg4+· .• +1 gn' 

.................. 

relating each of the quantities v2,v
3

, ... v
n 

with v in terms of g .. 
n+l 1 

Next, we consider the system (4.3.7b) and by a similar elimination 

(4.3.9b) 

process, we obtain immediately the expressions for u
1

,u
2

, ... u
n 

in the form, 

.............. 
i-I u. = V.+1v. 1+" .+£ vI' 

1 1 1-

.............. 
n-l u = v +1v 1+"'+£ vI n n n-

(4.3.10) 

Substitution of vn'vn _l ··. ,vz and vI from (4.3.9) in terms of vn+l 

into the last equation of (4.3.10) together with the connecting equation, 

yielrls the final expression 

-iu = v 
n n+l 

for u as, 
n 

(4.3.11) 

2 4 2n (1+1 +1 + ... 1 )u = 
n 

2 4 2(n-l) 2 4 2(n-2) g (1+1 +1 + ... +1 )+1g 1 (1+1 +1 + ... +1 ) n n-
i 2 4 2(n-i+l) + ... +1 g . (1+1 +1 + ... +£ ) n-l 
n-l 

+ ••• +1 gl 
which simplifies, for /1/ <1, to give, 

together wi th v 1 = - R.u • 
n+ n 

A backsubstitution process, using (4.3.7a) yielas the components of 

the auxiliary solution vector ~ as, 

v. = g. + 1V. 1 .' i=n,n-l, ... ,l. 1 1 1+ 

(4.3.12) 

(4.3.13) 

(4.3.14a) 

(4.3.14b) 
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And finally, the solution vector u is obtained from a forward substitution 

process using (4.3.7b) to give,. 

u 1 = vI 

u. = v.+R.u. 1 
1 1 1-

i=2,3, ... ,no 

Thus, the solution of matrix equation (4.3.1) is obtained by the 

algorithm (4.3.13)-(4.3.15) which requires 

5n multiplications 

and 4n additions 

provided that the expression in (4.3.13) is evaluated using a nesting 

technique. Subsequent applications require 4n multiplications and 4n 

additions, if the coefficient matrix is unchanged. 

Speci al Case 1 

When b=2d, then from (4.3.3) i=-l and equation (4.3.13) is 

indeterminate but u can now be obtained from the alternative expression 
n 

(4.3.12) to give, 

together with 

and finally, 

Special Case 2 

n-l u = [ng -(n-l)g 1+(n-2)g 2-" .+(-1) gll/(n+l) n n n- n-

= V.-u. I' 
1 1-

i=2,3, ... ,n-I. 

When b=-2d, then i=l and hence we have, 

together with 

and finally, 

u = [ng +(n-l)g 1+(n-2)g 2+ ••. g1l/(n+l)· n n n- n-

v =-u 
n+l n' 

V. 
1 

u
1
·= v.+v. 1 

1 1-
i=2,3, ... ,n-I. 

(4.3.15) 

(4.3.l6a) 

(4.3.16b) 

(4.3.l6c) 

(4.3.l7a) 

(4.3.l7b) 

(4.3.17c) 

These two special cases considered above require only n multiplications 

and 3n addit~ons which is a remarkably special fast method of solution of 

(4.3.1) when b=±2CL 
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Algorithm 4.5 

The method of algorithm (4.4) can be _ex~end"d to obtain the solution 

of the sp • .c:col -" (nxn) synunetric tridiagona1 matrix equation. 

where A is now of the 

b1 
Cl 

, 

Au : d 

form. 

Cl 
b

2 
c

2 0 , , , 
, , , , 

, , , 
, ' ' 

o 
.. , .. c 

, n-1 , ' 
c 'b 
n-1 n 

b. ~2c, I bi 
1 1 

(4.3.18) 

1 = Ci +,. (4.3.19) 

An easily factorab1e transformation of the system (4.3.18) is achieved 

by consic\Q._ring d-"e-wA~stem(4-3-ZI).,O,,--,multif'L~~;'3'(43-'I') b~ ]) and (4-3-:U) b) ~ 
",\-'~re .D::: dL"-j ( 6';' I -- b:~) and :P = d ""9 Le 1+ L: ri, -, I (, +l ~ )-' ] 

.- ~-,.-" 

Clnd COrr>f'Q.,,'n~ ~he. "Leme-"i:,> o-F--tlte. ~~~"ltin9- non •• ~ .. m"-tric s~.te~, ",e h .. ve I 

" 
', ... - ) " ,.> < 

and 

-~~ .. re .1:h .. _ "new 

c/bi 
c

n
_

1 
b 

n 
systemcLS 

i:1.2 •.•.• n-1 

which. in matrix form. is given by. 

From (4.3.20). 

and 

2 
1+11 

-11 

t. = 
1 

-1 
12 

1+12 -1 2 , , , , , , , 

o 

-2c, 

, 

, 
" , , 

, 

-1 
n-1 

0 

, 
'-1 n-1 
1+12 

n 

1 
----~======, bi~2ci' 
b.+~~ -4c~ 
111 

/-

b 1 1-1 n n-
1 : --" '. b, >c 1 n c-" n n-

, 2n - 1 
(1+1. ) 

U
1 gl 

u2 g2 

: 

u gn n 

i=l,2, ... ,n-l, 

1 
g.: b d .• 

1 , 1 
1 

i=l ,2, ... ,n. 

(4.3.20) 

(4.3.21) 

(4.3.22a: 

(4.3.22b 

(4.3.22c 
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" The transformed matrix A can be easily verified to possess a unique 

rectangular factorisation of the form. 

1\ ""T A = pp (4.3.23) 

'" , where P is the DX~+l) rectangular matrix given by. 

1 -R.
l 

1 -R.2 ... , , ... ... ... 
" P = 

... ... ... , , ... , 
o , ... 

0 

, , , 
, ... 

... -R. 
... n-l 

... 1 -R. 
n 

",,(n+l) 

The solution of (4.3.21) is then obtained more easily by rewriting it in 

the form. 

which yields the two systems. 

Pr. = £ 

and T 
P u = r. 

T 
where r.=(yl.y2 •...• yn+l) is an intermediate vector. 

2 2 The factorisation scheme adopted above is valid for each b.>.4c .• l. l. 

i=1,2, ... ,n-l and hence by using (4.3.22a) we immediately have IR.. I~l l. 

(4.3.24) 

(4.3.25a) 

(4.3.25b) 

(i=1,2, ... ,n-l). It is thus possible to use these R.. terms as multipliers 
l. 

in an elimination process without the risk of rounding error growth. 

Thus. by using the R.. (i=l, •.. ,n-l) as multipliers in an elimination l. 

procedure identical to that adopted in the analysis of algorithm (4.4). the 
, 

linear systems (4.3.25) can be shown to give the following expression for u 
n 

22222 2 222 
u (1+R. +R. R. 1+R. R. lR. 2+.··R. R. 1 .. ·R.ll = n n n n- n n- n- n n-

22222 2 222 
g [l+R. 1+R. lR. 2+R. lR. 2R. 3+···+R. lR. 2··· t l l + n n- n- n- n- n- n- n- n-

222 222 222 
+R. 19 l[l+R. 2+ t 2R. 3+t 2t 3R. 4+ ... +1 21 3 ... 11] + n- n- n- n- n- n- n- n- n- n-

+ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• + 
2 2 2 2 2 2 

1 11 2 ... 1 .g. 1[1+1 . 1+1 . 11 . 2+ ... 1 . 11 . 2 .... 11] + n- n- n-l. l.- n-l.- n-1+ n-1- n-1- n-l.-
••••••••••••••••••••• 2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• + 

(1n_lR.n_2···R.2)g2[l+11]+(1n_ltn_2···1l)gl (4.3.26) 



together with the connecting equation, 

and • 

-i. u = y n n n+l· 

By defining the following recurrence relation, 

22222 2 222 
s. = (l+.i..+.i...i.. l+i.·.i.. l.i.. 2+·· .+i..i.. 1·· ·i. l ) 

1 1 1 1- 1 1- 1- 1 1-

t. = i.. i.. li.· 2···i. 1 
1 1 1+ 1+ n-

t = 1 , 
n 

i=1,2, ... ,n-l, 

a more computationally convenient expression for (4.3.26) becomes, 

+Slg2t 2+ s0gl t l . 

Further, from the recurrence relations (4.3.28) and (4.3.29) we 

immediately obtain, 

and 

2 
s. = . .i..s. 1 + 1 

1 1 1-

and hence the following scheme gives a neat computational method for 

evaluating u : 
n 

tl = i. l i. 2···i.n_l 

T. = T. l+g·t.s. 1 
1 1- 1 1 1-

ti+l = t/i. i 
2 

s. = .i.. s. 1+ 1 
1 1 1-

and hence, u = T /s . n n n 

i=1,2, ... ,n 

The back substitution process using (4.3.2Sa) yields the components 

of the auxiliary solution vector, i.e., 

Yil+l = -i.nUn 

and Yi = gi+i.iYi+l' i=n,n-l, .•. 1 

whilst the components of the solution vector u are given by 

Ul = Yl 

and finally a forward substitution of the form, 

u. = y.+.i.. lU. I' i=2,3, ... ,n-l 
1 1 1- 1-
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(4.3.27) 

(4.3.28) 

(4.3.29) 

(4.3.30) 

(4.3.31) 

(4.3.32) 

(4.3.33) 



Algorithm (4.5) which we denote as the Generalised ReTriFE' (GENRET) 

algorithm is summarised below and given as Program 8 of Appendix I. 

Generalised ReTriFE Algorithm (4.5) 

SteE 1 First, we compute the following coefficients, 
-2c. 2 2 i. 1 i=l,2, ... ,n-l, = I bi >4Ci , 

1 b.+(b.-4c.) 
111 

rb i -c ]! i = n n~l n-l b >c 1 n , 
n n- , 

n-l 

n-l 
tl = lTi. , ti+l = t./L, i=1,2, ... ,n-l 

j=l J 1 1 

and TO = 0, s = 1 
0 

SteE 2 Next, we compute, 
di 2 

g. = b(I+L) 
1 . 1 

1 

T. = T. I+S' 19. t. i=1,2, ... ,n , 
1 1- 1- 1 1 

S = i~S. 1+1 i 1 1-

and then u = T /s . 
n n n 

SteE 3 Finally, we obtain, 

i=n,n-l, ... 1, 

and ul = YI' u. = y.+i. lU' l' i=2,3, ... ,n. 
1 1 1- 1-

Altogether, this algorithm requires approximately 6n multiplications, 

and 4n additions, in addition to the pre-computed coefficients i. ,to which 
1 1 

need to be calculated just once if more than one solution is required. 

Algorithm 4.6 

Next we adopt the approach of the last two algorithms to obtain the 

solution of the constant term symmetric quindiagonal matrix equation, 

90 

Au = h (4.3.34)' 

which in matrix form may be written as, 



d e f ul hI 
e d e f u

2 h2 
f d f 0 I e e , ... ... ... ... 

... , ... ... ... , ... , ... ... ... , ... ... ... ... ... = ... ... ... ... ... , , ... , , 
, , , ... -f , , , , 

0 ... , , , 
, ... , e , , , 

'e .... d I 

f u h 
n 

where d,e,f are assumed to be non-zero. 

If each equation of (4.3.35) is mUltiplied by 
2 2 l+a +B 
d 

the simple transformations, 

and 

-a+aB 
2 2 l+a +B 

f -B 
if = 2 2 

l+a +B 

the system (4.3.34) is transformed to the new form, 

'" Au = £ 

which in matrix form is, 

2 2 l+a +B -a+aB -B 

-a+aB l+a 2 +B2 -a+aB -B 

-6 -a+aB 
. 2 2· 
l+a +6 -a+a6 -8 , .... .... .... .... , , .... .... ... ... .... , ... .... .... .... ... ... , ... ... ... ... ... ... ... , .... ... ... , , .... .... , ... ... ... 

0 ... .... ... , , ... ... ... ... , , , 
-6 -a+aB 

2 2 h. 
where gi = (l+a +B )2 i=1~2, ... ,n, d 

J 

and from (4.3.36a) and (4.3.36b), 

and 

Hence we have, 

or 

2 2 d 
l+a +6 = -a(l-B)e 

2 2 
l+a +B = -B d/f 

a= 

B = 

,se 
(1-I»f ' 
fa 
e+fa 

0 

.... .... 
-B ... 

-a+a6 
... , 2 2 
l+a +B 

u1 

u2 

u3 
I 

I 
I 

I 

U 
n-l 

u n 

and by using 

91 

92 

93 

= 

I 

9n- 1 
iJn 

A substitution for B in (4.3.4oa) gives the following quartic equation 

in terms of a, i.e., 

91 

(4.3.3S) 

(4.3.36a) 

(4.3.36b) 

(4.3.37) 

(4.3.38) 

(4.3.39) 

(4.3.40a) 

(4.3.40b) 

(4.3.41a) 

(4.3.41b) 



24 3 22 2 2 fa +2efa +(2f +e +df)a +(2ef+de)a+e = o· (4.3.42) 

Similarly we obtain. 

4 d 3 d e 2 2 d 
e +(f~)e +(2-2rZ)e +(r2)e+ l = 0 

f 
(4.3.43) 

In the algorithmic solution to follow. a and e are to be used in the 

usual manner as multipliers in an elimination process and hence for 

stability reasons we must choose values of a and e (amongst the possible 

values they can take) such that 

and lel<l . 

In order to determine the values of a and e. we choose to solve for 

a from equation (4.3.42) by using the Newton-Raphson iterative method which 

obtains the root of the polynomial equation ~(a)=O. by the formula. 

(k+l) (k) 
a = a -

at the (k+l)th iteration step. 

Since we require lal<l. then a(O)=O is a good starting value and 

the convergence of the iterative scheme is attained when 

k=O.l.2 •... 

-10 for a given small number. E(e.g. SxlO ). 

If we put a(k)=~+kE where ~(~)=O. ~'(~)10 then it can be shown 

(Froberg (l96S).p.2l) that 
_ ~"(~) 2 

E:k+l - 2~' (~)£k 

(4.3.44) 

which implies that the iterative scheme (4.3.44) has a quadratic convergence. 

The number of correct decimals is thus approximately doubled at every 

iteration. (if the factor ~"(~)/2~' (~) is not too large) and this perhaps 

explains why it takes on the average 5 iterations for a to converge from 

a(O) = 0 to a(k) = ~±E (~<l. being an exact root). 

Next. we now proceed with the algorithmic solution under the assumption 

that lal and lel<l have been determined. 

Algorithmic Solution 

. " The matrlx A can be shown by direct multiplication to possess a unique 

rectangular factorisation given by. 



, 

where R is the (nx(n+2)) upper rectangular matrix of the form, 

1 -a -6 

1 -a -6 "' 0 "' "' "' "' 
, 

"' , , , 
"' "' "' "' "-

R= 
, 

"- "' "' 
, , 

-6 "' 
, 

0 
, 

"' , 1 
, 

-6 -a 

1 -a (n)x(n+2) 

The system (4.3.37) can now be solved in two stages, by introducing the 

(n+2)X1 auxiliary vector r to give, 

and 
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(4.3.45) 

(4.3.46) 

(4.3.47a) 

(4.3.47b) 

Thus, if we now consider the system (4.3.47a), which, in matrix form, 

is given by 

1 -a -6 

1 -a -8 
"- "- "-

"- "' "-
"' "' 

"' .' , , 
"' "' "' 

0 

0 

"' , , 
"' , , , 

"' 
, , , 

'1 -a 

1 

, 
-8 I 

-a 
I 
1-8 

1 I I-a .jl 

Y1 

Y2 

Yn 

yn+1 

yn+2 

gl 

g2 

= 

gn 

then, we can obtain Yi' (i=1,2, ••. ,n) in terms of yn+1 ,yn+2. To do this, 

(4.3.48) 

we apply a recurrence backward substitution process to the system (4.3.48). 

The nth equation of (4.3.48) is given by, 

Y = g +ay +6y n n n+1 n+2 

which we can express as 

Yn = b1+a2Yn+1+a16Yn+2· , 

where b1=gn' a1=1, and a2=a. 

Similarly, the (n_l)th equation of (4.3.48) is given by 

(4.3.49) 
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which, when expressed in terms of y 1 and y 2 by substituting for y from 
n+ n+ n 

(4.3.49), yields, 

(4.3.50) 

where, 

and 
2 a

3 
= a +6= aa2+6a

l 

By a similar process, we obtain in general, the expression for y 1 . n+ -J 

(j = 1,2, ... ,n) in terms of the two unknowns, Y n+ 1 and y n+ 2 as follows: 

Yn+l-j = bj+aj+lYn+l+aj6Yn+2 

where a.,b. are given by the recurrence relation, 
J J 

a2 = a 

a. = aa. 1+6a. 2' j=3,4, ... ,n+l, 
J J - J-

and bl = gn , 

b2 = gn-l +abl 

b. = g . l+Clb. 1+6b. 2' j=3, •.. ,n. J n-J+ J- J~ 

In matrix notation, (4.3.51) represents the result of a backward 

elimination process on the system (4.3.48) to give, 

I -a n+l -Ba Yl b n n 

0 
I 

I Y2 b n-l 
" , I· I , I = , , 

I 

0 
, 

-Ba2 b2 
, -a Yn " 3 

'1 -a2 -Ba 
I Yn+l bl 

n+2 
Further, from the system (4.3.47b) which, in matrix form, is given 

I uI Yl 
-Cl I 0 u2 Y2 
-B -Cl 1, , , , , , 

, , 
= , , , , , , '1 

0 
, , , , -Cl I u Yn ------ - - - - - --- n 

-B -Cl Yn+l 

-BJ (n+2)x n Yn+2 

(4.3.51) 

(4.3.52a) 

(4.3.52b) 

(4.3.53) 

by, 

(4.5.54) 



we obtain, 

Similarly, 

u2 = Y2+aul = Y2+aYl = a l Y2+a2Yl • 

u3 = Y3+au2+ Bul 

which on substituting for u l and u2 gives, 

u3 = alY3+a2Y2+a3Yl 

where a l ,a2,a3 are given by (4.3.S2a). 

Generally, by a successive forward substitution process we have, 
i 

and 

u. = 
1 

We now proceed 

From (4.3.SS), 

u n-l 

u 
n 

I aJ'Yi-J:+l ' i=l,2, ... ,n. 
j =1. . . 
to solve for the two unknown values Y 1 and Y 2' n+ n+ 

we have 
n-l 

= I a.y . 
J n-J j=l 

= 
n 

I aJ'Yn+l-J' 
j=l 
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(4.3.5S) 

(4.3.S6a) 

(4.3.S6b) 

Hence, substituting for Yn-k and Yn+l - k from (4.3.S1) into (4.3.S6a) and 

(4.3.S6b) respectively, we obtain, 

and 

n-l 
un_l = j~laj(bj+l+aj+2Yn+l+Baj+1Yn+2) 

u 
n 

n 
= I a.(b.+a. lY l+Ba.y 2) . 

j=l J J J+ n+ J n+ 

Further, the two connecting equations are obtained from the system 

(4.3.S4) to give, 

and 

i. e. , 

On 

-Bu -aU = n-l n 
2 

-B u -aBu n-l n 

, 

2 -B u n-l = By l+aBu n+ n 

sUbstituting for BUn 

2 -B u n-l 

from (4.3.S8), we have, 

Next, we combine equations (4.3.S8) and (4.3.S7b) to obtain, 
n 

Yn.j.2 = -Bun 

which yields the result, 

= - B ~ a.{b.+a. lY l+Ba.y 2} 
j:l J J J+ n+ J n+ 

(4.3.S7a) 

(4.3.S7b) 

(4.3.S8) 

(4.3.59) 



n n n 2 I a.) = 
j=l J 

-(S I a.a. l)y l-(S I a.b.) . 
j=l J J+ n+ j=l J J 

Similarly, by combining (4.3.59) and (4.3.57a) we obtain 

2 2 
SYn+l-aYn+2 = -S un_l = -S 

n-l 

j~laj(bj+l+aj+2Yn+l+saj+lYn+2) 
which yields 

3 n-l 
y 2(S I a.a. I-a) = 

n+ j=l J J+ 

2 n-l 2 
(S+S I a.a. 2)y l-(S 

j=l J J+ n+ 

n-l 
I a.b. 1) 

j =1 J J+ 
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(4.3.60) 

(4.3.61) 

Both equations (4.3.60) and (4.3.61) .can be represented respectively 

as 

and 

where 

and 

and 

= -(Ty l+V) n+ 

Yn+2S = -(UYn+l+W) 

2 n 2 
Z = l+S l a. 

j=l J 
n-l 

S = S3 I a.a. I-a 
j=l J J+ 

n 
T = S I a.a. 1 

j =1 J J+ 
2 n-l 

U = S+S I a.a. 2 
j=l J J+ 

n 
V = S I a.b. 

j=l J J 

S2 
n-l 

W = I a.b. 1 
j=l J J+ 

From (4.3.62) and (4.3.63) we immediately obtain the value, 

ZW-SV 
Yn+l = ST-ZU' provided ST-ZU#O 

= -(Ty l+V)/Z, n+ 2#0. 

With the values of y l'Y 2 known from (4.3.64) and (4.3.65) n+ n+ 

respectively, we return to the system (4.3.48), and use a backward 

substitution process to obtain the results, 

Yn-i+l = lh-i+l + aYn_i+2 + BYn_i+3' i=l,2, ... ,n . 

Finally, we use the system (4.3.54) in a forward substitution 

process to obtain the final solution vector as, 

(4.3.62) 

(4.3.63) 

(4.3.64) 

(4.3.65) 

(4.3.66) 



and 

Some Simp1ifications 

u 1 = Y1 

u2 = y 2+aY1 

u. = y.+au. l+/lu . 2' i=3,4, ..• ,n. 
1 1 1- 1-
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(4.3.67) 

In the evaluation of Z,S,T, and U the amount of arithmetic catcu1ation 

can be drastically reduced by the use of the following properties:-

T can be rewritten as, 
n n-l 

T = /l L a.a. 1 = /l( L a.a. l+a a 1) 
j=l J J+ j=l J J+ n n+ 

Also by using the relation for a. in (4.3.52a) we have, 
J 

j=1,2, •.. ,n-1, 

hence a.a. 2 
J J+ 

i. e. , 
n-1 
L a.a. 2 

j=l J J+ 

n-1 
= a L a.a. 1+ 

j=l J J+ 
n-1 

= a L a.a. 1+ 
j=l J J+ 

n-1 2 
B L a. 
j=l J 

n 2 2 
a( La. -a ) 

j=l J n 
Thus, if we define the quantities 

y = 

and p = 

then Z,S,T,U,V and W can 

Z = 

S = 

T = 

U = 

V = 

and 
W = 

n-1 
L a.a. 1 

j =1 J J + 

n 2 
L a. 

j=l J 

be expressed as, 

2 l+/l p , 

3 
B y-a 

/l(y+a a 1) n n+ 
2 3 2 2 /l+/l ay+/l p-/l a 

n n 

/l L a.b. 
j=l J J 
2 n-1 

/l L a.b. 1 
j=l J J+ 

We can now summarise the above given quindiagonal matrix solver 

algorithm as follows: 

(4.3.68) 

(4.3.69) 

(4.3.70) 



Quindiagonal (ReTriFE) algorithm (4.6) 

Step 1 Determine a<l, from the quartic 2 4 322 
equation, f a +2efa +(2f +e +df)a 

2 +.(2ef+de) a+e =0 using the 

fa Then, compute 8 = 
e+fa 

Newton-Raphson iterative scheme (4.3.44). 

2 2 hi 
and each of g.=(l+a +8 )--d ' i=1,2, ... ,n. 

1 • 
1 

Step 2 Compute the recurrence relations, 

bi = gn 

b2 = gn_l+abl 

a. = aa. 1+8a. 2' j=3,4, ... ,n+l 
J J - J-

b. = g . l+ab. 1+8b. 2' j=3,4, ..• ,n, J n-J+ J- J-
Stef' 3 Compute 

n-l n 2 y = L a.a. 1 p = L a. , 
j=l J J+ j=l J 

Z 2 = 1+8 p 

S 3 = 8 y-a , 

T = 8(y+a a 1)' n n+ 
2 322 , U = 8+8 aY+8 p-8 a n 

2 n 
V = 8 L a.b. 

j=l J J 

and 2 n-l 
W = 8 L a.b. 1 

j=l J J+ 

Stef' 4 Compute Yn+l = (ZW-SV)/(ST-ZU) 

= -(Ty l+V)/Z n+ 

and Yn-i+l = gn-i+l+aYn-i+2+BYn_i+3' i=1,2, ... ,n. 

Finally, the solution vector is obtained from, 

and u. = y.+au. 1+8u . 2 
1 1 1+ 1+ 

The total amount of work required, discounting the application of the 

·Newton-Raphson (or any alternative root finding) algorithm to determine 

a(and B obtained from a) is of the order of: l3ij multiplications and lln 

.addi tions. 
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Although the algorithm involves more work than the Conte and Dames algorithm 

(4.3), nevertheless, the Quindiagonal (ReTriFE) algorithm requires only 4 

vectors and 10 variables which represents a worthwile storage gain of 2 n-

component vectors over the former method. 

The strategy of algorithm (4.6) can be generalised to obtain a solution 

of the more general (nxn) symmetric quindiagonal system, 

Au = h (4.3.71a) 

where A is of the form, 

dl e l fl 
e l 

d2 e 2 f2 0 
fl eZ d3 e

3 f3 
, , "- "- "-, "- , "- "-, "-

, , , 
A = "- "-

, 
"- , , , "-

, , , , , 
"-

, , 
f , "-

, 
0 , , - n-l , 

"-
, -, - e 

n-l ., "- , 
f .- e 'd 
n-Z n-l n 

However, the transformations' necessary to convert A into an easily 
\ 

factorisable form leads to the solution of n quartic equations. This 

makes the rectangular factorisation and expansion method unattractive for 

the solution of the system (4.3.7lb), 

It is also possible to apply the ReTriFE strategy to the solution of 

wider' banded constant element linear systems but it was observed that as 

the bandwidth becomes larger, the analysis becomes more complicated and 

(4.3.71b) 

the derived algorithm. less attractive or competitive. The recursive point 

partitioning approach which we shall introduce in the next section offers a 

simpler and more efficient method for such wider'banded systems. 

Algori thm 4.7 

Further, pursuing the ReTriFE strategy, we consider the special skew-

symmetric constant element (nxn) tridiagonal system, 

Au = d (4.3.72) 



where A is of the form, 

b c 

-c b c 

-c b , , , , , , 
0 

c o 
, , , , , , , , , , , , , , , , , , , ' , c 

.. -c .... b 

100 

(4.3.73) 

The matrix system (4.3.73) arises, for example, in the solution of parabolic 

partial differential equations by boundary value techniques (see section (5.4)). 

By applying the following transformations, 

C a 
i.e., 2c 

b- --2 , a = 
I-a b+~2+4c2 

and 
2 di 

i=1,2, ... ,n gi = (l-a )1) • 
(4.3.74) 

we can rewrite the system (4.3.72), as, 
,. 
Au = £ (4.3.75) 

1\ 
where A is of the form, 

I-a 
2 

a 

I-a 
2 

-a a 
0 " 

, ... , ... 
... , ... , ... , ... , ... 

... " ... 
... ... ... 

0 , ... ... 
... ... ,a 

... ... 2 ... 
I-a -a 

,.. 
factorised uniquely into the form, The matrix A can now be 

~ 
,..~ 

= PQ 

" " where P and Q are (nx (n+l)) and ((n+l)xn) rectangular matrices given by, 

1 a 1 

" 

1 a 0 , " ... ... 
-a 1, 0 ... ... ... 

P = ... " " ... ... and Q = ... 
" 0 .... 1 ... a I 

I 

... ... ... ... o ...... -a'-1 
(4.3.76) 

------.--
1 I a 

1))( (n+ 1) I_ -a (n+ J)xn/·' 
/ 



Thus, as usual, the system (4.3.75) is solved easily by considering 

the system, 

which gives the two alternative forms, ,. 
Pr. = .8. 

and 

where y. (i=I,2, ... ,n+l) is an intermediate vector. 
1 

It is immediately obtained from (4.3.74) that for b,c>O, 

lal < I 

and for b=O, CFO, 

lal = 1 

Thus, similar to algorithm (4.4); we can use a as a mUltiplier in an 

elimination process without incurring numerical instability resulting 

from the growth of rounding errors. 

Hence, by applying the elimination procedure similar to that used in 

algorithm (4.4) to the two matrix systems (4.3.7~ and (4.3.78b), with a 

used as a multiplier in the elimination process, it can be shown that the 

expression for u is given by, 
n 

2 4 i 2i n 2n 
u [l-a +a - ... +(-1) a + .•. +(-1) a ] = n 

2 4 i 2i n-l 2(n-l) gn[l-a +a - ... +(-1) a + ... +(-1) a ] + 

ag 1[I_a2+a4_ ... +(_1)ia2i+ ... +(_1)n-2a2(n-2)] 
n-

+ •••••••••••••••••••••••••••••••••••••••••••••• 

i 2 4 
+a g . [l-a +a - ... n-1 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• + 

together with the connecting equation, 

-au 
n 

Then, equation (4.3.79) is simplified, far laI<l, to give, 

2 n+l 
[l-(-a) ]u = 

n 
2 n 2 n-l : 

g [l-(-a ) ]+ag l[l-(-a) ] + ... n n-
n-l 2 2 n-l 2 

+a g2[1-(-a)] + a gl[l-(-a)]. 
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.(4.3.77) 

(4.3.78a) 

(4.3.78b) 

(4.3.79) 

(4.3.80) 
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i. e. , 
2 n+l 

[1- (-a) ]u 
n 

n-2 n-l 
= gn+agn_l+···+a g2+a gl 

n+l 2 i i-I n n-l 
-a [-gl+ag2-a g3+ •.. +(-1) a gi+···+(-l) a gn] 

from which, by using a nesting technique, u can be computed in 2n 
n 

multiplications and 2n additions. 

(4.3.81) 

A back-substitution process, using (4.3.78a), yields the components of 

the auxiliary vector as, 

j==n,n-l, ... l , 

where yn+l = -aun 

Finally, the solution vector u is given by a forward substitution 

process obtained from (4.3.78b) to give, 

and u. = y.+au. 1 
1 1 1-

i=2,3, ... ,n-I. 

The algorithmic s~lution (4.3.81)-(4.3.83) together with the connecting 

equation (4.3.80) requires Sn multiplications, and 4n additions provided 

that (4.3.81) is evaluated by a nesting technique. 

Special Cases 

When b=O, c#O then from (4.3.74), 

lal = 1 

and thus the above algorithmic process provides a method for the solution 

of the special (nxn) singular matrix system, 

0 c u
l d l 

-c 0 c , 0 u2 d2 , , , , 
, , 

, , , 
I , , = , .... I , , 'c 

0 I 

-c 0 u d n n 

which can easily be transformed to the fprm, 

(4.3.82) 

(4.3.83) 

(4.3.84a) 
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0 1 u
1 gl 

-1 0 1 0 u 2 g2 , "-, , , , , , I ... , , , 
(4.3.84b) , , , = , , , , , ... , 1 

0 , , , , , --1 0 u gn n 

-or Au = 1l. (4.3.85) 

where g. = d./c i::;1,2, ... ,n. (4.3.86) 
1 1 

~ 

The matrix A has the unique factorisation, 

- ~-A = PQ (4.3.87) 

-where P and Q are nx(n+1) and (n+1»<n' rectangular matrices respectively 

of the form, 

1 1 

1 1 o 
" 

, 

- , , 
, , 

P = , (4.3.88a) , , 
0 

and 
1 1 ';)((n+1) 

1 

-1 1 0 , , , , , 
" , - "- , 

Q "- , = , , , (4.3.88b) 
, , 

0 , , 
, 

- - - - -1 - - - 1 

-i , 
, (n+ l}xn.l; 

Case 1 

When 0=1, and n=even, then from (4.3.79), we have 

(4.3.89) 

together with 

and i=n,n-l, ... ,l, (4.3.90) 

and finally the solution vector u becomes, 

u. = y.+u. I' 
1 1 1-

i=2,3, ... ,n-1. (4.3.91) 



Case 2 

When a=l. and n is even then we have. 

together with 

Yn+l = un 

Yi = gi+Yi+l. i=n.n-l •..•• l 

and fina 11 Y • u I = YI • ui = yi-ui _l • i=2.3 •...• n-l. 

Thus. the solution of the special forms of the skew-symmetric 

singular linear system (4.3.84a) with zero diagonal entries can be 

obtained. for n even. in only Sn/2 additions which is remarkably fast. 
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(4.3.92) 

(4.3.93) 

(4.3.94 ) 

The solution of (4.3.84) is however indeterminate using this method. for 

an odd value of n. 

A Fortran implementation of algorithm (4.7) is given as Program 9 of 

Appendix r. 
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4.4 RECURSIVE POINT PARTITIONING (R.P.P.) METHODS FOR THE FAST· SOLUTION OF 

BANDED MATRIX EQUATIONS ASSOCIATED WITH DIRICHLET'S AND NEUMANN'S 

BOUNDARY CONDITIONS 

Algorithm 4.8 

Next, we introduce the method of recursive point partitioning (R.P.P.) 

in the solution of sparse banded matrix systems. 

First, we consider the general (nxn) tridiagonaI matrix equation, 

Au = d , 

i . e. , 

bI 
'c , u

I 
d

I , 1 -, ;1
2
- - - c- ri; aI c2 u2 , , " " 

"- " " 0 " " 1 " " " I " " " " " " 1 " " " = 
1 " " " " " 

, , 
0 " " c n-2, I 

" I 
a 'b le d 

_1- _ D-~ .Jl~I! I)-J ' . 11::1 - - - -
a 'b u d n-II n n n 

which can be rewritten in the following block partitioned form 

(1) T 

° 0
1 ~I 

"' w· 
-1 Q2->n-I ~l 

° 
T (1) 

!.I 0 n 

where 
.,", . ~(l) 

~i '~I '~I ,r I'~ and ~ are 

T 
(cI,O,O, ... ,O) ~I = 

T 
~l = (aI ,0,0, ... ,0) 

~I = (0,0,0 ... ,O,c 1) n-
T (O,O,O, .. ,O,a 1) !.l = n-

and -

ul 
d (1) 

1 
~ d(I) u = 

u dO) 
n n 

(n-2) component vectors 

T 

and d(I) are given by, 
n 

, 

given 

as 

by, 

Q is a submatrix of order n-2 .obt,,;~.d r ro- "he ". l h [ )'" 2-+-n-l ' ... , ~ 0 i "'1-' rows 

(4.4.1) 

(4.4.2) 

(4.4.3) 

(4.4.4) 



From the block form (4.4.3) we obtain the equations, 

Cl) T~ a u +v u 
1 1 -1- = d Cl) , 

1 
= d(1) , 

= d(1) 
n 

from which we obtain the scalar unknowns, 

and u = 
n 

d Cl) 
1 

(f) -
Q

I 

d (I) 
n 

(f) -
a n 

T_ 
v I!!. 
(f) a l 

T~ 
r I!!. 
(f) 
a n 

and also the reduced matrix system of order (n-2) 

[ 
w v

T 
z r TJ w d (l) . -1 1 -1-1 - ~(l) -1 1 

Q2->n-I- (f) - (f) !!. = ~ - (l) 
a l an a

l 

given by, 

z d (I) 
-1 n 
a (I) 

n 

It is easy to verify by a simple substitution process that the 

system (4.4.7), when expressed in matrix notation, is configured in a 

similar manner as the original system (4.4.2) but of order 2 less and 

is given by, 

a t2) i c u
2 

d (2) l 1 2 2 ---,---- -----t----a2 ' b3 c3 1 u3 d3 , 1 ... ... 
I 

~ ... ... , 
... ... ... ... " = ... , ... ... .... ... ... ... ... 1 ... , ... ... ... ,I 

1 ... 
b to:: d a u 

- 1- _ _ _ n:3_ _n:£ ~ _n:~ _ t.!-). _ t.!-_2 _ 
1 a I (2) 

u d (2) 
n-2 1 an_l n-l n-l 

where alcl d(1) (2) d (2) d (I) a l 1 

.l 
a2 = b2 - (l-' -

(1) 2 2 Q J a l 1 
c d (I) (2) a c 

d (2) d (I) = b n-l n-l and n-l n a - = n-l n-l (I) n-l n-l (1) a a n n 
Further, it is easily observed that the reduced system (4.4.8) can 

be similarly partitioned and rewritten in the form, 
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(4.4.S) 

(4.4.6) 

(4.4.7) 

(4.4.8) 

(4.4.9) 
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(2) T 
0 d(2) 112 l!:2 u 2 2 

-- ~ 

u d (2) 
~2 Q3~n-2 ~2 (4.4.10) = 

T (2) 0 ~2 11· n-1 U n-1 
d (2) 
n-l 

from which a further reduced system similar in structure to (4.4.7) is 

derived. 

Thus, we can set up a recursive procedure in which the above reduction 

process is continued such that at the ith partitioning stage we have, 

identical to (4.4.4) and (4.4.9), the following recurrence relations, 

(i) a. l c . 1 1- 1-
(i) 

a. Id. 1 
a. = b. 

1 1 

and 
(i) 

an _i + 1 = bn _i + l -

(i-I) , 
a

i
_

1 

a . n-1+1 
(i-I) cn_i+ 1 

a . 2 n-1+ 

d (i) 
, n-i+l 

1- 1-

(i-I) 
a. 1 1-

= d(i-l) 
n-i+l 

c . 1 n-1+ 
(i-I) 

11 . 2 n-l+ 

d(i-l) 
n-i+2· 

(4.4.11) 

The recursive procedure is then continued until the reduced system 

is of order 1 for n odd; and of order 2 for n even. 

Case 1: n odd 

For n odd, the final reduced system is given, for q=(n+l)/2, by the 

system[, w vT 
~ --q-l~-1 
Qq~-q+1 - a(q-l) 

q-l 

T ] 
z r 
--q-1--q-l _ (q-1) 

- U - a (q-1) q q a n-q+2 

w d (q-l) 
_ --q-1 q 

(q-l) 
a q-1 

which can be verified to be the single equation, 

a(q) r c a c ) = b g-l g-l + g+1 n-g+l 
q q (q-1) (q-l) a a . q-l . n-q+2 

where 

and d(q) d (q-1) 
(d (q-l) a d(q-l)c ) 

= g-l ·g-l + n-g+2 g+1 -q q (q-l) (q-1) a a q-1 n-q+2 

z d(q-l) 
_ --q-l n-q+2 

(q-1) 
an _q+ 2 

(4.4.12) 

(4.4.13) 

(4.4.14) 
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Case 2: n even 

For n even, the final reduced system is given by (4.4.12) (for q=n/2) 

and can be verified to be the same as the (2X2) system, 

q [:~q) 
n-q 

which is solved to give, 

c 1 a(q) 
n-q+l 1::..1 . [d~q) 1 

d(q) 
n-q+l 

u = (d(q)a(q) -d(q) c )/(a(q) a(q)-a c) 1 
q q n-q+l n-q+l q n-q+l q n-q q 

u = (a(q)d(q) -d(q)a )/(a(q) a(q)-a c) 
n-q+l q n-q+l q n-q n-q+l q n-q q 

and 

where o(q) ,a(q) l' d(q) and d(q) 1 are as defined in (4.4.11). 
q n-q+ q n-q+ 

Finally after obtaining the central values of ~ by using (4.4.13), 

for n odd, or (4.4.16), for n even, we proceed to obtain the remaining 

(4.4.15) 

(4.4.16) 

elements of the solution vector by a back-substitution process. By using 

the equations of the scalar unknown obtained at each stage of the reduction 

process (e.g. (4.4.6) for the 1st reduction) we derive the other elements 

of the solution vector as, 

and u = (d(i~ -a .u .)/a(i~ 
n-i+l n-1+1 n-1 n-1 n-1+1 

• ) i·'-l.'-< •..• l. (4.4.17) 

We denote the above scheme as the tridiagonal recursive point 

partitioning (TRPP) algorithm which is given as Program 10 of Appendix I 

and may be summarised as follows: 

TRPP Algorithm (4.8) 

Step 1 Set up the following quantities, 

(1) = bl 
d (1) = dl a l 1 

, 
(1) = b del) = d a n n n n 

and q = n/2 (n even) or (n+l)/2 (n odd) . 
Step 2 Compute the following quantities in the partitioning process: 

a. 1 1-
t i-I = -7( i:-'=-'-;-l') 

a
i

_
l 

, s. 1 = 1-

c . I n-1+-
(i-I) 

an _i +2 

i=2,3, •.. ,q 

(4.4.18) 

(4.4.19a) 
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(i) 
i=2.3 •. ~ .• q-l a. = b.-t. lC. l' 

1 1 1- 1-
(n odd) 

(4.4.19b) 
(i) 

a .1= n-1+ 
b s a dei) = 
n-i+l- i-I n-i+l' n-i+l i=2.3 •...• q 

(n even) 

and (for n odd only). compute the quantities. 

a(q) = b - (t c +s a ) 
q q q-l q-l q-l q+l 

and d(q) = 
q 

Step 3 Finally. compute the solution vector ~ by using the formulae. 

u = d(q) /a(q) 
q q q (if n is odd) 

or u = (d(q)a(q) -d(q) c )/(a(q) a(q)-a c) 
q q n-q+l n-q+l q n-q+l q n-q q 

u = (a(q)d(q) -d(q)a )/(a(q) a(q)-an_qc
q

) 
n-q+l q n-q+l q n-q n-q+l q 

and then 
ji=q-l.q-2 •...• l. 

and _ (i) (i) 
u . 1 - (d . I-a .u .)/a . 1 • 

n-1+ n-1+ n-1 n-1 n-1+ 

(4.4.19c) 

(4.4.20a) 

if n is 
even 

(4.4.20b) 

(4.4.20c) 

The TRPP algorithm requires less than 3n multiplications. 2n divisions 

and 3n additions (a slight improvement over the Thomas algorithm (4.1)). For 

repeated solutions with the coefficient matrix unchanged. only the terms d~i) 
1 

and u. need to be recalculated in 
1· 

additions. Furthermore. the a~i) 
1 

2n multiplications. n divisions and 2n 

and d~i) terms can overwrite the diagonal 
1 

elements. b. and the right-hand side elements. d. respectively. thus giving 
1 1 

a gain of two n-component vector storage over the Thomas algorithm. 

The TRPP algorithm is simply a systematic modification of the diagonal 

and right-hand side vectors from both the top and the bottom of the respective 

vectors towards the centre where it then becomes a simple outward process to 

calculate the· solution vector. 

Algorithm 4.9 

The recursive point partitioning strategy introduced in algorithm (4.8) 

offers further computational gains when applied to the solution of the simple 
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constant element tridiagonal system, 

Au = d (4.4.21) 

where A is of the form, 

A -1 

-1 A -1 
0 , " 

, 
.... , , 

A = , , (4.4.22) " " , 
" . " " " " 

" 
, 

" 
" " 0 " " -1 

" , 
'-1 " A 

A variant of algorithm (4.8) which gives an efficient fast solution 

of the above matrix system is given below and is denoted as the CTRPP 

algorithm. 

CTRPP Algorithm (4.9) 

Step I First, we set up the quantities, 

= A , (4.4.23a) 

del) = d 
n n 

(4.4.23b) 

and q=n/2 (for n even) or (n+I)/2 (for n odd). 

Step 2 Then, we compute the following recursive relations, 

t. I 
I i=2,3, ... ,q (4.4.24a) = (i-I) 1-

a. I 1-

(i-I) = (i) = A -t. I a. a . 1 
1 n-1+ 1-

d~i) = d~i-l) + t d (i-I) i=2, ... ,q-l, (n odd) 
1 1 i-I i-I (4.4.24b) 

or 
d (i) = d (i-I) + t.d n-i+2 i=2, ... ,q, (n even) n-i+l n-i+1 1 

and for n odd only, 

a(q) = A-2t 
q q-l 

= d(q-l)+(d(q-ll)t l+d(q-I)2t 1)' (4.4.24c) 
q q- q- n-q+ q-

Step 3 Next, 'we obtain the central elements of the solution vector by 

using the formula, 

u = d(q)/a(q) (if n is odd) 
q q q 

(4.4.2Sa) 
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or 

(4.4.2Sb) 

and 

and 

u n-q+l 

(i) 
u. = (d. +u. l)t. 

1 1 1+ 1 

u . 1 = (d(i~ +u .)t. 
n-1+ n-1+l n-1 1 

I i·q-I.q-' ••.. I. (4.4.2Sc) 

This special variant of the TRPP algorithm (4.8) requires less than 

2n multiplications n/2 divisions and Sn/2 additions; and for repeated 

solutions, only 2n multiplications and 2n additions. Furthermore, in a few 

special applications (e.g. in the solution of Lap1ace equation in a square 

region with Dirichlet's boundary condition, the right-hand side vector is 

entirely dependent on the boundary conditions, and hence such right hand 

side vector may be such that it is symmetric about its centre. In such a 

. . h dei) d dei) 1 h b . . h s1tuat10n, t e i an n-i+1 terms are equa ; t us ena l1ng algor1t ms 

(4.8) and its variant (4.9) to be implemented with a further saving of n/2 

multiplications and n/2 additions in the operational count. 

Special cases for Neumann's boundary conditions 

In the solution of tVJo'point:boul"\dO:Y~VctLue fyoblo.l'(l-'6ilth,',' .- ~ 

Neumann's boundary conditions, we are often required to solve the system, 

where A is of the form, 

Au = d 

A -2 

-1 A -1 
" , , , , " , , 

" 
, 

, , 
, , 

0 
, 

, 

, 

, 

(4.4.26) 

o 
(4.4.27a) , , 

, , , , , , , " -1 , " , 
'-2 A 

The first super-diagonal and the last sub-diagonal elements are ' 

modified by the Neumann's boundary condition when the derivatives, ~~, ~~ 

(which specify the boundary conditions) are approximated by central differences. 



In this case, the CTRPP algorithm (4.9) is immediately applicable; with only 

2 
a minor modification in the initialisation stage (i.e., t l = a(l»' 

Further, when the Neumann's boundary condition, ~~ is ap~r~ximated by 

one sided differences (instead of the central differences) then we are often 

required to solve the system (4.4.26) where the coefficient matrix A is now 

of the form, 

A' -1 

-1 A -1 0 .... " .... , " 
, 

" " , 
.... .... " 
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, " , 
A = , , (4.4.27b) .... 

" 
.... , 

, , , 
0 , , , , , , 

" 'A -1 
" 

-1 A' 

with the first and last diagonal elements modified by the boundary conditions. 

In this case, algorithm (4.9) is also immediately applicable. 

Solution of Singular Systems 

It is, however, well known that. for the Neumann boundary condition the 

coefficient matrix can become singular; e.g., if A'=l, then the smallest 

eigenvalue of the matrix A in (4.4.27b) is zero and hence A becomes singular. 

In such a case, additional constraints have to be imposed on the right-hand 

side vector (i.e., the source function in physical terms) in order to guarantee 

the solvability of the matrix system. This can be achieved (Machuk (1975» by 

subtracting a common factor (g say) from the components of the right-hand side 

vector d such that, n 
g = L (d./n) • 

i=l 1 

(4.4.28) 

In the actual realisation of the algorithmic solution of the subsequent 

modified problem by the method of algorithm (4.9), it is possible to have 

in the calculation process, operations.of the type "0/0" which are to be 

replaced by any arbitrary constant. 
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Al gori thm 4. 10 

We further apply the recursive point partitioning (RPP) strategy to derive 

an' algorithmic solution for the constant element symmetric quindiagonal system. 

where. 

A = 

Au = d 

b a c 

a b a c 

cab a c o 
, , ' , , 

, , ' , , , , ' 
, ' , , , , , , , 

, 
, 

, 
, 

, 
, , , , 

" ,," '" '" , , , 
" 'b '" a ·c , , o , 

, , 
, a b a 

, 
cab 

The above system occurs. for example. in the finite difference 

th approximation of Biharmonic and 4 order boundary value problems 

(Bauer et al (1972)). 

By rewriting the system (4.4.29) in the form. 

:' 
where ::.t. 

b (1) T 0 

[~l] 1 ~l 
::'1 Q z 2->n-l -1 

0 T b (1) 
~l 1 n - -(1) 

~l' ~ • .'! are the (n-2)-component 

T (1) 
::'1 = (a1 .c.O •...• 0.0) 

zT' = (0.0 ••.• c.a
1
(1)) 

-1 

t;T = (u2 .u3.···;u 1)'\' n- ~ - ~ I .. 

d
T 

= (d2·d3••·· .dn_d"",'· 

b~l) = b • at1
) = a . 

we can derive the following scalar unknowns. 

d(l) T~ 
u = ::'l~ 1 1 u

1 = bTfT- b (l) 
1 1 

d (1) T~ 

n ~1~ 
u = 

b (1) - bel) n 
1 1 

[d(l)] -h) 
= !! 

d (1) 
n 

vectors given by. 

and d~l) = d, • 
1 1 

(4.4.29) 

(4.4.30) 

(4.4.32) 



and also the reduced system of order (n-2) given by, 

[ 
~l~i ~l~i) _ d(l)_ ~ldl(l) 

(Q2 .. n-l - b (1) - b (1) !:: = 1 b (1) 
T 1 1 

Since ~l~i, ~l~l are matrices of the form, 

(ai1))2 ail)c 

a(l)c c2 
1 0 

o 
o (n-2)X(n-2) 

and 
o 

o 
"-

o 
..... 0' 

. - 2 
I C 

(n-2)x (n-2) 

it is easily verified by substitution that (4.4.33) is the same as the 

following (n-2)x(n-2) matrix system, 

c 

where 

I 

la 
" 

",I " .. 

, 

I' , 

" 
" " , 
, 

, 

c , , 
" , 
" " " " , " , " 

, 
" , 

" 

(2) a2 

d(2) 
2 

d(2) 
3 

, , " " , " '" , 
, 
" , 

'c ',' .. ',a 
" " " 'b(2) (2) C ... a a -- -- ____ :1. __ ::'_ 

(2) b (2) c a 
(1) 2 2 2 

(a l ) b(2) = 
bel) 3 

1 

= 
(1) a (1) c a
2 )1) 

d (1) 1 d (1) = 
b (1) 2 1 

1 

d (1) 
c?d (1) 

1 = (1) , 3 bl 

= 
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(4.4.33) 

(4.4.33) 

(4.4.34) 
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(l)d(l) 
d(2) d(l) a1 n 

= 
b(1) n-1 n-1 

1 

d (2) d (1) 
cd(l) 

= n 
n-2 n-2 b (1) 

1 

and 

Again. the reduced system (4.4.33) has the same structure as the original 

system (4.4.29) with modification only in the first and last two equations. 

lience. we can set up a recursive reduction procedure such that at the ith stage 

of the process. where i=1.2 •.•.• q. (q=n/2 (n even) and q=(n-1)/2 (n odd)). we 

have the recurrence relations. 

and 

b~i) = 
1 

(i) a. = 
1 

d~i) = 
1 

d (i) 
n-i+1 

b~i-l) 
1 

(i-I) a. 
1 

d~i-l) 
1 

= d (i-I) 
n-i+1 

( (i-1))2 
a. 1 1-

b(i-l) 
i-I 

(i-I) 
a. 1 c 
1-

b (i) 
i+1 

b (i-I) 
i-I 

(i-I) 
ai -1 d (i-I) d (i) = 
b(i-1) i-I • i+1 
i-I 

(i-1 ) 
--.:a 1

70
' -,.0:1:..-.. d (i -1 ) 

b (i-I) n-i+2 
i-I 

d (i -1) 
i+1 

'2 c 
b (i-I) • 
i-I 

d 
(i -1) 

c . 1 1-

b (i-I) 
i-I 

d (i-1) 
c . 2 D-l+ • 

b (i-I) 
i-I 

(4.4.35 ) (i-I) 
a. 1 1-The quantities -7~" b (i-I) • 

c 
b (i-I) 
i-I 

appear more than once in the 

i-I 

recurrence relation and so should be computed first and then used where 

needed to compute the quantiti'es as in (4.4.35). 

th -, 
After the q level. for n ,even. the reduced system is of order 2 

given by. 

[

d (q) 1 q 

d (q) 
n-q+1 

from which the central values of the solution vector. u • u 1 are q, ncq+ 

obtained as. 

(4.4.36) 
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and 
(4.4.37) 

For n 

u n-q+l 

odd, q=(n-l)/2, and the final reduced system is then of order 

3 and is given by, 

which is 

and 

where 

and 

b(q) a (q) c u q q q 

a(q) b(q) a (q) u q+l q q+l q 

c a (q) b(q) u n-q+l q q 

solved, omitting pivoting, to give, 

u n-q+l 

u = (d(q)-a(q)u -cu )/b(q) 
q q q q+l n-q+l q 

a (q) /b (q) ml = 
q q 

m2 = c /b (q) 
n-q q 

m = 3 

d (q) 
q 

= 
d(q) 

q+l (4.4.38) 

d(q) 
n-q+l 

, 

(4.4.39) 

Finally, the back substitution formulae which give the other elements 

of the solution vector ~ are given by, 

and 

(i) (i) (i) 
u. = (d. -a. u. l-cu. 2)/b. ) 

1 1 1 1+ 1+ 1 . 
1=q-l,q-2, ... ,I. 

u = (d(i~ _a~i)u .-cu )/b(i) (4 4 40) 
n-i+l n-1+l 1 n-1 n-i+l i . . 

The above outlined constant quindiagonal recursive point partitioning 

(CQRPP) algorithm may be summarised below as follows:" 

CQRPP Algorithm (4.10) 

Step 1 Set up the following initial quantities, 

q = n/2 (n even), or (n-1)/2 (n odd) 1 (4.4.4la) 
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bel) = b 
1 

(1) = a a. 
1 

, 
i=1,2, ... ,q. (4.4.4lb) 

d~l) = d. 
1 1 

and del) = d 
n-i+l n-i+l 

Step 2 .Compute the recurrence relations, 

(i-I) 
a. 1 1- C 

t. 1 = 
b (i-I) s. 1 = 

b(i-l) 
, 

1- 1-
i-I i-I 

b~i) b(i-l)_t (i-I) b (i) (i -1) = . . 1 a. 1 ' = b. 1 -s. 1 c , 
1 1 1- 1- i+l 1+ 1-

i=2,3, ... ,q. 
(i) (i-I) a. = a. -ct. 1 1 1 1-

and 

= d(i-l)_t d(i-l) 
i i-I i-I 

dei) 
i+l 

d (i) = d(i-l) -t d.(i-l) d (i~ = 
n-i+l n-i+l i-I n-i+2' n-1 

(4.4.42) 

Step 3 Compute the central values of the solution vector 'by using (4.4.37) 

for n even or (4.4.39) for n odd. 

Step 4 Finally, we obtain the remaining components of the solution vector 

by using the recurrence relations, 

and 

(i) 
ui = di -tiui+l-siui+2 

_ (i) 
u . 1 - d . l-t.u .-s.u . 1 
n-l+ n-1+ 1 n-1 1 n-l-

} i=q-l,q-2, ... ,1. (4.4.43) 

This algorithm requires the order of lln/2 additions which gives a 

significant improvement over the Conte and Dames algorithm (4.3). For 

repeated solutions with unchanged coefficient matrix the order of only 4n 

multiplications and 4n additions is required. 

Algorithm 4.11 

The method of algorithm (4.10) is easily generalised to apply to the 

more general symmetric quindiagonal matrix equation, 

Au = d (4.4.44) 

where 
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b1 
a

1 cl 
a1 b2 a2 c2 0 
cl a

1 b3 a 3 c 3 , ..... , 
..... ..... , , 

..... ..... , ..... ..... ...... , ... , , , , , , ... , , ..... , 
A = ..... , ..... , c (4.4.45) , n-2 , , ..... , , , , 

, b ..... 
0 ..... , a , ..... n-l n-l , , , , 

c 
n-l a n-l b 'n 

The derived algorithmic solution which we may denote as the General 

Quindiagonal Recursive Point Partitioning (GQRPP) method is summarised 

below and given as Program 11 of Appendix I. 

GQRPP Algorithm (4.11) 

Step 1 Set up the following, 

q = n/2 (n even) or (n-l)/2 (n odd) 

i=1,2, ... ,n-l,n. (4.4.46) 

and 

Step 2 Compute the following 
(i-I) 

recurrence reduction 
(i-I) 

formulae, for i=2,3, ... ,q: 

and then obtain 

t. 1 
1-

r. 1 
1-

a. 
= ~1~~ 

b(i-l) 
i-I 

c. 1 = ~1-.-~~ 
bU-l) 
i-I 

(i) 
a. = a.-t. l c . l' 1 1 1- 1-

a . 1 n-l.+ 
vi _1 = b ei - 1) 

n-i+2 

c . n-1 
si_1 = b(i-l) 

n-i+2 

(i-I) 
b . -s. 1c . , n-1 1- n-1 

(i) (i-I) 
a . = a . -So a . n-1 n-1 1-1 n-1+1 

d~i) = d~i-l)_t. d~i-l), dei) = d(i-l)_t d{i-l) 
1 1 1-1 1-1 i+l i+l i-I i-I 

d (i) 
n-i+1 

= d(i-l)_v d 
n-i+l i-I n-i+2 

and 

(4.4.47a) 

(4.4.47b) 
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Step 3 The central values of the solution vector are given, for n even, by 

U : (d(q)b(q) -d(q) aLq))/(b(q\(q) -a(q)a(q)) 
q q n-q+l n-q+l q q n-q+l q n-q 

= (b(q)d(q) -a(q)d(q))/(b(q)b(q) -a(q)a(q)); 
(4.4.48a) 

and 

and 

Step 

and 

u n-q+l q n-q+l n-q q q n-q+l q n-q 

for n odd, by solving the (3 x3) linear system, 

b(q) a(q) c u d (q) 
q q q q q 

a(q) b(q) a(q) u = d (q) 
q q+l q+l q+l q+l 

c a (q) b(q) u n-q+l 
d (q) 

n-q n-q n-q+l n-q+l 

4 Finally, the other elements of the solution vector are obtained 

from the recurrence relations, 

The reduction step (2) of this algorithm requires the order of Sn 

multiplications, Sn additions and 2n divisions; and a further 2n 

multiplications, 2n additions are required for the back substitution, 

(4.4.48b) 

(4.4.49) 

giving altogether the operational count of 7n multiplications, 2n divisions 

and 7n additions; and for subsequent solutions, the order of only 4n 

multiplications and 4n additions. 

This is again an improvement 

Moreover in the reduction process 

over the Conte and Dames algorithm (4.3). 

the b(i) ,a~i) and d~i) terms overwrite the 
1 1 

diagonal, subdiagonal and right hand side vectors. There is therefore a, 

further gain of two n-component vectors of storage over the Conte and Dames 

al gori thm.' 
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Most conventional tridiagonal solvers (e.g. the Thomas algorithms (4.1) 

would not normally run faster on a parallel machine which has more than one 

processor because of the highly serial nature of their computation. However, 

it is easily observed that each of the recursive point partitioning algorithms 

discussed in section (4.4) has a considerable measure of implicit parallelism 

which arises from the parallel nature of the applied recursive reduction 

process at both ends of the matrix system. Thus, by explOiting the parallelism 

of the R.P.P. algorithms in a parallel program run on a parallel machine, a 

substantial improvement in the running time of these algorithms can be achieved. 

First, we mention briefly some properties common to all parallel programs. 

In general, a typical segment of a parallel program has a graphical 

representation of the form shown in Figure (4.1) where 'left before right' 

precedence holds, so that the completion of the execution of the segment of 

p. 
p. 

5 s 

Po 

FIGURE 4.1 

code SI must preceed the start of Pi (i=1,2, .•• ,k); and the completion of all 

the Pi must precede the start of 52' The P. themselves have no precedence 
1 

relationship and so can be executed concurrently. The following points are 

important in the implementation of this structure. 

(i) Each code path segment (SI' PI ,P 2' ... ,) must be executed by only one 

processor so that when one processor takes up a path all others must 

be 'informed' and locked out of this path. Similarly, on completion 

of the path all processors must be informed so that the next set of 



available paths are freed to them, 

(ii) Only after the preceding paths have been completed can a given path 

be started. i.e .• Pl.P2 •..•• Pk must be completed before starting 52' 

l2l 

(iii) Variables used by Pl.P2 ••..• Pk but defined in 51 must be made available 

to all processors and all values set by Pl.P 2 •...• Pn and used in 52 

must be made available to the processor that executes 52' Likewise 

for variables used by 52 but defined in 51' 

We now consider specifically a parallel program which is to be run on 

the Loughborough University Interdata parallel computer with two model 70 

processors sharing a 32kb block of common core memory. with each also having 

a 32kb of private memory. 5pecial software (Barlow et al (1977)) locally 

developed is available which enables the programmer to effect the necessary 

control. allocation and lock-out of resources as outlined in (i).(ii) and 

(iii) above during the execution of segments of the parallel program. For 

example. the 'FORK' and 'JOIN' constructs inserted in a standard Fortran 

program enables the two Interdata processors to 'fork'. i.e .• work on separate 

sections of code independently and in parallel; and then 'join' when only one 

processor is necessary to work on the program after collecting results from 

the section done in parallel. 'DOPAR' and 'PAREND' macros also perform a 

similar function. The "GETRE5(I)" subroutine offers lock-out mechanism by 

permitting an exclusive use of a resource I and the "PUTRE5(I)" relinquishes 

ownership of the resource I. 

In order to program. for example. the TRPP algorithm (4.8) (for the 

solution of the general tridiagonal matrix system) in parallel. we arrange 

the order of calculation of the intermediate quantities and solution vector 

components in the form given in Figure (4.2) in order to take advantage of 

the implicit parallelism of the algorithm. A similar arrangement is also 

applicable to the parallel programming of the GQRPP algorithm (4.11) for the 

general symmetric quindiagonal matrix system. 



n odd, q=(n+l)/2 

Processor 1 

I 

'" 
a (q-l) d (q-l) 
q-l 'q-l 

I 

Y 

6) 

n even, q=n/2 

Processor 2 

I 

'" 

FIGURE 4.2 

Processor 1 

(q-l) 'd(q-l) 
aq_l 'q-l 

rocessor 
1 

or 2 
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Processor 2 

(2) d(2) 
an_I' n-l 

Order of the Parallel Implementation of the R.P.P. Algorithm (4.8) 



The parallel programs for the TRPP and GQRPP algorithms are given in 

Appendix I as Program 12 and Program 13 respectively. They are written in 

standard Fortran (except that the parallel processing constructs, FORK and 

JOIN, GETRES(I) and PUTRES(I))used for parallel controls are inserted) and 

then run on the Loughborough University Interdata parallel computer. 

The two parallel programs were test run on matrix systems of varying 

order. In order to assess the performance of the parallel programs, timing 

results of runs on matrix systems of order 650 were taken. For example, for 

each program, the times for the programs to run sequentially without the 

parallel constructs were noted. Then, the times for each program to run in 

parallel mode with the insertion of parallel constructs were also noted. 

These and other relevant timing results taken are shown in Table (A2.1) of 

Appendix II. From these experimental results, we compute the estimates of 

the slow down or efficiency losses (due to memory clashing, parallel control 

contentions, etc.) and the speed-up (i.e., the amount by which a program runs 

,faster in parallel mode than it does in serial mode) of the two parallel 

programs. The details of the calculation of the speed up and the various 

overheads for the two parallel R.P.P. programs (for'the solution of the 

tridiagonal and quindiagonal matrix systems of order 650) are given in 
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Appendix II. Below, we summarise the results of the calculations in Table (4.1), 

from which it can be seen that the speed up of the parallel program (12) is 

175% and that of the parallel program (13) is 182%. 



The Overheads and Speed-up of the R.P.P. Tridiagonal and Quindiagonal Parallel Programs for Systems of Order n=650 

Matrix Systems Shared Memory Parallel Control Shared Memory Others (e. g .. Speed-up* 
and Program (Static) Overhead Overheads Access Overhead time in of parallel 

(Static) (Dynamic) (Dynamic) scheduler etc.) program 

1. Tridiagonal 
System 3.1% 3.1% 1.2% - 0.0% 17.5% 175% 
(Program 12) 

2. Quindiagonal 
. 

System 3.2% 2.2% 1. 7% - 0.0% 10.9% 182 96 I 
(Program 13) i 

TABLE 4.1 

* The time taken by the program to run in a paraLlel mode with two proaeBBors aB a % of the time taken by the program 

to run in a Berial mode with only one proaeBBor. 
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4.6 ROUNDING ERROR ANALYSIS FOR THE RECURSIVE POINT PARTITIONING METHOD 

In the formulation of an algorithmic process for the solution of a matrix 

system on a computer (which does not do an exact arithmetic), it is essential· 

to assess the cumulative effect of rounding errors that are made during the 

course of the implementation of such a process in order to guarantee that 

the solution we derive is always stable. 

Here we consider the rounding error analysis for the newly introduced 

point partitioning methods. The analysis of the algorithm for the tridiagonal 

case only will be discussed since a similar approach would apply for the quin-

diagonal and other matrix systems of wider bands. 

In our analysis, we shall assume a floating-point computer arithmetic 

in which each number x (say) is represented internally in the form, 
·E 

x = m.2 O. 5 ~ I ml ~ I , 

where E, ·the exponent, is bounded by the binary word length of the given 

computer registers. 

Further, in our analysis, we shall follow the backward analysis scheme 

developed by Wilkinson (1963), and hence use the notatio·n H(x.y) to denote 

the computed result of multiplying together two floating point numbers x and 

y; and so on. Then in general we have the following exact mathematical 

relationships, 

and 

H(x±y) = (xty) (I+E l ) , 

fl(x.y) = xy(I+E2) , (4.6.1) 

Each Ei' which represents the rounding error associated with the respective 

arithmetic operation, is some value of E where IEI< 2-k and k (=24 for the 

I.C.L. 1904S computer) is the number of binary digits allocated to the 

mantissa of the floating point number in the computer. 

Now, we conside~ the TRPP algorithm (4.8). First, we examine the 

recurrence reduction formula (4.4.11) i.e., 



(i) 
a. = b. 

1 1 

a. I C ' 1 1- 1-

(i-I) a. 
1 
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J i::2,3, ... ,q . {4.6.2) 

Since a~I) = b. (i=I.2 •...• n). there is no rounding error in obtaining 
1 1 

(1) 
Q •. • 

1 

Next. by considering a~2)we have. 

(2) alc I H (a2 ) = f9.(b 2 - (IT) =. [b
2 

a
I 

and hence on neglecting second order quantities in E. we have 

(4.6.3) 

and w2 denotes the upper bound of the rounding error associated with 

the determination of a~2) . 

Further. we consider aj3) = b
3 

- hence 

from which we obtain. 

and hence. 

On substituting 

(4.6.5) 

where g = b + 
3 3 

and w3 denotes the upper bound-of the rounding error associated with aj3) . 



Similarly, 

- ai
5

) I 

In general, if we define 

g = max 
i 

g. = 
1 

a4c4 a
4
c 4 a

3
c3 

~ [g5 + -:-T4T g4 + (---m -:-nr)g3 + 
a4 a4 a 3 

a4c4 a3c3 a 2c2 
(4f (3f (2)g~e = w 5 a4 a 3 a 2 

the following quantities, 
3a. lC. 1 

1- 1-
m1~x (bi + (i-I) ) 
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a. 1 1- (4.6.6a) 
c.a. 

and l. 1 t = max t. = max ((IT) 
i 1 i a. 1 

then, 
1fR.(a~i))_a~i) I ~ [g.+t. 19· l+t. It. 2g · 2+ 

1 1 1 1- 1- 1- 1- 1-

2 i-2 
~ [l+t+t ... +t ]ge 

Hence, If~(a~i))_a~i) I < ~ (=w.) if t<l 
1 1 'l-t 1 

where wi denotes. the upper bound of the rounding error associated with 

h (i) f . 2 3 eac ai ' or 1= , , ••• ,q (=n/2 n even; (n+l)/2, n odd). 

from the rear of the system 

(4.6.6b) 

(4.6.7) 

with 

By a similar analysis, and commencing 

a(l) having no rounding error, it can 
n 

be easily 

with a (i~ = 
n-1+l 

shown that the upper 

bound of the rounding error associated 
a . lC . 1 b _ n-1+ n-1+ 

n-i+l (i) , 
an _i + 2 Further by using a similar method i=2,3, ... ,q is also bounded. 

of analysis as above, it can be shown that the recurrence relations for 

the .ight hand side vector, i.e., 



and d (i) 
n-i+l 

= d(i-l) 
n-i+l 

(i-1) 
a. Id. 1 1- 1-

(i-I) 
a. 1 

1-

d (i-I) 
Cn_hl n-i+2 

(i) 
a . 2 n-1+ 

i=2,3, ... ,q, 

have bounded rounding errors P. (say) associated with each d ~i) . 
1 1 

Next, we investigate the rounding error in the backward substition 
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phase of the algorithm and consider first the central values of the solution 

vector, for n odd, i.e., 

u = d(q)/a(q) , q=(n+l)/2 (n odd) 
q q q 

Then, d (q) (l+p )(1+£ ) d (q) 

H(uq) = 9 9 3 " n(l+p +£3-w ) 
a(q)(l+w) a q q q 

q . q q 

where w ,p denote the rounding error bounds associated with a(q) and d(q) 
q q q q 

respectively. 

then, 

Hence, if we define, 

E = max(wi ,Pi'£I'£2'£3) 

Ift(u )-u I ~ U (£3+P +w ) q q q q q 

~ Uq (3C)(= UqOq } 

where 0 =3E is the bound on the rounding error associated with u . 
q q 

For n even,·it can be similarly shown that the rounding error 0 
q 

associated with the central value u of the solution vector, i.e., 
q 

u ~(d(q)a(q) -d(q) c )/(a(q) a(q)-a c) is also bounded. 
q q n-q+l n-q+I q n-q+I q n-q q , 

Next, we consider the back substitution formula for the remaining 

elements of the solution vector, i.e., 

(i) (i) 
u. = (d. -c.u. I)/a. , i=q-I,q-2, ... 1. 

1 1 1 1+ 1 

The quantity ft(u 1) is given by, q-

(4.6.8) 

(4.6.9) 

H(u 1) q-
( 1) (1+£1)(1+£3) 

" [d qI- (l+p l)-c IU (1+0 )(1+£2)] , 
q- q- q-. q q a(q-l) (I+w ) 

.q-I q-I 

and hence on neglecting the second order quantities of the error terms, 

we have, 



f.\!,(u l)-u 1 q- q-

c u 
q-l q 
(q-l) a 
q-l 
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which, on using the relation in (4.6.8) and substituting for u gives, q-l 
d(q-l) c u 

If~(u 1)-u 11 < (q-l + q-l q)4£ 
q- q- ' (q-l) (q-l) a a q q-l 

and on substituting a =3£ from (4.6.9) gives, 
q 

Ift(u 1)-u 11 ~ q- q-

where 

[gq-l + 

d(q-l) 
q-l 
(q-l) 

a 
q 

c u 
q-l q]4£ 

gq (q-l) 
a 
q-l 

c lu 
+ r q q-l) a 

q-l 

c _lu 
+~a 

_ (q-l) q 
a q-l 

(4.6.10) 

and a 1 denotes the upper bound of the rounding error associated with u 1 
q- q-

Further, we consider ft(u 2) which is given by, 
q-

which, on using (4.6.8) and substituting for 

where 

Ift(u 2)-u 21 ~ q- q-
4e:g 2 + q-

c u 
q-2 q-l 

(q-2) 
a q-2 

~ a 2 . q-

d (q-2) 

( q-2 
(q-2) + a
q

_
2 

c u 
q-2 q-l) 

(q-2) • 
a q-2 

Further, by considering u 3' we obtain, q-
c u 

c u 
+ q-2 q-l 

a(q-2) (1q_l 
q-2 

a 1 from (4.6.10) q-
gives, 

(g 1 + q-

c u 
q-l q )4E" 

(q-l) 
a q-l 

c u c u 

(4.6.lla) 

(4.6.llb) 

1 ) 1 
- [ ( q-3 q-2) 

f~(Uq_3 -uq_3 . - gq-3+ (q-3) gq-2 + 
a

q
_3 . 

( q-3 q-2 
(q-3) 

a q-3 

q-2 q-l 
(q-2) )gq-l 

a q-2 

c u 
+( q-3 q-2 

(q-3) 
a q-3 

c u 
q-2 q-l 

(q-2) 
a q-2 

g ]4£ 
q . 

(4.6.12a) 



where 

If we now define z.= 
1 

c.u. 1 
1 1+ 

(i) 
Q. 

1 

d 
q-3 

( (q-3) 
Q 
q-3 

c u 
q-3 q-2 

+ (q-3)-) 
Q 

q-3 

and use the definitions in (4.6.6b) then, 

130 

(4.6.12b) 

Ifi(u 3)-u 31 = [g +z g +z z g +z z z g ]4£ q- q- . q-3 q-3 q-2 q-3 q-2 q-l q-3 q-2 q-l q 

In general, if the above analysis is pursued, we obtain the final 

result for u l as, 

On defining, 

g = max(g.) and 
. 1 

z = max 

where g. 
1 

then, we 

d. 
1 

= CIT + 
Q. 

1 

obtain, 

1 
C.U. 1 

1 1+ 
(i) andzi = 

Q. 
1 

C.U. 
1 1 

(i) 
Q. 

1 

l-z 

which is finite for a finite value of q. 

i 
(z. ) 

1 

(4.6.13) 

(4.6.14) 

(4.6.15) 

(4.6.16) 

In a similar way, the rounding errors which occur in the evaluation 

of the lower half of the solution vector, u . 1 (i=q,q-l, ... l), can also 
n-1+ 

be shown to be bounded. 

Thus, it has been shown that the rounding errors incurred in the 

solution of a tridiagonal matrix system using the recursive point 

partitioning algorithmic scheme is bounded for a finite value. of q (and 

hence n). 
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4.7 THE RECURSIVE POINT DECOUPLING (R.P.D.) ALGORITHM 

In the development of the recursive point partitioning algorithms of 

section (4.4) the 'one-line at a time' partitioning scheme was adopted. It 

is possible, however, to vary the size of the block structure (by using 'two-

lines at a time', 'three-lines at a time' etc.) in the partitioning process. 

The 'two-line' partitioning scheme was investigated for both the tridiagonal 

and quindiagonal matrix systems. It was found that the algorithmic solution 

derived by adopting such a partitioning strategy involves almost twice as much 

arithmetic work (under a sequential processing system) as does the corresponding 

'one-line' partitioning method. However, there is an increased implicit 

parallelism of the algorithm derived compared to that of the 'one-line' method. 

A similar result was also obtained on investigating the '3-line' 

partitioning scheme. Thus, it was necessary to examine the extreme case in 

which for an n order system, the 'n/2-line' partitioning" strategy is employed 

in the solution of the given tridiagonal matrix system. 

We consider, for simplicity, the symmetric tridiagonal matrix system of 

m order n (=2 , where m is any positive integer) given by, 

Au = d (4.7.1) 

or in matrix notation as, 

A-a l 1 ul dl -4>l 

1 A 1 
u2 d2 

" " " " " " 
" " " I 

" " , 
I " " I 

" " , , 
d ' , 1 , All uJl/~ - - - - - - -, - ------ = 110_ . (4.7.2) 

"1, A 1 u d 
" n !!..l I " " ~l "' , " , 2 , 

" , , 
" 1 u . d' " , 

n-l , 
" n-l 

1 A-a u d n-4>n n n 

where 

are introduced for convenience, and reference as to their purpose will 

be evident in what follows. We also assume that the matrix A"is 

diagonally dominant. 
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The system (4.7.2) can be partitioned into two separate halves, as 

indicated, to give the block form, 

[!:] (4.7.3) 

from which we obtain the following: 
-1 _ 

- -1'" 
(4.7.4) (AI -B IA2 B2)~1 = ~1-BIA2 ~2 

and 
-1 _ - -1-

(4.7.5) (A2-BZAl Bl)~Z = ~2-BzAl ~l 

Both (4.7.4) and (4.7.5) form a decoupled matrix system of the form, 

. (1) 

[

-+---Aol 0 

A (1) 
2 

[

d(1) 
-1 

~(1) 

~2 
where 

and 

A (1) = 
1 

A (1) = 
2. 

~(l) 

~l = 
~(l) 

~2 = 
We now proceed to show that the decoupled submatrices Ail) and A~l) 

are tridiagonals and of the same structure as the original matrix A. 

The submatrices Al and AZ are tridiagonals of order n/2, but their 

inverses are fufl. 

By definition, 

-1 
(AI)· . 1,J 

where y .. denotes the 
J,1 

the determinant of Al. 

Similarly 

y .. 
= ~ i,j=1,2, ... ,n/2, 

IAll 
(i,j) ~ofactor (signed minor) 

-1 
(A

2 
) .. 
1,J , i,j=1,2, •.. ,n/2 , 

where a .. denotes the (i,j) cofactor o.f A
Z

. J,1 

It is therefore easily shown by simple multiplication that the 

matrices BIA;lB2 and BZAi1Bl are matrices of order n/2 given by, 

(4.7.6) 

(4.7.7) 

(4.7.8) 

(4.7.9) 



o 

where. 

o , , 

a 

, , , , , , 

a , 

'0 a 

and = 

, , , , 

a 

, , 

-1- -l~ 
It can be similarly shown that BIA2 ~2.and B2Al ~2 are vectors of 

length n/2 given by. 

where 

and 

o 

o 
I 
• 

4>n 
2'"1 

= 

o 
0 

1 n/2 
L Q. Id. /2 

IA21 i=l 1. 1+n 

1 n/2 
L y. /i· 

IAll i=l 1.n 1 

, 

We shall take advantage of the special form of the matrices Al and 

A2 to derive alternative expressions for the quantities Q. 1 and y. /2 
1, 1,n 

in terms of the Sturm sequence of polynomials {P.}. (i=0.1.2 •... ) 
. . 1 

obtained by a simple Laplace expan~ ion of. the leading principal minors 

of the tridiagonal matrix of the form. 

A 1 

1 A 1, a , , , , , , , , , , 
C = 

, , , , , , , , 
a , , , 

, , , 
, , 

1 , 
1 A (n/2xn/2) 
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'0 

(4.7.10) 

(4.7.11) 

(4.7.12) 

(4.7.13a) 

(4.7.13b) 
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Thus, 
Po = 1 

PI = A (4.7.14) 

p. = AP. I- P, 2 (i=2,3, ... ) 
1 1- 1-

By making use of the structure of Al and A2 as shown in (4.7.2), it is 

now possible to express the determinants IAII,IA21 as a function of 

p. (i=O,I, ... ,n/2-I), 
1 

i. e. , IAII = (A-1l1)Pn/ 2 
P 

1 
~2 
2 (4.7.15) 

and IA21 = (A-Il )P P 
n ~I - ~? 

2 2 -

Also, it is easily verified that the set of cofactors of AI' i.e., Yi,n/2 

(i=I,2, ... ,n/2) is given by the relationships, 

and 

and 

YI ,n/2 = -I 

2 
Y 2,n/2 = (-I) (A-Ill) 

i 
Yi,n/2 = (-I) [Po 2P.- Il I)-P, 3] i=3,4, ... ,n/2 . 

1- 1-

Similarly, the cofactors of A2 , i.e., ai,l can be expressed as, 

= (A-B )P P 
n ~2 ~3 

2 2 
= (_I)2+I[(>._1l )P P] 

n ~3 !!...4 
2 2 

(_I)l+i[(A_1l )P _ P
n 

] 
n ~ -i-I '2 -i-2 

a = (A-B) 
n n 2 -1,1 

an =-1. 
2,1 

, i=3,4, ... '~.-2 
2: 

(4.7.16) 

(4.7.17) 

Hence, th~ quantities Bn/ 2,Bn ,$n/2,$n in (4.7.11)-(4.7.14) can be 
. z+I z+1 

expressed, on substituting for IAII,IA21, Yn/ 2,n/2 and an/ 2,1 from (4.7.15)-

(4.7.17), as follows: 



= 

nL2 
2. D. Id. /2 i=l 1, 1+n 

~n/2 (A-B )P P 
n n - n i) 

--1 --v-2 2 

and = 

the formula obtained in (4.7.18). 

which agrees with 

-1 -1 
Now, by a substitution of BIA2 B2, B2Al Bl from (4.7.10) and 

-1 ~ -1 ~ 
BIA2 d2, B2Al ~2 from (4.7.12) into (4.7.7) we find that the decoupled 

system (4.7.6) is the same system as, 

1 

A 

1 
, , 

1 

A , , 
, 

, 
, 

o 

1 , 
, , 

, 1 

, , 
, , 

, 
, 1 

1,-6 
n 
2 

, , 

o 

1 

, , , , , , , , , , 
, 

1 

'I 

>'-B n 

d I ... 

un/ 2 = n/2-~n/2 

u 
!!..l 
2 
I 

u 
n 

d ~ n - n 2"1 .2'1 
I 

I 

I 

I 

d ' n-l 
d +~ 

n n 
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(4.7.18) 

(4.7.19) 

where each half of the decoupled system has the same form as the original 

system (4.7.2) but of order n/2. In computational terms the decoupling 

process involves only a simple modification of the two central diagonal 

elements and the corresponding right-hand side vector elements at the 

zone of decoupling. We refer to the process of transforming the system 

(4.7.2) into the form (4.7.19) as level-l decoupling. Thus, a similar 

transformation applied to both halves of the already decoupled sub-systems 

in (4.7.19) produces a level-2 decoupling of the form, 
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where 

= 

= 

(A-6 /2)P 
n !!-2 

4 
(A-6 /2)P 

n !!-l 
4 

- P 
n 
--2 
4 
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(A-6 )P - P (4.7.21) 
n !!-2 n 

63n 
4 4- 3 

= 
(A- 6 ) P - P 

4 n !!-l !!-2 
4 4 

(A-6 ) P P n n !!-3 
and 6 

2'"1 4-2 
4 = (A-6 )P 3n'l P 

~l !!-l n 4 2 4 4-2 

Similarly, the corresponding right-hand side modifier quantities are 

given by, 

<l>n/4 = 

= 

= 

and = 

n/4 
L a. Id. /4 i=l 1, 1+n 

P (A-6 /2) 
!!-l n 
4 

nL4 
1 y. /4d . i=l ].,n ]. 

P (H! ) -
!! -1 n 
4 

n/4 
L y. /4d 

i=l ]. ,n ri 

P (A-6 ) n n 
4-1 2'"1 

- P n 
--2 
4 

(4.7.22) 

In general, at the end of the tth (t=1,2, .•. ,log2n-l) level of the 

decoupling process we are left with 2t decoupled sub-systems, each of 

order n/2t. Hence, given a system of dimension n=2m, we require (m-I) 

(=log2n-l) levels of decoupling to reduce the system into sub-blocks of 

order 2. 
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Example: 4 rd 
If n=16=2 , then after the 3 level of decoupling we have the 

resulting decoupled subsystems each reduced to order 2 as shown 

diagramatically in Figure (4.3). 

th We shall now assume that the t level of decoupling has been obtained 

and hence the process of obtaining the (t+l)th level of decoupling can be 

generalised in the following manner: 

Recursive Point Decoupled Structure of a Tridiagonal System 

level 21----~LLtrr.r,r-~ 

level 3 

level lr-------~--~LL~TTTT---T------~ 

level 3 

level 2 

level 3 

FIGURE 4.3 

After the tth level, the first and the last of the 2t decoupled sub

t systems (each of order n/2 ) are of the form, 

A-8 
1 

1 A 1 
, , , , 

"- "-
A(t) , , 

= , 
1 , , 

"-
0 

, , 
, 

, 
, 

, 

o 
, 

., 
"-

'A 

1 

1 

n n 
( t x t) 
2 2 

, (4.7.23) 
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(4.7.24) 

and the corresponding right-hand side decoup1ed sub-vectors of the form, 

dl -4>1 
d2 

~ (t) 
.<!1 = 

d
l 

~1 
2t 

d n -4>n 
- -
2t 2t 

and aCt) = -t 2 

(~1) 
2t 

d I .. 
n-l - "n-l 

- 4> t n 
(2 -1) (-)+1 

2t 

(4.7.24) 
th t 

The k (k=2,3, ... ,2 -1) other intermediate decoupled sub-systems 

are of the form, 

1 

o 
1 1 

~t) = (4.7.25) 

1 o -, 1 

with the corresponding right-hand side decoupled 

form, 



d 

d 

n 
(k-l) (-)+1 

2t 

n 
(k-l) (-)+2 

• 2t , 

d n 
k(-)-l 

2t 

4> n 
(k-l) (-)+1 

2t 
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(4.7.26) 

t 
Since all the 2 sub-systems resulting from the t-level of decoupling 

are independent of each other. then for the (t+l)th level of decoupling. 

each of the 2t subsystems can now be further decoupled independently and 

in parallel by a process which amounts to subtracting the modifier 

quantities. as+2sj.as+2Sj+l and 4>s+2sj' 4>s+2sj+l from the corresponding 

(s+2sj)th. (s+2sj+l)th diagonal and right-hand side elements respectively. 

Generally. for. 

and 

t=0.1 •...• 10g2n- l • 

j=O.l •...• t } 
these modifier elements. expressed in terms of the sequence P .• are 

1 

given by. 

and· 

= [A-a(j+l)(2s)]Ps _2- PS_3 

[A-a(j+l)(2s)]PS_1-PS_2 

= [A-a(j+l)(2s)]Ps _1-P s _3 
[A-a2js+llPs_l - Ps - 2 

! (t.j+l) d 
i=lai • l s+2sj+i 

=~~--~'---n-
[A-a (j+l)2s JPs-l - Ps - 2 

! y~t.j+l}d .. 
i=l 1.S 2SJ+1 

(4.7.27a) 

(4.7.27b) 

The quantities a~tl·j+l) and y~t·j+l)are the (l.i)th and (s.irth co factors 
1, 1,S 

of the upper and lower halves of the (j+l)th submatrix which is obtained at 



th 
the end of the t level of decoupling, where 

with 

and 

(t,j.l) Y. 
l,S 

(t,j.l) 
a. 1 I, 

(t,l) 
Yl,s 

(t,l) 
Y2,s 

(t,l) 
Yi s , 

a(t,l) 
s,l 

(t,l) a s-l,l 

(t,l) 
= Y. • (61-62 . l)P. 2 l,S sJ. 1-

= -1 

= A-6 
1 

= 1 , 

= A-6 2s 
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} (4.7.28) 

(4.7.29) 

(t,l) 
a. 1 I, = (_1)1->1[(>._6)P . 1 - P . 2], i=s-2,s-3, ... ,I. 

5 5-1+ 5-1+ 

with the terms P defined as in (4.7.14). (4.7.30) 

The order of calculation of the modifier elements, 6i'~i' (i=l,2, ... ,n) 

can be represented in a tree-structured form as shown in Figure (4.4), 

where all the 'tree-branching'operations at any given level can be done 

simultaneously and in parallel. 

level 0; t=O 

level 1 t 
(t=l,k=n!2 ) 

level 2 t 
(t=2,k=n/2 ) 

FIGURE 4.4 

The Order of Calculation of the Modifier Elements in the Recursive 

·Point Decoupling Process 



Finally, at the end of the (m_l)th level of decoupling all the 2m- l 

subsystems are each (2X2) matrix systems which, for j=2t , t=I,2, ... ,m-l, 

are given by, 

A-B. 1 
)-

1 u. 1 )- d· I -4>·1 
) - )-
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= (4.7.31) 
1 A-B. 

) 
u. 

) 
d. - 4>. 

) ) 

The solution of the system (4.7.31) is given, on omitting interchanges, 

by, 
u. = [(d.-$:)-(d. 1-4>· 1)(d.-4>.)]/[I-(A-B.)(A-B. 1)] 

) )) )- )- )) ))-

) (4.7.32) 
u. 1 = [(d.-4>.)-u.]/(A-B.). 
)- ))) ) 

On the introduction of interchanges the solution of (4.7.31) becomes, 

u. = [(A-B. l)d.-(d. 1-$· l)]/[(A-B. 1)(A-B.)-I] 
) )-))-)- )- ) . 

uj _l = (dj-$j)-(A-Bj)uj " ) (4.7.33) 
and 

The R.P.D. algorithm given above is rather cumbersome and not very 

competitive for solving a tridiagonal system if the scheme is programmed 

serially for running on a serial machine. However, since at any level t 

of the decoupling process, all the intermediate subsystems can all be 

decoupled further in parallel, the RPD algorithm has its merit in its 

highly parallel structure. For parallel computers, it is an attractive 

method to use since it requires only the order of 10g2n parallel operations, 

for a system of order n, on a parallel computer having log2n processors. 



CHAPTER 5 

THE SOLUTION OF PERIODIC BOUNDARY 

VALUE PROBLEMS BY FAST METHODS 
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5.1 INTRODUCTION 

A well known source of sparse periodic matrix problems is the system of 

linear algebraic equations which arise when we solve, by finite difference 

methods, partial differential equations of parabolic and elliptic type with 

periodic boundary conditions; such problems are of frequent occurrence in 

the analysis of Mathematical Physics and Engineering problems. 

A number of fast methods for the solution of the one dimensional 

periodic tridiagonal matrices was presented in Chapter 3. Our interest for 

presenting those algorithms in point form was partly motivated by the fact 

that the spectral decomposition technique (Buzbee et al (1970)) discussed in 

section (5.2), when applied to block separable matrix problems leads to the 

solution of a set of one-dimensional matrix equations, for ·which the fast 

point form algorithms become readily applicable. Moreover, it is often 

possible to generalise the method of point-form algorithms in order to obtain 

their block equivalent. 

In this chapter, we consider a number of model problems with periodic 

conditions for which new direct methods are developed for their solution. 

The method of discrete separation of variables which forms the basis of our 

comparison with the newly introduced methods is considered in section (5.2). 

A block factorisation method for the solution of a periodic elliptic partial 

difference equation in a rectangular region is introduced in section (5.3). 

In section (5.4), the use of elliptic boundary value techniques in the 

solution of a periodic parabolic problem is considered; and by adopting the 

otherwise unstable Richardson's finite difference scheme, a periodic skew 

symmetric block matrix equation is derived, and an algorithmic solution of 

this block form proposed and compared with the equivalent spectral resolution 

method. The use of the classical implicit scheme in the .steady state 

solution of the one space-dimensional parabolic heat conduction equation 

produces a cyclic lower triangular block matrix. Fast methods for the 
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solution of such matrix forms are considered in section (5.5). The more 

usual marching technique for parabolic problems is considered in section 

(5.6) for the self-adjoint, periodic boundary value parabolic problem for 

which a generalised factorisation method is employed in the solution of the 

resulting periodic tridiagonal matrix systems. Finally, in section (5.7), 

the alternating direction implicit (A.D.l.) methods for the two-space 

dimensional heat equation is discussed for which fast periodic tridiagonal 

matrix solver algorithms presented in Chapter 3 are particularly applicable. 
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5.2 THE SOLUTION OF THE PERIODIC MATRIX DIFFERENCE EQUATION BY THE SPECTRAL 
RESOLUTION METHOD 

Algorithm 5.1 

We consider the matrix equation, 

Au = d 

where A is the (mxm) block matrix of the form, 

B C 

C B C , , , 
, " , , 

A = , , 

c 

, , 
, , 

, , , 

0 

, , 

, , 

, 

C B (mxm) 

and the submatrices, Band Care (nxn) symmetric real matrices. 

(5.2.1) 

(5.2.2) 

The vectors u and d are written in partitioned form so as to conform 

with the structure of A and hence have the form, 

~l ~;1 
~2 ~2 

: I 

u = , - d = 

u d 

where, 
u

l 
. 

,) 
u2 . 

,) 
I 

u. = I 

-) I 
I 

u l 
n,j 

We assume that B and 

basis of eigenvectors.) 

and 

C 

d. = 
-) 

I 
d . n,) 

, j=1,2,~ .. ,m. 

commute, ~ e., BC=CB, and have a conunon 

Then, by the well known theorem of Frobenius (see, for example, 

T -1 Varga (1962)) there exists an orthogonal matrix Q (i.e., Q =Q ) whose 

columns are the set of eigenvectors of Band C such that 

(5.2.3) 

(5.2.4) 
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I (5.2.5) 

where A and n are the diagonal matrices whose elements A.,w. (i=1,2, ... ,n) 
1 1 

are the eigenva1ues of B· and C respectively. 

The system (5.2.1) together with (5.2.2) and (5.2.3), may be written 

as, 

B~l .. C~2 .. Cu = ~I -;n 

Cu. 1 + Bu. + Cu. I = d. j=2,3, ... ,m-l, 
-)- -) -)+ J 

C' G' and CUl +Bu + Cu = .... -;n-1 --;n 

By using equation (2.5.2) we have, 

B = QA QT 

and 

d -;n 

which, when substituted into (5.2.6), give the following equations 

A~I + n~2 + nu = ~1 -;n 

nu. I + AiL + nu. I = d. j=2,3, .•• ,m-1, 
-)- -) -)+ -) 

where 

and ii. ,d. 
-) -) 

are 

n~l + @u I 
, '-fll-

T u. = Q u. 
-) -) 

d. = QTJ. 
-) -) 

labelled as in 

+ Ail = d -;n -;n 

} j=1,2, ... ,m, , 

(5.2.4) . 

Further, we now resolve the equations in (5.2.7) by rewriting them, 

for i=1,2, •.. ,n, as 

l.~. 1 + W.U. 2 + W.U. 
1 1, 1 1, 1 1,m 

= d. I 
1, 

W.u .. 1 + l.ll .. + w.u .. 1 = d .. 
1 1,)- 1 1,) 1 1,)+ 1,) 

W.U. I + w.u. 1 + 1.U. 
1 1, 1 1,m- 1 1,m 

Now, if we write 

r. = 
1 

W. 
1 

o 

W. 
1-

, 
, , 

W. 
1 

0 , 
, , 

, wi 
, , 

- '1 ... Wf i 

= d. 
1,m 

(mxm) 

j=2,3, •.• ,m-1, 

(S.2.6a) 

(5.2.6b) 

(5.2.6c) 

(5.2.7a) 

(5.2.7b) 

(5.2.7c) 

(5.2.8) 

(5.2.9a) 

(5.2.9b) 

(5.2.9c) 

(5.2.10) 



- ~ 

u. I 1, d. I _1, 
u. 2 1, d. 2 1, 

• I 
I A 

" U. = and d. = -1 --'l. 

-. -. u. d. 1,m 1,m 

then the equations in (5.2.9) are equivalent to the system 

" " r.u. = d., 1-1 --J. 
i=1,2, ... ,n. 

Thus, the vector G. satisfies a symmetric tridiagonal matrix system of 
-1 

equations that has a constant diagonal, super- and sub-diagonal elements 
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(5.2.11) 

(5.2.12) 

as in (5.2.10) which can be solved in an efficient manner by using either 

the PQFACTI algorithm (3.6) or algorithm (3.10) in Srn multiplications and 

4m additions per system. 

After solving (5.2.12), it is then possible to solve for 

u. = Qu. 
-) J 

j=1,2, ... ,m. (5.2.13) 

The above matrix decomposition algorithm is due to Buzbee et a1 (1970). 

If we regard the block vectors u and d as 2-dimensiona1 arrays; then the 

above algorithm may be summarised as follows: 

Step I 

Compute or determine the eigenvalues of matrices Band C and the 

eigenvectors of B. These eigensystems are often given by known analytical 

formulae for certain representations of Band C; e.g. in the case of 

solving a Poisson equation in a sequence, B is tridiagona1 and C is 

diagonal. 

Step 2 

Compute the vectors, 

- T 
d. = Q d. 
-). -) 

j=l,2, ... ,m 

T which is equivalent to multiplying each row of d by Q . 

Step 3 

-

(5.2.14) 

Next, we re-order the array ~ by vertical lines instead of" horizontal 



" lines to generate the array d and then solve the tridiagonal systems, 

Step 4 

" :;:: d. 
-1 

i=lJ 2 , ... ,n. 

Finally, we re-order the array ~ by horizontal lines instead of 

vertical lines to generate the array ~ and then compute the solution 

vector, 

u·= Qu. 
-J -) j=l,2, ... ,m. 

If we neglect the computation of the eigensystem (step I) then, the 

operation count for the spectral resolution method is given as shown in 

Table (5.1). A reduction in the arithmetic operation count is possible 
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(5.2.15) 

(5.2.16) 

if the fast Fourier transform (Cooley and Tukey (1965D is used to perform 

steps (2) and (4). 

Summary of Arithmetic Operation Count 

Steps Multiplications (x) Additions(+) 

2 2 2 n m n m 
3 5nm 4nm 

4 2 2 n m n m 

TOTAL 2 2n m+5nm 2 2n m+4mn 

TABLE 5.1 
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5.3 A BLOCK FACTORISATION METHOD FOR THE SOLUTION OF AN ELLIPTIC P.D.E. 

WITH PERIODIC BOUNDARY CONDITIONS IN A RECTANGULAR REGION 

We consider here the block matrix factorisation method for the solution 

of an elliptic partial differential equation with periodic boundary conditions 

in a rectangle. 

Problem Definition 

Consider the elliptic (Helmholtz's) equation in two space dimensions 

given by, 
a2u --+ 
ax2 

on a rectangular region, 

R 

TU(X,y) + q(x,y) 

{

o:;x:;a 

O:;y:;b 

enclosed by the boundary region aR, and with the periodic boundary 

conditions in both the x- and the y-directions given by, 

U(O,y) = U(a,y), q(O,y) = q(a,y) 

U(x,O) = U(x,b), q(x,O) = q(x,b) 

(5.3.1) 

(5.3.2) 

(5.3.3) 

where q(x,y) is a known function in x and y, and T is any positive constant. 

We define the mesh spacings 6x=a/m and 6y=b/n (m,n are integers) and 

then super-impose mesh-points (x.,y.)=(i6X,j6y) over the interior region Rh 
1 J . 

and the discrete boundary region, a~ where 

and 

R. = {(x. ,y.) I l:;il>m-l, l:;jl>n-I} 
'11 1 J 

= aRn{ (x. ,y.) I O:;il>m, 
1 J 

Further, by using the notation U .. =U(x.,y.) and then applying the five 
1,J 1 J . 

point finite difference approximation (see section (2.2)), i.e., 

2 1 1 
'V U .. = 2(U, 1 .-2U .. +U. 1 .)+ 2(U, 1 . l-2U .. +U .. 1), 

1,J (6X) 1- ,J 1,J 1+ ,J (6y) 1- ,J- 1,J 1,J+ 

the given elliptic equation (5.3.1) at the point (i,j) becomes, 

where 
a = 

U. 1 . + aU . . 1-2 (1+a+i)U .. +aU . . l+U, 1 . = d .. 
1- ,J 1,J- 1,J 1,J+ 1+· ,J 1,J 

(6X)2 and 
6y d .. 

1,J 
2 

= (6x) q .. 
1,J 

(5.3.4) 

(5.3.5) 



We shall here adopt a column-wise ordering of the mesh points as 

illustrated in Figure (5.1). 

y 
n 

(O,b) 

-1 

(0,0) 

2n (m-l)n (a, b) 

11+2 

r+l 

FIGURE 5.1 

~m~2 n+ 2 

m-2 n+ 1 

x 
(a,O) 

Hence, by applying equation (5.3.5) over the enclosed rectangular region 
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together with the periodic boundary conditions (5.3.3), we obtain the block 

matrix system, 

Au = d (5.3.6) 

where 
B I I 

I B I, Q 
, , .... , .... "-

A[I,B,Ij= , , .... , A = , , .... , (5.3.7) , .... , , 
Q ", .... .... I 

.... .... 

I ' I "B 
(m "rn) 

~, the approximate finite difference solution of (5.3.1) is given by, 

~l u. 1 1, 

~2 u. 2 
I 

1, 

I 

U = I u. = , i=l,2, ... ,rn, I -:l 

I 
U 

i,n 

and the vector d is similarly partitioned as u. 

The matrix B is an (nXh) periodic tridiagonal matrix of the form, 
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-2(I+a+T) a a 

a -2(I+a+T) a 
" 

" 
.... 

" .... o 
"- .... 

" B=B[a,-2(I+a+T),a]= (5.38) " "- " " " .... 
" " 

" 
a 0 " " 

" 
.... 

" a " a -2(I+a+T) 

and I is the (nxn) identity matrix. 

Cyclic Block Factorisation Method 

In Chapter 3, we introduced the general cyclic factorisation method 

for the solution of the general periodic tridiagonal matrix equation and 

then derived the various simplified variants of that general algorithm. 

Although each of the periodic matrix solver algorithms ((3.2), and (3.6)-

(3.9)) given is applicable to the periodic matrix systems in point form, 

the analogous block equivalent exists, provided the norm of the matrix B 

is greater than 2 (see (3.4.6) for the equivalent condition for the point 

case). 

Here we give the block form of the PQFACTl algorithm (3.6) which 

·requires the replacement of the matrix scalar elements 'b' and 'a' by the 

submatrix B and the identity matrix I respectively in order to obtain a 

direct solution of the block matrix equation (5.3.6) by the following 

procedure: 

By defining a submatrix N of order n, (cf. 3.4.7), i.e., 

v.. N =o;[B- (B
2 
-41)!). 11 B 11 >2 

where W is d"f,ned ClS th .. S'\." .. ~ roat of ", .. treK W (Spo.f ... , 1967) 
(5.3.9) 

then, the right-hand side vector d is modified to be 

d' = ~l } -1 

d! = d.-Nd! I' i=2,3, ... ,m. 
-1 --:J. 1-

(5.3.10) 

.~ 
Next, we calculate the intermediate solution sub-vectors y. (i=l, ••• ,m) as 

-1 

lm = (I+~~) -l~ 

and i y. = d!-&N v, i=m-l,m-2, ••• ,I, 
_1 -1 L.IJl 

} (5.3.11) 
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where 9=1 (i odd) and 9=-1. (i even). 

Further. by defining the intermediate vectors. 

!lm = NI,n 

i=m-l.m-2 •..•• 1} 
(5.3.12) 

and .8i = N(l.i -%+1)' 

we then obtain the final solution vector u from the expressions. 

and 

~l = (1+9Nm) -1 £1 } m-i+l i=2,3, ... ,ffi. u. = £i -eN ~l' -1 

This block factorisation method (5.3.9)-(5.3.13) which we denote 

as the BKFACTl algorithm gives the desired direct solution of equation 

(5.3.6) provided that the matrix (I+GNm) is non-singular. It is also 

necessary for stability considerations. to have the norm of the matrix N 

(since N is used as a multiplier in an elimination process) to be less 

than unity. 

Implementation of the BKFACTl Algorithm 

The determination of the sub-matrix N in the form given in (5.3.9) 

involves the evaluation of the square root of a positive definite matrix 

(B2_41). Various iterative methods. based on the Raphson-Newton scheme 

or its' variants. are known to exist for the determination of the square 

root of s~h matrices. References for this include Laasonen (1958). 

(5.3.13) 

Spath (1967). Babuska et al (1966) and Schofield (1973). Also the BKFACTI 

algorithm involves the calculation of the multiple powers of the matrix N 

which can be achieved by repeated multiplication. However. both the 

iterative method for the evaluation of the square root of a matrix and the 

repeated matrix multiplication required to obtain the higher order powers 

of the matrix N would lead to a grossly inefficient method requiring 

excessive computing effort and storage. Thus. in the BKFACTl algorithmic 

solution these computational difficulties must be resolved before the 

algorithm can become competitive with alternative methods such as the 

spectral resolution method introduced in section (5.2). 
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The matrix B[o,-2(1+o+T),o] defined in (5.3.8) is a symmetric cyclic 

tridiagonal matrix. Thus, if we introduce 

AB = diag(A l ,A 2,···,An) 

as the matrix of eigenvalues of B, then it is well known (Polozhii (1974)) 

that AB is given as 

b+20 

b+2ocosct 

b+2ocosct 

b+2ocos2ct 

b+2ocos2ct 

o 

or 

b+20 

b+2ocosct 

b+2ocosct 

o 

211 where b=-2(l+o+T) and a=-
n 

b+2ocos2ct 

b+2ocos2ct 

-

o 

........ n-l 
b+2ocos (-2-)ct 

n-l 
b+2ocos (T)ct 

n odd (5.3.14) 

o 

- n 
b+2ocos (Z,-l)ct 

n b+2ocos (Tl)ct 

b-20 

n even (5.3.15) 

It is also known that the (nxn) fundamental matrix Q whose columns 

are the normalised eigenvectors of B corresponding to the eigenvalues AB 

may be obtained in the following form: 



If. coso, sina cos2a. sin2a •........ (n-l)a 
cos 2 

· (n-l)a 
.sIn 2 

If. cos2a. sin2a, cos4a. sin4a •........ 2(n-l)a 
cos 2 

· 2(n-l)a 
.Sln 2 

Q=/n If. cos3a, sin3a. cos6a. sin6a •........ 3(n-l)a 
cos 2 

· 3(n-l)a 
.sln 2 

If. cosna, sinna, cos2na.sin2na •....... n(n-l)a 
cos 2 

· n(n-l)a 
.sln 2 

when n is odd. 

and If. cos2a, sin2a •......•..... (n-2) a · (n-2) a -,If cosa , cos 2 • SIn 2 • 

,If. cos2a. cos4a, sin4a, ............ 2(n-2)a · 2(n-2)a If cos 2 . • SIn 2 • 

Q=/n If. cos3a, cos6a. sin6a, ........... . 
3(n-2)a · 3(n-2)a -If cos 2 • SIn 2 • 

.................................................................. 
r. n(n-l)a . n(n-l)a " ~~. cosna. cos2na.sin2na •........... cos 2 • SIn 2 • ~~ 

when n is even. 

By theorems (2.7) and (2.8) the orthogonal matrix Q and the tri

T diagonal matrix B are related in the form B=QABQ. Thus. using this 

relation we now state and prove the following lemma: 

Lemma 5.1 

If the orthogonal matrix Q of eigenvectors of the matrix B which 

T has the matrix of eigenvalues AB exist such that B=QABQ • then for any 

integer k 

Proof 

k T T T 
B = (QABQ ) (QABQ ) (QABQ ) •.. repeated k times. 

The associative law allows us to remove the brackets and since 
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(5.3.16) 

(5.3.17) 

(5.3.18) 

QQT=I from the orthogonality property. the product gives the required result. 

Lennna 5.2 

k k-l 
Let f(B)=aOB +alB + •.. '\_IB+,\1 . 

denote a polynomial of degree k in the matrix B. then 

f(B) = Qf(AB)QT 

where f(AB) is a polynomial of degree k of the diagonal matrix AB. 

(5.3.19) 
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Proof 
1l-.is p .... of i~ !Jive" et., i" .Noble. ( 19'9), p. 3"'9. 

We require the result of Lemma 5.1. 

By substituting (5.3.18) into (5.3.19) we have, 

k T k-l T . T T 
£(B) = aOQABQ +alQAB Q + ... ~_lQABQ +~QQ 

k k-l T 
= Q(aOAB+alAB + ... ~_lAB+~I)Q 

= Qf(AB)QT 

and the result follows. 

By using Lemma (5.2), it is now possible to express the (nxn) submatrix 

N (::O'5'[B- (B
2 
-4I)!]) and the i th power of N, for any integer i, in the forms, 

where 

N = QAJl 

Ni = QAiQT 
N 

} 
~ = f~AB) = dia~(~,A2""'~n)' 

~ = f-(;~)'= diag(,ui ,)J;, .. . :#-r) 
==- 2 ! 

u. = W.·-(>.·-4) 1 . 1 1 1 
and (5.3.21) 

Similarly, the .. (I m)-l b d h f matr1x 1nverse +N can e expresse in t e orm, 

(5.3.22) 

where 

It is now necessary to demonstrate the extent to which the introduction 

of the forms (5.3.20) and (5.3.22) into the BKFACTl algorithm can greatly 

reduce the amount of arithmetic calculation required for the implementation 

of that algorithm. 

We consider, for example, the determination of the interme'diate vector, 

~i (i=m-l,m-2, ... ,1) given in (5.3.11), i.e., 

i 
~i = ~i±N rm' i=m-l,m-2, ... 1. 

On using (5.3.20), this becomes, 

i=m-l,m-2, ... 1 
, 

= d! ±W.z 
-1 1-

i=m-l,m-2, •.. 1 (5.3.23a) 

where (5.~.23b) 



Thus, if the vector ~ is computed first, then the subsequent 

computation of each~. in (S.2.23a) requires only one matrix-vector 
1 

multiplication and a vector addition. 
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i . .ffi -1 Thus, by introducing the modified forms of N and (I+N) given by 

(5.3.'20) and (5.3.22) respectively, and the simplifications introduced in 

(5.3.23), into the BKFACTl algorithm (5.3.9-5.3.13), then the arithmetic 

operation count of the algorithm becomes 0(4n 2m) (if we exclude the 

evaluation of the eigensystem of 8). Table (5.2) gives a summary of sections 

of the operational count of the BKFACTI algorithm. 

Summary of Operation Counts 

Quantities and Nature of Computation Multiplications Additions 
Equation No. (Each matrix/vector is x + 

of order n) 

d!,i=2,3, ... m 1. 
-1 

vector-matrixxvector 2 
n (m-I) 2 

n (m-l)+n(mcl) 

(5.3.10) 

~i,i=l,2, ... m vector-(matrixxvector) 2 2 2. n m n m+nm 

(5.3.11) 

3. g: ,i=l,2, ... m matrix*(vector+vector) 2 2 n m n m+nm 
-1 

(5.3.12) 

4. u. ,i=1,2, ... m vector+(matrixxvector) 2 2 n m n m+nID 
-1 

(5.3.13) 

2 2 2 
TOTAL 4n m 4n m 4n m+4nm 

TABLE 5.2 

Numerical Experiments 

A Fortran program (written and run in single precision arithmetic) to 

implement the BKFACTl algorithm is given as Program 14 in Appendix I. This 

program was tested on. a variety of pro~lems of the form (5.3.1) using the 

Loughborough University I.C.L. 1904S computer. We consider a specific case 

in which we adopt a uniform mesh size, 6x=6y=h=1/n within a square region 

(O~xy~l}, i.e., a=b=l. By choosing an exact solution vector u to be the unit 
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vector, the right-hand side vector was then determined by mUltiplying u . -
by the coefficient matrix A given in (5.3.7). The approximate solution 

was then recomputed by imputing both the coefficient matrix and the pre-

determined right hand side vector into the BKFACTl subroutine. The 

relevance of this example is that it gives an indication of the round-off 

error that can be expected in the BKFACTl algorithm. 

In order to assess the performance of the BKFACTl algorithm, both 

the maximum error of the computed solution (i.e., the maximum absolute 

difference between the known and computed solution) and the computation 

time were determined, and comparisons made between these results and those 

of the spectral resolution algorithm (5.1). The maximum errors and 

execution times (in mill units) obtained from both algorithms for different 

mesh sizes h, are summarised in Table (5.3). 

It can be seen from this table that the spectral resolution method is 

about 25% faster than the BKFACTl algorithm, but there is very little to 

choose between them in terms of accuracy. 

Mean Max Error and Execution Times (in Mill-Units) for the Solution of the 
2 -1 Finite Difference Equation (5.3.7) of order n where n=h 

-1 Max.Error Execution Time Scaled 
h =n Algorithms (10- 10) (Mill-Uni ts) Execution 

Time 

10 BKFACTl 9.2 7 1.16 
Spectral Resolution 8.1 6 1.0 

15 BKFACTl 16.3 18 1.13 
Spectral Resolution 15.8 16 1.0 

20 BKFACTl 20.6 43 1. 26 
Spectral Resolution 20.8 34 1.0 

30 BKFACTl 31.6 140 1. 34 
Spectral Resolution 32.8 104 1.0 

40 BKFACTl 43.8 296 1.24 
Spectral Resolution 47.2 234 1.0 

TABLE 5.3 
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5.4 THE SOLUTION OF PERIODIC PARABOLIC PROBLEMS BY BOUNDARY-VALUE TECHNIQUES' 

Finite-difference methods for parabolic initial boundary problems are 

usually treated as marching procedures in which we seek a point (or line) 

step-by-step solution on a chosen network of lines over a given semi

infinite region (e.g., R:{~~a, t~O}. In such a step-ahead technique, 

results on one row are used to generate results on the next row in a 

recursive fashion. There is, therefore, inherent in such a method, an 

accumulation of the effects of round-off and truncation errors, as we 

proceed from row to row. 

A method which has been developed (Carasso and Parter (1970) and 

Greenspan (1974)) to remove this row-to-row error accumulation is by the 

use of elliptic boundary-value techniques for the numerical computation of 

such parabolic problems. It is based on the assumption that the solution 

of the parabolic p.d.e. reaches a known steady state value as time, t+oo 

and hence one is able to provide or determine solutions on the line t=T 

(for a sufficiently large, preselected value T). With this extra data, it 

then becomes feasible to solve the parabolic problem by the use of an 

elliptic-boundary value method within the truncated region, R:{O~x~a, 

O~t~T}. The mathematical theory which supports the validity and viability 

of this method is given in Carasso and Parter (1970). 

Here we consider a periodic parabolic problem in which, instead 'of the 

usual initial boundary condition, we are given periodic conditions along 

the infinite t-axis (i.e., the solution is periodically repeated at some 

interval of time T (e.g. T=2n)). Such a periodic condition thus provides 

the extra data (equivalent to the steady state solution of a non-periodic 

problem) required for a complete specification of the reformulated elliptic 

problem. 

Problem Definition 

We now consider, for example, the linear one-dimensional heat-conduction 

equation, 



a2u 
ax2 -

au 
at= F(x.t) 

in the semi-infinite strip. 

subject to the Dirichlet's boundary conditions. 

U(O.t) = f(t), t~O 

U(a,t) = get), t~O 

and the periodic condition, 

U(x.t+T) = U(x.t). O~~a, t~O . 

This problem reformulated as an elliptic-boundary value problem is 

equivalent to (5.4.1) subject to the boundary conditions (5.4.3) over 

the enclosed truncated rectangular region. R={(x,t)IO~~a. O~t~T} 

where the solution is required to satisfy the periodicity condition 

(5.4.4) as illustrated in Figure (5.2). 

U(x,T) (0. T) I-_~.J..!:..L!..L ___ -,( a. T) 

f(t) R get) 

U(x.t) 
L---~~~------~~x 

(0.0) (a.O) 
FIGURE 5.2 

Next. we divide the range (O.T) of t into m uniform mesh sizes 

each of length k=T/m; and the range (O.a) of x into (n+l) equal steps 

of size h=a!(n+l) such that 

t. = jk j=O.I •...• m 
J 

and x. = ih i =0 J 1 , ... , n+ 1 . 1 

Further. we write. 

U. = U(x .• t.) = U(ih.jk) • 1.j 1 J 

F. = F(x .• t.) = F(ih.jk) , 1.j 1 J 
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(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 



f.=f(t.) 
) ) 

and g = g(t.) 
j ) 

and then consider the following finite difference approximation, 

a2u 2 2 
---.,. = (U. 1 .-2U .. +U. 1 .)/h .. O(h ) 
, ~ 1- ,) 1,) 1" ,) 
oX . 

and au 2 
-;;-t = (U .. l-U, . 1)/2k+0(k ). 
a 1,J+ 1,J-

Hence, equation (5.4.1) can be represented, on neglecting the 

truncation error, at the point (i,j) in R by the five point central 

difference operator, 

-D .. l-2rU. 1 ."4rU .. -2rU. 1 ."U .. 1 = -2kF .. 
1,J- 1-,] 1,J 1+,] 1,J+ 1,J 

2 
where r=k/h • 

i=1,2, ... ,n; j=1,2, ... ,m" 

The scheme (5.4.5) is the so-called' lel1p frog' or Richardsoris" 

scheme and it is well-known that when used in a marching procedure with 

parabolic p.d.e., it leads to an improperly posed numerical problem as 

the data on the line t=k must be supplied, in addition to the usual 

initial data, in order to start the calculation. It is also known that 

the Richardson's scheme used as a marching procedure is unconditionally 

unstable (Forsythe and Wasow (1960)). It has however been established 

in a proof given by Carasso and Parter (1970) that as a boundary-value 

procedure, for linear and mildly non-linear problems, the Richardson's 

scheme is unconditionally stable. 

Hence, we consider a row-wise ordering of the mesh points in the 
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(5.4.5) 

truncated region R (Figure 5.2) and apply the difference equation (5.4.5) 

at every point in R to obtain the finite difference approximation of (5.4.1)-

(5.4.4) as, 

Au = d (5.4.6) 

where A is the (mxm) skew-symmetric block tridiagonal matrix, 



B 1 -I 

-I B 1 
0 ... ... 

" ... "-
"- ... ... 

A[-I,B,I) "- ... ... = '" ... ... 
... ... ... 

'" 
... ... 

'" 
... ... 

0 '" 1 ... ... 
'" ... 

I 
... 

-I B (mxm) 

I is the (nxn) identity matrix and B is a tridiagonal matrix given by, 

4r -2r 

-2r 4r -2r 0 , ... ... 
... ... , 

... ... ... 
B[-2r,4r,-2r) = 

, , , , 
... '" ... ... ... 

'" 0 " 
... , 

... '" ... 
... ... 

-2r ... ... ... 
-2r 4r (nxn) 

The solution vector ~ (the approximation of ~) and the right-hand side 

vector ~, each of which can be thought of as a two dimensional array, 

are written as, 

u = 

and 

d = 

~l 

~2 

I 

I 

U 
-;n 

~l 
~2 

I 

d 
-;n 

u. = 
-) 

d. = 
-) 

u
I 

. 
,) 

u
2 

. 
,) 

, j=1,2, ... ,rn, 

I 

U I • 
n,) 

-2kF
l 

.+2rf. 
,) ) 

-2kF2 . 
I .J 

-2kF I . 
n- ,) 

-2kF .+2rg. n,) ) 

, j=1,2,o .. ,m. 
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(5.4.7) 

(5.4.8) 

(5.4. ga) 

(S.4.9b) 

A block factorisation method for the solution of the skew symmetric matrix 

A[-I,B,I) 

The skew symmetric block matrix A given in (5.4.7) can be factorised 

into the product of P and Q, i.e., 

A = PQ (S.4.lOa) 

where 



162 

I -N M I 

-N I M I 0 , 0 , , , , , , , , , , , 
P , , 

and Q 
, 

= , = , , , , , , , , , , , , 
0 , I 0 , , , , , 

(5.4.lOb) 

-N I I 'M 

Both N and M are assumed to be square matrices. If we then mul tiply P 

and Q together and equate to A as in (5.4.10a) we obtain immediately the 

relations, 
NM = I } (5.4.11) 

and M-N = B 

Either by using the continued fraction concept (see (3.3.4)-(3.3.6) or by 

a simple direct substitution, the value of N is derived from (5.4.11) as, 

.. 2 l 
N =Oi[-B+(B +41) ] 

Since the matrix A in (5.4.7) is the block form of the matrix (3.4.21), 

it is feasible to adopt the block form of the PQFACT4 algorithm (3.9) in 

the solution of equation (5.4.6). Hence, by assuming that the vectors u 

and ~ are partitioned relative to A, we derive immediately, as a block 

form generalisation of the PQFACT4 algorithm (3.9), the following direct 

method for the solution of the block skew symmetric matrix (5.4.7): 

We define the submatrix N of order n as, 

N =05[_B+(B2+41) l] , 

and then, the vector d is transformed to the form, 

and 

~i = ~l 

d! = d.+Nd! l' j=2,3, ..• ,m. 
-) -) -)-

Next, we obtain the intermediate solution sub-vectors l.j as, 
" 1 

rm = (I-~)- ~ 

v. = d!+Njv , j=I,2, ... ,m-1. 
L) -J '-Ill 

Further, by defining the intermediate vectors, 

Bm = Nrm 

g. = N(v.-g. 1) 
-J LJ -J+ 

j=m-l,m-2, •• ". ,1, 

(5.4.12) 

(5.4.13) 

(5.4.14) 

(5.4.15) 



we then obtain the final solution vector ~ as, 

m -I 
~1 = (I-TN J £1 

m-j+1 u. = g.+TN u
I -) -] -

and j=2,3, ... ,m 

where T=-I (if m and j are both even or both odd) 

= 1 otherwise. 

We denote algorithm (5.4.12)-(5.4.16) as the BKFACT4 algorithm 

which' gives a fast direct solution of the difference equation (5.4.6) 

provided that (I_TN
m

) is non-singular and that I 1Nl I <I. 
m 

1[mp1ementation of BKFACT4 Algorithm 

The matrix B[-2r,4r,-2r] given by (5.4.8) is a constant tridiagonal 

matrix of order n. It is well known (Polozhii (1974)) that its matrix 

of eigenvalues, AB' is given by 

where i=l, ... ,n 
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(5.4.16) 

(5.4.17) 

and the orthonorma1ised matrix Q=(q .. ) whose columns are the eigenvectors 
1,) 

of B.is given by, 

(Q) .. =q .. =~ Sin(i j
l
")' i,j=I,2, ... ,n. 

1,J 1,J n+ (5.4.18) 

The matrix Q is symmetric. 

With the eigenva1ues and eigenvectors of B determined by (5.4.17) 

and (5.4.18) respectively, it is then possible to employ the relations 

(5.3.20) and (5.3.22) in a further simplification of the BKFACT4 algorithm 

just as was shown for the BKFACTl algorithm, in order to improve the 

competitiveness of the latter method. Thus instead of the expression for 

N, for example, in (5.4.12), we can write, 

where 

and 

~ = diag(~l'~2""'~n)' 
2 i . 

~. = i[-A.+(A.+4) 1, 
111 

i=1,2, ... ,n. 

By using this and other similar modifications, it can be shown, as was. 

2 . 
done in Table (5.2), that the BKFACT4 algorithm requires 0(4n m) 

(5.4.19) 
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arithmetic operations. 

Program 16 of Appendix I gives the Fortran implementation of the 

BKFACT4 algorithm. 

The Spectral Resolution Approach 

An alternative method of solving the skew symmetric block periodic 

tridiagona1 matrix system (5.4.7) is by the matrix decomposition approach 

(Buzbee et al (1970)) outlined in algorithm (5.1). The algorithm proceeds 

as follows: 

(1) Determine the eigenvectors Q of B and the associated eigenvalues of B 

(2) 

(3) 

using the formula in (5.4.18) and (5.4.17) respectively. 

Compute the modified right-hand side vector d. by multiplying each 
-J 

T row of ~ by Q to obtain, 

- T 
d. = Q d. ,j=I,2, ... ,m. 
-J -J 

Re-order the sub-vectors rl. by vertical lines instead of horizontal 
-J 

"-lines to generate the sub-vectors d. and then solve the n set of 
...J. 

tridiagonal matrix systems, 

" " r.u. = d. , i=l,2, ... ,n 
1-1 -1 

where r. is given by, 
1 

A. 1 -1 
1 

-1 
A. 1 0 1 

'- , 
, , 

r. = ... ... 
1 

... , , , , , , o , " 1 

1 
A "-

and u., d. are respectively of the form 
-1 -1 

(4) 

u. 1 1, 

U. 2 
1, 

, 
u.' 

1,m 

A 

and d. = 
"""l. . 

d. 1 1, 

d. 2 1, 

. , 
d.' 
1,~ 

"-Next, we reorder the array u. by horizontal lines instead of 
-1 

,. 

vertical lines to generate U. and then compute the final solution 
-J 

vector, 

(5.4.20) 

(5.4.21) 

(5.4.22) 

(5.4.23) 

, 
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u. = Qu., j=1,2, ... ,m. 
-J -J (5.4.24) 

Each of the n sets of tridiagonal linear systems (5.4.22) can be solved 

by using, for example, the fast PQFACT4 algorithm (3.9). 

Numerical Results 

We consider the heat conduction equation, 

2 a U(x,t) 
2 ,ax 

aU(x,t) 
at = -sinx(sint+cost) 

in the semi-infinite region R={O~~n, t>O} 

satisfying the boundary condition, 

U(O,t) = U(n,t) = 0, t>O 

and the periodic condition, 

U(x,2n) = U(x,O) , O~~n. 

(5.4.25) 

(5.4.26) 

(5.4.27) 

(5.5.28) 

Because of symmetry with respect to x=n/2, the solution in the range 

O~x~1T/2 is repeated in the range 1T/2~x~1T. 

For a mesh spacing ~x=h=1T/2l, and ~t=k=21T/20, the computed solution 

u of the periodic heat equation (5.5.25)-(5.5.28) at specified discrete 

values of x and t, obtained by the solution of the (400X400) matrix 

equation (5.4.7), using both the BKFACT4 and the spectral decomposition 

algorithmic methods, are given in Table (5.4). From this table, it can be 

seen that the results obtained from both algorithms agree up to 10 decimal 

places of accuracy; which suggests that both algorithms have the same order 

of accuracy. 

The analytical solution of the model problem under discussion is not 

known and hence we are not able to compare the computed solution with any 

known exact solution. 

However, by substituting the values of the computed solution at any 

arbitrary mesh point (i,j) and its 4 neighbouring points into the finite 

difference scheme (5.4.5) i.e. 

1/J .• = -u .. 1-2ru. 1 .+4ru .. -2ru. 1 .+U .. l+2kF .. = 0 
1,J 1,J- 1-,J 1,J 1+,J 1,J+ .1,J 

(5.4.29) 



,~ 

k 

2k 

3k 

4k 

5k 

6k 

7k 

8k 

9k 

10]( 

The solution of the periodic heat conduction equation (5.5.25)-(5.5.28) using boundary-value 

technique where 6x=h=rr/21, 6t=k=2rr/20 

2h 4h 6h 8h 10h 

a 0.17659856568 0.33750557379 0.46542373059 0.55772038321 0.59746113232 
b 0.17659856566 0.33750557366 0.46842373051 0.55772038315 0.59746113222 

a 0.28356541049 0.54193478984 0.75215088487 0.89553507300 0.95934703988 
b 0.28356541045 0.54193478976 0.75215088976 0.89553507286 0.95934703973 

a 0.28221990655 0.53936333588 0.74858196585 0.89128580305 0.95479498529 
b 0.28221990651 0.53936333581 0.74858196577 0.89128580294 0.95479498513 

a 0.17307599062 0.33077341993 0.45908017931 0.54659565011 0.58554369869 
b 0.17307599060 0.33077341990 0.45908017926 0.54659565004 0.58554369881 

a -0.00217707108 -0.00416069985 0.00577463218 -0.00687546308 -0.00736537894 
b -0.00217707108· -0.00416069985 0.00577463218 -0.00687546308 -0.00736537894 

a' 0.17659856563 -0.33750557371 -0.46842373045 -0.55772038307 -0.59746113214 
b -0.17659856561 -0.33750557368 -0.46842373040 -0.55772038302 -0.59746113208 

a -0.28356541046 -0.54193478977 -0.75215088476 -0.89553507286 -0.95934703977 
b -0.28356541046 -0.54193478968 -0.75215088466 -0.89553507274 -0.95934703961 

a -0.28221990648 -0.53936333576 -0.74858196568 -0.89128580285 0.95479498509 
b -0.28221990643 -0.53936333567 -0.74858196557 -0.89128580271 0.95479498492 

a -0.17307599049 -0.33077341970 -0.45908017899 -0.54659564971 -0.58554369827 
b -0. 17307599047 -0.33077341966 -0.45908017893 -0.54659564965 -0.58554369819 

a 0.00217707123 0.00416070013 0.00577463258 0.00687546357 0.00736537945 
b 0.00217707123 0.00416070013 0.00577463258 0.00687546357 0.00736537945 

TABLE 5.4 

a=BKFACT4 aZgorithm 

b=SpeatraZ Deaomposition method 



where F(x,t)=-sinx(sint+cost), it is found that the computed solutions 

satisfy the equation (5.4.29), as shown in Table (5.5), to within 10-5 , 

which is a good accuracy to attain with the 0(h2+k2) truncation error of 

the finite difference approximation. 
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Random checks on the solution of equation (5.5.25)-(5.5.28) at arbitrary points (i,j) 

2 for h=6x=~/21, k=6t=2~/20, r=k/h 

Mesh point U .. 1 U. 1 . U .. U. 1 . U .. 
(i,j) 1,J - 1- ,J 1, J 1'" , J 1,J+1 

(1,1) 0.00110083 0.0000000 0.475247696 0.093987914 0.089296652 

(4,6) -0.568472066 0.415431649 0.539363335 0.651246536 0.457457964 

TABLE 5.5 

1jJ •• 
1,J 

(5.4.29) 

o .00001795 

0.000016658 
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5.5 AN APPLICATION OF A CYCLIC LOWER TRIANGULAR BLOCK MATRIX IN THE SOLUTION 

OF A PERIODIC PARABOLIC PROBLEM 

We consider here two fast methods for the solution of the cyclic lower 

triangular block matrix equation arising from the classical implicit finite 

difference representation of the steady-state solution of the parabolic 

one-space dimensional heat conduction equation with periodic conditions. 

This problem has been considered by Tee (1964) in which a method of 

successive over-relaxation (S.O.R.) was developed for the iterative solution 

of the discretised problem. Later, the problem'was further considered in 

Osborne (1965) in which a direct method, based on a special factorisation of 

a cyclic lower triangular matrix, was introduced. Here, we present two 

alternative direct methods. The first is a block extension of the elimination 

strategy introduced in the development of the point-form algorithm (3.2). 

Mathematically, the approach is equivalent to Gaussian elimination without 

pivoting (since pivoting for size is shown to be unnecessary for a stable 

solution of the problem under discussion). The other method is an extension 

of the spectral resolution approach for which we introduce a new fast 

algorithm for the solution of the resulting decomposed simple point-form 

cyclic lower triangular matrix systems. 

NOw, we consider the periodic parabolic heat equation defined in 

(5.4.1)-(5.4.4), i.e., 

a2u 
ax2 -

au - = F(x t) at ' 

in the semi-infinite strip R : {O:::x:::a, nO} 

subject to the boundary conditions, 

U(O, t) = f(t), t>,O 

and U(a,t) = get), nO 

where f and g are periodic with period T, and 

U(x,t+T) = U(x,t) O:::x:::a, t>O. 

Let us approximate (s.s.la) by the finite difference scheme, 

(s.s.la) 

(s.s.lb) 

(s.s.lc) 



(U. 1 . 1-2U .. l+U. 1 . 1) 1- ,]+ 1,J+ 1+ ,J+ (U .. l-U .. ) 
1,)+ 1,) 

k F .. 
1,) 
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which, on following the usual notations introduced in the last section and 

neglecting the 0(k 2+khltruncation error term, gives the difference equation 

2 where r=k/h . 

-rU. I . 1+(1+2r)U .. l-rU. I . l-U .. = -kF .. 
1- ,J+ l,J+ 1+ ,)... 1,J 1,) 

By adopting a row-wise ordering of the mesh points in the truncated 

(5.5.2) 

rectangular region R={O~~a"O~t~T} the totality of the difference equation 

(5.5.2) leads to the m-cyclic block matrix equation, 

P -I ~ ~ 
-I P 0 ~l !!.l , , , 

= (5.5.3) , , 
0 

, , 
I , 

-I P u ' h' 
-m-I ~-l 

where u. (the approximation of U. ) and h. are written as 
-) -) -) 

uI . 
,) 

rf.-kF
I 

. 
) ,) 

u2 . 
,) 

-kF2 . 
,) 

I 

= I and h. = j=O,l, ... ,m-l. (5.5.4) u. , 
-) -) 

I 

-kF I . 
I n-l,) 

u ' rg.-kF . 
n,t ) n,) 

In addition, P is the (nxn) tridiagonal matrix of the form, 

1+2r -r 

-r 1+2r -r , , , , 0 
, 

" , , , , , 
P " 

, 
= , 

, 
, 

" , , 
(5.5.5) 

, 
0 , , , 

" , , -r , , 
-r 1+2r 

which possesses a complete set of eigenvalues, 

hp = diag(A I ,A 2, ..• ,An) 

and the associated matrix of orthogonal eigenvectors, Q, such that, PQ=Qh . 
P 
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The matrix P is non-singular (i.e. p- l exists) since its eigenvalues, A., 
1 

given by, 

A. = 1+4rsin
2
(in/2(n+l)), i=l,2, ... ,n, 1 

are greater than unity. 

Hence, the system (5.5;3) can be normalised by multiplying it by 

the block diagonal matrix, 

-1 p 

o = 

to give, 

r 

-N r , , 
, , 
, , 

" 
., 

, , 
" , , 

0 

, , , , 
0 

, , 
-N 

where, 

-1 
P , , 

o 

, 

-N 

, 
I 

o 
" , 

" 
" , , 

, -1 
P 

~l 

~2 

I 
I 

I 
w 
-1J1 

.'!l 

.'!2 

= 

d 
-1J1 

-1 
d. = P h. 1 ' j=l,2, .•. ,m. -J -J-

and w. is defined as u. l' 
-J -J-

For a stable sOlution of the m-cyclic block matrix equation (5.5.8) 

by any form of Gaussian elimination method which does not include a 

(5.5.6) 

(5.5.7) 

(5.5.8) 

(5.5.9) 

pivoting strategy, it is necessary to have the norm of the matrix N less 

than unity in magnitude. 

Now, since the matrix P is symmetric with its eigenvalues (see 5.5.6) 

greater than unity, it is then easy to show, by using Theorem (2.1), that 

the spectral norm of P is greater than unity, 

i. e. , 

Hence, it follows immediately that 

(5.5.10) 

Thus, since the norm of N is bounded and independent of r, the mesh 
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ratio, one can immediately conclude that a block algorithm, for'the steady 

state solution of the implicit finite difference equation (5.5.8), in which 

the matrix·N is used as a multiplier in an elimination process, is 

guaranteed to give a stable solution without the need to apply a pivoting 

strategy. 

A fast algorithmic solution of the m-cyclic system 

We consider first the simple point form of the system (5.5.8), i.e., 

the m-cyclic matrix equation, 

1 -i xl zl 
-i 1 

0 
x2 z2 

.... I .... .... .... 
.... .... = (5.5.11) .... 

.... .... .... " .... .... .... 
.... " 0 .... .... 

.... .... 
I .... .... 

-R- I x Z m m 

where i is assumed, for stability reasons J to be less than unity. 

It can be immediately recognised that the matrix equation (5.5.11) 

is of the same structure as system (3.2.18) in Chapter 3, with all the 

sub-diagonal elements i. (i=1,2, ... ) replaced by -i. The algorithmic 
1 

solution of (5.5.11) can thus be derived as a simplified variant of 

equations (3.2.20)-(3.2.21), to give, for lil<l, the following stable 

fast method: 

By defining the quantities, 

k 
<t>k = -i ,k=1,2, ••. ,m, 

and then modifying the right-hand side vector z to the form, 

Zi = zl 

and z" = zk +izk_l k=2,3, ... ,m, 

we obtain the final solution vector x of (5.5.11) as, 

xm = z'/(l+<t> ) ,m m 

and 

(5.5.12) 

(5.5.13) 

(5.5.14) 

Since we have shown that the norm of the matrix N is less than unity 
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then it becomes feasible to develop a stable compact method for'the solution 

of the m-cyclic block matrix system (5.5.8) by generalising the above point-

form algorithm (5.5.12)-(5.5.14). 

We shall refer to the reSUlting generalised block form (which applies 

to a block ~-~clic matrix equation of the form (5.5.8)) as the BLOMC 

algorithm outlined below as fOllows: 

The BLOMC Algorithm 

First, we define the following auxiliary sub-vectors as, 

d' ; d 
-1 _1 

d! ; d.+Nd! 
-) -) )-1 j=2,3, ... ,m. 

Then, the solution sub-vectors w. are obtained as, 
-) 

and j;1,2 •... ,m-I. 

provided that (I_N
m

) is non-singular; a condition which is always 

satisfied since I 1Nl 12 has been shown in (5.5.10) to be less than unity. 

The matrix P as given in (5.5.5) is a symmetric tridiagonal matrix 

and therefore has a complete set of theoretically known eigenvalues 

Ap;diag(Al.A2.···An) and a corresponding fundamental matrix of eigen

vectors Q. It is therefore possible to introduce the similarity normal 

form of P in order to obtain a computationally simpler form of the BLOMe 

algorithm. 

Hence. by writing N as in (5.3.20). i.e., 

T -1 
N ; Q~Q where ~ ;Ap 

we have, in place of (5.5.16a), for example, the alternative form, 

w ; QA QTd , 
-Ill N-IIl 

where m m m -1 
~ ; [diag(1-1/A

1
, l-1/A2,·· .1-1/A

n
)] 

Similarly, instead of (5.5.l6b) we can write, 

w. ; d!_QAjQTw j;m-l,m-2, .•• 1 
-) -) ."N -Ill 

T which on pre-computing the vector v;Q w becomes, 
- -Ill 

j;m-l,m-2, .•. ,1. 

(5.5.15) 

(5.5.16a) 

(5.5.16b) 

(5.5.17) , 

(5.5.18) 
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Altogether, the BLOMC algorithm (5.5.15)-(5.5.16) can be implemented, 

using the normal form simplifications as indic~ed, in 0(2n2m) arithmetic 

operations. A Fortran program for this algorithm is given as Program 16 

of Appendix T. 

The spectral resolution technique (section 5.2) can be applied as an 

alternative scheme in the solution of the m-cyclic block matrix system (5.5.8) 

in the following manner: 

(I) Determine the eigcnvalues AN=diag(~I'~2""'~n) of N and the corresponding 

(2) 

(3) 

matrix of eigenvectors, Q. -I 
Since N=P ,both Nand P are known to have 

a common matrix of eigenvectors Q. The set of eigenvalues of N, i.e., 

-1 . 
AN = Ap = d1ag(I/A 1 ,I/A2,··· ,I/An) , 

are immediately obtained from A., the theoretically known eigenvalues 
1 

of P. 

Next, we 

Then, we 

compute the intermediate vectors, 

d. = QTd . (=A-IQTh . on using 
-) -) P -)-1 

solve a set of n linear m-cyclic 

..., '" 
r.W. = d. J i=1,2, ... ,n 
1-1 -1 

(5.5.9)) , j=I,2, ... ,m. 

matrix systems, 

(5.5.19) 
1\ 1\ 

where w. and d. are vectors structured as those defined in (5.4.23), 
-1 -1 

and f. is the m-cyclic matrix given by, 
1 

I -~. 
1 

-~. I 
1 

, 
0 , 

f. = , , 
1 ... ... ... , , , 

"- , 
0 ... , 

. 
-~. 1 

1 (mxm) 

(5.5.20) 

(4) Finally, we compute the solution subvectors, -

j=I,2, .•. ,m. (5.5.21) 

The formulae (5.5.12)-(5.5.14) provide a fast solution of the simple 

linear systems (5.5.19); and by neglecting the computation of the eigen-

values and eigenvectors the separation of variables technique as outlined 

requires 0(2n
2
m+2nm) arithmetic operations for the solution of the given 

m-cyclic system (5.5.8). 
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The methods presented here provide a more compact form for the 

solution of the implicit periodic parabolic heat conduction problem in one 

space dimension than the given method of successive over-relaxation (S.O.R.) 

proposed for the same problem by Tee (1964), and the direct method proposed 

by Osborne (1965). 



5.6 THE SOLUTION OF THE FOURTH BOUNDARY VALUE SELF-ADJOINT PROBLEM FOR 

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 

In the numerical solution (by a marching technique) of the implicit 

finite difference equations derived from the quasi-linear self-adjoint 

parabolic partial differential equations with periodic boundary conditions 

in the space dimension, there arises the need to solve repeatedly systems 

of linear equations in which the cofficient matrix is. the general circulant 

tridiagonal matrix of the form, 

bl cl al 
a

2 
b2 c2 0 , , , , , , , , , , , , , , 
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A (5.6.1) = , , , 
, , , , , , 

" 'c 0 
, "- n-l , "-, , b a c n n n 

where A is assumed to be positive definite and diagonally dominant, 

i.e. , Ib 13Ia·I ... lc.I, i=l,2, ..• ,n. 
i 1 1 

In section (3.2) of this thesis, we discussed various generalisations 

of algorithmic methods for the fast solution of the general tridiagonal 

matrix system of the form (5.6.1). Here, we consider the solution of a 

model parabolic fourth boundary-value problem in which these fast methods 

become readily applicable. 

Problem Definition 

We consider the following general diffusion equation with periodic 

spatial boundary condition, i.e., 

au a au 
at = ax(K(x)ax) ... 'I'(x,t) (5.6.2) 

in the semi-infinite region, R={O::;x::;R., no} where the function U(x,t) 

is required to satisfy the initial boundary condition, 

'" U(x, C?) = f(x) (5.6.3) 

and the" periodic boundary conditions, 



U(O,t) = U(t,t) 

au au 
ax(O, t) = ai(t, t) 

A typical physical realisation of the above problem is the cooling 

of a thin circular ring whose circumference is represented by t .. 

For a numerical solution of (5.6.2)-(5.6.4) we consider a set of 

non-uniform mesh points x. such that 
J 

0= xI <x2 ... <x
n 

= t 

and then define the mesh sizes h.=x.-x. I and t
k
=k6t. 

J J J-

177 

(5.6.4) 

Further, we denote Xj+! for xj+!hj+l' Kj+! for K(x j +j ), and tk+! =tk ~t. 

Next we approximate the p.d.e. (5.6.2) at the point (j,k+l) by the 

stable Crank-Nicolson finite difference implicit formula (see 2.2.16) in 

which symmetry in the discretisation process is introduced by writing all 

the finite differences about the point P(xj,tk+j ), half-way between the 

known time level k and the unknown time level (k+l) as illustrated in 

Figure (5.3). 

T 
6t 

1 h. 
J 

j -1 

P 

j 

h. 1 J+ 

_k+l 

t--k 

j+l 

The Computational Molecule for the Crank-Nicolson Scheme 

FIGURE 5.3 

Hence we have, 

+ O(6t) 

and 

a au 
a,c-[K(x),,]. k 1 

oX J, + 

which gives, at the point (j,k+!), 

(5.6.5) 
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a aU -[K(x)-j 1= ax aXj,k+2 

U. k-U. 1 k ~J h.+h. 1 + K. () , ) - , ). I() ) + ) +0 (h . h . ) 
)-~ ·h. 2 JJ+1 

) 

On omitting the truncation error terms and substituting the difference 
(5.6.6) 

equations (5.6.5) and (5.6.6) into (5.6.2), we obtain at the point (j,k+1) 

the following equation, 

U· 1k-U· k (J+, )') 
+Kj+ ~ 2h

j
+

l 

K. (Uj +1,k+1-
U

j,k+1) 
J+ ~ 2hj+l 

U _U 
_ K (j ,k+1 j-1,k+1) 

j - ~ 2h: 
) 

U. k- U. 1 k 
K. (), )- , ) + 'I'(x.,(k+!)lIt) 
) - ~ 2h j ) 

for l::;j::;n. 

By regrouping the terms, equation (5.6.7) can be written as a 

series of linear equations of the form, 

a.U. 1 k l+b . U. k l+c . U. 1 k 1 = d. k ' l::;j::;n ))-,+ )),+ J)+,+ ), 

where the coefficients a.,b.,c. 
) ) ) 

and d. k are defined, for j=1,2, ... ,n as 
) , 

-lItK. ~ 
a. = )-

) (h.+h. l)h. 
) )+ ) 

-lItK. ! 
c. = (h r )h 

) j+ j+l j+1 

j=1,2, .•. ,n 

b. = 
) 

and d. k = 
) , 

-lit 
U. k- U. 1 k 

K [), )-'j 
j-~ (h.+h. l)h. 

J )+ ) 

, j=l,2, ... ,n. 

It is easily verified that 

Ib.I>la.I+lc.l. 
. J ) ) 

As a result of the periodic boundary conditions (5.6.4) we have 

the periodicity relationships, 

Un+l,k = U1 k I , 

Kn+! = K~ , 

and h = hI etc. 
n+l 

(5.6.7) 

(5.6.8) 

(5.6.9) 

(5.6.10) 

(5.6.11) 
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Ilence, the di fference equations (5.6.8) together wi th the periodic 

conditions (5.6.11) lead to the general diagonally dominant matrix system, 

(5.6.12) 

or 

bl cl a
l u dl k l,k+l , 

a2 b2 c 2 
u d2 k 0 2,k+l , 

, , , , , , , , , , , , , , , , , = (5.6.13) , , , , , , , 
0 

, , , , , , I , , C , , , n-l 
b u 

, 
d' c a n,k+l n n n n,k 

which is to be solved in order to obtain the values ~ on the new line 
~+l 

(k+l)6t from the values of ~ on the previous line k6t. Thus, the process 

of solving numerically the fourth boundary value problem (5.6.2)-(5.6.4) by 

a marching technique, which employs the Crank-Nicolson finite difference 

scheme, consists essentially of solving repeatedly the general matrix 

equation defined in (5.6.13). 

The generalised cyclic factorisation method in the solution of the Crank-

Nicolson finite difference equation of the Fourth-Boundary Value Problem 

The coefficient matrix A arising from the discretised fourth boundary-

value p.d.e. remains unchanged as the marching procedure is advanced from 

one time-interval to the next. There is therefore some attraction for a 

factorisation method of solution since the coefficient matrix can be 

predetermined in its factorised form only once, thus eliminating, for 

subsequent solution steps, the most computationally tedious part of the 

method. On this basis, the generalised cyclic factorisation algorithm 

(i.e. the PQFACT algorithm· (3.2), Chapter 3) offers an attractive fast 

method for the repeated solution of the system (5.6.13),.since in that 

case, the factorisation and the r"esultant evaluation of a periodic continued 

fraction which forms the tedious part of the algorithm need be ·performed only 
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once; and thereafter, only 5n multiplications an~ 5n additions are required 

by the PQFACT algorithm for a further solution on a new line k6t (k=2,3, ... ). 

Numerical Results 

The direct method outlined in this section for the solution of the 

Crank-Nicolson finite difference equation using the PQFACT solver algorithm 

was programmed for the I.C.L 19045 computer at Loughborough University and 

used to solve the following heat conduction equation: 

au 
at-

a2u 
-2 = 10(1-x)xt 
ax 

with the initial condition, 

U(x,O) = x(l-x) , O~x'l 

and th~ periodic boundary condition, 

and 

U (0, t) 

au (0 t) 
ax ' 

= U(l,t), 

a 
= axu(l,t), t"o. } 

The equations (5.6.14)-(5.6.16) have the following analytical 

solution (Evans (1971A)) 

U(x, t) 5 
"8 L 

n=l 

cos2n1lx 
6 6 

n 11 

22= 
2 2 -4n 11 t \ {4n 11 t-l+e }- L 

n=l 

2 2 
e~4n 11 t 

2 2 
n 11 

Results are compared in Table ~.5) for the formal solution given by 

(5.6.17) against the Crank-Nicolson method using the PQFACT solver 

(5.6.14) 

(5.6.15) 

(5.6.16) 

cos2n1lx. 

(5.6.17) 

algorithm for mesh sizes of 0.01 in the x·- axis and 0.005 in the t-direction. 
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Solution of the self-adjoint diffusion equation with periodic condition 

t=I.O 

Finite Difference Solution Analytical Solution 
x Using PQFACT Solver Algorithm Using (5.6.17) , 

0.0 0.969709 0.972884 

0.1 0.976697 0.979501 

0.2 0.991226 0.993748 

0.3 1.006441 1.00876). 

0.4 1.017494 1.019703 

0.5 1.021499 1.023667 

x=0.5 

t Finite Difference Solution Analytical Solution 
Using PQFACT Solver Algorithm Using (5.6.17) 

0.1 0.178395 0.178758 

0.3 0.247804 0.248318 

0.5 0.385735 0.386512 

0.7 0.590164 0.591373 

0.9 0.861092 0.862901 

TABLE 5.5 



5.7 THE SOLUTION OF LINEAR PERIODIC PARABOLIC P.D.E. 'S IN TWO-SPACE 

DI~~NSIONS BY FAST A.D.I. ~THODS 

In the numerical solution of linear periodic parabolic partial 

differential equations with constant :coefficients involving two-space 

dimensions by the alternating direction implicit (A.D.I.) methods there 

182 

occurs the problem of solving repeatedly cyclic tridiagonal matrix equations 

for which the fast algorithms presented in section (3.3) are particularly 

applicable. 

In the A.D.I. method developed by Peaceman and Rachford (1955), we use 

two forms of equations alternately in successuve time steps; in the first 

step the finite difference equations are implicit in the x-direction and 

explicit in the y-direction; and in the second step the directions are 

interchanged. 

Problem Definition 

We consider the solution of the model problem, 

aU a2u a2u -= T(-- + -2). T = a constant at ax2 ay 

in the region R'=(x,y,t)e:RX(t>O), 

(where R={O~x,y~l} is a Closed, connected square region in the x-y 

plane with the boundary aR) under the ·periodic boundary conditions in 

both' the x- and y- directions, i. e., we have, 

U(O,y,t) =. U(l,y,t) } 

(au/ax)(O,y,t) = (aU/ax)(l,y,t) 

U(x,O,t) 

au a/x,o, t) 

= U(x,l,t) 

au 
= 3y(x,l,t) 

and the initial boundary condition, 

U(x,y,O) = f(x,y) , O~x,y~l 

where f(x,y) is a known function of x and y. 

} 
t>O 

For the numerical solution of (5.7.1)-(5.7.4), we consider the mesh 

points (x.,y.)=(ih,jh) for l~i,j~n where h=6x=6y=l/n, £=6t and then 
) ) 

(5.7.1) 

(5.7.2) 

(5.7.3) 

(5.7.4) 
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approximate (5.7.1) at each node of (RUaR) by the A.D.I. scheme'in which 

two forms of equations are used alternately in successive time steps, i.e., 

U .. 2k l-U, . 2k 1,), .... 1,), 

i 
T 2 2 2 

= (-2)(cS u .. 2k l+ cS U .. 2k)+0(h +i) h x 1,), + y 1,), 
(5.7.5) 

and 
U .. '2k 2-U, . 2k I 1,J, .... I,], + 

;t 
T 2 2 2 

= (2) (cS u .. 2k l+ cS U .. 2k 2)+O(h +1) h XI,), + Y I,J, + 

i,j=l,2, ... ,n 
and k~O. 

(5.7.6) 

2 where the central difference operator cS is defined by, 

2 
cS U. . 2k I = U. I . 2k 1-2U. . 2k I+U, I . 2k I' etc. x I,J,'+ 1- ,J,"+ I,J, + 1+ ,], + 

The stability of this finite difference procedure is well established 

(Peaceman and Rachford (1955)). 

By setting 0=1T/h
2 

and omitting the truncation error terms, both 

(5.7.5) and (5.7.6) can be simplified to give the respective alternative 

forms, 

-oU'_ 1 . 2k 1+(1+20)U .. 2k l-oU. I . 2k I ]. ,J, + I,J, + 1+ ,], + 

= oU. '-1 2k+(1-20)U .. 2k+6U .. 1 2k' l,i,j,n,kaO 
1,) , 1,), 1,)+ , 

and 

-oU. '-1 2k 2+(1+20)U .. 2k 2-oU .. 1 2k 2 1,J , .... I,J, + 1,)+, + 

= oU. -1 . 2k 1+(l-20)U .. 2k l+oU. 1 . 2k 1 ' 1,i,j,n; k~O. ]. ,), + I,J, + 1+ ,J, + 

Both equations (5.7.7) and (5.7.8) together with the periodic boundary 

conditions (5.7.3) yield respectively the two sets of compound matrix 

equations, 

and 

G!!.2k+ 1 = H!!.2k 

G!!.2k+2 = HQZk+1 

where G and Hare compound matrices of order 

A (1-20)1 01 
A 01 (1-20)1 01 

\ 0 
, 

\ 
, , , , 

= \ H = , 
\ , 

0 , 0 , , , , 
A (nxn) 01 

and A is given by, 

(nxn) defined as, 

01 

0 
, 

, , , , 
01 , 

, 
01 (1-20) I ( ) - nxn 

(5.7.7) 

(5.7.8) 

(5.7.9) 

(5.7.10) 

(5.7.ll) 
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1+20 -0 -0 

-0 1+20 -0 0 ... ... , 
"-... ... ... , ... "-A = , ... , (5.7.12) ... 

, , "-... ... ... "- ... 
0 "-

"- .... -0 ... ... 
-0 '-0 1+20 (nxn) 

~ 

The unknown compund vectors !:!p and !:!p of !:! and !I respectively are ordered 

row-wise and column-wise respectively and given by, 

UT =[U11 ,U2l , ... U 1 ,U12 ,U22 , ... ,U , ... U ,U ... U ] 
-P , JP , JP n, JP , JP , JP n,2,p l,n,p 2,n,p n,n,p 

and 
~T 

U = [U1 1 ,u12 , ... Ul ,U2l ,U22 , ... U2 , ... U 1 ,U 2 , ... U ], 
-P , JP ,JP ,n,p, JP ,JP ,n,p n, JP n, JP n,n,p 

For a known solution at the (2k)th time interval, (k=O,l, ... ), we have 

to solve the n independent systems of equation given by (5.7.9) along each 

of the rows in order to advance the solution over the square region R to 

the (2k+l)th time interval. Similarly, the n independent systems of 

equations given by (5.7.10) are to be solved along each of the columns in 

order to advance the solution from the (2k+l)th to (2k+2)th time interval. 

It is evident from the above discussion that the major computational 

requirement of this method is the repeated solution of the one-dimensional 

periodic tridiagonal matrix equations of the form, 

(5.7.13) 

where A is given by (5.7.12) and! denotes a solution along a row or a 

column of R. The repeated solution of the periodic tridiagonal matrix 

systems can be achieved by the use of the cyclic factorisation algorithms 

(3.6) or (3.10) (see Chapter 3) whose stability is guaranteed under 

diagonal dominance conditions of the coefficient matrix. 

From the representation of the matrix A in (5.7.12) it.follows 

immediately, by definition, that A is both diagonally dominant and 

positive definite, and hence the application of the fast cyclic tridiagonal 



matrix solver algorithms (3.6) or (3.10) in the A.D. I. sOlutions' along the 

rows and columns of the network are guaranteed to produce stable solutions. 

Also, as was indicated earlier, (see section 3.3, Chapter 3) the actual 

amount of computational effort needed to implement the above mentioned 

cyclic tridiagonal matrix solver algorithms is 4n multiplications and 4n 

additions for repeated applications. If the method of Gaussian elimination 

without pivoting were to be used to solve the periodic matrix equations 

along each row and column of the A.D.1. network, then 5n multiplications, 

4n additions would be required per line for repeated applications (Alberg 

et al (1967)). Hence, the use of algorithm (3.6) or (3.10) in the solution 

along the rows and columns of the A.D.I. method can result in some 

considerable savings of computational effort. 

In the next chapter, we shall discuss further the fast A.D.I. methods 

for the solution of linear parabolic partial differential equations 

involving two space dimensions for problems with the more usual Dirichlet 

and Neumann boundary conditions. 
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CHAPTER 6 

FAST METHODS FOR THE SOLUTION OF DIRICHLET'S 

AND NEUMANN'S BOUNDARY VALUE PROBLEMS· 



6.1 INTRODUCTION 

In this Chapter, we consider further a number of model problems having 

Dirichlet's, Neumann's and mixed boundary conditions and then introduce fast 

methods for their solution. 

186 

In section (6.2) the simple one-dimensional Poisson and transport 

equations are considered for which the fast algorithms presented in Chapter 4 

are shown to be particularly attractive for the numerical solution of such 

frequently occurring problems. Next, the block rectangular factorisation 

method is introduced in section (6~3) for the solution of the discrete 

Poisson and other elliptic p.d.e.'s in a rectangular region for which, in 

special cases, an O(n2) method is obtained. In section (6.4) the Alternate 

Direction Implicit (A.D.I.) methods for the solution of the two-dimensional 

heat conduction equation with Dirichlet's and Neumann's boundary conditions 

are considered, and· the use of the recursive point partitioning algorithmic 

methods in the line by line solution is shown to offer significant economies 

over older techniques. Finally, we consider the solution of the biharmonic 

equation with mixed boundary condition in a rectangular region for which fast 

solution methods by the matrix decomposition and factorisation techniques are 

considered. 
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6.2 SOME SIMPLE ONE-DIMENSIONAL PROBLEMS OF MATHEMATICAL PHYSICS 

First, we consider the simple Dirichlet's problem for the one-dimensional 

Poisson equation, 
cl2u 
d

x2 = 

with the boundary condition, 

f(x) 

U(O) = a and 

O~x~l (6.2.1) 

U(l) = b (6.2.2) 

where f(x) represents the source function and a and b are given constants. 

We divide the interval O~x~1 into (n+l) equal sub-intervals each of 

length h=l/(n+l) and approximate (6.2.1) by the second order formulae, 

(U. -2U.+U. ) 
1-1 2' 1+1 + 0(h 2) = 

h 
where Uo = a and Un+1 = b. 

f., i=1,2, ... ,n 
1 . } 

On neglecting the 0(h 2) truncation error term, the difference equation 

(6.2.3) leads to the (nxn) matrix system, 

2 
2 

-1 ul a-f h 
1 

-1 2 -1 0 u 2 -f h2 
, , ... 2 , ... , , 

= ... , . , , ... ... .... , ... ... 
0 ... ... ... , , , ' 2 ... "- -I u n-l -f' h ... ... b_fnh~ , 

-1 2 u 
n n 

or Au = d. 

It is easy to verify that for ~O, 

(Au,u)>0 

and hence by definition (2.7) the coefficient matrix A is positive 

(6.2.3) 

(6.2.4) 

definite. Hence, for the solution of the system (6.2.4), the use of the 

recursive point partitioning method (see CTRPP algorithm (4.9)) gives a 

stable fast solution in 2n multiplications, n/2 divisions and 5n/2 additions. 

The Singularity Associated with the Neumann Boundary Condition 

For Neum~'s boundary conditions, i.e., 

and 

dU x=O dx - a , 
·dU b x=l dx = , ) (6.2.5) 
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we can .approximate these first derivatives by the finite difference analogues, 

at the points x=O and x=l by 
(ul-U_ l ) (u -u) 

O(h) n+2 n O(h) b + = a , + = 2h 2h 

if the auxi liar):' net region, 

{x = -h, Xo = 0, x. = ih, x = 1, x = i+h} -1 1 n+l n+2 

is considered. 

On substituting 'for u_ l and un+2 from (6.2.6} into the difference 

approximation for (6.2.1), i.e., 

(Ui_1-2~i+Ui+l) + 0(h2) 
= f i' i =0,1 J ••• , n+ 1 

h 
we obtain, on neglecting the 0(h 2) terms, the ",citr'/< equation, 

Au = d 

h
2 

or 1 -1 Uo --fO-ah 2·· 
-1 2 -1 

0 
ul 

_h2f , , , I 1 , , , , , , I , , , 
, , , , , , , , , 

0 , , 
_h 2f 

, , , 2 -1 , h2 n , 
-1 I 1 u n+l --f +bh 2 n+l 

The coefficient matrix A is singular with its smallest eigenvalue equal 

to zero. This can be shown easily by recognising the fact that the 

associated spectral problem 

Au = AU 

(6.2.6) 

(6.2.7a) 

(6.2.7b) 

is satisfied by the eigenvector ~ (say) whose components are all equal, 

and the corresponding eigenvalue AO=O. The singularity of the matrix A 

means that the solvability of the singular system (6.2.7) is only guaranteed 

under special constraints (which the physics of the problem enables us to 

impose). One such constraint is to require that the right-hand side vector 

be orthogonal to ~.(which in physical terms is equivalent to imposing a 
. n+l 

constraint on the sum of the sources {d.} . This can be achieved by 
1 . 0 1= 

removing a common factor from the components di , namely, by replacing di n+l d. 
with g. (=d. -or) where or = L en 1 2) . 

1 1 i=O + 
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Thereafter, the modified system, A~=£ is then immediately solvable 

by the CTRPP algorithm (4.9). In the actual realisation of the algorithmic 

solution of the modified singular system using the CTRPP algorithm it is 

possible to have in the calculation process, operations of the form '0/0' 

which should be replaced by an arbitrary constant. 

Rank-one Modification Method for Neumann's Singular System 

Another alternative method for solving Neumann's singular system (6.2.7) 

is to rearrange the matrix A as a rank one pertuobation of a symmetric cyclic 

matrix C, i.e., 

where 

T A = C + ozz 
T . 

! =(1,0, ... ,0,-1), 0= -1, 

and C is now the non-singula!, positive definite cyclic matrix, 

2 -1 -1 

-1 2 -1 0 , 
" 

, , , , 
" , , 

C = " " " , , , 
0 

, , , , , , , -1 , , , 
-1 -1 2 

(6.2.8) 

(6.2.9) 

By using (6.2.8) and the Sherman-Morrison formula (Householder (1964)) the 

solution of the matrix equation (6.2.7) can be written as a linear 

combination of the solution of two alternative systems of equations, (see 

equations (3.2.53) under algorithm 3.5), i.e., 

Cv = oz 
T 

v .d 
and Cu = 

Since C is positive definite the two systems in (6.2.10) and (6.2.11) 

(6.2.lO) 

(6.2.11) 

can now be solved, with stabi'lity guaranteed, without pivoting for size. 

A suitably modified form of the PQFACTl solver algorithm (3.6) or the 

Temperton's algorithm (3.11) can now be readily applied to obtain fast 

solutions of the two cyclic matrix systems (6.2.10) and (6.2.11). 
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A Simple Transport Equation 

The propagation problem of a substance along the particle trajectories 

may be considered to belong to a class of simple problems of Mathematical 

Physics which are of frequent occurrence in hydrodynamics, weather forecasting 

and the theory of radiations. A model problem of this kind is as follows: 

Consider the equation, 

au au 
- + c- = 0 c = constant at ax ' (6.2.12) 

in the domain R={~x~b, t>O} 

and satisfying the following initial and boundary conditions, 

U(x,O) = f(x) 

U(a,t) = gl (t) 
} t>0 

U(b,t) = g2(t) 

(6.2.13) 

where c usually denotes the velocity of propagation of the given profile. 

For a numerical solution of (6.2.12) we choose a uniform mesh spacing 

h along the x-axis such that h=(b-a)/(n+1), and a uniform time increment 

k along the t-axis. Further, we consider the stable Crank-Nicolson 

implicit method in which the partial derivative ~~ is approximated by the 

average of its values at times t=jk and (j+l)k. 

i. e. , 

and 

Hence, 
1 au .. I 

= _[ ]. ,J+ + 
2 ax 

I 
-k(U, . I - U .. ) + O(k) • 

1,)+ 1,J 

(U. I .-U. I .) 
1+ ,J ].- ,J 1 

2h + O(h) 

On substituting (6.2.14) and (6.2.15) into (6.2.12) and setting 

(6.2.14) 

(6.2.15) 

0=ck/4h, the corresponding finite difference approximation for the equation 

(6.2.12) becomes, on neglecting the truncation error terms, 

-oU. I . I'+U, . l+oU . I . I = oU. '1 .+U .. -oU. I .• 
1- ,]+ 1,J+ . 1+ ,J+ 1-,] 1,) 1+ ,] . 

which relates the unknown values of U at the' (j+l)kth time to the known 

values of U at the (jk)th time. 

(6.2.16) 



Next, by applying equation (6.2.16) at the points x., i=I,2·, ... ,n on 
1 

each grid line, we obtain the following linear system to be solved at each 

time step, 
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Au. I = AT u. + h. = d. 
-)+ -) -:J -) (6.2.17) 

where u. is the approximation of U., A is the (nxn) skew symmetric 
-:J ) 

tridiagonal matrix, 

A[-a,l,a} 

and 

= 

h. = 
-) 

1 a 

-a I a o 
"- " " 

" " " " " " 

0 

" 
" ", " 
, " 

" ,," 
" 

, 
" 

, , 
, 

, 
, 

-a 

, 
a 

" 1 

agl ((j+l)k)+ogl (jk) 
o 

I 

o 
-ag

2 
((j+l)k) -ag2(jk) 

Derivation of an Algorithmic Solution 

In Chapter 4, a fast method was given for the solution of the skew 

symmetric tridiagonal system of the form A[-c,b,c]~=~, in which, by 

(6.2.18) 

employing the reversed triangular factorisation and expansion concept, a 

stable algorithm requiring 4n multiplications and 4n additions was derived 

(algorithm (4.7)). Stability arguments developed in the analysis of the 

algorithm are easily shown to apply to the matrix (6.2.18) since the 

multiplier factor (see 4.3.74) 

a = 2a/(I+Ii+4a2) 

has its absolute value less than unity for any value of a. Hence we can 

immediately app~y algorithm (4.7) in a line by line solution of the difference 

equation (6.2.17) in Sn multiplications, 4n additions per line. Furthermore, 

the Tridiagonal Recursive Point Partitioning (TRPP) algorithm (4.8) can also 
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be suitably modified to give a faster solution of C6.2.17) in Sn/2 

multiplications, 3n/2 divisions and Sn/2 additions; and only 3n/2 multiplications, 

n divisions and 3n/2 additions for repeated solutions. The special modified 

variant of the TRPP algorithm, suitable for a repeated fast solution of the 

skew-symmetric system of the form, A[-cr,l,a]~=~, is summarised below as follows: 

Step 1: 

First, we initialise the quantities, 

eCI) = eCI) = 1 " 
1 n ' 

d Cl) = d 
n n 

and set q=n/2 Cn even), q={n+I)/2, Cn odd). 

Step 2: 

Next, we compute the recurrence relation, 

t. 1 1- s. 1 1-
= -t

i
_

l 
, 

e~i) 
1 

= _ale~i-l) 
1-1 

Ci) _ 
= B . I - I-ut. 1 ' n-1+ 1-

d Ci) 
i 

= d~i-l) -t. d ~i-l) , 
1 1-1 1-1 

d Ci) 
n-i+l 

= d Ci - l )_ dCi-l) 
n-i+l Si_l n-i+2 

i=2,3, •.. ,q-I, Cn 

i=2,3, ... ,q, Cn 

and for n odd only, 

e Cq) = 
q 

d Cq) = 
q 

1-2at I q-

d Cq-l) -t Cd Cq-l) _dCq - I )) . 
q q-l q-l n-q+2 

Step 3: 

or 

Then, we obtain the centre elements of the solution vector as, 

= d Cq) le Cq) Cn odd) 
uq q q 

u = CdCq)a Cq) _ad Cq) )/Ce{q) e Cq)+a 2) 
q q n-q+l n-q+l n-q+l q 

u - Cd a ad )/Ca Cq ) a(q)+a 2 ) n-q+l - q n-q+l- n-q+l n-q+l q 

} n even 

and finally, the remaining elements of the solution vector become 

and 

Ci) Ci) u. = Cd. -au. 1)/e. , 
1 1 1+ 1 

Ci) Cil . 
un_'+"l = Cd . l+au. IlIa . I 

~ n-1+ 1- n-l+ 
} i=q-I,q-2, ..• ,I. 

odd) 

even) 
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6.3 BLOCK RECTANGULAR FACTORISATION METHOD FOR THE SOLUTION OF THE DISCRETE 

POISSON EQUATION WITH DIRICHLET'S AND NEUMANN'S BOUNDARY CONDITIONS IN 

A RECTANGULAR REGION 

Many physical problems, such as the calculation of electrostatic 

potential from a known charge distribution or the stream function from the 

vorticity distribution, require the solution of the Poisson equation which 

relates the potential (or stream function) to the source distribution. We 

are thus required,for example, to solve the p.d.e., 

V2U a2u a2u 
= -2 + 2 = q(x,y) (6.3.1) 

ax. ay 
in the rectangle R={O~~a, O~y~b} 

under the Dirichlet boundary conditions, 

U(x,y) = f(x,y), (x,y)EaR (6.3.2) 

where aR is the boundary of R; q(x,y) and f(x,y) are known functions and 

f(x,y) is assumed to be sufficiently smooth on the boundary aR. 

In the rectangular region R=(O,a)x(O',b), let us define the mesh 

spacings ~x=a/(n+l) and ~y=b/(m+l) where n and m are integers. Hence, 

by using the mesh points (x. ,y.) = (i~x, j~y) we define the discrete 
1 J 

interior region ~ and the discrete boundary region a~ as follows: 

R- ={ (x. ,y.) Il~i~n, l~j~m}, 
'11 1 J 

aR- = aR n{(x. ,y.) I O~i~n+l, O~j~m+l}. 
"h 1 J 

Further, we denote U(xi'Yj) as Ui,j and apply the usual five point 

2 difference approximation to the Laplacian operator V , i.e. 

2 I I 2 2 
'V U. ·~-.!--2(U, I .-2U .. +U. I .)+ 2(U" 1-2U .. +U .. 1)+O(~x +~Y ). 

1,J (~x) 1- ,J 1,) 1+ ,J (~y) 1,J-, 1,J 1,J+ 

Hence, on omitting the truncation error terms, the finite difference 

analogue of the Poisson equation at the point (x, ,y.) is given, for 
1 J 

2 
U. I ,+rU .. 1-2 (l+r).U, .+rU .. I+U, I . = (~x) q. " 
1- ,J 1,J- 1,J 1,J+ 1+ ,J 1,J 

l~i~n, l~j~m. 

~x 2 
r=(~y) ,as 

(6.3.3) 

A row-wise ordering of the mesh pOints in R and the application of the 

difference equations produces a discrete model for the differential 
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equation (6.3.1) which consists of the matrix equation, 

M u = d 
0=- - (6.3.4) 

where 
B I -2(l+r) r 

I B I 0 r -2(1+r) r 0 , , , , 
" , , , , , , 

, , , " , , 
, , , , , 

~ = , , , , B = , , 
0 , , , 

0 
, , , , I , , r , 

, , . 
I B , 

-2 (l+r (mxm) r (nxn) 

(6.3.5) 

and I is the (nxn) identity matrix. 

The block vector ~ (which denotes the approximation of U) has 

components u. which represent the solution along the jth horizontal line, 
-) 

i. e. , 
u l l,j 
u2 u2 . 

,) 
I 

u = and u. = ,j=l,2, ... ,m. - -) , , , , 
u' u m n,j 

The vector d has the same block structure as u and its components are 

given explicitly as, 

d. . 
1,) 

2 
= (fix) q .. -r(o. lfO .+0. f 1 .)-(0. If. 0+0 . f. 1) 

l.,) 1, ,J 1,n n+,) J, 1, J ,ID 1,ID+ 

where o. 1,j is the Kronecker delta defined as, 

cS. = 1 i=j 1,j 

and o. = 0 ij1j. 1,j 

Block Rectangular Factorisation Method for the Solution of the Poisson 

Equation over a Rectangle 

We consider the system of equations, 

~[C,B,C]~ = ~ 

or 

(6.3.6) 



B C 

C B C , , , , , , , 
, 

, 
, , , 

0 
, 

~l 
~2 
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, , , , , , = (6.3.7) , , 
0 

, , , 
, 

, , , , 
C 

C 

B u 
,-m 

d 
.=-111 

where the matrices Band Care (nxn) matrices which are assumed to be 

commutative. For the Poisson equation, for example, C=I( )' the nxn 

identity matrix. 

In recent years, considerable interst and attention has been given 

to the direct methods of solution of the model Dirichlet's matrix equation 

(6.3.7). The two basic techniques which have been most frequently applied 

include the Fourier transform method (Hockney (1965» which relies on the 

a priori knowledge of trigonometric eigenvectors; and the cyclic reduction 

method (Buzbee et al (1970» which relies on the simple block structure of 

the coefficient matrix. 

Here, we introduce a block rectangular factorisation (BKREF) algorithm 

for the solution of the system (6.3.7) and show that this leads to a 

computationally fast method. 

Following the method of the reversed triangular factorisation and 

expansion (ReTriFE) algorithm (4.4), the block matrix system (6.3.7) 

can be rewritten in the form, 

Au = K (6.3.8) 

or 

1+4>2 -4> 

-4> 1+4>2 -4> 0 , , , , , , .... , , 
.... .... 

~l Kl 

~2 K2 
I 

.... , , , .... , , , , = (6.3.9) 
.... ...... , 

..... .... , 
-4> 0 .... .... 

, ~4> ' 1+4>2 , 
u ~ -ID 

where we have made the following transformations, 



or 

and 

B-1C = _(1+$2)-1$ 

.&.. 
J 

$ = _(B+is 2_4C 2)-12C.IIB21},2 J1jc~U 
-1 2 . = B (1+$ )d .• J=1.2 •...• m. 

-J 

It is easily verified by a simple multiplication that the matrix A 
now has a unique factorisation. 

,y ... ""T A = pp , 

-where P is an mx(m+l) block rectangular matrix of the form. 

I -$ 

I -q, 0 , , , , 
P = , , , , , , 

0 
, , , , 

I -q, 
(mx(m+l)) 

Instead of the system (6.3.7). we thus consider the alternative 

form. 
~~T 
pp ~ = £ 
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(6.3.10) 

(6.3.11) 

(6.3.12) 

T 
which. on the introduction of the auxiliary block vector ~=(~1'~2' .•. Im+l) • 

gives the two simpler systems, 

and 

h= £ 
-T 
P~=~ 

which have to be solved in order to obtain u. 

It is easily deduced. from the expression for the matrix q, given in 

11q,1I<1. 

This allows the use of q, as a matrix multiplier in an elimination process 

without the risk of growth in the rounding errors. 

Hence, by following the approach of algorithm (4.4) (see equations 

(4.3.13) and with q, and £. defined by (6.3.10) and (6.3.11) respectively. 
J 

(6.3.l3a) 

(6.3.13b) 

we obtain. on considering the solution of the system (6.3.13), the following 

algorithm: 

(6.3.14) 

1\ " where k and h are vectors which are expressed as polynomial powers of q, 
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and given by. 

Ilk j m-I = ~ + ~g l+"'~ g .+ ... ~ gl 
"'IIl =m- =m-) -

and " j m-I 
~ = £1 + ~g2+"'~ g. 1+' .. 4> g - -)+ =m 

(6.3.15) 

(6.3.16) 

Similarly. the intermediate solution sub-vectors r.j are given (see 

(4.3.14) for the equivalent point form). by 

Iro+l = -~u } -iIl 

r.. = g. + ~y. l' j=m,m-l, ... ,l. 
J -) -J+ 

Finally. the solution sub-vectors u. (j=1.2 •...• m~.)are given (see 
-) 

(4.3.15)). by. 

~l = 1:.1 

j=2.3 •...• m-l J and u. = y. + 4>u. l' -) -) -)-

The BKREF algorithm (6.3.14)-(6.3.18) represents a direct method for 

the solution of the equation (6.3.7). i.e •• the Poisson difference 

(6.3.17) 

(6.3.18) 

equation on a rectangle. We now show that for special cases. this approach 

is particularly efficient and fast and offers considerable economy over 

known methods. We shall also indicate methods by which a computationally 

simple and compact implementation of the given BKREF algorithm can be 

realised for the more general cases. 

Special case 1 of the BKREF algorithm 

For the case when B=2C. we derive immediately from (6.3.10) that ~=-I 

(where I is the identity matrix) and hence the expression for u in (6.3.14) 
-iIl 

b . d . . h . (I .. 2m+2). . l' h . ecomes 1n eterm1nate S1nce t e matr1x -~ 1S s1ngu ar 1n suc a case. 

The following alternative scheme (cf equation (4.3.16(a)-(c)) is therefore 

applicable for the solution of the system Mu[C.2C.Cj: 

m-I 
~ = [m~-(m-l)~_I+' .. -(-1) £lj/(m+l) 

together with. 

Iro+l = 

r.j 

U 
-iIl 

j=m-l.m-2 •••.• 1 •. 

and finally. the solution vector is obtained from. 

~l = r.l 

and u. = r.. - u. l' j=2.3 ••.•• m-l. 
-) J -)-

(6.3.19) 

(6.3.20) 

(6.3.21) 
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Special case 2 for the BKREF algorithm 

Further. for the case when B=-2C. we obtain 

01> = I 

and hence the following scheme (cf equation (4.3.l7(a)-(c))) applies in the 

solution of· the system ~[C.-2C.C]: 

together with 

u = [mg +(m-l)g 1+'" (m-j+l)g . l+ ... +gl]/(m+l) -m =m =m- =m-)+ 

lm+l 

y. 
-J 

= -u 
-m 

= '&'(Lj+l • j=m-l.m-2 •... l 

and finally. the solution sub-vector u. is given by 
-) 

u. 
-J = v. + u. l' j=2.3 •...• m-l. 

L) -J-

(6.3.22) 

(6.3.23) 

(6.3.24) 

These two special cases considered above provide very fast methods for the 

solution of the block tridiagonal systems of the form A[C.2C.C] and A[C.-2C.C] 

respectively in O(2nm) arithmetic operations. where C can be either a diagonal. 

a tridiagonal or a full matrix. 

Implementation of the general BKREF algorithm 

It is assumed that Band Care (nxn) symmetric matrices and both commute. 

i.e .• BC=CB. Hence by Froben,us th .... ~"', there exists an (nXn) orthogonal matrix 

Q·such that 
B = QABQ

T 

C = QA QT 
C 

where Q is the set of eigenvectors of Band C; and A
B
=diag(A

I
.A

2 
•... A

n
) 

(6.3.25) 

and AC=diag(~I.~2 •...• ~n) are the diagonal matrices of eigenvalues of B 

and C respectively. For the Poisson equation in a rectangle. the matrix B 

is an (nxn) constant element tridiagonal matrix (see (6.3.5)) of the form 

B[a.b.a] and C is a diagonal matrix; and hence the orthogonal matrix 

Q= (q. .) of eigenvectors of B is given by (see (5.4.18)) , 1.J 

q .. 
1.J =p 

. (ijll) 
S1n nof.l i,j=l,2,: .. ,n, (6.3.26) 

and the associated eigenvalues are of the form, 

= b + ill 
i=1,2, ... ,n. (6.3.27) A. 2acos (n+l) 1 
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We now introduce the normal forms of Band C in order to obtain a 

computationally simpler form of the quantities in (6.3.10), (6.3.14), (6.3.15) 

and (6.3. 16) . 

We consider first the expression in (6.3.10), i.e., 

$ = _(B+~2_4C2)-12C. 

Since $ is expressed as a function of Band C, it is easily shown (Lemma 5.2) 

that $ has the same set of eigenvectors as B, and C but different eigenvalues; 

and hence, $ can be written as, 

where A~=diag(Yl'Y2' .. "Yn) is the diagonal matrix of eigenvalues of $ whose 

elements are given by, 

/2 2-1 
y. = -(1..+11..-4)1.) 2)1., i=l,2, ... ,n; 

1 1 -1 1 1 

1..,)1. being the eigenvalues of Band C respectively. 
1 1 

Further, from (6.3.11)., we have 

-1 2 g. = B (1+$ )d. ,j=l,2, •.. ,m 
-) -) 

which can similarly be written as, 

(6.3.28) 

T 
p. = QA Q d. , j=l,2, ... ,m (6.3.29) "-) g-) 

where A is the diagonal matrix of eigenvalues of B- l (I+$2) which is given g 

by, 

A = 
g -

o 

o 

- 2 (l+y )/1. 
n n (nxn) 

Determination of U (equation (6.3.14)) 
-m 

From (6.3.15) we have the expression, 

A, 2 j m-I 
k = g +$g 1+$ g 2+···$ g .+ •.. +$ £1 - =m =m- =m- =m-) 

which on substituting the normal 'form ~f $ (i.e. $=QAQQ,where QQT=I) we have, 

A T T j T m-I T 
k = QQ I! +QA",Q g 1+ ••• +QA ... Q g .+ ••• +QA Q £1. 
- =m 'I' =m- 'I' =m-J 

We now introduce the transformation, 



~ T 
g. = Q g. 
-J -J 
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j=l,2, •.. ,m (6.3.30a) 

which on using the formula for g. in (6.3.29) has the alternative form, 
-J 

~. T 
p. = A Q d. (6.3.30b) 
"'"J g-J 

/'0 ~ 
k = Q~ 

Hence, we have, (6.3.31) 

where the vector quantity t can be written and evaluated in an efficient 

manner by using a nesting technique of the form, 

~= [A<I> ( •.. (( (A<I> (A <I> (A<I>il +i2) +i1+~ .. '+'-1) +i.n1 

1 

lIst loop\ 

2nd loop 

J 
" Similarly, h (equation (6.3.16)) is expressed in the form, 

where t is given by, 

~=[A<I>( ••. (((A<I>(A<I>(A<I>~+iro_l)+im_2)+···+i2)+ill 
Hence, the expression for u (equation (6.3.14)) i.e., -m 

~ = (I_~2m+2)(~_~m+lfiJ 

can be written, using the (lormal form for ~, as 

~ = QArQ
T [~-QAl£l 

(6.3.32) 

(6.3.33) 

(6.3.34) 

(6.3.35) 

On substituting equations (6.3.31) and (6.3.33) into (6.3.35) and using 

the orthogonality property of Q we have, 
~ I! 

~ = QAr(~-As~) , 
(6.3.36) 

where A ,A are diagonal matrices whose elements are the eigenvalues of 
r s 

(I_",2m+2)-1 d m+1 . 1 d . b ~ an ~ respect1ve y an are g1ven y, 

A 
r = 

1/ (1_lm+2) 

1 1/(1-"y;m+2) 

o 

o. and A s 

m+l 
Yl 

= 

m+l 
Y2 0 , 

, , 
"-

0 
, 

"-
m+1 

Yn 
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The use of the form in (~.3.36) represents a more efficient method for the 

computation of u than the form given in (6.3.14). 
-m 

Each loop of the nested multiplication in (6.3.32) or (6.3.34) involves 

a diagonal matrix-vector multiplication and a vector addition. which for a 

system of order n. requires n multiplications and n additions. Hence. we 

require a total of 2n(m-l) arithmetic operations to evaluate both t and ~ 

using the nesting technique. Thereafter. u is computed. using (6.3.36) in 
-;n 

(n 2+n) multiplications and (n
2

+2n) additions. Once u has been calculated 
-;n 

in the most efficient manner. then the intermediate sub-vectors. ~. (j=m+l.m. 
J 

... 1) and the solution sub-vectors u .• j=1.2 ..... m-l. are easily computed by 
-] 

using equations (6.3.17) and (6.3.18) respectively. 

Altogether. the arithmetic operation count required for the block 

rectangular factorisation (BKREF) algorithm is 0(2n2m) as given in Table (6.1). 

This does not include the determination of the eigensystem of the submatrices 

Band C. and the evaluation of the matrix ~ which need to be computed only 

once for repeated solutions. 

Arithmetic Operation Count for BKREF Algorithm 

Quanti ties in Nature of Computation Mul tiplications Additions 
(Equation no.) (mat/vec~Yis of order n) (X) (+) 

fI A 
1. k.h vector*vector+vector 

2n(m-l) 2n(m-l) 
((6.3.32) • (nested 2(m-l) times) 
(6.3.34) 

2. matXvector(vecu.~ector) 
2 2 

u n +n n +2n 
-m 
(6.3.35) 

3. j=l ..... m+l vector+(matXvector) 2 2 2 2 
~j • n m+n n m+mn+n 

(6.3.17) ( (m+l) times) 

4. j=l ..... m-l vector+(matrixXyector) 2 2 2 2 
u .• n m-n nm +mn-n 
-] 

(rn-I) times (6.3.18) 

Total BKREF 2n2 m +2rnn+n 2 2 2n m+4nm 

Spectral Resolution 2 2-
Method (Algorithm 5.1) 

2n m+5nm 2n m+4nm 

TABLE 6.1 
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Direct fast methods for the algorithmic solution of the one-dimensional 

tridiagonal matrix systems. using the factorisation and partitioning 

strategies. were presented in Chapter 4. The usefulness of those algorithms 

can now be extended to the solution of the block tridiagonal difference 

equation of the form ((6.3.7) by employing the spectral decomposition method 

(Algorithm 5.1). 

Briefly we outline this here. using the notations of Algorithm (5.1) 

as follows: 

1. 

2. 

3. 

4. 

Determine the matrix Q of eigenvectors of B and the matrices of eigenvalues 

AB=diag(h l .h2.···.hn) and AC=diag(~I.~2 •... ~m) of Band C respectively. 

- T Compute d.=Q d .• j=I.2 •..•• m. 
-J -J 

Solve the set of linear systems. 

1\ 1\ 

r. [~ . • h . • ~. ]u. = d.. i=I.2 ..... n 
1 1 1 1 -1 -1 

where 
h. ~. 

1 1 

~. A. ~. 
1 1 1 0 , , , 

, , , , , , 
, , , 

, , , 
, , , 

, , , , , , , 
r.[~ .• h .• ~.]= 0 

, , , , , 1 1 1 1 , , , , , , , 
~i 

Finally. compute u.=Qu .• j=I.2 •...• m. 
-J -J 

• 

~i 

A. 
1 (mxm) 

The numerical solution of the set of simple linear systems in 

(6.3.36) 

step (3) above can be achieved by the application of one of the following 

one-dimensional fast algorithms discussed in Chapter 4:-

(a) the ReTriFE Algorithm (4.3) which requires Srn multiplications. 

and 4m additions for each set of equations. 

(b) the TRPP algorithm (4.8) with a requirement of less than 3m 

multiplications. 2m divisions and 3m additions per system. 
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(c) the CTRPP algorithm· (4.9) which, with the coefficient matrix 

first scaled to the form r[-l,A. ,-11, requires just 2m multiplications 
1 

m/2 divisions and 3m additions per system. 

The arithmetic operation count for the spectral resolution method using~ 

for example,the ReTriFE algorithm for step 3, is 0(2n2m) as indicated in 

Table (6.1). 

The Neumann's Boundary Condition 

For the Poisson equation defined in (6:3.1)-(6.3.2), if instead of the 

Dirichlet's boundary condition (6.3.2), the normal derivatives au is 
an 

specified on the boundary, then we have the Neumann's boundary condition, 

i.e. , au an = f(x,y), (x,Y)EaR. (6.3.37) 

By using the central difference approximations of the boundary conditions, 

i. e. , 
au U(x+lIx,l::)-U(x-lIx,y) + 0 (lIx) ax = 2l1x 
au U(x,y+lIl::)-U(x,l::-lIy) + 0 (lIy) and ay = 2l1y 

then, the finite difference analogue of the Neumann Poisson equation becomes, 

where ~ is of the form, 

B 

C 

2C 

B C 
... ... ... 

'" 
... 

... ... ... ... ... ... ... ... '" ... 
o , 

0 

... ... 
... ... 

... C 
... 

2C 'B 
(mxm) 

Here C represents the identity matrix l( 1 1) and B is given by, n+ xn+ 

(6.3.38) 

(6.3.39) 
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-2(1+r) 2r 

r -2(l+r) r 
"- , 

"- 0 "- , 
"- , "-, , "-

"- "- "-
B = , "- , (6.3.40) , , 

"-
"- , , , , , 

"- "- , , 
"-

0 "- , , 
"- , , , , , r , 

"-
, 

2r -2(1+r) (n+l)x(n+l) 

Again, Band C commute but ~ no 'longer has the same structure as that in 

(6.3.5). 

The block rectangular factorisation (BKREF) algorithm cannot be 

modified easily to cope with the sol ution of the '!i~t,r.~',~'1uct:t\o~_:.,. -, .J 

(6.6.39) and hence we consider an alternative approach. The application of 

the spectral resolution algorithm in the solution of the Neumann's problem 

proceeds as that of the Dirichlet's problem, the only slight difference 

being the modification of the tridiagonal matrices r. in (6.3.36) to the 
1 

form, 

r. = 
1 

A. 
1 

w. 
1 , 

2w. 
1 

A. 
1 , , 
"- , 

0 

w. 
1 , , , , , , , 

0 
, , i=1,2, ... ,n. , 
, "-, , , , , 

, ' 2w. 
1 (mxm) 

A fast solution of the matrix system (6.3.41) can be obtained by the use 

(6.3.41) 

of the TRPP algorithm (4.8); or, with an initial scaling of the coefficient 

matrix, by the CTRPP algorithm (4.9), which is considerably faster. 

Experimental Results on the BKREF Solver for Poisson Equation 

A Fortran program which implements the BKREF algorithm, using a 

single precision arithmetic is given i? Appendix I as Program (16). This 

program was test run on the Loughborough University I.C,L. 1904S computer 

by considering the following special form of the Poisson equation, i.e., 

the Laplace equation, 



inside a rectangle R={O~x~a, O~y~b}, with the Dirich1et's boundary 

condition, 

U(X,O) = f(x) = x(l-x), 

U(x,b) = 0 O~x~a 

U(O,y) = U(a,y) = 0, 

For a=b=l, the analytical solution of the above Lap1ace equation 

under the given boundary conditions simplifies to the form (8adak et a1 

(1964), p. 445), 

U(x,y) 

where 
- 3 
fk = 8/ (k1T) , 

= 0 , 

sinh kIT (1-y) 1 
sinh (kIT) 

k odd } 

k even 

sin k1TX} 

Choosing a uniform mesh spacing ~x=~y=h=1/(n+1), where n is an 

integer, we obtain the computed solution of the given Lap1ace equation, 
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(6.3.42) 

(6.3.43) 

(6.3.44) 

(6.3.45) 

using the BKREF algorithm and then compare the results with those derived 

from the known theoretical formula (6.3.44), as shown in Table (6.2). 

The Solution of the Lap1ace Equation (6.3.42) using the BKREF Algorithm with 

Results Compared to a Known Analytical Solution, for ~x=~y=h=1/(n+1)" n=20 

20h c 0.001891 0.003124 0.003281 0.002289 0.000502 
a 0.001890 0.003122 0.003270 0.002282 0.000500 

16h c 0.010315 0.017045 0.017860 0.012455 0.002733 
a 0.010316 0.017048 0.017854 0.012456 0.002730 

12h c 0.022550 0.037260 0.039023 0.039023 0.027228 
a 0.022549 0.037261 0.039024 0.039024 0.027226 TABLE 6.2 

8h c 0.430100 0.071223 0.074593 0.052039 0.022552 
a 0.430099 0.071220 0.074591 0.052039 0.022551 

4h c 0.079546 0.131455 0.137672 0.096050 0.021045 
a 0.079548 0.131452 0.137674 0.096050 . 0.021046 

J . ~~ 1 
4h 8h 12h 16h 20h 

c=computed 8o~ution using' BKREF 
a=ana~ytica~ 8o~ution using formuw (6.3.44) 
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6.4 FAST A.D.I. METHODS FOR THE SOLUTION OF LINEAR PARABOLIC PARTIAL 

DIFFERENTIAL EQUATIONS WITH DIRICHLET'S AND NEUMANN'S BOUNDARY CONDITIONS 

In section (S.7) of Chapter S, we considered the solution of the two 

space linear periodic parabolic problem by A.D.I. methods. A further 

discussion of an identical problem, with the more usual Dirichlet's and 

Neumann's boundary conditions is considered here, in which the use of the 

tridiagonal recursive point partitioning (TRPP) algorithmic idea applied to 

the Peaceman and Rachford (19SS) A.D.I. methods is shown to offer some 

substantial computational gains over some other known methods. 

We consider the model two-space heat conduction equation, 

in the 

au _ 
at"-

a2u -:2)' T = constant 
ay 

region R'=(x,y,t)ERx(t>O), 

(6.4.1) 

(6.4.2) 

(where R={O:;:x,y:;:l) is a closed, connected square region in the x-y plane) 

under the Dirichlet boundary condition, 

U(X,y,t) = g(x,y,t), (x,y,t)EaR (6.4.3) 

and the initial boundary condition, 

U(X,y,O) = f(x,y), O:::x,y:::l (6.4.4) 

where g(x,y,t), f(x,y) are known functions and aR is the boundary of R'. 

By imposing a uniform mesh of size h=lIx=lIy=l/(n+l), and t =lIt>O 

on R', the A.D.I. finite difference analogue of (6.4.1) at each internal 

node (x.,v.)£R is given by the two alternate 
1 . J equations, (6.4.S) and 

(6.4.6) where we have omitted the 0(h2+t) truncation error terms and set 

r=tT/h2, i.e., 

-rU. 1 . 2k 1+(1+2r)U .. 2k 1-rU . 1 . 2k 1 1- ,l, + 1,), + 1+ ,], ... 

= rU. '-1 2k+(1-2r)U .. 2k+rU .. 1 2k' l:::i,j:::n, k>O 1,) , 1,J, 1,J+, (6.4.S) 

and 

-rU. "'-'2k 2+ (l+.2r)U .. 2k 2- rU ... 1 2k 2 
1,TI + 1,J, + 1,J+, + 

= rU. 1 . 2k 1+(1-2r)U .. 2k l+rU . 1 . 2k I' l:::i,):;:n. 1- ,l, + 1,J, + 1+ ,l, + 
. (6.4.6) 

It. has been established (Peaceman and Rachford (l9SS)) that a 'combination 
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of these two finite difference procedures is stable provided r(and hence £) 

remain the same for two adjacent time steps. 

Equations (6.4.5) and (6.4.6) together with the boundary and initial 

conditions (6.4.3) and (6.4.4) yield the two sets of compound matrix 

equations, which in their normalised form can be expressed as, 

G~Zk+l = HU2k + b 

G~Zk+Z = HirZk +l + d 

where G and H are the compound matri ces of order (nXri) , given by, 

A 

G = 

where A is an 

A = 

and 6 _ l+Zr 
- r } 

A 0 , 
\ , , 

0 , 
, 
A 

(nxn) matrix 

6 -1 

-1 6 -1 
0 , , , , , , 

, , \ 

, , \ , , 

0 

y = 

, , , , 

l-Zr 
r 

, , 
, , 

, 
, , 
, , 
, , 

' -1 , , 
-1 

I 

I yI I 0 , 
" " " H " " = , , "-

" , 
" " " , I 

" 0 " " I yI 

The vector b of order n is known and derived from the initial and 

boundary conditions, ordered row-wise and given explicitly as, 

b = 

~l 
~Z 

, 
b -n 

where b. = 
-J 

U:j,j ,Zk+l 
o ,-

o 

Un+l,j,Zk+l 

j=Z,3, ••• ,n-l, 

(6.4.7) 

(6.4.8) 

(6.4.9) 

(6.4.10) 

(6.4.11) 



and 

~l = 

u + u 
1.0.2k 0.1.2k+l 

u 
2.0.2k 

I 
I 
I 
I 
I 
I 
I 
I 

U I 
n-l.0.2k 

u + u n.0.2k n+l.l.2k+l 

and b = 
--n 

u + u 
1.n+l.2k 0.n.2k+l 

u 
2.n+l.2k 

I 
I 

u 0 

n-l.n+l.2k 
u + u 
n.n+l.2k n+l.n.2k+l 
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Similarly. the vector d ordered cOlumn-wise. is given explicitly as. 

d = -1 

~l 
~2 

I 

dO 
--n 

where d. = 
-'1 

u + u 
0.1.2k+l 1.0.2k+l 

u 0.2.2k+l 

o 

uO.n-l.2k+l 

ui.0.2k+l 
o 
I 
I 

I 

o 
ui .n+I.2k+l 

and d = 
--n 

u + u 
0.n.2k+l 1.n+l.2k+1 

~ 

i=2, ... ,n-l, 

li- + U 
nH.I.2k+1 n.0.2k+l 

~.P.2.2k+l 
I 

I 
u/Ifl.n-l.2k+1 
u, 2k I + u I 2k I I\:oi.n. + n.n+. + 

The unknown compound vectors u and u (which are approximations of U and 
~ ~ ~ 

U respectively for p=2k.2k+I.2k+2 ••. ) are ordered row-wise and column-wise 
~ 

respectively and can be written in the form. 

T 
u = [uI I • u2 I •... u I • uI 2 • u2 2 •... u 2 •... ul • u2 ... -p , JP , JP nJ JP , JP , JP TI, JP . ,n,p ,n,p 

... u J n,n,p 

and 
"'T 
u=[ull.uI2····ul .u21.u22····u2 .; •. u l ·u 2 •··· -p , JP , JP ,n,p, JP , JP ,n,p n"p nJ JP 

... u J. n,n,p 
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The use of-the Recursive Point Partitioning Algorithm in the A.D.l. Method 

From equations (6.4.7) and (6.4.8) it is easily seen that the major 

computational task in the A.D.I. procedure is the line-by-1ine solution, 

along the rows and then columns, of sets of n tridiagonal systems of 

equation of the form, 

(6.4.12) 

where A is given by (6.4.10), ! represents the solution along a row or 

column and ~ is the appropriate right hand side vector. Hence, substantial 

computational effort can be saved if a very fast algorithmic method is 

employed in the repeated solution of the tridiagonal matrix systems 

derived from the A.D.1. techniques. 

The CTRPP algorithm (4.9) for the solution of the simple normalised 

tridiagona1 matrix system of the form (6.4.10) was given in Chapter 4 as 

a variant- of the more general TRPP algorithm (4.8). It is easily established, 

by using equation (6.4.11), that for r>O, 101>2 and hence the matrix A in 

(6.4.10) is diagonally dominant. The stability of the numerical solution of 

sets of tridiagona1 matrix systems in (6.4.7) and (6.4.8) by the CTRPP 

algorithm (4.9) is therefore immediately guaranteed under the diagonal 

dominance condition. 

The actual amount of arithmetic operation needed to solve each 

tridiagona1 matrix system (6.4.12) using the CTRPP solver along a line is 

2n multiplications and 2n additions for repeated applications, assuming 

that the mesh spaces, and hence the matrix A, remain unchanged. Compared 

to the more usual method of solution by the Gaussian elimination method 

(Varga (1962)) which requires Sn multiplications and 4n additions per 

system, the CTRPP algorithm, when applied in the A.D.I. procedure along 

the rows and columns of the network, offers substantial computational gains. 

Neumann's Boundary Condition 

For a Neumann's boundary condition of the form, 
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au = 0 
an ' (x,y,t)£aR, 

where n denotes the direction of the outward normal, the use of a one sided 

difference approximation on a standard grid to approximate the boundary 

conditions, e.g. 

au ax-= 
(u. l-U.) 

1+ 1 O(h) h + , i=O,n+l, etc. 

leads to linear systems of the form (6.4.7) and (6.4.8) but now A is given 

as an (n+2)x(n+2) matrix of the form, 

A = 

0-1 -1 

-1 , 
, 

o 

, 
o ' , , , , 

, , , 
, ' , 

o 
, 

, 
, , " 

" ' 0 -1 , 
, -1 0-1 

(6.4.13) 

(n+ 2) x (n+ 2) 

A fast solution of (6.4.7) and (6.4.8) where A is of the form (6.4.13) 

can now be obtained by a suitably modified form of the CTRPP algorithm 

provided A is non-singular, i.e.,lol>2. 
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6.5 FAST NUMERICAL SOLUTION OF TIlE BIHARMONIC EQUATION WITIl MIXED BOUNDARY 

CONDITIONS IN A RECTANGULAR REGION 

We define the system of linear algebraic equations 

M[F. ,A. ,B. ,C. ,E.]u = d 
1 111 1 - -

to be of block five diagonal form if the matrix M is given by 

Bl Cl El 

A2 B2 C2 E2 

F3 A3 B3 C3 , , , , 
M = , , , , , 

o 

E3 , , 
, 
, 

, , 
, 
, 

F n-l 

o 

" , ' 
, ' E , ' 
.... .... n-2 

A 'B ' C 
n-l n-l n-l 
F A B n n n (nxn) 

(6.5.1) 

(6.5.2) 

where each of the submatrices F.,A. ,B. ,C.,E. is square of order m. Linear 
1 1 111 

equations of the form (6.5.1) together with (6.5.2) are obtained, for 

example, from finite difference approximation of boundary-value problems 

for fourth-order elliptic p.d.e.'s. 

Statement of the Problem and the Formation of the Finite Difference Equation 

We consider the solution of the two-dimensional Biharmonic elliptic 

equation, 
4 a+u 

'J U(x,y.) (=-4 + 
ax 

ljI(x,y) . 

in a rectangluar region R={O~X~il' 0~y~i2} bounded by aR. This problem, 

together with appropriate boundary conditions, describes, for example, 

the small deflections in a thin homogeneous plate under various forces 

exerted on the plate boundaries. 

We consider first the following set of boundary conditions in aR: 

U(x,y) a(x) , a
2
u = b(x), i 2, O~X;>il = -2(x,y) y = 

ay 

U(x,y) c(x) , a2u d(x) , 0, O;>lClfi 1 = -2(x,y) = y = 
ay 

a2u U(x,y) = e(y), -2(X'Y) = fey) , x = 0, 0;>y;>i2 ax 

and U(x,y) g(y), a2u hey)' i l , 0;>y;>i 2 • = -2(x,y) = x = 
ax 

(6.5.3) 

(6.5.4) 
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The functions b(x), d(x), fey), hey) represent the bending moments 

distributed·along the two opposite edges. 

In the rectangular region R, we define a set of mesh points Rh' i.e., 

x. = ita i=1,2, ... ,n, 
1 

Yi = ifly , j=I,2, ••. m, 

and the discrete boundary points a~, i.e., 

and 

x. = i6x, 
1 

i=O,n+l 

j=O,m+l 

where nllx=£l' mllY=£2 and m,n are integers. 

Further, we define the following quantities, 

2 
fly 
2 2 

2 (flx +fly ) 

2 
flX 

6 = -~2'-------2-' 
Y 2 (flX +fly ) 

and denote a(x.) as a. ,e(y.) as e. etc. 
11) ) 

2 2 
T= 1+26 +26 

x Y 

2 By Taylor's series expansion, the harominic operator V U .. is 
1, ) 

given, on neglecting the truncation error term O(flx2+fly2) as, 

2 . 
V U .. = e U. 1 .+6 U .. l-U .. +6 U .. 1+6 U. 1 . , 

1,) x 1-,) Y 1,)- 1,) Y 1,)+ X 1+ ,) 

(6.5.5) 

which is represented by the computational molecule given in Figure 6.1(a), 

from which the 13 point computational molecule for the Biharmonic operator 

v4
U .. is easily obtained as given in Figure 6.1Cb). 
1,) 

Computational Molecule for the Harmonic and Biharmonic Operators 

2 
VU .. 

1,) 

(a) 

26 6 
x Y~ __ ~ }-_~ 

26 6 
x Y 

FIGURE 6.1 

4 V U .. 
1,J 

Cb) 



Hence, a finite difference equation for the problem (6.5.3) is given, on 

neglecting O((6x)2+(6y)2) terms, by 

2 
TU .. -2a (U. I .+U. I .)-2a (U .. I+U, . I)+a (U. 2 .+U. 2 .) 

I,) x 1- ,) 1+ ,) Y 1,)- 1,)+ x 1-,) 1+ ,) 

2 +a (U .. 2+U, . 2)+2a a (U. 1 . l+U, 1 . l+U' I . l+U, 1 . 1) y 1,)- 1,)+ X Y 1- ,)- 1- ,J+ 1+ ,)- 1+ ,)+ 

= '1'. . l~i~n, 
1,) 

where U .. and'!' .. denote the values U((i6X, j6y) and 'I'(i6X, j6y) 
1,) 1,) 

respectively. 

By choosing a column-wise ordering of the mesh points and applying 

(6.5.6) we obtain the discrete representation of (6.5.3) together with 

the boundary condition (6.5.4) as 

where u is the approximation of ~ ordered to conform with ~, and ~ is 

the (nxn) block five diagonal matrix, 

T2+e 21 -2a T a2
1 x x x 

-2a T T2 +2a 21 -2a T a2
1 

x x x x o 
e2

1 
... ... , ... ... ... ... , 

x "-

~ = ... , ... , , ... , ... , 
"- ... ... "- a21 

"- "- x 
0 

... --...... a21 -2a T 
x x 

T2 +2a 21 :2a T 
x ·X 

a2
1 x 

-2a T T2+a 2
1 

x x (nxn) 

where T is given by the (mxm) tridiagonal matrix, 

1 -ay 

ay 1 -ay 0 , , , ... ... ... , ... , 
T = , • , ... , , ... -ay 

0 ., 
-ay 1 (mxm) 

By using the central difference schemes, 
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(6.5.6) 

(6.5.7a) 

(6.5.7b) 

(6.5.8) 



a2u 
-2(x,y) = 
ax 

a2u and similarly for ---2' 
ay 

(U. 1 .-2U .. +U. 1 .) 
l-,J 1,J 1+ ,J 

(lIx) 
2 

2 
+ O(6x ) 

in the approximation of the second derivative of the boundary conditions, 

the vector ~ derived from the boundary conditions is given explicitly 

in the form, 

where, 

22222 2 - (8 6x f +28 e +Jl 8 e -28x e
l
+28 8 e -28 c +28

x
8
y

C
2
+6Y 8

y
d

l
+28

y
C

l
) 

x 1 x 1 x Y 2 x Y 0 Y 1 

-(8 26X2f 2+2<fe2+28 8 e
3

-28 e
2

+28 8 e
l
+8 2

C
l

) 
x x x y x x y Y 
222 

-(8 6x f3+28 e3+28 8 e4-28 e
3

+28 8 e
2
) 

x x x y x x y 

222 
-(8 6x f.+28 e.+28 8 e. 1-28 e.+28 8 e. 1) 

x J x J x Y J+ X J x Y J-

2 2 2 2 
-(8 6x f 1+28 e 1+28 8 e -28 e 1+28 8 e 2+8 a

1
) x m- x m- x y m x m- x y m- y 
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, 

.22 2 222 
-(8 6x f +28 e +28 8 e 1-28 e +28 8 e 1-28 a

l
+28 8 a

2
+8 6y b

l
+28

y
a

l
) x m x m x y m+ x m x y m- y x y y 

b = -2 

(6.S.9a) 

(6.S.9b) 



b = 
-n-1 

and 

and 

222 
-(26 6 c. 1-26 c.+26 6 c. +6 6y d.+26 c.) 

x y 1- Y 1 X Y 1+1 Y 1 Y 1 
2 

-6 c. 
Y 1 

o 

o 
2 

-6 a. 
y 1 

222 
-(26 6 a. 1-26 a.+26 6 a. 1+6 6y b.+26 a. 

X y 1- Y 1 X Y 1- Y 1 Y 1 

, i=3, ... ,n-2, 

222 2 
-(26 6 c 2-26 c 1+26 6 c +6 g1+6 6y d +26 c 

X y n- y n- X y n X y n-1 y n-1 
2 2 

-6 c 1+6 g2 y n- X 
2 

-6
x

g
3 

6
2 

- xgm-2 
2 2 

-(6 g +6 a ) 
X m-I y n-1 

222 2 
-(26 6 a 2-26 a 1+26 6 a +6 g +6 6y b +26 a ) 

X Y n- Y n- X Y n X m y n-1 y n-1 

215 

(6.s.9c) 

(6.s.9d) 

22222 2 
-(6 6y d +26 c +26 6 c 1-26 c +26 6 c 1-26 g1+26 6 g2+6 6x h 1+26xg1) y n y n X y n- y n X y n+ x x y x 
222 2 

-(6 c +26 6 gl-26 g2+26 6 g3+ 6 6x h2+26 g2) Y n x Y x x y x x 
222 

-(26 6 g2-26 g3+26 6 g4+ 6 6x h3+26 g3) x y x x y x x 

2 2 2 
-(26 6 g. 1-26 g.+26 6 g. 1+6 6x h.+26 g.) 

x Y J- x J x Y J+ X J x J 

2 2 2 2 
-(26 6 g 2-26 g 1+26 6 g +6 6x h 1+26 g 1+6 a ) x y m- x m- x y m x m- x m- y n 
22222 2 

-(6 6y b +26 a +26 6_~ 1-26 g +26 6 g 1-26 a +26 6 a 1+6 6X h +26 g ) y n y n x y-m- x m x y m+ y n x y n- x m x m 

The matrix (6.s.7b) is equivalent to that in (6.5.2) if 

Bl = B = T2+6
2r 

n x " 

B. = B = T2+26 2r, i=2,3, ... ,n-1, 
1 x 

Ai+1 = c. = 
1 

c = -26 xT, i=1,2, ... ,n-l, 

E. 2 
i=3,4, ... ,n-2. Fi+2 = = E = 6

x
r, 

1 

(6.s.ge) 

(6.5.10) 



Hence, the matrix (6.5.7b) can be rewritten as, 

B1 C E 

C B C E , , , "-
E "-

, 
"- "-, 

"-
, , , , 

"-
, , , , 

"- , , 
"- , "- , , , 

"-
, 

~ = , , , , , , , , , , , , , 
0 ' E 

, 

where each submatrix is of order m. 

0 

, , , , , , , , ' 
C 

, , 
B 

E 

C 

E C B 
n (nxn) 

It is easy to establish, by, a simple matrix multiplication, that 

the matrices B1 ,Bn ,B,C and E defined in (6.5.10) commute with the matrix 

T and hence possess a common orthogona1 matrix of eigenvectors 

Q = (q .. ) = h/@+1)Sin(inJ
1
·)'i,j=1,2, .•. ,m 

1,) m+ 

such that these matrices can be written in the normal form, 

B1 = QfI'QT 

B = QflIIQT 
n 

B =" QflQT 

C = QAQT 

E = QnqT 

where fI' ,fi" ,fI,A, and fl are real diagonal matrices whose elements are 
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(6.5.11) 

(6.5.12) 

(6.5.13) 

the eigenvalues of Bl,Bn,B,C and E respectively. These diagonal matrices 

can ~e written as, 

fI' diag(6i,62,···,6~), 6' e2 2 = = + ].lj J x 
fill d' (6" 6" 6") 0'.' e2 2 = 1ag l' 2"'" m ' = + ].l. 

J x J 

diag(6 l ,6 2,···,6m), 6. 2 2 
j=1,2, ... ,m, (6.5.14) fI = = 2e "+ ].l j , 

J x 

A = diag(11",12,···,lm)' A. = -2e ].l. , 
J x J 

fl = diag(wl ,w2,···,wm), w. = e2 
J x 

where ].l. 
J 

are the eigenvalues of the tridiagona1 matrix :r, and are given by 

].l. = 1+2e cos(jn/(m+1)), j=1,2, ••. ,m. 
J y (6.5.15) 



To solve the quindiagonal system M~=~ in (6.5.7a) with MD given by 

(6.5.11), we use the method of matrix decomposition in what amounts to 

an extension of the equivalent algorithm for block tridiagonal system 

(Algorithm 5.1). 

We think of the block vectors u and d as two dimensional arrays 
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u= (u. .) and d= (d. .) partitioned to conform wi th MD, such that u. denotes 
- 1,J - 1 J J -1 

h .th f t e 1 row 0 u etc. 

Then, the solution of M~=~ is obtained as follows: 

Step 1: Compute or determine the common matrix of eigenvectors Q (equation 

(6.5.12) and the eigenvalues of Bl,B,Bn,C and E (equation 6.5.14). 

Step 2: Next, we compute the vectors, 

- T d. = Q d. , i=1,2, ... ,n 
-1 -1 

where d. is a column-wise vector, i.e., each column of d is 
-1 

multiplied by Q~. 

Step 3: Further, we re-order the array d by horizontal lines instead of 

" vertical lines to generate the ·array d and then solve the set of 

quindiagonal systems, 

where 

r 
j 

= 

6 ! 
J 

A. 
J , 

w. 
J, 

A. 
J 

6. 
J. , 

" , 
" 

" " 
" " 

A 
= d. 

-J 

w. 
J 

A. w. 
J J , , , 

" " " , , , 
" 

j=1,2, ... ,m. 

" 
0 

" 
" 

, 
" " 

" " , , , , , 
" " " , , , 

, , 
, , w 
", j 

, 
" o , " 

" " ',6.' A. 
".....' J J 

" " ~w.' A. 0'.' 
J J J 

(nxn) 

1\ 
Step 4: Finally, we re-order the array ~ by vertical lines instead of 

(6.5.16a) 

(6.5.16b) 

horizontal lines to generate U. and then compute the solution vectors, 
-1 

u. = Qu., i=1,2, .•. ,n. 
-1 ""1. 



Fast Solution of the Quindiagonal Systems 

The set of quindiagonal systems (6.5.16) is to be solved many times 

and hence there is the necessity to apply a fast algorithmic method in the 

solution of each system. Such a fast method would normally be obtained by 

an algorithmic process' which is mathematically equivalent to Gaussian 

elimination method without pivoting. The omission of pivoting without the 

risk of instability in the solution process is normally justified by the 

diagonal dominance property of the coefficient matrix. 

It is easy to show by using the expressions for u
j 

in (6.5.15), and 

e,e in (6.5.5) that the quindiagonal matrix r. in (6.5.16b) is diagonally 
x y J 

dominant, i.e., 

le·I>-21"-1+2Iw·1 
J J J 

le! 1>- 1).·i+lw.1 
J J J 

j=1,2, ... ,m. 

I Ii'.' 1>- I "-I + Iw.1 
J J J 

Hence, there is no instability risk in solving the quindiagonal system 
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(6.5.16) by an algorithmic method which does not include a pivoting strategy. 

This enables us to apply a slightly modified form of the constant quin-

diagonal recursive point partitioning method (CQRPP Algorithm (4.10)) in 

order to obtain a very fast stable solution of the set of constant element 

quindiagonal matrix systems (6.5.16) in less than Iln/2 multiplications, 

n divisions and Iln/2 additions per system. 

A Factorisation Method and the Application of BKREF Algorithm 

The block-five coefficient matrix M in (6.5.76) can be expressed as 
D 

the square of a block tridiagonal matrix, i.e., 

~ ~ A; (6.5.17a) 

where 



'\ = 

T -8 I 
x 

-8 I T 
x 

"-
"-

-8 I , x , "-, "-, , , 
"- , 

"- , 

o 

, , 
"-, , 

"-, 
" , , , , 

, 
, , , 
" , , 

o 

, 
......... ... -8 I 

x 
-8 l' T 

x 

Hence equation (6.5.7a) can be represented in the form, 

2 
M~ = AF~ = ~ 

which,on introducing the auxiliary vector ~, gives the two alternative 

systems, 

and 

AF~ = ~D ' 

AF~=~' 
} 

Each of these two systems can now be solved by using the Block 

Rectangular Factorisation (BKREF) algorithm (section 6.3) or the 

corresponding spectral resolution method of Buzbee et al (1970). The 

above method is equivalent to the splitting of the Biharmonic equation, 

v4~=! into two coupled Poisson equations, 

2 
V v = '¥ } and 2 
V u = v 
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(6.5.17b) 

(6.5.18) 

(6.5.19) 

(6.5.20) 

It is, however, not always possible to apply the above factorisation 

method in the solution of the Biharmonic equation with certain boundary 

conditions such as the one to be considered below. 

Mixed Boundary Conditions 

We consider further, the sofution of the Biharmonic equation (6.5.3) 

with the following boundary conditions: 

a2u U(x,y) = a(x), -2tx,y) = b(x), y=R. 2 , O:;:X::;R.l 

~2u 
U(x,y) = c(x), --Z(x,y) = d(x), y=O, o:;:x:;:R. l ay 

au (6.5.21) 
U(x,y) = e (y), ax (x,y) = f(x) , x=O, 0:;:y:;:R. 2 

U(x,y) au hey), x=R. l ,0:;:y:;:R.2• = g(y), ax(x,y) = 
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By applying the finite difference scheme (6.5.6) and using the 

column-wise ordering as before, the Biharmonic equation (6.5.3) together 

with the mixed boundary conditions (6.5.21) give the block five diagonal 

matrix equation, 
ME~ = ~ (6.5.22) 

where ~ is given by, 

T2+2e 21 -2e T e 2
1 x x x 

-2e T T2 +2i I -2e T e2
I 

0 x , x x x 
e2

I 
..... "- "- ..... 

'- ..... '- '-x 
"-

..... , ..... 
'- '- "- , , ..... 

ME 
"- '- , , , 

= , , , , '-..... ..... , , , 
e2T "-, '-

'- x , , , 
0 , -2e T ..... ..... , 

..... .' , x 
"- e 2

1 ' -2e - 2 2 
T T +2e x x x 

and ~ can be obtained from the boundary conditions in which the forward 

differences are used to approximate ~~ at the boundaries, i.e., 

aau=.~(u. 1 .-U .. )+0(6x). 
x uX 1+ , J 1, J 

Factorisation of the form (6.5.15) cannot be applied to the matrix 

~ in (6.5.23). 

Howeve~ since the matrices {T2+2e 2I),{_2e T},{e 2I} and {T} are 
x x x 

commutative, they possess a common set of eigenvectors, and hence the 

spectral resolution method is immediately applicable to the solution of 

the system (6.5.22). The algorithm for this proceeds in an identical 

(6.5.23) 

manner to the one given earlier in this section except that the matrices, 

r., l~j~m, are now defined as, 
J 

r. = 
J 

cS • 
J 

A. 
J 

w. 
"-

J "-

A. 
J 

cS • 
J 

..... 
"- "-, 

'-, , , 

0 

w. 
J 

A. 
J 

"-, 
'-

"-
"-

'- :-

w. 0 J , , , 
, "-

, ., 
(6.5.24) , 

"-
, 

..... , ... 
'- ..... '- w . , ... , J , ..... 'A-'- , 

'- '- '- ..... J , 
w. 

, 
A. cS • 

J J J 
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for which we are required to solve, 

(6.5.25) 

In this case, the CQRPP algorithm (4.10) is immediately applicable to 

the fast solution of (6:5.24). 

Numerical Example 

For numerical-comparisons, the two direct methods, i.e., 

1. The spectral resolution method (in which the CQRPP algorithm 

(4.10)) is employed in the solution of the resulting quin-

diagonal systems of equation) and 

2. The Factorisation method (which uses the BKREF algorithm in 

the solution of the resulting two coupled Poisson equations) 

outlined in this section for the solution of the Biharmonic equation (6.5.3) 

were programmed in Fortran and run on the Loughborough University I.C.L. 

19045 computer for various boundary conditions. One such model problem 

considered is equation (6.5.3) with the boundary conditions, 

a2u U(x,y) = cos(nx/2), --2--(x,y) = 0 at 
a y (6.5.26) 

for which a uniform mesh spacing ~x=~y=h is adopted. 

The theoretical solution of this example is not known; however the 

numerical results obtained from the two methods discussed abov"e satisfy 

the finite difference equation (6.5.6) at any random discrete point in 

the region of interest and are in good agreement with each other to within 

10 decimal places as shown in Tables (6.3) and (6.4)." 
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The Solution, U(x.,y.j of the Biharmonic Equation (6.5.3) with the Boundary 
1 1 

Condition (6.5.26), Using BKREF Algorithm, for x. ,y.=4h(4h)20h where 
1 1 

h=1/21, n=m=20 

--
20h -0.60697393661 -0.58802376763 -0.42995577143 -0.02393741986 -0.00476049291 

16h -0.25307986760 -0.26358331724 -0.19609616979 -0.10974750703 -0.02185807526 

12h -0.33938752074 -0.36895157821 -0.27873112116 -0.15677535246 -0.03126674062 

8h -0.32729494031 -0.35363959612 -0.26651152984 -0.14977743853 -0.02986423569 

4h -0.21506311077 -0.22001733451 -0.16283395129 -0.09099006980 -0.01811478156 

X 4h 8h 12h 16h 20h x· 
1 

TABLE 6.3 

The Solution, U(x. ,y.) of the Biharmonic Equation (6.5.3) with the Boundary 
1 1 

Condition (6.2.26), Using the CQRPP Algorithm in a Spectral Decomposition 

Strategy, for x.,y.=4h(4h)20h where h=1/21, n=m=20 
1 1 

20h -0.60697394196 -0.56329344162 -0.42995577772 -0.02393741986 -0.00476049296 

16h -0.25307986884 -0.33081563171 -0.19609616910 -0.10974750449 -0.02185807366 

12h -0.33938752276 -0.36895158016 -0.27873112086 -0.15677534941 -0.03126673848 

8h -0.32729494244 -0.35363959833 -0.26651152992 -0.14977743590 -0.02986423371 

4h -0.21506311221 -0.22001733609 -0.16283395162 1-0 .09099006841 -0.01811478039 

~ 4h 8h 12h 16h 20h 

TABLE 6.4 



CHAPTER 7 

FURTHER RELATED TOPIC: 

METHODS FOR DETERMINING THE EIGENVALUES 

OF PERIODIC TRIDIAGONAL MATRICES 
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7.1 INTRODUCTION 

The standard algebraic eigenvalue problem is the determination of the 

non-trivial solution of the equation, 

Au = AU (7.1.1) 

where A is a given (nxn) matrix (with real or complex elements), A is an 

eigenvalue and ~ the eigenvector. 

In this chapter, we shall present algorithms for the solution of 

(7.1.1), for cases in which the matrix A is diagonally dominant and periodic 

tridiagonal. Such eigenvalue problems which are associated with periodic 

tridiagonal matrices occur, for example, in the finite difference approximation 

of the Sturm-Liouville differential equation with periodic boundary conditions 

(Froberg (1965)) and in the modal analysis of floquet waves in composite 

materials (Yang and Lee (1974)). 

The periodic characteristic Sturm Liouville problem can be defined by 

the self-adjoint differential equation, 

:x(P(x):~) + q(x)y + Ar(x)y = 0, 

q(x) ,r(x»O, p(x)~O, 

where we seek the numerical values of A and y(x) which satisfy (7.1.2) 

in the range R:a~~b, subject to the boundary conditions, 

yea) = y(b) 

p(a)~(a) = dx 
p(b)~(b) } 

dx 

Following the standard notation, we denote y(xi ), p(xi ) by Yi,Pi 

respectively and then use the following approximation for the second 

difference operator, i.e., 

at each of the discrete points x., i=1,2, ... ,n, in the closed interval 
1 

[a,b] where h=(b-a)/n. A substitution of (7.1.4) into .(7.1.2) together 

with the periodicity condition (7.1.3) yields a set of homogeneous 

linear equations of the form, 

(7.1.2) 

(7.1. 3) 

(7.1.4) 



where R is a diagonal matrix with elements r.>O. i=1.2 •...• n; and A is 
1 

a periodic tridiagonal matrix of the form. 

bl cl a
l 

a2 b2 c 2 
0 , , , , , 

" , , , 
" 

, 
A 

, , , 
= , , , , , , , , , , 

0 
, , , , , , , c n-l , , , b c a 

with elements. 

n 

2 b. = (p. I +p. I) -q. h 
1 1+~ 1-2 1 

a. = -po I 
1 1-~ 

C i = -Pi+~ 

n n 

i=1,,2, ... ,n. 

Further. if the coefficients p(x). q(x) and r(x) are also periodic 

functions. with period n. i.e .• Pn+1.=P1" q .=q. and r .=r .• then the 
n+l 1 n+l 1 

matrix A becomes symmetric of the form. 

bl a2 
a2 b

2 a 3 0 , , , 
, , , , , , , , , , , , 

A = 
, , , , 

" , , 
, , , 
, , 

a , 
" , n 

" " , 
o 

a b n n 

Since R is a diagonal matrix and has positive elements. i.e .• r.>O 
1 

then equation (7.1.5) can be rewritten as. 

Cu = AU 

where. 
l. = R-~~ 
C = h-2R-~AR-~. and } 

The matrix C has the same form as (7.1.6) for the Wlsymmetric case. and 
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(7.1.5) 

(7.1.6) 

(7.1. 7) 

(7.1.8) 

(7.1. 9) 

(7.1.10) 

the form (7.1.7) for the symmetric case. Equation (7.1.9) represents the 

standard eigenvalue problem to be solved. 
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In section (7.2), we present a new periodic quotient-difference (Q.D.) 

algorithm based on a sparse periodic matrix factorisation involving a continued 

fraction expansion, for the determination of the eigenvalues of a symmetric 

periodic tridiagonal matrix; the method being an extension of the well-known 

Rutishauser's QD scheme (Rutishauser (1958)). A reduction of a periodic 

tridiagonal matrix to a special sparse lower Hessenberg form using a 'P-Q 

similarity transformation' (a variant of Rutishauser's LR scheme) is discussed 

in section (7.3). In section (7.4), the simple Sturm sequences of the 

reduced Hessenberg form are derived and then used in an implicit Bairstow's 

technique to find the eigenvalues of unsymmetric periodic tridiagonal matrices. 

For symmetric matrices, the Sturm sequences of the corresponding reduced 

Hessenberg form are used in a Newton-Raphson iteration to determine the 

eigenvalues in section (7.5). Finally, an iterative scheme for the 

determination of the smallest and largest eigen-system of sparse matrices 

is considered in section (7.6). 



226 

7.2 PERIODIC QUOTIENT-DIFFERENCE (P.Q.D.) ALGORITI~ FOR THE DETERMINATION OF 

THE EIGENVALUES OF PERIODIC TRIDIAGONAL MATRICES 

We consider the determination of the eigenvalues of the (nxn) synunetric 

positive definite periodic tridiagonal matrix, 

bl 
a

2 
a

l 
a2 b

2 
a

3 0 ... ... ... ... " .... 
" ... .... , ... 

... ... 
A = ... ... ... (7.2.1) 

" ... ... 
" " 

... 

0 , ... , 
" 

, 
" " a ... ... n 

a l " a b n n 

where A is assumed to be diagonally dominant. ",,,d sQ.tisfios c.""ditio" (:t. q.. 2..0). 

Based on the idea of Rutishauser's LR similarity transformation, the 

Quotient-Difference (QD) algorithm for the evaluation of the eigenvalues 

of a symmetric tridiagonal matrix is well known (see, for example, 

Schwarz et al (1973) and Wilkinson (1965)). 

The fundamental notion of the LR (and hence the QD) scheme for the 

determination of the eigenvalues of any given square matrix A (=A(l) say) 

lies in a factorisation of A(l) into a product of a unit lower triangular 

matrix L(l) and an upper triangular matrix R(l), i.e., 

A(l) = L(l)R(l) 

and then re-multiply the two triangular matrices L(l) and R(l) in reverse 

(2). . 
order to form a new matrix A , 1.e., 

A(2) = R(l\(l) , 

which is known to be similar to A(l) and hence preserves the eigenvalues. 

A repetition of this process leads to an infinite set of similar matrices 

{A(s)}=L(s)R(s) . 

Under certain convergence conditions it is shown (Rutishauser (1958), 

Wilkinson (1965)) that L(s)+I (the identity matrix)and R(S)->Upper triangular 

matrix (as s~) and hence the eigenvalues Ai' (i=l, •.. ,n) which.form the 

diagonal elements of R(s) can then be obtained. 
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We shall extend thi s method to periodic tridiagonal matrices of the 

form (7.2.1) to which we apply a sparse (P-Q) cycZic factorisation strategy 

instead of the more usual strictly lower triangular and strictly upper 

triangular (LU) decomposition. 

By a suitable choice of a diagonal matrix D, the matrix A in (7.2.1) 

can in the first place, be reduced, by a simple similarity transformation, 

to the unsymmetric form, 

b (1) 1 (1 
1 a l 
(1) b(l) 1 0 a
2 2 .... , .... , , 

, ... .... , A (1) DAD- I ... ... 
(7.2.2) = = , ... ... ... ... ... , , , ... .... ... ... 

0 ... ... ... ... 1 ... .... ... 
a(l)\(l) 1 n n 

where (1) 2 
a. = a. 

1 1 

and b~l) = b .. 
1 1 

Now, the matrix A(l) can be factorised (see 3.2.12) into the form, 

A (1) = p(I)Q(I) (7.2.3) 

where 

1 R. (1) (1) 1 1 u I 
R. (1) 1 0 

(1) 1 0 
2 ... 

u 2 ... 
p(1) 

, 
and Q(l) 

... ... 
= ... ... = ... ... ... ... .... ... , ... .... ... , ... , , .... ... 

0 , ... , , .... 1 
0 

... ... ... , .... 
R. (1) 1 1 

... (1) 
u n n 

(7.2.4) 

The sparsity and the band structure of the unsymmetric matrix is preserved 

by this cyclic decomposition. 

From equations (7.2.3) and (7.2.2) we obtain the elements of p(l) 

and Q(1) as, 
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i (1) = a~I) lu~Ii } 1 1 1- i=1.2, ... ,n. (7.2.5) 
( 1) and b~I) -i ~I) u. = 1 1 1 
(1) u (1) Uo - n 

In order to evaluate i~I), u~I) (i=I,2, ... ,n) and hence complete 
1 1 

the P-Q cyclic factorisation, one of the elements (preferably iiI)) must 

be determined in some way before the other elements are then obtained 

easily using formulae (7.2.5). We shall adopt the periodic continued 

fraction (PCF) concept for this purpose. 

Next, a remultiplication of p(I) and Q(I) in the reverse order gives, 

A (2) = Q(1)p(I) 

or 
b (2) (2 1I(1)+i (1) (1) i (1) 1 a

I 1 uI 1 1 1 2 0 ( 2) b (2) 1 0 (l)i(1) (1) i (1) 1 a2 2 , u2 2 u2 + 3 
"-

"- "- ... 
"- "-.... .... .... .... 

.... .... .... .... .... .... .... .... .... .... .... .... 1 .... .... 1 0 0 .... .... .... 

u (1) i (1) 1 
.... (2) .... (2) 

1 (1) i (1) a b un + 1 n n n n 

from which we derive; 

and 

b~2) 
1 

(2) 
a. 

1 

Further, by a P-Q factorisation of A(2) we have, 

A (2) = P (2)Q (2) 

from which we obtain a set of equations, analogous to (7.2.5), and 

given by, 

A substitution 'of (7.2.6) into (7.2.7) leads to the relations, 

i ~ 2) = u~I)~~I) lu~2~ l 1 - 1 1 1-1 i=l,2, ... ,n.-

and (2) = u~l) +i ~1) -i ~2) u. 1 1 1+1 1 

(7.2.6) 

(7.2.7) 

(7.2.8) 
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th 
Generally, at the s stage of the above process, a re-multiplication, 

followed by a decomposition, i.e., 

A(s) = Q(S-l)p(S-l) 

and A (s) = p(s)Q(s) 

yields the elements of pes) and Q(s) 

and 

u , 
n 

as: 

5;;:;2,3, •.. , 
i=l, ... ,n. 

A combination of equation (7.2.5), for the first step (s=l) and 

equation (7.2.9), for subsequent steps constitute the PQD scheme which 

can now be arranged in the so-called Quotient-Difference chart with the 

elements £~s) ,u~s), (i=1,2, .•• ,n), appearing alternately in each skew 
1 1 

line as shown in Table (7.1). 

The Periodic Quotient-Difference (PQD) Chart 

£ (1) 
·(1) 1 

£ (2) 
u

l 
£ (1) 

1 (2) 2 (1) 

£ (3) 
u l 

£ (2) 
u2 

£ (1) 
1 (3) 2 (2) 3 (1) 

£ (4) 
u l 

£ (3) 
u2 

£(2) 
u

3 
£(1) 

1 (4) 2 (3) 3 (2) 4 (1) 

£ (5) 
ul 

£ (4) 
u2 

£(3) 
u3 

£ (2) 
u4 

£(1) 
1 (5) 2 (4) 3 (3) 4 (2) 5 u (1) 

£(6) 
ul 

£(5) 
u2 

£(4) 
u3 

£ (3) 
u4 

£ (2) 
5 ... ... 

1 (6) 2 (5) 3 (4) 4 (3) 5 (2) ... 

£ (7) 
u1 

£ (6) 
u2 

£(5) 
u

3 
£(4) 

u4 
£ (3) 

Us ... 
... 

1 (7) 2 (6) 3 (5) 4 u (4) 5 (3) ... 
u l 

£(7) 
u2 

£(6) 
u3 

£(5) 
4 

£(4) 
Us ... 

... 
2 (7) 3 (6) 4 (5) 5 (4) ... 

u2 ... u3 ... u4 Us 
... ... ... ... 

... ... ... 
"- " " 

TABLE 7.1 

As soon as askew-line (corresponding to one P-Q similarity 

transformation) has been determined the next one is computed element by 

(7.2.9a) 
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element from left to right by using the relations in (7.2.9) which can be 

interpreted in terms of the so-called rhombus rules consisting of the 

quotient and difference rules. 

The Quotient Rule 

Each 1~s) (i=1.2 •...• n) term is obtained from a rhombus centered on the 
1 

1(5) column of the PQO chart (Figure 7.1a) such that the product of the 
i 

lower elements of the rhombus equals the product of the two upper elements. 

i. e. , 
1 ~s) = 

1 

where 

The Oifference Rule 

u~S-l) 1~s-1) 
1 1 

(5-1) 
u. 1 1-

(5-1) _ u . 
n 

J i=2,3, ... ,n, (7.2.9b) 

The u~s) term is obtained from a rhombus of the form centred on the 
1 

u~s) column of the PQO chart (Figure 7.1b) such that the sum of the two 
1 

lower elements equals that of the upper elements. i.e .• 

where 

. (5-:-1) 
u. 1 1-

u~s) = (5-1) u. + 
1 1 

.t (5-1) = 1 (5-1) 
n+ 1 - 1 • 

(5-1) u, 
1 

FIGURE 7.1 

The Rhombus Rules 

, i=1,2, ... ,n. 

(5-11 
u . 

(s) u. 
1 

(b) 

(7.2.9c) 

(5-1) 
i+1 
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Determination of 9.~s) 

h f h PQD h the ,Cs) ( 1 2) b At eac step 0 t e sc erne. ~I s~ ••...• must e 

determined first before the rhombus rules can be applied in computing other 

elements of a given skew line of the PQD chart. 

For the first step. the t(I) is derived as an infinite periodic 1 . 

continued fraction by a cyclic application of the formula (7.2.5) to 
(1) (1) a (1) (1) (1) a (1) a (1) a (1) 

9. (1) ~ a I _a~n~_ n-I a 2 a I n n-I 2 
1 b(I)_b(I)_ (1) b(I)_ b(1)_ b(I)_ (1) b

I
(1)- ... 

n n-l bn_2-··· 1 n n-I bn_2-··· 
~I ____________ ~I LI ______________ ~I 

1st cycle 2nd cycle 

where we have maintained the notation for continued fraction introduced 

in (2.4.4). Equation (7.2.10) can be written in the general form as. 

where 

0. a· a 
123 

~ ~-a;--83-··· 
I 

Ist.cycle 

n. ~ 
(1) 

1 a(n_i+2) 

8. ~ 
b (1) 

1 (n-i + 1) 

2nd cycle 

) i=l, ... ,n, 
(k) =k(modulo n). 

The infinite periodic continued fraction (7.2.11) is said to be 

generated by the linear fractional transformation. 

where w is known as a fixed "point of the transformation at infinity 

(Wall (1948)). 

th (s) _ 
Similarly. for the s PQD step. tl (s-2.3 •... ) is derived as an 

(7.2.10) 

(7.2.11) 

(7.2.12) 

infinite continued fraction by a cyclic application of the formula (7.2.9a). 

(s-I) (s-l) 
u I t I -

(s-I) ,(s-l) U +.... _ 
,nl 

u(s-I)t(s-I) u(s-l)t(s-l) 
n. n n-I n-I 

u(S-l)+t(S-l)_.u(S-I)+t(S-l)_ ... 
n-, n n-2 n-I . 

1st cycle 
u (s-I)·, (s-l) (s-l), (s-l) 

n ~ ~~"·2 
u(S-I)+9.(s-I)_ ... u(S-I)+9.(S-I)_ 

n-I n 1 2 I 

2nd cycle 

(s-I), (s-l) 
u 2 ~2 

(s-l) ,(s-l) 
u 1 +~2 -

I 

(s-I), (s-l) 
u I . ~1 

U(S-I)+t(S-I)_ ... 
n 1 (7.2.13) 
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which can also be written in the standard form (7.2.11) with 

a i = t(n_i+2)u(n_i+2) I 
i=l, ... ,n, 

Bi = t(n-i+2)+u(n_i+1) (k)=k(modu10 n). 
(7.2.14) and 

Under the condltion speci.tied ill Cl.· 4-. ZO) the matrix A (s) in the sth 

step of the PQD reduction process, the continued fractions (7.2.10) and 

(7.2.13) are always guaranteed to converge (Theorem 2.13). Furthermore, 

the numerical determination is obtained by invoking Theorem (2.10) which 

states that the value of a periodic continued fraction of the form (7.2.11) 

is equal to the maximum of the two fixed points of the linear fractional 

transformation (7.2.12). An efficient method for the determination of the 

fixed points, w, is given in section 3.2 (see (3.2.27)-(3.2.32)) and 

involves the solution of the quadratic equation, 

2 
Fk_lw + (Fk-Ek_l)w - Ek = 0 

where the coefficients, Ek,Fk are obtained from a forward recurrence 

relation, 

and 

EO = 0, FO = I, 

El = aI' Fl = Bl 

E. = B. E. l' F. = B· F. I-a. F. 2' i = 2, ..• , k::;:n. 
1 1 1- 1 1 1- 1 1-

If the recurrence relation.(7.2.16) converges for any k<n, then 

the truncation error criterion, 

must be satisfied, for a prescribed truncation error tolerance E. 

(7.2.l5) 

(7.2.16) 

(7.2.17) 

The above method for determining tiS) is best implemented in the 

form of a simple subroutine (see CF2 subroutine, Program 18 of Appendix I) 

so that at each step of the PQD process, the value of ti s ) is obtained by 

a simple call to this periodic continued fraction subroutine. 

Convergence of the PQD Algorithm 

We expect that the PQD algorithm, as a special case of the. Rutishauser's 

LR transformation, must converge, as does the latter and that ufS)~rms of 



the PQD chart must converge to the eigenvalues of A(l) and the ·t~s)elements 
1 

to zero. This will now be established by the following theorem. 

Theorem (7.1) 

The 

periodic 

Periodic Quotient Difference algorithm for a positive definite 
s<ttisfyin, c.nd.t'.n (l.. 4· ~O), 

tridiagonal matrix ~/is convergent. The limiting values. U~S)=A .• 
1 1 

(as s~). are the eigenvalues of A arranged in order of magnitude. 

Al >A 2 ·· .>\. 

Before we give the proof of Theorem (7.1). we first consider the 

following lemma which will be required in our proof. 

Lemma (7.1) 

For a positive definite periodic tridiagonal matrix of the form (7.2.2) 

the initial values. u~l) .t~l) of the first skew line of the PQD chart are 
1 1 

.. . u(.l»o.,(.l»O. posltlve, I.e., 1 ~1 

Proof of Lemma (7.1) 
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Let Pi (i=l •...• n) denote the principal minors of order i of the 

positive definite periodic tridiagonal matrix (7.2.2). and let Po be defined 

as 1. 

Further. we assume the following induction premise. i.e .• 

(1) 
u. = p./p. 1 • i=1.2 •...• k (l,k,n) 

1 1 1-

Now. by using (7.2.5). and the induction premise. we have. 

(1) 
u. 

1 

which yields. 
(1) u. 
1 

0) (1) = h. -a. p. 2/P. 1 
1 1 1- 1-

(1) (1) 
= (p. lb. -po 2a . )/p. 1 

1- 1 1- 1 1-

On using the definitiori of p. this simplifies to. 
1 

u~l) = p./p. . 
1 1 1-1 

In order to check the induction. we consider k=2 and obtain. 



This gives, u~l) = 

which, by definition, is equal to P2/P1' 

Hence the induction premise is true for k=2. Further checks confirm 

that it is also true for values of k=3,4, ... ,n. 

The principal minors of a positive definite matrix are known to be 

positive; hence the u~l) terms which are expressed as a ratio of two 
1 

positive numbers, must therefore be positive. 

and u(l»O then, by using (7.2.5) we have, 
1-1 

t~l) = a(l)/u~l) > 0 
1 1 1-1 

and this completes the proof of Lemma (7.1). 

Furthermore, since a~l»O 
1 

This property of the first skew line of the PQD chart having only 

positive entries is sustained in subsequent skew lines, since such lines 

can be seen as factorisations of positive definite matrices which are 
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. . 1 A (1) ( ) 
S1m1 ar .f~ ... Pyo~ Ot +he LR. a.l'3 ori.thm s·,ve" in Wi.Lkin$on (19(,5") CoverS .fJ.,eo,.,", 7.1 bui 
we present. an a.lterna.tive proof below .foll.",;n:! closeL:t ~h",ay-Z: et "l (1973) ,.f.179. 
Proof of Theorem (7.1) 

and 

From the difference rule in equation (7.2.9c) we have, 

u~s) = 
1 

(5+1) 
u. 1 1-

By adding these two equations together we obtain, 

(5) (5+1) = (5-1) (5)_(,(5+1)_,(5-1)) 
u. +u. 1 u. +u. 1 ~. 1 ~. 1 . 

1 1- 1 1- 1- 1+ 

Since the eigenva1ues are assumed to be ordered in the form, 

th ( ,(5+1)_.(5-1))>0 
en ~. 1 ~. 1 .' 1- . 1+ 

Thus, using the positiveness of the PQD technique, we conclude 

using (7.2.18) that the sequence, (u~s)+u~s+ll)) is a mo·~otonically 
1 1-

decreasing sequence for increasing 5 and is bounded from below by zero. 

(7.2.18) 
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Hence, 
(7.2.19) 

One possibility of (7.2.19) is that 

lim t (s+l) = 0, 
i-I s-

1" t(s-l) = 0 1m i+l . 
s-

By a similar argument, we conclude, in general, that for any i, t~S)~ 
1 

and therefore by using the equations of the difference rule in (7.2.9c), the 

(s) term ui must also converge to a limit, which is an eigenvalue. 

Acceleration of Convergence of the PQD Algorithm by a Coordinate Translation 

Following Wilkinson (1965), we state immediately that the terms ls) 
1 

converge to zero (or the terms u~s) to the eigenvalues A.) roughly as the 
1 1 

s 
quotient (Ai+/Ai) , where Al »'2" .>\> ... >An are the ordered eigenvalues 

of the given matrix A (say). This means that if the separation of some of 

the eigenvalues is poor the convergence of t~s) to zero may be slow. 
1 

By considering the matrix (A-yI), whose eigenvalues are (Ai-y), where 

y is a coordinate translation or a shift in the matrix origin, the 

convergence rate is improved through the decrement of the convergence 

quotient to, 
{(A. l-y)/(A.-y)}s 1+ 1 

This quotient decreases rapidly if y.is a good approximation to A. l' 1+ 

However, for the PQD technique, the shift y must not be too large as to 

destroy its positiveness property. 

th 
An introduction of a shift Ys into the s PQD step leads to the 

following modified algorithm:-

First PQD step: 

We compute t~l) ,u~l) from the relation, 
1 1 

t~l) = a~l)/u~l)l' i=2,3, ... ,n,} 
1 . 1 1-
(1) (1) (1) . u. =.b. -to , 1=1,2, .•• ,n 
11], 

(7.2.20) 

where tell is given by the infinite continued fraction given in (7.2.10). 
1 
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th The 5 step, (5=2,3, ... ,): 

We choose a shift y «A. (A (5))) and then compute 2o~s) ,u~s), from 
5 mln 1 1 

the relations, 

R. ~s) = (5-1) R. (5-1) / (5) i=2,3, ..... n , } u. . u. 1 
1 1 1 1- (7.2.21) (5) u(s-l)+R.(s-l)_R.(s)_ and u. = i i+1 i Ys' i=l ..... ,n. 
l. 

together with, 

z - 0 z = z +y o - , 5 5-1 5 

where z is the accumulation of the shifts applied at 
5 

Before evaluating the 2o~s) ,u~s) terms using (7.2.21), 
1 1 

each step. 

the term R. (5) 
1 

is first 

derived from the periodic continued fraction of the form (7.2.13) but with 

the shift v subtracted from each partial denominator, • 5 i.e. , 

= 

R. (5-1) (5-1) 
1 u 1 
(5-1) R. (5-1) 

un + 1 -y 5 

(5-1) 20 (5-1) 
u 2 2 

(5-1) • (5-1) 
u +" -y -1 2 5 

u (5-1) R. (5-1) 
n-1 n-l 

(5-1) R. (5-1) 
un _2 + n -Ys 

(5-1) • (5-1) 
U +" -y n-1 n 5 

u(s-l) 20 (5-1) 
n-1 n-1 
(5-1) • (5-1) 

u +" -y n-2 n 5 

20 (5-1) (5-1) u (5-1) 20 (5-1) 
, u l n n 
(5 -1) R. (5 -1) _ -uT( 5::--'1 ') +-'.:"(-=-5 ~-l")-_-y -_-

un + 1 -Ys n-1 "n 5 

(5-1) (5-1) 
u

2 
20

2 
(5) • (5-1) 

u l +"2 -Ys 

If each shift Ys is suitably chosen to be as large as 

but smaller than the smallest eigenva1ue of A(s) then, the 

possible, 

R.~s) terms 
1 

converge very rapidly to zero and the u~s) terms also converge to zero. 
1 

(7.2.22) 

The z term converges to the smallest eigenvalue, so that as soon as the s 

2o(s) term is sufficiently small, within a given tolerance, then (z +u(s)) 
n s n 

represents the smallest eigenvalue, A . 
n 

For the continuation of the method, in order to compute other eigenvalues, 

we apply a deflation technique, whereby the R.(s) and u(s) columns of the 
n n 

PQD chart are omitted, so tnat once more, the smallest eigenvalues turn up 

in increasing order. 
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The choice of a suitable shift y at the sth PQD reduction step presents 
s 

some difficulties~ There is the need, on the one hand, to choose a shift 

as close as possible to the current smallest eigenvalue of A(s) in order to 

speed up convergence, and on the other, the need to keep the shift small 

enough to retain the positive property of the PQD algorithm as well as ensure 

the convergence of the continued fraction (7.2.22) from which £~s) is 

determined. 

The following ad-hoc shift strategy was adopted and built into the PQD 

algorithm (Program 18 of Appendix I). 

At the sth PQD step, we choose a shift, 

ys = ~(U~S-I)+£is-1)) 

where ~ is a factor which takes the values, 

~1 = 0.5 

(7.2.23) 

~k = (1+~k_1)$1 ' k=2,3, ... , (7.2.24) 

and (U~S-I)+£iS-I)) is a crude estimate of the smallest eigenva1ue of 

A(s-l). Thus at the sth PQD step, a trial shift y is employed. If this 
s 

trial is successful, (i.e., the infinite continued fraction for the 

(s) (s) (s) ._ evaluation of £1 converges and the terms, £. ,u. , 1-1, ... ,n, are all 
1 1 

positive) then the total shift z (representing the cumulative sum of s 

individual shifts) is logged and the factor ~ is increased from ~k to ~k+l 

for use in a subsequent shift strategy. However, if the trial shift y 
s 

leads to anegative PQD (i.e. u~s) ,£~s)<O for at least one i) then the shift 11· 

is retracted. Progressively, smaller shifts, y =~(u(S-l)+£l(s-I)) (where, 
s n 

111 
takes the values, ~'4*'~' ... ) are adopted in turn until a successful 

trial is achieved and the total shift is then logged to complete that step 

of the PQD process. 

Numerical Result 

The Periodic Quotient Difference (PQD) algorithm was programmed in 
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Fortran and run on the Loughborough University 19045 computer. The 

subroutine is given as Program 18 of Appendix I. 

To test the PQD program, we consider the (lOXlO) diagonally dominant 

tridiagona1 matrix, 

4 1 1 
1 6 1 

I 8 I o 
1 10 I 

I 12 I A ; 

I 14 1 (7.2.25) 
1 

0 
1 

which t:Qn eqslly be Verified to 
The results obtained from the 

16 
I 

1 
18 
1 

1 
20 

I 
1 
22 

(lOXIO) 
sQ.tisf~ c.ond,tio n (2..·4·2..0). 

PQD procedure are compared with those 

given by the Nottingham Algorithm Group (N.A.G.) Library routine F02AFF 

(which computes all the eigenva1ues by the QR transformation method of 

Francis (1961/62)). The results obtained for the matrix in (7.2.25) are 

given in Table (7.2). These results, whilst not conclusive, indicate that 

an accuracy of ry significant figures can be obtained by the PQD scheme. 

The Eigenva1ues of a Periodic Tridiagona1 Matrix Using the PQD Technique 

A. 
1 PQD Scheme: Program 18 N.A.G. (F02AFF) Routine 

I 3.504298196 3.504298100 
2 5.943003306 5.943003271 
3 7.997003770 7.997003268 
4 9.999922587 9.999923084 
5 11.999998885 11. 999997609 
6 14.000001193 14.000002391 
7 16.000077639 16.000076916 
8 18.002996412 18.002996733 
9 20.056996807 20.056996730 

10 22.495701134 22.495701899 

TABLE 7.2 
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7.3 A REDUCTION OF A PERIODIC TRIDIAGONAL MATRIX TO A SPARSE LOWER HESSENBERG 

FORM BY THE P-Q SIMILARITY TRANSFORMATION 

Defini tion 7. I 

An (nXn) matrix H=(h. .) is said to be of lower Hessenberg form if 
1,] 

h .. = 0, ni+2. 
1,J 

For the purpose of this section, we further define a matrix H=(h .. ) 
1,J 

to be of sparse cyclic lower Hessenberg form if 

h. = 0, Ij-il>l; h 1;10 1, j n, 

and may be written, for n=S, in the form, 

x x 
0 x x x 

x x x 

0 
x x x 

x x x 

where x denotes the location of non-zero entries. 
periodic. 

(7.3.1) 

Next, we consider a positive defini te/tridiagonal matrix 5a.ti5f~;n~ (2.. 4· 2.0), ,e., 

bl cl 
a 2 b2 c2 , , , 

, , 
, , 

, , 
A = , 

o 

"- , 
, , , , 

a l 
0 

, , , , , 
, " , , , c 
" " n-l 
'a'b 

n n 
.J. •• 

and assume that the diagonal elements of A/satisfy the condition, 

(7.3.2) 

bl < b2 < ••• < b
n 

(7.3.3) 

If A is diagonally dominant then condition (7.3.3) implies that 

Al < A2 < ••• < \ (7.3.4) 

One useful observation is that a periodic tridiagonal matrix (7·3.~) which 

satisfies condition (7.3.3) can be reduced to a sparse cyclic lower 

Hessenberg matrix, H of the form (7.3.1) by a repeated P-Q similarity 

transformation of A. One immediate advantage of such a reduction is 

that from the sparse Hessenberg form, a much simpler and compact Sturm 

sequence of polynomials than those obtainable from A can be derived for 
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use in the determination of the eigenvalues of H (and hence A) by the 

Bairstow's. Newton's. bisection or any other root-finding procedures. 

Firstly. we assume that the matrix A has been reduced by a similarity 

transformation to the more convenient form. 

b (1) 
1 1 

(1) b (1) a2 2 ... '-... ... ... , 

1 
, 

... ... 

0 
, 

(1) 
a

l 

A (1) = ... 
... 

... ... 
(7.3.5) ... , ... ... 

0 
, , , , , 

... '- 1 
" ' 

1 ~(l) bel) 
n n 

where 
1 1 1-a~l) = a.c. 1) i=1.2 •...• n 

bi
l
) = bi Co = cn · 

(7.3.6) 

Starting with A(l). the sth step. (s=1.2 •... ) of the PQ similarity 

transformation consists partly of the factorisation of A(s) to yield. 

(7.3.7) 

where pes) .Q(s) are cyclic lower and upper triangular matrices respectively 

defined as in (7.2.4). In matrix notation (7.3.7) can be written in the 

form, 

b(s) 
1 1 a (s) 

1 
u (s) +1 (s) 

1 1 1 1 (s) (s) 
I un 

a (s) b (s) I 0 
1 (s) (s) u (s) +1 (s) 1 0 2 2 2 ul 2 2 ... '- ... ... ... , , ... ... ... ... , .... , ... = ... ... , , ... ... , ... , ... , ... ... 

'- • ... , , ... , , ... , , , , , , , ... ... 0 , , '1 0 , ... ... 1 ... ... ... ... , , , , 
1 'a (s) ~ (s) 1 1(s)u(s) (s) 1(s) u + n n n n-l n n 

(7.3.8) 

Next. by a reversed multiplication of pes) and Q(s) we obtain. 

A(s+l) ~ Q(s)p(s) (7.3.9) 

which can also be written in matrix form as. 
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b(s+l) 1 (s+l 
1 a 1 

(s) t (s) 
u1 + 2 1 (S)t(S) 

u1 1 
(s+l) b (s+ 1) 1 (s) t (s) (s) t (s) 1 0 a2 , Z 0 

Uz Z u 2 + 2 , , , , , , , , , , , , , 
'- '-

" , , , , , " , , , , , , , , , , 
" " 

, , , , 
" " " , , , , , 

" , , = , , 
" 

, , , , 0 , , , 1 , , 
" 0 

, , , 
'1 

, , , " " , , 
" 

1 a(s+l) ~ (s+ 1) 1 u(s)t (s) (s) t (s) 
n n n n un + 1 

(7.3.10) 

Our interest is to show that under condition (7.3.3) the above P_Q 

similarity transformation produces a monotonically decreasing sequence, 

(1) (2) (s) (s+l) a1 ,a1 , ... a1 ,a1 , .... 

Now let r denote the ratio of the right-hand corner elements of s 

A(s+l) and A(s). Then, from (7.3.8) and (7.3.10) we have, 

_ (s+l)1 (5) _ (5)1 (5) 
rs - a1 a1 - u1 un ' 5=1,2,... (7.3.11) 

Under condition (7 .3.3) uiS)<u~s)< ... <u~s), 5=1,2, ... 

and hence using (7.3.11) it fOllows that 

o < r < 1, 5=1,2, ... 
5 

Also from (7.3.11) we have, 

and generally, 

(5+1) 
a

1 
= r a (5) 

5 1 
(5-1) 

= r r 1a1 = 5 5-

a (s+l) = r r r a(l) ,,"rsa(l) 
1 s s-l··· 1 1 1 

(s-2) r r r a 
5 5-1 s-2 1 

where, for similarity reasons, ~ is of the same order of magnitude as 

(7.3.12) 

(7.3.13) 

(7.3.14) 

any r. (i=1,2, ... ,s) and hence may be estimated by the easily determinable 
1. 

value of rI' i.e., 

~ " r 1 = ui1)/u~1) " bil)/b~l) = b1/bn. 

Taking logarithms of both sides of (7.3.14) it follows that 

5 " log[a(S+l)ia(l)]/IOg ~ 
1 1 

and hence an estimate of the number of P-Q similarity transformations 

(7.3.15) 

(7.3.16) 

• 
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(s+l) required to reduce the corner element a
l 

to the order of E, a given 

small specified tolerance, is given by, 

(7.3.17) 

Case 1 

For a periodic tridiagonal matrix (7.3.2) satisfying condition 

(7.3.3) the ratio ~ is small (i.e., O<~<l) and hence (for a given value 

of a(l)) s is also small. This means that the reduction to Hessenberg 
1 

form requires only a few steps of the P-Q similarity transformation and 

hence such a reduction approach is recommended in the eigenvalue determination 

of periodic tridiagonal systems that satisfy condition (7.3.3). 

Example 

Consider a (50X50) periodic tridiagonal matrix, 

2 1 1 

1 4 1 0 , , , , , , , , 
A 

, , , 
(7.3.18) = , , , , , , , , , , , , , , , , 

0 , 98 1 , 
1 1 100 (50X50) 

for which ~=2/100=1/50, and ai l )=l. The number of P-Q similarity 

transformations required to reduce the AlSO corner-element to the order , 
of E(=10-6) is given by, 

-6 s = log 10 /log(0.2) = 4. 

This is in agreement with actual experimental results obtained by using 

the SLHM subroutine (see Program 19 of Appendix I) which implements the 

PQ similarity reduction process as discussed in this section. 

Case 2 

For periodic tridiagonal matrices.of the form (7.3.2) which do not 

satisfy condition (7.3.3), the estimate of rs and hence'~ as given in 

(7.3.12) and (7.3.15) will not always hold. Instead we may have, 
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r ~ 1 
s 

for some s=1,2, ... (7.3.19) 

and therefore the sequence {a~}, s=1,2, ... 

is no longer monotonically decreasing but may instead oscillate about 

an initial value ail) . 

Example 

Consider the (lOXIO) periodic tridiagonal matrix of the form, 

b 1 1 

1 b 1 0 .... .... .... .... 
A = .... , .... , for any b~2. , .... 

.... .... .... 
.... .... .... , .... 

0 .... .... '1 , .... , , 

1 1 b (loxIO) 

In this example, the ratio ~=l. 

(7.3.20) 

By applying the P-Q similarity transformation, the sequence {a;s)}, 

s=1,2, ... , oscillates about ail) and hence cannot converge to zero. The 

proposed reduction to sparse Hessenberg form cannot therefore be recommended 

for matrices of the form (7.3.20). 

It may be observed, however, that a matrix A of the form (7.3.20) can 

be written as a rank one perturbation of another matrix, B (say) such that 

where, 

B = 

T 
A = B_o~~ , 

b 1 

1 b 1 
.... .... 

.... .... 
.... , , " , .... .... .... 

.... .... , , 

, 
.... 

0 
, 

1 

o = constant 

1 0 

0 0 

u = , 
.... 0 

.... .... 
'1 , , 

I 

0 

1 b+o 1 

The matrix B is different from A only in the last diagonal element of B 
~ ... 

wnich has been modified by the addition of the value 0, suitably chosen 

(7.3.21) 

(7.3.22) 

such that the ratio r of the first and last· diagonal elements of B satisfy 

the condition, 

o < r=b/(b+O) < 1. (7.3.23) 
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It is now possible to reduce B to sparse Ilessenberg form after· only a few 

steps of the P-Q similarity transformation by a suitably chosen value of 0 

such that. 
o < r=b/(b+o) « 1. (7.2.23) 

Using perturbation theory. the eigenva1ues of A can be related to 

those of B. If we denote the respective eigenvalues by ~. and ~. (i=1.2 •...• n) 
1 1 

in descending order. then they satisfy the relations (Wilkinson (1965)). 

A. = ~i - om. (7.3.24) 
1 1 n 

where o ~ m. ~ 1. t m. = 1. (7.3.25) 
1 i=l 1 

i.e .• the eigenvalues of A and B are interleaved. 

The only consequence of the splitting of A as in (7.3.22) is that 

we can obtain the bounds for the eigenvalues of A once those of B have 

been found. 

Finally. the above discussion on the reduction of a periodic 

tridiagonal matrix to a sparse cyclic lower Hessenberg form can be 

formalised in the following theorem: 

Theorem 7.2 

If {A(s)} is a sequence of similar matrices resulting from the P-Q 

similarity transformations of a given periodic tridiagonal matrix A=A(l) 

such that 

s=1.2 •... 

and 

where p(s) .Q(s) are as defined in (7.2.4). then under certain restrictions 

on the eigenvalues of A. 

p(s) tends to I (the identity matrix) 

and Q(s) tends to H. as s~. where H is a sparse cyclic lower 

Hessenberg form defined as in (7.3.1). 

We consider first the following Lemma which is useful in the proof 

of Theorem (7.2). 
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Lemma 7.2 

(I) 5 . . 
The matrix [A ] can be decomposed 1nto the product of two matr1ces. 

TS and V • where T is a product of cyclic lower triangular matrices 
5 5 

pes) 
• 

and Vs is a product of cyclic upper triangular matrices Q(s). 

Proof 

By the P-Q similarity transformation. 

A(s) = p(s)Q(s) and also A(s) = Q(S-l)p(S-I). 5=1.2 •...• 

and hence. 
p(S)Q(S) = Q(S-I)p(S-l) . 

Now. for simplicity. let us consider [A(l)]s. when 5=4. Then. 

[A (1)]4 = p(l)Q(I)p(l)Q(l)p(l)Q(l)p(l)Q(l) 

= p(I)Q(I)p(l)Q(l)p(l)Q(l)p(l)Q(I) 
I ,. ! i ! 

Using the relations in (7.3.26) we have. 

where T(4) 

V(4) 

In general. it 

P (1) p (2)Q(2) p (2)Q (2) p (2)Q (2)Q (1) 
, , t • 

= p(l)p(2)p(3)Q(3)p(3)Q(3)Q(2)Q(1) 
I I 

= p(I)p(2)p(3)p(4)Q(4)Q(3)Q(2)Q(1) 

= T(4)V(4) 

= p(1)p(2)p(3)p(4) 
} 

Q(1)Q(2)Q(3)Q(4) = 

can be similarly shown that 

[A(l)]S = T(s)V(s) 

} where. T(s) = p(1)p(2) ••• p(s) 

yes) = Q(1)Q(2) ••. Q(S) 

Proof of Theorem 7.2 

(7.3.26) 

(7.3.27) 

(7.3.28) 

(7.3.29) 

We assume that the (nxn) matrix A(=A(l)) has real distinct eigenvalues. 

A = (11.12 •... 1n) 

and that X= (xl .x2 •..•• xn) is the corres.ponding independent matrix of 

column eigenvectors such that 

A(l)X.· = 1 x .• 
-1 -1 

i=1,2, ... ,n. 
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T T T 
Similarij, we let Y=(Yl'Y2""'Yn) be the corresponding matrix of row (left-

hand) eigenvectors such that 

i=1,2, ... ,n. 

XY is a diagonal matrix and if both X and Y are normalised, then, XY=YX=I. 

lIence we have, 

A(l) = XAX-1 = XAY. 

Similarly, by Lemma 5.1, [A(l)js can be written in the form, 

[A(l)js = XASy. (7.3.30) 

Further, if we assume that the matrix of eigenvectors has a special 
so.tisf1in9 CDndition (:I..-4-zo), 

periodic tridiagona1 form / then X and Y can be factorised into a P-Q form, 

i . e. , 

) 
where can be written in the forms, 

p 
y = 

1 

1 

, 
, 

, 
" 

o 

" o , 

" " , ' 
" " , " , , 
o 

i
n 

o 
, 

" , , 

" 

, , 
, ' 

1 

vn 1 

Hence, we have, 

It is easily shown that 

1 

and ~ = 

1 

1 

1 

1 
" " , 
" 

o 

1 
" 
, 

o 

o 
" , 

" 
" " " " " -1 

" 

" " , " 
" , , , 

" 

o 

" , 
, , 

, 

wh.ere 

u 
n 

, 1 

w 
n 

(7.3.31) 

(7.3.32a) 

• 
(7.3.32b) 

(7.3.33) 

(7.3.34) 
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and hence, using [A(l)]s instead of [A(l)]S in our similarity transformation 

argument we have, 

f\ 
where P 

f\ 
Q 
f\ 

and R 

= 

= 

= 

ASQ 
x' 

ASp A-s 
y 

ASQ A-s 
y 

" Next, by using equation (7.3.32) we can express R in matrix form as, 

s w2 P'/A 3) 
0 , , 

, 

" " 
" " (7.3.35) R = , , 

" , , 
" 0 " , , 

" , (An_1/An)s " , . 

(\/A
1
)s " ,w 

n 
" Similarly, Q can be written as, 

1 
s 

(AI/An) vI 
s 

v2(£2/£1) 1 
0 

s 
v 3 (£3/£2) 1 

" n " Q = , 
" (7.3.36) , 

" , , 
" , 

" " " , 
, , , " 0 " 

, 
, " , 

s' 
v (£ / £ 1) 1 

.f\ n n n-
and P as, 

s AS u1A1 1 
s AS 

ui2 2 
" 0 

" " , 
f\ " " P = " , (7.3.37) 

" 
0 

, , 
" , AS " 

" n-1 
" AS ..... U AS 

n n .. 
1\ 

If we assume that A1<A2<···An 
(as in (7.3.4)) then as s--, R in 

(7.3.35) and Q in (7.3.36) converge to the forms R,~ respectively, where, 
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wl 1 

w2 0 , 
1 

o , 1 
y 

, 
R = 

, , -and Q = , 
0 , 

, , , o , , 
(A lA ) s w n 1 n 

s ... 
(A lA 1) v 1 n n- n 

(7.3.38) 

Hence as s~ , [A(l)jS=PxPQR converges to a matrix of the form PxH, 

where, 

o 
, 

.... 
.... .... , .... .... 

.... 
,,~-

H=PQR= ... ... .... 
.... .... ... 

0 ... ... ... .... 
... 

..... ...... As .... w 
A ... n-l n 

5 n s ...... 5 
A u (-,-) v w 1 w U A 
n n ~n-l n n-, n n n 

We have thus obtained a decomposition of [A(l)jS in the form P H 
x 

where the factor P given in (7.3.32a) is independent of s. 
x 

Also, by Lemma 7.1, [X(l)jS can be· factorised into 

where T(s) V(s) , 

Therefore, 

and 

are defined 

T(s)+P 
x 

V(s)->H. 

[A(l)jS = T(s)V(s) 
in (7 . 3.29) . 

the form, 

(7.3.39) 

it follows that if T(s) tends to a limit, pes) must also tend to a limit. 

Since T(S)+P
x

' then pes) must therefore tend to a unit diagonal matrix I, 

which completes the proof. 



7.4 A NEW APPROACH TO BAIRSTOW'S METHOD IN FINDING THE EIGENVALUES OF AN 

UNSY~WETRIC PERIODIC TRIDIAGONAL MATRIX 

The Bairstow's method is a procedure for finding the real quadratic 

factors of a given polynomial; thus it can determine the roots of the 

polynomial in real or complex conjugate pairs without the need to use 

complex arithmetic. This method is useful in the determination of eigen-

values of matrices for which complex eigenvalues are expected. By finding 

the quadratic factors of the characteristic polynomials of such matrices 

implicitly the method obtains the eigenvalues in pairs as roots of the 

quadratic factors; leaving a reduced polynomial of order 2 less, upon 

which the process is repeated. 
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For an (nxn) periodic unsyrnrnetric tridiagonal matrix sQ.tisf~;n9 co,.,di.tion (2. 4·;1.0) 

bl cl al 

a2 b
2 

c
2 , 0 

, , , , , , , , , , , , , , , , 
A = .... , 

(7.4.1) "' 
, , , 

0 
, 

C , 
n-l , , , , 
b c a n n n 

the eigenvalues are given by the determinantal equation, 

det(A-AI) = O. (7.4.2) 

In order to calculate these eigenvalues by the Bairstow's method, we 

need to obtain the sequence of polynomials which form the leading 

principal minors of (A-AI), by a Laplace expansion of the matrix (A-AI). 

Following Evans (1971B), the characteristic polynomials of the 

matrix (A-AI) are given by the relationships, 

P_1(A) = 0 , 
PO(A) = 1 

PI (A) = b -A 1 (7.4.3) 
P 2(A) = (b2-A)P

1 
(A)-a2c1PO(A) , 

................................................................ 
P.(A) = (b.-A)P. l(A)-a.c. 1P. 2(A), i=3, .•. ,n-l,· 

1 1 1- 1 1- 1-



and 

Finally. 

%(A) = 0 

Ql (A) = 1 

Q2(A) = b2-A 
..................... 
Q.(A) = (b.-A)Q. l(A)-a.c. IQ. 2(A) • i=3 ..... n-l. 1 1 1- 1 1- 1-

+ (_l)n-l n 1 n 
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(7.4.4) 

IT a.+(_l)n- IT c. 
i=l 1 i=l 1 (7.4.5) 

These polynomials {P.}. i=l •... n. form a properly signed sequence of 1 

polynomials with P. (A»O for a sufficiently large value of A. positive 1 

or negative. 
The zeros of P. (A) separate those of P. leA) and hence by 

1 1+ 

Gerschgorin's separation theorem (Wilkinson (1965)). the sequence {Pi} 

i=1.2 •...• 
n

• form a Sturm sequence of polynomials on the interval (_~.~). 
The eigenvalues of the unsymmetric matrix A in (7.4.1) can thus be 

determined. using Bairstow's implicit synthetic division procedure. by 

finding the quadratic factors of P (A). 
n 

determination of the eigenvalues of a specialised type of periodic 

Rick (1977) has given an algorithm. using this approach. for the 

un symmetric tridiagonal matrix. For a generalised matrix of the form 

(7.4.1) having the Sturm sequence of polynomials given in (7.4.3). (7.4.4) 

and (7.4.5). the derivation of the Bairstow's algorithm becomes complicated 
and tedious. 

Sturm sequence of polynomials than those given in (7.4.3). (7.4.4) and 

We consider here a simpler approach in which we employ a more compact 

(7.4.5) in ·the derivation of Bairstow's algorithm. 

after s P-Q similarity transformations. be reduced to the sparse cyclic 

It has been shown in section (7.3) that the matrix A in (7.4.1) can. 

lower Hessenberg form. 



b (s) 
1 1 

(s) b(s) a2 2 
" " , " " A (s) 

, 
, = , , 

o 
1 

1 
" " , , 

" 
, 

" 

o 
" , , 

" " " 
" " " 

" 

"

" " " 
" " '1 " , , , 

'a(s) b(s) 
n n 

which in a more general form may be written as, 

1 

O2 S2 1 0 , , " " " 
, 

" " " , 
" " , , , , 

H = " 
, 

"-, , , 
" " , 

0 " " , 
" " 1 , " 1 

, 
S 0 

n 

A Laplacian expansion of det(H-AI) in terms of the reduced 

determinants of order (n-l) gives, 

det(H-AI)=(S -A)det(TI l-AI)-o det(T' 2-AI)+(_I)n-l. 
n n- n n-

where T! is a tridiagonal matrix defined as, 
1 

SI 1 

O2 B2 1 
"- 0 

" " " , , , 
T~ " " , 

= , " " 1 
" 

, .... 
.... , , , 

" " " " , .... 1 
0 

, 
" .... .... 

" 
, 

" .... a i 'l3i (ixi) 
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(7.4.6) 

(7.4.7) 

(7.4.8) 

(7.4.9) 

Hence, if the sequence {P.}, i=I, ... ,n-l denotes the characteristic 
1 

polynomials of (T~_I-AI) then those of (H-AI) are also given by {Pi}' 

i=l, ... ,n, where 



P -1 (A) : O· ,. 

PO(A) : 1 , 
PI (A) : (1\ -A) 1 

P 2(A) : (B2-A)Pi (A)-a2PO(A) 

P. (A) : (B.-A)P. I(A)-a.P. 2(A). i=3 •...• n-l. 
1 1 1- 1 1-

and finally. for i=n. we obtain from (7.4.8). the expression. 

P (A) 
n 

n-l : (B -A)P I(A)-a P 2(A) + (-1) n n- n n-

These sequences are much simpler than those in (7.4.3)-(7.4.5). Apart 
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(7.4.10a) 

(7.4.10b) 

from the last term of (7.4.10b). they are the same as those of a tridiagonal 

matrix. 

Algorithmic Derivation of Bairstow's Implicit Synthetic Division Method 

If each of the polynomials P. (A). i=I.2 •...• n in (7.4.10) is divided 
1 

by a trial quadratic factor of the form. 

A2_GA_H 

then a remainder of the form. 

C.A+D .• i=I.2 •..•• n 
1 1 

(7.4.11) 

(7.4.12) 

is produced. Thus. the polynomials P. (A) can now be written in the form. 
1 

P. (A) = (A 2_GA_H)Q. (A)+C.A+D .• i=l •...• n (7.4.13) 
1 111 

where Q. (A). i:1.2 •...• n. is a polynomial in A of degree (i-2). Next. 
1 

by substituting (7.4.13) into (7.4.10b) we have. after some simplification 

+A{(B -G)C I-a C 2-D)} +B D -n n- n n- n n-1 

n-1 
a D 2-HC 1+(-1) . (7.4.14) n n- n-

2 1 0 
A comparison of the coefficients of (A -GA-H). A and A in both sides 

of equation (7.4.14) yields. 

(7.4.15) 

and 



Similarly. by substituting for P. Plo i=1 •...• n~l. from (7.4.13) into 
1 
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(7.4.10a). we obtain similar e~~ressions for Q. (A). C. and D .• i=1.2 •...• n-l. 
ill 

as. 
Ql· (A) = (e.-A)Q. l(A)-a.Q. 2(A)-C. 1 

1 1- 1. 1- 1- I 

= (e.-G)c. l-a.C. 2-D. 1 
1 1- 1 1- 1-

(7.4.16) 

and D. 
1 

= e.D. l-a.D. 2-HC . 1 
1. 1- 1. 1- 1-

Further. by substituting the starting values. P_l=O. PO=l. Pl=e-A 

obtained from (7.4.10a) inbequation (7.4.13). we obtain the initial values 

of the sequence in (7.4.16) as follows: 

%(A) = O. Co = O. DO = 1 , 
Ql (A) = O. Cl = -1. D1 = (7.4.17) 1 , 

and Q2(A) = 1. C2 = e1-e2+G. D2 = e1fl 2-a 2+H. 

For any initial trial values G and H. we can generate the sequence 

given in (7.4.16) and (7.4.15) 

(7.4.17) and hence the values 

are zeros. then the quadratic 

by starting with the initial values in 

of C.D are thus determined. If C ,D n n n n 
2 

factor (A -GA-H) becomes a factor of P (A) 
n 

and so a solution has been found. The basic problem is therefore that'of 

finding G and H such that the following non-linear equation is satisfied. 

i. e. , 
C (G,H) = D (G.H) = o. 
n n 

(7.4.18) 

For an arbitrary value of G and H. equation (7.4.18) is not 

satisfied in general and so correction factors 6G.6H must be found such 

that 
C (G+6G.H+6H) = D (G+6G.H+6H) = o. n n 

This is achieved by dividing Qi(A). (i=l •...• n-l). in (7.4.16) together 

with ~ in (7.4.l5) by the same trial quadratic factor in (7.4.ll). 

Hence we have. 

Q. (l) = (l2_Gl _H)T. (A}+L.A+M .• i=1.2 •...• n 
1 111 

where L.A+M. is the linear remainder'and T. (A) is a polynomial' of 
1 1 1 

or~er 2 less than ~(A). 

Substituting for Q.(A}. (i=1.2 •..•• n). from (7.4.20) into (7.4.16) 
. 1 

(7.4.19) 

.\ 

(7.4.20) 



and (7.4.15) we have. after some simplifications. 

2 
Q.(l) - (1 -Gl-H){(a.-l)T. l-a.T. 2-L. l}+l{(a.-G)L. 1 

1 1 1- 1 1- 1- 1 1-

-Mi I-a. L. 2}+{a.M. l-a.M. 2-C. l-HL. 11. 
- 1 1- 1 1- 1 1- 1- 1-

By comparing the right hand sides of (7.4.20) and (7.4.21) and equating 

2 1 0 coefficients of (1 -Gl-H). 1 and 1 we obtain. 

T.(l) - (a.-l)T. l-a.T. 2- L. 1 
1 1 1- 1 1- 1-

L. 
1 

= {6.-G)L. I-M. l-a.L. 2 
1 1- 1- 1 1-

M. - a.M. l-a.M. 2-C. l-HL. 1 
1 1 1- 1 1- 1- 1-

i=l, ... ,n. 
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(7.4.21) 

(7.4.22) 

Using the initial values given by (7.4.17) in equation (7.4.20). we 

obtain the initial values for the sequence given in (7.4.22). as. 

TO(l) -0 

T 1 (1) -0 

T 2(1) -0 

T 3(1) -0 

Thus. starting with (7.4.23). 

and thus L.M obtained. 
n n 

LO -
Ll -
L2 -
L3 -
the 

0 MO -0 , 
0 Ml -o , 

0 M2 -I , 

-I. M3 - 13 3 -C 2 

sequence in (7.4.22) can be computed 

Finally. the correction factors 6G and 6H to the quadratic factor 
2 . 

(1 -Gl-H) are then given by the formulae (Wilkinson (1965)). 

e -HL + GM 
n n 

4> -M2 _ eL 
n n 

6G -[L (0 +GC )-(M +GL )C ]/4> n n n n n n 

and 6H -[eC -(M +GL )(0 +GC )]/4>. n n n n n 

New values of G and H are now calculated as. 

G - G + llG and H - H + 6H 

which are then used to form a new quadratic factor. 

The process is repeated until llG,6H are small enough with respect 

to a given specified error tolerance. 'At this stage. the quadratic 

equation 12_Gl_H_0 is solved to yield the required pair of eigenvalues. 

(7.4.23) 

(7.4.24) 

(7.4.25) 

The sequence of polynomials Qi(l). i-l.2 •...• n. of maximum degree (n-2) 



defined in (7.4.16) and (7.4.15) can now be used to determine further pairs 

of eigenvalues by a repetition of the above process. As the degree of the 

original polynomial' n is effectively reduced "by two at each stage, the 

recursive sequences are shorter and further eigenvalues are progressively 

easier and faster to calculate. 

The convergence of this algorithm is quadratic when close to a pair of 

eigenvalues (Wilkinson, (1965)). However, in practice the algorithm takes 

a number of iterations to 'search' for the pair of eigenvalues before it 

finally settles down on a pair and then converges rapidly. This 'search' 

to identify a pair of eigenvalues may be explained by the fac t that even if 

close estimates to a certain pair of eigenvalues are chosen the resulting 

quadratic factors need not be close to the actual one. For example, if a 

pair of eigenvalues are .01 and 1000, then the quadratic factor becomes 

2 
A -1000.01+10. If estimates of the eigenvalues were taken as -.01 and 1000, 

then the quadratic factor is A
2

-999.99A-IO and hence may converge to a 

different pair of eigenvalues. th For an n order system, the eigenvalues can 

be combined to produce nC2{=n(n-l)/2) possible quadratic factors and the 

fact that there are a large number of factors to choose from serves to slow 

down the convergence process. A speed-up of the algorithm can be improved 

by choosing sufficiently close initial guesses to the pair of eigenvalues, 

instead of just any arbitrary initial guesses. A numerical experiment was 

carried out to investigate the convergence behaviour of the algorithm based 

upon the choice of the initial guess. An ad-hoc method which was found to 

give the best convergence results (an average of 8 to 10 iterations for 

each pair of eigenvalues) is as follows: 

For the first pair of eigenvalues, initial values chosen from the 

diagonal elements of the unsymmetric matrix H defined in (7.4.7) was used 

as the initial guess. Thereafter, the most recently computed pair of 

eigenvalues were adopted as further initial guesses to the next pair to be 
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sought. This scheme is particularly suitable for matrices with ordered 

eigenvalues. 

Implementation of Bairstow's Algorithm 

The two main advantages of the Bairstow's algorithm are:-

(1) It finds complex eigenva1ues without having to work in complex arithmetic 

which is time consuming on a computer. 

(2) It requires minimal computer storage for its implementation because all 

the correction factors and remainders can be calculated without explicitly 

calculating and storing the new polynomials Q.(A), T. (A), i=1,2, ... ,n 
1 1 

produced at each stage of the implicit synthetic division. 

To accomplish (2), in programming terms, we need to carry out the 

synthetic division one step further. Hence, if we consider the polynomials 

2 T. (A) in (7.4.22) and divide these by the quadratic factor A -GA-H, we have, 
1 

2 
T.(A) = (A -GA-H)Y. + AE. + F .• 

1 111 

By substituting (7.4.26) for T. (A) in (7.4.22) we obtain, after some 
1 

simplification, the recurrence relation, 

and 

Y. = (6.-A)Y. l-&·Y. 2-E. I 
1 1 1- 1 1- 1-

E. = (6.-G)E. I-F. l-a.E. 2 
1 1 1- 1- 1 1-

F
1
· = 6.F. I-HE. l-a.F. 2- L. 1 

1 1- 1- 1 1- 1-

i=l, ... ,n. 

(7.4.26) 

(7.4.27) 

By using (7.4.26) and the initial values of T.(A) given in (7.4.23), 
1 

we obtain the initial values of the sequence in (7.2.27) as, 

} (7.4.28) 

By the above approach, it is possible to perform the synthetic 

division in the same manner at each stage because after finding one pair 

of eigenvalues the process is continued exactly in the same manner by 

overwriting c. with Li , 
1 

D. with M. , 
1 1 

L. with E. , 
1 1 

and M. with F. ; 
1 1 
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and hence this eliminates the need to store explicitly the polynomials 

Q. (A). T. (A). i=l •...• n. produced at each stage of the process. The 
1 1 

storage requirement of the Bairstow's method is therefore kept to a minimum. 

Numerical Results 

The algorithm which implements the Bairstow's method as described in 

this section is given as Program 20 in Appendix I. A number of tests were 

used to demonstrate the performance of this algorithm. These test matrices 

were first reduced to the sparse cyclic lower Hessenberg form as in (7.4.7) 

by using Program 19 of Appendix I. 

We first consider the (IOXIO) matrix A s"tiSt'jin~ ~ond;tion (:/'.",.:/'0) •• d 9/1 .. " b~, 

4 I 1 
2 6 1 

1 8 1 
0 2 10 1 

A 1 12 I (7.4 .29) = 2 14 1 
1 16 1 

2 18 1 
0 1 20 1 

1 2 22 (lOXIO) 

The experimental results obtained are compared with those given by 

the N.A.G. (F02AFF) subroutine as shown in Table (7.3). Both results agree 

to within 8 significant figures; and while these cannot be conclusive. they 

do indicate that an accuracy of at least 8 significant figures has been 

obtained by the Bairstow's scheme. 

The Bairstow's algorithm took 6 mill units of time to calculate all 

the eigenvalues of the matrix (7.4.29) whilst the N.A.G. (F02AFF) subroutine 

took only 3 mill units. 



Bairstow's Method (Program 20) 

A. Real Imaginary 
1 

1 3.1776805601 0.0000000000 

2 6.1439159399 0.0000000000 

3 7.7775316071 0.0000000000 

4 10.2121100623 0.0000000000 

5 11.7877109588 0.0000000000 

6 14.2122892338 0.0000000000 

7 15.7878895183 0.0000000000 

8 18.2224682996 0.0000000000 

9 19.8560841913 0.0000000000 

10 22.8223194761 0.0000000000 

TABLE 7.3 

N.A.G. (F02AFF) Subroutine 

Real Imaginary 

3.1776805033 0.0000000000 

6.1439159783 0.0000000000 

7.7775316033 0.0000000000 

10.2121100640 0.0000000000 

11.7877107845 0.0000000000 

14.2122892159 0.0000000000 

15.7878899379 0.0000000000 

18.2224683966 0.0000000000 

19.8560840210 0.0000000000 

22.8223194999 0.0000000000 

N 
tn 
00 
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Further, we consider the (15x15) unsymmetric periodic tridiagonal 

matrix A possessing complex eigenvalues, i.e., 

12 1 0.5 
1 3 1 

2 4 1 
3 5 2 0 2 6 2 

3 7 3 
2 8 2 

A= 3 9 3 (7.2.30) 
2 10 3 

3 11 3 
2 12 3 

0 3 13 2 
2 14 3 

3 15 2 
10 2 16 

(15x15) 

The results for this matrix are shown in Table (7.4). Here, the 

N.A.G. routine took 10 mill-units while the Bairstow's method took 16 

mill-units. 

To illustrate further the speed performance of the Bairstow's 

algorithm as compared to the N.A.G. routine, we perform further tests 

on general unsymmetric periodic tridiagonal matrices of various order. 

The execution times taken by the Bairstow's method were compared to 

corresponding results for the N.A.G. (F02AFF) subroutine for various 

matrix sizes as shown in Table (7.5). 

As is evident from Table (7.5), the N.A.G. (F02AFF) subroutine, which 

employs the Francis QR t~ansformation technique, is significantly faster 

than the Bairstow's method for small order matrices. However, with an 

increasing size of the matrix system, the Bairstow's scheme improves in 

its speed competitiveness, essentially due to the sparsity-characteristics 

of the latter method which the former does not possess. Moreover, the 

storage for the Bairstow's algorithm is O(N) words while that of the N.A.G. 

routine is 0(N
2

) words. Thus, when the N.A.G. routine runs into storage 

difficulties on large order matrix systems the Bairstow's method becomes 

a preferred method to use. 



Program (20) 

A. Real Imaginary 
1 

1 0.8805879241 0.0000000000 

2 1.6481552756 0.0000000000 

3 3.0900980496 0.8522928632 

4 3.0900980496 -0.8522928632 

5 5.3674818721 1.7142297883 

6 5.3674818721 -1.7142297883 

7 8.0308615719 2.0510701660 

8 8.0308615719 ~2.0510701660 

.9 10.7.834776671 1.7075564422 

10 10.7834776671 -1.7075564422 

11 13.4020080815 0.6358051266 

12 13.4020080815 . -0.6358051266 

13 15.5435843772 0.0000000000 

14 16.7258676280 0.0000000000 

. 15 18.8539502835 0.0000000000 

TABLE 7.4 

N.A.G. (F02AFF) Subroutine 

Real Imaginary 

0.8805879621 0.0000000000 

1.648552346 0.0000000000 

3.0900980573 0.8522928323 

3.0900980573 -0.8522928323 

5.3674818778 1.7142297990 

5.3674818778 -1.7142997990 

8.0308615756 2.0510701730 

8.0308615756 -2.0510701730 

10.7834776698 1.7705564381 

10.7834776698 -1.7705564381 

13.4020080871 0.6358051201 

13.4020080871 -0.6358051201 

15.5435843822 0.0000000000 

16.7258676400 0.0000000000 

18.8539502432 0.0000000000 

N 
a
o 



Times Taken to Obtain All the Eigenvalues of an Unsymmetric Tridiagonal Matrix of Order n 

(Unit: Mill-secs) 

Order of Matrix Times taken by Bairstow's Times taken by N.A.G. Ratio of Times 
n Method (Program 20): Tl F02AFF Subroutine: T2 T/T2 

10 6 3 2.0 

15 16 10 1.6 

20 25 19 1.3 

30 68 59 1.2 

35 90 88 1.02 

40 126 128 0.98 

TABLE 7.5 

I 

N 

'" .... 
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7.5 THE DETERMINATION OF THE EIGENVALUES OF A SYMMETRIC PERIODIC TRIDIAGONAL 

MATRIX BY NEWTON'S METHOD 

Let A be an (nxn) symmetric periodic tridiagonal matrix of the form 

given by (7.1.8) which is derived from the finite difference discretisation 

of a Sturm-Liouville problem (7.1.2). 

We assume that A is diagonally dominant and that the diagonal elements 

satisfy the condition (7.3.3). Co"ddion (:t. 4·2.0) is tUso a.ssuI»ed. 

It was shown in section (7.3) that such a matrix is reducible by a P-Q 

similarity transformation to a sparse cyclic lower Hessenberg form, H, given 

by (7.4.7). ,. 

The sequence of polynomials which determines the principal minors of 

det(H-AI) were given in (7.4.10). Differentiating these polynomials in 

(7.4.10) with respect to A, we have, 

and 

d 
dA (P o CA)) = 

d 
dA (P 1 (A)) = 

d 
dA(P 2(A)) = 

P' = o , 
0 

P' 1 = -1 

(S2-A)P i -P 1 -al 0 

(S.-A)P! l-P, l-a.P! 2' i=3, ... ,n-l, 
1 1- 1- 1 1-

d 
d,(Pn(A)) = (S -A)P' I-P I-a P' 2 

A n n- n- n n-

The recurrence formulae in (7.4.10) and their corresponding 

derivatives in (7.5.1) can now be applied in the determination of the 

eigenvalues A of H by using the Newton's iterative scheme, 

A(k.l) = A(k) _ [Pn(A(k))/P~(A(k))l, P~(A)#O, k>O, 

where 1.(0) is an initial estimate of A. 

The method (7.5.2) has quadratic convergence for simple roots 

(Froberg (1965)), i.e., 

IA(k+l)_ AI =cIA(k)_.,AI 2 , O<c<l 

but the convergence becomes linear if the roots to which the method is 

converging is multiple. Convergence is attained when 

(7.5.1) 

(7.5.2) 

(7.5.3) 
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I P (A (k + 1) I < E 
n (7.5.4) 

for some small specified tolerance. 

When the first eigenvalue has been found by the Newton's scheme 

(7.5.2). an alternative scheme. the Secant method. given by. 

A(k+l) = A (k)_[CA (k)_A (k-l))Pn(A (k))]/[Pn(A (k))_Pn(A(k-l))]. k~l 

(7.5.5) 

can be used in determining subsequent eigenvalues. 

When one or more of the eigenvalues has been computed. then in order 

to avoid redetermining those eigenvalues already found the technique of 

'dividing out the roots' is used to suppress the known eigenvalues. Thus. 

instead of iterating with P (A). we use G (A) where 
n s n 

G CA) = P (A)/ TT (A-A'.) 
n n i=l l. 

and A .• i=l •..•• s are the s eigenvalues already found. 
l. 

The derivative of G (A) with respect to A. for use in the Newton's n 

scheme. is then given by 

d s 1 
dA (Gn (A)) = G~ (A) = Gn (A){P ~ (A) /P n (A) - iL (A~\) - ) 

Hence. the Newton's formula (7.5.2) can now be replaced by the form. 

A(k+l) = A(k)_[G (A(k))/G'(A(k))] 
n n 

substituting for G (A(k)/G'(A(k)) from (7.5.7). yields. 
n n 

which. on 

s 
A(k+l) = A(k)_lj{P'(A(k))/p (A(k))_ L (A(k)_A.)-l) 

n n '1 l. 
l.= 

from which we can compute the eigenvalues. 

For large order matrices of order greater than 30. the Sturm 

sequence of polynomials Pi (A). i=1.2 •..•• n. in (7.4.10a) and PI(A) in 

(7.5.1) can oscillate widely. giving rise to overflow or underflow. 

particularly for estimates of A far from the actual values. 

To overcome this problem of overflow. we adopt the procedure of 

Barth et al (1967) and replace the sequence of polynomials PiCA). 

i=1.2 ••••• n in (7.4.10a) by a new sequence of scaled polynomials. 

p. (A) = P. (A))/P. leA) • i=1.2 •••.• n. 
l. l. l.-

(7.5.6) 

(7.5.7) 

(7.5.8) 

(7.5.9) 

(7.5.10) 



264 

Thus, we have, 

PO(A) = 1 , 

Pl(A) = (BI-A). (7.5.11) 

p. (A) = (B. -A)-a./p. 1 (A), i=2, ... ,n-l 
1 1 1 1-

and Pn(A) = I n-l (Bn-A)-an_l Pn_l(A)+(-l) IPn_l(A). (7.5.12) 

By using the relationships in (7.5.10), it follows immediately that 

i 
P.(A)=lTp· , 

1 j=l ) 
i::::l,2, ... ,n 

and hence (7.5.12) becomes, 
n-l 

n-l TI P (A) = (B.-A)-a IIp 1+(-1) I p. n 1 n- n- . J 
)=1 

Next, by differentiating the sequence of polynomials PiCA) in 

(7.5.11) with respect to A, we obtain the following sequence, 

d 
= p' (A) = 0 , dA(PO(A)) 0 

d I 

dA (PI (A)) = PI CA) = -1 , 

d 
= p! (A) 1 2 

(A), dA (Pi CA)) = -l+a.p. /p. 1 
1 1 1- l-

and finally, from (7.5.12) we have, 

where, 

Further, a differentiation of (7.5.13) yields, 

i 
P!(A) = r 

1 k=l 

i 
IT p. (A)Pk (A) 
j=l ) 
jj1k 

and hence, using (7.5.13) and (7.5.18), we obtain 

i i r IT p. (A)Pk(A) 
P• (A) k=l j=l ) i 

i=2 ... ,n-l, 

i Hk 
P. (A) 

1 
i = r Pk(A)/Pk(A). 

k=l TIp· . 
j=1 J 

On substituting (7.5.19) into (7.5.17) and using (7.5.13), we have, 

(7.5.13) 

(7.5.14) 

(7.5.15) 

(7.5.17) 

(7.5.18) 

(7.5.19) 



P ~-l (A) 
- -

P n-l (A) 

1 n-l 
=--'~ = - L 
P n-l CA) k=l 

n-l 
{Pk (A) IPk (A)} I TI Pk 

k=l 
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(7.5.20) 

Equation (7.5.16) can now be written in the form, 

2 n-l n~l nTI-l 
p' (A) = -l+a p' Ip -(-1) [t. Pk' (A)/Pk(A)]/ Pk · 

n n-l n-l n-l k=l k=l 

(7.5.21) 

Finally, the Newton'S iterative scheme (7.5.9) can now be replaced, 

on substituting for P'(A)/P (A) from equation (7.5.19), by the new 
n n 

equation, 

A (hI) 
n 

{ L (p! (A)/p! (A)) -
i=l 1 1 

(7.5.22) 

The use of the form in (7.5.22) instead of that in (7.5.9) enables 

the eigenvalues of a sparse cyclic lower Hessenberg matrix of any order 

to be found without the risk of either overflow or underflow occurring. 

Results 

Using the formula (7.5.22), the above method was programmed in Fortran 

on the I.C.L. 19045 computer in single precision arithmetic. A test run was 

performed on the (16x16) matrix, 

3 2 1 
2 4 3 

3 5 2 0 , , , , ... , , , , , , ... 
A = 

, , , 
(7.5.23) , , , , , 

, ' , ... ' ... , , ... 
0 , , - , 

3 16 '2 
2 17 3 

1 3 18 (16x16) 

which was first reduced to a sparse cyclic lower Hessenberg form before 

applying the Newton's scheme as given above. The eigenvalues obtained are 

compared with those of the N.A.G. (F02AAF) routine (which employs the 

Householder reduction and the QL algorithmic methods). The results are 

shown in Table (7.6). The N.A.G. routine obtained all the eigenvalues 

in 11 mill-units of time whilst the Newton's method took 23 mill-units; 
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which indicates that the N.A.G. routine, while not exactly tailored to 

fit the particular sparse periodic matrix system in question, is nevertheless 

much faster than the Newton's scheme. This is a usual feature of 

transformation methods compared to Sturm sequence methods when storage 

is not ·crucial. However, as the storage for the Newton's method is O(n) 

words whilst. that for the N.A.G. routine is 0(n 2) words, then the Newton's 

method becomes preferable when the order of the matrix is large, and also 

when all the eigenvalues are required; and none, or at least very few, 

multiple roots are expected. 

Eigenvalues of the Symmetric Periodic Tridiagonal Matrix 

A. Newton's scheme (7.5.22) N.A.G. (F02AAF) subroutine 1 

1 1.54457116147 1.5445711485 
2 3.32510102Z20 3.3251010138 
3 4.60150483656 4.6015048146 
4 6.01368761062 6.0136874602 
5 6.91862358566 6.9186233199 
6 8.06311292629 8.0631129837 
7 8.93546534220 8.9354653781 
8 10.06476778472 10.0647677400 
9 10.93523225737 10.9352322582 

10 12.06453467013 12,0645346217 
11 12.93688788849 12.9368870165 
12 14.08137643354 14.0813766816 
13 14.98631253814 14.9863125393 
14 16.39849514463 16.3984951852 
15 17.67489895388 17.6748989862 
16 19.45542884324 19.4554288473 

TABLE 7.6 
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7.6 METHODS FOR THE DETERMINATION OF EIGENVECTORS OF SPARSE MATRICES 

Inverse Iteration 

The inverse iteration (also called the inverse Wieldandt method), a 

variant of the power method, is used for the determination of a particular 

eigenvector corresponding to a known approximate eigenvalue p of a given 

matrix A and may be defined by the iterative scheme, 

(A-pI)r. = ~ (i+l) i 1 
~(i+l) =.r(i+1)/II/i+l)1I2 J i=0,1,2, ... (7.6.1) 

where the vector z converges to the eigenvector corresponding to the 

eigenvalue of A nearest to p (Wilkinson (1965)). 

The scheme (7.6.1) is equivalent to a successive solution of the same 

matrix equation but with different right hand sides. A considerable 

economy is therefore achieved by constructing the LU decomposition of 

(A-pI) which needs to be performed once only. The matrix factors Land U 

may be determined by Gaussian elimination but in order to ensure numerical 

stability, a strategy involving pivoting techniques with interchanges are 

essential. 

Ignoring these interchanges for clarity of presentation, the matrix 

equation in (7.6.1) can be written in the form, 

Lv = 
(i) 

} .!. 

U/i +l ) 
i=O,l, ••. 

= v -
where, LU= (A-pI). 

It is well-known (Wilkinson (1965)) that by choosing the initial 

vector, 

then the first iterate of (7.6.2) is given simply by the relation, 

Ur.(l) = ~ 

(7.6.2) 

(7.6.3) 

(7.6.4) 

(7.6.5) 

T 
where ~ =(1,1, •.. ,1) and hence there is no need to determine Le explicitly. 

Once .t(1) is computed, we can then obtain subsequent iterated vectors r.(i) 

by a forward and back substitution process using (7.6.2). 



Convergence of the inverse iteration method is very rapid and occurs 

after only one or two iterations; thus making the method undoubtedly the 

most powerful technique for finding an eigenvector associated with any 

eigenvalue in the spectrum which has been determined by a root-finding or 

other procedures. 
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However, in certain applications (e.g. the determination of the natural 

frequency and modes of vibration of harmonic or biharmonic operators in a 

rectangular region) the use of the five, nine or thirteen point fInite 

difference approximations often leads to the matrix eigenvalue problem for 

matrices with large sparse banded structure. In applying the inverse 

iteration for the computation of the eigenvectors of these matrices, the 

pivoting technique (which must be included for stability reasons) of~en 

leads to a complicated algorithm; the complexity of programming the method 

to take advantage of the sparsity of the matrix often outweighs any gains 

that would otherwise be made. Furthermore, in such applications involving 

large symmetric sparse matrices, it is often the lowest and/or largest 

eigenvalues and their corresponding eigenvectors that are of most practical 

importance. For such eigenvalue problems, iterative methods wh~ch preserve 

the sparseness of the matrix are particularly suitable (Shavitt et al (1973)). 

An Iterative Calculation of the Lowest and Highest Eigenvalues and the 

Corresponding Eigenvectors for Large Sparse Matrices 

We consider the eigenvalue problem, 

Au = AU (7.6.6) 

and assume that the matrix A is an (nxn) large order diagonally dominant 

symmetric sparse matrix with n real eigenvalues, Al ,A 2,· .. ,.An' ordered 

such that, AI~A2 , •.• ,~An and that their corresponding orthonormalised 

eigenvectors are ~1,u2"" ,~. Further, we assume that A can be decomposed 

into the form, 

A = D-L-U (7.6.7) 
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where D=(d,d, ... ,d) is a constant term diagonal matrix, and Land U are in 

general strictly lower and upper triangular matrices respectively. Thus, 

(7.6.6) becomes, 

or 

where 

(D-L-U)~ = AU 

(1 -wL-wU)~ = 0 

w = l/(d-A). 

(7.6.8) 

(7.6.9) 

Equation (7.6.9) can be rewritten in a more easily factorisable form as, 

2 
(l-wL)(l-wU)~ = w LU~ . 

Using (7.6.10) we consider the sequence of normalised vectors {x(s)} 

obtained from the iterative scheme, 

(l_w(t\) (l_"Y}U)~(S+l) , 5=0,1, ... 

where the relaxation parameter wet) is given by, 

and 

et) w = 11 (d_P(t» , 

= x (t) TAX (t) (t) 
p 

\l(t)#d 

~ et) #0, t=S, 10 ... (say) 

is the Rayleigh quotient, i.e., the eigenvalues of A closest to the 

normalised eigenvector ~(t). The updating of the Rayleigh quotient 

(7.6.10) 

(7.6.11) 

(7.6.12) 

(7.6.13) 

is arranged to take place after every 5 (say) outer iterations of (7.6.ll). 

The lower and upper bounds of the Gerschgorin's circle theerem (2.5) 

applied to the matrix A offer good initial estimates, p(O), ·for the smallest 

and largest eigenvalues respectively. 

The theoretical analysis of the convergence behaviour of the iterative 

scheme (7.6.11) has not been carried out and further investigation is 

required in this direction. However, from various numer~cal experiments 

conducted with tridiagonal, periodic tridiagonal and sparse quindiagonal 

eigenvalue systems, the following experimental results were obtained:-

Case 1 

For a suitable starting eigenvalue \1(0} such that 

\1(0) < d 

(Le., the relaxation parameter w(O) is positive), together with a 



reasonably good starting vector ~(O), the sequence {~(1)} converges to the 

smallest eigenvalue Al and the sequence of vectors {xIs)} converges to the 

corresponding eigenvector ~l . 

Case 2 

Similarly, for a starting eigenvalue ~(O) such that 

~(O) > d 

(i.e. , 

vector 

the parameter w(O) is negative) together with a suitable starting 

(0) 
x ,the sequence {~(1)} converges to the largest eigenvalue A ; 

n 

and {~(s)} to the corresponding eigenvector, u 
-no 

For values of ~(O) very close to d, the magnitude of the relaxation 
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factor becomes very large; the convergence behaviour of the sequence {xIs)} 

is inconclusive and requires further investigation. 

Experimental Result 

During the investigation of the proposed iterative method, we considered, 

as an example, the determination of the smallest and largest eigenvalues 

and their corresponding eigenvectors of the system, 

Bu = AU (7.6.14) 

where B is a symmetric sparse quindiagonal (block tridiagonal) matrix 

of order (nmxnm) given by, 

D -1 

-I D -I 0 .... .... 
B .... ..... ..... 

(7.6.15) = .... ..... ..... 
..... .... ..... 

.... .... ..... .... 
.... .... .... 

-1 0 
.... .... .... ..... 
'..1 D (mxm) 

where D is the (nxn) matrix, 

4 -1 

-1 4 -1 
0 ..... .... .... 

..... .... ..... 
.... ..... ..... ... .... 

D = .... .... ... (7.6.16) ..... .... .... 

0 
.... ..... .... 

..... .... 
:1 .... ... 

..... .... 
-1 4 

and 1 is the (nxn) identity matrix. 
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The eigenvalue problem (7.6.14) can be derived, for example, by 

applying the five point finite difference approximation over a rectangular 

region in the x-y plane to the second-order Helmholtz equation, 

2 a U(x,y)) = 
a/ 

AU(x,y) (7.6.17) 

with the boundary conditions, 

U(x,y) O' -1,1 1 1 

} = x = --rY::'2 , 

U(x,y) 0; I I 
-l~x~l. = Y = -2'2 

(7.6.18) 

Such an eigenvalue problem represents, for example, that of finding the 

modes of propagation of the transverse field vector component of an 

electromagnetic wave in a long conducting cyJ inder of rectangul ar cross-

section. 

The iterative scheme (7.6.11) together with (7.6.12) and (7.6.13) 

was programmed in single precision in order to determine the smallest and 

largest eigensystem of a matrix of the form (7.6.15). Various numerical 

tests of the iterative algorithm were performed for different sizes of 

the coefficient matrix. It was found that on the average, the number of 

iterative steps required to obtain convergence to the smallest,or largest 

-6 eigensystem (to an accuracy of 10 in the components of the normalised 

eigenvectors) is about 15. Even though this is much greater than the 1 

or 2 steps required by the inverse iteration scheme, there are, however, 

computational advantages of the former method. For the block tridiagonal 

matrix (7 .. 6.15), for example, of order (nmxnm), only O(nm) storage 

locations are required to generate the iterative scheme (7.6.11). On the 

other hand, for the inverse iteration method, the coefficient matrix has 

to be stored requiring 0((nm)2) storage locations; and since the LU form 

of decomposition involved in this method destroys the sparseness of the 

coefficient matrix as a result of the need to include interchanges, (which 

cause a fill-up of the bands) more complicated storage management is 

required in order to take full advantage of the sparsity of the given 
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coefficient matrix. Furthermore, for the inverse iteration process the 

bands of the Land U factors of the decomposed iteration matrix are usually 

filled up; thus increasing the computing effort of the backward and forward 

substitution steps of the inverse iteration process. 

The smallest and largest eigenvalues and their corresponding eigenvectors 

of a test matrix (7.6.15) of order 25 (i.e. n=5, m=5) were computed using 

the proposed iterative scheme; and these were compared with results obtained 

from the N.A.G. library (F02ABF) subroutine as shown in Table (7.6). 



The Smallest and Largest Eigenva1ues and Vectors of a Block Tridiagonal Matrix of Order (52X52) 

Iterative Scheme (7.6.11) N.A.G. (F02AFB) Routine Iterative Scheme (7.6.11) N.A.G. (F02ABF Routine 

Eigenva1ues A1=0.535898387 Al =0.535898385 An=7.46410161 A =7.46410162 
, 
! n 

. 
0.083333700 0.083333333 -0.083333700 -0.083333333 ! 
0.144333664 0.144333756 O. 144333663 0.144333756 ! 
0.166667245 0.166666667 -0.166667245 -0.166666667 
0.144337621 0.144337567 0.144337621 0.144337567 i 

! 
0.083333449 0.083333333 -0.083333449 -0.833333333 , 
0.144337004 0.144337567 0.144337004 0.144337567 , 
0.250000900 0.250000000 -0. 250000900 -0.250000000 I 0.288675145 0.288675135 0.288675145 0.288675135 

Eigenvectors 0.250000900 0.250000000 -0.250000000 -0.250000000 
0.144337583 0.144337567 0.144337583 0.144337567 
0.166667245 0:166666667 -0.166667245 -0.166666667 
0.288675145 0.288675135 0.288675135 0.288675135 I 
0.333333449 0.333333333 -0.333333333 -0.333333333 I 

I 
0.288675145 0.288675135 0.288675135 0.288675135 I 0.166666246 0.166666667 -0.166666667 -0.166666667 I 0.144337580 0.144337567 0.144337580 0.144337567 
0.250000900 0.250000000 -0.250000000 -0.250000000 
0.288675135 0.288675135 0.288675135 0.288675135 
0.250000900 0.250000000 -0.250000000 -0.250000000 
0.144337580 0.144337567 0.144337567 0.144337567 
0.083333700 0.083333333 -0.083333333 -0.083333333 
0.144337580 0.144337567 0.144337580 0.144337567 I 
0.166666246 0.166666667 -0.166666245 -0.166666667 I 0.144337581 0.144337567 0.144337621 0.144337567. , 

I 
0.083333700 0.083333333 -0.083333700 -0.083333333 I 

I 

TABLE 7.6 



CHAPTER 8 

CONCLUDING REMARKS 



8.1 

Our principal aim in this thesis was to present several fast direct 

algorithmic methods for the solution of sparse matrix equations which are 

derived from the finite difference approximation of partial differential 

equations associated with some functions of Mathematical Physics. 
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In nearly all cases, our approach in the development of the algorithms 

has been to assume diagonal dominance of the matrix systems (this being the 

case in physical problems); and thus this enabled the stability of the 

algorithmic methods proposed to be guaranteed without the necessity of 

introducing a pivoting strategy. The consequence of this has been that the 

algorithms derived possess the speed and efficiency characteristic of fast 

methods. Under special conditions, variants of some of the techniques 

proposed have produced algorithms which handle singular systems (including 

those with zero diagonal entries) with remarkable speed as was the case, 

for example, in algorithm (4.7). Some of the algorithms, apart from being 

new, are comparable (and in some cases, show improvements) in speed, storage 

requirements and/or accuracy, to existing known methods for solving identical 

problems. 

Our emphasis has been largely on methods which are directly applicable 

to the solution of linear elliptic and parabolic partial differen~ia1 

equations defined over rectangular regions with periodic, Dirich1et's or 

Neumann's boundary conditions. For problems defined on a non-rectangular 

region, (e.g., an L-shaped domain), the structure of the discrete matrix 

equation does not always permit the immediate application of the direct 

methods we have proposed. However, the use of the 'inbedding' and 'sp1it

up' techniques in a 'capacitance' matrix approach (Buzbee, Dorr, George 

and Go1ub (1971)) makes it feasible to extend some of our methods to 

problems defined in non-rectangular regions under similar boundary conditions. 

Finally, it is hoped that a few of the algorithmic methods proposed 

in this work will be extended in order to widen the scope of their 
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applicability. In this directi.on, the f.oll.owing are .of special" interest: 

(a) An extensi.on .of the recursive p.oint partiti.oning (R.P.P.) alg.orithmic 

idea t.o systems with peri.odic c.onditi.ons; and .others with m.ore 

c.omplicated sparse banded structure .of the f.orm, 

, r=l ,2,3, ... , 
(8.1.1) 

5=0,1,2, ... , 

which are usually ass.ociated with discretised quasi-linear .or n.on-

linear p.d.e.'s in tw.o .or three space dimensi.ons, is desirable. 

(b) The peri.odic qu.otient-difference (P.Q.D.) alg.orithm prop.osed in 

secti.on (7.2) f.or calculating the eigenvalues .of periodic tridia~.onal 

matrices c.onverges .only under diag.onal d.ominance and positive definite 

c.onditi.ons. Further investigati.on is necessary t.o widen the scope of 

this alg.orithm t.o apply t.o less well behaved systems. 

(c) Finally, the iterative scheme (7.6.11) prepesed in sectien (7.6) fer 

calculating the largest and smallest eigenvalues and eigenvecters .of 

sparse banded matrix systems .of the f.orm (8.1.1) requires further 

analysis and extensien. The theeretical results .of the cenvergence 

behavieur .of the iterative scheme need t.o be rigereusly established. 

It is alse h.oped te intreduce modificatiens that will enable inter-

mediate eigenpairs te be .obtained. 
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APPENDIX I 

This Appendix contains the listing of some of 

the programs in the form of subroutines written, using 

single precision arithmetic, for the various algorithms 

described in this thesis, and used in obtaining most of 

the numerical results indicated in the text. 

All the programs were written in FORTRAN IV and 

run on the Loughborough University I.C.L. 19045 computer. 

The exception to this includes Programs 12 and 13 which 

were both written for and run on the Loughborough 

University Interdata parallel computer. 



( ••••••••••• P~OGRAM 1 •• ~ ••••••• ,. 
( Sl'Bf:OUTINE GA1'S[llt'.(N.A.B.C".~HS.X.P·.O.U.S.T.V) 

C THIS S~BROUTINE SULVES A PERIODIC TRIDIAG~NAl 
C tlATPIX EQUATION BY A VAPIANT Of GAUSS ELIMINATIO~ 

C P~OtESS WITHOUT A P:V~TIN& STRATEGV (SEE ALGORI. 
e T~'" (3,11. 
e O~ INPUT: •• A.B.C AAF VECTORS HOLrlNG THE SUB-PIA-
e GO~AL' DIAGONAL AND SUPER-PIAGONAL ELeMENTS OF 
c T~E PERIODIC MATQIX OJ O~DER NI RHS HnLOS THE 
C ~IGHT-~AND SIDE VECTOP. P,Q,U.S.T 4RE WORKING 
C SP~CF VECTO~S. O~ EXIT, X HOLDS THE SOLUTION. 

() , 'l ENS I O>i A ( N 1 • B ( \I 1 • C ( N ) • A H S ( N) • x ( N) • P ( N ) • Q (~ ) • 

1 U ( I. ) • s ( ~ 1 , T ( ~ ) • VC" 1 
on=o.G· 
Sf';1 . I' 

r(1) ~A(,).QO +Rcll 
D(1l =-r.(1)/P(') 
S(~) ·-A(1)·SO/pC1\ 
~ 0 S I=?,!I 
P(I)= A(J)*Q(I-ll+Rrll 
(l(I)=-C<I)/P(ll 

5 SCI)=-A(ll.S(I-l)/~(I' 
1(1,'):1.0 
DO 10 1= '.~-1 
I1 =~'-I 

, n T C I J , = Q ( I I ) • T ( I 1+. 1 + 5 ( I I ) 
, ~ 1;0 = 0.0 

lie; )=(~hS(l )-A(1 l*Un)/pC1l 
~ Cl 2 0 I = 2 • r, 

? (, U Cl) = ( R f' S ( I ) - A ( 1 1 • U ( I - I ) ) I P ( I ) 
v ( tJ) = 0 • (. 
(1(. 7.S 1='. r-;-' 
ll=N-1 

i5 VClll=O(!1)*V(lI.".UClJl 
X ( In = ( R,~ ~ ( N ) - C ( ,n • v (, ) - A ( ill ,. V ( N -, ) ) / ( r. ( N ) .. T (, ) .. 

1A(~).T(N-')·B(~» 

Oil 30 '='. N-' 
11= ",-I 

30 X(lIl=T<II)·xPO.V(II' 
QET'JR'i 
E~D 

c *~ •••• * ••• * PROGRAM 2 *** •• *.*.*** 
C THIS PROGRAM I~PIEMF.NTS THE PQFACT ALGORITMM(3.2) 
r. IN T~E fORM Of 3 SURROUTINES GIVEN BELOW CORRESP-
C ONtIN& TO THE 3 ~TEPS OF THE ALGORIT~H. 

e SUBR0lITI~f fACT(~.A,B.e.ALP,BETA;L,U) 
C THIS SUBROU11NE PERFORMS A GENERALISED SPARSE ey-
e (lit FACTO~ISATION OF A GeNFRAL PERIODIC TRIDIAG~ 
C O~AL MAT~I~. A CALL T~ CF1'SUBROUTJNE IS MADE TO 
e O~TAI~ T~E VALU~ er A~ INFINITE CO~TINUED FRACT~ 
C ID~ ".RISING FROM THE FACTORISATION. ON E~TRY. A; 
C E.C MOL~ TME SUS_DIAGONAL. OIAGONAL AND SUPER-
C ~IAGONAL ELEMENT~ OF I~PUT PERIODIC TRIDIAGONAL 
C "~TRIX. ALP BETA,L,II ARE AUXILIARY VECTORS HOLD-
C ING cOEfFS WHICH o~ E~IT. A~E INPUTED TO THE PQS-
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C 01. SUB~ouTI~E. N IS THE ORDfR OF ~ATRIX. 
REAL L 
DIME~SJON A(~)'R(N).C(N)'LCN).U(~).ALPCN).8ETA(N) 
EPS=1.0F-12 
CALL CFl (A,B.C,N.CNt1.ALP.BETA,EPS) 

C OeT,uN LCP,UCI). I ::1.N 
l(1) =CNL1/CCN) 
U(1) =acn- CNLl 
DO S 1=2.N 
L(Il:ACI)/U(I,.1) 

S U(Il=8CI)-L(J)*C(I_1) 
[ OBTAIN PRE-COMPUTED (OFFS AND STO~f I~ ALP.BETAI 

D'1 30 ~=1 ". 
ALP(O =1.0 
DO to J =1.'· 

(.', AlHd=ALPCq.LC.I) 
1~«Y-K/2·2).EQ.O) 4lP(K)= -ALPCK) 

3r, COII!TltlIJE 
DO 45 1=1.N 
BFTA(!) =1.0 

no ,C; J=I,r.' 
40 BETACli=SEPCJ). CCJ)/UCJ) 

~,= ~-N/2·2 
11= 1-)/2*2 
1 S I G 'J : 1 
IFC~"'[.I')ISIGN = -, 

45 ~rT~cl)= ISIG~ • BETA(I) 
R ( T U ~ I. 
E~.: t, 

SUBRnUTI~E ?QSOL(N.r.L.U,RHS.ALP; 8ETA,X , 
C T~IS SUR~OUTINE SOLVES A GENERAL PERIODIC TRIDIA-
[ GON~L ~ATRIX OF O~DFR N. P~F-COMpUTED COEFFS HELD 
t I~ L.ll'ALP,dETA APE INPUTED FROM FACT SUBROU'INE. 
C O~ ENTQy RHS HULOS THE RIGH1-HANn SIDE VECTOR AND 
C Oij ExiT. X ~OLDS T~E ~OLUTIO~ VECTOR. 

Q[ AL L 
o , 'I E 'I S ION L ( N) , U ( ~!) • 11 H S C N) , ALP ( N) • 8 ETA C N) • X ( N) • 

H C~) 

C SOLVE P.V=RrlS; P IS A CVCllC 2~TER~ 'LOWEp TWIAN_ 
C GULAR ~ATRIX'. 

VC~ )=RHSCn 
D0101=1.N 
IFCI.Ea.,) GOTO ,0 
XCI)=RHSCI)-L(I)·XCI,.,) 

1n CONTINUE 
XCI.,= XCN)/C1.0+AL~CN» 

00 15 K =',N-' 
15 VCK)= XCK)-ALP(K).V(N) 

C SOI.VE a.x=Y; 0 I~ A CYCLiC 2-1ERM 'UPPER TRIANG-
C UlAA M~TRJX'. 

Dn 20 I =1, N 
2n ~CI):: XCI)/UCI) 

~O 30 I ::1, N 
I1 =111-1+1 
IFCII.EQ.N)GOTO JO 
~ C I I ) = ~ (J J ) - X Cl' *1 ) * C C I I ) I U (J Il 

30 cnllTlfilJ!: 
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K (1 ) = X (1 ) I ( 1 • 0 + ~ f H (1 ) ) 
DO 40 I =2,:. 

40 ~(I)C X(I)-8fTA(I).X(1) 
RETUIIN 
END 

SU~ROUTI~e CF1(N.A,e:C,Vl.ALP,BET_,EPS) 
C THIS SUBROUTINE F.V4lUATES AN INFINITE PERIODIC 
C CONTINUED FRACTION (3.2:27) BV A FORWARD RECURR. 
C ENCE SCHEME(J.2.J1) AND A SOLUTION Of A QUADRATIC 
C EOlIATION. N IS TwE CVeLE LENGTH Of THe PEIIIODIC 
C CDNTI~UED FRACTION. A,B,C ARE VECTORS HOLOING THE 
C· ELEMENTS OF THE COEFf •• TRIX: ALP, BeTA ARe WORK~ 
c ING ~PACE VECTOR~ ANb [PS Is TRUNCATION ERROR TO-
C LERA~[E. VL IS RFTU~NF.~ AS TH~ VALUE nF C~NTINUED 

C F~ACTI0~ BEING SOUG~T. 
IiPlf.'ISION A(N) ,R(N) ,r.no ,ALPCN) .sUA(IJ) 

C I) F. FIN [ ALP,;; E I A ,'i T E ~ ,., S 0 FA, B; C 
DO 1(} I =1.'" 
I I " I: - I + , 

,IJ " 11+' 
) F ( ,I J • G T • N) J J =, 
ALP(!)~ C(II). ArJJI 
AF.TArJ)=B(lI) 

'0 COOVTII<UE' 
C D~TAIN T~E NT~ APPROX'~ANT OF INFINITE C,FRACTION. 

E(I =0. 
F n =1. 0 
F1 = QP(1) 
F1 = IIETAn) 
DO 20 1=2. N 
E2 =RETAr!)"E1-AI.PC1).ED 
F? =p.ETA(I)"F1-ALP(I)"F~ 
T2 =F.2/F2 
T1 =E1/n 
T ::T2-n 
IF( ABSCT),LE.Ep~)GoTn 30 
EO = E1 
E 1 = E 2 
F (I = F 1 
F 1 = F 2 

20 r.ONT!I, lI r 
C SOLVE QUADRATIC FQUATI0~:F1.w**2+(F2-E"*\.I -E1 .0 

3(1 C"~IT ) I,!,IF. 
"., r2-F.1 
S= 4*F1.F.2 
UL = (-~ + SQRT(~*R +S»/C2.f1) 
RfT"!!" 
END 

c •••• '.****. p~OGRAM 3 ************ 
SIIBP,oUTINE GENHClCNEV(N,A,B.C.RHS,X,K, 

C THIS SUBROUTINE SO~VF.S A GENERAL PERIODIC TRIDIA-
C GONAI. ~ATRIX EQUATION Of OROER N C=2*.K) BV A 
C GENE~AL'SATION OF THE eVCLlc REDUCTION METHOD AS 
C GIVlN IN ALGORITNM(].3). ON ENTRV .. i 4,R,C HOLD 
C THF SIIIl-l)lAGONAL,·OI AGntJAL AND SUPER-DIAGONAL ELE-
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t MFN1S OF COEFF MATRIX RESPECTIVELY: A(1),C(N) ARE 
( THE CORNER ElE~E~TS. Q~S IS THE RIGHT~HAND VECTOR. 
[ O~ txIT.A,B.C ~QE DESTROYED ANO X HOLDS THe SOLU~ 
c 'IO~ VECTOR, 

DIMENSION A(N),BCN),CCN), XCN),RHSCN) 
C PERFORM THE CYCLIC REDUCTION Of THE MATRIX SYSTeM 

00 15 IT"'" I( 
J =IT-, 
~O ,0 1=2**IT,N.2*.IT 
II=I-Z.*J 

1.1 = I +Z**J 
IHII,Lf.O) II=N-II 
IFCIJ,GT.N) IJ=IJ-~ 

T[~P' = aCIJ). All) 
TFMP2 • "ClI). PrlJI 
TEMP3 D eCI)' a(II) 
A(I) • TEM P1.ACI!) 
~(I) = TEMP,. CI!!I-TEMP?'PCI)+TEMP3'ACIJ) 
CCI) = TEMP3. CIIJ) 
~HS(!)=T[MP1.RHS(II\-'F.MP2'PHSCI)+TEMP30RHSCIJ) 

", ,; C r. ~q ! In) F 
" S C n ~'T I .; U r 

C ORTAI~ X(N)-COMPONENT 
DE~ = ACN'.BCN)+CCNI 
X(N)= QHSCN)/DFN 

un ,5 IT"'" k-, 
ITT '" K- IT 

nO 40 I = 20' ITT, N-?"ITT;2 0'CITT+1' 
II = I - 2 •• ITT 
J.I = I • 2 •• I TT 

!FCII.LE.O) 1I =tJ-II 
IF(JJ.GT.N) JJ =JJ-N 

I." nll=(I;HSC1)-A(I)'X(JJ)-C{J).X (JJ»/bcf) 
I.~ C('lt'T! "ilJF 

C BACK·SU~!;TITlITln>J TO (lIlHIN SOLUTION VECTOR. 
1'0 50 1=1.~-1.2 
11 = I., 
.JJ ~ I.' 
If(Jl.U:.O) 11 ~N_II 

IFCII.GT,N) JJ c JJ-~ 
50 ~CI)c CRHSCI'-XCII)' ACI)- XCJJ)* eCI» IB(I' 

~FTlIR~' 

EIID 

( ••••••••• *. PROGRAM 4 •••••• ** •••• 
SUHROUTINE 6U~EMA~CN.A.a,c,p.Q,X;K ) 

c T~IS SUSQOUTINE SOluE~ A GENERAL PERIODIC TRIDIA~ 
C GO~Al MATRIX EQUATION OF ORDER NC-Z •• K) Bv A GEN-
e EPALlSIoT'IOiol Of AlINE"A"JlS STABLE MOllIFICATION OF 
t THE CYCLIC REDUCTIO_ SCHE~E AS GIVEN IN ALGORITHM 
e C3.4). ON E~TRY ••• A~P,C HOLD THE SUB-DIAGONAL, 
C nIAGON~L AND SUrF.R-~14GONAL £LEMeNTS; AC').CCN) 
c A~E THE CORNER ELEMENTS. X HOLDS THe INPUT:R.H,S~ 
C VFCTOP AND P,Q APE AlJKILIAPV VECTOPS WITH WHICH 
C F..M.S VEcTOR IS ~ODIFIED TO PREVENT TNE lATTeR 
C GROWING FXCESSIVF IN SIZE. ON EXIT X NOLDS THE 
C SnlUTI01 VECTOR. 

DIMENSIoN ACN)'BC~).CCN)'KCN).P(N).Q(N' 
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no ~ 1~1,N 

P Cl) = x Cl) / a ( I ) 
QC!)= 0,0 

5 CO"'TI NUe 
C PERfO~M THt CYCLIC REDUcTION PROCESS 

DO 15 1T=1, K 
J =If-, 
~O 10 I=Z~.IT'N;2*.IT 
II=I .. Z .... J 
IJ=I+2*·J 

IF(JI.LFoO) "=~'-II 
IF(!J.GT.N) JJ=!J.-N 

Il O:z lle J) 
AO=ACI) 
CO=CC!) 
TEMP1 • S(IJ)" ACII 
TfMP3 • C(I). BC,ll 
T[ MP 2 =Ttr~i>'. C<rI)+TEMP3. A(!J) 
Act) : TEMP1.~(J1l 
r.ct)= TFMP2 .-SO,.SClll.aClJ) 
CCI) = TEMP3. ((IJ) 
PCI)"PCj)+(QCI)-aO.PCII)'-CO.PCIJ»/BO 
DCI)=lEI,p'·QCII)·'EMP~.OCIJ)-TEMP2.PCI) 

HI «1 III T PJUF 
15 CONTlNvr. 

C BACK-SU~STITUTION TO OaTAIN SOLUTION VECTOR. 
DEN: A(N)+SC""+r.(III) 

X(",)=(8(N).P(N)+ QtN))/OE~ 
r.>n ,S 1 T=', k-, 

ITT " ,,- IT 
004G 1 = l •• 1TT. N-Z •• ITT;l •• (ITT+11 

11 : 1 - 2.* !TT 
JJ = I + 2** !TT 

1 F C J I • LE. Cl) ,I = I: - I I 
IF(.IJ.GT.~) JJ =JJ-~ 

1.0 XCI):p(] )+(QCI)-aCy).y.C,I).CCI).XCJJI)/SCII 
'5 C(lllll!IiU[ 

~O SCi 1=1,N-',2 
11 = 1-' 
JJ = I.' 
HUI.LE.O) II a~-II 
Ir(II.~T."') JJ • JJ.N 

~O XC!)=p(I,+(QCI)-ACI1*KCJ!),.C(!I*xCJJII/Be,1 
R[TURN 
HJD 

C **.**...... pqOGRAM 5 ,*~* ••• * •• ** 
~UBROUTINE ~ANKO~E·(~,A,e'C'RHS,X;D,8E'A,GEHA' 

( THIS SU~pOUTINE ~OLVE~ THE PERIODIC T~IDIAGONAL 
[ MATRIX EOUATION eY THE RANK-ONE MODIFIC.TIO~ METH-
t OD A~ GIVE~ IN AlGOPITHMC5.51. THOMAS ALGORITHM 
r. (~.5) Is US~D To SOLVf THE RESULTING TRID.SYSTEMS. 
C O~ ENTRV ••• A,8,C ARE VECTORS HOLDING THE SUB-DIAG~ 
C O~AL. DIAGONAL AND ~UPfP DIAGONAL ELE~E~TS· Of 
C rOffF ~A1RIX: RH~ HnL~~ THE R.H.S VECTOR AND BETA; 
[ ALP,GE~A,D ARE AUXILIARY VECTORS. ON ExIT, x 
r H0LOS THr SULUTION VErTOR. 

DI~fNSI0N A(~)'8(~I.C(N)'RHS(NI'D(NI'X(NI, 
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1efTACI\l ,~EMAP!) 
( CONVEFT INPUT GE~~R~l TFIDIAGONAL ~ATPIX 10 
C SYMMETRIC TRIDIAGONAL FORM, 

P(1)=',V 
DO 1 1"1, '1,.1 

, 0(1+1) c 0(1) ~ SOPT(C(I)/A(I+'» 
A(1) .. D(1)*A(')/DCN) 

CCN)=A(1) 
DO 2 1=1.N .. ' 
ACI+,)cACI.1).DCI+1)/~CI) 

2 CCI) :C{I)*D{I)/OII+" 
Io! c ~(1) 

T1aBcll 
H,cBc ,n 
Fel)= 8(1)-~' 

BO/)= 80n-;.I 
D(1)e 'J 
r,(N)= '.! 

IFLAC,=O 
HTA(1) = Illl) 
~r. 10 J :2.

'
, 

lG ~E1ACI):~(J)-ACI)'fCI-')/BETA(I.') 
00 5 I =i.N-1 

~ ['(I)=f,.O 
1 { (0'n I"Uf 

C SDLVf TPIOIAGON.L MbTgI~ RY THOMAS ALGORITHM, 
Gpl,tCl) = P(1)/BCH 

00 ,S 1:2 •• ' 
,~ GlM.(I)= (DCI)_ACI)*G[MA(I-")/BETACI) 

~ PI) C (,FMA (~) 
r'lD 2r. J =1, ~~_, 

I I : "- I 
2n UII)=Gp~A(JI)- r(II)'X!ll+1)/BETACII> 

Ir(IFlAr..fQ.1)GnTC' '5 
C OB'Al~ s.USto To ~nnlFV 'ST AND LAST ELEMfNTS OF 
C P.H.~ VEcTOR FOR 'HF SECOND T~IDIAGONAL SYSTEM. 

S=O. 
Dn ?S I=',N 

7.5 ScS. XCI)' RhS(11 
S = S I (1 . 0 • x ( 1 ) + )( ( I, ) ) 

C COMPuTE NEW RHS-vECTn~ FOR SECONn TRID SVSTEM 
r>(1): RHS(1) .. S 
OUn=RHS(Nl·S 

DO 30 Ic2,N-' 
300(1) c.RHS(J) 

I FlAG :1 
GOTO 12 

,)'5 a(1) cTl 
BOJ)=TN 
RPUQr.: 
END 

C ••••••• **.* PROGRAM 6 ••••••• *.**. 
SUB ROll T I ~ E P Q F A'C T 1 C,) • R , C , 11 H S • PH, le ) 

C THIS SURR~UTI~E SOLVES A"CONSTANT TERH PERIODIC 
C T~ID. ~~TIIIX OF 'HE Fnll~ ACC,B.C] OF ORDER N BV 
C A FACTO~ISATION ~ETHOD AS GIVEN IN ALGORITHM(5.6)~ 
C ON I~PUT.,. RWS wOlDS THE INPUT RIGHT HAND SIDE; 
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--- -- -------

C PH IS A ~OR~ING ~PACE VECTOR. ON EXIT, THE SOLUT-
C IO~ vECTO~ IS HELD IN X. 

OIME~SIO~ RHS(N),PH(N),X(N) 
AL=O.~ .(B~SQRT(8*B-4*C*C»/C 
R~O cAL/C 
PH(1);:AL 
0(' 8 1;2,~ 

A PH(I)?-AL.PH(I-1) 
DO 10 I :l,N 
IF(I.EQ.l) GOTO 10 
RH5(1) ;: RHS(I)-AL* RHS(I.l, 

10 CO'lTINUF. 
X(~);: qHS(~)/( 1.0 +P~(N') 
DO 15 I :1, N-' 

'15 x(l)= RHS(l) .PHC I ). X(~, 
q~S('n=RHQ 'X(:"/) 

DO 20 1;:1,N-l 
11= ","'I 

20 RWS{II)= RHO·X(II)- AL* IIHS(II·') 
X(1);:RHSC1)/(1.0.I'H{N» 

00 3(1 1=2,N 
II=IJ-I .. , 

X (I) =IIHS (I) -PH (I').X (1 ) 
3() CONTllliUE 

R~TLlRIJ 

E .; !) 

C *-*-** ••• *. PQOGRAM? *.-*.* ••• *** 
51IilR,)UTI,H PQFACT4{N,'I,IIHS,PH,X) 

C TMIS SUSA0UTINE SOLVlS TH[ CO~STANT TeRM S(EW-
c SV·I"F.T~IC PEIlIODIC TRIDI-GONAL-MATRIX Of THE FORM 
C A(1.~,-,] OF OROfl! :1, ~HEIlE B IS A CONSTANT ,GE~2; 
C ~V THE METHOD OF ALGORITHM(3.9). ON ENTRY, RHS 
C HOLDS THE RIGHT HANo VECTOR ANP ON EXIT X HOLDS 
C THE sOLUTION VECTOR. 

DIMENSION RnS(N),PH(N),X(~) 

~L= o.S.( -B+SQRT(B*8+4.0» 
P~(1 ,="AL 
[In A 1=2,i>I 

8 P~(I)=~L·I>H(I-l' 
[H) '0 1;:1,~ 

IFCI.EQ.1)GOTO 10' 
RHS(I)c RHS(I)+ AL* RHSCI-1) 

10 CMITlNiJ[ 
XC'I)= RHsOP,,'.n+ PHCN» 
~o 15 I ;1,:1-1 

'5 Y(I)cP.HSCI)- PHCI). XCN) 
R~SC~) = AL* XCNl 
On 20 1=' dj-1 
11 c,"_1 

2n RHS(II)=AL*XCII1_AL*P.HSCII.1' 
HIGN =1 . 
t.: 1 = tl- Id 2 .2 
IFCN1.EQ.1) ISIG~ = -, 
X(')cP.HS(1)/(1,O+ISTGN.P"CN» 
!'In 30 Ic2," 
1~IGN=1 
11=1-1/2*2 
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I I = IJ - I + 1 
IFIN' .EQ.II' ISIG~ =-~ 

30 XII) =RH~II)~ ISIGN> p~III)* XII) 
RF.TURN 
E 'J" 

C .k.* •.. *.·. p~OGRAM 8 .*******,*** 
SUBROUTINE GENReT(N.NR.8,C'ALPHA;RHS,Y) 

e THIS SUBROUTINE SOLVES A GENERAL SVMMeTRlc TRID~. 
e MATRIX SYSTEM Of ORnEP N 9V THE GeNERALISED REeT. 
e A"GULAR fACTORISATION AND eXPANSION STRATeGY AS 
c GIV[N 8Y ALGORIT~M(4.S). ON ENTRy •• ;S,c HOLD TNe 
e ~IAGONAl A~D SUPfP.-oIAGON~l VECTORS OF THE INPUT 
e "ATRIX RES~~CTIVrlv: ~HS IS T~E RIGHT-HANn SIDE 
C VECToR; V AND AL~"A AQE WnRKI~G SPACE VECTORS OF 
C LE"JGTH NII="i+I ANO 'J IIfS P FcTIVELV. ON EXIT T~E 50-
C LtlTloN VECTOR OVEPW~ITES ~Hs 

DIMENSION 8(~).CINI. ALPHA(~), RHS(N). V(NR) 
[)O 10 I=I,~-' 

v = BCI) + SOp,C RIII*BCI) -4*C(I).CII» 
ALPH~CI) = -2.0 * r.(I) Iv 
~ E TA = (h 0- .. - Al I' H A ( Il * A l I' H A Cl » I B ( J) 
RHScl>: SETA* RHS(I) 

11'1 CONTINIII 
ILPHAIN)= SQRTc.eC~).AlPHAI~-I)/C(N-I)-'.O) 

RI'S(~'C (1+ ALP~61~) •• lP~A(N» * RHS(N) I B(N) 
C Cf'lMPtITE X(N) :: Xij 

PROOAlPHA=1.0 
SOc1 _ 0 

(\0 ,-0 '=1. ~-1 
70 P~ODAlpHA = oRO~ALP~A. ALPHA(I) 

xN = 0.(. 
1.'0 25 I:'. N.' 
X N = ~ ~J + PRO () A I PH A • SO. RH S ( J) 

~, = ALPHACl) • ALPHA(I) • SO + 1,0 
PRODALpHA = PRODALPHAI ALPHA(I) 
SO = S1 

25 COt-iTlNUE 
XN= ~N + P~OOALpHA*~n. RHS(N) 
SI c ALPHALN)* "ALPHA(N).SO .',0 
Y.N "XN/S1 
y(N+1) " -ALPHA(N) • XN 
DO 30 I a 1, 'I 

1I = N.,.I+I 
30 Y(II)= RMS(ll) .. AlpHA(ll)* V(ll.') 

C liSt RHS '0 STORE SOI.UTION VECTOR 
RH!;(1) = V(1) 

DO 35 1= 2, '1-1 
3S RHSCI)c V(I'. ALPHA(I-I)· RHS(l-1) 

RH5(N) = X'I 
ntTUR" 
F.NO 
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c .'.* ..•.. -. PROGRA~ 9 •• *.* •••• *** 
S!JBROurINE SSRETCN,NR,B,C,RHS,V) 

C THIS SUpROUTINE ~OLVES THE SKEW~SV~METRIC TRIDIA~ 
C GONAL ~ATqIX OF ORDER NCWHERE THe cOEFF MATRIX 
C Is Of THE FORM Mr~C,B,CI, BAND C BEING CONSTAN-
C TS) BV THE REVERSED REVERSED RECTANGULAR FACTOR.· 
C ISATION METHOD OF ALGORITHM(4.7). ON ENTRV ••• RHS 
C IS THE RIGHT~HAND SIDE vECTOR' Y IS AN AUXI~IARV 
C VECToR OF ORDER NR=N+'. ON eXIT THE SOLUTION VEC~ 
C TOR OVEp.WRITES RHS. 

OIME~SION RHSCN). VCNR) 
V :: ~ + SQRTCB*B + 4*C.C) 
ALPHA ~ ". (IV 

BFTA =11.0 ~ ALpHA. AlPHO 18 
1>0 10 I =1,,/ 

1n pHScl) = 8(TA * pH~cl) 
C co~puTE X(~) :: YN 

s=~. 

J =, 
IFCN~~/2*2.EQ.O)J=~' 

Dr> 15 Y"',N 
II=N~I+' 
J:: -J 
S=S*ALPHA+RHSCI) 

15 S5::SS'~LPi'A.J*RHSCI') 
,S1:S~A~PIiA.*CN+l)*S~ 

S?=1.0-C-ALPHA)**C2*N+2) 
H:=S1 152 
VeNR) :: ~~LPHA * XN 
f\O ~f) I =1,f;! 
IT =N-I+1 

30 YCIT)= R"5(JT)~ ALpHA* vCIT.') 
C USE RHS TO STOqe SOl.UTION VECTOR 

~HS(') = V(1) 
OD 40 I = 2,N-1 

40 P~S(I)R y(l) .ALpHA* R~S(I~') 
~HS (1)" XIII 

~ETUR" 
E>':O 

c * •• **.*.*** PROGRA~ 10 ***.* •• *.*.* 
SUBROUTINE TRPPCII,A.B,C,RHS) 

C T~IS SUpROuTJNE SOLVES A GENERAL SVMMETRIC TRIo. 
C ~ATR'X EOUATIO~ OF OR~ER N BV THE R:P.P METHOD 
c .5 GIVE~ BV ~lGOgITHMC4.8). ON ENTRV ••• A,B,C ARE 
C THE sUB-DIAGDNAL. DIAGONAL A~D SUPER-DIAGONAL 
C ENTRIES OF COEFF MATRIX RESPECTIVELV/ RHS IS THE 
C ~IGHT HANO SIDE VECTOR. BUT ON EXIT IT IS OVER-
C W~ITTE~ BY THE SOLUT'O~ VECTOR. 

ol~E~SION ACN)'BCN).CCN),R~SCN) 

r. PFRFOR~ RECURSIVf PARTI0NING PROCESS. 
N~ = :412 
IFLAG =1 
IFC~_~/2.2.EQ.O)GOTn 5 
NH =(lJ+1)/Z 
IFLAG=O 
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5 no la 1=2.11/11 
IF(I.E~.~H.AND.lflAG.fQ.O)GOTO 10 
K=N-I+l 
8(1):8(1)~A(I-l).C(I~')/B(I_') 
B(~)=e(K)~A(K)·C(K)/B(K.') 
RHS(I)~ RHS(I)~A(I~1)'RHS(I-')/e(I_~) 
R~S("~)~ RHSCK).C(k)'RHS(K+1)/B(K+,) 

10 COIJT I ~JiJE 
IF(IFLAG.EQ.1)GO'O 20 

C FDR N" ODD ONLV 
h:N-NII+1 
B(~H)=3(NH)-A(NH_l)'C(NH-')/B(NH-1)-C(K)·A(NH.') 

l/B(K.n 
q~S("'H)=RHS(NH)-a(~1I-1).RHS(NH-')/8(NH_1)_C(K)' 

1P.HS(K01)/Il(K., ) 
HHS(NH): RHS(NH)/R(NHI 
GOT,) 30 

2n r:'j-NIl+, 
v=B(r)'B(NH)-A(~_1)*C(N~) 

P.l=(RHS(N~)*S(K)_RH~(~)*C(NH»/V 

R2·(RHS(~I.B(N~).R~~(~HI·A(~-'»/V 
RHS('1H):Rl 
R~qK)=R2 

C PERFOP~ BACK-SUB~TITUTION PROCESS. 
3g OU 4P 1=1.NH-, 

J.I=NH-l 
~J=N_IJ+' 

~HS(IJ)=(r.HS(IJ)_C(TJ)'RHS(IJ+'»/B(IJ) 
40 R4S(KJ)=(RHS(~J).A(KJ-1)'RHS(~J-1»/B(KJ) 

C ** ••••• **.. PROGRAM', ***,.****.*. 
r. ~llnROiJTINE GQRPP(~.B.A.C.RHS.)() 

C THIS SUSRnUTINE SOLVES A GENERAL SVMMETRIC QUIND-
C If,GllN,\L MATRIli SYSTEM Of ORDER N BV THE RECURSIVE 
C onlNT PARTITIO~I~G ~ETHOO CGQRPP) GIVEN AS ALGOR-
C ITHMC4.,,). ON f~TRV ••. B.A.C HOLO THE DIAGONAL~ 
C SU~-nIAGONAL ~No SFCDND SUB-DIAGONAL ENTRIES OF 
C THE COEFF MATP.Ix WITH C(N)'C(N~1).A(N) = O. R~S 
r. IS THE RIGHT HANn SIDE VECTOR. ON ExiT X HoLDS 
C THE sOLUTlorl VECTOR RIIT THB CAN ALSO OVERWRITE 
C RHS IF ~ESIRFD' THIIS SAVING THE VECTOR X. 

nIME~SlnN B(N).A(Nl.C(N).RHS(N).X(~) 
I~«~ -N/2*i).Eo. 0 ) GOTD ~4 
Ir«~- NI7.2).Eo.' 1 NW -(N+1)/2 
IFLAt; cO 
GnTD 16 

,~ I.J~ ='J/Z 
IFLAG =1 

, '" en')" IIlUE 
PF~FOR~ THE RFCURSIVE POINT" PARTIDNING STAGE. 
I)p 20 1=2, NN 
IF(I.~Q.NH .AND. IFLAG.EQ.O)GOTO ~O 
r,= r:-I.' 
PCI)=B(I)-A(I~1). A(I-~)/B(I-1) 

IlCI",) = ~(I.,)- CCI-1)' C(I-1)/B(I-" 
J\crJ c IHK)- A(KI* A(IO/B(K.1) 
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R(K-1>= 90:-1)- ~(K -1). (O:-O/BO:+1) 
A(I> ~ A(I)- A(I~ll.~II-ll'B(I-l' 
A(K-') = A(K~I) w" ACK). e(k-I'I BI~." 
~"sel' :: RHS(I) ~ A(I_ll.RHSCI~')1 BCI~" 
RHSII+I)= RHSCI.,) - Ccl~ll. R~SCI.')I 8CI~" 
P.~SCk' = RHS(K) - ACK'. RHSCK+I'/a(K.1) 
FHSC~-I)= RHS(k-ll .ecK.I,. RHS(K.,l/8(K.,) 

20 COtlTlNUE 
IF(IFLAG.EQ,1lGOTO 30 

C N IS ODD 
~:: N -NH+' 

rACI. ACtlM-1"BC"NH_'> 
F.c2=C(N_NH)/nCNH~ll 
F~C3=(A(K).fAC2*ACN~.1l>'8(NH)~FACI.A(~H.") 
X(K+')=CRHS(k+').FAC2·RHS(NH-')-FAC3*CRHS(NH)-

1 r ,or, • R "S C N H - I > ) ) I ( B C k+ 1 > .. FA C2 • C ( N 11- I ) - f At 3. ( A I N H' 
7.-f ~C' oC (NII-'») 
~C~H>=CRHS(~H)-faCl.RHSCN~-I)-(A(NH)-F.C'·CCNH." 

~).ye~.")'161~H_F.Cl.ACNH_,» 
X(NH.')=CRHSIN~-1l-AI~W-')·X(NH'-CCNH-"·~IK.'" 

1 /~ OIP-ll 
'.PTn 33 

r. ~ IS (VEN 
3r, "=,, -NW.' 

V • Rlk). B(NH) ~A(NH). ACN·NH) 
!reV.EQ. O,o,v= 2,OF .31 
XeNH). CRHSCNH).8(Kl ~RHSCkl. A(NH,)/v 
~(~)=C RCHH).RHS(kl- ACN-NH,*RHSCNH) ''V 

33 rr".TltWF 
PFPFnF~ THE BACK_SUR~TITUTIO~ PRoCeSS. 
11 r, 3 ~ I =', N ti - I 

IJ : Nti-I-I·' 
,:J =~; -IJ+' 

Ir( IJ,EQ,N~_' .AN~.IFLAG,EQ.O) GOTO 35 
Y(IJloCRHS(IJ)-ACIJ).XCIJ+1'-CCIJ)*X(IJ+Z"/B(IJ' 
~(kJ)~CRHSCKJ'-A(kJ_Il.X(KJ_1)~CCKJ-2).X(KJ·2» 

'I'CKJ) 
35 Cnl:T! ,;UE 

PFTUPN 
F.t.:O 

C............... PROGRAM 12 ••.• * •• * .... * 
SII~RrolJTINr. PARTRPP(N,NH,B,A,C,RHS,l(l 

C THIS SU~RIIUTINE ,S A PARALLEL IMPLEMENTATION OF 
C Thf R,P.P, AlGOR,TH~(4.8l FOR 'HE SOLUTION OF 
C A TRIDIAGONAL MATRIX. THIS ROUTI~E Is WRITTEN 
C If FO~l~AN BUT WfTH THE ADDITION Of PARALLEL CON~ 
C S'~UCTS, FORK, JOIN, pUTRrS ANIl GETRES IN ORDER 
C TO EFFECT PARALLfL CONTROLS AS IMPLEMENTED IN TkE 
C l()IIGI1B(IROUGH UNlv DUAL PROCESSOR INTER..,DATA"70 
C ~ACHI~E. ~ IS THf ORDER OF MATRIX, (N IS EVEN), 
C N~=~/2, A,B,C HOlD THE SU9~OIAGONAL, DIAGONAL AND 
C SIIPE,,-DIAGON~L El E"'ENlS AND !lHS HOLDS THE." RIGHT 
C HAND SIDE VECTORS, ON EXIT~X HOLDS THE SPLUTION 
C VUTOR, 

cnMMON'CR/N'~H'R(65~),A(650'~C(65D"RHS(650), 
H ct-Sl)l 

""SE pAR 
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( P~0GRA~ 'rO~JS' TO Pl~FOR~ THE RECURSIVE PART'ITt-
( O~ING PRn(~SS IN ·PtRAlLEL. 

HORk 5.15:20 
5 [10 1 Cl I = 2 , PI H 

1~(I.EQ.~H)CAlL ~ETQES(1) 
B(I):S(I)-AII~1).C(I-'I/BCI-1) 

10 RHSCI)=RHS(I)~A(I~11'RHS(le')/B(I.') 
CAll PI)TI!£S(' I 
GOTO 20 

,!"> 00 18 1=2,NH 
IFCI.(Q.NHI (ALL GETRES(1) 
K=PJ-J~' 
BC~)=BC~)-AIK)·CIKI/Blk+'1 

1R RHS(rl=RHscKI-eCr).~HS(K+l)/B(~+') 
CHL PUTHS(1) 

20 $J(lItJ 
C OpTAJL THE (~~TRaL VALUES OF SOLUTION VECTOR, 
C IJ51NG ONL' ONE P;O[~SSOP. 

K= ~ -tJH+, 
V=~ (K) *B er/H) -~ (K.')' Cl NH) 
X(~HI=(RHSINH)*Blkl_PH~(kl*CCN~»/V 

xcr)=(B(NH*RHSIKI-ACK_,)*RWSCNH»/V 
c puOGpA~ '~ORkS' ,0 OBTAIN ELEMENTS Of THE SOLUT-
e ION VECTOR IN PARARF.lL. 

HORk Z5.28:30 
2 5 Pi H .., = 'J H - 1 

[,0 2~ 1=1, NHM 
IJ=NH-I 

2~ XCJJI=IRHSCIJI-CIIJI'XCIJ+'»/&(IJI 
GOTf' 30 

7.1\ tJ"1I=.JII-, 
00 20 1=" iIIH~. 

I J=NHd 
K.I = N -I J + 1 

29 XCKJ,=(PHS(KJ)-ACKJ-1,.xCrJ-1»/SCKJ) 
3n $JOIN . 

~f TUplI 

E"O 

C··.·· .. ••••• PROGRAM' 3 •••••••••••• 
!,lJ~RnUTINE PARGQIIIIPC~.NH'B'A,C,RHS,X) 

C THIS SUPROUTINE GIVES A PARALLEL I~PLEMENTATION 
r. OF THE GORPP ALGORITHM(4.',' FOR THE SOLUTION OF 
C ~ OIlIl<DIA(;ONAl MATRIX SYSTEM. THE SUBROUTINE IS 
C WPITTEN IN FORTRAN RUT UITH PARALLEL CONSTRUCTS: 
c F~RK. JOIN, GETRFS ANn PUT~ES INCLUDE& SO AS TO 
C EfFECT PARALLEL CONTROLS AS IMPLEMENTED IN THE 
C LOUGHBOROUGH UNIV. INTER-DATA ~ACHINE. N IS THE 
C ORDER Or THE MATlIlx CN IS EVEN HERE), AND NH.~/2: 
C B.A.C HOLD THE DIAGONAL. SUB~DIAGONAL AND SECOND 
C SUB-DIAGONAL ELEMENTS OF THE QUINDIAGONAL MATRIX 
C RESPECTIVELY: RHS HOLnS TWE· INPUT RIGHT-HAND SIDE 
( VECTOR. ON EXIT. X CONTAINS THE SOLUTION VECTOR! 

COMMON/(B/N,NH,Bf650).AC650',C(650),RWSC650), 
, X(650) 

SUSEpAR 
C PROGRAM 'FORKS' TO PEPFORM THE RECURSIVE PARTITI-
C O~ING PROCESs IN PAPALI.EL. 
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$FORK 5,15:20 
5 ~O 10 1=2,NH 

If(I.EQ"N~) CA~L GETPESCll 
8 Cl) =8 C Il "A (I ".1,0. C 1","/8 C 1-') 
B C I + I ) • R C I +' ", C (l .,., )t e ( I .. , ) 18 (J -. ) 
A <I ) = A C I l eA (J .. ' ) • C Cl .. I )f B ( 1-1 ) 
R~SCI);RHS(I)~A(I"").RHS(I"')/B(I.,.') 

I n RH S C J +. ) = R Ii S Cl +, l .. C Cl" 1 l *11 H S ( I'" ) la ( I·" 1 ) 
CALL PUTRES(1) 
GOTO 20 

15 DO 18 l=l,NH 
$fORK 25.28130 

2S 'II<M=NHe' 
IFCI.EQ.NH) CALL GETPESC') 
K="-I+' 
BCK)=BCK'"A(~)*A(~)/RCK+" 
Bcr.-l)=BCK~".,.Ccr-,)or.CK·')/BCK+l' 
R~S(K)=IIHS(Kl"ACk)*~"SCK·')/8(K+ll 

'R RHS(~"'l:RHSCK-')-CCK-l)*R~S(K.'l/B(K+,) 
CHL PUTRESC1l 

20 $JOIN 
C OBTAIN THE CENTRAL VALUES OF SOLUTION VECTOR, 
C USING ONLY O~F PROCESSOR. 

NHN=N-NH 
K=N-NH+1 
V:BCKl*BCNH)-ACNH)*ACNHNl 
XC~H)=CRHS(NHl*BCKl-RHS(Kl*ACNH)l/V 
XCK):CRHS(K)*BCNW).AC~H~)*RHS(N~ll/V 

C PRO"RA~ 'FORKS T(\ O~TAIN ELEMENTS OF ,HE SOLUTION 
C VECTnR IN PARAIIEI.L. 

on 26 J=, ",'MH 
IJ=NH-l-I+' 

2h XCIJ)=(RHS(IJ)-ACIJltXCIJ+1l-CCIJ)*XCIJ+Zll/BCIJ) 
GOT,) 3u 

211 "JHM :Ntf_, 
Dn 29 1=1,~HM 

IJ=NH-J 
~J"~_IJ+' 

29 XCKJ)~CRH~(KJ)·A(KJ-').X(KJ-1)~C(KJ-2l.XCKJ-2l)f 
1RCKJ) 

30 1;JOI~ 
RflUI!N 
END 
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c '*~*.**.... PROG;AM 1, •••••••••••• 
~UF.ROUTI~E B~FACT'C~N.N.~.H.AlP,TOI~EVB,EVL;D.8l1 

1EVU.yM) 
c T~IS SU~RO~TINe ~OlVES THE BLOCK PERIODIC TR[DIA~ 
C GONAL ~ATRIX SYSTEM M(I.B,I] OF ORDER" WHERE B 
C IS A PERIODiC TRIOIAGONAL SUB~MATRIX OF ORDER N 
C OF THE FORM 8(AlP,-2(1+ALP+TOI),AlP]1 I IS THE 
C IDENTITy MATRIX OF ORDER N. THE SUBRQUTINE GIVES A 
C DIRECT FAST SOLUTION OF A OISCRETISED SEC ONO ORD. 
C ER ElliPTIC CHEl~kOLTZtS) P.D.E IN A RECTANGLE. 
C O~ fNTRY ••• NN IS AN I~TEGER INPUT seT EQUAL TO 
C THF ROW DIMENSIO~ OF D.et.H AS SPECIFIE~ IN THE 
C C4lll~G PROGR~M. ALP IS A CONSTANT OENDTI~G T~E 
C SOUARl OF MESH RaTIO;'OI IS A POSITIVE CO~STANT: 
C EV8.EVt AR~ vfCTnPs ~Olol~G THE fIGE~VALUfS OF B 
C .M~ CB-SORT(e--2-41»/2 RESPECTIVELY. 0 IS A~ NXN 
C M&T9IX WHOSE COLUMNS APE THF cORRESPONDING [IGEN-
C VEC10PS OF 6. THF M-COLUM~S OF H HOLD THE M RIGHT 
C HP,P SlOE SUS-VEcTops COF.PEsPONOING TO EACH SIJB-
C BLOCK or CQEFF M!TRtX. Bl.EVU.Y~ ARE WORKING SPA-
C eE VECln~s. ON EwIT. TH~ SOLUTIO~ VECTO~ IS OVfP~ 
C WPITT~N ON H. 

DIME~Slo~ EVBC~).~VLCN).DCNN~N).8l(NN,N),HCNN.M), 
1 EvUO:) ,Y",CN) 

PHI =3.141 ~926S4 
C OpTAtN THE EIGENVAlUES AND EIGENVECTORS OF 8 AND 
C CR-SoPT(e**2-4*I)l/2 

Irf~-N/2.2.EQ.O)'Fl~=' 
IrC~-N/?2.EQ.1)'JLGen 
IFClrlG.EO.1)NM=N/2 ., 
I F C I r L Co • E Q • 0 ) III H = f N. 1 ) I 2 
DO 20 J=,,~H 
J.J=2*CJ_1 ) 
JJ1=JJ+1 
IFCJ.GT."GOTO R 
~VB In" -2. o. n. O.ALP.TOI ,.2*ALp 
Se'= SORT(1.u/N) 
£>05t=,.N 

5 0'(1.')" s01 
(iOTO 20 

R IFCIFlG.EQ.1.AND:J.EQ.NHlGOTO 16 
~VBCJJ)=-2.0.(1.n+AI,p+TOI ).2*ALP*COS(JJ*PHI/N) 
EVBCJJ1l= EV9(JJ) 
so2: Sr.RT C2 .O/N) 
0091"'1,1; 
Dcl.JJ)= SQ2*cOSIJJ*I*PHI/Nl 

9 I>CJ .JJ1 l=S02.SINIJJ_I*P~1/Nl 
GOTC, 20 

1~ FV9CJJ)=-2.0*C'.n*ALP+TOI )-?*AL~ 
r.S=1 
Of' 18 1=1,N 
kS.-tCS 

'8 DfI.JJ)=KS*SQ1 
?n CONTI~VE 

Do 21 1=1,N , 
2, EVLCll"O.~.(EVBC')-SQPTCEVB(l)*Eve(I)-4.0» 

C COMPUTE el'" D. EvL- CfRANSPOSE OF D). 
1)0 30 I =" N 
DO 30 J .1,N 

5&0.0 
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C 
C 

C 

c 

c 

C 
C 

C 

24 
31) 

52 
55 

58 
6(1 

" . 
'" 

140 

145 
139 
150 

DO ;>4 K"', N 
S=S.EVLeK)*Oel,r).ne J,K) 
P.L(I,J)"S 

COMPUTE MODIFIEO R.~.5 SUB~VECTORS AS GIVEN IN 
e5.3.1O): 
00 loO J .. 1,11 

H(J.EO:" GO TO 60 
DO S5 1:1,N 
50( •. 0 
00 52 t:,,1,N 
S :5 t BL(I,K). HeK~J-1' 
EVI) et) =S 
00581"',N 
~(I,J):o Hcl,J)-FVUCI) 

CONTINIIE 
ISIGN =, 
IF L : 1 

STORE Lh5T COL O~ H I~ [VU USED AS TEMP STORE. 
00 95 I ", "'I 
fVU(ll=H() ,M) 

COMPUTE INT~PMED'~TF SOL.VECTOP AS IN (5.].11). 
(Ot,TINUE 
IF(N~N/2·Z.EQ.PIISIGND-1 

FIRST SOLVE FOR lAST INTERMEDIATE VECTOR VIM) 
DO 73 I=',N 
5=0.0 
DO 72 K .. ,,/; 
S.S.O(K.I)*(1.0/(1.0.1~IGN.EVLel)**H»*EVU(KI 
[VBCI)=S 
nn8~J="N 

SDI.!. 
00 76 K:1,N 
S=S."" .K)*eVD(r) 
VM(I)cS 
JF(JFL.EQ.2)GOTO R? 
Her .M)=vtH I) 

GOTuc1Z2,'90) IFI, 
CClfllTI"Ur 
no 1,,5 1 .. ,,1; 
f.VBCT) "VM(I) 
NEXT, COMPUTf I~TERMEDJATE VECTORS Y(I),I=H-1 •• ,' 
AS GIvEN IN e5.3.'~I. 
[,0 137 1.1.N 
~"O.O 
on 135 K .. ,,1.1 
s=s·"e(,II*EVB(KI 
r.vueJ)"s 
on 150 KKK .. 1,M_1 

JSIGN=1 
IFCKK(-KKK / 2*l.F.O.0) JSIGN=-1 
,,0'HI=1,N 
SIlO. 
1)01401(0:',1/ 
So:S+D(I.K)*(JSJGN.~Vl(k)**KKK)*EVu(l() 
EVBcl>=S 
WeJ.KK~)"H(J,KK~)_F.VAel) 

CONT! NUE 
cnNTINUE 
ro~puTE INTERMEDIATE VECTOR GeM) AS IN (5.}.12) 
DO 160 J a1, N 
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5=0. 
00 155 K ""N 

155 5 =5+ aLCI,~).YMfK) 
11>0 EVIl( I)&S 

DO 161 1=1,N 
161 H(I,M)=EVU(I) 

C COMPUTE I~TERMEOIATE VECTORS G(I),laM~'.,., 4$ IN 
C CS.3.1Z). 

!'IO 180 K .. 1,M .. 1 
I1 =~'~I( 
00,701=1,N 
5-0. 
55=0. 
tlQ 165 J"1,N 
5=S+6LCI,Jl.EVU(J) 

165 S5=~StaLCI'J)*H(J,ll) 
170 FVBCI)=SS-S 

[l(\ H'S 1=1' N 

" ( I • I I ) = E V B Cl) 
1 75 EVUCI)=EVS(!) 
1110 CONTINlIf 

C COMPuTE SOLUTION SUR-VECTOR U(1) ANI> STORE IN COL: 
C '·1 Q~ 11. 

IrL =2 
15IG~J=1 

GOTO 7D 
1 9 0 CONlTNUE 

C COMPUTE SOLUTION SUR-VECTORS UCI),I=M-,.,." AND 
C STORF. IN COL. I [If H. 

1)(1 210 p,1,N 
21fl EVBCJ)=YMC!l 

1'0 225 I "1,N 
5=0. 
DC! 220 K=1,t, 

220 Sa5+~(K,ll*FVBCK) 

225 EVUCI) = S 
[l~ 240 I(KK =2, M 

kSIGN", 
M1=M-"I/2*Z 
~.KKI<:="'-n:K+' 
n = KKK-KlCK/Z*Z 
I F CM', EQ. 1. AND. K'. EO. OlKSIGN=-' 
I F CM 1 ,E 0 • 0 , A NI>. 1(' . EO. , lK SI G N"" 1 

on ?27 1=1, N 
sac.a 
110 230 k=',N 

230 SES.DCI,K)*KSIG"'.evLCK)*.kKKK*evuCk) 
227 HCI.KKK)=HCI,KKk)_S 
240 CONTINIfE 

PfTUR~ 

END 
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C •••• • ••• ••• PROGRAM'5 •••••••••••• 
SUBROIITINE B~FACT4(NN.N;M.H.ALP'EVB~EVL,D,BL.EVUi 

, Y t.\) 

C THIS SUBROUTINE SOLVES A BLOCK SKE~-SVMMETRIC 
C PERIODIC TRIDIAGONAL MATRIX SYSTEM At~I,B,I] OF 
C OPDER ~ wHERE B ,S A TRIDIAGONAL SUB~MATRIX OF 
C OPDER N AND OF T~E fORM B[~2.ALP7 ~.ALP'~2~ALPJ 
C AND I IS THE IDENTITY MATRIX OF ORDER N. THIS 
C GIVES A DIRECT FAST SOLUTION OF A DISCRETISEO ONE 
C DIMENSIONAL HEAT CO~DUCTION EQUATION WITH pERIOD~ 
C IC eOUNDARY CONDITION IN A RECTANGLE SOLVED BY 
C eOUNDARV~VALU£ TECH~IOUES. ON ENTRY; •• NN IS AN 
C J~T~GER SET EQUAL TO THE pOW DIMENSION Of D,SL,M 
C tS SpECIfIED I~ THE C~lLING PROGRA~. ALP IS THE 
C SOUAPf. or ~ESH RATIo. EVe.EvL ARE VECTORS HOLDING 
C T~E FIGENVALUeS Of B A~D n.S(-B+SQRT(S**Z+41» 
C RESPFCTIVELY, D ,S AN (NX~) MATRIX WHOSE COLUMNS 
C AQE THE CORRESPONOI~G EIGENVF.CTORS Of B. THE M-
C r. 0 LlH~ N S 0 F H HO l ~ HE !<\ - RIG I1 T - H AN Il SI DES U 8 - V E C T-
C 0~S [D~RESPONDING TO EACH SUB-BLOCK OF COEFf MAT. 
t I'. BL'EVU.Y~ ARF unR~I~G SPACES. ON E~IT. THE 
C SOLUTION IS OVER ~AITTEN ON w. 

nIMENSIO~ EVB(N).EVl(N).D(NN~N).BL(NN,N)'H(NN.M); 
, EVUO,j) ,VM(N) 

PHI:! .14,5~2654 
r ~ETERMINE THE EIGENVALUES AND EIGENVECTORS Of B· 
C AN~ (~B+SORT(B.*~.41»/2. 

~O 20 J .. 1.~ 
FVB(J)1:4*ALP*('.O-COs(p~I·J/(N.'») 
EVL(J)=0.5*(~Eve(J)·5QRT(EVM(J).EVB(J)+4.0» 
51:0.(\ 
,,0 10 t=1.N 
D() .J)= ~QRT(2.nl(~.11)*SIN(I*J.PHJ/(N+'» 

1\1 ~"S+D(I.J)'Il<l.J) 
SS=1. Ci/sOPl (S) 

DO 15 '="~ 
IS n().J)=D(I,J)·S!; 
?n CONTI~UE . 

COMPIJTE BLDD*EIIL*(TRAPlSPOSE Of D). 
DO 30 1,,1,N 
!l0 30 J,,1,N 
5"0. 
DO 24 K"',N 

24 ~.S.EVL(K)*D(I.K).!l(J.K) 
30 &LO,J)cS 

COMPuTE MODIFIED ~.k.S SUB-VECTORS AS GIVEN IN 
(5.4.15>. 

J =1 
!lD fiG J=',M 
H(j.EQ.1) GOTo bO 
D055 I ,,1 , N 
s-o. 
liD Se I( .. "N 

52 S =5 + BLCI,Kl* ~cr..J-1) 
55 EVIJ(! )=5 

DO 58 I=',N 
5R H(I.J)=H(I,J)*EvU(I) 
611 coral Nllf 

1!i1C;~ ·=1 
t F L =, 
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C STORF LAST COL O~ ~ I~ [VU USED AS TE~P STORE. 
95 EV!J(I).HCI'~) 
94 DO 95 I .. 1,N 
95 EVIICI) :: HCI,M) 
70 CONTINUE 

COMPUTE INTE~MEOIATE SOLUTION VECTORS YCM) AS IN 
C C5.4.14) 

DO 7 3 l:l,N 
S-o. 
DO 72 h1 IN 

72 S=5.r,(K,I)*C'.O/(1.0~ISIGN*EVLCI) •• M».EVU(K) 
73 EVBCll:s 

DO 8Z l .. l,N 
5:00. 
[1076K,,1,N 

7b S=S+~(I,K).EVB(r) 

"Mq)"S 
IF(I~L.EQ.Z) GOTO R2 

1: i? H Cl .~;) = V M ( I ) 
120 CON' J ~'UE 

GDTOC122,1;O) IFL 
1 n CONTP"UE 

C COMPIJTf OTHER INTfRMEDIATE VECTORS YCI',I:M-' ••• 1 
C AS IN C5. 4 .14). 

DO 125 1=1,N 
125 EVB(I) =yMCI, 

DO 137 1,,1,N 
5=['.0 
DO 135 K ,,1,111 

135 S=S+[)(K.I)*EVB(Kl 
137 EVU(J).S 

DO 15D KKK =1,,,,-1 
DO 139 I =" N 
S=O. 
DO 14(1 K=1,N 

110 14.0 Kc1,N 
140 S=S+OCI.~)*(~EVLCK'**KKK)*EVUCK) 
13~ ~((.I(I:K) .. HCI.KKIO-S 
1 so CONTT tlUf 

C COMPIJ'f JNTERMEolATF VECTOR GCM) AS IN C5.4.'5) 
DO 1(,0 I =1,N 
5 .. 0. 

5 .. 0. 
DO 155 K "',N 

155 S =S. BLCI,K)*YMCI() 
1 60 E V IJ ( n "5 

!l0 16' I=',N 
161 HCI,M)=EVUcl) 

C COMPUTE INTERMeDIATE VECTORS G(I),I=M-, ••• , AS IN 
C (5.4.15). 

!l0 18(; K =, ,.., .. 1 
Ill:r1_~: 

00 1 7 (, 1.1 • N 
S=O. 
5S.0. 
00165 Jo:"N 

s=s.SLCI,J)*EVUCJ) 
1h5 5S=SS.8L(I,J)*HCJ.II) 
170 EVB (I )=SS .. s 

t\o,751"',N 
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~ ( I • I I) = E VB ( I ) 
17S ~VU(I)= EVB!I) 
180 CONT I ~;lJE 

C CO~PulE SOLUTION SU~·VECTOR U(I>:I=M-, ••• , AND 
C S'O~E IN COLUMN ~ O~ w: 

I H=' 
ISIGN:' 
'F(CM.H/2~2.EQ.I»ISIGN".' 
GOlO 70 

190 CMJTllIVf 
I J ", 

C STEp 4: COMPUTE THE SOLUTION VECTORS. 
DO 2,0 1",,1'1 

710 EVB(J)=YM(I) 
~O n5 I =',N 
SeO. 
[l0 2z(l KC', N 

72D S=s+n(~.I)*Eve(KI 
7?S [VII<I) = S 

C COMPUTE oTHER SOlliTlotJ SUe .. VfCTOIIS U(f),leM-' •• :.1 
C A~O STORE IN COLUMN I Of H. 

DO 240 KKK =2, M 
rKKK="-I(KI(+' 
KSI!;""1 
"'1=M-"'/2*2 
1(1= 1(I(1(-ICKK/2*, 
I F ( M I • E Q • , • AND. K' • F Q • ,0 ) I( S I G N = " , 
I ~ O~ 1 • E Q • 0 • AND. 1(' . r. Q. I ) k S I G N = .. 1 
no ~7.7 la,,IIJ 
S=O.(' 
1'10 2 3 0 K e' . ~j 

;>30 S=S+I)(I.K)·KSIG~.EVl(I()*.KKKK*EVlJ(K) 

W(I.~KK)=H(I.Kr.r)-s 
227 CONTI NIJF. 
;>40 CONTINUE 

RETu f: tI 

fN[l 

(: .*.**...... PROGRAM'6 *.** ••••• *** 
SURROUTINE BLOMCCNN.N.M.H.BL,D,EVU.EVj,EVL,VH,ALF 

1 A) , ...... 
r. THIS SUP.ROUTINE~THE RLOCK CYCLIC LOWER TRIANGULAR 
C M.TRIX EOUATION OF THE FORM M[~1~8.0] OF ORDER M 
C WHEPF. B IS A TRlnIAr.ONAl MATRI~ OF ORDER N AND OF 
C THE rOR~ B(-ALFA.'.~+?ALFA.-ALFAJI ALFAa yK/(XH* 
C X~) AND XH,YK ARE MESH SIZES ALONG X- AND T-AXES 
C PfSP[r.TIVELV. THIS SV~TEM IS DERIVED FROM THE 
r. IMPLICIT FINITE nlrFERENCE APPROX. OF '-DIMENSIO~ 
C NAL HEAT EQUATIO~ WIT~ PERIODIC CONDITION ALONG 
r. T~E X-AXIS. ON EWTRY •.. THE VECTOR EVB HOLDS THE 
C flGENVALUES OF ~ ANn n IS THE SU8·~ATRIX OF EIG-
C VECTORS OF B. H IS AN NxM SUB-MATRIX WOLDING THE 
C M RIGHT HAND SUB.VECTORS CORRESPONING TO EACH BL-
COCK ELEMENT OF coEFF ,MATRIX. BL,EVUiEVL.YM ARE 
C wORKI~G SPACES. ~~ IS AN INTEGER SET EQUAL TO THE 
L ROW DIMENSION OF' D.RL.W IN THE CALLING PROGRAM.-
C O~ EXIT, THE SOLuTIoN VECTOR IS OVERWRITTEN ON H~ 

~IM[~SION W(NN.M'.D(NW.M).BL(NN;M),EVU(N),EVB(N'~ 
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, Y'·:oo ,EVLeN) 
PHI=3.1415921154 

C OBTAIN EI~eNSYSTE~ OF TRIDIAGON~L ~ATRIX B. 
DO 20 J =1,N 
EVBeJ)~'.O.Z*ALFA-Z*ALFA*COSePHI*J/(N .1» 
5,,0. 
D(l10 1!'1,N 

'0 D(I~J)=SQNT(2.0ICN.1»*SINel*J*PHl/eN.,» 
20 CONTIIIUE 

C TRANSFORM THe SysTe~ M!~I,B.O) TO THE FOR~ 
C M(~R,I,O) AND MODIFY R.H.S. VECTOR ACCORDINGLV. 

Do3:!J=1, N 
D03ll=1 , N 
5=0. 
DO 29 K=' IN 

29 S=S.IlCI,K)/EvBeKl*DCI,K) 
32 BLCI.J>=S 

[lCI 34 I =1 IN 
C034J=l,M 
~=o. 
DO 33 K=' I~ 

33 ScS+BLel.Kl*H(K.Jl 
34 ~C1.Jl=s 

C CALCULAT~ MUDlfJ~n R.W.S. VECTOR AS GivEN BY 
t (5.5.'S).INTRODUr.INr. A NORMAL FORM OF MATRIX R. 

D060J=1, M 

JF<J,[O.1)GOTO 60 
DO 5 S I .. 1 IN 
S .. (l.0 
DO 5:! K=, I fit ,2 S=S+pL(I,K)*~e(.J-" 

55 EVU(I)=S 
DO ~8 1=' ,N 

51'. tiCI.J)"H(I,Jl*EVIJ(ll 
t·Q CONTI'/UE 

J F L= 1 
t THE LAST COLUMN OF H IS TEMPORARILV STORED IN EVU. 

94 Dn 9S 1=1,N 
95 EvUer) c H(I,M) 

!l0 '73 1=1 IN 
S=O. 
DO 72 K=1,1i 

7:! ~=S+~(K,ll/(1.0-1/(~VBCI l**Ml)*EvU(K) 
73 EVU r>=S 

DO -82 1=1, N 
S=O. 
DO '76 ~c', N 

76 S=S+llel,K).EYL(Kl 
VMCI)::S 

8:1 ~(J,M).S 

C O~TAI~ THE SOLUTION SUB~VECTORS AND STORe THEM IN H 
DO 137 1=' IN 
5 .. 0.0 
DO 135 K "1,N 

135 S=S+n(K.I).YM(K) 
137 EvUel)=S 

~O 150 KKK Rl,M.1 
0013 9 1.=11N 
5=0. 
DO 140 K"'IN 
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"0 S=S+DCI,K)/(EVBCK)'.KKK)*fVUCK) 
,39 ~Cr,KKK)~ H(r,KKK).~ 

, 50 co'ar NUE 
RETURN 
END 

C ••• •• •• •••• PPOGRAI4 17 •••••••••••• 
SUBROUTINE B(REffNN.M~,N'H'E,Q,EVB,EVT,EVTT7R, 

1S84R.EVE.EVS,~LP;9ETA) 
C THIS SUBROUTINE GIVES T~E SOLUTION OF AN CI4XM) 
C BLOCK TRIDIAGONAI ~~TPIX SVSTEM., M[CIBIC); fOR M 
C =M4·1.av THE BLOCK QEVERSED TRIANGULAR (RECTANGU-
C LAR) f~CTORISATIO~ ANb EXPANSION METHOD AS GIVE~ 
C IN SF.(TION C6.3,. T~F. 'UTRlx B IS AN (NXN, HID. 
C MATRIX Of THe FOo~ ~['LP.·2C'+ALP',·ALp) WHERe 
C ALP ,S SQUARE OF ~E~H RATIO: C IS A CONSTANT~TERM 
( DIAGONAL MATRIX wHo~E ELEMENT IS BETA. NN IS AN 
C INTEGER SET eOUAI T~ THF. ROw DIMeNSION OF H,Q.E~ 
C H HOl~S THe I~PUT Q.H.~ VECTOR. F.Va,Q HOLD THE 
C EIGENVALUes A~D COR~fSPO~~ING EIGf~·VECTORS OF B 
C RESPeCTIVELY. THF NXN SUB-MATRIX £ HOLDS THE MAT~ 
C RIX fACTOR -2C/C8+S0RTC8*8~4*C**2). EVE.EVTIEVTf, 
C ~,SBA~ ARE WORKIN6 ~PACE VECTORS. THE SOLUTION 
C VECTOR IS STORED I~ H ON EXIT. 

OIMENSION HCNN'M~),OC~N,N)'E(NN'N,.EVC(N).EVB(N); 
1EVEC~)'EVTCN).~VTTC~),RCN),SBAP.(~).EVS(N) 

PHI=3.'41592654 
"'= 1·,,.- 1 

C OgTAII' EIGEN-VALlrf~ AND VECTORS Of B 
no 15 J=1, N 
EVB(J)=-2.(1 .O+AI P'+7.0*AlP. COS(J.PHII(N*1» 
EVE(J)·~2.0*BETA.C1 .O/CEVB(J).SQRTCeVB(J)*EV8CJ)-

1 4*BlTAoBETA») . 
EVTCJ)=('.O+EVECJ)*F.VECJ)'/EV~CJ, 
E V TT C J l:: 1 .0/ (1 .0 .. E V F C J , * * C 2 * M+ V ) 
EVSCJ)=EVE(J)*·(~+', 
D01101=1,N 

14 O(I.J)= SQR Te2.0/CN.',,* SINC J*PHI.I/(N*1» 
15 CONTI~UE 

C COMPUTE MATRIX F4CTnR E USING TH~ ~ORMAL FORM. 
e Ea Q*EVE.Q(TRASPOSEl. 

Dn 2~ 1=1 , N 
00 25 J=1 III 
50:0. 
DO 20 K=1,N 

20 S ~ 5+ EVE(K).QC~'I"OCKIJ) 
;>0; ECI.J)=S 

C C:O'1PIlTE rNTERMEDIAH OUA~T1T1ES GCKkhEVToQCTRAS-
C POSE,*H. FOR kKcL •. "'. 

DO ~O KK 0:11M 
DO 35 10:' IN 
SilO. 
on 30 K=11N 

30 S=S+O(k,I)*EVT(ll*HCK,KK) 
35 RCf)DS 

00 45 1=1,,, 
HH(J .KK,.RCI, 

'5 HCI.r.KhR(I) 
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50 r.rHJT 1 f;UE 
C USE N~STED MIJLTIOLICATION TO COMPUTE QUANTITIES 
C IN (6 • .5.32) AND (6.~.34). 

DO 53 1=1,N
EVBU)"H(),1) 

53 EVT<r)!H(I,H) 
C Evr(l) USED AS TEMP STOPE 
C EVB(I) USED AS TEMP STOPE 

DO 70 KI( ;r1, ,.,., 
KKI( =~I"KI( 

00601=1,1; 
R(I)"F.VE(I)*EVB(ll+H(I,KK+1l 

60 SB~R(I)=EVE(I).EVT(I)+H(I,K(l(l 
DO 65 1=1,N 
EVB(J)a R(I> 

65 [VTO)" S8AR(J) 
70 CONTI NUe 

C COIVIPlITE L4ST SOLUTION SUB-VECTOR U(M) AS GiVEN IN 
C EOUATION (6.3.36). 

DO 80 1=1,N 
S = 0 • 
n075K=1,N 

75 S=S+n(I,I()*EvTT(I()*(EVB(K)~eVS(K)*EVT(Kll 
80 SBAR (1 )=s 

DO 114 K,,=1, 14 
DO 123 1 .. 1,N 
5=0. 
00 122 K .. 1,N 

127. S=S+Q(I,I()*H(r.'K~) 

'2~ Rfllc~ 
00 1?,4 ,=1,N 

124 ~CI,ki()=II(J) 

-C OETF.~~INE INTERM~DIATF VECTOR Y(M+1) AS 1~ 6.3.17. 
00 120 1=1,'1 
5=0. 
DO 115 r.=',N 

li5 S=S+F.(I,I(). SBAR(K) 
120 HII,MM)= .. 5 

C OETEIIMINE INTERMFOIATE SOLUTION VECTOp YCI)il=1.;: 
C M AS GIVEN IN C6.3.17). 

DO 1351(1( .',M 
1(1(1(=11"1(1(+1 

DO 130 1=1,N 
S=O. 
DO 125 K="N 

125 S=S+E(I.K).H(I(,KKK+l) 
130 HCl,I(KK)IIHCI,I(I(Kl+S 
13<; COI,ITTNUE 

C ORTAIN SOLUTION SU8-VFCTORS U(I)~T~M-' ••• 1 AS IN 
C (1'>.3.36). 

DO 150 1(1( a2,M-1 
DO 145 1=1,N 
S=O. 
001401(.1,N 

140 S.S+E(I,K). H(K,KK_1) 
145 H(I.KI()~S .H(I,KK) 
,50 CONTT'lUE 

no 155 1.1,N 
155 HII,~).S8ARCI) 

R F T UR fJ 
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C •••• • •••• •• PROGRAM 18 •••••• **.*** 
SUBROUTINE PQD(N.A'R,L,U'L2~U2,WKSP1'~KSP2,EV.EP) 

.C THIS SUBROUTI~E cOMPUTES ALL THE EIGENVALUe S OF A 
C SYMMETRIC POSITIVE nEFINITE,"DIAGONALLY DOMINANT 
C PERIODIC TRlplAGONAl MAT~IX O~ ORDER N, BV THE 
C PERIoDiC QUOTIENT~DIFFERENCE METHOD AS ~IVEN IN 
C SECTION (7.2). O~ ENTRV: •• B.A ARE VECTORS HOLDING 
C THE DIAGONAL AND SU~.OIAGONAL ELEMeNTS OF THE 
C GIVEN ~ATRIX. L.UIL~,112 ARE PAIRS OF YORKING SPACE 
C VECTORS USED IN THE CVCLIC FACTORISATION PROCESS~ 
C YKSP1.WKSP2 ARE WORKING SPACE VECTORS. EP IS THE 
C ABSOLUTE EQROR T~LERA~Cf FOR THE COMPUTE EIGfN-
C VALUeS. O~ EXIT FV HOLDS THE N EIGENVALUES. 

R(AL l .L2 
FlIMeNSION A(N),BI''l,L(N),L2(N),U(N),U;n N),w KSP1(N 

1l,UKSP2(Nl,EV(N) 
PHI=O.5 
NN~N 

KFL=O 
r USING A SIMPLE SIMILARITY lQANSFOR~ATIO~ CONVERT 
C A SYw,MElRIC PERIODIC TRIDIAGONAL MATRIK TO AN 
C ASSYMMETRIC ONE ~ITM SUPEP-DIAGONALS ALL SET TO 1: 

Oil 5 I =1,N 
5 A">= ACIl.A(n 

C COMPUTE L(" d' A ~A,LL TO THE CF2 SUBROUTINE 
r. WHICH EVALUlES ~ PE~IOD'C CONTINUFD FRACTION, 

N~ =0 
JrLG=O 

z=(, 
y .. o. 
F.PS .. 1.0 f-' 2 
[ALL C~2(N,B,A'L.U,VL.WKSP1~YKSp2,JFLG, NF,Y,EPS) 
IF(N~.EQ.O) GOTO 15 
wpITF.<2,10) 

10 FORHAT(5X,'CFZ FAILS,NO CONVERGENCe IN CONTO FR." 
RETURi'J 

15 un = VL 
U('> " p'(1)-U1) 
DO 20 1=2,N 
l(l) :A(I)/U(I-1) 

~(\ un) c:B(J)'!'L(J) 
ITER =1 

[ PEqFOR~ THE S TH ST~P OF THE P,Q.D, FOR S=2,3 .•• 
?7 1(;: 0 
'281'1111 =PHI 

IC-O 
UHHP= U(N, +l(1) 

30 Y"PH I *UTEloIP 
C SET uP A SUITABLE SHIFT ~V AN AD HOC METHOD TO 
[ ACCELERATE CONVE~GENCf OF O.Q.D SCHEME. 

IF(KFL.EQ,1IGOTO 50 
35 NFaO 

JFLGa' 
C~LL CF2(N,B,A'L,U,Vl,WKSP1~WKSP2,JFLG,NF,"EPS) 
IF(NF.EQ.O)GO'O 45 

[ REoUrE SIZE OF S~IFT IF CURQENT SHIFT UNSUCCESSFUL, 
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IF(IC,GT.5lGOTO 40 
Dill" PHI* 0.5 
IC =1C+1 
GOTf) 30 

C AFTER 5 UNSUCCESSFUL ADpHOC SHifT TRI~LS SET SHIFT 
C TO 0 AND RESET P~I FOR FUTURE SHIFT TRIALS. 

40 y=O. 
PilI" O:S*PHII 
GOTO 35 

45 LZ(1l= VL 
IF(L;><1l.LT.EPSl KH=' 
GOTO 70 

50 L2(1l= Un 
65 Y"PH I*UnMP 
70 CONTINUE 

U2(1,= L(2l+U<1l~L2C1lpy 
0('175 I =z,tj 

11=1.1 
I F ( I I , G T . N l I I C , 
L2ell=U(ll*lCll/u2e!-' l 

75 U2CllCLell)+uCI,.L2el'.V 
C T[ST TO ENSUR~ THAT T~E POSITIVE~FSS OF p.Q.D IS 
c rR(SE~VED. 

£\0 BO 1=1,N 
Rn IF(U2ell.LE.0.OlGDTO 90 

C Z IS llSED TO ACCU~'ULA"E THE SIIIFTS. 
Z az.V 
IFeY.NE.OlP"1 ·C'.PHIl* 0,5 
GOTO 100 

C OROP S~IFT To EN~URr THAT U IS POSITIve 
"0 YeO. 

IFeKFl.fa.o> GOTn 15 
L7.Cl,elC1l 
6("1TO 70 

1 .)1) CO"T plUE 
IH~ :ITER+1 
IF(K.GT.100l GOTO '60 
IFCLi'eN).GT.F.PlGQTO HO 

1(15 EV(Nl" Z *U2(N) 
( ClIRRFtJT SMALLEST EIGENVHUE IS FOUND. DefLATE MAT" 
C RIX ~VSTEM BV ~EDUCIN6 ITS SIZE BY 1. 

N:N-' 
IFCN.EQ.OlGOrO 1~5 
IF(N.EQ.1lGOTO 105 
PHI=O.5 
00 115 I=1,N 
U(\)"U2C!) 

115 l(Il=LZ(1l 
K"K+1 
GOTO 27 

120 i)0 17.5 1::1,N 
IJ(I)"UZ(J) 

125 L<1l.L2(J) 
GOTD 28 

',35 'J"NN 
R[TlIR/j 

160 WRITE(Z.161lITER 
16' FORMATC10X,'NO CO~VFRGENC£ AFTER'.13,IITERATIONS',/) 

RETURN 
E 'J 0 
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SUBROUTI~E Cf2(N;9,A;L,U,VL,ALP,BETA'JFLG,NF~Y,EPS) 
C THIS SUBROUTINE eVALUATES AN INFINITE PERIODIC 
C CONTINUED FRACTION OF THE FORM IN (7.2.10) OR (7: 
C 2;22) OBTAIN IN THE CYCLIC FACTORISATION OF AN 
C A~VEMMETRIC PERIODIC TRIO. MATRI~ ~ITH UNIT SUPER~ 
C DIAGOI14LS' THIS BEI~GREOO. IN THE PQ~ ALGORITHM; 
C ON ENTRV •• ;a AND A HOLD THE DIAGONAL AND SU8-DIA~ 
C ~O~AL ELEMENTS O~ IMPUT MATRIX ReSPECTIVELV. ALP, 
C SETA,L,U ARE WORVING SPACE vECTORS. V IS CURRENT 
C SHIFT APPLIED To SPEED-UP CONVERGENCE IN THE CALL. 
C ING pROGRA~. ePs IS TRUNCATION ERR~R TOLEPANCE IN 
C CONTINED FRACTION EVALUATION. NfiJFlG ARE FLAGS 
C TO INDICATE CONVEPG~Nr.E OR OTHERWlSE1AND TO DlfF-
C ERE~TIATE THE 1ST A~D SUBSEQUENT CALLS TO THE CF2 
C ROUTINE RESPECTIVELY. O~ EXIT,THE VALUE OF CONT~ 
C INUEo FRACTION I~ ~~lD IN VL. 

REAL L 
OIMENSION BlN)'A(N),LC~),U(N),ALP(~),RETA(N) 
JFCJFLG.eQ.1> GOTO ,5 
DO '(l 1=1,,,, 
I 1 " Ij _ I +, 
JJ" ..,-1.2 
IF(JJ.GT:N)JJ,,1 
ALPCJl=A<JJ) 
HTACI): 8(1J)"V 

1/'1 CONTTNUE 
GPT" 20 

15 00 20 1=1,N 
IlaN_I.' 
JJ,,"-1·2 
IFCJJ.GT.N)JJ'" 
ALPll)·L(JJ). UCJJ) 
BETA(I)=L(JJ)*UC,I)-y 
IF(BF.TACI),GT,O) GOTO 20 
rJ F'" 
PETUIIN 

20 CONTnJUE 
C COMPuTE APPROXIMlNTS OF INFINITE CONTINUE~ FRAC'

I(lN RV A FORWA~D RECUPRENCE RElATION. 
EO-O. 
FO.'.O E, "AlP(') 
F'''BETA(, ) 
DO So 1=2,N 
E2 =8ETA(I)*E,- ALP(I).EO . 
F2 =~(TACI)·F'~AlP(".FO 
ALP RF.USED To STORE AWAV PARTIAL APPROXIMANTS OF 
CO~TINUED FRACTION. 
AlPCI-1 ,.E1/F, 
ALPCrl"'E2IF2 
1(=1 
IF(ABS(AlP(I,~ AlP(I-1",L[.EPS)GOTO 55 

IF(I.EO:N)GO'O 50 
EO "El 
e1 =F" 
FO = F1 
F1 =F2 

;n CONTINUE 
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,~ COt.1TPWE 
SOLVF. QUAOR~TIC eON, F1*W**2+(F2.F.l'*W~El=0. 
R .. f 2·- E 1 

S " 4*F1*EZ 
VL" c~R+SQRTCR*R +S\)/C2*Fl) 
VLL=C-R-SQRTCR*R+S)\/CZ*Fl) 
IFCVl.GT:VLL)GOTO SA 

T=VI. 
VL"VLL 
VLL=T 

,58 CONTINue 
IncvL~VLL).LT.EPS) GOTO 75 
IfCARS(ALP(K-l'-Vll).lT.ABS(ALPCK-l''''VL»GOTO 60 
GOTO 6S 

60 NF=' 
RETURfJ 

6500701::1,K-' 
70 IFCALPCI,.EQ.VLLIGOTO 60 
75 CONTINUE 

RETUPN 

FND 

C ••••••• ***. pp.Or,R4M 19 •••••••••••• 
SUBROUTINE SCLH(N'A,B,C,L,U,WKSP1,~KSP2,EP) 

r. THIS SUBROUTINf qEDUCFS A GENERAL PERIODIC TRIDIA~ 
C GONAL ~ATRIX M[AII',BCI',CCI)l To A LOWER SPARSE 
C CVClIC HESSEN9EpG FOR,., H[ AI(I),BI(I),1] WHERE 
C AI') DECREASES MnNOTONICALLV UNTIL IT IS .LT, EP, 
C A St1ALL ERIIOR TOI ~RANr.E :: 1.0E.,08. THE VECTORS B; 
C A,C ARE THE DIAGONAL, SUB-DI_GONAl AN~ SUPER·DIA-
C GO~AL ELEMENTS OF luPUT MATRIX. L,U,WKSP',WKSP2 
C ARE WORKING SPACE V~CTORS. ON EXIT THE INPUT MAT. 
C RIX IS OF T~E FO~M ..,[A' Cl) ,8' CI>':11 "'ITH AI("~a.E, Et'. 

RE'AL L 
DIMENSION A<N),RI"'),CIN),L(N),U(N),WKSP101), 

1WKSP2CN, 
EPS= 1,Oe"10 
SHIZO. 
v"O. 
ITER"O 

C REOllCE PERIODIC TRfn. ~ATPIX M[A;B,Cl TO TH~ FORM 
C Mr.~',B',11 WITH uNIT ~U"ER-nJAGONAl ENTRIes. 

A(1):std1 )*CCN) 
Cc1>=I,O 
DO 10 1=2,N 
Act )aACI )*C(I .. 1) 

'n Cct>=I,O 
20 CONTINUE 

"'FaO 
JFlG=() 
CALL CF2CN,B,A,L,U,VL,WKSP1,WKSP2,JFLG,NF,V,EPS) 
IF(NF.EQ.O)GOTO ,0 . 

C IF CONTO. FACTIO~ DOES NOT tONVERGE, ADD A SHIFT 
C TO STRENGHTEN THF DIAGONAL DOMINANCE OF "ATRIX. 

V .. O.5* !l(1) 
SHII !:H*V 
Do 30 1=1,1/ 

30 BCI)::BU,.V 
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GOTO 20 
40 U1)= VL 

U(1)" B(1)"~C" 
DO 45 1::2,N 
UI". ACIl/U(I .. ,) 

45 UCI)~ 8CI)~L(I) 
C REMULTIPLICATIO~ 

D0501""N 
Jcl+1 
IHJ.GT.N)J=1 
BCJ)=UC!)+LCJ) 

50 ACl)=U(I)*L(t) 
IfER"ITER.1 
IF(ITER.GT,400)GOTO 90 
IFCAnSCA(1»,LE.FP)GOTO 66 
GOTO 20 

6n DO 80 1=1,N 
808(!)"SCI)-SH 

RETURN 
~O WRITF.CZ,QS) IrER 
95 FORI1AT(10X,'NO CONVF.RGE~CE AFTER',13 'P-Q SIMILAR. 

ITY TRANSFORHATIONS') 
RE TUR~J 
END 

C **.** ••• **. PRnGRAM 20 .*' •• *****.* 
SUBROUTINE BAIRSTO""CI/,A,B,W,WI,EPS,C'D,M'L,f.,f) 
THIS SU~ROUTI~E r.OMPUTES ALL THE F.IGENVA~UES OF A 

C SPARSE CVCLIC LOwER HESSE~BERG MATRIX OF THE fORM 
C M[ACI),8CI),,' BY BAI~STOW'S SYNTHETiC DIVISION 
C ~1EThOD w~ERE THE INPUT MATRIX IS OBTAINED AFTFR 
C P-Q SIMILARITY TRA!IIHORMATIONS, USING THE SCLH 
r. SUBP.OUTINE(PROGRAM 19). BCI),A(I) ~RE THE DIAGO-
e NAL hND SU8-D'AGO~AL ELEMENTS OF INPUT MATRIX OF 
r. O~DeR N. C,D,M,L,E,F ARE WORKING SPACE VECTORS, 
C EPS IS ACCURACV DESIRED IN THE DETERMINATION OF 
C OUAD~ATIC FACTORS, ON EX1T,~ AND loll HOLD REAL AND 
C IM.G'~ARY PARTS OF THF. CONPLEX EIGENVALUES. 

R~AL M,L,J,K,lO,~O.FO,FO 

OIME~SION A(N),BCN),C(N),D(N),M(N),LCN),E(N),F(N) 
1 ,"'(N) ,.I) CN) 

EPS=1,OE-05 
IrLG"Q 
J = 1 .0 
~,,1.0 

r.o =0,0 
DO =0,0 
DO 10 1=1,111 
CCI)=O,O 

10 OCl)cO.O 
OHTAJaO.O 
DELTIII( =0,0 
I .. 0 

20 CONTINUE 
IFCI.GT.O)GOTO 25 
LODa. 
MOD':O 
EOaO:O 
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FO:O.O 
t·, C , > "B (1 l ,. C 0 
L(1):-LO 
E(1):O,O 
F(I)",1,O 
IF(I.EQ.O)GOTO 3n 

25 l(l>=O,O 
M(J),,',O 
UJ+1)?-1.0 
M t 1+ I ) ~B (1.1 le C ( , ) 
E(I)"O,O 
F(I):O,O 
E(I."'O.O 
FCt-·n"O.o 

30 CONTINVE 
DO 45 IN: 1+2,N 
IF ( IN.EQ,2)GOTO 4~ 
LCINl=(H(I~)-J).lCI~-1l-ACI.)*lCIN·Z'-M(IN_l) 
M(INl:BCI~)*MCIN~"-~(IN).M(IN~2'.K*LCIN-I'-

HCl1\-I' 
E (J tn " (B (\ iP • J ) * ~ C I 11 ., ,. F Cl tJ·' , • A C IN) * E Cl N. 2' 
FCI Nl"BCINl*FCIN.ll.k*FCIN-".ACINl*FCIN-2)
LC Itl.') 
('OTO 45 

'" LCINl:C"(INl·J)*lCIN-I).ACIN'*LO_MCIN_" 
MCINl:BCIN'*MCIN.1).A(IN'*Mn-K*LCIN-').C(IN-l, 
FCIN):(R(IN)·J).F(I~-I)-FCIN-"-A(IN)*EO 
FCIN,=BCIN)*FCIN."-ACIN).FO_L(IN_1' 

I.~ CONTluUE 
MCN>=~(N)+J*LCN, 
IfCI.EQ.O)M(N)~~INl.C·')·.CN-1) 
FCN):HN).J*E(Nl 
Al~HA=K. E(N)+J*r(Nl 
aFT. "fCN).FC~)-ALP~A*ECN> 
nFLTAJ:CECNl*M(N)·FCN).l(~)"BETA 
DELTAK&(ALPHA *LI~)-FCN)*M(N»/BETA 
J=J+I\ElTAJ 
Ko: K +t)E LT A k· 
I f C H L G .,N E • 1 ) GOT 0 95 

C SOLVE QUADRATIC [CN. TO OBTAIN A PAIR OF E/VALUES. 
IFLG"O 

I"'.' DISCII = J*J +4*K 
IF(DISC~.GE.O.O)GOTO 10 
DISCI! :-DISCII 
W I (J ) = S Q I! T (D I S C R ) 12 .- 0 
loll< 1+' '=-1011 (I) 
W(J):J/2.0 
w(J+1l:J/2.0 
GOTO 80 

70 DISCR=SaRT(DISCR)/2.0 
W(I): J/Z.O-DISCR 
W(I."AJ/Z.O. DI~CR 
1.11(1)=0.0 
WJ(I+1)=O,O 

an cnNTINUE 
1 .. 1+' 
IF(N-I .LE.'>GOTO 100 
[10 90 IN .1-2,N 
IF (IN ,EQ.O)GOTo 90 
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r. (PIl cL (I 'l) 

D(IN)"M(lNl 
1)0 CONTI'JUF. 

CO = LO 
DO =~O 
J!?W(I"'l 
K!I.I(I) 
GOTD, '10 

?s IFCABS(DELTTAJ).LT.F.PS.AND.4BS(DELlAKl.lT.EPS) 
'IFLG,,1 

GOlD 20 
,00 CONT "Wf 

IF' N ~ I • ~I E • 1 ) GOT 0 I I I) 
W(N)= B(N)~L(N-'\ 

IJI(N)=O.O 
"0 RfTUR~1 

END 
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A2. 

The recursive point partitioning (R.P.P.) Algorithms (4.8) and (4.11) 

for the solution of a general tridiagonal and a general symmetric quindiagonal 

matrix system respectively were both programmed in parallel (see Programs 12 

and 13 of.Appendix I) and then run on the Loughborough University Interdata 

Model 70 dual processor computer. The two processors which we denote as A and 

B, '. h o.W!. pri vate memory of 32kb and a further 32kb of shared core memory. 

Processor A is known to be approximately 4.6% faster than processor B. 

In Table (A2.1) we give typical timing and other relevant results obtained 

from runs of the two parallel Programs 12 and 13. Calculations based on these 

results for the estimation of the speed-up and efficiency losses (due to 

memory clashing and parallel control overheads) of the two parallel programs 

are also given below. 

Timings Used for Estimating Speed-ups and Efficiency Losses of Parallel Programs 

Run on the Interdata Parallel Computer 

Timings (in secs.) 

Descriptions of events and/or Tridiagonal System Quindiagonal System 
parameters to be timed or measured of order n=650 of order n=650 

(Program 12) (Program 13) 

(1) Program running without Parallel Constructs 

Processor B alone I 0.65 1.39 

(2) Program running with Parallel Constructs , 

Processor B alone 

I 
0.67 1.42 

Processor A alone 0.66 1.40 

(3) 'Pr0S!am running wi th both Processors A and B running together in Parallel 

(a) Processor B first 0.36,0.35 0.74,0.74 (A & B in Parallel) 

FJSHED t 0.01,0.16 0.00,0.17 
GETRES+ 0.00,0.00 0.1,0.00 
RESCHECKS* 15,15 15,15 

(b) Processor A first 
0.35,0.35 0.73,0.73 (A & B in Parallel) 

FJSHED t 0.15,0.02 0.17,0.02 
GETRES+ fl.OO,O.OO 0.00,0.02 
RESCHECKS* 16,16 17,17 

TABLE A2.1 
t 
denotea time proaesaora are in the aaheduZer blith nothing to do. 

+denotes time in bJhiah there is bJaiting for paraZ"Lel aantrol of reaouraea. 
auah as getting/releaaing proteatian meahanism. 

*denotea the number of aheake made on resouraea. 



Typical Calculations Used to Estimate the Performance of Parallel Programs 

lZ and 13 (Based on timing results in Table AZ.l) 

Case 1: Tridiagonal matrix of order n=650 (Program 12) 

(a) Shared Memory (Static) Overhead 

Processor B alone (running in parallel) = 0.67 secs. 

Processor A alone (running in parallel) = 0.66 secs. 

Mean alone time (running in parallel) = 0.67 (=z say) 

The above implies that A is g:~!% = 1.5% faster than B. 

But a~ A is known to be approximately 4.6% faster than B, this 

implies a shared memory overhead of (4.6-1.5)% = 3.1% 

(b) Parallel Control (Static)Overhead 

Processor B alone with parallel control ;;:; 0.67 secs. 

Processor B alone without parallel control = 0.65 secs. 

,Parallel control (static) overhead = (0.67-0.65)/0.65% = 3.1% 

(c) Speed-up 

Running Alone Times 

Running alone time for Processor B without parallel = 0.65 secs. 
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Running alone time for Processor A without parallel = 93.8% of 0.65 

= 0.61 secs. 

where 93.8% is obtained after taking into account the % 

overheads in (a) and (b) . 

. .• Mean alone running time = 0.63 secs. (=x say) 

Running Together Times 

Running time for Processors A and B together with A first = 0.35 secs. 

Running time for Processors A and B together with B first = 0.36 secs. 

Mean together ,time = 0.36 secs (=y say) 

xxlOQ = 0.63xlOQ, 
Speed-up of the parallel program 1Z = Y =t 0.36 6 = 175% 



(d) Parallel Control ~namic) Overheads ·(due to contention for parallel 
control) 

Mean time in GETRES (for two run~when A and B are in parallel 

314 

= (0.0+0.0+0.0+0.0)/2 = 0.0 secs. 

Mean no. of RESCHECKS (for two runs) = (15+15+16+16)/2 

1 RESCHECK takes 250 ~ secs. 

Mean time for RESCHECKS 

= 31 

-6 
= 31x250xlO 

= .01 secs. 

Total contention time for parallel control = (0.0+0.01) = 

Parallel control (Dynamic) overhead __ 0.01 0.01 1 2~ 
-z- - 0.67 = .• 

(e) Shared Memory (Dynamic) Access Overhead 

0.01 secs. 

Mean alone time with parallel control = (0.67+0.66)/2 = 0.67 secs. 

Mean total active time when program is running in parallel 

(for two runs) = (0.36+0.35+0.35+0.35)/2 

= 0.71 secs. 

Mean time in FJSHED = (0.01+0.16+0.15+0.02)/2 

= 0.17 secs. 

Mean time in GETRES = 0.0 

..• Time for shared memory access contention = 0.71-0.67-0.17-0.0 

= -0.7 

The negative value implies that within the accuracy of our 

calculations, the shared memory access contention = 0.0% 



Case 2: Quindiagonal matrix of order n=650 (Program 13) 

(a) Shared Memory (Static) Overhead 

Processor B alone (running in parallel) = 1.42 secs. 

Processor A alone (running in parallel) = 1.40 secs. 

Mean alone time = 1.41 secs (=z say) 

Processor A is (0.02/1.40)% = 1.4% faster than B. 

But A is known to be approximately 4.6% faster, which implies 

a shared memory (static) overhead of (4.6-1.4)% = 3.2% 

(b) Parallel Control (Static) Overhead 

Processor B alone with parallel control = 1.42 secs. 

Processor B alone without parallel control = 1.39 secs. 

Parallel control (static) overhead 

(c) Speed-up 

Running Alone Times 

= (1.42-1.39)% = 
1.39 

2.2% 

Running aline time for Processor B without parallel controls 

= 1.39 secs. 

Running alone time for Processor A without parallel controls 

= 94.5% of 1.39% = 1.31 secs. 

where 94.5% is obtained after taking into account the % 

overheads in (a) and (b) • 

. Mean alone running time (1.39+1.31)/2 1.35 . . = = 

Running Together Times 

Running time for Processors A and B together, with 

Running time for Processors A and B together, with 

Mean together time = 0.74 (=y say) 

Speed-up of parallel program 13 = xxlOO% = 
y 

1.35xlOO" = 
0.74 • 

secs. (=x say) 

A first = 0.73 

B first = 0.74 

182% 
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(d) Parallel Control (Dynamic) Overhca~ (due to contention for parallel 
control) 

Mean time in GETRES (for two runs) when A and B are in parallel 
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= (0.10+0.004+0.00+0.02)/2 = 0.02. 

Mean no. of RESCHECKS (for two runs) = (2+2+17+17)/2 = 19. 

1 RESCHECK takes 250 ~ secs. 

Mean time for RESCHECK = 19x250xlO-6 = 0.005. 

Total contention time for parallel control = (0.02)0.05) = 0.025. 

Parallel control (Dynamic) overhead = 

(e) Shared ~lemory (Dynami c) Access Overhead 

0.025 
z 

= 
0.025 

1.41 = 1.7% 

Mean alone time with parallel control = (1.42+1.40)/2 = 1.41 secs. 

Mean total active time when program is running in parallel 

(for two runs) = (0.74+0.74+0.73+0.73)/2 secs. 

= 1.47 secs. 

Mean time in FJSHED = (0.0+0.17+0.17+0.0)/2 secs. 

(for two runs) = 0.17 secs. 

Mean time in GETRES = (0.01+0.00+0.00+0.02)/2 secs. 

(for two runs) = 0.02 secs. 

Time for shared memory access overhead 

= (1.47-1.41-0.17-0.02) secs. 

= -0.13 secs. 

Hence, shared memory (dynamic) overhead = 0.0% 

A summary of these calculations for both Case 1 and Case 2 is given 

in Table (4.1) of Chapter 4. 
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