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ABSTRACT 

Two-dimensional images of synthetic industrial diamond particles were obtained 

using a camera, framegrabber and PC-based image analysis software. Various 

methods for shape quantification were applied, including two-dimensional shape 

factors, F ourier series expansion of radius as a function of angle, boundary fractal 

analysis, polygonal harmonics, and corner counting methods. The shape parameter 

found to be the most relevant was axis ratio, defined as the ratio of the minor axis to 

the major axis of the ellipse with the same second moments of area as the particle. 

Axis ratio was used in an analysis of the sorting of synthetic diamonds on a vibrating 

table. A model was derived based on the probability that a particle of a given axis 

ratio would travel to a certain bin. The model described the sorting of bulk material 

accurately but it was found not to be applicable if the shape mix of the feed material 

changed dramatically. This was attributed to the fact that the particle-particle 

interference was not taken into account. 

An expert system and a neural network were designed in an attempt to classify 

particles by a combination of four shape parameters. These systems gave good results 

when discriminating between particles from bin I and bin 9 but not for neighbouring 

bins or for more than two classes. 

The table sorting process was discussed in light of the findings and it was 

demonstrated that the shape distributions of sorted diamond fractions can be 
. . . 

quantified in a useful and meaningful way. 
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Wm maximum projected sphericity 
a fraction of ellipse 

Fourier Analysis 
AI intercept of fitted line on a plot of An versus n 
An amplitude of nth harmonic 
an magnitude of nth cosine component 
bn magnitude of nth sine component 
L maximum arc length = perimeter 
Lo size normalised mean radius of profile radial distribution 
L,(n) LBV shape descriptors (see page 19) 
L,(m,n) LBV shape descriptors (see page 19) 
I arc length between start point and point xy 
N number of coefficients in a truncated series 
n harmonic number 
Ro radius of a circle with the same area as the profile 
R(S) radius at angle S 
S . normalised arc length 
S slope 
an phase angle of the nth component 
~(l) angle between tangent at start point and tangent at xy 
~·(t) ~(l) normalised for interval [O,27t] 
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am scatter 
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D fractal dimension 
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step size 
length estimate for step size e 
disc radius 
width of boundary 

proportion of sample in class i 
ith axis ratio class 
proportion of sample in bin j 
sample size 
probability that a particle in the ith axis ratio class will land in binj 
proportion that is in the ith axis ratio class and has landed in bin j 
standard deviation 

(vi) 



Expert System 
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Neural Network 
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a momentum 
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1 INTRODUCTION 

1.1 GENERAL INTRODUCTION 

Scientists and engineers who work with powders or particulate materials are aware of 

the fact that particle shape influences particle behaviour. They are constantly looking 

for new and improved methods of analysing the shapes of particles so that they can 

better understand and enhance the performance of their materials. 

This dissertation explores the possibilities for quantifying the shapes of the particles 

in synthetic diamond grits produced for saw-blades. It then uses shape measurements 

to analyse the shape sorting process. This chapter provides the background and 

describes the concepts and principles involved, before stating the objectives of the 

study. Chapter 2 contains a general overview of the literature on shape quantification. 

Selected methods are applied to diamond in Chapter 3 and used for modelling in 

Chapter 4. The use of artificial intelligence for shape classification is explored in 

Chapter 5. Conclusions are summarised and discussed in the final chapter. 

1.2 THE CONCEPT OF SHAPE MEASUREMENT 

Because people are accustomed to using numbers to describe size and words to 

describe shape, there is a tendency to think that shape is much more difficult to 

quantify than size. Size measurement is much more complex than many people 

realise, and shape measurement presents the same difficulties. Measuring the shape of 

fractions from a shape-sorting operation is a similar problem to measuring the size of 

fractions from a size-sorting operation (such as batch sieving). In either case the 

property must be defined before it can be measured and the most suitable definition 

depends on the reason for wanting the measurement. 

Before commencing any study on shape the following fundamental principles must be 

acknowledged and understood. 

• Separation and measurement are two different things. 
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• Shape is easily quantified. The difficulty is in identifying the most suitable 

quantifier for the application. 

• Few, if any, characteristics or behavioural traits of a particulate material are 

influenced by particle shape alone. 

These principles apply to all particulate materials, whether the shapes are regular or 

irregular, and diamond is no exception. 

1.3 INTRODUCING SYNTHETIC DIAMOND 

Diamond is an allotrope of carbon and is the hardest natural substance known. Each 

carbon atom lies at the centre of a regular tetrahedron and is bonded covalentiy to four 

other carbon atoms lying at the corners of the tetrahedron. The chemical stability and 

hardness of diamond are due to the rigidity of this structure and the nearness of the 

atoms (1.54 Angstroms). The optical properties of diamond, such as a high refractive 

index, give natural polished stones a brilliance that has made them popular in the gem 

market. The output from diamond mines also includes stones of lower quality, and it 

was quickly realised that the hardness of these rejects could be exploited. Called 

industrial diamonds, these natural stones find application in drilling and cutting 

operations. 

Graphite is the stable form of diamond at normal temperatures and pressures. 

Diamond is of higher density than graphite (3.52 as against 2.25) and is the high 

pressure form of carbon, but pressure alone is not enough to convert graphite to 

diamond. High temperature is required to provide sufficient energy to allow the 

carbon atoms to regroup into the diamond crystal lattice form. The first commercial 

synthetic diamonds were produced by General Electric in the early 1950s. Today 

there are many companies world-wide in the business of making diamond by 

high-temperature, high-pressure synthesis. The conversion of graphite to diamond is 

aided by metal solvents/catalysts, the most common combinations being cobalt/iron, 

iron/nickel and manganese/nickel. The graphite/metal mixture is encased in a ceramic 

capsule and inserted into a cemented tungsten carbide die, which is supported by a set 

of hardened steel rings in the press. U niaxiai pressure is applied through cemented 
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Figure 1.1 : Growth of Synthetic Diamond (after Figure 10.4 in The Properties of Natural and 
Synthetic Diamond, J. E. Field ed., Academic Press, 1992) 

tungsten carbide anvils and high temperatures are produced by an electric current. 

Typical pressures and temperatures are shown in Figure 1.1. 

Carefully designed pressure/temperature profiles give some control over the amount 

of time spent at conditions suitable for spontaneous nucleation, and at conditions 

suitable for crystal growth, so the process can be tuned to produce diamonds with a 

size distribution peaking at a certain size. The relative growth rates of the different 
• 
faces, and hence the final shapes of the crystals, are influenced also by the 

thermodynamic and chemical conditions in the capsule. The dominant crystal habit 

for diamonds synthesised by this technique is the cubo-octahedron. Diamonds of a 

cubic habit are formed at a higher pressure and lower temperature than diamonds of 

an octahedral habit. 

After synthesis the diamonds are recovered by dissolving the metal and the remaining 

graphite in acid. The output of anyone press run contains a distribution of sizes 

centring on the target peak size. There is also a variation in the crystallinity and 

purity of the particles, ranging from clear regular crystals to twinned crystals and 
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irregular particles with metal inclusions. A sieving operation sorts into size bands, 

then vibrating tables sort into shape classes. The result is a range of products, each 

uniform in its particle characteristics. 

Industrial diamond applications include cutting, grinding, sawmg, drilling, WIre 

drawing, coring, and polishing. To cover this wide range of applications there are 

natural and synthetic grits, strong crystalline grits, weak friable grits with a mosaic 

particle structure, large monocrystals and micronised powders. The diamonds are 

incorporated into tools using metal bonds, resin bonds, vitrified bonds, or 

electroplating. These grits carmot all come from the same synthesis process, so the 

ingredients in the capsule and the thermodynamic profile for the press runs vary for 

the different product types. 

This study will be confined to one type of synthetic diamond, namely sawgrits. The 

SDA (Saw Diamond Abrasive) range of sawgrits manufactured by De Beers Industrial 

Diamond Division consists of eight different products in a range of sizes from 20/30 

to 70/80'. At the top end of the. range are very strong, pure, regular crystals for 

sawing the hardest stone and cast refractories. At the lower end are crystals of lower 

strength, with metal impurities and less regular shape. These grits are used for the 

production of handheld, non-professional tools. Figures 1.2 and 1.3 show the 

products at the extreme ends of the range. 

There is no such thing as a reject particle in this industry because the wide range of 

products ensures that every particle is suitable for sale. However, particles are not 

purchased individually so it is essential that the sorting processes, including shape 

sorting, are effective in producing homogeneous particle sets. 

1.4 SHAPE SORTING ON A VIBRATING TABLE 

If a sample of particulate material is fed onto an inclined vibrating table at appropriate 

settings, the material separates into a number of classes. Assuming that the feed 

material is reasonably homogeneous with regard to size, surface texture and density, it 

I These sieve sizes indicate the number of wires per inch in the US mesh system. The use of "US Mesh" is now obsolete and 
"70/80 US Mesh" can be expressed as 70180 or 70/80#. The particles in a 70/80 size have diameters of about 200~m while 
20/30 particles are approximately lmm in diameter. 
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Figure 1.2 : SDA25+ Figure 1.3 : SDAIOOS 

is believed that the classification by the table is based on the influence of the shapes of 

individual particles on their movement across the table, and that the collecting bins 

contain shape fractions. Visual examination of the contents of the bins confirms a 

gradual change in overall appearance of the fractions, from rounded or blocky at one 

end of the table to irregular, flattened or elongated at the other end. The common 

explanation for this is that the rounded particles tend to roll and choose the steepest 

path available, while irregularly shaped particles couple to the vibration and take a 

higher path across the table. 

Figure 1.4 shows a standard Jeffrey Galion table with twelve collecting bins. Its 

variable parameters include feed rate, tilt angle, fore and aft angle, vibration level and 

deck surface. In most industrial processing applications, optimisation of these 

parameters tends to be based on getting an even spread across the bins, with the feed 

rate as high as possible. The distribution by weight across the bins is sometimes used 

as a shape measurement of the feed material for comparison purposes, but, strictly 

speaking, the vibrating table is not a shape-measuring device. It is a sorting tool, 

designed to divide a material into sub-classes based on shape. Usually the output of a 

tabling operation is examined by an experienced technician, the bin contents are split 
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Figure 1.4 : A sorting table 

or combined to give the required, visually acceptable fractions, and no measurement 

of shape is carried out. 

1.5 THE PROBLEM 

The vibrating table gives very little quantitative information on shape, and the shape 

gradient it produces for diamond particles is not understood. There is a certain 

amount of randomness in the movement of a particle across the deck so 

reproducibility is poor and there is a large overlap between the shape fractions 

produced, no matter how they are assessed. It is believed that the relative sizes of 

different facets on a diamond particle affect its tabling behaviour, resulting in a shape 

separation unique to the diamond industry. 

The many experiments carried out within the diamond industry in the past have failed 

to explain some of the tabling mysteries. For example, if the contents of ail the table 

bins are recombined and sorted again at the same settings the distribution by weight 

across the bins is repeatable, but if the contents of one of the middle bins is retabled 

on its own less than half of it will return to the bin from which it came. The rest 
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spreads out to the other bins. Suggested explanations are: (a) the interference between 

particles on the table is different if the feed material is different, and (b) the 

destination of a particle is governed by probabilities relating to the size and number of 

edges and flat faces. Some work has been done to lend credibility to the former (this 

. is discussed on page 131) but there is still a lack of understanding of what is really 

happening. Is the "even" sort the optimum sort? Why is there such an apparent 

overlap between the contents of adjacent bins? Why is the weight distribution 

repeatable when there appears to be so much randomness involved? 

These questions can only be answered if the bin contents can be analysed in detail, 

preferably by measuring individual particle shapes and analysing the shape 

distributions in the feed material and in the bins. Until recently this was almost an 

impossible task but now, with ever-increasing computer power, techniques like image 

analysis are more accessible. The ability to measure large numbers of particles and 

process data at high speed without huge capital expenditure has opened up new 

possibilities for quantifying shape. The time has come for a fresh look at the tabling 

of synthetic diamond. 

1.6 OBJECTIVES OF THIS STUDY 

The following hypotheses are proposed: 

Hypothesis 1; 

Hypothesis 2: 

There exists a shape quantifier that describes meaningfully the 

table sorting of synthetic diamond sawgrit particles. 

The shape quantifier can be used to characterise and model the 

table sorting of synthetic diamond sawgrit particles. 

The first hypothesis can be tested by applying known methods of shape measurement 

to tabled fractions. This hypothesis is supported if one or more methods show a 

definite trend in mean shape value across the bins of a table, and if the measured 

shape correlates with another measurable property known to be influenced by shape. 

If such a quantifier is found then hypothesis 2 can be tested by analysing bin contents 

for various table settings, repeat tabling, and retabling of individual bin contents. The 
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probabilities associated with the destinations of particles of a certain measured shape 

can be determined from the experimental data, and form the basis of a model. If a 

model can be set up, then both hypothesis 1 and hypothesis 2 are confirmed. 

The primary objective of this thesis is to produce a tabling model that is characteristic 

for diamond sorting. Secondary objectives are to understand and apply to diamond 

many different shape measurement techniques, to solve some of the mysteries of table 

sorting, and to suggest some improvements in diamond processing. 

1.7 SCOPE OF THE STUDY 

The study is confined mostly to De Beers SDA type synthetic sawgrit in size 40/45 

but other types or sizes are used for convenience or to illustrate a point. Tabling was 

carried out on tables similar to the Jeffrey Galion table shown in Figure 1.4, but with 

some minor modifications. The findings and conclusions of this study only apply to 

SDA type material tabled on these tables, although the general principles may hold for 

other applications. 

Some samples were taken by production personnel during routine tabling but 

otherwise all of the reported tabling, sampling, slide preparation, image analysis 

measurements, data manipulation, computer programming and typing were carried out 

by the author. 
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2 SHAPE MEASUREMENT - A REVIEW 

Many particle characteristics or properties are influenced by the shape of the particle, 

and cannot be analysed in full without taking the shape into account. This creates a 

need for shape measurement techniques across many branches of science and 

engineering. Particle technology is a recognised field in itself, but publications on 

shape analysis originate from disciplines as diverse as geology and aerospace 

engineering. There is a continuing demand for better methods of characterising the .. 
shapes of both individual particles and bulk powders. This has prompted the 

exploration of a multitude of different techniques for quantitative measurement of 

shape. 

2.1 THE SHAPE QUANTIFICATION PROBLEM 

Luerkens, Beddow and Vetter [I] defined particle shape as the recognised pattern of 

relationships among all of the points which constitute the external surface of the 

particle. Lloyd [2] suggested that the only way to characterise a particle's shape fully , 

is to divide the surface into small areas and record the location and orientation of each 

of these areas. He pointed out that even if this were practical it depends on the chosen 

magnitude of the areas, and conveys little useful information about the particle. 

Hausner [3] listed characteristics of individual powder particles and of bulk powder 

and explained the difficulties of singling out anyone of them to determine its effect 

on powder behaviour. Flook [4], on investigation of several different quantitative 

methods of shape description, concluded that it is unrealistic to expect that anyone 

type of shape coefficient will adequately quantifY all the aspects of particle 

morphology that contribute to the physical properties of powders in bulk. More than 

sixty years ago Wentworth said [5] it is to be hoped that more investigators will apply 

self-devised quantitative numerical methods to their problems, while profiting from 

the successes and failures of their predecessors. Nothing has been developed yet to 

change this sentiment. 
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The task of quantifying particle shape is obviously not an easy one. It is more or less 

agreed among the researchers in this field that it is overly ambitious to look for an 

absolute, universally applicable solution to the problem, so the only approach to take 

is to look for the method which gives the most useful and meaningful results in the 

context of a single application. In some cases this will mean no more than applying a 

simple, well-established technique; in others it may be necessary to invent a new one. 

Meloy, Mani and Clark [6] pointed out in a review of particle shape analysis and 

separation techniques that the human eye is the most sophisticated shape research 

tool, and its usefulness in identifying which shape properties to measure should not be 

overlooked. They claim that the secret of successful analysis is to avoid getting lost 

in a hyperspace of too many dimensions. 

It has already been stated that separation and measurement are two different things. 

However, in particulate industries there is generally a need for both and sometimes the 

result of a sorting operation is used as a characterisation of the feed material. For 

example, a sieving operation sorts by size, but the relative amounts of material on the 

sieves can prove that a sample is coarser or finer than another sample with a different 

sieving result. Although no actual measurement has been made the result of sorting 

has given some information about size. The same applies to tabling and shape 

measurement. However, since single particle measurement is the main concern in this 

work, shape separation techniques are reviewed separately, and the review of 

measurement methods concentrates on individual particle analysis. Bulk shape 

analysis (for example packing density) is not discussed. 

2.2 SEPARATION TECHNIQUES 

There are many ways to sort a particulate material according to behaviour that is 

influenced by particle shape. Examples of sorting devices based on the movement of 

particles on a vibrating surface are tilted vibrating plate, tilted vibrating trough, tilted 

rotating cylinder, tilted rotating disc, and tilted vibrating screen. These techniques 

have been in use for many years for mineral processing and in the grain industries. 

Endoh [7] modelled the behaviour of particles on a vibrating plate to show that 
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particles may be effectively sorted according to frictional properties at low inclination 

angle. Ohya et al [8] developed an inclined conveyor belt based on a similar model. 

More recently, Meloy and his colleagues [9, I 0, 11] developed sieve cascadography as 

a method of shape separation. This works on the principle that the residence time on a 

sieve is dependent on shape. If a closely-sized fraction of particles is sieved through a 

stack of identical sieves, the more irregular particles will take longer to arrive at the 

catchpan. This idea has been expanded to a two-dimensional network of sieves by 

Me10y and Williams [12], but is intended for separating spheres of similar but 

different diameters. It is interesting to note that these authors used the same 

mathematical techniques to model the behaviour of particles III both the 

two-dimensional cascadograph [12] and a vibrating plate [13]. In both of these 

separation methods each particle spends much of its time in flight, and its movement 

is influenced by its orientation each time it lands. The models allow particles to move 

in one of two directions on each bounce. Different particle populations have different 

probabilities associated with these directions and the models show how the 

populations separate over time. This is a highly simplified approach but the idea of 

basing the model on probabilities is attractive. 

Another sieving method for shape separation is the use of slotted screens. Nakajima 

et al [14] developed a practical method of using square aperture and rectangular slot 

sieves for shape analysis of crushing operations. Slotted sieves sort particles by two 

of their three principal dimensions - thickness and width. Whiteman and Ridgeway 

[15] compared the performance of slotted screens and a vibrating table in sorting both 

citric acid monohydrate and sodium perborate tetrahydrate. They used triaxial 

measurements and various shape factors to analyse the fractions produced by the 

sorting methods, and found that width *thicknessllength2 best described the shape 

variation for both materials and both methods. Ludwick and Henderson [16] studied 

the behaviour of ellipsoids (handmade from alabaster or ivory) on square aperture 

sieves, and developed a mathematical sieving theory based on particle passing 

probabilities. An interesting finding was that the type of particle making up the core 

of a fraction occurred in that fraction only, while other particles were distributed 

• 
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among other fractions. The authors suggested that the size distribution of a sieved 

sample should be constructed as a plurality of bell-shaped distributions, the area 

under each being proportional to the weight or number of particles trapped in each 

sieved fraction. Since their probability tables could only be used if a shape 

distribution of the input material was known, they finished their 1968 paper with the 

comment that a practical method of obtaining particle shape data was needed. 

Ludwick (17] later studied the passage of sand grains through a stack of slotted sieves 

of decreasing slot width and showed how to calculate the frequency distribution of 

relative particle thickness. 

Differences in the particle holding force or adhesion may also be used to sort by 

shape. Sano and co-workers have developed shape separators based on these 

differences. Particles are fed onto a rotating drum with circular holes. Spherical 

particles are held more tightly by the air suction than the non-spherical ones, which 

can be brushed off into a collector [18]. Alternatively particles are fed onto a rotating 

glass cylinder vibrated by an electromagnet. Non-spherical particles fall off and 

spherical particles are carried around to be brushed off into a separate collector (19]. 

The drag coefficient of a particle settling in a fluid depends on its shape as well as 

other factors. The settling velocity depends on the drag coefficient, the mass and the 

projected area in the settling direction. Sedimentation techniques are commonly used 

for sizing very fine particles, but can also be applied for shape separation. Endoh and 

Iwata [20] demonstrated the use of this technique to separate blocky mica particles 

from flaky ones. 

A review of shape separation of particles has been published by Furuuchi and Gotoh 

[21]. It describes all of the above techniques in detail and provides a comprehensive 

list of references. 

2.3 ANALYSIS OF INDIVIDUAL PARTICLES 

Single particle shape quantification can be divided into two main categories. The first 

involves making actual measurements on the particle or some profile of the particle 
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and combining the measurements to obtain a shape factor. Typically the 

measurements have dimensions of length, area or volume .. An example of such a 

shape factor is maximum diameter*minimum diameter/area. A brief history and 

review of the development of this type of shape factor is given in section 2.3.1. Many 

of these can be applied to diamond particles and will be discussed further in Chapter 

3. 

The second type of measurement is based on computation using the co-ordinates of a 

two-dimensional particle outline. F ourier analysis and fractal analysis are two of the 

methods in use and there are also some methods for counting the corners on the 

outline. These are introduced and reviewed in sections 2.3.2, 2.3.3 and 2.3.4 

respectively, and are applied to diamond in Chapter 3. 

2.3.1 Shape Factors 

Prior to the development of fast computers and automatic imaging systems, the task of 

analysing particles individually was very tedious and slow. For larger particles 

triaxial measurements could be made mechanically, but even the simple idea of 

picking three diameters has never been rigidly defined, and there is no agreement as to 

whether or not the three diameters should have a common point of crossing, or even 

be mutually perpendicular. Wadell [22) tried to move away from characterisation by 

diameter and proposed measurements of sphericity and roundness. As he was 

interested in sedimentation he defined sphericity in terms of surface area compared to 

the surface area of a sphere of equal volume. He defined roundness as the sum of the 

curvature of all the corners in one plane of the particle, where the curvature of a 

corner is expressed as the ratio of the radius of curvature of the corner to the radius of 

the maximum inscribed circle in the plane of measurement. The impracticalities of 

using these definitions in practice, however, meant that he later resorted to using 

diameters of circumscribed circles and of circles of equivalent projected area, instead 

of surface area measurements [23]. Nevertheless, he saw roundness and sphericity as 

two distinct properties. Wentworth [5) disagreed with these definitions on the basis 

that a particle could then have a high degree of sphericity and no roundness, which 

contradicts the intuitive notion of sphericity. He also pointed out that there was a 
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Author Shape Factor Symbols 

Wadell sphericity s !F surface area ofa sphere of the 
S same volume as the particle 

S=surface area of the particle 

roundness ~!: r=radius of curvature of a corner 
R 

R=radius of maximum inscribed 
N circle in the plane 

N=number of corners in the plane 

Zingg four classes b c 2 a=longest diameter 

of roundness a'b <>"3 b=intermediate diameter=longest 

based on: diameter perpendicular to a 
c=short diameter=longest diameter 
perpendicular to a and b 

Krumbein sphericity readfrom chart ~ v' s~ a,b,c as above 

Aschenbrenner sphericity Ss Sr=surface area of the 
ST tetrakaidekahedron defined by 

orthogonal dimensions of the 
particle 
Ss=surface area ofa sphere ofthe 
same volume as the 
tetrakaidekahedron 

Heywood volume 1::. V=volume of the particle 

coefficient dJ d=diameter of circle of same area 
as projected particle profile 

surface area .£ S=surface area of particle 

coefficient d' d=as above 

Hausner elongation fI. a,b=long,short sides of enclosing 
b rectangle of minimum area 

bulkiness ....!L A=area of particle profile 
axb 

surface factor p' P=perimeter of particle profile 
41tA 

Medalia anisometry fI. a,b=major,minor axis of ellipse 
b with same radii of gyration as 

particle profile 

bulkiness nab nab=area of ellipse 
A A=area of particle profile 

Table 2.1: Examples of shape factors 

growing number of indexes of sphericity and roundness, and that no one of them 

could be the "correct" one. 

Zingg [24] used triaxial measurements to classify pebbles by shape. The four classes 

were based on the ratios of an intermediate diameter to the long diameter and the short 

to the intermediate diameter, and were described as disks, spheres, blades, and rods. 

Some years later Krumbein [25] developed a procedure for measuring sphericity 
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which used the same ratios as Zingg and gave average sample values in agreement 

with results from Wadell's method. Krumbein's sphericity was based on Wadell's 

defi'nition but used the volume of an ellipsoid rather than a sphere. The procedure for 

obtaining the results was much more practical, although very crude by today's 

standards. It involved making calliper measurements of the three diameters, 

calculating the ratios, and plotting them on a special chart. This routine took one to 

two hours for fifty pebbles, or thirty minutes using a less accurate version of the 

routine. Roundness was then estimated by comparing each pebble to a set of pictures 

of pebbles of known roundness. 

Aschenbrenner [26] took Wadell's sphericity a step further. The length, width and 

thickness measurements were used this time to approximate to a tetrakaidekahedron -

a form which is bounded by three pairs of equal and opposite quadrilateral faces and 

by four pairs of equal and opposite hexagonal faces. This was chosen in preference to 

an ellipse because the surface area is more easily calculated and because sedimentary 

particles do not usually have smooth surfaces. Sphericity was then defined as the 

ratio of the surface area of a sphere of the same volume as the tetrakaidekahedron to 

the surface area of the tetrakaidekahedron. Because of the greater angularity this gives 

slightly smaller values of sphericity than Krumbein's ellipsoidal estimation. 

Perhaps the most well-known measures of shape are the Heywood shape factors [27], 

which relate the mean projected diameter of a particle to its volume or surface area. 

Because of the difficulties in measuring the volume and surface area of an individual 

particle these shape factors tend to be determined using approximations. The volume 

coefficient can be calculated if the number of particles and the mean size, weight and 

density of a closely sized fraction are known. Calculation of the surface coefficient 

requires the use of a table of constants derived by Heywood for the shape groups of 

angular tetrahedral, angular prismoidal, sub-angular and rounded. 

Instead of concentrating on spheres, Hausner [3] opted to examine the projected 

profile of a particle in its most stable plane and base his dimensionless shape factors 

on the surrounding rectangle of minimum area. The ratio of the long to the short sides 

of the rectangle gives an elongation factor. The bulkiness is measured by the ratio of 
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the area of the particle to the area of the rectangle. Finally, resorting to a circle again, 

the surface factor compares the perimeter of the particle to the perimeter of a circle of 

equivalent area. The formula for calculating the surface factor is pl / 47rA, where P is 

the length of the perimeter and A is the area. This has since become widely accepted 

as a measure of circularity. 

Medalia [28] also devised anisometry and bulkiness shape factors, but instead of using 

a bounding rectangle he approximated the particle by an ellipsoid with equivalent 

radii of gyration according to the rules of rigid body dynamics. The anisometry is 

taken as that of the ellipsoid, and the bulkiness is determined from a comparison of 

the volume of the ellipsoid with that of the particle. For simplification, a two 

dimensional ellipse can be used to represent a projection or section of the particle. 

Whereas most of the shape factors discussed so far are based on the convex hull of the 

particle, Medalia's method takes every point on the body into account (within the 

limits of the chosen resolution, of course). In the quantification of macro shape, 

convex hull methods tend to be unduly affected by protuberances or other minor 

variations in shape. 

A population of particles can be represented by a triangular plot using triaxial 

measurements. This technique is used in sedimentology to study the effects of folding 

and faulting on the deformation of pebbles in the earth's crust, or to study the sand and 

silt content of sediments. For example, Bums and Spry [29] plotted ellipsoidal 

pebbles on a triangular diagram with sides In(x/r), In(y/r) and In(zlr), where x, y and z 

are the axes of the ellipsoid and r is the cube root of xyz. The scatter diagram so 

produced could then be contoured to give a shape dispersion of the population of 

pebbles. In this case the application was to find the pure component of strain in the 

interior of the pebbles. Sneed and Folk [30] defined the maximum projected 

sphericity, Wm, as the cube root of cl/ab, where a, b and c are length, width and 

thickness respectively. They used this on one axis of a triangular plot, with cia and 

(a-b)/(a-c) on the others. Davies [31] suggested adding Wadell's roundness on a 

vertical axis to give a three dimensional representation of form and roundness 

features. However, in practice, he simply used a, b and c on the horizontal axes and 
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roundness on the vertical in a study of abrasive powders. Contours were plotted in 

two dimensions at various mean roundness values. 

Although the idea of representing particle populations on a triangular plot is widely 

applicable, the choice of parameters for the axes tends to be unique to each 

application. A poor choice could result in a set of elaborate diagrams giving little or 

no useful information. 

2.3.2 Fourier Analysis 

If the outline of a particle profile is "unrolled" the resulting waveform can be 

analysed. The most usual way to do this is to choose a point within the particle as the 

origin, for example the centroid, and express the boundary points in polar co-ordinates 

with respect to this origin. A Fourier series can then be used to represent radius, R, as 

a function of angle, 8. A true Fourier series has an infinite number of terms, but for 

computational purposes an appropriate truncation point, N, has to be chosen, and the 

series is expressed 

N 

R(8)=Ao+ L (ancosn8+bnsinn8) ............... (I) 
IFI 

The number of coefficients that can be calculated is limited by the number of data 

points on the boundary. Regeneration of the profile from the truncated F ourier series 

is a good test of its appropriateness. Shape information can then be extracted from the 

coefficients. 

Many authors have explored this form of shape analysis. Schwarcz and Shane [32] 

continued with the established concept of sphericity and roundness. In two 

dimensions sphericity became circularity and they defined it as the sum of the squares 

of the coefficients. Two methods of evaluating roundness, or, more correctly, surface 

irregularity or roughness, were proposed. The first, m" is based on the degree of fit of 

approximations of successively higher order and is defined as the number of terms of 

the Fourier series required to give a fit error less than a prescribed value, the fit error 

being the root mean square difference between the regenerated profile co-ordinates 

and the original data. The second measure is the root mean square difference between 
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a curve defined by half the points and a curve defined by all the points. When tested 

on plastic particles from various stages of a rounding process these two measures 

were found to be equally sensitive. 

Ehrlich and Weinberg [33] defined a roughness coefficient as the average squared 

deviation of the profile perimeter from a circle of equal area. This is very similar to 

the Schwarcz and Shane definition of circularity. They considered a modified version 

of this which allowed selection of a certain range of harmonics, rather than using all 

of them, and showed how analysis of different ranges could lead to different types of 

information on sand grains. 

Using the relations 

An = Ja~ +b~ ..................................... (2) 

Un = tan-1 (bn/an) ................................ (3) 

a F ourier series can also be expressed 

N 

R(e) =Ao + L Ancos(ne - un) ................... (4) 
n=l 

where An is the amplitude and Un is the phase angle. Meloy [34] plotted An against n 

on a log-log scale and found that for a wide range of different types of particles there 

is a simple linear relationship. He proposed three shape parameters associated with 

this kind of plot - slope, intercept, and scatter about the fitted line. 

The amplitude of the tenth harmonic was used by Gotoh et al [35] to characterise the 

shape of a particle by a fraction of ellipse, u, and a fraction of diamond (i.e 0 shape), 

I-u. AIO is taken from the fitted line of the log-log graph, as plotted by MeJoy, and the 

ratio, k, of the long to the short axis of an equivalent ellipse is calculated. A point is 

then plotted on a graph of k versus AIO which contains contour lines for an ellipse and 

a diamond. The purpose of this analysis is to give an intuitive description of shape in 

terms of prescribed forms. 
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Beddow et al [36] defined a set of morphic descriptors that could be extracted from 

Fourier series coefficients. The set of amplitude coefficients is divided arbitrarily into 

three portions and the sums of the lower, intermediate and higher members give 

values for lumpiness, roughness and texture respectively. Asymmetry is defined as 

the sum of the absolute values of the phase angles where the corresponding 

amplitudes are large (that is at least within an order of magnitude of Ao). They also 

defined the centroid aspect ratio as the maximum dimension through the centroid 

divided by the dimension perpendicular to it. They then calculated these parameters 

for atomised copper/lead and sponge iron. Various combinations of pairs of 

parameters were plotted and it was suggested that a linear decision function to 

distinguish between the two powders could be developed using visual observation. 

Beddow et al [37] discussed the interpretation of the F ourier coefficients and pointed 

out that a scalene triangle will not necessarily have a notably high value of A,. They 

concluded that it is preferable to regard the coefficients as a set, rather than as 

individual descriptors. 

The Fourier coefficients a", bn and an are rotationally variant, which means that the 

same profile in a different orientation will have a different set of coefficients. 

Beddow et al [36] defined the orientation by rotating the particles so that the longest 

axis was at 8=0. This also facilitated the computation of the centroid aspect ratio 

from the coefficients. Luerkens, Beddow and Vetter [38] later went on to develop a 

set of morphological Fourier descriptors which are rotationally invariant. Using the 

second form of the F ourier series (equation 4) the size and shape terms are defined as 

follows: 

N 
Ro = A2 +! ~ A2 o 2 n=1 n ............................... (5) 

Lo = Ao/Ro ........................................ (6) 

L2(n) = A~/2R~ .................................... (7) 

(m+n=2,3,4 ... N) 



20 

The size term, R., is the radius of a circle having the same area as the particle profile. 

L. is the size normalised mean radius. L,(n) is the size normalised inner product of 

R(9)-Ao and A.cos(n9-u.), and is related to the second moment about the mean of the 

radial distribution as follows: 

'" 
fl2 = R~~ L2(n) ................................. (9) 

n=1 

A high value of L,(2) indicates an elliptical profile, or a profile with a large aspect 

ratio. A large L,( 3) means the particle has an equilateral triangular profile, while a 

large L,(4) suggests a squared or blocky profile. Higher order L,(n) terms can be 

interpreted as roughness. 

LJ(m,n) is the size normalised inner product of (R(9)-Ao)' and A.cos(n9-u.) and is 

related to the third moment. 

'" '" 
fl3 = R~ ~ ~ L3(m, n) ......................... (10) 

m=1 n=l 

The particle profile can be regenerated from the size and shape terms. The number of 

terms needed is the same as the original number of coefficients, but with the 

advantage of being rotationally invariant. 

Swanson and Vetter [39,40] applied this technique to characterise abrasive soil 

particles and to study the effect of abrasive particle shape on the wear rates of selected 

steels. They measured roughness as the sum of the L,(n) terms where n>S. They 

defined radance as I-L.', which is the total variance of the profile from a circle of the 

same area. Both these parameters successfully distinguished between angular crushed 

quartz particles and more rounded AFS test sand. They also showed a marked 

difference between two batches of crushed quartz, ordered to the same specification, 

which had behaved differently in wear tests. 

Rajpal et al [41] studied the relationship between these descriptors and batch sieving 

behaviour of metal powders. A change in features with sieving time was observed. 

Morphic descriptors were then used as shape factors in calculating probability of 
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passage, and sieving curves were drawn. These curves were found to agree with 

experimental data. 

Fourier series expansion of a three-dimensional body was explored by Gotoh and 

Finney [42]. Using cylindrical co-ordinates, the particle is expressed as a 

superposition of two-dimensional sections. The resulting coefficients can then be 

used to approximate the particle by an equivalent ellipsoid with the same volume, 

surface area and average projected area. Luerkens [43,44] also developed a method of 

three-dimensional particle representation, based on the morphological variational 

principle, which states A mathematical representation of a particle or surface may be 

derived by finding a normalised boundary jUnction which causes the surface area 

integral to take on stationary values. Using the variational principle, the solution for 

a flat particle, or flake, is the Fourier equation, as discussed previously. For an 

extended surface the surface height in the z direction can be expressed as a function of 

8 in a Bessel-Fourier form. This also finds application in texture analysis of images, 

where surface variation is represented by changes in grey level. Using a spherical 

co-ordinate system, bulky three-dimensional particles can be represented using a 

Legendre-Fourier function to express radius as a function of azimuthal and polar 

angles. Boundary functions have also been developed for fibres and threads using a 

Tchebycheff-Fourier form for expressing radius as a function of8 and z. 

The Luerkens equations form the mathematical basis for a complete characterisation 

of particle shape, but application is hindered by difficulties in obtaining the 

three-dimensional data. In practice, most analyses are carried out in two dimensions, 

using the standard F ourier form. 

One of the biggest drawbacks of the Fourier (R,8) method is the requirement that there 

is only one value of radius for each angle, which rules out this method for re-entrant 

particles. Zahn and Roskies [45] used an alternative approach to overcome the 

problem. Instead of converting x,y pairs to polar co-ordinates, the profile is 

parameterised by arc length, I, from a starting point to (x,y), and the angle, $(1), 

between the tangent at the starting point and the tangent at (x,y). To normalise to the 

interval [0,211] the function $*(t) was defined: 
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~'(t) = ~(l)+t .................................... (11) 

where t = 21tllL 

This function can then be expanded into a F ourier series. Zahn and Roskies used the 

amplitudes and phase angles to analyse shape symmetries and similarities, 

experimenting with shape discrimination of numerals from hand-printed character 

sets. Fong, Beddow, and Vetter [46] compared this method with the (R,6) method and 

found that the (~,l) method was superior when it came to regenerating the profile, for 

both simple and complex profiles. 

Luerkens, Beddow, and Vetter [47] proposed a third Fourier method, called the (R,S) 

method. The co-ordinates of the profile boundary are converted to polar co-ordinates. 

A Fourier series expansion is used to represent radius as a function of normalised arc 

length, s, and another Fourier series expansion is used to express the first derivative of 

the angle with respect to s, as a function of s. As with the other methods, the F ourier 

coefficients can be reduced to invariant forms and statistical methods can be applied 

to discriminate or cluster the data. The advantages of the (R,S) method are that it can 

be used to differentiate between re-entrant and non-re-entrant particles, and that 

properties such as area, moment of inertia etc. can be calculated analytically. The 

main disadvantage is the requirement for two F ourier series expansions. 

Shibata and Yamaguchi [48] overcame the re-entrant problem by using the x and y 

co-ordinates instead of the radius and expressing each as a function of i, where i = I to 

N for N angular steps around the profile beginning at 6=0. They used half-range 

Fourier transformations (sine only) and found that y(i} could be expressed with fewer 

higher harmonics because of its similarity to a sine wave. This prompted them to shift 

x(i) by NI4 (90°) so that x(J) = 0 and it would also resemble a sine wave. This 

significantly reduced the number of harmonics needed for regeneration of the original 

profile. This method is called the shift x, y co-ordinate function method. 

Meloy [49,50] showed how Walsh transforms can be used in a similar way to Fourier 

functions. The added advantage is that Walsh coefficients represent a series of square 

waves, so the solution of integrals becomes easier, and physical properties such as 
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excess surface area can be derived by use of superposition. Other orthogonal 

functions include the pulse wave Haar transform. This can be applied to a set of x,y,Z 

co-ordinates, typically obtained by taking an SEM image of the fine surface detail 

using Y modulation. 

2.3.3 Fractal Analysis And Polygonal Harmonics 

In 1977 Mandelbrot published his book ".Fractals: Form, Chance and Dimension" 

[SI), which triggered a whole new approach to the measurement of shape. In the 

book, Mande1brot describes how Richardson estimated the length of coastlines by 

stepping along a map with a pair of dividers and finding that the length estimate, L(e), 

increases without limit as the step size, e, decreases. A plot (now called a Richardson 

plot) of log L(e) against log e yields a straight line with negative slope. Mandelbrot 

recognised the significance of this slope and coined the term fractal, where the slope 

is i-D, and D is the fractal dimension of the rugged boundary. 

Kaye [S2) decided that rugged fine particle profiles have, like coastlines, a sufficient 

degree of self-similarity to make the concept of fractal dimension a useful one. His 

initial experiments in manually stepping around profile boundaries showed that 

rugged fineparticles can exhibit fractal characteristics, with more complex outlines 

giving a higher value of D. He also described a method based on the intersection 

frequency of the lines of a grid with the profile. As the grid spacing decreases, more 

of the profile detail is taken into account. These manual methods are tedious and 

time-consuming so Kaye made some suggestions for automating them. He proposed 

using coupled light pens on a computer screen for the hand-and-dividers technique, 

and line scan logic for the grid technique [S3). 

This encouraged other workers to explore computer-based techniques. Using digital 

images a sequence of discrete boundary points can be obtained, and various 

algorithms for stepping along these points were quickly developed. An exact method 

requires an iterative process to test each point until the step length is exceeded and 

then find the exact position by interpolation. Schwarz and Exner [S4) simply took 

every nth point along the profile and calculated the distances between them. The sum 
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of these distances (plus the length required to close the polygon) gave the perimeter 

estimate, and the average distance gave the equivalent step length. Clark [55] 

preferred to find the discrete point closest to the step length from the previous point, 

calculate the distance, and then obtain the perimeter and average step length as in the 

Schwarz and Exner method. He called this the hybrid method and referred to the 

Schwarz and Exner method as the FAST method. 

Normand and Peleg [56] showed that the Richardson plot can be constructed directly 

by counting the number of edge pixels at different resolutions. An SEM micrograph 

of an agglomerated instant coffee particle was digitised and the variation in resolution 

was then achieved by averaging blocks of pixel grey-level values. The results agreed 

with published data on instant coffee from other methods. 

Kaye [57] compared fractal analysis with Fourier analysis by constructing Richardson 

plots for profiles which had been regenerated from finite F ourier series. The profiles 

which were regenerated with fewer harmonics showed Euclidean regions (ideal 

smooth curved shapes give a flat Richardson plot). As more harmonics were added, 

the break point between Euclidean and fractal portions of the graph occurred at 

smaller step lengths. Kaye suggested that, as a profile becomes more rugged, the 

number of harmonics required to describe the ruggedness increases exponentially. 

Because many stereological measurements are affected by the resolution at which they 

are measured, Flook [58] suggested that a fractal plot should be drawn first, to 

determine whether the structure exhibits fractal behaviour over the range of resolution 

being used. Fractal plots may also be used to adjust data obtained at different 

resolutions. 

A different approach is to use dilation logic, now available on most image analysis 

systems. This method is based on a technique used by the mathematician, Cantor, to 

tame non-differentiable curves. Each point along the curve is replaced by a disc of 

radius r, giving a path of width 2r. The area of the path divided by the width gives an 

estimate of the length of the curve. The length estimate decreases with increasing r. 

As before, the fractal dimension can be obtained from a plot of log L versus r. Flook 
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[59] employed this method using an octagonal dilation element on a commercially 

available image analysis instrument. 

An improvement on sequential dilations is the use of the distance transfer function. 

This image analysis function assigns to each pixel within a defined area a value 

representing the distance to the nearest edge pixel. The result is a series of contours 

corresponding to different radii of dilation. The area occupied at a chosen dilation 

radius corresponds to the number of pixels with values equal to or less than that 

radius. The advantage is that this is a circular dilation. Adler and Hancock [60] 

proved this method to be faster than sequential dilation and also suggested a 

correction to compensate for overlaying the dilation on an orthogonal grid. 

There are many pitfalls in fractal analysis and none of the techniques discussed here 

has overcome them all. Different methods give different results. Results can be 

greatly influenced by choice of starting point. The range of resolution (step length, 

grid spacing, width of dilation element etc.) is limited by digitisation at one end of the 

scale and by the size of the image at the other. At large step lengths there is the 

problem of closing the polygon with a smaller step. Many real particles can be 

"semifractal" or "multifractal" - terms coined by Kaye to describe cases where the 

Richardson plot is linear in segments only. In short, anyone choosing to calculate the 

fractal dimension of a profile will have many decisions to make, all affecting the final 

result. Graf [61] gave some recommendations on resolution limits and the 

presentation of Richardson plots. Wright and Karlsson [62] compared three of the 

methods and arrived at some fairly bleak conclusions about the whole idea of using 

fractal dimension as a characterisation parameter. Orford and Whalley [63] discussed 

the problem of locating the two (or more) linear regions on the Richardson plot. In 

studying biological objects, Rigaut [64] found that he was getting upper convex plots 

and derived empirically a new mathematical formulation to fit his data. He questions 

the wisdom of fitting straight lines rather than accepting a continuously varying 

fractal dimension. 

Alien, Brown and Miles [65] reviewed the documented techniques for measuring 

boundary fractal dimensions and concluded that ultimately the best fractal analysis 
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method is that which is both suited to the computational facilities available and 

provides results of sufficient accuracy. They felt that most inaccuracies result from 

poor use of the methods rather than poor choice of method. They also gave some 

recommendations for authors so that published results from different techniques could 

be compared more easily. 

Given that there are difficulties associated with all methods of shape measurement, 

these problems do not make fractal analysis any less attractive and it continues to gain 

momentum and produce off-shoots, one of which is the use of shape descriptors based 

on fractal harmonics, also called polygonal harmonics. Clark [66] pointed out that 

fractal analysis cannot describe reliably the macroscopic particle shape, and 

introduced the idea of describing the ability to construct within the profile two 

diametrically opposed points (2nd harmonic), equilateral triangles (3rd harmonic), 

rhombuses (4th harmonic) etc., within certain geometric constraints. These are simple 

harmonics, and exist if a sequence of steps around the boundary produces a closed 

polygon with all sides equal to the step length. Complex harmonics are those which 

require more than one traverse of the edge to achieve closure. Clark noted that the 

range of step lengths over which a particular harmonic exists is related to particle 

shape and he defined the persistence of a harmonic as the ratio of the upper value of 

step length to the lower value of step length for the existence of that particular 

harmonic. Reilly and Clark [67] measured persistences of the second to sixth 

harmonics, and the ruggedness of the boundary, for a variety of shapes, including 

some computer-generated shapes. They also carried out F ourier analysis on some of 

the objects and compared persistences with the Fourier coefficients. There was no 

clear relationship between them. Clark, Gabriele, and Shuker [68] found that the 

persistence of the sum of the second harmonics of three views of the particle 

correlated with the drag coefficient for pebbles and gravel settling in water. 

Young et al [69] observed that, for complex shapes, harmonics can exist for a range of 

step lengths, then disappear and then prevail again for a while, with occasional jumps 

to complex harmonics. Thus, a particular harmonic might not exist exclusively over 

its full range. This causes difficillties in measuring persistence so Young et al 
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suggested organising the data into a distribution of harmonics over a defined range of 

step lengths, and identifying those harmonics that have a high probability of 

occurring. Since the choice of starting point can affect the results, the distributions of 

harmonics at twenty equally-spaced points on the particle boundary were calculated 

and averaged. This characterisation scheme was applied to synthetic fractal shapes 

and real adsorbent particles. For the fractal particles it was found to give a good 

description of macroscopic shape, as well as being sensitive to subtle shape details. 

The results for real particles proved to be much more complex, but the technique still 

provided an acceptable shape analysis. 

Maeder and Clark [70] later refined the idea of persistence of a harmonic to give a 

new shape descriptor - harmonic endurance. This places more weight on low order 

harmonics and factors out the impurity of high order and complex harmonics within 

the ranges. 

Another technique which involves stepping around the boundary of a profile is Piper's 

shape analysis technique [71]. Each step is seen as a vector and the angle between 

each vector and the next is recorded. A frequency plot of the distribution of angles 

provides an indication of the roughness of the profile. Pickett, Clark and Shuker [72] 

adapted this technique. Having found the first angle, they used the same step length 

to find another angle starting at the next point after the starting point. This is repeated 

so that every point is used in the analysis and there is no dependence on choice of 

starting point. By analysing a wide range of shapes in this manner they demonstrated 

how measured roughness varies with step length, and how a plot of average angle 

versus step length gives information on the variation of roughness over a range of 

scales. 

A variation on Piper's analysis is Delta analysis, proposed by Clark and Meloy [73]. 

They chose to find the angles between two vectors separated by a small distance. A 

frequency plot over the range of angles measured helps to distinguish between 

particles of different roughness. By varying the distance between the lead vector and 

the following vector, the roundness of the fine structure on the particle edge can be 

measured. 
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2.3.4 Other Methods 

Several other innovative methods of shape characterisation that have been reported in 

the literature are worth mentioning. Kaye et al [74] showed how a facet signature 

waveform can be generated by plotting the length of chord spanning a particular 

number of points of a profile boundary against the starting point of the chord. 

Corners on the profile are represented by dips on the graph, giving a measure of 

sharpness. Beresford and Lloyd [75] also developed a corner counting method. It 

was based on the radius of curvature of the profile at various angles. Plots of the 

radius of curvature against angle showed the corners as troughs. Since diamond 

particles have a faceted surface, and therefore have corners, these two corner counting 

methods are interesting and are explored further in Chapter 3. 

Kaye [76] has also suggested the use of Feret diameter signature waveform as a shape 

characterisation parameter. The waveform is obtained by plotting the projected 

diameter in a given direction against angle as a particle is rotated about a selected 

pivot point. 

Kaye, Naylor and co-workers [77] attempted shape characterisation using optical 

technology. In Shape Analysis by Diffraction Originated Waveform (SHADOW) the 

silhouette of a particle is used to generate a Fraunhofer diffraction pattern using laser 

light. A wave is generated by rotating a disc, from which a V -shaped sector has been 

cut, in front of a photocell. This wave is treated as the signature waveform for the 

description of the particle. 

Clark, Reid, and Kaye [78] used laser diffraction to measure an asymmetry factor on 

aerosol particles. They developed an instrument similar to those used for particle 

sizing, but separated the scattered light so that both size and shape could be measured. 

They then compared results from spheroidal iron oxide particles, with size and aspect 

ratio obtained by image analysis. The results were significantly different, with the 

light scattering method giving broader distributions in both cases. This was explained 

by inappropriate calibration of the diffraction instrument, and the fact that the 
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particles were presented to the laser beam in random orientation as opposed to stable 

orientation for image analysis. 

Staniforth and Rees [79] developed a shape factor, shah, designed specifically for 

re-entrant particles. It is calculated as the number of downward pointing projections, 

e, in a sample set of particles, divided by the number of particles, n, in the sample. 

Since shah gives no indication of the basic geometric form of the particles, Staniforth 

and Rees [80] combined it with the Heywood shape factor,j1k, where/is the volume 

coefficient and k is the surface coefficient. They drew up a schematic combination 

diagram, which gives an intuitive representation of shape according to the 

combination of measurements. 

Meloy [81,82] studied particles resulting from fracture of brittle materials and 

proposed a particle characterisation scheme based on counts of faces, edges, and 

points. He derived three simple equations relating these numbers, and giving a 

frequency distribution of the sizes of the faces. 

Bandemer and Kraut [83] showed how fuzzy theory can be applied to shape analysis 

of a quartz particle. From a greyscale image a sympathy function with respect to a 

suitable family of planar shapes is computed. 

If particles in a sample from a population are characterised in terms of p parameters 

then each particle can be represented as a point in p-dimensional feature space. 

Cluster algorithms or discrimination algorithms can then be used to analyse the data. 

An example of this type of analysis is given by Heidenreich and Muller [84] in an 

investigation of the flowability of wheat and oats. Bonifazi and colleagues used 

pattern recognition techniques to classify mineral particles [85,86]. This leads on to 

the possibility of using artificial intelligence techniques to see if table sorted diamond 

can be classified with combinations of shape factors. Chapter 5 details the application 

of an expert system and a neural network. 
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2.4 A REVIEW OF SHAPE ANALYSIS OF DIAMOND 

The preceding sections gave an overview of the possibilities for shape measurement in 

general but work has also been carried out specifically for diamond particles. This 

section summarises past efforts by De Beers and others to quantify diamond shape. 

Custers and Raal [87] described a method of calculating average volume shape factors 

of diamond grit samples. The total projected area of a known number of particles was 

measured by photo extinction, and the mean projected diameter, d, of the sample was 

calculated. The sample was then weighed and the average volume, V, was calculated 

from the mass, density, and number of particles. Heywood's volume shape factor, 

Vlef, was then found. 

A simple visual classification scheme, called the Shape Count method was developed 

for natural industrial diamonds by Dyer in 1952. Particles were assigned to one of 

four classes - blocky, less blocky, needle-like, and flats and needles. These classes 

had values I to 4 respectively, and an average value for a sample could be found. 

Dyer and Wedepohl [88] further developed this method into the Utility Index method. 

This involved making triaxial measurements and expressing each of the two shorter 

dimensions as fractions of the longest. A plot of one fraction against the other was 

divided into ten zones, indexed I to 10, the index of a zone denoting the usefulness of 

a particle for a particular grinding operation. The mean index for a sample could then 

be calculated. In practice the method was time-consuming so operators were trained 

to assign indices on sight. 

Bakon and Szymanski [89] studied the crystal habit/internal structure, and surface 

structure of synthetic diamond from five different manufacturers, including De Beers, 

and presented a qualitative morphological classification in 1982. Both optical and 

scanning electron microscopes were used. This classification was intended as a guide 

for toolmakers for selecting appropriate diamond abrasives. De Beers saw grits 

generally came under the headings of regular monocrystals, or uneven monocrystals, 

with flat, smooth faces or flat, rough faces. 
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The scanning electron microscope (SEM) can be used for crystal morphology studies. 

The angles between planes lying in the zone defined by the direction of the electron 

beam can be determined from the secondary electron image by measuring the angles 

between their straight-line projections. A goniometer facilitates alignment of the 

crystals. Addition of a cathodoluminescence detector allows differentiation of the 

{ lOO} and {111} faces. Cathodoluminescence is light emitted when a fast moving 

electron strikes a dense material. Woods and Lang [90] have shown that the growth 

sectors in synthetic diamond cathodoluminesce in this way. The {lOO} faces appear 

green and the {Ill} faces appear deep red. Cathodoluminescence of diamond is 

concisely reviewed by Davies [91]. Pipkin [92] studied the morphologies ofa number 

of interesting crystals (macles, twins, and irregular crystals) using SEM techniques. 

These are very useful techniques for research applications, but require a high degree 

of skill and interpretation, and are more qualitative than quantitative. 

Returning to more simple techniques, Figure 2.1 shows a shape characterisation 

scheme for synthetic diamond developed by De Beers. It is based on ideal forms of 

cubo-octahedron. Shape 4 is a regular cubo-octahedron with all edges of equal length. 

Higher numbers signify preferential growth on the {lOO} faces, resulting in a 

domination of {Ill} faces, and a graduation towards an octahedron (shape 8). Lower 

numbers show greater tendency towards a cube, with 0 being a perfect cube. 

Attempts have been made to use this numbering system to characterise diamond 

samples. The sample is examined under a microscope and each individual crystal is 

assigned a number. The numbers are averaged to give an average morphology 

number for the sample. Particles which do not fit into any of the classes are noted as 

unassigned and the proportion of unassigned particles is quoted as part of the result. 

The standard deviation of the distribution of classes gives an indication of the spread 

of shapes within the sample. 

The obvious problems with this scheme are : 

• it is a slow and tedious operation, 

• ideal shapes are rare in practice so classification is very subjective, 
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Figure 2.1 : Synthetic diamond morphology index 
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• a large proportion of unassigned particles renders the average morphology 

number meaningless. 

GE (General Electric) Superabrasives, manufacturers of synthetic diamond, recently 

published details of a similar characterisation scheme, which has been automated 

using image analysis [93,94). They define a shape property, tau (see Figure 2.2), 

which is 0 for an octahedron and I for 

a cube, with a continuous range in 

between for intermediate shapes. The 

Image analysis algorithm fits 

templates to the inner and outer 

outlines of a crystal to determine the 

value of tau. Standard shape 

parameters, circularity and aspect 

ratio, are used to characterise those 

crystals which do not conform to the 
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Figure 2.2: Definition ofGE's tau 

regular cubo-octahedral structure. The average greyscale value, normalised by the 

background grey-level, gives a measure of the clarity of the crystals. Clarity is a 

function of light -scattering inclusions, defects, and surface roughness, all of which 

may contribute to a particle's performance. 

Dubious claims are made for this method of analysis. The benefits quoted are [93]: 

the ability to better sort and classify products, the ability to develop products with 

narrower shape ranges, the ability to test and match specific shapes to specific 

applications. The practicalities must be questioned, however, because sorting 

diamond grit by measurement of individual particles would be time consuming and 

expensive. Even using sampling, the number of particles suggested [94] is 300, and at 

time of publication these were being analysed 25 at a time. 

Of course, arguments like these will apply to all forms of individual particle analysis 

and it is impractical to suggest any such method for use in the production of synthetic 

diamond, given that batches can contain millions of carats (5 carats=i gram). 

However, quantitative analysis of samples can be very useful for comparing batches, 
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comparing competitor products, optimisation of tabling parameters, and studying the 

relationship between shape and other properties. 

2.5 SUMMARY 

The trend in shape measurement over the last sixty years or so has been to move away 

from tedious mechanical methods and take advantage of every development in 

computer hardware and software, cameras, lasers, and digital technology. From crude 

triaxial measurements of pebbles, to tracing enlarged silhouettes with a digitiser, to 

scanning a photograph into a computer, it is now a trivial matter to obtain a live image 

of a population of particles on a computer screen. Complex mathematical 

manipulations can be performed in a fraction of a second at the click of a button. 

The increasing ease of acquiring data, and the increasing speed of processing it, have 

led research away from the concept of shape factors and sphericity to less intuitive 

methods, and the use of cameras for obtaining images has concentrated the effort on 

two-dimensional analysis. It could be argued that these are regressive steps, and that 

techniques like Fourier analysis and polygonal harmonics do not provide parameters 

that are any more useful than a simple measurement of roundness. More emphasis 

needs to be placed on application of new methods, and their practical relevance for 

real particle problems. There is a danger of being seduced by interesting 

mathematical theories and principles and losing sight of the main objective - which is 

to find meaningful and practical methods of characterising shape. It is also important 

that shape separation techniques continue to develop in parallel with shape analysis 

methods. 

The future of shape analysis appears to lie in imaging, and it is possible that image 

analysis instruments will soon include a cybernetic means of physical separation of 

particles based on the measurements. Shape. will remain an important part of particle 

technology because so many other particle characteristics are influenced by it. It is 

unlikely, however, that a neat solution, which covers a wide range of applications, 

will be found. Instead, techniques will become more application-specific as they are 

refined. 
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Many of the papers in the literature use particles that differ vastly in shape, to 

illustrate that methods work. There is little doubt that all of the methods discussed in 

this chapter could successfully tell the difference between diamond and, say, angular 

silicon carbide particles. The differences in shape between a diamond sample and 

another diamond sample are much more subtle and this is why there is a need for 

application-specific solutions. Some of the methods will be better than others at 

detecting shape differences within a narrow range for a certain type of material. 

The first objective in this thesis is to find those methods that are suitable for 

characterising diamond. 
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3 MEASURING THE SHAPE OF DIAMOND 

It is clear from the literature review that there are many and varied methods of 

quantifying shape so it is necessary to eliminate some of the options. Since large 

numbers of particles will be involved the method cannot be too tedious or time 

consummg. This rules out triaxial measurements and favours two-dimensional 

analysis, preferably letting a computer do most of the work. Most image analysis 

packages can measure shape factors such as roundness and aspect ratio so these can be 

explored easily. Fourier and fractal analysis can also be investigated once the 

co-ordinates of the particle boundary are available. Again image analysis packages 

will provide the starting data. 

In this chapter the search for a shape measurement method appropriate to diamond 

will concentrate on the following areas: 

• 2-D shape factors, 

• Fourier analysis of the boundary co-ordinates, 

• fractal analysis, 

• counting corners. 

Some of the advantages and disadvantages of these options have been mentioned in 

the literature review. Others will come to light as the work progresses. 

3.1 IMAGE ANALYSIS 

3.1.1 Description Of Equipment 

Since all of the methods to be explored require a digital image as a starting point the 

first step was to set up an image capture system. A review of the market revealed that 

there were two main types of system on offer. One was a dedicated image analysis 

instrument, for example the Quantimet 570 from Cambridge Instruments. This 

controls all the stages from image capture to reporting of results, using hardware to 

handle much of the processing in real time. Such an instrument would be needed if 

speed were critical (for example in automation of routine tasks), but was too 
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expensive to be considered for a research project. At the other end of the scale was 

the PC-based system. Many companies were offering frame-grabbers and image 

analysis software for a few thousand pounds. A frame-grabber is a piece of hardware 

that samples an analogue video signal and converts it into an array of data points that 

can be stored digitally. It can be inserted into an expansion slot in a PC and software 

mathematical algorithms can then be used to enhance and process the digital image. 

A chalnicon tube scanning camera and a Wild M3Z trinocular microscope with 

camera adapter were salvaged from an obsolete application and a 486 PC was 

available so it was not difficult to add a frame-grabber and software to make this into 

an image analysis system. After considering the possibilities the Vision-EZ 

frame-grabber and Global Lab Image software package, both from Data Translation, 

were chosen as a low-cost option with all the required basic functions. The software 

allows display on the computer monitor of both the image and the menus but this was 

found to be cumbersome and a Sony analogue monitor for separate display of the 

image was added later. 

Synthetic diamonds have a degree of transparency to white light and their flat faces 

are highly reflective. For the purposes of inspection and quality control they are 

viewed under low magnification with a stereo microscope. The particles are scattered 

in a petri dish and illuminated from above at an angle. Black, white or red 

backgrounds are used, depending on the attributes being examined. Similar 

conditions were tried for camera imaging but it was found that reflected light is not 

suitable because of the shine from reflecting faces. Transmitted light is better because 

the angled faces appear dark, while the background and co-planar faces are bright. 

This means the particle outlines can be identified and the shape of the top face can be 

analysed, if required. Diffused light from a fluorescent lightbox gave the best results. 

The complete system is shown in Figure 3. J, comprising of a lightbox, a microscope, 

a camera, a computer with frame-grabber and software, an analogue monitor, and a 

printer. 



38 

'j' .,;," ',,, 

Figure 3.1 : Image analysis equipment 

Figure 3.2 : Prepared slides 
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3.1.2 Sample Preparation 

The quickest and easiest way to prepare a sample for analysis is to scatter a few 

carats' into a petri dish, but with this method it is impossible to avoid having particles 

touching each other. This means relying on the operation of software segregation 

algorithms, which are not always successful. To get around this problem a De Beers 

technique for separating particles was modified. It uses an electroformed sieve with 

apertures just large enough to allow all the particles through. A strip of clear sellotape 

(trade name J-Lar) is stuck to the underside of the sieve. The diamonds are poured 

into the sieve and brushed across the taped region, where they stick, separated by the 

wire grid. Excess particles are shaken out, the tape is peeled off and placed, diamond 

side up, on a glass microscope slide. A second piece of tape is used to cover the 

particles and protect the exposed sticky areas from dust. The result is an array of 

particles, separated from each other and nicely arranged in groups. The method is 

reasonably quick and straightforward and removes some of the difficulties in 

processing the image later. The choice of sieve aperture size is important because the 

apertures must be large enough to allow any particle through and so avoid 

discrimination but small enough so that two particles will not fit in one aperture. For 

size 40/45 grits, it was found that a 522~m sieve with octagonal apertures gave the 

best results of all available sieves. (522~m is the nominal diameter of the inscribed 

circle in these octagonal apertures.) Some prepared slides are shown in Figure 3.2. 

Slides with regularly spaced sticky patches can be purchased to provide a faster and 

neater way of achieving good separation. They are called tacky dot slides and come 

in a range of dot sizes and spacings [95]. T. Allen [96] describes how they can be 

used in an application where the weight of a known number of particles is required. 

Slides with 150~m diameter dots spaced at I ,000~m centre to centre were tried with 

40/45 diamond particles (diameters approximately 500~m). Double occupancy of 

dots was found to be a problem and the wide spacing meant few particles in the field 

of view at the chosen magnification. Consequently, the sieve and tape method was 

preferred. 

I Diamonds are usuaJJy weighed in carats. 5 carats = 1 gram 
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3.1.3 Image Capture And Analysis 

The slide is placed directly onto the lightbox and a real time image appears on the 

analogue monitor. Magnification and focus are adjusted on the microscope to give a 

clear picture of a group of particles. For size 40/45 the particles are grouped in blocks 

of25 (the blocks are defined by the supporting grid on the sieve) and a magnification 

ofxl6 means that a 5x5 array of particles fills the field of view. All analysis reported 

here was carried out at x 16 magnification. 

Contrast and brightness can be adjusted from within the image analysis software. The 

digitised image has a range of grey-levels from 0 to 255, where 0 is black and 255 is 

white. With transmitted light the background is white and the particles contain 

various shades of grey. A grey-level threshold must be set so that particles can be 

distinguished from the background. In most cases a value of 200 works. The 

software identifies sets of connected pixels which have grey-level values between 0 

and 200 and which have neighbours with grey-levels greater than 200. These sets are 

the particle outlines. Figure 3.3 shows an example of an image and particle 

identification. 

The software offers a range of parameters calculated from the co-ordinates of the 

outlines. The user selects some or all of these to be reported and then chooses the 

Figure 3.3 : Image of diamond particles with particle outlining 

• 
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'Find Particles' option. The software identifies the particles, and outlines and 

numbers them on the monitor. This enables the user to check for errors, such as two 

particles being identified as one. A list of the selected parameters is presented with 

values for each numbered particle and statistics for the field. All reported data can be 

stored in a file. 

To analyse more particles the slide is moved by hand to reveal the next block of 

particles and the 'Find Particles' button is pressed again. The new data can be 

appended to the file. This process is repeated until the required number of particles 

has been analysed. Since there is no facility in the software to work with or graph the 

data, the data file is imported to a spreadsheet for further manipulation. 

Once the sample preparation, image capture, and data storage techniques were III 

place the next step was to provide some diamond particles to work with. A sample of 

bulk 40/45 SDA material was tabled such that it spread more or less evenly into 

twelve bins. Samples were taken from each of the bins and slides were prepared. 

3.2 2-D SHAPE FACTORS 

3.2.1 Identification Of Relevant Shape Factors 

The software package offers 56 parameters. These were assessed to identify those 

that could be used to describe tabled grit in a way that is both meaningful and 

relevant. Some parameters could be eliminated immediately, for example those that 

are orientation dependent, such as the angle between the major axis of the particle and 

the x-axis, or those that depend on the position of a particle in the field, such as the x 

and y co-ordinates of the centroid, leaving approximately twenty parameters to be 

investigated. Examples are perimeter, roundness, area, maximum radius, average 

radius and average grey-level. 

By default the unit of length used by the software is the pixel. To calibrate the system 

for actual length in microns a graticule can be viewed at the required magnification 

and the software calculates a conversion factor. Since SDA had not been analysed 

particle by particle in this way before, the system was calibrated to give actual 



42 

IPERIMETERI 
1.50 0.16 

1.48 
Figure 3.4 

• 0.14 

"' 
0.12 ~ '" 1.46 

~ 1.44 i! Variation of 
> • 
0< 0.10 Cl) perimeter 

1.42 
with bin 

1.40 0.08 
1 2 3 4 5 , 7 , , 10 11 12 ,,' number 

BN 

I .. average •. std. dev. 

I LENGTH I 
0.52 0.055 

• Figure 3.5 
0.50 0.050 

"' -. 0.045 ~ '" ~ 0.48 Variation of 
> • 0.040 ~ 

length with 0< 0.46 0.035 
bin number 

0.44 0.030 
1 2 3 4 5 , 7 , , 10 11 12 ,,' 

BIN 

I_ average .. std.dev. 

dimensions rather than pixel counts. At x 16 magnification one pixel was found to be 

equivalent to 6.9Ilm. Of course, for dimensionless shape factors this calibration, will 

not affect the results. 

100 particles from each of these slides were analysed and the results for all of the 

potentially interesting parameters were recorded. Graphs of average and standard 

deviation versus bin number were plotted and examined. Some parameters varied 

randomly across the bins, for example the perimeter (Figure 3.4). These were 

discarded immediately. Others showed an overall trend but not a smooth one, for 

example length (Figure 3.5). A few displayed a smooth curve with a gradual change 

from bin 1 to the middle bins and then a more pronounced change in the upper bins. 

These parameters were: 

• roundness - defined as 47tAI P', where P is the perimeter and A the area, 

• radius ratio - the minimum radius divided by the maximum radius, where radius 

is measured from the centre of area to the perimeter, 

• axis ratio - the ratio of the minor axis to the major axis of an ellipse having the 

same second moments of area as the particle, 
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Figure 3.6 : Six parameters showing trends with bin number 

• length ratio - the width divided by the length, where width and length are those 

of the bounding box oriented along the major axis, 

• length dif - a measure of symmetry computed as the distance along the major 

axis from the centre of the bounding box to the centre of area. 

The associated plots are shown in Figure 3.6. Of these, roundness showed the 

smoothest relationship with bin number. The shape that has the minimum perimeter 

for a given area is a circle, which has a roundness of I. All other shapes have 

roundness less than I. The reciprocal of roundness is commonly called circularity. 

The three ratio parameters represent slightly different aspects of particle shape. The 

radius ratio gives a measure of deviation from a circle. A circle has the maximum 

allowed ratio of I and a square has a lower ratio. The radius ratio is also low if there 

are large concavities and/or protrusions on the particle outline. Image capture or 
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digitisation errors, or errors in determining the particle outline, could add spikes and 

thus influence the radius ratio. 

Axis ratio is clearly defined using an ellipse for comparison and is based on the 

well-understood concept of moments of area from rigid body dynamics. It gives a 

measure of elongation and of symmetry. A maximum value of 1 implies symmetry 

about the principal axes. Blocky particles have high axis ratios and elongated 

particles have low axis ratios. It is the reciprocal of Medalia's anisometry [28] which 

he found to be a good general descriptor for both simple and complex shapes, 

especially when bulkiness is also measured. Bulkiness was defined by Medalia as the 

ratio of the area of the equivalent ellipse to the projected area of the particle. It can be 

derived from major axis, minor axis and area, and is included in Figure 3.6. 

. ~ x major axis x minor axis 
bulkmess = area .........••..•.•.•. (12) 

Length ratio is a form of aspect ratio derived by enclosing the entire particle in a box 

oriented on the axes of the equivalent ellipse. It becomes less useful as shapes 

become more complex. As with radius ratio, protrusions will influence the results, so 

small image capture errors could have large effects on the length ratio. 

Length dif gives a measure of symmetry. A value of 0 means the particle is 

symmetric about its minor axis. From the analysis carried out so far the range for 

length dif is approximately 0 to 12 pixels or 0 to 80llm for the particles being studied. 

It was decided to dismiss two of the three ratio parameters. Radius ratio and length 

ratio were rejected in favour of axis ratio, the latter being the most promising of the 

three because it is less dependent on accuracy of digitisation. This left four 

parameters thought to be worthy of further investigation - roundness, axis ratio, 

bulkiness and length dif. 

Plotting distributions rather than averages gives a better indication of the overlaps 

between the bins. The cumulative undersize graphs in Figure 3.7 suggest that 

roundness is the parameter that best describes the shape fractions, since it shows the 

least overlap. 
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Since it is hoped that the chosen shape factor will relate not only to behaviour on a 

sorting table but also to behaviour in sawing applications it is a requirement that the 

shape factor would show some correlation with grit properties perceived to be shape 

related. Diamond particles in a saw blade must break down in a controlled manner so 

that fresh cutting edges are generated and an adequate protrusion from the bond is 

maintained. Holding is usually mechanical rather than chemical so shape and surface 

texture are important but the dominant factor is the friability or, in other words, the 

strength of the diamond particles. The choice of grit for an application is usually 

based on size and strength, taking into account the workpiece material and the 

compatibility of the metal bond in terms of its abrasion resistance. 

In general, crystals from the good shape end of the table have a higher resistance to 

fracture under load than poorly shaped crystals which are easily stressed by point 

loading. Strength is certainly the most important shape-related property and to some 

extent table sorting gives strength classes as well as shape classes. However, strength 

is a complex issue, as will be discussed in the next section. 

3.2.2 Relationship Between Shape Factors And Strength 

The strength of synthetic diamond can be quantified by subjecting a sample to an 

impact crushing test and expressing the weight of unbroken crystals as a percentage of 
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the original weight. The test is called the Friatest. A known weight of diamond is 

vibrated with a hardened steel ball in a hardened steel capsule under controlled 

conditions and then the diamond is sieved to separate the broken from the unbroken 

crystals. The percentage by weight retained on the sieve is called UB. Stronger 

products have higher UB values. The specifications for UB play an important role in 

the processing of sawgrits and Friatest strength is considered to be an important 

characteristic of the final products. 

The impact strength of a single particle is influenced by its: 

• size, 

• shape, 

• non-diamond inclusions, 

• surface texture. 

For a collection of particles the distribution of these properties will determine the 

results of the crushing test. Size is taken into account by specifying the sieves to use 

for each grit size before and after crushing, and comparing only grits of the same size. 

In general, for any given sawgrit product UB increases as size decreases. 

Non-diamond inclusions act as weaknesses in the particle structure, causing stress 

points for crack initiation. Most of the inclusions are the solvent/catalyst metals used 

in synthesis. Their magnetic properties can be exploited to obtain a measure of the 

amount of included metal. The magnetic measurement parameter is called M and is 

related to the magnetic susceptibility of the sample. 

It is known that surface texture and, in particular, surface flaws such as cracks, have 

some influence on the way an individual diamond particle will break. At present there 

are no established means for quantifying this effect and it is usually assumed when 

dealing with a collection of particles that the average surface effect is less significant 

than the other factors. Since it is beyond the scope of this project to find a surface 

texture measurement, the same assumptions will be made here. 
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Within a given Size, such as 40/45, this leaves shape and inclusions as the main 

quantifiable factors contributing to the strength of a sawgrit. An investigation of the 

relationship between shape and strength will therefore have to take magnetic 

properties into account. 

Thirty-three samples were taken from various lots of material after shape sorting. 

Based on measurement of the magnetic parameter, M, each sample was assigned to 

one of four magnetic categories, which will be called Ml, M2, M3 and M4, where M4 

is the most magnetic. The shape parameters of interest were measured by image 

analysis and the averages for 100 particles were obtained for each sample. The 

strength values, UB, were estimated from a knowledge of the specifications for the 

products. l 

The shape averages are plotted against UB in Figure 3.8. All four parameters show a 

trend with increasing strength but the clearest relationship within magnetic fraction is 

seen in the axis ratio plot. A linear regression was carried out for each parameter, 

using UB as the outcome, and the parameter and M-number as the predictor variables. 

Figure 3.9 shows the predicted outcomes versus the specification values. The 

roundness and length dif graphs show higher degrees of scatter than the other two. 

The best results were achieved with axis ratio and the following regression equation: 

UB = 100(3.9549 * axisratio - 0.0524 * M - 2.2786) ...... (13) 

This gave a correlation coefficient of 0.94 and a standard error in outcome estimation 

of2.7%, the range of UB values being 40% to 85%. 

The conclusion of the exercise is that when the M-fraction is known, axis ratio has a 

strong relationship with strength of synthetic diamond material and can be considered 

to be the most suitable choice of shape factor at this stage. 

I Ideally a strength test would have been carried out on each afthe samples. Valid strength results can only be ensured if the 
test is carried out by a trained operator. Resources for 33 tests were not available at the time afthis experiment. Since the 
objective was merely to identify possible relationships it was felt that estimates of strength would be adequate. 
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3.3 FOURIER ANALYSIS 

The use of a Fourier series to describe shape was introduced in Section 2.3.2. This 

type of shape analysis was popular among researchers in the late '70's and early '80's 

but never managed to find a real industrial use. Because it could not deal with 

re-entrant angles it was deemed to be suitable only for subtle differences between 

smooth, rounded particles. Computers and imaging systems at that time would have 

been slow and cumbersome to use and the handling of large amounts of data was very 

time-consuming. Paradoxically, as the task of data manipulation became easier, a 

new problem was introduced. More data could be generated more quickly, but to 

make any sense or practical use of it, ways of reducing it back to single parameters 

had to be found. In real applications it was usually easier to work with simple shape 

factors from the beginning. The connection between F ourier coefficients and shape 

could be seen, and shape parameters were defined, but the complexity of the method, 

and the large amount of data generated, made it impractical. 

Despite the advances in computing power this is still the case today but it was felt that 

the Fourier analysis method was worth an investigation, partly because it forms a 

large part of the history of shape analysis and therefore should be included in any 

shape study, and partly because of the suitability of the diamond shape for this type of 

analysis. There are no re-entrant angles on the diamond particles in this study and the 

shapes are quite smooth and rounded. 

3.3.1 Theory 

The outline of a particle can be considered to be a periodic function, R(9), with a 

period of 21t, and can be expanded as an infinite trigonometric series in the form 

'" R(9)=Ao+:E (ancosn9+bnsinn9) ............. (14) 
=1 

'" or R(9)=Ao+ L Ancos(n9-an) ................... (15) 
=1 

where An = ja~ + b~, an = tan-I (!:) ................. (16) 
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The coefficients Ao, an and bn can be found when there is some knowledge of R(e). Ao 

is found by integrating both sides of the equation between 0 and 27t and rearranging to 

Ao = 2~ fo'R(e)de ................................ (17) 

To find an both sides of the equation are multiplied by cos(me) and integrated between 

o and 27t. Similarly for bn both sides are multiplied by sin(me) and integrated. Using 

the orthogonality relations 

fo' sin me cos ne de = 0 ........................ (18) 

fo' sinmesinne de = 0, m .. nO ................ (19) 
1t, m = n *' 

fo' cos me sin ne de = ~, :: ~ ................... (20) , 

this gives, for an n, 

an = k fo' R(e)cosne de ........................... (21) 

bn = k fo' R(e)sinne de .......................... (22) 

3.3.2 Determining The Fourier Coefficients 

The display was thresholded to give the particle pixels a value of 0 (black) and the 

background pixels a value of255 (white). The scripting facility in the image analysis 

software was then used to set up a routine to scan a chosen single particle with its 

surrounding area and write the grey values of each pixel to a file. A QuickBASIC 

program was written to extract the co-ordinates of the edge pixels from these 

grey-level files. The program begins by identifying particle pixeis (as opposed to 

background pixels) and finding the centroid. Having located an edge pixel, an 

edge-finding algorithm searches eight neighbouring pixels to find the next edge pixel 

and continues around the particle counting the number of edge pixels as e. For the 

purposes of the search, an edge pixel is defined as a black pixel·with at least one white 
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pixel among its four off-diagonal neighbours. The Cartesian co-ordinates of the edge 

pixels are written to a file. 

The program for calculating the F ourier coefficients begins by reading the edge 

co-ordinates from the edge file and converting them to polar co-ordinates with the 
• 

centroid as origin. To remove size effects the radii are normalised by the average 

radius. The first N coefficients of the series must then be found. Since the angles are 

not evenly spaced numerical methods of integration like Simpson's rule cannot be 

used. If the number of coefficients required is less than half the number of edge 

points then the coefficients can be found by solving a set of simultaneous equations 

using a technique such as Gaussian elimination. Another option is to fit parabolas to 

each set of three successive points and numerically integrate them. An easier 

alternative is to connect the points with straight lines, as was done by Ehrlich and 

Weinberg, [33] so that at the ith edge point 

R,.(S) = (Ri+l - Ri)S+ RiSi+l - Ri+lSi 
Si+l -Si ............. (23) 

and i! fa;·' Ri(S)d9 is used to estimate fo" R(S)dS in the calculation of the coefficients. 

The latter option is used here. A selection of the LuerkenslBeddowNetter descriptors 

[38] is also calculated and reported along with the coefficients. As a check on the 

results, the program regenerates the radii from the angles and coefficients, and 

compares the regenerated profile with the original. The error in regeneration is 

calculated as the root mean squared difference in 

radii. Full program listings of the edge-finding 

program and the Fourier program are given in 

Appendices 1 and 2. 

A selection of five particles is shown in Figure 3.10 

and the errors for regeneration with 20, 50, lOO, 

200, and 500 coefficients are plotted in Figure 

3.11. The errors decrease as more coefficients are 

used, and with 500 coefficients the error is 0.2% or 

Figure 3.10 : F1vediamond profiles less for each of the particles. Figures 3.12 and 3.13 
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show original and regenerated profiles for particles I and 5, representing the best and 

worst fits respectively. When 50 coefficients are used the parts of the profile with 

small oscillations are smoothed in regeneration but the macro shape is a very good 

representation of the original. These small oscillations are characteristic of 

digitisation on a square grid, rather than a feature of the diamond particles. The 

conclusion is that 50 coefficients are more than enough to describe the macro shape, 

while 500 coefficients will accurately reproduce every undulation in the profile. 

The morphological Fourier descriptors proposed by Luerkens, Beddow and Vetter 

take all of the calculated coefficients into account (N appears in the equation for Ro). 

The cited advantage of these descriptors is that they are rotationally invariant. 

However, the coefficient A, is not dependent on particle orientation. If it is not 

necessary to reproduce the profile then only the first few coefficients need to be 

calculated and they can be used as shape descriptors in their own right, eliminating the 

problem of deciding on a suitable value for N. 

3.3.3 Fourier Analysis Results 

24 particles from bin 2 and 24 particles from bin 9 are shown in binary form in 

Figures 3.14 and 3.15. These are fields of view chosen at random from two slides 

from a tabling of bulk 40/45 SDA material. The images were stored with the contrast 

set to maximum to give black particles on a white background. The script routine was 

used to produce a grey-level file for each particle and then the edgefinder program 

extracted the co-ordinates of the edge pixels. Finally the Fourier program calculated 

and reported the coefficients Ao, a1b1 ... alOb lO, and the Luerkens, Beddow and Vetter 

(LBV) shape terms Ro, Lo, and L2(l) ... L2(5) (equations 5, 6, 7 from chapter 2). 

The method was validated by rotating the bin 9 binary image by 90° and repeating the 

analysis for five of the particles in the rotated image. Some of the results are 

compared with those of the original in Table 3.1. The coefficients a, and b, vary with 

rotation, as expected, while A, and the LBV shape factors do not. Any discrepancies 

can be attributed to slight alteration of the particle outline by the software during 

rotation. The A, terms proved to be more consistent with rotation than the LBV shape 

factors in this exercise. 
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Figure 3.14 : Profiles of 24 particles from bin 2 

• 
• 

" 

Figure 3.15: Profiles of24 particles from bin 9 
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Table 3.1 : Fourier coefficients for rotated particles 

Studying the sets of coefficients for the 48 particles it was noted that, in general, A2 

was the dominant coefficient and that the magnitude of the coefficients dropped after 

A6• Many of the papers on this subject point out that A2 represents elongation, A3 

represents triangularity and A4 represents blockiness, but none have illustrated the 

fact. Figure 3.16 shows the relative proportions of the coefficients AI to A6 for the 

two sets of particles from Figures 3.14 and 3.15. After studying these graphs in 

conjunction with the particle images there can be no doubt about the fact that the 

F ourier coefficients contain shape information. This will be demonstrated in the 

following discussion. 
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Figure 3.16: Magnitudes of Fourier coefficients 

Considering only the graphs and concentrating on A2, A3, and A. to start with, the 

following suggestions can be made. 

For bin 9: 

• the most triangular particle is no.16 (highest A3)' 

• the blockiest is no.7 (highest A., low A3)' next is no.IS 

(no.24 is also blocky but has a larger triangular component than nos.7 and IS), 

• the most elongated are nos.12 and 20 (high, dominant A2), 

• no.6 is also elongated (dominant A2)' 

• particles 9 and 10 have identical shape. 
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For bin 2: 

• the most triangular particle is no.17 (high A3)' 

• the blockiest is no.2 (high, dominant A.), 

• nos.6 and 13 are blocky but also elongated (high A2 and A.), 

• particles 10 and 14 are similar in shape. 

These suggestions are all confirmed by looking at the particle images and using the 

human ability to assimilate shape. 

The other coefficients are not as easily related to the perception of the different 

shapes. It would be expected that the particles with hexagonal outlines would have a 

higher A6 than other particles. Looking at the bin 2 particles it can be seen that this is 

the case for particle 3. However, particle 24 also has a high A6 but is not an obvious 

hexagon, while particle IS looks reasonably hexagonal but has a very small A6• It 

quickly becomes clear that a single coefficient can provide the correct sense of the 

macro shape for some particles, but will not be relevant on its own for others. For 

example, if the particles to be studied were triangular in nature, then the magnitude of 

A3 might be useful as a shape descriptor. Particles deviating greatly from a triangle 

would be described only as "poor triangles" and there would be no clue to the actual 

shape, unless other coefficients were also considered. 

It can be seen in Figure 3.14 that particle 4 is a hexagon. It has strong even 

coefficients and its odd coefficients are very small. Particles 16, 14 and 10 from the 

same bin show a similar dominance of the even coefficients. This represents a 

regularity or symmetry in the particle outline. Note that the pattern of coefficients for 

particle 7 of bin 9 is almost identical to that of particle 4 from bin 2, even though the 

former is a rectangle and the latter a hexagon. 

The more circular particles, for example particles 12, 5 and 22 in bin 2, tend to have 

A2 as the dominant coefficient, with subsequent coefficients either decreasing steadily 

or having equal magnitude. Meloy plotted An versus n on a log-log graph [34] and 

proposed a law of morphological coefficients, with slope, intercept and scatter about 

the fitted line as three shape parameters. He stated the law as follows: 
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An = AI(~)S ...................................... (24) 

or InAn = InAI - s In n .............................. (25) 

where A I is the intercept and -s is the slope. 

To see if diamond particles follow this law the first 100 coefficients were calculated 

for three particles of different appearance - Particle 12 from bin 2 (circular), particle 4 

from bin 2 (hexagonal), and particle 7 from bin 9 (rectangular). The log-log plots are 

shown in Figure 3.17. Table 3.2 gives the values of slope, intercept and scatter. 

Table 3.2 : Slope, intercept and scatter for A. v's n 

particle shape s (slope) AI (intercept) <Tm (scatter) 

12, bin 2 circular 0.96 0.0355 0.43 

4, bin 2 hexagonal 1.07 0.0461 0.51 

7, bin 9 rectangular 1.12 0.0822 0.25 

Meloy pointed out that particles with high aspect ratios have higher slopes than 

rounder particles. This is indeed the case. The increasing values of AI also represent 

increasing deviation from a circle. The scatter parameter is the unbiased estimate of 

variance. Following Meloy's example the first eight coefficients were omitted in its 

calculation. 

1 100 -
am = -91 ~ (lnAn -lnAn) ........................ (26) 

n=9 

It is difficult to see the use of the scatter parameter, except to say that the scatter 

should always be low if the law of morphological coefficients is true! In fact, the 

macro shape is defined by the lower order coefficients and these do not fit the 

relationship very well. The higher order coefficients are related to the roughness or 

fine detail of the profile. If the first eight coefficients are omitted from the calculation 

of scatter then it has very little to do with macro shape. The rectangular particle has 

the lowest scatter and is therefore smoother than the others. 

From this brief analysis it seems that there is some value in the slope and intercept in 

quantifying a degree of circularity, but the law of morphological coefficients is 
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Figure 3.17: ID(An) v's 10(0) for the three particles shown. Lines were fitted by least 
squares method. 
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• 

100 

artificial. It relies too much on the fact that the higher order coefficients are always 

smaller than the lower order coefficients and ignores the fact that the more important 

lower coefficients are off the fitted line. (When A2 to As are included the scatter 

increases to 0.47, 0.69 and 0.38 respectively. A more universally recognised measure 

of the scatter is the correlation coefficient, R2, which is 0.61, 0.57 and 0.74 

respectively. These are all regarded as poor fits.) 
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3.3.4 Comparison Of Bin 2 With Bin 9 Using Fourier Coefficients 

So far the particles have been examined individually and it has been demonstrated that 

the lower order coefficients are related to macro shape. Also of interest is the 

question of discrimination. Can the coefficients be used to distinguish bin 2 particles 

from bin 9 particles? 

The relative magnitudes of the coefficients should say something about the shape, so 

A2, A3 and A, were plotted on a triangular graph (Figure 3.18). It was hoped that two. 

obvious clusters would be seen but this was not the case. It would be very difficult to 

identify the origin of a particle from its place in this graph. Ll2), Ll3) and Ll4) 

were plotted in a similar way but gave little improvement (Figure 3.19). This simply 

shows that the particles all belong to the same family, or that they are a small subset 

of the set of all possible shapes. It is likely that this type of graph would distinguish 

between diamond and another abrasive, silicon carbide for example, but it is not 

suitable for discrimination within one family. 

o 

A,. -

~ IIIN 2 

o BIN '1 

Figure 3.18: Triangular graph of Fourier coefficients A" A" A, 
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Figure 3.19: Triangular graph of L,(2), L,(3), L,(4) 
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Looking back at Figure 3.16 (page 56) it is obvious that there is a difference in 

absolute magnitude of the lower order coefficients. In general, the sum of the first six 

coefficients is higher for bin 9 particles than for bin 2 particles. This sum is plotted 

for the two groups of particles in Figure 3.20. There is a large degree of overlap 

between the two populations, which makes classification of individual particles 

impossible. However, a t-test on the means of the two populations shows that they are 

significantly different with more than 99% confidence. This means it would be 

possible to distinguish between a group of particles from bin 2 and a group of 

particles from bin 9, using the mean sum of the first six coefficients. 

Since Az is the dominant coefficient in most of the particles this was tested in the same 

way and once more the two populations (Figure 3.21) were found to differ with more 

than 99% confidence. 
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3.3.5 Discussion Of Fourier Analysis Results 

The work on F ourier analysis shows that the shape is fully described by the An 

coefficients. All the infonnation is there, although extraction of the parts that are 

most relevant, and development of a simple shape descriptor are difficult tasks. Some 

applications from the literature were tried on diamond particles, which have profiles 

ideally suited to this type of analysis. No advantage could be seen in using the LBV 

shape factors over the An coefficients, and Meloy's method of plotting An versus n on 

log scales did not appeal. In the end the simple approach of comparing the means of 

the low order coefficients gave the most promise as a potential tool for classification. 

A classification of individual particles would be much preferred and the Fourier 

analysis has not come any closer to that target than the direct measurement of shape 

factors by the image analysis software. The average A2 value of a group of particles 

may point to the bin of origin, but so does the average axis ratio. Axis ratio is much 

easier to measure with the current resources. Which is better? It turns out that they 

correlate very well, giving a straight line when plotted against each other (Figure 

3.22). 

This is an encouraging discovery. It proves that an aspect-ratio-type shape factor is an 

appropriate choice. It also proves the integrity of Fourier analysis, while supporting 

the earlier selection of axis ratio as a relevant parameter. 
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Fractal analysis was developed by Kaye and others for the description of ~gged 

boundaries, such as fumed particles or flocculates. Diamond particles have mostly 

smooth, sharp edges so fractal analysis is not really appropriate, but it was included in 

this study as a step to polygonal harmonics. 

3.4.1 Boundary Fractal Analysis 

The draw facility in the software was used to create an image of the boundary of a 

square and a hexagon, for use as diamond-like reference shapes. A representation of a 

Koch triadic island was scanned in from [SI] as a fracta1 reference shape (see Figure 

3.23 overleaf). This has an infinite perimeter and a fractal dimension of 1.2618. 

Following F1ook's description [59], these three shapes were dilated successively 

twenty times by a cross-shaped dilation element three pixels wide. This meant that 

the width of the boundary was one pixel initially, and increased by two pixels with 

each dilation. The software reported the pixel area each time, and then the length, 

L(w), of the perimeter could be estimated by dividing the area by the width, w, of the 

boundary. L(w) and w were normalised by the maximum Feret diameter, and plotted 

on a Richardson plot (Figure 3.23). 

There are no obvious linear portions in the data for the square and the hexagon. This 

is not surprising because these are not rugged shapes, and do not have the 

characteristic of self-similarity. Neither are the curves flat, because there is overlap of 
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the extra pixels when the corners are dilated. A. similar effect would be seen in 

stepping around the boundary, where bigger steps cut across the corners. A square 

has sharper corners than a hexagon so its curve drops more steeply. The fractal 

particle gives a linear plot after eight dilations. Fitting a straight line to these points 

gave a slope of -0.2610, and hence a fractal dimension of 1.2610. The small 

difference between this and the published value of 1.2618 can be attributed to the fact 

that the analysis was carried out on a scanned image of a Koch triadic island, rather 

than a mathematically generated one. It is close enough to show that the technique 

can be applied using the available equipment. 

The five particles depicted in Figure 3.10 (page 51) were then analysed in the same 

manner. The binary images were dilated once and then XORed' with the 

corresponding undilated images to give white outlines of the particles on a black 

background. These outlines were dilated twenty times, and the area of the boundary 

was reported each time. The perimeters were estimated as before and then normalised 

by the major axis. The Richardson plot is shown in Figure 3.24. Straight lines were 

fitted to any linear portions that could be found, and the resulting fractal dimensions 

are presented in Table 3.3. 

1 In a digitised image with discrete pixels the boundary must have a minimum width of one pixel. A decision must be made to 
take as the boundary either the outermost pixels of the particle or the background pixels immediately surrounding the 
particle. The fonner is achieved by erosion and the latter by dilation. The logical XOR operator compares two images and 
sets to white all pixels which differ, leaving the rest black. In this case dilation was chosen because the area of the boundary 
is inclined to underestimate the perimeter. 
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Table 3.3 : Fractal dimensions for five particles 

Particle Linear Portion J Linear Portion 2 Fractal 
Dimension J 

1 none - -
2 w=19-25 - 1.03 

3 w=9-15 w=15-23 1 

4 w=17-25 w=27-35 1.01 

5 w=9-15 w=19-27 1.01 

Fractal 
Dimension 2 

-
-

1.01 

1.02 

1.03 
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The curves show a drop in perimeter length with increasing width of dilation, but are 

far from being "ideal" fractal curves. Some of them rise at the beginning, and most 

have more than one linear segment. The fractal values range from 1.00 to 1.03, so this 

proves that the particles are not rugged enough for this type of analysis. 

3.4.2 Polygonal Harmonics 

Regular diamond crystals have square or hexagonal profiles so a method involving 

polygons should be appropriate. The technique of polygonal harmonics was described 

in Chapter 2 (page 26). It borrows the idea of stepping around a boundary from 

fractal analysis but it describes macroshape rather than roughness. For a given step 

length an nth harmonic is said to exist if taking n steps around the boundary from a 

defined starting point produces a closed polygon. Harmonics can persist over a range 
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of step lengths and the persistence is defined as the ratio of the upper to the lower 

limits of the range. In a triangular particle the persistence of the third harmonic is 

high, while the persistence of the fourth harmonic is low. 

A QuickBASIC program was written to step around the profiles of the bin 2 and bin 9 

diamond particles from Figures 3.14 and 3.15 (page 54). The program is listed in 

Appendix 3. It uses the same files of edge co-ordinates as the F ourier program. 

A protocol is required for the choice of start point because this choice can affect the 

results. Reilly and Clark [67] found the longest diameter and chose the end with the 

lower y-co-ordinate as the start point. Young et al [69] averaged results from twenty 

different start points. Another option is to pick an arbitrary point from which to take 

the first step and continue stepping until locked into a repeating pattern of steps. Then 

the original start point can be discarded in favour of one of these points. This latter 

option was chosen here, with a first start point at angle 0°. 

An exact method of stepping (rather than the popular but less accurate hybrid method) 

was chosen because the available computing power is more than adequate. Steps are 

taken in an anticlockwise direction, simply because the data points in the files of edge 

co-ordinates are stored in order of increasing angle. Closure of the polygon is 

assumed if a step ends at a point less than 0.0 I pixels from an old point. If closure is 

not obtained after 100 steps the search is abandoned. 

The initial aim was to measure persistences (ratio of the upper to the lower value of 

the range of step lengths where the harmonic exists [66]) but it was found that the 

relative importance of persistences is dependent on step length. For example, a 

harmonic that exists between step lengths of 40 and 50 has the same persistence (1.25) 

as a harmonic that exists for step lengths of 4 and 5 only. A second problem with 

persistence is the existence of other harmonics within the range of a harmonic. 

Maeder and Clark [70] overcame these problems by factoring out the impurities and 

placing more emphasis on the lower order harmonics. They defined harmonic 

endurance as the pure range normalised by the maximum diameter. However, this is 
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much the same as recording the number of occurrences of each harmonic and so offers 

little advantage over the standard approach of plotting a frequency histogram. 

An example of the findings of the program is shown in Table 3.4 below. The particle 

analysed is particle no. 8 from bin 2 (from Figure 3.14 page 54). The first column 

gives the step size. The program begins with a step length of ten pixels and increases 

~y one pixel until it can no longer land on the particle (that is, when the step size is 

longer than the maximum diameter). The second column is the number of steps taken 

before closure. This is also the number of sides of the polygon and the order of the 

harmonic. Where this is blank no harmonic was found after 100 steps. The third 

column shows the number of traverses of the particle outline before closure. If this is 

greater than one the harmonic is a complex harmonic. 

Table 3.4 : Determining the polygonal harmonics for particle 8, bin 2 

step steps traverses step steps traverses step steps traverses 
length length length 

10 - - 30 36 5 50 4 I 

II - - 31 7 I 51 4 2 

12 - - 32 27 4 52 19 5 

13 69 4 33 13 2 53 11 3 

14 16 I 34 44 7 54 7 2 

15 15 I 35 - - 55 7 2 

16 14 I 36 6 I 56 33 lO 

17 - - 37 23 4 57 3 I 

18 - - 38 11 2 58 3 I 

19 - - 39 27 5 59 3 I 

20 II I 40 - - 60 3 I 

21 - - 41 5 I 61 3 I 

22 - - 42 5 I 62 3 I 

23 67 7 43 - - 63 6 3 
24 - - 44 14 3 64 3 2 
25 - - 45 9 2 65 3 2 
26 59 7 46 22 5 66 8 3 

27 8 I 47 13 4 67 5 3 

28 31 4 48 29 7 68 2 I 

29 15 2 49 4 I 69 2 I 
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The third simple harmonic persists over a range of step lengths from 57 to 62 - a 

persistence of 1.088. The second, fourth and fifth harmonics each last for two step 

lengths but have different persistences (1.015, 1.020 and 1.024 respectively). Since 

these are the only occurrences of these harmonics there are no impurities to be filtered 

out. However, the endurance parameter will at least give the same result for the 

second, fourth and fifth harmonics, as does a frequency count. Figure 3. 25 shows the 

frequency histogram for this particle (simple harmonics only). 

Rather than plotting individual histograms for the 48 particles from bins 2 and 9, stack 

bar charts were chosen to plot the relative frequencies of the second to sixth 

harmonics in Figure 3.26. In this format it is easy to compare the results with those 

from Fourier analysis given previously in Figure 3.16 (page 56). Each frequency is 

expressed as a percentage of the total range of step lengths for the particle. For 

example, from Table 3.4, the third harmonic appears for 6 of the 60 step lengths, 

which is 10%. 

Some similar observations can be made when looking at these plots as were made 

when studying the plots of F ourier coefficients. Particles 2, bin 2, and 7, bin 9 have 

the highest 4th harmonic contributions and are the most square in appearance. 

Particles 17, bin 2, and 16, bin 9 still come out as the most triangular. Particle 12 bin 

9 is by far the most elongated of all the particles, and so on. There are also some 

differences though. Particle 21 was the only particle in the bin 9 set to have a very 

low A, but in the polygonal analysis particles 11, 16, 17 and 21 have low second 

harmonics. There is also a much stronger suggestion of triangularity for particle 17 

by this method ·than there was by Fourier analysis. 

Contrary to expectations, there are no obvious squares or hexagons but the general 

rules seem to hold. The rounder particles have fewer harmonics than those with 

corners - for example particles 8 and 12 compared with particles 3 and 4, all in bin 2. 

To round off this section the second harmonic is plotted against axis ratio in Figure 

3.27. The relationship is not as good as the one between axis ratio and the second 

F ourier coefficient. 
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Finally, just out of curiosity, the stepping algorithm developed for polygonal 

harmonics was adapted so that the perimeter could be estimated for various step 

lengths, leading to calculation of the fractal dimension. The procedure was tried on 

the edge co-ordinates of some of the bin 2 and bin 9 particles. The largest value 

obtained was 1.0295. This was for particle 12, bin 9. To compare the dilation method 

with the stepping method the same particle was dilated as described previously and 

the boundary fractal dimension came out to be 1.0291; a surprisingly good 

correlation! 

3.5 COUNTING CORNERS 

An important property of abrasive particles in cutting tools is the number of exposed 

cutting edges. This property can possibly be quantified by counting the corners on a 

two-dimensional projection of a particle. Two corner identification methods have 

been reported in the literature. Both operate on lists of edge co-ordinates. They can 

be described briefly as follows: 

Spanning Chord Method [74J 

A step length, n, is chosen. The distance from each point, i, to the next nth point is 

calculated and plotted against i. Chords tend to shorten as they cross corners, 

producing dips in the graph. 
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Radius of Curvature Method [75J 

The equation of a circle is solved for radius, r;, for each set of three points (Xi .• Yi.,), 

(Xi,)'.)' (Xi.,,)'i.,) and ri is plotted against i. The resolution is governed by the spacing, s, 

between the points. Where the radius is infinity, or very large compared to any radius 

of the particle, a chosen maximum value is used. Corners have shorter radii and are 

represented by dips in the graph. 

Before attempting to analyse real diamond particles, the methods were tested and 

compared using the shapes shown in Figure 3.28. These shapes were drawn in 

Microsoft Windows Paintbrush and are described as follows: 

A) a square 55x55 pixels, 

B) the square rotated by 45· giving edges of 40 diagonally connected pixels, 

C) an octagon with sides of 26 pixels or 18 diagonally connected pixels, 

D) a right angled triangle with short sides of a ratio of 2: I, 

E) the square rotated through 30·, 

F) the octagon rotated through 30·. 

The square provides right angles and straight edges aligned with the digitisation grid. 

The square rotated by 45 degrees has straight edges at an angle of 45 degrees to the 

grid, providing lines of diagonally connected pixels. The octagon is a combination of 

the two and introduces 13 5 degree angles. The triangle has angles less than 90 

degrees and an edge with a less straightforward arrangement of pixeis. Rotating the 

Figure 3.28 : Test shapes generated by computer 
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square and octagon by 30 degrees gives lines that do not easily fit into the digitisation 

grid, having both side and corner connected 

pixels within each straight section, and 

losing definition at the corners. The sizes 

were chosen to give roughly the same area 

as the real particles (approximately 3000 

pixels per particle). 

3.5.1 The Spanning Chord Method 

A right angle gives a good illustration of the 

principle of the spanning chord method 

(Figure 3.29). Taking an arbitrary step 

length of 10, the chords have a length of 10 

shortest 

1 

longest--~ 

Figure 3.29 : Spanning a corner 

until the corner is reached. As the chords begin to traverse the corner they become 

shorter. The shortest chord spans from five points before the corner to five points 

after the corner, giving a length of 7.071. They then lengthen until the beginning of 

the chord has reached the corner, at which point the length is 10 again. 

The plots of chord length against starting point for shapes A and B with a step length 

of 10 are shown in Figure 3.30. The analysis was conducted by beginning at the left 

topmost pixel and stepping clockwise with a step length of n. The chord length is the 

actual distance from point P; to point P;+" in the list of edge co-ordinates. The 

QuickBASIC program for calculating the chord lengths is listed in Appendix 4. Shape 

B gives the same pattern as the shape A but the distance from point P; to point P;+1O 

Figure 3.30 : Spanning chord plots for shapes A and B. step length 10 
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along a straight edge is 14.1421 and not 10, because the pixels are diagonally 

connected. This is not a problem when all of the pixels are diagonally connected but 

it highlights a flaw in the application of the method. Kaye et al [74] refer to an 

"equipaced" exploration of the profile. The edge pixels in shape C are not evenly 

spaced because some are connected 

edge to edge and some are connected 

diagonally corner to corner. Stepping 

10 pixels gives a chord length of lOon 

the edges aligned with the digitisation 

grid, and a chord length of 14.1421 on 

edges at a 45° angle to the grid, even 

though they are all "straight.". Chords 

spanning the corners have lengths 

between these two values. The plot is 

shown in Figure 3.31. The maxima and 

minima represent the sides of the 

octagon and the corners are lost in the 

transitions. 

Figure 3.31 : Spanning chord plot for 
shape C (uneven spacing of 
points) 
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Clearly, the data is not of a suitable format for use with this method. Kaye et al 

rotated a vector from the centroid to the periphery at constant angular velocity to 

obtain a set of equiangular co-ordinates. Equiangular does not necessarily mean 

equally spaced along the boundary but serious problems would only be encountered if 

the profile contained long spikes or sharp concavities. 

(A puzzling feature of the Kaye et al paper [74] is the wavy nature of the plots in 

Figure 7b(i) and (ii). Whether the boundary points are obtained by equiangular steps 

or simply taken as the co-ordinates of the outermost particle pixels, the points are 

equally spaced for a square and the plot should look like Figure 3. 30. Also, if the 

points are equally spaced the chord length can never be longer than the step length. 

One can only assume that the shapes analysed by Kaye et al had more fuzzy edges 

than depicted and that the points were not equally spaced.) 
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To apply the method correctly a routine was written to interpolate between the points 

in the edge co-ordinate files and produce a new list of points, such that the spacing 

from any point to its neighbour is a fixed value. A spacing of 1 was chosen. The 

program is listed in Appendix 5. The effect of running this routine is to slightly 

smooth the profile while also increasing the number of points in the list. The octagon, 

shape C, now gives a much better plot showing eight corners of equal sharpness. The 

other synthesised shapes also give good results (Figure 3.32). Note the three different 

angles in the triangle, the sharpest angle having the deepest trough. 

In all cases the chord lengths were normalised by the step length. The choice of a step 

length of 10 was made after experimenting with different values. As the step length 

Figure 3:32 : Spanning chord plots for shapes A to E with evenly spaced points 
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increases the troughs broaden and there are fewer chords of maximum length. If the 

steps are too big some detail is lost and if they are too small the plots contain 

unwanted noise. 

The edge co-ordinate files for the 48 particle set representing bin 2 and bin 9 were 

then converted and the spanning chord program was run. Because these profiles are 

more irregular and noisier than the synthetic shapes the step length was considered 

afresh and after some experimentation it was decided that 20 was suitable. Plots of 

some selected shapes are shown in Figure 3.33. 

Figure 3:33: Spanning chord plots for particles from Figs 3.14 and 3.15 
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3.5.2 The Radius of Curvature Method 

In this method a circle is fitted to three points and the radius is plotted against the list 

position of the middle point. Different levels of resolution are obtained by varying the 

spacing, s, between the points used for fitting the circle. For example, s=J means 

fitting to three consecutive points, giving high resolution and showing up every 

undulation in the profile. Larger values of s smooth the results. The other variable to 

be considered is the maximum radius value allowed in the plot. 

Once again QuickBASIC was used for programming (Appendix 6). Beginning with 

the synthetic shapes, the method was tried on both the original edge co-ordinates files 

and the new equally spaced co-ordinates files. It was found that equal spacing is not 

as critical as it is for the spanning chord method. The octagon shows eight corners no 

matter which file is used but it can be seen from Figure 3.34 that better results are 

obtained with the latter. When the original set of co-ordinates is used the distance 

between the troughs relates to the number of pixels along the edge rather than the 

actual length of the edge. 

By comparing the results from various values of s across a selection of real and 

synthetic particles s=7 was chosen for the plots in Figure 3.35. Values as low as 2 

work well with the synthetic shapes but the real particles need a lower resolution to 

smooth out the noise. The choice of maximum value is arbitrary. Ideally the data for 

each particle should be plotted with a high maximum. An appropriate cut-off point 

can then be chosen by observation, depending on the level of detail required. For 

Figure 3.34 : Radius of curvature plots for shape C (s=7) 
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example, particle 7 from bin 9 would only show the four main corners if the threshold 

was reduced to 15. 

It must be noted that no provision was made in the calculation of radius to recognise 

cases where the three points made a concave curve instead of a convex curve in 

Figure 3.35 : Radius of curvature plots for selected shapes 
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relation to the centre of the particle. For re-entrant particles this would be a serious 

omission because there would be no differentiation between protrusions and 

concavities. However, for diamond particles it is not considered to be a problem. 

3.5.3 Comparison Of Corner Counting Methods 

Both the spanning chord method and the radius of curvature method are capable of 

identifying corners on diamond particles, provided the points of the profile are equally 

spaced, and appropriate choices of the variables are made. There is little to choose 

between the two methods. The plots differ slightly in appearance but give the same 

information. The fact that straight lines give an infinite radius makes the radius of 

curvature method a little untidy, so perhaps the spanning chord method is more 

attractive. 

3.6 SUMMARY OF SHAPE EXPLORATION 

At this point enough of the methods from the literature have been examined to give a 

good indication of the best way to proceed. 

The first hypothesis of this thesis is restated: 

Hypothesis 1; There exists a shape quantifier that describes meaningfully the 

table sorting of synthetic diamond sawgrit particles. 

It has been shown in this chapter that the shape of a diamond particle can be described 

in many ways. Of all the methods explored the shape parameters measured by the 

image analysis software seem to offer the best solution in terms of ease of 

measurement and relevance to tabling. Axis ratio showed the best correlation with the 

Friatest results and is chosen as the shape quantifier that proves the first hypothesis. 

Perhaps the most interesting (or at least the most gratifying) result was the way that 

some of the particles could be described by the relative magnitudes of the Fourier 

coefficients in Figure 3.16 (page 56). However, in terms of application, it was found 

that the method is too complex. Interpretation of the charts in Figure 3.16 requires 

some effort. The fact that only 48 particles and 2 bins were studied, compared with 
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hundreds of axis ratio measurements, shows that the method was time-consuming and 

tedious to apply. No doubt it could be automated and speeded up, but once it was 

discovered that the A, coefficient correlated with axis ratio, it was thought 

unnecessary to develop the method to measure the Fourier coefficients of the other 

bins. 

Fractal analysis is unsuitable because diamond particles are not rugged. 

Simple polygonal harmonics were found to exist and shape information could be 

gleaned from Figure 3.26 (page 69). Again only 48 particles were analysed and 

problems with time and effort required are similar to those of Fourier analysis. 

Methods of counting corners were explored briefly and gave good results for 

diamond. To make proper use of the results the analysis would have to be taken a step 

further. Graphical output per particle is not practical and the results for only a few of 

the particles could be shown here. Ideally the program would use thresholds of depth 

and sharpness of the troughs to come up with a number (or numbers) to describe the 

particles. This was not done here. One reason was that there was no obvious way to 

pick appropriate thresholds and a lot of guesswork, trial and error, and subjective 

decisions would be required. The other reason was that axis ratio offered more 

promise as a parameter on which to base a model, and for much less work. 

The axis ratio parameter will be analysed in more detail in the next chapter, and will 

be used for modelling the tablesort. 
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4 MODELLING DIAMOND TABLING 

4.1 INVESTIGATING THE MEASUREMENT OF AXIS RATIO 

The initial work on axis ratio suggests that it is a suitable parameter to describe 

tabling. However, before attempting to use it for modelling, it was thought necessary 

to: 

• verify the calculation of axis ratio by the software, 

• investigate the effects of changing image capture conditions such as brightness, 

contrast, magnification and focus, 

• establish an appropriate sample size. 

4.1.1 Verification Of Axis Ratio 

This action was thought to be necessary because a bug had been found in the software 

and several inaccuracies were noted in the software manual. 

The twenty four bin 2 particles from Figure 3.14 (page 54) were used to verify the 

software calculations. For each particle a file was opened to hold the raw greyscale 

data· a series of numbers where 0 represents a black pixel and 255 represents a white 

pixel. A QuickBASIC program was written to calculate axis ratio from these files. 

The details of the calculation are given in Appendix 7 and the program listing can be 

found in Appendix 8. The program assigns the grey-level data to a two-dimensional 

array in x and y, with a value of 1 for pixels with a grey-level less than 20, and a value 

of 0 for the rest. It then calculates the centroid and the sums of the squared 

co-ordinates, uses the transformations from Appendix 7 to find the moments about the 

principal axes of the particle, and reports the axis ratio. 

The values for axis ratio reported by the image analysis software were compared with 

values calculated by the QuickBASIC program for the twenty-four particles. Over a 

range of 0.785 to 0.965 the average difference between the two methods was 0.001, 

with a maximum difference of 0.005. The differences arise from the definition of 

particle pixels. Around the edges of the particles there are pixels which are neither 
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black nor white and the choice of 20 as the cut-off grey-level for inclusion in the 

program calculations was arbitrary. The total number of pixels in a particle 

determined by the program was never exactly the same as reported by the image 

analysis package. 

There is sufficient agreement between the "automatic" and "manual" methods to have 

confidence in the software and its measurement of axis ratio. 

4.1.2 Effects Oflmage Capture Conditions 

Repeat measurements were made on one field of twenty-five particles from bin 2 

under different lighting, focus and magnification conditions. It was found that 

changing the lighting by adjusting the brightness, via the software or by the aperture 

control on the microscope, affected readings of individual particles in the third 

decimal place. Refocusing, or changing the magnification between x6.5 and x25 

along with refocusing, affected the second decimal place. It was concluded that focus 

adjustments can make a difference and that care must be taken to ensure that the 

image is as sharp as possible before making measurements. Brightness and contrast 

adjustments are not critical within a certain range, and the appearance of the image on 

the monitor can be used to set them correctly. 

It can be concluded that individual readings of axis ratio are repeatable to two decimal 

places when there is reasonable attention paid to focusing the image. This 

corresponds to an uncertainty of ±0.005. 

4.1.3 Choice Of A Sample Size 

The average axis ratio from repeat measurements of the same field of 25 particles was 

also repeatable to two decimal places. Other fields of a similar number of particles on 

the same slide were measured but the average values from field to field agreed only in 

the first decimal place. Clearly, a sample of 25 particles is not sufficiently large. 

To get repeatability in the mean to two decimal places the mean deviation must be 

0.005 or less. The mean deviation for a normal distribution can be related to the 

sample standard deviation, cr, and sample size, n, by the following equation. 
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0.005 ...5L .. : .................................. (27) 
,/n 

By definition axis ratio has an upper limit of I, which truncates the distribution curve. 

A normal distribution cannot be assumed in the lower bins where axis ratios are high. 

A simple exercise was undertaken to find an appropriate sample size for bin 2. Axis 

ratios for a total of 1040 particles from two bin 2 slides were measured, giving an 

average of 0.88 and a standard deviation of 0.06 (see Figure 4.1). The axis ratios 

were pooled into groups of n consecutive measurements, for various values of n 

between 100 and 500, and the averages of the groups were compared. 400 particles 

were sufficient to get an average of 0.88 every time. Looking back at Figure 3.6 

(page 43) it can be seen that the standard deviation is fairly consistent up to bin 6, so a 

sample size of 400 particles is appropriate for these bins. 

At the upper end of the table the standard deviation is higher and larger samples will 

be necessary. Since the average axis ratio is further from the truncation value, the axis 

ratio distributions are closer to normal in these bins. The British Standard for 

measuring particle size distributions [97] recommends a sample of 625 particles. 

From equation 27 the mean deviation for a standard deviation of 0.135 (bin 12, Figure 

3.6) and a sample size of 625 particles is 0.0054. This is a worst case example so it 

was concluded that 625 is an appropriate sample size for most cases of axis ratio 

measurement. 
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In summary, if the image capture conditions are set so that the image is reasonably 

sharp and the threshold for distinguishing particle pixels from background pixels is 

chosen with care, then a sample of a minimum of 400 particles will give the required 

precision of two decimal places in the mean axis ratio in the lower bins. For very 

poorly shaped material a much larger sample may be needed but a sample size of 625 

particles should be adequate to give the required precision in most cases. 

With this decided, the next task was to ensure that the sample is representative of the 

population. 

4.2 SAMPLING 

It is generally accepted by those involved in processing diamond that representative 

samples of sized and tabled fractions can be obtained using a spoon or spatula. This is 

because these fractions are considered to be reasonably homogeneous after sorting. 

However, no statistical evidence could be found to back up this assumption, so it was 

decided to test it for the specific case of axis ratio measurements. 

4.2.1 Sampling Experiment 1 

An experiment was carried out to compare the spooning sampling method with 

spinning riffler sampling. Given that there is a much wider range of axis ratio in the 

upper bins than in the lower bins, it was expected that sampling would be more 

critical at the poor shape end of the table: A requirement of the sampling experiment, 

therefore, was that the methods be compared for both good and bad shapes. 

1,000 carats (200g) of bulk 40/45 grit were tabled and bins 2 and 9 were chosen as 

examples of good shapes and bad shapes respectively. The contents of bin 2 were 

divided into twenty samples using a spinning riffler. Two of these were set aside and 

labelled 2RA and 2RB. The others were recombined in the bin and then two samples 

were taken with a spoon. These were labelled 2SA and 2SB. The samples were 

cleaned in water in an ultrasonic bath for approximately ten minutes and then rinsed 

with alcohol and dried. Two slides of each of the A samples and one slide of each of 
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Figure 4.2 : Bin 2 sampling plan 

the B samples were made up. This gave six slides, allowing the following 

comparisons: 

• repeat measurements of one slide 

• 2 slides from the same sample (2RAI vs. 2RA2, 2SAl vs. 2SA2) 

• 2 riffled samples (2RA vs. 2RB) 

• 2 spooned samples (2SA vs. 2SB) 

• riffle vs. spoon (2R vs. 2S) 

The diagram in Figure 4.2 shows the sampling process and the designations of the 

slides. 

A similar exercise was carried out for bin 9, giving six more slides. There was a 

slight difference in method because there was a much smaller quantity of material in 

the bin. The contents of five riffle tubes were combined to make each of the 9R 

samples, and the remaining material was recombined and divided equally between 

two sample jars to make the 9S samples. 

Axis ratios of a minimum of 625 particles were measured on each slide and were then 

imported to a spreadsheet file for analysis. Using a spreadsheet Hest function, each 
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slide was compared with each of the others in turn. The results for bin 2 are shown in 

Table 4.1 and Table 4.2. Where a slide is listed twice, a repeat measurement was 

carried out. 

Table 4.1 : Axis ratios for bin 2 

SLIDE AVERAGE STANDA~ 
DEVIATION 

2RAI 0.871 0.065 

2RAI 0.868 0.067 

2RA2 0.868 0.069 

2RB 0.873 0.065 

2SAI 0.869 0.066 

2SA2 0.870 0.065 

2SB 0.865 0.065 

Table 4.2 : T -test results for bin 2 

2RAI 2RAI 2RA2 2RB 2SAI 2SA2 2SB 

2RAI - 0.55 0.41 0.51 0.63 0.90 0.12 

2RAI 0.55 - 0.81 0.21 0.90 0.63 0.35 

2RA2 0.41 0.81 - 0.14 0.72 0.48 0.50 

2RB 0.51 0.21 0.14 - 0.25 0.43 

2SAI 0.63 0.90 0.72 0.25 - 0.72 0.29 

2SA2 0.90 0.63 0.48 0.43 0.72 - 0.15 

2SB 0.12 0.35 0.50 0.29 0.15 -

Note: The values in the table are the probabilities, p, such that the null hypothesis (x I = X2 , where x is 
the mean) can be rejected with 100(l-p)% confidence. To conclude that two sample means are 
different with at least 95% confidence, p must be <0.05. The shaded cells highlight the pairs of 
samples found to be different by this test. 

At a 95% confidence level the uncertainty in the mean of a sample of size n is 

approximately 2 aI..Jn, where (J is the population standard deviation. Assuming a 

worst case and taking the highest standard deviation value from Table 4.1 gives an 

uncertainty of ±0.006. Only the averages at either end of the range in Table 4.1 differ 

by more than this. The t-tests verify this, with 2SB and 2RB being the only pair 
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shown to be different. Clearly then, sampling is not critical for this particular shape 

mix, and one slide from one spooned sample can be considered to be representative. 

The bin 9 results are given in Table 4.3 and Table 4.4 below: 

Table 4.3 : Axis ratios for bin 9 

SLIDE 

9RAI 

9RAI 

9RA2 

9RB 

9SAl 

9SA2 

9SB 

9SB 

Table 4.4 : T -test results for bin 9 

9RAl 9RAl 

9RAl 0.45 

9RAl 

9RA2 

9RB 

9SAl 

9SA2 

9SB 

9SB 

see note under Table 4.2 

AVERAGE STANDARD 
DEVIATION 

0.734 0.112 

0.739 0.114 

0.755 0.106 

0.748 0.115 

0.685 0.147 

0.691 0.152 

0.698 0.139 

0.699 0.141 

0.53 0.35 

0.11 0.35 

0.11 0.33 0.94 

0.94 

It appears from these results that there is a difference between riffling and spooning 

for bin 9. All of the riffled samples have been found to be significantly different from 

all of the spooned samples by the t-tests. From Table 4.3, the spooned samples have 

lower averages and higher standard deviations than the riffled samples. From Table 

4.4, there is less agreement among the riffled samples (top left quarter of the table) 

than among the spooned samples (bottom right quarter). 
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Although it was anticipated that a difference between riffling and spooning would 

show for bin 9, these results were not expected. It seems strange that a set of samples 

obtained from a spinning riffler would give less consistent results than a set of 

spooned samples. It would also be expected that, if spooning were selective, the 

spooned samples would contain a smaller range of axis ratios and have lower standard 

deviations. 

A random selection of particles from samples 9RB and 9SB were viewed in a 

scanning electron microscope and a visual difference between the two was noticed. 

The spooned sample, 9SB, contained many more small fragments and broken crystals, 

along with more polycrystalline particles. Two possible explanations for this were 

considered. The first was that, because of a shortage of material in bin 9, the spooned 

samples were not actually obtained by dipping the spoon in once and removing a 

spoonful, but involved scraping the bottom of the bin and tilting the bin to help the 

material onto the spoon. At the time of sampling this was not considered to be invalid 

because, after riffling, the half that was put back into the bin should have been the 

same as the half in the R samples, and the only concern was to divide what was in the 

bin into two samples without riffling. Even if some difference was introduced in this 

way, the disagreement between the various riffled samples is not explained, 

particularly the difference seen when two slides from 9RA were compared (9RAl and 

9RA2). 

The second possibility was that the ultrasonic cleaning was not consistent. Samples in 

individual beakers were placed four at a time in the ultrasonic bath and removed one 

at a time. The order in which they were cleaned was not recorded, but it is possible 

that the four riffled samples were cleaned together, and then the four spooned 

samples. Cleaning times were not equal so perhaps the four S samples were vibrated 

for longer and broke up more. Grit from this end of the table tends to contain twinned 

crystals and polycrystals, which can be broken up. 

Either way, it was felt that the results from bin 9 needed to be confirmed, by repeating 

the exercise for bad shapes. 
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4.2.2 Sampling Experiment 2 

A new sample of bulk was obtained and tabled. A larger bulk sample (1500 carats) 

and a choice of bin 8, which contained enough material for sampling, would avoid the 

first problem discussed above. The second could be investigated by comparing 

ultrasonically cleaned samples with uncleaned samples. 

Sampling was carried out in a similar way to before. Two riffied and two spooned 

samples were taken and one slide of each was made up and analysed. 8RA and 8SB 

had the highest and lowest average axis ratio respectively, so these two were chosen 

for further analysis. Repeat measurement was carried out on these slides and then the 

remaining material in these two samples was cleaned in an ultrasonic bath and slides 

8RAus and 8SBus were made up and analysed. The results of the axis ratio 

measurements and the t-test comparisons are given in Table 4.5 and Table 4.6. 

Looking at Tables 4.2, 4.4 and 4.6, the first observation is that there are more 

differences among these bin 8 samples (Table 4.6) than there were among bin 2 in the 

previous experiment (Table 4.2), which does suggest that sampling is more critical at 

the bad shape end of the table. 

Table 4.5 : Axis ratios for bin 8 

SLIDE AVERAGE STANDARD 
DEVIATION 

8RA 0.830 0.085 

8RA 0.827 0.088 

8RAus 0.814 0.090 

8RB 0.822 0.082 

8SA 0.820 0.086 

8SB 0.811 0.089 

8SB 0.814 0.086 

8SBus 0.815 0.091 



Table 4.6 : T -test results for bin 8 

8RA 8RA 

8RA 0.54 

8RA 

8RAus 

8RB 

8SA 

8SB 

8SB 

8SB us 

see note under Table 4.2 

0.86 

0.12 

0.18 

89 

0.26 

0.69 0.11 0.18 

0.24 0.35 

0.08 0.55 0.44 

0.24 0.55 0.84 

0.35 0.44 0.84 

Secondly, in all cases where a repeat measurement was made on a slide (2RAI, 

9RAI, 9SB, 8RA and 8SB) the comparisons passed the t-test. The two measurements 

were never carried out one after the other - they were on different days, or several 

other samples were analysed in between. This meant that the imaging conditions were 

set up anew for the repeats and gives some confidence in the repeatability of the 

measurement method. 

Apart from the cleaned rimed sample, the bin 8 results come quite close to supporting 

the bin 9 results. The average axis ratios are generally higher for the rimed samples, 

and the differences found to be significant by the t-tests all involve rime vs. spoon 

pairs. 

Looking at the question of the ultrasonic cleaning it would appear from sample 8RA 

that the cleaning did indeed cause the average axis ratio to fall. Before it was cleaned 

this sample was out of line with the others, having a higher axis ratio. After cleaning 

it fitted into the set of results much better. On the other hand, 8SB was not affected 

by cleaning at all. One conclusion that can be drawn from this is that there really was 

something different about 8RA, which was solved by cleaning. Two possible sources 

of contamination are the tube on the spinning rimer and the sample jar. An 

alternative conclusion is that the range of averages obtained over a series of 

measurements at this end of the table will always be this large and any apparent 
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relationships between averages and sampling method and/or cleaning are just 

coincidence. 

Either way, it was not proved that using a spinning riffler gives more representative 

samples, or that cleaning the diamond before measurement improves the accuracy. 

The only conclusion that can be drawn from the bin 9 and bin 8 results is that spooned 

samples give more consistent results than riffled samples, without seeming to lose 

anything. It was decided that uncleaned spooned samples would suffice for the 

modelling exercise. 

4.3 MODELLING 

4.3.1 Basis For A Model 

In the literature previous attempts at modelling tabling were based on imaginary 

particles and assumptions about their movement on the table. Endoh [7] treated a 

particle as a point and numerically solved equations for three modes of motion; no 

relative motion, forward or backward sliding, and flight. Vibration and frictional 

forces determined which mode of motion applied at any particular time. The input 

variables were intensity of vibration, inclination of the table, and coefficient of 

friction of a particle on the table. The conclusion from simulations using the model 

was that particles with different frictional properties, e.g. spherical and non-spherical, 

could be separated at low vibration rate or low inclination angle. 

Meloy, Williams and Rulke [13] viewed a shape-sorting table as a rectangular 

two-dimensional network of cells. Particles of type i had transfer functions, Ti. This 

was the probability that a particle of type i would move to the next cell on the right. 

1-Ti was the probability that a particle would move down one cell. The probability 

that a particle would exit at a particular point at the right or bottom edge of the table 

could be calculated, given Ti and the number of cells along these edges. Plots of the 

outputs for various mono-property particle feeds were presented. Improved separation 

of particles with different transfer functions was predicted by increasing the number 

of cells. Since the cells are virtual, it was suggested that it was not necessary to 

mcrease the size of the table, but that the number of cells could effectively be 
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increased by tuning of the table settings. The authors admit that the model is highly 

simplified, in that diagonal and backwards movements are not allowed and all cells 

are considered to be the same. The final remark in the paper is that ... the need for the 

measurement of the residence times and transfer jUnctions of particles on tables will 

require new and productive table experiments. 

The aim now is to construct a model based on real particles and real data. What 

makes this possible is the ability to assess the output of a tabling operation by 

quantifying the shape of individual particles. Whiteman and Ridgeway [151 

characterised tabled material by measuring shape factors of individual particles, but 

did not go as far as using these to model the sorting. It is proposed that the table can 

be viewed as one cell with one input (the feeder) and twelve outputs (twelve bins) and 

that measurement of axis ratios will provide the data for setting up a model. The 

advantage of this model over those described above is that it can be applied to real 

particle sets. 

4.3.2 Experimental Data 

The results of any tabling are highly dependent on the table settings. Increasing the 

tilt angle (that is raising the bin 12 end of the table) causes the whole sort to move 

towards bin 1. Increasing the fore and aft angle (that is raising the back of the deck) 

causes the sort to close, which means less material gets to the end bins and more to 

the middle bins. This effect is greater at the bin 12 end. Lowering the back of the 

deck opens the sort, causing the end bins to fill at the expense of the centre bins. 

Higher vibration rates speed the passage of the particles over the deck and give a less 

effective sort because a higher proportion of the transit time is spent in flight 

(equivalent to reducing the number of cells in Meloy, Williams and Rulke's model). 

Higher feed rates give rise to more particle-particle interference. 

Other variables that affect the sort are material type and particle size. By using only 

size 40/45 diamond from a specific type of synthesis process, these factors are kept 

constant. It is assumed for the time being that the bulk material does not vary 

significantly from batch to batch. 
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In the production environment the tables are generally set during the first few minutes 

of operation. Small adjustments are made to the angles until it is deemed that the 

spread of particles across the deck is even. There is no angle measurement built into 

the deck so the angles are not usually recorded. Within a size it is not known how 

much the settings differ from one tabling to another, or from table to table. 

Using bulk 40/45 material, two tablings were carried out to give two different 

distributions in terms of percentage weight per bin. The tables were set up as required 

and then stopped so that the material which had crossed the table during the setting up 

adjustments could be returned to the hopper. The deck angles were then measured 

using a clinometer aligned in a perspex frame designed for that purpose. Feed rate 

was measured during set-up by catching the feed on a spoon and weighing the amount 

caught over a time period of one minute. The vibration rate was read from a digital 

display on the control panel. 

After tabling, the contents of each of the bins were weighed. The table settings and 

the resulting weight distributions are shown in Figure 4.3. These tablings will be 

referred to as th I and th2. 

In the first tabling the material was biased towards the bin 1 end and in the second the 

distribution was opened. The distributions look very different. Assuming the bulk to 

be consistent it would be expected that the contents of any bin would differ in some 

way from the contents of the bin with the same number on the other table. 

Spooned samples of the bulk material and of each of the bins were taken (except bin 

12, which contained no material in both cases) and slides were made. Axis ratios of 

625 particles on each slide were measured by image analysis and the data files were 

imported to a spreadsheet for analysis. The axis ratio distributions from bins 1, 5 and 

9 of thI and th2 are compared in Figure 4.4. T-tests showed that these distributions 

are significantly different with more than 99% confidence when compared table to 

table. This proves that differences between the bin contents for the two sets of tabling 

conditions can be quantified by measuring axis ratio. The average axis ratios and 

standard deviations are plotted against bin number in Figure 4.5. At the bin 1 end of 



Figure 4.3 : Weight% distributions for tbI and tb2 
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the table tbI gives better discrimination on averages but most of the way across the 

table the distributions within the bins are tighter in tb2. This kind of information 

could be very useful in setting up a table if something is known of the desired output 

in terms of axis ratio distributions. 

4.3.3 Setting Up The Models 

There are large overlaps in axis ratio distributions from bin to bin. Given only the 

axis ratio of a particle it is not possible to say with certainty from which bin it came, 

or to which bin it would go if tabled again. However, it can be said that it is more 

likely to go to some bins than to others, based on the knowledge that some bins 

contain more particles of this axis ratio than others. In other words, for a given axis 

ratio there is a probability associated with each bin as a possible destination. 
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Figure 4.4 : Axis ratio distributions of selected bins 
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Figure 4.5 : Axis ratio averages and standard deviations for tbl and tb2 compared 
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The calculation of the probabilities to model a particular tabling was carried out as 

follows. The range of axis ratio values was divided into intervals of 0.05, giving 

sixteen classes, Ci, with cl=0.25 and C16=1. These are the values at the centre of the 

interval so, for example, 0.5 means the interval 0.476 to 0.525. (The exception is the 

highest class, which ranges from 0.975 to 1.) For each of the bins the percentage 

distribution by class was worked out from the 625 measurements and weighted 

according to the percentage weight of material in the bin. This gave a set of values, 

wij , where i is the axis ratio class and) is the bin number. The probability, Pij, that a 

particle in the ith axis ratio class will land in bin) is then 

= wij 
pij 12 

~ Wr 
j=1 Y 

...................................... (28) 

A set of probabilities for tbi was derived in this manner, and similarly, a set for tb2. 

As expected, these are quite different. The graphs in Figure 4.6 compare the 

probabilities by bin for selected axis ratio classes. From these it can be seen that tbi 

is more efficient at keeping particles with high axis ratios (0.85, 0.95) at the bin I end 

of the table, but that tb2 is better at sending the low axis ratios (0.55, 0.45) to the other 

end. For example, a particle with an axis ratio of 0.45 will end up in bin 10 or 11 at 

tb2 settings, but could make its way to bin 7 at tbi settings. At axis ratios of 0.75, 

particles can go to almost any bin on either of the two settings, but more of them wiU 

be found in the 'good' bins at tbi settings, whereas tb2 settings will send more of them 

to the 'bad' bins. The crossover in this case is between bins 6 and 7. For higher axis 

ratios the crossover is nearer the bin 1 end. As the axis ratio decreases the crossover 

moves towards the bin 12 end. 

4.3.4 Testing The Models 

One possible use of sets of probabilities is to predict the outcome of tabling for a feed 

sample of known axis ratio distribution. Thus, for any sample with an axis ratio 

distribution, h" where bi is the percentage in class i, the percentage, ~, ending up in 

the )th bin is 

16 
dj=.~ biPij ....................................... (29) 

t=1 
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Figure 4.6 : Probabilities for tbl (squares) and tb2 (diamonds) for selected axis ratio classes 

One of the characteristics of tabling that has long been a source of puzzlement is the 

way the contents of one bin, when retabled at the same settings, spread out and 

distribute themselves in a wide range of bins. In past experiments with synthetic 

diamond [98] it has been found that the percentage of material returning to the bin 

from which it came is much higher (up to 80%) at the extreme en~s of the table than 

in the centre (approximately 40%). This gives a U-shaped repeatability curve 

(percentage returning to original bin plotted against bin number). On the other hand, 

if the material is recombined and retabled at the same settings the weight distribution 

across the bins is repeatable to within 2%. These observations could possibly be 
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explained by the fact that the path of any particle across a vibrating table is based on 

probability . 

Knowing a set of probabilities now makes it possible to retable the individual bin 

contents by simulation, and predict repeatability curves. Using the measured axis 

ratio distributions from the bin samples, and the two calculated sets of probabilities, 

the distributions on retabling were predicted. Figure 4.7 shows the retabled bin 

distributions predicted by the two models, and the associated predicted repeatability 

curves. 

The repeatability curves have the characteristic feature of higher repeatability in the 

end bins but the percentages are all lower than expected. To see what actually 

happens, bins I, 5 and 9 from rb2 were retabled. 

To do this it was necessary to reproduce the tb2 tabling conditions exactly. The first 

important factor was the table itself. Because of variations in deck surfaces from table 

to table, and differing characteristics of the accelerometers used for vibration, the 

same table as before had to be used. The tabling parameters were set to be as close to 

those of tb2 as possible. Unfortunately, the controls for the deck angles do not allow 

fine adjustments so the angles were slightly different. The tilt angle was set at 6.57 

degrees (previously 6.55) and the fore and aft angle at 3.56 degrees (previously 3.55). 

Neither can the feed rate be set precisely. It was measured this time to be 

approximately 14 carats per minute. 

When it was judged that the tb2 settings had been reproduced as well as was possible, 

the contents of bin I from tb2 were tabled and the percentage weights in the bins were 

recorded. A similar exercise was carried out for bin 5 and then bin 9, without 

changing any of the settings. The actual distributions are shown alongside the 

predicted distributions in Figure 4.8. It is clear that the predictions are a long way 

from being correct. Much more of the bin I and bin 9 material returned to the original 

bin than was predicted, and the distribution of the retabled bin 5 has a completely 

different shape than predicted. 
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Figure 4.8 : Retabling of tb2 bins, predicted and actual 

4.3.5 Discussion 

Two possible explanations for the differences between actual and predicted are: 

• The table settings are so critical that slight differences in the parameters will 

alter the probabilities, making the model invalid as soon as any settings are 

changed. 

• The model is too simple because it is based on one empirical result and relies 

only on axis ratio as the sorting property. 

It is likely that the discrepancies arise from a combination of these possibilities and 

they will each be discussed. 
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a) The table settings are so critical that slight differences in the parameters will 
alter the probabilities, making the model invalid as soon as any settings are 
changed. 

The reproducibility of the table settings was easily investigated by combining all the 

tb2 material and tabling it at the current settings. If the settings had not been changed 

then the distribution by weight across the bins would be expected to be reproducible 

to within two or three percent. The results are compared graphically in Figure 4.9, 

and the differences are listed in Table 4.7. 

Table 4.7: Differences in distribution on retabling th2 material at slightly altered settings 

bin retable - original 

bin I -4.61% 

bin 2 -1.01% 

bin 3 0.93% 

bin 4 1.57% 

bin 5 1.19% 

bin 6 2.21% 

bin 7 2.83% 

bin 8 2.82% 

bin 9 0.29% 

bin \0 -5.27% 

bin II -0.96% 

Although the basic shape of the retabled distribution is similar to the original, the sort 

has closed slightly (meaning that the middle bins contain more material than before, 

while the outer bins contain less than before). It is usual on repeat tabling to find that 

the higher discrepancies are at the extreme ends of the table, but the differences in 

Figure 4.9 : Original th2 and reset th2 distributions by bin 
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bins I and 10 are higher than would be expected on a repeat if the settings had not 

been altered. Differences of 2% would also be considered high in the middle bins. 

The conclusion from Figure 4.9 and Table 4.7 is that some reproducibility has been 

lost because of having to reset the tabling parameters. However, this is only a small 

contribution to the error and does not explain the fact that the model predicted much 

lower percentages returning to original bins than were observed. 

b) The model is too simple because it is based on one empirical result and relies 
only on axis ratio as the sorting property. 

The real proof of a model is to predict the correct results from data that is completely 

independent of the data used in setting it up. This model failed the test. Going back a 

step, it was tested on data similar to the original data but not exactly the same. Axis 

ratios had been measured on the bulk sample before tabling. but the bulk 

measurements were not used in the calculation of the probabilities. 

Using the measurements from the sample of bulk material used in tb2, and the set of 

probabilities for tb2, equation 29 was applied to predict the weight distribution across 

the bins. The actual and predicted values are presented in Table 4.8. All of the 

predictions are within 0.5% of the actual. This shows that the model works when the 

data is similar to the data used to set it up. 

Table 4.8 : Comparison of predicted (p) with actual (a) weight distribution for tb2 

bin I bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8 biD 9 bin 10 bin 11 

a (%) 20.88 12 8.67 6.16 5.56 6.33 6.86 8.08 10.77 12.59 2.1 

P (%) 20.75 11.93 8.72 6.2 5.61 6.41 6.96 8.26 11.07 12.35 1.76 

p-a -0.13 -0.07 0.04 0.04 0.05 0.08 0.1 0.18 0.3 -0.25 -0.34 

(Note: The measured bulk axiS ratio distribution compared favourably with the 

distribution derived by adding the weighted axis ratio distributions of all the bins. 

This fact proves that the measurement of axis ratio is representative and repeatable.) 

The probabilities in the model represent the table settings and ideally it would be 

possible to predict the weight distribution by bin of any feed sample at these settings 
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using these probabilities. This is where the model fails. It seems that when the feed 

distribution changes, the paths of the particles across the table are not governed by the 

same probabilities. This could be because the particle-particle interference is different 

or, more likely, the model is simply inadequate. 

The mod~1 assumes that once the table settings are fixed, the only factors influencing 

the path of a particle are its axis ratio and an associated probability. Axis ratio is a 

two-dimensional measurement but the movement of a particle is a sequence of events 

in three dimensions, with rolling, sliding, turning in flight and landing in different 

orientations all taking place. It was hoped that one parameter and analysis by 

distribution rather than particle by particle would give enough information to describe 

tabling behaviour but this was not the case. 

However, the model has some validity. 

• It correctly predicts that the contents of a single bin will spread out to other bins 

when retabled. 

• The reproducibility curve it predicts has the correct shape, showing higher 

reproducibility in the end bins. 

• Axis ratio measurements show that the bin contents for different table settings 

differ in shape distribution - compare axis ratio distributions in Figure 4.4 (page 

94). 

• The probability curves for various axis ratios (Figure 4.6 page 96) give a good 

graphical description of the different sorting actions of tbi and tb2. 

The latter two items open up some new possibilities for productive table experiments 

because they provide a new means of comparing different table settings. If the 

required output is defined in terms of axis ratio averages and standard deviations then 

these tools and some experimental design would help to find the optimum settings to 

achieve that output. 

In summary, axis ratio measurements have been shown to be both relevant and 

informative, and the concept of using probabilities based on axis ratio distribution to 

model tabling at particular settings has some merits. The model goes some way 
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towards explaining the redistribution of bin contents on retabling, but fails to predict it 

accurately. 

4.3.6 Developing The Model 

It was decided to add a second parameter to the model in an attempt to improve its 

performance. Length dif (see Chapter 2) was chosen as a second parameter. Scatter 

plots of axis ratio against length dif showed little correlation between the two 

parameters so they are assumed to be independent. . Figure 4.10 is a plot using 

approximately fifty particles from bin 2, and the same from bin 8, from the reset tb2 

tabling. 

To include length dif in the modelling process the classes had to be defined by a 

combination of axis ratio and length dif. The simplest way to do this was to double 

the number of classes by dividing each axis ratio class into two - one with length dif 

greater than a given value and the other with length dif less than that value. As an 

initial guess the value chosen was the median of the length dif values of the bulk 

sample. This value was 1.2. 

The model was reconstructed from the bulk tabling data using the larger set of classes 

and new predictions were made for the retabling of the contents of individual bins. 

These predictions were not much different from those based on axis ratio alone. 

Other values for dividing the data on length dif were also tried and the reproducibility 

Figure 4.10 : Scatter plot showing length dif and axis ratio to be independent variables 
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Figure 4.11 : Reproducibility curves for various axis ratio/length dif models 

curves are plotted in Figure 4.11. Splitting at a higher value, such as 3, failed to give 

any improvement. Splitting at 0.6 predicted higher reproducibilities for bins 9 and 10, 

but still fell short of the actual results. 

Since this method of modelling was quite cumbersome it was thought to be futile to 

attempt to complicate it any further by adding more classes or more parameters. By 

now it was obvious that even though axis ratio is a dominant factor, the movement of 

a diamond particle on a vibrating table is influenced by many parameters and that 

prediction of tabling requires a m~re complex model. 

It was decided that it may be more appropriate to apply a data analysis method, such 

as artificial intelligence, to the problem. 
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5 ARTIFICIAL INTELLIGENCE 

Although there is overlap between table bins when anyone parameter is measured 

there is always the possibility that an appropriate combination of parameters would 

provide a unique description for each bin. An expert system and a neural network 

were used to explore this possibility. 

5.1 EXPERT SYSTEM 

An expert system is a software system in which a set of rules is applied to a set of 

inputs to make a decision on the outcome. Such systems were designed to imitate an 

expert in a given field by capturing the expert's knowledge in the rules. Some 

practical applications include medical diagnosis and machine fault diagnosis. In these 

applications the inputs would be the answers to questions such as "Does your head 

hurt?" or "Is the green light on?". 

The purpose of this expert system is to classify particles into bins usmg shape 

parameters as inputs. A QuickBASI C program was written, following guidelines 

from a textbook [99]. 

Using i variables or inputs and allowingj possible outcomes requires an array of rules 

r(i,j). The predicted outcome for a particular set of inputs, v" is the jth outcome 

corresponding to the highest d(j) where 

d(j) = ~ V;r(i,}) ................................... (30) 
; 

Initially all the rules are set to zero. The system is trained by presenting sets of inputs 

and allowing it to guess the outcome. If the guess is wrong the rules are adjusted by 

adding or subtracting the input values as appropriate. For example, if the correct 

outcome is j= W but the expert guesses wrongly then Vi is added to r(i, W) and 

subtracted from any r(iJ) where d(j) was greater than d(W). Training continues until 

some predetermined stopping criterion is met. The system can then be tested with a 

new but similar set of data and the percentage of correct outcomes gives a measure of 

its ·performance. 
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5.1.1 Setting Up The Expert System 

An existing data set from an unrelated exercise was suitable for experimenting with an 

expert system and saved the tedium of making image analysis measurements. The 

data consisted of measurements of four parameters on 600 particles from each of bins 

I and 9 of a standard tabling of size 50/60. The parameters that had been recorded 

were axis ratio, length dif, roundness and area. The values for each variable were 

normalised as follows 

Vnorm = /-~~n .............................. (31) 
max mm 

so that the range for each variable was 0 to 1. A fifth parameter, the correct outcome, 

was assigned to each particle; I for bin I and 2 for bin 9. Every tenth case was then 

removed from the data file and stored in a separate file to be used later for testing the 

expert. This gave a training set of 1080 cases and a testing set of 120 cases, each set 

having 50% with outcome I (bin I) and 50% with outcome 2 (bin 9). 

The procedure for training and testing the expert system is as follows. Examples are 

picked at random from the training set and the rules are applied to predict an outcome. 

If the prediction is correct nothing changes but if it is incorrect the rules are altered. 

After a specific number of examples the training stops and the test cases are presented 

one by one. The predictions are compared with the correct outcomes and the 

percentage of correct predictions is reported. 

The stopping criterion that determines when training is complete is simply the number 

of training examples specified in the program. Choosing a high enough number is a 

way of ensuring that the expert has every chance of training itself to perfection, but 

does not guard against over-training. The progress can be monitored by interrupting 

the training at intervals to test the rules. It was found that after quite a small number 

of examples (less than the total number in the training set) the improvement stopped 

and the percentage of correct predictions just fluctuated widely. The order in which 

the examples were presented had a much greater effect on the results than the number 

of examples. 
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This is easily explained. The examples are picked randomly and there is nothing in 

the program to prevent any particular case being presented more than once. Neither is 

there anything to ensure that every example is seen. When several consecutive cases 

are from the same class the rules may not change and there is no benefit gained from 

these cases. The combination of these factors means that the training can be very 

different every time the program is run, even though the training set is the same. It 

would be possible to constrain the training by selecting each example once and only 

once, but this would not solve the problem entirely. Any further restrictions, such as 

alternating between classes, are not desirable because then the result would be too 

data-specific. Ideally the expert should have a general capability and should converge 

on a set of rules after sufficient random examples. 

Rather than restricting the training mode the program was allowed to keep selecting at 

random from the training set, in the hope that the random order would not influence 

the results as much when the number of cases presented was very high. The program 

was allowed to run overnight, going through several million examples and testing 

after each million. The results still fluctuated and the rules showed no sign of 

converging. Figure 5.1 shows the performance after every hundred cases up to five 

thousand cases and Figure 5.2 shows the performance after every million cases up to 

sixteen million. These graphs are similar and show that extra training with the same 

data set does not guarantee any improvement in performance. 

The only consistent feature of the rules was that the signs were almost always the 

same regardless of the number of training examples seen. There was only exception 

in all the rule sets seen. With only two possible outcomes, the rule for outcome 1 is -I 

times the rule for outcome two for each of the variables. It was found that for axis 

ratio the rule was always a positive number for bin 1 and a negative number for bin 9, 

while the rules for the other three variables were always the other way round, i.e. 

negative for bin I and positive for bin 9. The magnitude of the rules varied 

considerably. Table 5.1 lists some of the rule sets obtained from various efforts to 

train the expert. They are ranked in order of performance, all having been tested with 
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the same test data. Only the bin 9 rules are shown, since the rules for bin 1 are the 

same except for the sign. 

Table 5.2 contains averages of the rules which gave >80%, 70-80% and <70% 

performance respectively, along with the overall average. It is interesting to note that 

applying the averages gives better than 80% correct predictions, even with the <70% 

average. 
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Table 5.1 : Expert's rules r(i,j) for j=2 (bin 9) for 50/60 bins 1 and 9 • 

performance r(/,2) r(2,2) r(3,2) r(4,2) 
area axis ratio symmetry roundness 

86% 2.307 -4.148 4.612 1.219 

85% 2.104 -4.435 5.295 1.489 

85% 1.235 -4.604 5.254 2.018 

85% 2.423 -4.158 5.648 0.859 

84% 2.923 -4.909 4.868 1.584 

83% 3.168 -4.567 4.124 1.034 

83% 1.087 -4.132 5.880 1.514 

80% 3.002 -4.576 5.193 1.556 

80% 1.760 -5.130 3.930 2.203 

77% 1.102 -2.825 5.542 0.887 

77% 2.321 -4.144 6.221 1.407 

76% 1.426 -3.312 4.913 1.447 

74% 1.350 -1.870 1.921 0.702 

74% 2.101 -4.667 5.009 0.770 

74% 2.479 -4.978 6.167 0.153 

74% 0.816 -4.277 5.537 0.983 

73% 1.310 -4.815 5.462 0.951 

71% 2.111 -4.928 5.378 0.432 

71% 1.308 -4.051 4.779 0.464 

70% 1.545 -2.247 1.054 0.318 

69% 2.347 -5.042 4.298 0.697 

65% 1.685 -4.091 5.231 . -0.312 

65% 2.587 -5.489 4.402 0.425 

61% 1.600 -5.195 4.680 0.599 

59% 1.477 -1.413 1.712 0.461 

59% 3.492 -4.441 3.249 2.486 

57% 2.034 -3.547 4.679 2.072 

54% 1.593 -1.240 2.363 0.330 

Table 5.2 : Performance of averaged rules 

averaged r(J,2) r(2,2) r(3,2) r(4,2) performance 
area axis ratio length dif roundness 

>80% 2.307 -4.148 4.612 1.219 86% 

70-80% 2.104 -4.435 5.295 1.489 81% 

<70% 1.235 -4.604 5.254 2.018 82% 

all 2.423 -4.158 5.648 0.859 82% 
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It appears from Table 5.2 that the performance of the expert is greatly improved by 

averaging several sets of rules. This theory was investigated by modifying the 

training program to include an averaging step. After each 1,000 examples the rules 

are added to a running total then reset to zero. This is repeated a number of times and 

the averages are taken. The program was run ten times with no averaging, ten times 

averaging five sets of rules and ten times averaging twenty sets of rules. Table 5.3 

demonstrates the improvement this gives for this particular dataset. 

Table 5.3 : Performance by training with averaging - 50/60 bins I and 9 

1 only average of 5 average of20 

82 81 81 

58 82 82 

73 84 83 

86 83 86 

62 85 86 

75 81 86 

64 84 85 

77 74 86 

75 83 83 

82 74 82 

range 62-86% range 74-85% range 81-86% 

With averaging of twenty trials the inconsistencies associated with the random order 

of presentation of training samples have been eliminated and the expert now trains 

itself to the same level of proficiency each time, at least for this dataset. (Changing 

the files so that the test set was every ninth instead of every tenth case from the 

mother file gave similar results. This was done to make sure there were no 

dependencies on the one test set used up until now.) 

5.1.2 Expert Results 

The program (listed in Appendix 9) was now ready to tackle some new data. The bin 

samples from the retabling of tb2 were used to assess the capability of the expert to 

distinguish between the different bins in a tabling of bulk 40/45 material. As before 
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the image analysis data was stored as lists of the four parameters and a class, and 

every tenth case was moved to a test file. The program was run ten times for certain 

combinations of bins and averaging twenty sets of rules. The performance was again 

measured as the percentage of correct predictions when the averaged rules are applied 

to the test data. The performance ranges over ten trials are presented in Table 5.4. 

Table 5.4 : Expert's range of performance over ten trials 

bins I and 9 71% -75% 

bins 2 and 8 60%- 67% 

bins 2 and 5 54%-60% 

bins I and 2 50% - 55% 

bins 8 and 9 56% -60% 

bins 2, 5 and 8 44%-48% 

bins 1,5 and 9 . 44%-48% 

The following points are noted: 

• Bins I and 9 from this tabling are not as well discriminated as bins I and 9 from 

the routine production tabling of 50/60 used in setting up the expert. This could 

be a size effect or it could be related to the table settings. 

• The first three rows of Table 5.4 show that the performance gets worse as the 

bins get closer together. 

• With only two outcomes a performance of 50% could be expected with random 

guesses so the expert cannot distinguish between neighbouring bins I and 2. 

• The performance for bins 8 and 9 is slightly better than for bins I and 2, 

showing that there is better discrimination at the poor shape end of the table. 

• When presented with three possible outcomes the expert gets less than half of 

them right and performs no better with bins I, 5 and 9 than it does with bins 2, 5 

and 8. The number of correct predictions is higher than it would be by chance, 

but is too low to be of much use. 

The expert has not shown itself to be any better at classifying diamond particles than 

any of the methods tried earlier. The observations listed above do not reveal anything 
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Vi_~ l-_ Ak 

j=1 to 4 

Figure 5.3 : Example of a neural network 

new about shape sorting on a vibrating table. They merely confirm the perception of 

tabling as an imprecise and probabilistic operation. 

5.2 NEURAL NETWORK 

An alternative form of artificial intelligence is the neural network, a computing 

system made up of a number of simple, highly connected processing elements called 

nodes. As in the expert system the links are weighted and the input to a node is the 

summed product of the weights and the outputs from the previous layer. Between the 

input and output nodes there can be any number of hidden layers. 

5.2.1 A Feedforward Network With Training By Back Propagation 

Figure 5.3 illustrates a feedforward network with two inputs, two outputs and a 

hidden layer with four nodes. The input nodes take on the given values of the 

variables, normalised to fall within the range 0 to 1. The input to node j in the hidden 

layer is 

I j = ~ ViWij ....•................•.•..•.••......••• (32) 
I 

The activation level, or output, from hidden node j is calculated by 



Aj = I rll) ...... (33) 
I + e-(/; j 

where ej is a threshold or bias value for node 

J. This activation function is an example of a 

sigmoid function I and gives an output in the 

range 0 to I, as illustrated in Figure 5.4. The 

inputs to any additional hidden layers, and 
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10 

Figure 5.4 : Activation function 

finally to the output nodes, are calculated in a similar manner using the outputs from 

the previous layer and the appropriate weights, and then are passed through the 

activation function along with the appropriate threshold value. If the neural network 

is being trained as a classifier then the output node with the highest activation denotes 

the winning class. 

At the start of training the weights and thresholds are set randomly between certain 

limits. Examples are presented to the network and if the outcome is not correct then 

an adjustment is made to the weights. (The thresholds can be considered as additional 

weights.) The adjustment is in proportion to the error in the outcome. This form of 

training is called back propagation. First, the weights associated with the output 

nodes are altered, according to the following equation: 

where 1"] is the trial independent learning rate, Ok is a parameter related to the error at 

node k, Cl is a momentum term, and t. wjk is the previous change for this weight. The 

changes for the hidden layers use the same equation, substituting i and j for j and k. 

The difference is in Ok and OJ. The desired outcome at the output nodes is known and 

Ok is calculated as 

Ok = Ak(l - Ak)(Ar At) .......................... (35) 

1 A sigmoid function is a bounded differentiable real function that is defined for all real input values and that has 8 positive 
derivative everywhere. It rapidly approaches a fixed finite upper limit asymptotically as its argument increases and a fixed 
finite lower limit asymptoticaJly as its argument decreases. The central portion is assumed to be roughly linear and its slope 
is called the gain of the sigmoid. 
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where Ad is the desired activation and Ak is the actual activation of the output node. 

There is no way of knowing what the activations of the hidden nodes are supposed to 

be so OJ is based on a combination ofthe errors in the output layer. 

This particular back propagation method is called the delta rule, or WidrowlHoff 

learning. In theory, this method converges to the optimum weight vector from any 

starting point. The weight change can be made after every training case, but it is 

sometimes beneficial to present a batch of examples and use the average error in the 

corrections. 

There are many other ways to set up a neural network but they will not be discussed 

here. The reader is referred to some introductory texts on the subject for further 

information [100-104]. The type of network described above was chosen because it is 

the most general and basic type and the application is a straightforward classification 

system. 

The main differences between a neural network and an expert system are the presence 

of the hidden layer and the relationship between the weight changes and the error. It 

was hoped that a neural network would give a better performance than the expert 

system because of these differences. 

5.2.2 Setting Up The Network 

Unlike the expert system, where the only design consideration was when to stop the 

training, there are many variables to be considered in a neural network. These can be 

listed as follows: 

• number of hidden layers, 

• number of nodes in each hidden layer, 

• range for initialising weights and thresholds, 

• learning rate, TJ, 

• momentum term, a, 

• batch size, 
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• stopping criterion. 

Since neural networks can be applied to a vast range of applications there are no hard 

and fast rules for choosing the parameters. The textbooks give some general 

guidelines for starting off but they don't necessarily agree with each other. A neural 

network is essentially a black box and there is an amount of trial and error required to 

get one working. Without going into the details of the trial and error process, the 

following conditions were found to give the best results in this application, based on 

the same data used to develop the expert system. 

• One hidden layer, because the general advice is not to complicate the system 

without a specific reason. 

• The hidden layer has two nodes more than the input layer. If there are too few 

the network may train but will not perform well with noisy data. If there are too 

many the network will not generalise well. 

• Weights initialised between -1 and I. 

• T]=0.7 If this parameter is too big the network gets paralysed and if it is too 

small the network will not converge . 

• a=0.9 

• batch size = 10 

• As with the expert system training stops after a specified number of training 

cases have been seen. 

There was also a problem in deciding on how to quantify the error in the outcome. 

The desired outcome is that the node corresponding to the correct outcome would 

have the highest activation. If this happens then there is no error. If the output node x 

has the highest activation level and y is the correct class then an error for each node 

must be quantified. The ideal outcome would be A,=O and Ay=l and all the other 

Ak=O. The error for node x could be O-A, and for node y could be i-Ay. The other 

nodes have an error of 0 if their activations are already less than AY' otherwise the 

error is O-Ak• Alternatively, given that the winner need not necessarily have an 

activation of 1, but just needs to have the highest activation, the error could be taken 

as the difference between A, and AY' with a positive error for node y and a negative 

error for node x. Other nodes with Ak> Ay would have an error of Ay-AA. Both of these 
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options for quantifying the error were tried and there was not much difference in the 

results. The method using I and 0 was maybe marginally better and so was chosen. 

As with the expert system, problems with variability in performance were 

encountered. There seemed to be a high dependence on the set of random starting 

weights (and possibly the random order in which the training examples were 

presented as well). After an initial improvement the network would achieve a certain 

performance level and would not improve any more no matter how long it was left to 

keep feeding itself on the training set. This performance level changed if the program 

was re-run with a new set of starting weights. The only way out of this problem was 

to first run a preliminary short training, repeat it several times, and store the set of 

weights which gave the best results on the test set. This then became the starting set 

for the real training. It was found, though, that little improvement could be achieved 

with further training. The best result from, say, fifty short trainings was as good as 

could be attained. 

5.2.3 Neural Network Results 

The QuickBASIC program is listed in Appendix 10. On the 50/60 bins I and 9 data 

the best result obtained in the verification step was 86%, the same as the expert 

system's best result. Table 5.5 shows some results from the 40/45 tb2 data compared 

with the best of the expert system results. In each row the figure giveri for the neural 

network is the best of fifty short training trials, where one trial consists of 1,000 

training examples presented in batches of 10. 

Table 5.5 : Neural Network vs. Expert System for tabled bulk 40/45 

Neural Network Expert System 

bins 1 and 9 77% 75% 

bins 2 and 8 76% 67% 

bins 2 and 5 60% 60% 

bins 1 and 2 61% 55% 

bins 8 and 9 61% 60% 

bins 2, 5 and 8 53% 48% 

bins 1, 5 and 9 51% 48% 
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The neural network shows a slightly better performance than the expert system for 

some of the combinations of bins but the hoped-for vast improvement was not 

achieved. 

5.3 PREDICTING TABLING 

The expert system and neural network classifiers have been judged on whether or not 

they can predict the source or bin number of an individual particle. The poor 

performance suggests that, even when particle shape is defined by a combination of 

parameters, there is too much overlap between the bins for a classification system to 

work, or at least that is the case with this combination of four parameters. It is not 

known whether this is the most appropriate set of parameters to use or if a set exists 

that would make classification of single particles by bin number possible. Some 

attempts were made to vary the number of parameters - area was excluded from the 

expert system and the neural network was tried with just axis ratio and roundness, but 

no significant improvements could be found. Without more exhaustive testing it 

cannot be concluded that the particles cannot be classified, but it seems likely that 

there will always be overlap between the bins no matter how the particle shapes are 

defined. 

The ultimate test on both of these artificial intelligence systems would be to train 

them on data from all of the bins and then see what distributions they predict when 

presented with data from a bulk sample. In this test there is no right or wrong answer 

for a given particle and the performance can be judged on the distribution by bin. 

Despite the poor performances recorded with single particles there was still a chance 

that a bulk analysis would work. 

Data from 500 particles from each of bins 1 to 11 from the retabling of tb2 were 

combined into a file. Every tenth case was moved to a testing file and the rest to a 

training file. As described previously the expert averaged twenty sets of rules and the 

neural network took the best set of weights from fifty training attempts. (During the 

training phase neither system could do better than 16% correct individual predictions 

with the test data.) Data from a sample of the bulk material was then classified by 
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both systems. Figures 5.5 (a) and (b) show the predicted distributions, along with the 

actual distribution. Neither system spread the particles among all the bins. The 

neural network sent most of them to bins 10 and 11, while the expert preferred 2 and 

I!. 

On retraining the results come out slightly differently, but bin 11 always seems to 

figure strongly. The expert is inclined to put about 40-60% of the particles into the 

higher bins (poor shape end of the table) and the rest into one oftbe lower bins, i.e. I, 

2 or 3. The neural network biases more heavily towards bin 11 or bins 10 and 11 

(70-90%) and distributes the rest among a few of the other bins. 

Clearly, this performance is not acceptable and the model based on axis ratio and 

probabilities is superior. 

What about adding probabilities to the classifier systems? The expert system was 

easier to adjust than the neural network so the axis ratio probabilities determined 

earlier were factored in. The particles in the training and testing sets were assigned 

axis ratio classes corresponding to the classes for which the probabilities were 

available. The outcomes, d(j), were multiplied by the appropriate probability. 

Because d(j) can be a negative value, all d(j) 's were shifted by an equal amount to 

make them all positive and non-zero, before the multiplication. This was done 

because multiplying a negative number by p where 0<p<1 makes it bigger while a 

positive number multiplied by p is made smaller, and this could artificially change the 

decisions. 
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The addition of the axis ratio probabilities altered the predictions of the expert system 

but did not improve them. An example of the predictions for bulk tabling is shown in 

Figure 5.6. 

5.3.1 Discussion 

Expert systems and neural networks cannot be discounted based only on the work 

presented. This experimentation was limited in scope. A key requirement for a 

classification system is a suitable choice of parameters. In Chapter 2 there was a 

systematic approach to find shape parameters that are likely to describe tabled 

fractions appropriately and by a sequence of logical steps the most useful parameter 

was identified to be axis ratio. However, when it comes to choosing a combination of 

parameters the only way is by trial and error, especially when the optimum number of 

parameters is not known. 

In this case the choice was made by default because at the time of starting to 

experiment with an expert system it was convenient to use a set of data that had been 

obtained previously in an unrelated exercise. This set contained four parameters and, 

since three of the four matched the shortlist of parameters in Chapter 3, it was thought 

to be as good a set as any. There may be other combinations that would work better 

as classifiers. 

The expert system was written in a basic and simple form. It gave a reasonable 

performance in discriminating between particles from bins I and 9 but could not 

distinguish between particles from neighbouring bins. Knowing the amount of 
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overlap between bins within each of the parameters individually, this is probably as 

much as can be expected from a simple expert system such as this one. 

The neural network uses a gradient descent algorithm to find the minimum point in 

the error space and would be expected to achieve better results than the expert system. 

Unsuitable choices of network parameters such as number of hidden nodes, learning 

rate and momentum, can cause paralysis of the network by trapping it in a local 

minimum or on a plateau. However, with suitable network parameters this algorithm 

should converge on a solution from any starting point. If there is no convergence after 

repeated efforts using random starting weights and different values for the network 

parameters then there is a problem. Either the data cannot be classified as required, or 

in this case where some amateur programming was involved, there could be a fault in 

the neural network program. 

The program was checked and rechecked and appeared to be working correctly but for 

more convincing verification the same data was fed into a commercial neural network 

package. The package is O'inca Design Framework from Intelligent Machines Inc. 

and contains a back propagation training algorithm. The original training and testing 

datasets with four parameters for bins 1 and 9 size 50/60 were converted to the format 

required by O'inca. A network was set up with six hidden nodes, the default learning 

rate and momentum, and random starting weights. The cases in the training dataset 

were shuffled and then repeatedly presented to the network. One presentation of the 

whole set is called an epoch. The default criterion for convergence was an RMS error 

less than 0.2, where the error is the difference between the actual and expected 

activations at the output nodes. Training was attempted several times with new 

random starting weights each time. Convergence was not attained with this criterion 

but the RMS error always settled at a value of 0.7064. This "settling down" happened 

after as few as ten epochs. 

When the error no longer changes and it is obvious that there will be no further 

improvement, the training can be interrupted and the network can be tested. The 

testing dataset contains the desired output activation for each case; I for the output 

node representing the correct class and 0 for all other output nodes. The test data is 
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fed through the network, the output activations are compared with the desired values 

and the number of failed cases is reported. The pass/fail criterion can be set as the 

maximum error or the RMS error. (In this mode the software does not report the 

actual activations so the winning output node (the one with the highest activation) is 

not known.) If the maximum allowed error is set to O.S then a case will pass only if 

all output activations are closer to the desired value than to the undesired value in the 

0-1 range. On this basis 8S% of the cases in the test set passed, which compares 

favourably with the performance of the neural network program in Appendix 8. 

The O'inca network was then trained and tested on the data from bins 1 and 2 of tb2. 

The expert had achieved SS% correct predictions and the QuickBASIC neural network 

had given a result of 61 %. Again, O'inca failed to converge and the result for the test 

set was only SS%. 

The commercial neural network behaved in a similar manner to the QuickBASIC 

neural network, confirming that the problems are associated with the data rather than 

the programming. The conclusion is that this combination of network parameters and 

shape parameters will not produce a useful classifier. 

Other parameters and/or a different network configuration may give better results. 

Taking advantage of the ease of use of the O'inca package some other combinations 

were tried but to no avail. The process of trial and error is very time-consuming when 

each attempt at training takes several hours. There are so many variables that even 

experimental design techniques would not produce a quick or easy way to find the 

optimum settings. Reluctantly, this approach was abandoned. 

This completes the exploratory work on shape quantification and modelling. The next 

chapter summarises and discusses the findings. 
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6 APPLICATIONS AND DISCUSSION 

6.1 SUMMARY 

The work is summarised in this section and all findings are emphasised using bold 

print. The hypotheses proposed in Chapter I were: 

Hypothesis 1: 

Hypothesis 2: 

There exists a shape quantifier that describes meaningfully the 

table sorting of synthetic diamond sawgrit particles. 

The shape quantifier can be used to characterise and model the 

table sorting of synthetic diamond sawgrit particles. 

Many known methods of quantifying shape were introduced in Chapter 2 and then 

applied to diamond in Chapter 3. Advanced computational methods such as F ourier 

analysis and fractal analysis were shown to produce information about particle shape 

but were found to be unsuitable; fractal analysis is not useful for non-rugged particles, 

while methods employing Fourier series expansion of the particle profile gave too 

much data and not enough information. An effort to extract a simple parameter from 

the coefficients resulted in a choice of A2, which was then found to correlate very well 

with a more easily obtained shape factor. 

Methods for counting corners were also applied and these produced accurate 

representations of both computer-generated shapes and images of diamond particles. 

It is felt that counting corners could be very useful in the diamond industry, if not for 

modelling tabling then for analysing individual particles in cutting tools. Studying the 

changing shapes of the protruding particles gives information on the suitability of the 

diamond type and size for the application, the suitability of the cutting parameters, 

and the quality of manufacture of the saw blade. The spanning chord method was 

preferred and it should be possible to develop it later for use in testing saw blades. 

Standard shape factors from an image analysis package were also explored. Several 

shape factors showed a trend in mean value across the bins of a table. 
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• Shape factors calculated by PC-based image analysis software proved to be 

relevant in describing tabled diamond. 

On the basis of the relationship with strength (as measured by the Friatest) axis ratio 

was deemed to be the most suitable in terms of relevance for end use of the diamond 

grit products. This was an important step in the choice of a shape factor because it 

could not be assumed that the current production table sort is optimum and it would 

have been wrong to judge the shape factors on tabling only. 

• Axis ratio was chosen as the shape parameter that proves the first 

hypothesis to be correct. 

• Axis ratio is related to impact strength provided the metal content is taken 

into account. 

The criteria for obtaining a representative axis ratio distribution for a population were 

set. It was found that: 

• With the available equipment individual readings of axis ratio are 

repeatable to two decimal places when there is reasonable care in focusing 

the image. 

• A representative sample can be obtained by dipping a spoon into the 

container. Devices like the spinning riffler are not necessary. A slide can 

be prepared from the contents of the spoon using the procedure described 

on page 39. 

• Measurement of 400 particles is adequate for samples of good, blocky 

diamonds (from the lower bins). 625 particles is adequate for all but the 

worst shape fractions. 

With the aim of modelling the tablesort some tabling experiments were carried out 

and were reported in Chapter 4. Bulk 40/45 material was tabled at two different sets 

of tabling conditions - tbi and tb2. This gave two distributions by weight across the 

bins. Comparing bins I, 5 and 9 from tbi with their counterparts from tb2 showed 

them to be significantly different at a 99% confidence level. 

• Differences between bin contents for these two sets of tabling conditions 

can be quantified by axis ratio. 
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• The" open" tabling gave tighter axis ratio distributions within the bins. 

Biasing the weight distribution towards the lower end of the table gave 

better discrimination on average axis ratio. (Figure 4.5) 

It was proposed that for a given axis ratio there is a probability associated with each 

bin as a possible destination. This idea was used as the basis for a model. The 

probabilities were derived from the proportions of each axis ratio class in each of the 

bins. Graphs of the probabilities gave some insight into the sorting efficiencies of tbi 

and tb2. 

• The graphs in Figure 4.6 demonstrate the different sorting actions of two 

sets of tabling conditions. 

The model for tb2 was tested by first using the probabilities to predict what would 

happen when the contents of a bin were retabled, and then retabling some of the bins. 

• The model failed to predict the correct weight distribution for retabling 

bins 1, 5 and 9 of tb2. 

Attempts to adjust the model did not produce any improvement in the predictions. 

However, it was pointed out that the model has some merits. 

• The model correctly predicts that the contents of a single bin will spread 

out to other bins when retabled. 

• The reproducibility curve predicted by the model has the correct shape, 

showing higher reproducibility in the end bins. 

It was felt that one of the shortcomings of the probabilities model was that it relied on 

only one parameter. In Chapter 5 artificial intelligence was employed to explore the 

possibility that an appropriate combination of parameters would have less overlap in 

the bin contents. Four parameters - axis ratio, roundness, length dif and area - were 

chosen for the initial trials. An expert system and a neural network were programmed 

in QuickBASIC. When trained and tested on various bin combinations they gave the 

performances listed overleaf: 
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from Table 5.5 

Neural Network Expert System 

bins 1 and 9 77% 75% 

bins 2 and 8 76% 67% 

bins 2 and 5 60% 60% 

bins 1 and 2 61% 55% 

bins 8 and 9 61% 60% 

bins 2, 5 and 8 53% 48% 

bins 1,5 and 9 51% 48% 

For this combination of parameters: 

• Neither system was good at distinguishing between neighbouring bins. 

• Neither system performed well when presented with three bins. 

• Both systems failed completely to predict the outcome of bulk tabling 

While this thesis was being written up some similar work was published by Hundal et 

al [105]. They used the Zahn and Roskies Fourier method (page 21 and [45]) to get 

the first ten harmonics for KCI crystal particles. They then tried two kinds of neural 

network - competitive and back propagation - to classifY the particles into five classes. 

A competitive network is one that learns without knowledge of the classes and 

discovers relationships in the data by itself. Hundal et al found that their network 

clustered the particles into classes but the problem was that the contents of the clusters 

depended on how long the network was allowed to train. The back propagation 

network had two hidden layers with 25 neurons in the first and fifteen neurons in the 

second, and only one output neuron. The activation of the output neuron determined 

the class. The success rate with five classes was 42%. The fact that other authors also 

had limited success and acknowledged the difficulties of setting up the correct 

network proves that this is a promising technique but needs to be developed for each 

specific application. 

Hypothesis 2 was not confirmed but neither can it be rejected. It was demonstrated 

that table sorting can be characterised using axis ratio measurements. The 

probabilities model may not have held for new feed distributions but would be valid 

for bulk. It is still not known whether table sorting can be modelled any better than 

this. The fact that the probabilities model failed for new feeds is arguably the most 
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important finding, because it provides new information pertinent to the question of 

why material from a bin spreads across the table. This will be discussed in section 

6.3. 

Secondary objectives were to use shape measurements to learn more about tabling and 

suggest improvements. It has already been shown that axis ratio measurements can 

help to illustrate differences in bin contents when table settings are changed. The 

following section gives some more examples of how axis ratio can be used. 

6.2 LEARNING FROM AXIS RATIO MEASUREMENTS 

6.2.1 Learning Experiment 1 

A large batch of 40/45 SDA was being tabled with the purpose of producing nine 

shape fractions and a reject fraction. During tabling some deliberate interference was 

introduced to upset the sorting pattern at the high end. On completion of the run an 

experienced technician viewed the contents of the bins USing an optical 

stereomicroscope and declared that the fractions in bins 6, 7, 8 and 9 were 

unacceptable by normal sorting standards, but that he could rectify th~ situation 

without having to table the whole batch again. 

Samples were taken from bins 1 to 9 and axis ratio measurements were made. Figure 

6.1 is a cumulative-percentage-under graph. 

The technician recombined the contents of bins 6 to 9 and tabled them such that the 

particles spread out into all ten bins. He then combined the contents, based on visual 

assessment, into five fractions - 6a, 7a, 8a, 9a and reject - to match the way bins 6 to 

10 should have looked the first time. This is a skilled operation and relies entirely on 

the experience of the technician. Can his efforts be quantified? 

Axis ratio measurements were made on these new fractions and the cumulative graph 

was replotted, substituting 6a to 9a for 6 to 9. The result is shown in Figure 6.2. The 

improvement is clear. The bin 9 distribution has moved to the right, showing that it 

contains less reject material than before, and there is a more even spacing of the other 
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distributions. T -tests were used to test for significant differences in mean axis ratio at 

a 95% confidence level. In the first tabling (Figure 6.1) bins 5 and 6 were not 

significantly different, neither were bins 7 and 8. After the second tabling (Figure 

6.2), fractions 6a to 9a were all significantly different from their neighbours. 

The purpose of this exercise was not to test the technician, but to test the sensitivity of 

axis ratio to the subtleties of diamond processing. Tabling is an inexact science but 
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Figure 6.1 : Cumulative axis ratio distributions for bulk tabling with deliberate interference 

100% r-------------------------------------------------~ 

80% 

60% 

40% 

20% 

O%~ ______ _=~~~~~~~ __________ J 
0.4 0.6 0.6 

AXIS RAllO 

Figure 6.2 : Cumulative axis ratio distributions after retabling bins 6 to 9 
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the technicians know how to tweak the system to get the desired results every time. 

Now, at last, there is a non-subjective way to appreciate their skills. 

6.2.2 Learning Experiment 2 

Samples of grit with low magnetic impurity and grit with high magnetic impurity 

were obtained from the contents of bins I and 9 from a standard bulk tabling of SDA 

40/45. Axis ratio measurements were made on these fractions, which will be called 

low mag and high mag respectively. Cumulative distributions are shown in Figure 

6.3, along with those of the bins from which the fractions came. The shape 

distribution in the bin I fractions is consistent and does not appear to be related to 

metal content. However, the axis ratios in the high mag bin 9 fraction are slightly 

lower in general than those of the original bin 9. This shows that there is some 

relationship between shape and metal content at the poor shape end of the SDA range. 

This helps to emphasise the point that individual particle strength as measured by the 

Friatest is dependent on both shape and metal content. The more magnetic fraction 

from bin 1 would have a lower Friatest result than the less magnetic fraction from the 

same bin, but there is no difference in shape. In bin 9 a lower Friatest result for the 

more magnetic fraction would be attributed to both higher metal content and lower 

axis ratio. 
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Figure 6.3 : Culmulative axis ratios for magnetic fractions of (a) bin 1 and (b) bin 9 
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6.3 DISCUSSION 

6.3.1 Past 

De Beers have been processing synthetic diamonds in Shannon for thirty-five years 

and possess an understanding of shape sorting that comes with experience. 

Development of the process has tended to focus on improving the operation of the 

table itself, by better electronic control for example. Over the years this has helped to 

improve the consistency of the sort, reducing the need for retabling. Millions of carats 

are sorted every month. Within the current specifications it is a trivial matter to 

achieve the required result from a table. 

The problems arise when there is a need to bring about a change in the output. This 

occurs every now and then when the market demands an addition to the product line, 

or when the bulk material changes because of improved control during synthesis. The 

way to cope with such situations is to find new tabling conditions by trial and error, 

using visual inspection and Friatests to judge the outcome. This can take some time 

but, eventually, a scheme for obtaining a set of shape fractions is agreed and 

production carries on. There is never any confirmation that this is the optimum 

solution and there is always a slight suspicion that there may be a better way - that the 

same results could be achieved with less bins, or that changing the table settings 

completely might give a sharper sort. Reluctant to move away from what is adequate, 

the developers tweak the process rather than attempt radical change. 

The stumbling block has been the lack of a shape quantifier. Before image analysis 

became easily available, efforts to put numbers on the shapes of individual particles 

concentrated on the diamond morphology using the 0 to 8 system (shown in Figure 

2.1). Bulk shape measurements were also tried and there were attempts to 

characterise tabled diamond by subjecting the bin contents to other shape sorting 

methods like sieving on slotted screens [106]. Then image analysis opened up new 

possibilities by providing the means of obtaining non-subjective shape measurements. 

It was quickly realised that shape would first have to be defined. 



130 

6.3.2 Present 

The objective of finding a useful definition of shape has been achieved with axis ratio, 

and the use of this parameter to quantify bin contents in various tabling situations has 

given some new insights into the table sorting operation. Section 6.2 demonstrated 

how axis ratio measurements can be used to learn more about tabling. The shape 

measurements give quantitative confirmation of current understanding and lend 

credence to theories derived by observation. More examples are given in Table 6.1: 

Table 6.1 : Examples of observations that have been quantified 

Known from Observation Demonstrated Quantitatively 

The difference in shape between In Figure 3.6 the graphs are steeper at the 
neighbouring bins is much greater at the upper end 
upper end (poor shape end) of the table Table 5.5 shows that the expert system 

gave a higher success rate with bins 8 and 
9 than with bins I and 2 (although the 
neural netWork did not) 

If tabling conditions are altered to give a Bins I, 5 and 9 from two different 
different weight distribution across the tablings are compared in Figure 4.4. 
bins then the shape mix in each bin must T -tests proved the means to be 
change . significantly different with 99% 

confidence 

Although a bulk shape progression can be The curves in Figure 4.6 show how 
seen in the bins after tabling, every bin particles of certain axis ratios are 
contains individual particles that look like distributed throughout the bins 
they should be in another bin 

Some of the diamond tabling mysteries were mentioned in Chapter 1. These can now 

be discussed in light of the new findings. 

OUESTION 1; Why do the contents of a bin, when retabled without changing 

any settings, spread to other bins as well as returning to the bin 

from which they came? 

Given that tabling conditions have not changed and the shapes of the particles have 

not changed, the only variables that can cause an individual particle to take a different 
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route across the table are the interference from its neighbours and the randomness 

associated with the orientation of the particle each time it hits the surface. The 

number of possible orientations is related to the shape of the particle. In Chapter 4 the 

proportions of the particles of a given shape (where shape is defined as axis ratio) 

ending up in each bin were estimated. This gave an indication of the most likely path 

for anyone particle. It was still impossible to predict the destination of a single 

particle but when the probabilities were applied in a statistical manner to a set of 

particles the bulk result could be predicted. The flaw in this approach was that this 

element of randomness could not be isolated from the particle to particle interference. 

The predictions were not accurate, probably due to the fact that the interference from 

other particles was different when the feed material had a narrower shape range. 

Some work on single particle tabling was carried out in the past [107]. It showed that 

when a blocky crystal is tabled on its own repeatedly, it either returns to the same bin 

every time or ends up in one of two neighbouring bins. However, it cannot be 

concluded that interference is the sole cause of inconsistency of destination, because 

the scope of the experiment was very limited. The vibration and angles of the table 

were set so that the particles had a long residence time on the deck. The particles 

were hand-picked and were regular in shape, reducing the effect of orientation. 

The answer to the question has to be that there is a contribution from both the 

shape-related randomness and the particle to particle interference. The latter changes 

when the feed material is the contents of one bin rather than the bulk. The reason the 

model overestimated the spread of the particles was that it was assuming greater 

interference. 

OUESTION 2; Why is the weight distribution repeatable? 

If the same feed is tabled at the same conditions then the only factor to be considered 

is the shape-related randomness. In statistical terms the overall result in terms of the 

shape mix in each bin will be the same, even though many of the individual particles 

will have ended up in different bins. 
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OUESTION 3: Why is there so much overlap between the bins? 

The operation is the sorting of diamond from diamond. The shape range is quite 

narrow to start with and usually ten to twelve shape fractions are required. If the 

purpose was to separate diamond from another abrasive then the sort would be much 

more efficient. Figure 6.4 shows the cumulative axis ratio distribution for a sample of 

silicon carbide abrasive compared with those of bin 1 and bin 9 diamond shape 

fractions. The fact that there are seven other fractions between bin I and bin 9 puts 

the overlap problem in perspective. There would also be less overlap if fewer shape 

fractions were needed. Ifthe only requirement were to separate the worst shapes from 

the rest of the bulk, then the table could be set to achieve a sharp separation with very 

little overlap. The problem of overlap is not unique to tabling. Batch sieving also 

gives overlap, as demonstrated by Ludwick and Henderson [16]. 

OUESTION 4: Can the overlap be reduced? 

There would be less overlap if tabling was carried out at much lower feedrates to 
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Figure 6.4 : Cumulative axis ratios of diamond compared with SiC 

reduce the effect of the particle-particle interference. However, this is not practical in 

a commercial production operation. Another non-practical suggestion is to greatly 

enlarge the table, since increasing the residence time of the particles on the deck 

would reduce randomness. Otherwise the extent of overlap will depend on the sort 

required. It was shown in Figure 4.5 that tb2 produced sharper fractions than tbi. 
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However, this is not much help if the weight distribution of rhi is preferred. This 

leads on to the question about the optimum sort. 

OUESTION 5; Is the "even" sort the optimum sort? 

The tools for assessing a sort are now in place but a definition of exactly what is 

required from bulk table sorting is needed before this question can be addressed. 

6.3.3 Future 

It is acknowledged that it is highly unlikely that a single two-dimensional shape 

parameter will ever provide all that is required in shape analysis of diamond. If 

multiple factors are required then artificial intelligence may be the way to go. The 

exploration of expert systems and neural networks in Chapter 5 was only a brief test 

of the principles. As well as trying shape factors as inputs, Fourier coefficients could 

be used, as demonstrated by Hundal et al [105]. It takes a little more effort to obtain 

the coefficients but the routine could be automated to make it faster and less tedious. 

Further work in this area would be worthwhile. Commercial software and some time 

dedicated to trying many variations are all that are needed. 

Otherwise, if a single parameter is to be adopted as the definitive shape measurement 

the preceding chapters make a strong case for axis ratio. This parameter is easy to 

measure and will be very useful in the characterisation of new and existing diamond 

sawgrit products. The analysis should be extended to sizes other than 40/45. 

The last question in the previous section is the one to be answered if any real progress 

in revolutionising diamond shape sorting is to be made. Currently, products are 

specified by strength. By the nature of the Friatest the measured strength is a bulk 

property and is probably affected by the width of the shape distribution. A 

specification on the mean and standard deviation of axis ratio would help to define the 

shape of a product independently of processing. Once the preferred shape mix for a 

specified strength and desired appearance is established, there is the possibility of 

finding a new set of tabling conditions to give this mix. This should be the main 

objective of any future work. 
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One of the hindrances in the tabling experiments was the fact that a table could not be 

set precisely. Another was that individual particles could not be monitored. Some 

engineering developments are required to allow exact and reproducible settings and it 

would be a real breakthrough if a method of tagging individual particles could be 

found. These factors combined would greatly help future researchers with 

shape-sorting of any material, not just diamond. They would enable an assessment of 

the steady state conditions, and the effects of reduced weight on the table during 

starting and ending of feed from the hopper. The particle-particle interference on the 

table could be investigated further and should be incorporated into any future model 

of tabling. 

6.4 CONCLUSION 

Two hypotheses were proposed. The first was shown to be correct. Axis ratio was 

identified as a very useful shape factor and it is hoped that it will become a recognised 

parameter in diamond characterisation. It provides a means of defining shape 

independently of processing and this is a significant step forward for the industrial 

diamond industry. 

The second hypothesis was not so straightforward. It was shown that axis ratio can be 

used to characterise the results of table sorting. The behaviour of diamond on a shape 

sorting table was analysed. This gave quantitative confirmation of accepted but 

unproved theories and gave new insight into some of the tabling anomalies. It was 

also shown that a model based on probabilities associated with axis ratios worked in 

certain cases. The fact that the model did not hold in other cases was informative and 

elements such as particle-particle interference and randomness due to orientation were 

discussed with new authority. 

The primary objective of producing a model for the tabling of synthetic diamond was 

partially achieved - the proposed model was valid in limited situations, and the 

reasons for failure of the model in other situations were given. Secondary objectives 

of learning more about shape in general, about diamond shape, and about tabling of 

diamond were achieved. 
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APPENDIX 1 

'EDGE FINDER 

'this program reads a grey-level file shape$.gry and writes the edge 
'co-ordinates to a file shape$.edg 

DECLARE FUNCTION edge! (i!. j!) 

FOR w = 1 TO 24 

shape$ = "bin2_" + LTRIM$(STR$(w» 
file$ = shape$ + ".gry" 
OPEN file$ FOR INPUT AS #1 
, file contains greylevel values for rectangular ROI 
, format n,gl.g2,g3 ....... gn where n is no. of points per line 
DIM SHARED P(100, 100) 'P(x,y) takes the value 1 if pixel x.y is 

'particle. 0 for background, and 2 for edge 

'read in the file. assign xy co-ordinates and identify particle pixels 
'count=no. of particle pixels 
y = 0: count = 0: sumx = 0: sumy = 0 

DO 
INPUT #1. n 
y = y + 1 
FOR x = 1 TO n 
INPUT #1. G 
IF G < 20 THEN 

P(x.y)=l 

ELSE 

END IF 
NEXT x 

sumx = sumx + x 
sumy = sumy + y 
count = count + 1 
ymax = y 

P(x.y)=O 

LOOP UNTIL EOF(l) 

'find centroid 
xcen = sumx / count: ycen = sumy / count 
PRINT "particle area "; count; " pixels" 
PRINT "centroid "; xcen, ycen 
CLOSE #1 

, edge-following algorithm 
, sets P of edges to 2 
, writes co-ordinates of edge paints to a file 
file$ = shape$ + ".edg" 
OPEN file$ FOR OUTPUT AS #2 
e = 0 'e counts edge points 
x=l:y=l 

, look along top line for first edge point 
100 IF P(x. y) = 0 THEN 
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x = x + 1 
IF x > 120 THEN y = y + 1: x = 1 
GOTO 100 

END IF 

'when an edge pixel is found, write its co-ordinates to the file 
found: WRITE #2, x - xcen, -y + ycen 

PCx, y) = 2: e = e + 1 
endflag = 0 

'search clockwise for next edge pixel. starting at 12 o'clock 
try: x = x + 1 

IF edgeCx. y) = 1 THEN GOTO found 
y = y + 1 
IF edgeCx. y) = 1 THEN GOTO found 
x = x-I 
IF edgeCx. y) = 1 THEN GOTO found 
x = x-I 
IF edgeCx. y) = 1 THEN GOTO found 
y = y - 1 
IF edgeCx. y) = 1 THEN GOTO found 
y = y - 1 
IF edgeCx. y) = 1 THEN GOTO found 
x = x + 1 
IF edgeCx. y) = 1 THEN GOTO found 
x = x + 1 
IF edgeCx. y) = 1 THEN GOTO found 

endflag = endflag + 1 
'if didn't find another edge pixel move right and have one more try 
'if fail on second try then assume back at the beginning 
IF endflag < 2 THEN GOTO try 

CLOSE #2 
PRINT w. e. " edge points" 

NEXT w 
END 

FUNCTION edge Ci. j) 
'this examines eight neighbouring pixels and identifies Ci .j) as an 
'edge pixel if at least one off-diagonal pixel has P=O 

flag = 0 
IF PC i. j) = 1 THEN 
FOR m = i-I TO i + 1 

FOR n = j - 1 TO j + 1 
IF PCm. n) = 0 THEN 

IF m = i OR n = j THEN flag = flag + 1 
END IF 

NEXT n 
NEXT m 
END IF 

IF flag> 0 THEN edge = 1 ELSE edge = 0 

END FUNCTI ON 
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APPENDIX 2 

'CALClII AT ION OF FOlIRIER COEFFICIENTS 

'this program reads a file of cartesian co-ordinates. converts them to polar 
'coordinates. calculates the Fourier coeffiCients and LBV factors. and regenerates 
'the profile to check the error 

FOR w = 1 TO 24 
shape$ = "bi n2 _" + L TRIM$ (STR$ (w)) 
file$ = shape$ + ".edg" 
OPEN file$ FOR INPUT AS #1 

'find number of edge points 
e = 0 
DO 
INPUT #l. x. y 
e = e + 1 
LOOP UNTIL EOF(I) 
CLOSE #1 

PRINT: PRINT "converting edge pOints to polar co-ordinates .. 
, define arrays for polar co-ordinates 
REDIM reel. theta(e) 
OPEN file$ FOR INPUT AS #1 
pi = 3.14159265# 
i = 0: sumr = 0 
'convert x.y to r,theta 
DO 
INPUT #l. x. y 
i = i + 1 
rei) = SQR(x A 2 + Y A 2) 
sumr = sumr + rei) 
IF x = 0 AND Y > 0 THEN theta(i) = pi /2 
IF x = 0 AND y < 0 THEN theta(i) - 3 * pi /2 
IF x> 0 AND y >- 0 THEN theta(i) = ATN(y / x) 

IF x> 0 AND y < 0 THEN theta(i) = 2 * pi + ATN(y / x) 
IF x < 0 THEN theta(i) - pi + ATN(y / x) 
LOOP UNTIL EOF(I) 
CLOSE #1 

, normalise the radii 
FOR i-I TO e: rei) - rei) * e / sumr: NEXT i 

, sort by theta : standard compare and swap routine 
PRINT: PRINT "sorting ... " 
sort: fl ag - 0 
FOR i = 2 TO e 
IF theta(i) < theta(i - 1) THEN 
t = theta(i): theta(i) - theta(i - 1): theta(i - 1) - t 
r - rei): rei) - rei - 1): rei - 1) - r 
fl ag = 1 
END IF 
NEXT i 
IF flag = 1 THEN GOTO sort 



PRINT: PRINT "estimating Fourier co-efficients ... " 
using equations from paper by Ehrlich and Weinberg 

nl = 50 'nI-number of coefficients 
REoIM fa(nl), fb(nl). a(nl) 'arrays for Fourier coefficients 

FOR i-I TO e 
thl - theta(i): rl - rei) 
IF i = e THEN 
'since last point is followed by first point to close the loop 

th2 - theta(l) + 2 * pi: r2 - r(l) 
ELSE 
th2 = theta(i + 1): r2 = rei + 1) 
END IF 
fa(O) = fa(O) + (r2 + rl) * (th2 - thl) 
FOR j - 1 TO nl 
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fa(j) = fa(j) + (r2 - rl) * (COS(j * th2) - COS(j * thl» / (th2 - thl) / j A 2 + 
(r2 * SIN(j * th2) - rl * SIN(j * thl» / j 
fb(j) = fb(j) + (r2 - rl) * (SIN(j * th2) - SIN(j * thl» / (th2 - thl) / j A 2 
(r2 * COS(j * th2) - rl * COS(j * thl» / j 
NEXT j 
NEXT i 

file$ - shape$ +'" .fab" 
OPEN file$ FOR OUTPUT AS #2 
fa(O) - fa(O) / 4 / pi 
WRITE #2. fa(O) 
sumA = 0 
FOR j - 1 TO nl 
fa(j) - fa(j) / pi: fb(j) - fb(j) / pi 
'write first ten coefficients to file 
IF j < 11 THEN WRITE #2, fa(j). fb(j) 

, calculate Luerkens. Beddow, Vetter parameters 
a(j) = SQR(fa(j) A 2 + fb(j) A 2) 
sumA = sumA + a(j) A 2 
NEXT j 
Ro - SQR(fa(O) A 2 + .5 * sumA) 
WRITE #2. Ro 
WRITE #2, fa(O) / Ro 
FOR j - 1 TO 5 
L(j) - a(j) A 2 I (2 * Ro A 2) 
WRITE #2, l(j) 
NEXT j 
PRINT PRINT 

PRINT: PRINT "re-generating profile ... " 

sumr - 0 
file$ = shape$ + ".prg" 
OPEN file$ FOR OUTPUT AS #1 
WRITE #1. shape$ 
REoIM rg(e) 'edge points regenerated from Fourier coefficients 
FOR i = 1 TO e 
rg(i) = fa(O) 
FOR j - 1 TO nl 
rg(i) = rg(i) + fa(j) * COS(j * theta(i» + fb(j) * SIN(j * theta(i» 
NEXT j 



sumr = sumr + (r(;) - rg(;)) A 2 
WRITE #1. rei), rg(;), theta(i) 
NEXT ; 
PRINT "mean error = "; SQR(sumr I e) 
CLOSE 

NEXT w 
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, POI YGONAL HARMONICS 

FOR w - 1 TO 24 
w$ - LTRIM$(STR$(w)) 
shape$ - "t2m1_0" + w$ 
file$ - shape$ + ".edg" 
OPEN file$ FOR INPUT AS #1 

'find number of edge points 
e - ° DO 
INPUT #1. x. y 
e - e + 1 
LOOP UNTIL EOF(l) 
CLOSE #1 

REDIM x(e). y(e) 
REDIM SX(100). SY(100) 
REDIM HOOl) 

OPEN file$ FOR INPUT AS #1 
FOR i-I TO e 
INPUT #1. xCi). y(i) 
NEXT i 
x(O) - x(e): y(O) - y(e) 
CLOSE #1 

APPENDIX 3 

'arrays for 
'array for no. of occurences of each harmonic 

'stepping algorithm from paper by Young, Bryson, Van Vliet [69] 
'r-required steplength. L-actual distance from previous point to current 
, point, N-minimum no. of points to step. T-no. of traverses, p-no. of 
, sides on polygon, corr=correction to eliminate first steps before settling, 
, har-order of harmonic 

r - 9: quitflag - ° 
DO 
r - r + 1 
N - 1: xb - x(l): yb - y(l): p - 0: T - 0 
SX(O) - xC)): SY(O) - yell: flag - 0: corr - ° 
DO 
L - 0 
DO 
N = INT(N + (r - L) / SQR(2)) 
IF N > e THEN N - N - e: T - T + ) 'T counts no. of traverses 
L - SQR«xb - x(N)) A 2 + (yb - yeN)) A 2) 

LOOP UNTIL r - L < SQR(2) 
WHILE r - L > ° 
N - N + ) 

IF N > e THEN N = N - e: T = T + ) 

IF T = ) AND P = 0 THEN GOTO quit 
L = SQR«xb - x(N)) A 2 + (yb - yeN)) A 2) 
WEND 
IF r - L = 0 THEN 

xb = x(N): yb = yeN) 
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ELSE 'interpolate 
IF x(N) = x(N - 1) THEN 

newy = yb + SQR(r A 2 - (x(N) - xb) A 2) 
IF ABS«newy - y(N)) + (newy - y(N - 1))) > ABS(y(N) - y(N - 1)) THEN 
newy = yb - SQR(r A 2 - (x(N) - xb) A 2) 
END IF 

xb = x(N): yb = newy 
ELSE 

m = (y(N) - y(N - 1)) / (x(N) - x(N - 1)) 
c = (x(N) * y(N - 1) - x(N - 1) * y(N)) / (x(N) - x(N - 1)) 
newx = (xb - m * (c - yb) + SQR«m * (c - yb) - xb) A 2 - (1 + m A 2) * 

(xb A 2 + (c - yb) A 2 - r A 2))) / (1 + m A 2) 
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IF ABS«newx - x(N)) + (newx - x(N - 1))) > ABS(x(N) - x(N - 1)) THEN 
newx = (xb - m * (c - yb) - SQR«m * (c - yb) - xb) A 2 - (1 + m A 2) * 

(xb A 2 + (c - yb) A 2 - r A 2))) / (1 + m A 2) 
END IF 

xb = newx 
yb = m * xb + c 

END IF 
END IF 
P = P + 1 
IF P > 100 THEN flag = 1: GOTO giveup 
SX(p) = xb: SY(p) = yb 
, check for repetition 
FOR i = 0 TO P - 1 
IF ABS(SX(p) - SX(i)) < .01 AND ABS(SY(p) - SY(i)) < .01 THEN 
flag = 1: corr = i: i = P - 1 
END IF 
NEXT i 

giveup: 
LOOP UNTIL flag = 1 

IF corr > 0 THEN T = INT(I + T * (p - corr) / p) 
har = p - corr 
IF T = 1 THEN H(har) = H(har) + 1 

LPRINT r, har. T 
quit: 

IF T = 1 AND P = 0 THEN quitflag = 1 
LOOP UNTIL quitflag = 1 

NEXT w 



APPENDIX 4 

'SpANNING CHORDS 

FOR w = 1 TO 24 
shape$ = "bin2_" + LTRIM$(STR$(w)) 
fil e$ = shape$ + ". new" 
OPEN file$ FOR INPUT AS #1 

'find number of edge paints 
e = 0 
DO 
INPUT #1. x, y 
e = e + 1 
LOOP UNTIL EOF(l) 
CLOSE #1 

j = 10 'j is steplength 
d = e + j 
REDIM x(d), y(d) 

OPEN file$ FOR INPUT AS #1 
FOR i = 1 TO e 
INPUT #1. x(i). y(i) 
NEXT i 
FOR i = 1 TO j 
x(e + i) = x(i): y(e + i) = y(i) 
NEXT i 

shape$ = "2_" + L TRIM$(STR$(w)) + " 
j$ = LTRIM$(STR$(j)) 
fi le$ = shape$ + j$ + ".len" 
OPEN file$ FOR OUTPUT AS #3 
legend$ = shape$ + j$ 
WRITE #3. legend$ 

FOR i = 1 TO e 
xl = x(i): yl = y(i): x2 = x(i + j): y2 c y(i + j) 
length = SQR«x2 - xl) A 2 + (y2 - yl) A 2) 
WRITE #3. i, 1 ength, 1 ength / j 
NEXT i 
CLOSE 

NEXT w 
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APPENDIX 5 

'TO CONVERT A FILE OF EDGE CO-ORDINATES TO EVENLY SPACED POINTS 

'reads from file shape$.edg and writes to file shape$.new 

spacing = 1 

FOR w = 1 TO 24 
shape$ c "bin2_" + LTRIM$(STR$(w)) 
file$ = shape$ + ".edg" 
OPEN file$ FOR INPUT AS #1 

'find number of edge points 
e = 0 
DO 
INPUT #l. x. y 
e = e + 1 
LOOP UNTIL EOF(l) 
CLOSE #1 

d - e + 1 
REDIM x(d), y(d) 

OPEN file$ FOR INPUT AS #1 
FOR i = 1 TO e 
INPUT #l. x(l), y( i) 
NEXT i 
x(e + 1) = x(l): y(e + 1) = y(l) 
CLOSE #1 

file$ = shape$ + ".new" 
OPEN file$ FOR OUTPUT AS #2 

'first point stays the same 
newx = x(l): newy = y(l) 
WRITE #2, newx. newy 
j = 1 

WHILE j < e 
a = newx: b = newy 
j = j - 1 

DO 
'step until the distance is greater than required spacing 
j = j + 1 
xl = x(j): y1 = y(j): x2 = x(j + 1): y2 c y(j + 1) 
LOOP UNTIL SQR«x(j + 1) - a)A2 + (y(j + 1) - b)A2) > spacing 

'if stepping straight up or down then x stays the same, interpolate for y 
IF x2 = xl THEN 
newx = x2 
newy = b + SQR(spacingA2 - (x2 - a)A2) 
, but newy could be the other side of b 
IF ABS(newy - y2) + ABS(newy - y1) > ABS(y2 - y1) THEN 
newy = b - SQR(spacingA2 - (x2 - a)A2) 
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END IF 

'otherwise interpolate for both x and y 
ELSE 
m ~ (y2 - yl) I (x2 - xl) 
c ~ (x2 * yl - xl * y2) I (x2 - xl) 
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newx ~ (a - m * (c - b) + SQR«m * (c - b) - a)A2 - (1 + mA2) * (aA2 + (c - b)A2 -
spacingA2))) I (1 + mA2) 
IF ABS«newx - x2) + (newx - xl)) > ABS(x2 - xl) THEN 
newx ~ (a - m * (c - b) - SQR«m * (c - b) - a)A2 - (1 + mA2) * (aA2 + (c - b)A2 -
spacingA2))) I (1 + mA2) 
END IF 
newy ~ m * newx + c 
END IF 
WRITE #2. newx. newy 
WEND 

CLOSE #2 

NEXT w 

END 
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APPENDIX 6 

'RADlqS OF CIIRVATIIRE 

ON ERROR GOTO straight 

FOR w - 1 TO 24 
shape$ - "bin2_" + LTRIM$(STR$(w)) 
file$ - shape$ + ".new" 
OPEN file$ FOR INPUT AS #1 

'find number of edge points 

e - ° 
DO 
INPUT #1. x. y 
e - e + 1 
LOOP UNTIL EOF(l) 
CLOSE #1 

j - 7 'j is spacing 
d - e + 2 * j 
REDIM x(d). y(d) 

OPEN file$ FOR INPUT AS #1 
FOR i-I TO e 
INPUT #1. x(i). y(i) 
NEXT i 
FOR i-I TO 2 * j 
x(e + i) - x(i): y(e + i) - y(i) 
NEXT i 

j$ - LTRIM$(STR$(j)) 

'infinite radius if three pOints are in 
'straight line - assign large value instead 

shape$ - "2_0" + LTRIM$(STR$(w)) + "_" 

file$ - shape$ + j$ + ".roc" 
OPEN file$ FOR OUTPUT AS #3 
legend$ - shape$ + j$ 
WRITE #3, legend$ 

, fit circle to x,.j,y,.j X,.Y. x"j.y"j 
FOR i - j + 1 TO e + j 
xl - x(i - j): y1 - y(i - j): x2 - x(i): y2 - y(i): x3 - x(i + j): y3 - y(i + j) 
b# - xl * (x3A2 - X2A2 + y3A2 - y2A2) + x2 * (x1A2 - x3A2 + y1A2 - y3A2) + x3 * 
(x2A2 - x1A2 + y2A2 _ y1 A2) 
b# - b# / 2 / (xl * (y3 - y2) + x2 * (y1 - y3) + x3 * (y2 - y1)) 
a# - y1 * (y3A2 - y2A2 + x3A2 - x2A2) + y2 * (y1A2 - y3A2 + x1A2 - x3A2) + y3 * 
(y2A2 - y1A2 + X2A2 - x1A2) 
a# - a# / 2 / (y1 * (x3 - x2) + y2 * (xl - x3) + y3 * (x2 - xl)) 
roc# - SQR«x1 - a#)A2 + (y1 - b#)A2) 
cont: WRITE #3. i, roc# 
NEXT i 
CLOSE 

NEXT w 

straight: IF ERR - 11 OR ERR - 6 THEN 
roc# - 500 



RESUME cont 
ELSE 
ON ERROR GOTO 0 
END IF 
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APPENDIX 7 

Calculation of Axis Ratio 

The second moment of area about the x axis of a particle of area A is defined as 

and the second moment about the y axis is 

An ellipse centred on the origin with major axis 2a along the x axis and minor axis 2b 

along the y axis has the equation 

and its second moments of area are 

. fa 2 1ta3 b 
Iy = x 2ydx = --

-a 4 

minor:axis , , 

major axis 
-----------I--~+===='\ 

(O,O( 

b a 

F or an irregular particle of discrete pixels, each with area dA, located arbitrarily in the 

xy plane 

Ixy = ~xy 
n 

where n = A = the number of pixels. 

These moments cannot be compared with the moments of the ellipse defined above, 

unless the particle is centred on the origin with its principal axes along the x and y 

axes. Since this is rarely the case, the particle moments must be transformed to an 

appropriate co-ordinate system. The first step is to recalculate the moments about 

axes x',y', whose origin is located at the centroid x,ji of the particle, with x' parallel to 

x, and y' parallel to y (see diagram overleaf). The transformations are as follows: 
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The angle at which 1x'/ = 0 is the angle of the principal axes of the particle and can be 

found from the equation 

e = 1 tan-I ( 21"" ) 
2 1"-1,, 

This defines the co-ordinate system of the particle, (x",y"), where 

x" = xlcos e + yl sine 

y" = ylcos e - Xl sine 

The particle moments are then recalculated as follows 

Finally, these moments are equated with those of an ellipse, giving two equations with 

two unknowns, and a and b are found. The smaller of the two values is divided by the 

other to give the axis ratio. 

y 

(0,0) 

co-ordinate systems 

, , 

y' 
x" 

8 
":':--T--f--~~ 

x' 

x 

~ 



APPENDIX 8 

'CALCULATION OF AXIS RATIO 

OPEN "axratio.prn" FOR OUTPUT AS #3 

pi = 3.141592653589793# 

FOR w = 1 TO 24 
WRITE #3, "bin 2, particle w 

w$ = LTRIM$(STR$(w)) 
name$ = "bin2 " + w$ 
fi let = name$ + ".gry" 
OPEN filet FOR INPUT AS #1 
, file contains greylevel values for rectangular ROI 
, format n.g1.g2.g3 ....... gn where n is no. of points per line 
DIM P(100. 100) 'P(x.y) takes the value 1 if pixel x,y is particle, 0 for 

, background, and 2 for edge 

'read in the file, assign xy co-ordinates and identify particle pixels 
y = 0: count = 0: sumx = 0: sumy = 0 
sumxx = 0: sumyy = 0: sumxy = 0 
DO 
INPUT #1. n 
y = y + 1 
FOR x = 1 TO n 
INPUT #1. G 
IF G < 20 THEN 

END IF 
NEXT x 

sumx = sumx + x 
sumy = sumy + y 
sumxx = sumxx + x A 2 
sumyy = sumyy + y A 2 
sumxy = sumxy + x * y 
count = count + 1 
ymax = y 

LOOP UNTIL EOF(l) 

'find centroid 
xcen = sumx / count: ycen = sumy / count 

CLOSE #1 

'recalculate moments about parallel axes through centroid 
xx = sumxx - count * xcen A 2 
yy = sumyy - count * ye en A 2 
xy = sumxy - count * xcen * ycen 

'find angle of principal axes 
angle = .5 * ATN(2 * xy / (xx - yy)) 

'recalculate moments about principal axes 
Ix = yy * (COS(angle)) A 2 + xx * (SIN(angle)) A 2 - xy * SIN(2 * angle) 
Iy = xx * (COS(angle)) A 2 + yy * (SIN(angle)) A 2 + xy * SIN(2 * angle) 
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'calculate major and minor axes of equivalent ellipse 
a ~ (16 * Iy A 3 / pi A 2 / Ix) A (1 / 8) 
b ~ (16 * Ix A 3 / pi A 2 / Iy) A (1 / 8) 

IF a > b THEN axratio ~ b / a ELSE axratio = a / b 
PRINT axratio 

WRITE #3, axratio 

NEXT w 

END 
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APPENDIX 9 

'EXPERT SYSTEM 
'TRAINING AND TESTING PROGRAMME 

OPEN "train. txt" FOR INPUT AS #1 
INPUT #1. v. q, n 'number of variables, outcomes, training examples 
DIM r(v. q), t(v. q). e(v + 1. n), v(vl. d(q). a(q) 
'read examples and classes into array e 
FOR m = 1 TO n 
FOR i = 1 TO v + 1: INPUT #1. e(i. m): NEXT 
NEXT m 
CLOSE #1 

RANDOMIZE TIMER 

reps = 20 

FOR w = 1 TO 10 'train and test ten times 
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---------------------------------------------------------------------------------
FOR y = 1 TO reps 'averaging 20 sets of rules each time 

'initialise rules to 0 
FOR j = 1 TO q: FOR i = 1 TO v 
W.j)=O 
NEXT: NEXT 

FOR x = 1 TO 1000 'train with 1000 examples 

d = 0: fl ag = 0 
k = INT(RND(I) * n + 1) 'pick an example, k 
ql = e(v + 1. k) 'ql is the outcome for k 
'evaluate decision rule for this outcome 
FOR i = 1 TO v: d = d + e(i, k) * t(i, ql): NEXT 
FOR j = 1 TO q 

'evaluate decision rules for the other (incorrect) outcomes 
d2 = 0 
IF j <> ql THEN 
FOR i = 1 TO v: d2 = d2 + e (i, k) * t( i, j): NEXT 

IF d2 >= d THEN 'alter if not smaller than correct decision rule 
FOR i = 1 TO v: t( i, j) = t( i, j) - e (i, k): NEXT 

'alter correct deciSion rule if not already done 
IF fl ag = 0 THEN 
FOR i = 1 TO v: t(i. ql) = tU. ql) + e(i. k): NEXT 
fl ag = 1 
END IF 

END IF 
END IF 

NEXT j 

NEXT x 

'sum the rules for averaging later 
FOR j = 1 TO q: FOR i = 1 TO v 
r(i, j) = r(i. j) + W. j) 
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NEXT: NEXT 

NEXT Y , 
---------------------------------------------------------------------------------

'average the rules 
FOR j = 1 TO q: FOR i = 1 TO v 
rei. j) = rei. j) / reps 
NEXT: NEXT 

'test the averaged rules 
OPEN "test.txt" FOR INPUT AS #1 

c = 0: nd = 0 
INPUT #1. a. b. Z 

FOR x = 1 TO Z 

'number of variables. outcomes and examples 

'read the variables and class 
FORi=lTOv 
INPUT #l. v( i) 
NEXT 
INPUT #l. q2 'q2 is the correct outcome 
FOR j = 1 TO q: d(j) = 0: NEXT 
'evaluate decision rules for each outcome 
FOR i = 1 TO v 
FOR j = 1 TO q 
d(j) = d(j) + v(i) * r(i. j) 
NEXT j: NEXT i 

'find the winner 
d = d(l): hi = 1 
FOR j = 2 TO q 
IF d(j) > d THEN 

END IF 
NEXT 

d = d(j): hi = j 

'see if winner matches correct outcome 
flag1 = 0 
FOR j = 1 TO q 
IF d(j) = d AND j <> hi THEN flag1 = 1 
NEXT 
IF flag1 = 1 THEN 
nd = nd + 1 'no decision if more than one winner 
ELSE 
IF hi = q2 THEN c c c + 1 'c=no. correct predictions 
END IF 

NEXT x 

CLOSE #1 
PRINT c * 100 / z. nd * 100 / Z 

NEXT w 

END 



APPENDIX 10 

'NEURAL NETWORK 

'BACK PROPAGATION 
'WIDROW LEARNING - BATCH METHOD 

OPEN "train.txt" FOR INPUT AS #1 
INPUT #1, v, q, n 
'v- nO.variables. q-no.outcomes, n-no.training examples 
DIM e(v + l. n) 
'read training examples into array e() 
FOR m-I TO n 
FOR i-I TO v + 1 
INPUT #1. e(i. m) 
NEXT i 
NEXT m 
CLOSE #1 

OPEN "test.txt" FOR INPUT AS #1 
INPUT #1. v, q, n2 
'v- nO.variables, q-no.outcomes, n2-no.testing examples 
DIM t(v + 1, n2) 
'read testing examples into array t() 
FOR m-I TO n2 
FOR i-I TO v + 1 
INPUT #1, t(i. m) 
NEXT i 
NEXT m • 
CLOSE #1 

'set number of input, hidden and output nodes and weights 
inode - v: hnode - v + 2: onode - q 
'generally i for input, h for hidden, 0 for output 
DIM wih(inode + 1. hnode), who(hnode + 1. onode) 'extra is for bias weight 
DIM Ah(hnode + 1), Ao(onode) 'activation 
DIM deltao(onode). deltah(hnode) 
DIM sumho(hnode + 1, onode). sumih(inode + 1, hnode). sumwhodel(hnode) 
DIM eror(onode), sumerr(onode) 
DIM changeho(hnode + 1, onode), changeih(inode + 1, hnode) 
DIM nodeo(onode + 1), nodeh(hnode) 

eta - .7: alpha - .9 
cmax - .1 * n2 
batchsize = la 
numbatches = 100 

RANDOM I ZE TI MER 

FOR L = 1 TO 50 

'initialise weights randomly between -1 and 1 
FOR i = 1 TO inode + 1 
FOR h = 1 TO hnode 
changeih(i. h) = 0 
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wih(i, h) .01 * (INT(RND(l) * 200 + 1) - 100) 
NEXT h 
NEXT i 

FOR h = 1 TO hnode + 1 
FOR 0 = 1 TO onode 
who(h, 0) = .01 * (INT(RND(l) * 200 + 1) - 100) 
changeho(h, 0) = 0 
NEXT 0 
NEXT h 
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'------------------------training loop--------------------------------------------
FOR batch = 1 TO numbatches 

FOR h = 1 TO hnode + 1 
FOR 0 = 1 TO onode 
sumho(h, 0) = 0 
NEXT 0 
NEXT h 

FOR h = 1 TO hnode 
FOR i = 1 TO inode + 1 
sumih(i, h) = 0 
NEXT i 
NEXT h 

trai nex = 0 
'------------------------batch loop-----------------------------------------------
DO 

trainex = trainex + 1 
'select an example and feed it through 
k = INT(RND(l) * n + 1) 

'calculate activation for hidden nodes 
FOR h = 1 TO hnode 

nodeh(h) = 0 
FOR i = 1 TO inode 

nodeh(h) = nodeh(h) + e(i, k) * wih(.i, h) 
NEXT i 
nodeh(h) = nodeh(h) + wih(inode + I, h) 
Ah(h) = 1 / (1 + EXP(-nodeh(h))) 

NEXT h 

'calculate activation for output nodes 
Ah(hnode + 1) = 1 
FOR 0 = 1 TO onode 

nodeo(o) = 0 
FOR h = 1 TO hnode + 1 

nodeo(o) = nodeo(o) + Ah(h) * who(h, 0) 

NEXT h 
Ao(o) = 1 / (1 + EXP(-nodeo(o))) 

NEXT 0 

'find winning output neuron 
winner = 1 
FOR 0 = 2 TO onode 
IF Ao(o) > Ao(winner) THEN winner = 0 

'add bias 



NEXT 0 
'calculate errors 
IF e(v + 1, k) c winner THEN 
FOR 0 c 1 TO onode: eror(o) c 0: NEXT 
ELSE 

FOR 0 c 1 TO onode 
IF 0 c e(v + 1, k) THEN 
eror(o) c 1 - Ao(o) 
ELSE 

IF Ao(o) > Ao(e(v + 1, k» THEN 
eror(o) = 0 - Ao(o) 
ELSE 
eror(o) c 0 
END IF 

END IF 
NEXT 0 

END IF 

FOR 0 c 1 TO onode 
deltao(o) c eror(o) * Ao(o) * (1 - Ao(o» 
NEXT 0 

'sum delta*input for each h-o connection 
FOR 0 c 1 TO onode 
FOR h c 1 TO hnode + 1 
sumho(h, 0) c sumho(h, 0) + deltao(o) * Ah(h) 
NEXT h 
NEXT 0 

'calculate hidden deltas 
FOR h c 1 TO hnode 
sumwhodel(h) c 0 
NEXT h 
FOR h c 1 TO hnode 
FOR 0 c 1 TO onode 
sumwhodel(h) c sumwhodel(h) + who(h. 0) * deltao(o) 
NEXT 0 

deltah(h) c Ah(h) * (1 - Ah(h» * sumwhodel(h) 
NEXT h 

'sum delta*input for each i-h connection 
FOR h c 1 TO hnode 
FOR i c 1 TO inode 
sumih(i. h) - sumih(i, h) + deltah(h) * e(i. k) 
NEXT i 
sumih(inode + 1. h) - sumih(inode + 1, h) + deltah(h) 
NEXT h 

LOOP UNTIL trainex - batchsize 
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'------------------------end of batch---------------------------------------------

'adjust weights 
FOR 0 c 1 TO onode 
FOR h - 1 TO hnode + 1 
who(h, 0) - who(h, 0) + eta * sumho(h, 0) / trainex + alpha * changeho(h, 0) 
changeho(h, 0) - eta * sumho(h. 0) / trainex + alpha * changeho(h. 0) 
NEXT h 
NEXT 0 



FOR h ~ 1 TO hnode 
FOR i ~ 1 TO inode + 1 
wih(i, h) ~ wih(i, h) + eta * sumih(i, h) / trainex + alpha * changeih(i, h) 
changeih(i, h) ~ eta * sumih(i, h) / trainex + alpha * changeih(i, h) 
NEXT i 
NEXT h 

NEXT batch 
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'------------------------end of training------------------------------------------

'testing 
c ~ 0 
FOR k ~ 1 TO n2 
'calculate activation for hidden nodes 
FOR h ~ 1 TO hnode 

nodeh(h) ~ 0 
FOR i ~ 1 TO inode 

nodeh(h) ~ nodeh(h) + t(i, k) * wih(i, h) 
NEXT i 
nodeh(h) = nodeh(h) + wih(inode + I, h) 
Ah(h) ~ 1 / (1 + EXP(-nodeh(h))) 

NEXT h 

'calculate activation for output nodes 
Ah(hnode + 1) ~ 1 
FOR 0 ~ 1 TO onode 

nodeo(o) ~ 0 
FOR h ~ 1 TO hnode + 1 

nodeo(o) c nodeo(o) + Ah(h) * who(h, 0) 

NEXT h 
Ao(o) ~ 1 / (1 + EXP(-nodeo(o))) 

NEXT 0 

winner ~ 1 
FOR 0 ~ 2 TO onode 
IF Ao(o) > Ao(winner) THEN winner ~ 0 
NEXT 0 

IF winner ~ t(v + I, k) THEN c ~ c + 1 
NEXT k 

PRINT L, c * 100 / n2 

IF c > cmax THEN 
OPEN "wei ghts, txt" FOR OUTPUT AS #1 
FOR 0 ~ 1 TO onode 
FOR h ~ 1 TO hnode + 1 
WRITE #1, who(h, 0) 

NEXT h 
NEXT 0 
FOR h ~ 1 TO hnode 
FOR i ~ 1 TO inode + 1 
WRITE #1. wih(i, h) 
NEXT i 
NEXT h 
CLOSE 

cmax ~ c 
END IF 
NEXT L 

'add bias 




