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Abstract 

Real neurons, and their networks, are far too complex to be described exactly by simple 

deterministic equations. Any description of their dynamics must therefore incorporate noise 

to some degree. It is my thesis that the nervous system is organized in such a way that its 

performance is optimal, subject to this constraint. I further contend that neuronal dynamics 

may even be enhanced by noise, when compared with their deterministic counter-parts. 

To support my thesis I will present and analyze three case studies. I will show how noise 

might (i) extend the dynamic range of mammalian cold-receptors and other cells that 

exhibit a temperature-dependent discharge; (ii) feature in the perception of ambiguous 

figures such as the Necker cube; (iii) alter the discharge pattern of single cells. 
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~~------------------------------------~ 
Preface 

"noise (Telecomm.). (1) In general, any unwanted disturbance super-imposed 

On a useful signal and tending to obscure its information content." [Wal91] 

Most definitions of noise tend to the negative. Noise is too often seen as disruptive and as 

something to be minimized or restricted. It is my contention that this narrow view is often 

not applicable to neural systems. The theme that runs through this thesis is that noise can 

assist the entrainment of a dynamical system to a weak periodic forcing, and a leitmotif is 

the qUantification of this phenomena by a measure due to Gammaitoni et al. [GMS95]. 

Outline 

After a preliminary discussion of some relevant techniques and neuro-physiology, this thesis 

tackles three topics, which represent three levels of the hierarchy by which information 

processing may be supposed to occur in the brain. 

Noise and the single cell: In chapter 3 I present a tractable stochastic phase-model of 

the temperature sensitivity of a mammalian cold receptor. These cells are free nerve endings 

that exhibit a highly temperature-dependent discharge pattern. The neuro-physiological 

evidence supports a simple model that comprises a slow oscillation of the neuronal mem-

1 



CHAPTER O. PREFACE 2 

brane potential coupled to some noise source. I first show how this simple model may derive 

from more complete models, such as those based on the dynamics of ion channels. Using 

simple linear dependencies on temperature of the model's parameters, I then show that this 

model can reproduce the experimentally observed transitions between bursting, beating and 

stochastically phase-locked firing patterns. I analyze the model in the deterministic limit 

and predict, using Floquet theory and the Strutt map, the number of spikes-per-burst for a 

given temperature. The inclusion of noise produces a variable number of spikes-per-burst, 

and also extends the dynamic range of the neuron, both of which are analyzed in terms 

of the Strutt map. I also characterize the noise-induced trapping and stochastic resonance 

effects that appear near the onset of deterministic firing. 

Noise at the network level: Chapter 4 represents my work on a model for the perceptual 

interpretation of ambiguous figures. An ambiguous figure is one that admits two or more 

perceptual alternatives (a common example is the Necker cube). It is known that an ob­

server studying such a figure over a long time period, finds that his (or her) interpretation 

of the figure randomly and continually switches between the possible alternatives. This 

phenomena is called reversal. I introduce a simple model, due to Haken [Hak91 J, that may 

be considered as a model for the interpretive process and I examine how this model may be 

extended to describe reversal. When the ambiguous figure is periodically modulated in some 

manner, reversal can become entrained to the modulation in a way that resembles stochastic 

resonance. I show how a similar noisy-resonance phenomenon can occur in Haken's model, 

and I further show that at resonance, the theoretical transition rate between states matches 

the driving frequency. I further show that this effect persists when a diffusive coupling is 

introduced into the network, a technique that leads to a more robust system. 

Sub-cellular processing in the presence of noise: I develop, in chapter 5, a simple 

model of a spiking neurOn that displays threshold and quantal synaptic noise. I show 

analytically that there are parameter regimes for which these two types of noise generate an 

effective asymmetric-bistable potential function for the dynamics. The two stable states of 

the potential correspond to a de-polarized bursting state and to a hyper-polarized quiescent 

state, and the membrane potential of the neuron executes a random walk between them. 
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Thus, noise can fundamentally alter the neuronal discharge from a simple spiking regime 

to a regime of highly-correlated bursts. The parameters of the noise distributions alter the 

shape of the generalized potential, and hence also characteristics of the discharge pattern. 

Increasing synaptic noise increases the length of the burst, while increasing the threshold 

noise increases the interval between bursts. Finally I show that a weak periodic modulation 

of the system induces stochastically phase-locked transitions from the quiescent to the 

bursting state, and the transition rate exhibits a form of stochastic resonance. 

Theory should never be presented without SOme form of supportive experimental evidence. 

In this work, such evidence is provided by numerical simulations and so the thesis concludes 

with an appendix that discusses the numerical techniques that I have used. 



~1 

A review of concepts and tools 

To avoid disrupting the thread of a later narrative, I wish to review here some useful 

mathematical tools and concepts. 

1.1 Noise 

The term noise describes fluctuations in some parameter that derive from non-deterministic 

behaviour!. To indicate briefly possible physical origins of noise, I wish to sidestep a philo­

sophical red herring and to draw an analogy with the equilibrium thermodynamics and 

statistical physics of a classical, ideal gas2 . 

Each individual atom of an ideal gas may be considered as a point particle that moves 

chaotically but deterministically. A mole of such a gas comprises ~ 1023 atoms, all of which 

are in motion. The equilibrium properties of the gas are well described by a small number 

of macroscopic parameters such as the pressure and temperature. These state variables 

derive from the collective motion of the atoms, and their equilibrium values are functions 

IThe spin-glass paradigm of neural systems [Hop82) has fostered the terminology of 'fast' and 'slow' 

noise. All fluctuations considered by this thesis operate on similar time-scales to that of their corresponding 

system's dynamics and so are fast noise. 
'The extension to a quantum description merely includes a further source of randomness. 

4 



CHAPTER 1. A REVIEW OF CONCEPTS AND TOOLS 5 

of the mean positions and momenta of the atomic ensemble. However, close examination 

of the state variables shows that they are not truly constant but in fact fluctuate rapidly 

about Some average value. These statistical distribution of these fluctuations is generally 

well-defined, with a variance D that is given by Einstein's fluctuation-dissipation relation 

D= 2kT 
f 

(1.1) 

where T is the absolute temperature, and f the viscosity of the gas. Therefore, even though 

fluctuations in the state variables might have a deterministic origin at the atomic level, 

their macroscopic effects can only be analysed statistically. 

To continue the analogy, biological systems such as neurons comprise many interacting 

subsystems. Facets of their behaviour may be also described by macroscopic state variables, 

e.g. neurotransmitter release rate. Neural description based on these state variables either 

neglects or approximates much of the sub-cellular processing and so it is unsurprising that 

such coarse-grained approximations must incorporate noise to some degree. 

Noise falls naturally into two categories: external and internal noise3• External noise is 

caused by some force acting upon the system under investigation. Its archetype is Brown­

ian motion, whereby the collective, stochastic motions of microscopic molecules cause the 

random trajectory of a macroscopic pollen particle. External noise acts as an imposed force, 

and it is not affected by the system's dynamics. Mathematically, it enters the dynamical 

equations via additive coupling and (in principle) can be switched off. Internal noise derives 

from fluctuations inherent to the system. It is intimately related to the system's evolution, 

and is best described mathematically by a mUltiplicative term. 

Within this thesis I will consider non-inertial systems subject to an external noise, ((t), 

and so described by Langevin equations of the general form 

d 
dtx(t) = F(x, t) + ((t) (1.2) 

3More properly, the distinction between external and internal noise is somewhat artificial and depends 

upon how one designates the boundaries of the system. 
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where x(t) is some state variable. 

A randomly fluctuating variable ((t) is completely specified by its temporal correlation4 

and by its probability distribution P(X) == P(((t) = X). Where P(X) is the probability 

that at a time t, ( takes the value X. The determination of the probability distribution 

of a real, physical system is generally achieved by fitting a curve to a set of measurements 

taken from different realizations of the system. However, such a technique is not always 

reliable or accurate, and more often all that can be ascertained about the distribution 

are its moments, e.g. the mean, the variance and the kurtosis. These quantities are not 

very informative about the underlying dynamics, instead a more useful object is the auto­

correlation function, defined by 

11T G(t' - t) = lim T dt x(t)x(t') 
T-too 0 

( 1.3) 

this is the temporal average of a two time product, measured over an arbitrary time T which 

is then allowed to become infinite. There exist many techniques for measuring approxima­

tions to the auto-correlation (see e.g. [DeF81]). Furthermore, from the Wiener-Khinchin 

theorem (see e.g. [vK92]), the power spectral density (PSD), S(f), of a stationary process5 

is given by the Fourier transform of its auto-correlation function, so that 

2100 

S(f) = - dt cos(ft)G(t) 
1T 0 

(1.4) 

(since the auto-correlation function is an even function, the Fourier transform may be 

replaced by a cosine transform). The PSD describes the frequency distribution of the 

power in the random signal x(t). The simplest (and hence possibly the least physical) noise 

source is Gaussian noise: at a time t, ((t) is drawn from the distribution 

l\I 1 ( ((_m)2) 
((, a) = J(21Ta2 ) exp 2a2 

(1.5) 

4Extended systems may also display spatially correlated noise but this will not be considered here. 
5j.e. a system whose fluctuations are drawn from a distribution with time-invariant moments. 
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Gaussian noise therefore has mean m and is delta-correlated, so that 

(((t)) = m and (((t)((t')) = u 2 c5(t - t') (1.6) 

a Fourier transform of its auto-correlation function is therefore a constant over the entire 

spectrum. By analogy with light, Gaussian noise is therefore also called white noise. 

1.2 The master equation 

A stochastic process, ((t), is called Markovian if the probability that is in a given state at a 

time t2 is deducible from the knowledge of its state at a previous time tl, but is independent 

of its history before tl (see appendix B.2 for a more rigorous definition). 

Some definitions for the stochastic process (( t) 

• PI(XI , td is the probability density that ((t) takes the value Xl at a time tl. 

• P2(X\, tl; X2, t2) is the joint probability density that «(t) takes the value Xl at a time 

tl, and the value X2 at a time t2. 

• Pn(XI, tl; X2, t2; ... ; Xn, tn) is the joint probability density that ((t) takes the value 

Xl at a time t\, the value X2 at a time t2, ... and the value Xn at a time tn. 

• Pill (X2, t21XI, td is the conditional probability density that ((t) takes the value X2 at 

a time t2, given that it takes the value Xl at a time tl. 

• Plln_I(Xn,tnIX\,t\, ... ,Xn_\,tn_d is the conditional probability density that ((t) 

takes the value Xn at a time tn, given that it takes the value Xn- l at a time tn-l, 

... and the value Xl at a time tl. 

where the conditional probability density PIP ( ... 1 ... ) is defined by 

(1. 7) 
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and is also referred to as the 'transition probability' from state Xl to X2. 

The Markov property may therefore be abbreviated to 

(1.8) 

and so given the temporal hierarchy t3 > t2 > tl and using equation (1.7) 

P3(Xt, tl; X2, t2; X3, t3) = P2(XI, t l ; X2, t2)PI!2(X3, t31 X2; t2, Xt, ttl 

= PI (Xl, tl )Pl!l (X2, t21Xt, tl )Pl!l (X3, t31X2, t2) (1.9) 

Integration over all intermediate states X2 and division by PI(XI,ttl gives the Chapman­

Kolmogrov equation 

(LlD) 

Subject to time-ordering, i.e. that t2 lies between tl and t3, the Chapman-Kolmogrov 

equation states that the transition probability density from state Xl to state X3 is the 

integral (or sum) over all possible intermediate states of the probability of transition Xl -+ 

X2 -+ X3 · 

A differential equation for the probability density can be found by first integrating the 

Chapman-Kolmogrov equation w.r.t. Xl and re-labeling its indices, so that 

(1.11) 

setting t2 = tl + ot, then the time derivative of PI (X, t) is given by 

(Ll2) 
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Evaluation of equation (1.12) requires computation of PIli (X2, tl + .ltIXI, td. Taylor ex­

panding in powers of .It, and ensuring that normalization is preserved 

(1.13) 

truncate at first order, and use the fact that PJI1 (X2 , tJ!XI , td = .l(X2 - Xd. Furthermore, 

note that the second term on the RHS, fJPIIJ/Ot, is made up of two parts - transitions 

into the state, and transitions out of the state. Define the transition probability density 

per-unit-time, Wh (Xl, X2), that the system changes from Xl to X2 within the time interval 

tl -t tl + dt, so that 

PJI1(X2,tl+.ltIXI,td=.l(X2-Xd + Wh (XI ,X2)dt 

.It J dX Wt , (Xl, X).l(X2 - Xd (1.14) 

substituting (1.14) into (1.11) and then into (1.12), one obtains 

re-labeling the second integral, so that X -t Xl, to arrive at the master equation 

(1.15) 

The master equation has the form of a balance equation. It gives the rate of change of 

the probability density due to transitions into the state X2 from all other states Xi> and 

transitions out of X2 into any other state Xl' The master equation is not only more 

tractable than the corresponding Chapman-Kolmogrov equation, but it is also easier to 

interpret physically. 
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1.3 The Fokker-Planck equation 

A description that complements the Langevin approach of equation (1.2) is that of the 

Fokker-Planck equation. This partial differential equation is the equation of motion of 

the probability distribution P(x, t) of the state vector x, and it derives from the master 

equation. 

Express the transition probability W ( ... ) as a function of the size of the jump 

W(X',X)-+W(X';r), with r=X-X' 

so that the master equation becomes 

!p(X, t) = f dr W(X - r;r)p(X - r, t) - p(X, t) f dr W(X; -r) 

Assume that only small jumps occur, i.e. 36> 0, s.t. 

W(X';r) :: 0 V Irl > 6 

W(X'+~X;r) :: W(X;r) VI~XI<6 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

and so the transition probability W(X'; r) is a strongly peaked function of r, but varies only 

slowly with X'. Furthermore, assume that p(X, t) also varies slowly with X. Consequently, 

the first integral of equation (1.17) can be dealt with by a Taylor expansion. To second 

order: 

W(X - r; r)p(X - r, t) :: W(X; r)p(X, t) 
o 

- r oX [W(X; r)p(X, t)] 

r2 02 

+ "2 oX2 [W(X;r)p(X,t)] (1.20) 

and so equation (1.17) becomes 

!p(X, t) = f dr W(X;r)p(X, t) - f dr r [W(X; r)p(X, t)] 
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! r2a2 ! + dr '2 ax2 [W(X; r)p(X, t)]- p(X, t) dr W(X; -r) (1.21) 

the first and last terms on the RHS cancel, leaving the second-{)rder Kramers-Moyal ex­

pansion of the master equation6 . 

Now introduce the 'jump moments' (i.e. the mean and variance of the fluctuations) 

(1.22) 

such that Kramers-Moyal expansion may be written 

~ - -~ [ (\) 1 ~~ [ (2) 1 OtP(X, t) - ax D (X)p(X, t) + 2 aX2 D (X)p(X, t) (1.23) 

which is the one-dimensional Fokker-Planck equation. The coefficients, D(1) (X) and D(2) (X) 

are termed the drift and the diffusion, and since they are moments of the fluctuation distri-

bution, the Fokker-Planck equation may be specified without any knowledge of the kernel 

W( .. . ). Thus, a Langevin system (1.2) subject to a Gaussian noise (1.6) has drift and 

diffusion 

(1.24) 

In fact, for anyone-dimensional system, there exists [Ris89] a change of variables, say 

X -t Y, that transforms any Fokker-Planck equation into one with a constant diffusion 

term, i.e. D(1)(X) -t D(1)(y), D(2)(X) -t D. 

The Smoluchowski equation 

The Smoluchowski equation is a special case of the Fokker-Planck equation and describes 

the motion of an over-damped particle in a potential U(x). It has drift and diffusion 

6 A theorem due to Pawula (Ris89] states that either the Kramers-Moyal expansion terminates at first or 

second order I or it does not terminate at all. 
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coefficients 

(1.25) 

The multi-variate Fokker-Planck equation 

For the case of M random variables, the Fokker-Planck equation generalizes to its multi­

dimensional form [Gil96b] 

M 

8 " 8 [ (I) ] aP(x, t) = L.. a. D; (x, t)P(x, t) 
t i=l X t 

1 ~ 82 
[ (2) ] + 2 L.. 8x2 D; (x, t)P(x, t) 

i=l ' 

+ M 82 
[() ] L 8x8x. D;] (x, t)P(x, t) (1.26) 

i,j=l,i<j I 3 

1.3.1 Stationary solutions 

The uni-variate Fokker-Planck equation (1.23) may be re-written as a continuity equation 

-p(x t) = - -D(I)(X) + _-D(2)(x) p(x t) = --J(x t) 8 8( 18) 8 
at ' 8x 28x ' 8x' 

(1.27) 

where J(x, t) is a probability current. 

Stationary solutions have a constant probability current. First, suppose that the current 

vanishes, so that J(x, t) = O. Integration of (1.27) yields 

(1.28) 

where No is a normalization constant, and 3(x) a generalized potential with 

3(x) = In D(2) (x) - 2 r ~:i::~ dx' (1.29) 
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Any stationary state with a non-zero (but constant) .:1 can now be written in terms of this 

generalized potential, so that 

",( [-] [-( )]1 exp[-3(x')] , 
Pst(X) = 4/Voexp -",(x) - 2.:1 exp '" x x D(2)(x') dx (1.30) 

1.4 Kramers' rate theory 

A Brownian particle trapped in a deep potential well (figure 1.1), resides there for a time that 

exceeds all of the system's relaxation times, and that has an Arrhenius (i.e. exponential) 

dependence upon the height of the barrier. The mean escape rate7 , rA, is given by the 

Van't Hoff-Arrhenius formula [HTB90] 

( 2OU) rA = ITexp -D (1.31) 

where OU is the height of the barrier separating the minima, D = a2 is the noise variance 

and IT is some pre-factor. 

To evaluate this pre-factor, consider a Brownian particle obeying Langevin dynamics of 

the form (1.2), and trapped in a meta-stable state of the potential, U(x) (figure 1.1). 

Furthermore, suppose that the barrier height OU is very large and the noise is weak, i. e. 

D small. Thus, both of the probability current, .:1, at the summit of the barrier, and the 

variation with time of p(x, t) will be very small and so the particle will be in a quasi­

stationary state. 

The probability density of the particle's position, p(x, t), obeys a Smoluchowski equation 

(1.25) and so this quasi-stationary solution has a generalized potential (equation (1.29)) 

3(x) = 2U(x) 
D 

7The mean escape rate is the reciprocal of the mean escape time from the well. 

(1.32) 
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U(x) 

it x 

Figure 1.1: Brownian escape from a potential well: a particle obeying Langevin dynamics 

typically resides close to the minimum of the meta-stable state, but will occasionally traverse 

over the barrier at Xmax with a mean rate that depends exponentially upon both the noise 

strength, D, and the barrier height, oU. 

Furthermore, assume that if the particle escapes beyond the barrier (say to the point X, see 

figure 1.1), it escapes to infinity and does not return (consequently put p(x, t) c= 0). 

Following Risken [Ris89], integrate (1.27) and so write the probability current J(x, t) as 

(1.33) 

For a stationary state, the flux over the barrier is small, as is [)Plot, and so assume that 

J is independent of spatial position. Integrate between Xmin and x, and use p(x, t) c= 0, to 

obtain 

~ exp[3(xmin)]p(Xmin, t) J = ~~-,-c=:.;..::....:.--,=.:..:..-'.. 

fLn dx' exp[3(x')] 
(1.34) 

For a high barrier (i.e. large OU I D), the probability density close to the minimum is ap­

proximately given by 

[ 
U(x) - Umin] p(x, t) c= P(Xmin, t) exp -2 D (1.35) 
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The probability of finding the particle in a region of width 26x, centered on Xmin is 

1
X+6X 

P(X=Xmin, t) = p(x', t)dx' 
x-ox 

[ 
U . ] 1X

+6X [U(x')] = P(Xmin, t) exp 2 ;;n x-6x exp -2----n- dx' (1.36) 

for small D, the probability density (1.35) is sharply peaked and so the actual value of 6x 

need not be specified. 

The probability current, 3, is equal to the product of the probability P and the escape rate 

over the barrier T, and so from (1.34) and (1.36) 

3 (21
xm

,n+6
x 

[2U(X)] 1
x 

[2U(X)] )-1 
T == - = - exp --- dx exp -- dx 

P D Xmin -6x D Xmin D 
(1.37) 

the main contribution to the first integral is from a region about Xmin, while the main 

contribution to the second is due to a region close to Xmax . Therefore, Taylor expand the 

potential U(x) to second order 

U(X) '" U(Xmin) + ~UII(Xmin) (x - Xmin)2 

U(x) '" U(xmax) - ~IUII(Xmax)1 (x - Xmax)2 

(1.38) 

(1.39) 

substituting both of these into (1.37), and integrating over ±oo gives the Kramers' rate 

(1.40) 

note that the Arrhenius factor (exp( ... )) depends only upon the noise strength and the 

barrier height, while the pre-factor depends only upon properties of the potential's stable 

and unstable fixed points. 
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1.4.1 Escape in multi-dimensional potentia Is 

Generalization of Kramers' rate equation (1.40) to more than One dimension is far from 

trivial, and can only be computed exactly for a small class of potentials [HTB90]. However, 

to briefly indicate how Kramers' theory may be extended to compute an approximation to 

the rate of escape over a saddle-point, of a damped particle confined to a two-dimensional 

potential, and subject to an isotropic noise source. The method proceeds as for the one­

dimensional case of the preceding section, and again Taylor expansions for the probability 

current at the saddle-point, and the probability density at the minima must be computed. 

The resulting generalized Kramers' rate (also known as the Eyring formula [MS96a]) is given 

by 

detH(xmin) (28U) 
I detH(xs) I exp -D (1.41) 

where the Hessian H of the potential has components 

(1.42) 

and is evaluated at the minima, Xmin, and the saddle, Xs. A is the positive eigenvalue of the 

Hessian of the potential at the saddle, and flU = Us - Umin is the height of the potential 

barrier at the saddle. 

1.5 Stochastic Resonance 

Stochastic resonance (SR) [MW89, BG96, MP094, WM95] is a phenomenon whereby ran­

dom fluctuations and noise can enhance the detectability and/or the coherence of a weak 

signal in certain nonlinear dynamical systems. The classic paradigm is one of a particle 

obeying gradient (i. e. in the limit of high friction) dynamics, such that 

d d 
-x(t) = --U(x) 
dt dx 

(1.43) 
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and confined to a symmetric, bi-stable potential U(x), e.g. of the form 

) 
1 4 1 2 U(x = -x --x 
4 2 

17 

(1.44) 

In the absence of any external perturbations, the particle relaxes to an equilibrium state at 

the bottom of one of the wells. When the particle is driven stochastically by some weak, 

additive noise source (figure 1.2a) then it will spend most of its time executing a random 

walk centred upon one of the potential minima. Occasional transitions between the two 

wells occur with a mean rate, TK, that is given by (1.40). If, instead, the particle is subject 

to a sub-threshold8 periodic forcing, say of the form A cos(nt), then it will oscillate about 

one of the minima. Such a forcing may be interpreted as rocking the potential back and 

forth. However, if both types of driving are present, the dynamical equation (1.43) becomes 

x = -U'(x) + Acos(nt) + «(t) (1.45) 

The system now displays noise-assisted switching (figure 1.2b): the transition rate (1.31) 

becomes modulated by the periodic forcing, increasing when the barrier is lowered and 

decreasing when it is raised. Thus, the particle has a greater tendency to switch when it 

is aided by the periodic bias (i.e. after a residence time close to half a period) and a lesser 

tendency when it is hindered. 

Consider now how varying the noise strength D affects the switching process . 

• In the limit D --t 0, then TA» T, where T = 211" /n is the time period of the regular 

forcing and TA = rAl is the mean residence time of a potential well. Thus even though 

escape is most likely when the barrier is low, actual switching events will be rare and 

occur On a time-scale much greater than that of the periodic forcing. 

• For large 0, transitions have little dependence on the barrier height. Thus, TA « T 

and so switching occurs much more rapidly than the period of driving. The particle 

Si. e. too weak to cause transitions between potential wells in the absence of noise. 
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(a) 

(b) 

Figure 1.2: Forced and stochastic motion in a bi-stable well: (a) stochastic motion, the 

particle executes a random walk about one of the minima, (b) stochastic and periodic forcing 

combine, causing noise-assisted switching. 

oscillates wildly between minima and with a trajectory that has little coherence with 

the forcing . 

• Moderate noise results in behaviour intermediate to these two regimes and so the 

assisted switching can become strongly correlated with the biasing. In fact, for a given 

driving frequency 0, there is an optimal noise strength Dopt for which the transition 

rate is maximally correlated with the periodic driving. Below Dopt transitions occur 

less frequently, and above Dopt the system is too noisy and transitions occur at random. 

The description of this effect as stochastic resonance implies that there is some matching of 

time-scales. Benzi et al. [BPSV82] coined the name SR, and justified it by noting that the 

maximal correlation between noisy-switching and driving occurs when the mean waiting 
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time between two noise-induced transitions is comparable with half of the period, I, of the 

biasing. Thus yielding the time-scale matching condition for stochastic resonance 

1 
TA =-1 

2 

1.5.1 A bona-fide resonance 

(1.46) 

It is easy to visualize this co-operation between noise and signal; what is often more prob­

lematic is a quantification of this effect. The original study by Benzi et al. [BPSV82] first 

observed SR as corresponding to a peak in the power spectra of switch times. McNamara 

and Wiesenfeld [MW89] shifted the focus of investigation and predicted that SR would 

appear as a maximum in a plot of the output signal-to-noise ratio (SNR) versus the noise 

strength. Methods for SNR computation are still under contention9 , but a general tech­

nique [MW89] is to compute the power spectrum of the output signal (the barrier crossing 

rate) and divide it by the power spectrum of the noise signal. For the bi-stable system 

(1.44) the output power spectrum typically comprises a narrow peak, located at the driving 

frequency and riding upon a broad-band Lorentzian background. The SNR may therefore 

be computed by dividing the height of the peak by the height of the Lorentzian background 

at the same frequency. This measure is now widely considered to be the true signature of 

stochastic resonance, and has direct application in the signal processing analysis of devices 

such as SQUIDS [BJS90]. In fact, Heneghan et al. [HCC+96] have shown the equivalence 

between this quantity and one that optimizes the Shannon information transfer rate (trans­

information) of a memory-less channel. 

To characterize SR in a system, it must be examined over a long time. Spectral computation 

can therefore be awkward for SR studies, since it will involve Fourier transforming large 

arrays. Furthermore, even though the SNR does depend non-monotonically upon the noise 

strength, the noise intensity DSN R for maximal SNR does not coincide with the optimal 

noise Dap' for time-scale matching (1.46) (see e.g. [GHJM98] and references therein). Thus, 

SNR measures are erroneous when considering entrainment and phase-locking effects, and 

9 A debate which, to quote Ronald Fox, has "generated much heat but little light". 
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furthermore the lack of time-scale matching makes the name 'resonance' inappropriate. 

For periodically-driven bistable systems an alternative, and visually more compelling, SR 

measure depends upon the histogram of barrier crossing times [ZMJ90] in which a sequence 

of residence times of one of the minima is recorded, binned and histogrammed. Depending 

On the noise level, such a residence time histogram (RTH) typically consists of several narrow 

peaks super-imposed upon an exponentially decaying envelope (figure 1.3). Each peak is 

centred at an half-odd-integer multiple of the driving period, such that the jlh peak is 

located at a time 

(1.47) 

To measure the area, or "strength", of a peak introduce the quantity [GMS95] 

!,
Tn+aT 

Pn = H{t)dt 
rn-aT 

(1.48) 

where10 a = ! and H{t) is the normalized distribution of transition times. With increasing 

noise, P" for the nth harmonic peak first rises and then falls, reaching a maximum at some 

critical value of the noise. For high noise levels a new peak close to the origin is observed 

(figure 1.3d), representing transitions that are caused solely by noise, and that have no 

correlation with the driving. The harmonic peaks do not reach their maxima simultaneously, 

but instead each has a unique critical noise. Recall the relation (1.46): resonance takes place 

when the driving frequency "matches" the mean transition rate due to noise of the un-forced 

system. In [GMS95] it was suggested that this would occur when the first (harmonic) peak 

is maximal. This is because, at this time, very few transitions occur at the sub-harmonics 

and so this peak dominates the histogram. Under these conditions, the mean first passage 

time, which is equal to the first moment of the histogram, is close to the driving period. 

This measure therefore recovers the original interpretation of SR as being a true resonance 

phenomenon. 

lOIn fact, the systems considered by this thesis generally have strongly defined peaks with low-background 

distributions, and so the actual value of the parameter a is immaterial. 
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Figure 1.3: Residence time histogmms (RTH) for a particle subject to both stochastic and 

periodic forcing and moving in a bi-stable potential. Various noise levels are shown, with 

DJ < D2 < D3 < D4 and D3 '" De>pt. 

Note also that each peak strength Pn is a function of both the noise and of the driving 

frequency, and further from (1.46) that each driving frequency n has a different critical­

value of the noise. Thus, each Pn goes through a maximum as either the noise intensity or 

the frequency is increased. 

An analytical connection between the RTH measure and the SNR one has yet to be proven, 

and may not even exist [eFJ98j. However it would appear that if a system exhibits SR 

according to the RTH measure, then it will also exhibit a non-mono tonic SNR. Choi et al. 

[eF J98j have recently criticized the use of residence time histograms. Their argument is that 
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in the limit of vanishingly small amplitude driving (i.e. A --t 0), the quantities Pn (equation 

(1.48)) will still go through a maximum as a function of the noise, even though the system 

does not display a multi-modal residence-time histogram. This is of course correct, since 

in the absence of periodic forcing the histogram of residence times is essentially a decaying 

exponential (such a histogram should be contrasted with the ones shown in figure 1.3). If 

one now determines the variation with noise of the histogram height at any arbitrary point 

(e.g. at a time equal to a period of the forced case), one does see the height pass through 

a maximum. However, this occurs at much lower noise levels (i. e. there is no matching of 

time-scales) and is simply an artefact of the sampling. However, such vanishingly small 

amplitude driving rarely has relevance in the real world and so I take the pragmatic view 

that Gammaitoni's measure is only pertinent to periodically-driven systems and should only 

be used to quantify those that display discernible, multi-modal residence time histograms. 

1.5.2 The inter-spike interval histogram 

A technique, resembling the RTH, for analysing neural spike data is the inter-spike interval 

histogram (ISIH), which is a histogram of the time intervals between successive spikes. An 

important distinction between these two measures is that the RTH is a histogram of times 

for a single escape from a well, i.e. it is an ensemble measure, while the ISIR is a histogram 

of a series of "switching" times of a single neuron/oscillator (i.e. it is a renewal process). 

Thus the residence time histogram exhibits peaks centred at half-odd integer multiples of 

the driving frequency, while the ISIH will shows peaks centred at integer multiples of the 

driving frequency (recall equation (1.47)). 

1.5.3 Biological SR 

What is the relevance of SR to biological and neural systems? There is now growing 

neuro-physiological evidence that noise might aid the transduction of small sub-threshold 

signals by various sensory neurons. Furthermore, the efficacy of these neurons appears to 

exhibit a non-monotonic dependence on the noise strength. SR-type effects have recently 

been indicated in: the cricket cercal system [LM961, human tactile sensation [CIG961, hair 
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mechano-receptors in the tail fan of the crayfish [DWPM931, and mammalian cold receptors 

(see chapter 3). At the network level, the application of an electric field containing both a 

periodic and a noise component has been shown to pacify a (chemically induced) epileptic 

seizure in an in vitro hippocampal slice [GNN+961. It has also been suggested that SR 

could feature at higher levels of brain function such as in the perceptual interpretation of 

ambiguous figures (see chapter 4). Good descriptions of many of these experiments may be 

found in the review articles [Mos94, MP094, WM95, WJ981. 



~~------------------------------------~ 
The origins of neuronal noise 

"Our science has always desired to monitor, measure, abstract, and castrate 

meaning, forgetting that life is full of noise and that death alone is silent: work 

noise, noise of man, and noise of beast. Noise bought, sold, or prohibited. 

Nothing essential happens in the absence of noise." [Att85] 

Neuronal noise is difficult both to categorize and measure. However, it is an important 

facet of the behaviour of biological neurons that is frequently neglected in theoretical and 

modeling studies. As a prelude to a discussion of its origins, I wish to give a short description 

of neuronal structure and function. 

2.1 Neuronal structure and function 

2.1.1 Cellular physiology 

Neurons are eukaryotes. They contain a cell nucleus and cytoplasmic organelles, and are 

enclosed by a thin « 10 nm) double layer (bi-layer) of phospho-lipid molecules. The most 

important of the organelles are mitochondria, which are found throughout the neuron. These 

small, cigar-shaped structures convert the glucose and oxygen delivered by the bloodstream 

24 
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into ATP, which is then used as a store of energy. The lipid bi-Iayer's function is twofold: it 

prevents the cell's contents mixing with extra-cellular material, and it acts as an (imperfect) 

electrical insulator. 

2.1.2 Electra-physiology 

Neuronal cytoplasm consists mostly of water, proteins and inorganic salts such as Na+, K+, 

CI- and Ca2+. When the cell is at rest, the intra-cellular and extra-cellular fluids differ 

in both ionic composition and concentration. In consequence there is a charge imbalance, 

and hence a potential difference, across the membrane. Neuronal operation is effected by 

the manipulation of this potential difference by the controlled movement of ions across the 

lipid membrane. Glyco-protein macro-molecules are scattered throughout, and protrude 

through, the membrane. These macro-molecules function either as sites for the reception of 

specific chemical messengers, or they facilitate trans-membrane ionic currents. Such ionic 

currents are either due to diffusion through a channel and along a chemical gradient, Or 

to enzymes, known as active pumps, which metabolize ATP to move ions against their 

concentration gradient. 

Diffusive ionic transport through a channel is a passive process, and the current through a 

single channel can involve the transmission of up to 108 ions per second [KSJ91]. Channels 

are typically highly selective to a single ionic type, and may be sub-classified into non-gated 

and gated channels. Non-gated channels are water-filled pores which allow a continual 

ionic flux. The rate of flux depends on the concentration gradient, and these channels are 

responsible for maintaining the resting potential. Gated channels are allosteric proteins 

that have (at least) two stable conformal states, open and closed, and are modulated by 

certain stimuli. Voltage-gated channels are sensitive to the electrical potential across the 

membrane, while chemically-gated channels respond to the presence of certain chemical 

messengers. Recordings of the current flowing through a single channel indicate that gated 

channels can fluctuate rapidly between open and closed states. 

Channels allow ions to flow along concentration gradients, and the resulting chemical equi-
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librium dissipates the trans-membrane potential difference. To restore it, ions must be 

pumped against their concentration gradients to balance the passive flux. Such active 

transport requires energy, which is provided by the hydrolysis of ATP. There are many 

different enzyme pumps, but the sodium-potassium pump, Na+-K+ ATPase, is ubiquitous 

and accounts for a third of all energy consumed by each neuron. Its function is to restore 

the intra- and extra-cellular concentrations of sodium and potassium. Na+ -K+ ATPase is 

preferentially biased with a stoichiometric ratio 3:2, extruding more sodium from the cell 

than is replaced by potassium. 

When the cell is at rest it exhibits a trans-membrane potential, the resting potential, in the 

range -40m V to -90m V. If the cell's potential becomes less negative, the cell is said to be 

depolarized; if it becomes more negative, the cell is hyper-polarized. R.ecal1 that the origin of 

the resting potential is a disparity between the intra- and extra-cellular fluids. Each ionic 

species is subject to two pressures controlling its passage through the membrane: an electric 

one due to charge build up, and an osmotic one which tends to equalize chemical concen­

trations. In the resting state, the Na+ -K+ ATPase pump maintains high concentrations 

of intra-cellular potassium and extra-cellular sodium. Even though the lipid membrane 

at rest is permeable to K+ ions, an electrical gradient opposes their efllux and subsequent 

chemical equilibration. The resulting potassium distribution therefore derives from a bal­

ance between the osmotic and electric forces. Similarly, the membrane is permeable to 

CI- ions but a chloride influx is opposed by the electric gradient and so the extra-cellular 

concentration high. In contrast, there is a high extra-cellular concentration of sodium since 

it is continually pumped out of the cell, and therefore both the chemical and the electric 

gradients favour a Na+ influx. However, when the neuron is at rest, the lipid membrane is 

impermeable to Na+ and thus its distribution is maintained. 

2.1.3 Cytology 

A neuron may be partitioned both functionally and morphologically into four sections: the 

soma, the dendrites, the axon and the pre-synaptic terminals. 
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• The soma is the metabolic centre of the cell. It is typically pyramidal in shape and 

contains the cell nucleus and hence the cell's genetic material. The primary function of 

the soma is protein synthesis. There are usually two distinct structures which extend 

from the soma: the dendrites and the axon. 

• The dendrites are an arborised structure which extend the receptive surface of 

the cell. They generally receive input from other neurons, and are considered to 

be the information gathering region of the cell. Inter-neuron communication occurs 

at specialized junctions called synapses, and can be either chemically or electrically 

promoted. Chemical synapses employ the release of transmitter substances by the 

signalling cell to cause the transient opening of gated channels on the dendrites of the 

receptive cell. In contrast, electrical synapses are non-gated channels of low electrical 

resistance through the cell membrane. The resulting ionic flux through the dendrites 

is summed in the soma, and the net change in the ionic composition of the cytoplasm 

determines the neuron's response to its input. The role of the dendrites in information 

processing and computation has been extensively reviewed in [Me194, BC97j. 

Dendritic morphology differs greatly between cell types, and defies general classifica­

tion. Shepherd [She94j therefore defines dendrites as, 

"... all those branches which do not fulfill the criteria of being an axon" . 

• The axon is a thin, tubular structure which projects from a specialized region of the 

soma called the axon hillock. Axonal lengths vary between several micrometres and 

a metre, and diameters vary between One micrometre and one millimetre. The axon 

has a dual function: chemical transport from the soma to the pre-synaptic terminals, 

and the propagation of information to other neurons. Information is communicated 

by means of an action potential (AP), or 'spike'.! An AP is a brief stereotypical 

electrical impulse which travels with a constant velocity along the axon, away from 

the soma and toward the pre-synaptic terminals. At its distal end the axon divides 

into fine branches, called telodendria. 

• The pre-synapticterminals, or boutons, are specialized swellings that. occur on 

IIn this thesis I will use the terms 'action potential" 'AP' and 'spike' interchangeably. 
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the axonal telodendria. They are the transmitting elements of the neuron, and are 

used to disseminate information about the neuron's activity to the receptor surface of 

other neurons. The point of contact is known as the synapse, and a neuron can have 

more than one synapse with another neuron. The pre-synaptic terminals of chemical 

synapses contain small, spherical membranes, called vesicles. Each vesicle contains 

a small amount ("" 5000 molecules) of chemical transmitter, and is anchored to a 

cytoskeletal matrix called the vesicular grid. 

2.1.4 Chemical messengers and synaptic transmission 

The synapse is the point of functional contact between the axon terminals of one neuron and 

the dendrites of another. The two neurons do not make physical contact, but are separated 

by a fluid filled gap of about 20nm, called the synaptic cleft. 

incident action por",1 

synaptic cleft 

ea2• inflow 

pre-synaptic 
terminal 

______ transmitter 
release 

r--I I I I I I I I I~ 
I galed receptors I 

post-synaptic 
membrane 

Figure 2.1: Synaptic function: an incident AP causes vesicular release into the synaptic 

bouton. The vesicles subsequently fuse to the pre-synaptic membmne and spill neurotrans­

mitter into the synaptic cleft. Transmitter molecules bind to receptors on the post-synaptic 

membrane, and open chemically gated ion channels (see text). 
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When an incident axon potential invades the pre-synaptic terminal it activates voltage­

gated Ca2+ channels, thus allowing calcium entry. The transient Ca2+ influx triggers vesicle 

release from the grid, and subsequently causes them to fuse to the pre-synaptic membrane. 

The neurotransmitter contained within each vesicle is spilt into the synaptic cleft and dif­

fuses toward the post-synaptic membrane. At the post-synaptic membrane the transmitter 

binds to receptor molecules, and opens chemically-gated ion channels. The resulting ingress 

of charge into the dendrites is termed a post-synaptic potential (PSP). If the ionic inflow is 

positively charged (e.g. Na+) the PSP depolarized the membrane and is termed excitatory; 

if it is negative (e.g. CI-) then the membrane becomes hyper-polarized and the PSP is 

inhibitory. 

Transmitter release is therefore quantal. In lower animals a single action potential will 

typically release 103 - 104 vesicles. However, for neurons in the mammalian central nervous 

system this drops to 1 - 10 vesicles per AP [KF87]. 

Vesicles are regenerated in the pre-synaptic terminals by a process called endocytosis 

[KSJ91]. 

2.1.5 Action potential generation 

The excitatory and inhibitory PSP's all diffuse via the dendrites to the soma, where they 

are non-linearly combined. If there is an excess of positive charge then the soma becomes 

depolarized and charge builds up at a region close to the axon hillock, called the trigger 

zone. The membrane of this initial axonal segment contains many voltage-gated Na+ 

channels. If the total charge at the trigger zone exceeds a threshold (usually in the region 

of -40mV) then these sodium channels open to allow a large Na+ inflow along the chemical 

gradient. The inter--cellular sodium concentration increases until the osmotic and electric 

forces balance, which occurs at about +50mV. At this point the sodium channels become 

inactive. Since the membrane potential is now positive, there is an inward flow of CI- and 

an outward One of K+. This resets the trans-membrane potential to its resting value. The 

intra- and extra- cellular cytoplasm are now returned to their original compositions by the 
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Figure 2.2: An incident pre-synaptic action potential causes an excitatory PSP. The PSP 

diffuses to the soma, and charge builds up at the trigger zone. The membrane becomes 

depolarized, and if the threshold is exceeded, an action potential is generated. The AP 

propagates along the axon, away from the soma. 

sodium-potassium pump. Resetting of the membrane potential is not instantaneous but 

has a finite time course. 

This brief excitation is the action potential. Propagation of the AP is achieved by the 

diffusion of the initial sodium influx to the neighbouring axonal membrane. This portion 

of membrane now becomes super-threshold, thus its Na+ channels open - and the process 

repeats. 

Following spike generation, there is a short time (3 ~ 4ms) during which the neuron is 

unable to initiate a further action potential [KSJ91]. This is the absolute refractory period 
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(ARP), and it is a consequence of the residual in-activation of the Na+ channels and opening 

of the K+ channels. However, if the membrane remains depolarized beyond this refractory 

period, a second spike may ensue. The ARP therefore places an upper bound on the spiking 

frequency. 

If instead the initial PSP summation is sub-threshold, Na+ -K+ ATPase and the non-gated 

channels slowly return the soma to its resting state without the generation of an action 

potential. 

The Hodgkin-Huxley equations 

Hodgkin and Huxley's [HH52] model of spike generation in the giant-squid axon captures 

well the biophysics of current flow at the trigger zone. The starting point for its derivation 

is the conservation of electrical charge 

d 
C-V=-:F+I 

dt 
(2.1) 

where C is the capacitance, :F the membrane current, and I any external or synaptic current 

entering the cell. The membrane current depends upon V and upon three conductances: 

9L, 9Na and 9K 

(2.2) 

where VL , VNa and VK are the leakage, the sodium and the potassium reversal potentials 

respectively. The passive leakage conductance 9L is independent of both time and voltage, 

however the active sodium and potassium conductances, 9Na and 9K' are given by 

(2.3) 



CHAPTER 2. THE ORIGINS OF NEURONAL NOISE 32 

where G No and G K are the maximal channel conductances. The conductance variables, 

(2.4) 

with mNo,hNo,nK E [O,IJ, and the asymptotic values, moo(V), hoo(V), noo(V) depend sig­

moidally upon the voltage. The 7 m , 7" and 7h are time constants, with 7 m « 7h, 7". All of 

the reversal potentials, the maximal conductances, the conductance variables and the time 

constants, were experimentally obtained from patch-clamp measurements on the giant squid 

axon. 

Integration of the Hodgkin-Huxley equations shows that for zero input current (/ = 0) the 

neuron remains at its resting-potential (Vrest "" -40 m V). An action potential is generated 

when a large enough current is applied: the cell rapidly depolarizes to +50mV, before 

slowly returning to Vrest . The fast upstroke is caused by the rapid increase of mNo (inward 

Na+), its rise is halted by the slower hNo (Na+ inactivation) and nK (outward K+). Hyper­

polarization is due to the increase of nK' During the recovery, hNo and nK reset to their 

asymptotes. 

2.2 Neuronal noise 

Stochastic neural activity is apparent at all levels of recording: from single ion channels to 

spike trains [HoI76j2. Some of this randomness is no doubt due to noisy input, either as 

signals from other neurons (e.g. [GM64, Ric95]) or as direct sensory input (e.g. [DWPM93, 

LM96]). However, there is a large component which derives internally to the cell. 

2The presence of chaos in neural systems has also been indicated by many theoretical studies, and is 

supported by the neuro-pbysiological evidence. For a discussion, and also techniques for distinguishing 

between noise and chaos, see e.g. [Gla95), and also the discussion at the end of chapter 3 
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2.2.1 Aleatory synaptic function 

In vitro recordings from neuro-muscular synaptic junctions shows the continuous and spon­

taneous generation of small (about 0.5mV) post-synaptic potentials. These miniature PSP's 

(termed miniature end-plate-potentiais, mepps) are evoked at a mean rate of about 1Hz, 

even in the absence of stimulation [Kat66]. Single mepps are generally too small to cause 

the post-synaptic neuron to spike, but otherwise, apart from their size, they are indistin­

guishable from those triggered by an afferent action potential. mepp magnitudes suggest 

that each one is caused by transmitter release from a single vesicle, and therefore discharge 

in the pre-synaptic bouton has a stochastic component. The inter-mepp histogram is fitted 

well by an exponential, implying that random vesicle release is Poisson distributed. This 

further suggests that vesicles are released independently of each other, and with constant 

probability. Similar spontaneous discharge has been observed in other preparations [KSJ91]. 

Vesicular release probability depends strongly on the membrane potential of the pre­

synaptic terminal, rapidly increasing with bouton depolarization [HoI76J. Consequently, 

vesicular discharge by an afferent action potential is also Poisson distributed, but with a 

much higher release probability than when the cell is at rest. Typically, the release probabil­

ity due to an action potential is p "" 0.6 [Per92]. Therefore, if there are n vesicles available 

for release, the mean transmitter released by an afferent spike will be m = ]m vesicles. 

Measurement of m-PSP amplitudes demonstrates that vesicle size is not fixed, but is Nor­

mally distributed with a wide variance [HLQ69]. Furthermore, the mean and variance of 

this distribution is common to all synapses. 

2.2.2 Fluctuations of the membrane potential 

The interplay between neurotransmitter molecules, receptors, channels, and ions may only 

be described statistically due to the large numbers concerned. Several spectral densities 

arise: 
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• Johnson-Nyquist noise. Fatt and Katz [FK50, FK52] estimated the thermally 

induced voltage fluctuations in the membrane potential. Such fluctuations are anal­

ogous to the Johnson-Nyquist (IN) noise observed in electronic components. For an 

RC circuit of resistance R and capacitance C, IN noise has a band-limited Gaussian 

distribution3, with mean 4kTR and variance kT/C [DeF81]' where k is the Boltzmann 

constant and T the absolute temperature. It therefore has a power spectral density 

(PSD): 

S(f) = C (2.5) 

with C constant. 

• Shot noise. Although current flow through a channel involves many ions, the tran­

sition probability of a single ion is low and is Poisson distributed. Channels are 

relatively sparse over the membrane and so ion movement through them is likely to 

be independent. Furthermore, the transit time for each ion will be similar for all ions, 

and therefore so too will be the current carried by a single ion. The current flow 

through the ion channel will therefore have the form 

I,(t) = 2: Q(t - tk) (2.6) 
t. 

where tk represents the time of passage of the kth ion which contributes Q(t - tk) to 

the total current I,(t). The spectral density of the current will therefore be that of 

shot noise [Ric54, HoI76], and its precise form will depend on the function Q(t). 

• Excess noise. The low frequency r .m.s. noise level of a non--equilibrium system is 

often greater than can be accounted for by either IN or shot noise [HoI76]. Empirically, 

such noise often has a spectral density which varies as 

S(f) = ~ (2.7) 

3 A signal is said to be band limited if its Fourier transform vanishes outside of some finite interval. 

Quantum corrections to Nyquist's derivation of the spectrum mean that IN noise is only flat up to 7 x 1013Hz 

[Gar85J. 
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where B is some constant which depends on the experiment, and the exponent ~ is 

close to 1. Such excess noise is named flicker- or 1// noise. Its origins are poorly 

understood, but Verveen et al. [VD68) have shown that the intensity of the 1// spec­

trum is related to passive K+ flux, but is unaffected by either sodium transport or 

metabolic processes. Lundstrom et al. [LM74) therefore suggest that it may be a 

consequence of current modulation due to the vibrational modes of the glyco-protein 

channels. 

• Current noise. The number of receptors activated by the presence of neurotransmit­

ter in the synaptic cleft is not constant, but instead rapidly fluctuates as transmitter 

molecules collide with receptor sites [KM72). The resulting current flow through the 

membrane is therefore noisy, with statistics that reflect the gating fluctuations. Recall 

that the arrival of a single transmitter molecule at a receptor site on the post-synaptic 

membrane causes the channel to open. If the activation probability of a channel is 

Pa, and its inactivation probability is (1 - Pal, then the population statistics of N 

channels are binomially distributed with mean Npa and variance NPa(l - Pal. The 

power spectral density of these fluctuations therefore follow a Lorentz distribution 

[DeF81, Ho176) with a time constant r, i.e. 

r£2 
SU} = 1 + j2r2 (2.8) 

where the parameters rand £ are empirically determined, and r is a relaxation time 

[LN71a). 

2.2.3 Randomness in spike generation 

If a low intensity stimulus is applied to a neuron, no response occurs; if a high intensity one 

is used, the cell will spike. Intermediate to these two regimes is a range of stimuli for which 

firing is probabilistic. Verveen [Ver61, DeF81) repeatedly applied a constant stimulus to a 

frog nerve preparation, and measured the neuron's response. To avoid habituation, stimuli 

were applied at two second intervals. It was found (figure 2.3) that the firing probability 

varies monotonically between 0 and lover a range of stimuli, and further that the firing 
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probability is approximately Gaussian. Pecher [Pec39] compared the firing variance of two 

fibres taken from the same preparation to show that these fluctuations derive internally to 

the neuron and have no external origin. 

spik.e trains 
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Figure 2.3: (left) Action potentials from a frog nerve in response to a repeated constant 

stimulus. Proceeding from top to bottom represents a reduction in stimulus intensity. (right) 

Firing probability for a given stimulus intensity. Stimulus strength is normalized about the 

threshold stimulus: threshold is defined as that stimulus for which the neuron fires on avemge 

once out of every two trials. (After (Ver61}). 

Since such probabilistic firing effectively corresponds to a stochastic threshold, it is referred 

to as threshold noise. 

Lecar and Nossal [LN71b] have studied threshold noise in a simplified Hodgkin-Huxley 

model, due to FitzHugh [Fit61]. FitzHugh noted that V and mNo vary more rapidly (by 

an order of magnitude) than do hNo and nK, and further that the main properties of the 

Hodgkin-Huxley model could be reproduced by setting hNo and nK equal to their resting 

values, i.e. hNo = h~ and nK = n~, so that 

- 4 - 3 
-gL(V - V.) - GKn~(V - VK) - GNomNo(t) h~(V - VNo ) + I 
m~(V) -mNo 

Tm(V) 
(2.9) 
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In the absence of noise, FitzHugh's reduced equations exhibit three fixed points: two stable 

and one saddle-point, as shown in the phase-plane in figure 2.4. The stable point at a 

represents a resting potential, while that at c is an excited state. If the dynamical equations 

are supplemented by a reset condition, then arrival at c represents spike generation. The 

saddle-point separatrix therefore divides the phase plane into two basins of attraction: 

trajectories with initial points to the left of the separatrix relax to the resting potential, 

while those with starting points to the right (ultimately) trigger a spike. The separatrix is 

therefore a threshold for spike-generation. 

ID 

a 

v 

Figure 2.4: Trajectories in the phase plane for the FitzHugh's reduced equations. a and c are 

stable fixed points, respectively corresponding to a resting potential and to spike generation. 

b is a saddle-point and the dotted line represents the separatrix. Trajectories starting to 

the left of the separatrix terminate at a, while those starting to the right of the separatrix 

terminate at c. 

The inclusion of neuronal noise causes V and m to fluctuate, and means that trajectories 

must be replaced by probability distributions for the position of the state vector in the 

(V, m) plane. More importantly, if the neuron is prepared at an initial point close to the 

separatrix, then the noise can propel the state vector over it. Thus, the noise can either 

cause the neuron to fire when the corresponding deterministic system would not, or vice 

versa: it can be prevented from firing when it otherwise would. 

The consequences of this have been examined by the inclusion of additive noise to each 
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of equations (2.9). By identifying the probability of firing with the probability of having 

crossed the separatrix in the limit t --+ 00, Lecar and Nossal [LN71b] derive the general 

expression for the firing probability due to threshold noise 

1 [ (I -19)] P(firell) = 2" 1 + erf 8 19 (2.10) 

where I is the stimulating current, 19 is the threshold current, 8 measures the spread of 

the transition region where the probability of firing varies from 0 to 1. erfO is the error 

function, defined by 

2 (X 
erf(x) = "fi la exp(-z2)dz (2.11) 

In a companion paper, Lecar and Nossal [LN71a] compute 8 for various sources of membrane 

noise (see section 2.2.2) and compare their predictions with the experimental data. They 

find that the Verveen's data is best explained when the sodium channel fluctuations are the 

dominant contribution to threshold noise. 

2.3 Discussion 

In this chapter I have reviewed neuronal operation and have identified several sources of 

noise. For neuronal firing dynamics, the most potent of these are synaptic and threshold 

noise. In chapter 5 I will further show how these two noise sources affect the behaviour of 

a neuron. 
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A tem peratu re-dependent cold receptor 

model 

3.1 Introduction 

Bursting is the rhythmic generation of several action potentiais during a short time, followed 

by a period of inactivity during which the membrane hyper-polarizes. The limiting case of 

a single spike per burst is termed beating. There are a wide variety of burst phenomena, 

but it appears that many are due to a similar underlying mechanism. First note that the 

various chemical and electrical dynamics of the neuron operate on many time-scales, and so 

some neurons are amenable to Rinzel and Lee's [RL87] treatment: their dynamics may be 

dissected into a fast system coupled to a slowly oscillating sub-system. Typically the fast 

system has a time-scale of milliseconds and models the membrane potential, and hence spike 

generation. The slow sub-system operates on a time-scale of tens of seconds and models 

trans-membrane ionic currents. The fast system is modulated by the slow one, and has 

two parameter regimes: a stationary state or resting potential, and a periodic state during 

which action potentiais are generated. Thus, for bursting to occur, the slow variable must 

parameterize bifurcations in the fast system. Bursting phenomena may be sub-classified 

39 
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[WR95, Rin87], according to the underlying wave form of the oscillatory component, e.g. 

triangular bursting: feline thalamo-cortical relay neurons exhibit brief spike bursts riding 

On a slow triangular wave [WR95]. 

An important class of bursting neurons are the mammalian cold receptor cells. These 

cells are free nerve endings [SBR90] that transduce patterns of heat energy into neuronal 

signals. They are found sub-cutaneously at every layer of the skin and tongue, but are 

relatively sparsely distributed over the skin [lva90]. As a consequence of their small size, 

intra-cellular recordings of the various ionic processes contributing to excitability are not 

available. Instead the only quantity that can be measured directly is the spike train, however 

other cellular properties may be inferred by the use of pharmacological agents. Temporal 

firing patterns and inter-spike interval histograms (ISIH) from these neurons show that the 

bursting dynamics is highly temperature-dependent and further imply the existence of a 

slowly-oscillating temperature-<iependent current that has a frequency that increases with 

temperature [BSW90]. 

In this chapter I present a canonical model for a thermally-dependent cold receptor neuron 

with noise, which exhibits bursting, beating and skipping. The model is a simplified version 

of an ionic slow wave bursting neuron, and can be obtained from the latter by following 

a phase reduction procedure due to Ermentrout and Kopell [EK86]. My goal is to better 

understand the paths in parameter space which yield the sequences of discharge patterns 

observed in cold receptors. My approach here is a general one, I take the specific example of a 

cold-receptor but this phase model also has applicability to other temperature-<iependent, 

slow-wave bursting neurOns such as those discussed in [BSWH84]. The model contains 

biologically motivated parameters and exhibits behaviour that is consistent with experiment. 

Moreover, it has the advantage of being mathematically tractable so that ifthese parameters 

were to be quantified, analytic predictions about the behaviour of real receptors could be 

made. 

I analyse the model in the limiting case of zero-noise (the deterministic limit) and also 

when subject to a finite amount of thermal noise. For the former I am able to predict 

how many action potentials are generated per burst for a given temperature, and I also 
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derive the transition temperature from bursting to beating. For the latter I shall show 

how to estimate the skipping rate (i. e. the mean number of slow-wave cycles for which the 

neuron does not fire) at a given temperature. I demonstrate that skipping is a noise-induced 

effect that can occur for both the supra-threshold and the sub-threshold dynamics. Below 

threshold, spikes become deleted as a consequence of noise-induced trapping [AGMS941, 

while above threshold the firing pattern becomes augmented by noise-induced spiking. I 

further show that the phase-locking behaviour of the neuron in these two regimes displays 

a non-monotonic dependence on the noise level, consistent with the notions of resonant 

trapping and autonomous stochastic resonance [Lon971. 

The chapter is organized as follows. Section 3.2 is a brief review of cold receptor physiology, 

a subject covered more completely in [LH961. The model is introduced in section 3.3. In 

section 3.4 I first consider the limiting case of zero noise and analyse the simulated firing 

patterns via Floquet theory, I then examine how noise can alter the deterministic discharge 

pattern. In section 3.5 I consider how changing the level of noise can lead to resonant 

trapping and stochastic resonance in this phase model. 

3.2 A summary of the neuro-physiology of cold receptors 

Figure 3.1 shows characteristic discharge patterns at various static temperatures from re­

ceptors in the cat tongue. Not every cell has this repertoire of discharge, some exhibit only 

a few of these patterns when the temperature is varied. Furthermore the temperature at 

which a given discharge pattern occurs varies between receptors. Although it is unclear as 

to the extent to which the nervous system utilizes the temporal structure of such regular 

discharge, it is known [Lis97] that bursts are an efficient way to drive certain higher neu­

rons. This is because, during a burst, the relatively high firing rates release higher levels of 

transmitter than would be the case if the individual spikes were more broadly distributed 

in time. 

At low temperatures the neuron bursts repetitively with a uniform burst length and with 

bursts that are synchronized to the slow oscillation. However the timing of individual spikes 
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Figure 3.1: Chamcteristic discharge patterns of bursting cold receptors of the cat lingual 

nerve at various constant tempemtures. Left diagmms: interval distribution; right diagmms, 

impulse activity. The mean discharge mtes (in S-1) are 5.4 (4(f' C); 7.2, (35" C); 9.2, (3(f' 

C); 10.4 (25" C); 12.0 (2(f' C); 11.0 (15" C). Intervals shorter than 100 ms are intm-burst "" 

intervals. Reproduced from figure (1) of [SBR88 J and methods are described in references 

therein, (reproduced with permission). 

within the burst is non-uniform [BBHBO], a feature shared with parabolic bursting neurons 

[RLB7j1. When the temperature is quasi-statically increased, the burst length and inter-

1 A burst is termed parabolic if the spiking frequency is lower at both the beginning and the end of the 

burst compared with that during the middle of the burst. 
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burst period both diminish, until at the middle of its operating range the neuron emits a 

regular spike train with phase-locked spikes. 

If the temperature is increased still further, the spike train becomes aperiodic so that 

occasional double spikes appear and skipping occurs: the spike train is still synchronized to 

Some underlying rhythm, but between spikes a random integer number of oscillation cycles 

may be skipped [BSW90). The origin of this randomness is uncertain. However, due to 

the cell's lack of synapses and its small size, it is thought that thermal and conductance 

fluctuations might be important. The skipping rate is also thermally-dependent, increasing 

with temperature, and above 40°C skips of up to eight cycles have been observed [SBR8S). 

Static temperature is therefore unambiguously encoded by both the discharge pattern and 

the oscillation period of the slow wave and not by a rudimentary firing rate code. 

Cold receptors also exhibit a dynamic response to rapid (i. e. non-quasistatic) temperature 

changes [BBHSO). Figure 3.2 clearly shows this dynamic response when a cold receptor 

is exposed to cooling steps of 5°C. There is a rapid transient increase of the slow-wave 

frequency, which then slowly relaxes to the new steady state (i. e. to a frequency that is 

lower than the original one). As previously noted, the number of spikes-per-burst (SB) 

increases with a quasi-static temperature reduction. However, for a rapid temperature 

change SB overshoots the new steady-state value before slowly relaxing to it. Thus, there 

is a transient period during which the cell emits longer, and more frequent, bursts than 

would be dictated by the steady-state conditions. The frequency of spikes within a burst 

remains approximately constant. It further appears that there are two time-scales for 

this transient behaviour, with the SB-transient evolving more slowly than the frequency 

transient. 

I wish to introduce some nomenclature for describing the discharge pattern. The number of 

action potentiais in a given burst (i.e. SB) is N, and the mean number of spikes per burst, 

N is the temporal average of N. n is the frequency of the slow oscillatory cycle, and is 

the reciprocal of the sum of the inter- and intra- burst durations. A single receptor at a 

fixed temperature does not always generate a constant number of spikes during every burst, 

but can instead vary by One or two spikes [BBHSO). The occurrence of additional spikes is 
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Figure 3.2: Temperature response characteristic of a peripheral cold receptor of the cat 

skin during reduced extra-cellular calcium concentration (0.5 mM, control 1.5 mM) which 

enhances the rhythmicity of the impulse activity. Impulse activity was recorded during tem­

perature changes from 35" C to 11l' C in steps of 5" C as indicated in the lowest trace (T). 

The discharge frequency (F) is shown in the trace above by means of a conventional peri­

stimulus-time histogram (bin width: 1s). The interval duration plot in the upper trace 

shows the corresponding distributions of the interspike-intervals (comprises about 11,000 

intervals). Each dot represent a single interspike-interval. Note that temperature changes 

are abrupt rather than quasi-static, and so the cell exhibits transient behaviour. Jilurther­

more, observe the abrupt transition to skipping (shown in the upper trace) which suggests 

the presence of a phase-transition (or bifurcation) in the cell's dynamics. (Reproduced from 

[BHD+98) with permission) 
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statistically distributed, suggesting that a degree of stochasticity is present in the dynam­

ics, however one cannot exclude the possibility of chaotic bursting [LH96J. The breadth 

of the ISIH peaks indicates that at a fixed temperature, the slow-wave frequency OtT) in 

fact fluctuates weakly but with a mean that is determined only by T and is independent 

of the spike number variability. Examination of the spike trains of several cells at differ­

ent static temperatures reveals [BSWHS4J that both 0 and N depend monotonically (and 

sometimes approximately linearly [BBHSOJ) upon the temperature T, with 0 increasing and 

N decreasing with T. 

The thermo-sensitivity and regular discharge of cold-receptors has been likened to that 

of Ap/ysia2 R15 neurons. In normal sea-water the Ap/ysia R15 cells exhibit an irregular 

endogenous bursting discharge caused by interactions between an internal pacemaker and 

synaptic inputs from other cells [ABS5J. This discharge may be made periodic by perfus­

ing with an artificial sea-water solution containing increased Mg2+ or low Ca2+ to block 

neurotransmitter release [WCS2J. Under these conditions the activity of the cell depends 

only upon its pacemaker mechanisms. Even though the Ap/ysia organism does not thermo­

regulate, the discharge from these pacemaker cells displays a temperature-dependence sim­

ilar to that of mammalian cold receptors. It is thought that the bursting patterns and 

thermo-sensitivity of both cold receptors and of Ap/ysia R15 neurons derive from similar 

mechanisms, and so it has been proposed [WGC74, WCS2J that these pacemaker cells could 

serve to model thermo-receptors. Studies of R15 neurons proved insightful for the under­

standing of slow wave bursting since it is possible to record intra-cellularly. In particular, 

the blocking agent TTX has been shown to prevent action potential generation while still 

leaving the slow-wave relatively intact. (The rhythmic behaviour of Ap/ysia is well reviewed 

in [ABS5J and more recently in [CCB91J.) 

The effect of temperature on Ap/ysia R15 cells has been investigated [Car67J. The firing 

threshold was found to remain constant, but the membrane resting potential was observed 

to become more negative with increasing temperature, decreasing by 1.5m V for each degree 

2 Aplysia Califomica: a large marine snail also known as the sea hare, see (Kan891 for a review of Aplysia 

neuro-physiology. 
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warmed. Further investigation [CA68) has shown that the cause of the change in resting 

potential is a biasing of the Na+ -K+ pump with temperature. Such a biased pump is 

termed an electrogenic pump, and its overall effect is the generation of a constant current 

across the membrane. As temperature increases the pump becomes preferentially active 

toward sodium, extracting more Na+ than is replaced by K+, and making the membrane 

potential more negative. The presence of an Na+ -K+ pump in the cold receptor has been 

confirmed [SB90) by application of ouabain, a poison that blocks the pump's activity and 

so prevents the cell's return to its normal stable state. It was found that ouabain initially 

induces a short vigorous increase in cellular discharge, followed by a permanent cessation 

of activity. During the initial period f! accelerates and N increases to peak values, and 

these peak values increase monotonically with temperature. Inhibition of the electrogenic 

Na+ -K+ pump causes a depolarizing imbalance of the membrane potential since positive 

charge is not removed from the cell, and it is therefore thought that f! is controlled by both 

temperature and by the membrane potential. 

The physiology of the cold receptor slow oscillation mechanism is uncertain, however it is 

thought [GHT82) that the Aplysia pacemaker involves two coupled slow trans-membrane 

currents. A slow inward voltage-dependent calcium current and an outward Ca2+ dependent 

potassium current which activates at an intermediate rate. The inward current is thought 

to be conveyed by a transient (T) [TLM+88) calcium channel, and the importance of T­

channels in cold receptor oscillation has been investigated by Schiifer et al. [SBH82, SBR88). 

In general T-channels activate (open) at low thresholds, in the range -70mV to OmV, and 

become completely inactivated (closed) by a voltage-dependent inactivation gate as the 

voltage increases beyond -60mV. During the first part of the cycle Ca2+ accumulates in 

the cell and depolarizes the membrane. The depolarization inactivates the T -channel but 

the accumulation activates outward K+ channels. When the outward current exceeds the 

inward, the membrane potential becomes more negative, initializing the hyper-polarizing 

part of the cycle. The amassed Ca2+ is now sequestered by another ATP driven pump. 

This in turn inactivates the outward K+ current and begins to depolarize the membrane 

again, reactivating the T-channels. In Aplysia the overall amplitude of the oscillation is 

of the order of 15mV. At low temperatures the calcium T-current is blocked [WW74), 
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weakly reducing the oscillation amplitude. As a consequence of the reduced Ca2+ influx, 

the outward K+ channel becomes activated more slowly, increasing the total oscillation 

period. 

Skipping occurs in other preparations in which there is no apparent periodic stimulation. 

For example, a related therma-responsive preparation is the ampullae of Lorenzini of the 

dogfish. These mandibular sensory afferents are used for prey detection, and are primarily 

electra-responsive but also respond to thermal stimuli. They exhibit a similar temperature­

dependent slow wave, but although skipping occurs they do not burst in the same manner. 

They are much larger than cold-receptors and so are a simpler preparation to study. Recent 

data [BWSH94) suggests that their skipping is a consequence of noise internal to the neuron, 

and a similar mechanism has been suggested to operate in the cold-receptor [BBH80). An 

electrical stimulus has no effect on the oscillatory period of the ampullae, but instead 

determines the skipping rate: a positive electric field increases the skipping probability, 

while a negative field reduces it. It has been suggested [BWSH94) that the oscillatory 

wave periodically brings the neuron close to its threshold for firing, but that actual action 

potentiais are caused by inherent noise pushing the membrane potential over the threshold. 

Such a mechanism should be compared with that of stochastic resonance (recall section 

1.5). The effect of an imposed field is to shift the baseline of the oscillation, so that the 

neuron becomes biased toward (negative field) or away (positive field) from the threshold, 

thus altering the firing probability. In this manner a single neuron is able to encode two 

sensory modes: a thermal one and an electrical one. 

Aplysia R15 evidence further suggests the origin of the transient N -overshoot during rapid 

temperature changes. It is known that the Na+ -K+ pump responds much more quickly to 

temperature changes than do the passive ion channels [WC82). Therefore, before equilibra­

tion, the resting potential temporarily becomes much more positive and so more spikes can 

be fired during a burst. 

In summary, a cold-receptor model based on the Aplysia data has a high resting potential at 

low temperatures, and so the slow wave causes depolarization for a large part of the cycle. 

The neuron therefore bursts. As the temperature increases, so too does the oscillation 
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frequency of the slow wave. In addition the resting potential becomes more negative and 

so the depolarization time due to the slow wave, and hence the burst length, is reduced. 

At high temperatures, the slow wave is no longer able to generate spikes by depolarization, 

instead all spikes must be noise driven. 

3.3 A temperature-dependent phase model of a cold receptor 

Longtin and Hinzer [LH96] have recently studied bursting and skipping in a cold-receptor 

model based upon an extension to Plant's model [PlaBl]. Plant's model is a slow-wave, 

parabolic-bursting neuron that derives from the Hodgkin-Huxley equations (section 2.1.5). 

Although ionic models of this type allow much insight into cellular function, they involve 

a set of five coupled differential equations and so are difficult to treat analytically. Conse­

quently I turn to a simpler canonical model. 

3.3.1 Ermentrout and Kopell's canonical bursting model 

Ermentrout and Kopell [EK86] consider a general parabolic bursting model of the form 

u = I(u) + E2g(U, v, E) 

V = Eh(u, v, E) 

(3.1) 

where the vector u E !RP is identified with the vector of potentials contributing to the spiking 

mechanism (compare with the Hodgkin-Huxley model of section 2.1.5) and v E JR'I describes 

the vector of potentials associated with the slow wave (e.g. the inward voltage-<lependent 

Ca2+ and outward Ca2+-dependent K+ currents). 

The 10, gO, hO are smooth functions of their arguments, and have the following properties 

(i) u = I(u) has an attracting invariant circle with a single critical (saddle-) point at 

u=O 

(ii) v = Eh(O, v, 0) has a stable limit cycle 
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As an example of (i), consider the reduced Hodgkin-Huxley equations 

and set hNa = hoo (compare with FitzHugh's reduction, equation (2.9)). Typical null­

clines for these equations are shown in figure 3.3.1, and from them it is clear that the 

system undergoes a saddle-node bifurcation. Below the bifurcation (figure 3.3.1a), there is 

a single fixed-point and the dynamics are excitable: small perturbations of V decay away, 

while those which cross the saddle-point separatrix cause a large excursion in V (i.e. an 

action potential). At the saddle-node bifurcation (figure 3.3.1b), a pair of critical points 

are created and the dynamics exhibit an invariant circle. This invariant circle persists when 

the system is taken beyond the bifurcation (figure 3.3.1c) and the dynamics then becomes 

oscillatory. Furthermore, note that since g(u, v, E) depends on both of u and v, there are 

regions of parameter space for which a non-zero E can cause either excitable or periodic 

behaviour. 

In the weak-coupling limit, i. e. E --+ 0, the invariant circle may be parameterized by a new 

variable U E §l. The system (3.1) can therefore be reduced from ]RP x JR'I to §l X JR'I, and 

so to the form 

U =f(U)+E2g(U,V,E) 

v = Eh(u,v,E) 
(3.3) 

The invariant circle parameterized by u can now be mapped onto the unit circle by a change 

of variables u = /C({), E). Under this second re-parameterization, (3.3) converges uniformly 

(except in some neighbourhood of {) = 71"), in the limit E --+ 0, to the following canonical 

form 

= [1 - cos({))] + [1 + cos({))] g(O, v, 0) 

1-
= -h(O, v,O) 

c 

(3.4) 

(3.5) 
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Figure 3.3: Null-clines for the reduced Hodgkin-Huxley equations {3.2}. (a) excitable dy­

namics: small perturbations of V decay away, while those which cross the saddle-point sep­

amtrix genemte an action potential. (b) the saddle-node bifurcation and the creation of an 

invariant circle. (c) persistence of the invariant circle: a limit-cycle solution corresponding 

to repetitive firing. 
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for all D '" 1r. Where D E [-1f,1f] is the transformed membrane potential, < = cd, and c is 

a constant. 

Furthermore, since (3.5) has a stable limit-cycle solution v{<), the system (3.4),{3.5) may 

be replaced by 

dD 
d< = [1 - cost D)] + [1 + cos{D)] g(O, v{<), 0) (3.6) 

This canonical form has been named the atpll model [HI97] since the set of equilibria of the 

fast sub-system is a circle, and the vector of activity (D, v{<)) avoids it (see figure 3.4). 

1t 

-1t 

o 21t 

qUIescence v 

Figure 3.4: The atoll model [HI97j for g{O,v{<),O) = cos (v«)): the set of equilibria of the 

fast sub-system, equation (3.4), is a circle, and the vector of activity (rp,v«)) avoids it. 
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3.3.2 A temperature-dependent phase model 

I have modified the canonical form (3.6) to account for temperature effects. However, this 

new model obeys similar dynamics and bifurcations. Specifically, I consider the following 

dO 
dt = [b + cos{O)]- A cos (!1t) [1 - cos{O)] (3.7) 

= [b - A cos (nt)] + [1 + A cos (nt)] cos{O) 

where 0 E [0,27r] is defined on the unit circle sI, and is identified with the (transformed) 

neuronal membrane potential at the trigger zone. Each time ott) completes a full rotation 

around the unit circle the neuron generates an action potential. The parameter b charac­

terizes the activity of the electrogenic Na+ -K+ pump. The time-dependent term A cos{!1t) 

models the slow-wave dynamics, and I have chosen a cosine for its analytic simplicity. The 

up-stroke of the slow wave corresponds to the inward Ca2+ current, and the down-stroke 

to the outward K+ current. Note, however, that the experimental data shows that the 

intervals between successive firings inside a burst typically increase mono tonically through 

the burst [BBH80]. This suggests that if indeed the bursting is of slow-wave type, then the 

wave has an asymmetric shape. Thus, a more complex wave-form may better reproduce 

the finer details of the discharge pattern. In ionic models such as Plant's, the slow-wave 

depends on the membrane potential via voltage gating. However, recall that under the 

assumption of a weak coupling, the transformed equations (3.6) exhibit slow dynamics that 

de-couple from the membrane potential. 

Longtin [RBL98] has shown that the frequency n of the slow-wave can be related to bio­

physical parameters of a conductance-based model of slow-wave bursting. The specific 

model chosen was the Plant model of the R15 cell of Aplysia, and his analysis predicts the 

approximate frequency of the slow-wave as a function of temperature. 

The system displays a saddle-node bifurcation from a stable fixed point, resulting in a 
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stable limit cycle when 

b-Acos(Ot) = 1 + A cos (Ot) (3.8) 

each excursion around the limit cycle corresponds to the generation of an action potential. 

Note that time appears here explicitly and so for certain parameter values, the bifurcation 

can occur periodically in first one direction and then the other. Thus, if the slow oscillation 

is of such magnitude that for part of the cycle 

(b - 1) 
A cos (Ot) < 2 -f (3.9) 

where f is some small positive number, then the neuron bursts. This oscillatory behaviour 

across the saddle-node is much simpler than the corresponding bifurcations undergone 

by ionic models. For example, the Plant model has a two-dimensional slow sub-system 

that drives the fast, three-dimensional spiking dynamics through degenerate-homoclinic 

bifurcations between steady-state and limit--eycle solutions. 

Close to the bifurcation the phase model exhibits critical slowing down, i.e. relaxation to 

a fixed point (the resting potential) becomes polynomial in time rather than exponential, 

thus increasing the time for U( t) to traverse the unit circle. Such behaviour has also been 

described as passage through a bottleneck [Str94). Therefore, within a burst there is a 

non-uniform distribution of spikes: an indicator of parabolic bursting. Critical slowing 

down and an associated bifurcation has been observed experimentally [MK78) in recordings 

from the membrane of a squid giant axon. Below the bifurcation point, a periodic electrical 

stimulus causes sub-threshold oscillations of the membrane potential which exponentially 

decay to the resting potential. However, as the bifurcation point is attained (either from 

above Or below), the decay slows and is no longer exponential. Above the bifurcation point, 

stimulation results in a regular oscillation of the membrane potential. 

Equation (3.7) may be made more tangible by graphing 1 + Acos(Ot) and b - Acos(Ot), 

as in figure 3.5a. A saddle-node bifurcation occurs when the sinusoids cross, and bursting 
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occurs (with a mean number of spikes per burst, N IX Ll) when the overlap, Ll, between 

them is large. Ll is a function of all of A, fl and b, in fact 

2 ( (b-1)) 1 ( b-1) [(b_1)3] Ll = n 7f - cos-
1 """"211 = n 7f + ---x- + 0 2A 

(i) 

(ii) 

(iii) 

1 

b 

(a) 

1 + Acos(Ot) 

b - A cos(O t) 

/" .... '" /" ' b' r - "'.- -/- _ ... - - .,., - -",-.. - ,-.. / ............ .... . 

....-'" ....-'. --'" b" ./ -'.,. - 7- .:: ...... - ---- - ~-......... ,-/ .... 

(i) 

(ii) 

(iii) 

(b) 

b' < b 

b• '. ",-./ - ...... - -;/- - ... -

1 
b 

.. " ... 0- "._ 

A'<A 

Time (ms) 

(3.10) 

Figure 3.5: {a} The saddle-node bifurcation and bursting criteria for three different param­

eter regimes, with b > b' > b", and b' = 1 - 2A {see text}. {i} when the overlap is large 

the neuron bursts: i.e. for a time Ll. {ii} bursting has ceased, any spiking activity must 

be noise driven and the neuron skips {i.e. it does not fire at every slow wave cycle}. {iii} 

all spiking has ceased and the neuron is silent. {b} There are three possible mechanisms 

by which the burst length can be reduced {Ll' < Ll} {compare with {a}}. (i) increasing slow 

wave frequency, fl' > fl {ii} decreasing pump parameter b / < b {iii} decreasing slow wave 

magnitude, A' < A 
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3.3.3 Modeling temperature dependence and fluctuations 

The main effect of a temperature change is a variation in the rate constants of the biochem­

ical processes occurring within the cell. There is evidence that the hyper-polarizing effect 

of the electrogenic pump becomes more pronounced [CA68] and that the amplitude of the 

slow wave increases [LH96] with warming. Furthermore, inspection of the spike-trains and 

corresponding ISIHs of figure 3.1 indicates that the slow wave frequency is also an increasing 

function of temperature. To maintain the simplicity of this model, I therefore introduce 

thermal dependence with linear functions of the magnitude of the pump coefficient, and of 

the magnitude and frequency of the slow wave. 

b -t b(T) = bo -IfrT A -t A(T) = Ao + ATT !l -t f/(T) = !lo + f/TT (3.11) 

where f/o,!lT,Ao,AT,bo and Ifr are constants. Here I am only concerned with the phe­

nomenology of temperature-dependent cellular operation, however note that more complex 

relationships could be used if required. Figure 3.5b shows how the individual variation of 

each of these parameters can alter the burst length (however, it is likely that the discharge 

patterns observed are due to some combination of these mechanisms). I furthermore confine 

my interest to the temperature range for which A(T), f/(T) > o. 

The problem of quantifying the amount of neuronal noise present (see chapter 2) is exacer­

bated by the lack of intra-cellular recordings from these neurons. In the absence of synaptic 

input, its main components are due to (chapter 2 and [DeF81]) thermal ionic movement; 

to conductance fiuctuations in the ion channels; and to pump noise. It is known (recall 

the fluctuation-dissipation relation (1.1) and see e.g. [DeF81]) that thermal noise, {T(t), 

is proportional to the absolute temperature and so varies only slightly over the tempera­

ture range of interest. Pump noise could be modeled by making b(T) a random variable, 

b(T) -t b(T){m(t)+{.(t). Here {m(t) and {.(t) represent multiplicative and additive random 

noises respectively, and are drawn from some, as yet undetermined, distribution. However, 

anyone-dimensional multiplicative Langevin equation may be transformed into an additive 

one [Ris89]. Thus, for simplicity these noise terms can be lumped together and so model 
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neuronal noise by the simple addition of a random term ({ t) = u( (t) to the dynamical equa­

tion (3.7). Furthermore, for concreteness we will choose ({t) to be drawn from a zero-mean 

Gaussian distribution, such that 

(((t)) = 0 and (((t)({t ')) = .5(t - t ') (3.12) 

Such a choice for the distribution aids analysis, but the qualitative aspects of my conclusions 

generalize to other distributions. I will refer to the noise variance D = q2 as the noise 

strength. Thus write 

dO 
dt = b - A(T) cos (O(T)t) + [1 + A(T) cos (O(T)t)) cos(O) + ((t) (3.13) 

from now on I will assume that b(T), A(T) and OtT) depend implicitly on temperature. 

Now examine the system numerically for different temperatures (figure 3.6) and choose bD, 

br, An and AT such that at low temperatures there is a part of the cycle for which (3.9) is 

satisfied so that the neuron bursts (inset to figure 3.6f). As T increases O{T) and A{T) both 

increase while b{T) decreases. However, for a given temperature change the increase in A(T) 

is smaller than and is counteracted by the larger change in b(T). In this way both the intra­

and inter-burst periods also decrease with temperature (insets to 3.6d and 3.6e). For high 

T equation (3.9) is never satisfied, and thus bursting does not occur, instead all spikes are 

noise driven (inset 3.6a). At low temperatures the histogram (main figures) is dominated by 

the time between successive spikes in a burst: the intra-burst period. As the temperature 

increases, the burst length decreases and the inter-burst period dominates (figures 3.6b and 

3.6c). For noise-driven beating (figure 3.6a) skipping occurs: higher sub-harmonics of the 

slow wave begin to appear in the histogram. 

3.4 Analysis of bursting and beating 

The neuron's behaviour depends strongly on both the noise strength and the temperature. 

A graph of the mean number of spikes per burst, N(T), versus T for a neuron subject 
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Figure 3.6: Spikes trains (inset figures) and corresponding inter-spike interval histograms 

(main figures) for increasing temperatures. Parameters are: Ao = 0.3, AT = 0.001, be = 

0.675, by = 0.007, no = -71"/150, nT = 71"/1500, and D = 0.05. 

to a vanishingly small level of noise, shows the staircase depicted in figure 3.7. Note that 

N(T) is constant over each plateau, but between adjacent plateaus changes by a single 
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spike per burst. Each plateau is labeled by its respective value of N(T), and the transition 

temperature between the nth and (n - 1)th plateaus by Tn. If a low level of noise is now 

introduced, the staircase retains its shape but the steps become rounded, however as D 

increases the plateaus disappear and N(T) approaches a smoothly decreasing function of 

temperature. 

~ 12r---------------------------------, IZ Mathieu prediction 0 

Zero noise (deterministic case) (0 = 0) ---

~.. Low noise (0 = 0.0001) ••• - - - --

- High noise (0 :::z 0.05) - - -
IS 8 
c. 

-
25 T2 35 

Temperature (DC) 

Figure 3.7: Mean number of action potentials per burst, N, versus temperature, T. Simula­

tion results with several noise levels are shown, and the circles (0) mark the corresponding 

Mathieu predictions for the deterministic neuron. Parameters are: Ao = 0.3, AT = 0.001, 

bo = 0.675, br = 0.007, no = -IT /150, nT = 11"/1500, and D = 0.05. Two deterministic 

transition temperatures are also shown. T2: the transition between beating and a burst of 

two spikes per cycle, and T J : the transition from beating to silence. Contrast this figure with 

the data shown in figure 3.2 (but note that in the figure above, temperature increases from 

left to right, while it decreases in figure 3.2). 

To understand the origin of the staircase, re-interpret equation (3.13) as a gradient descent 

system in the limit of high friction 

dO dU 
- = --- +((t) 
dt dO 

(3.14) 
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and now view the model as a particle obeying a noisy dynamics in a time-dependent po-

tential U((), t) of the form 

U((), t) = -'Y(t) [A(t)O + sin(())] 

where 

'Y(t) = 1 + Acos(!1t) and A(t) = b - Acos(!1t) 
1 + A cos(!1t) 

(3.15) 

(3.16) 

which is equivalent to an active rotator [SK86] with periodic coefficients: the mUltiplicative 

term 'Y(t) periodically re-scales the magnitude of U, while A(t) periodically sculpts the 

shape of U. The coefficients 'Y(t) and A(t) are both periodic with period 27r /!1, but are 

anti-phase. 

3.4.1 The deterministic limit (D ~ 0) - the Strutt map 

At any time t, the bias A(t) characterizes the instantaneous deterministic dynamics. Three 

regimes occur: 

(i) A(t} < 1: the oscillator has one stable (B8) and one unstable (Bu) fixed point, each 

given by the solutions to B = cos-It -A}. This is termed the locked state and the 

dynamics relaxes to the stable fixed point (see inset to figure 3.8a). 

(ii) A(t} = 1: the stable and unstable fixed points coalesce via a saddle-node bifurcation 

to form a half-stable fixed point. 

(iii) A(t} > 1: the potential U has no minima and the deterministic dynamics has no fixed 

points. The oscillator therefore rotates with the variable velocity 

9(t} = 'Y(t) (A(t) + cos(())) (3.17) 

and each rotation corresponds to the firing of an action potential. Such a solution is 

termed a running state (see inset to figure 3.8b). 
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Thus the extremal values of A(t), say Amax = (b + A)/(1 - A) and Amin = (b - A)/(1 + A), 

define the global behaviour of the system. 

(i) Amin > 1: the potential U never has a barrier. The neurOn fires regularly, and the 

system is always-unstable. 

(ii) Amax < 1: the potential always has a finite barrier. The neuron is quiescent, and the 

system is always-stable. 

(iii) Amin < 1 and Amax > 1: a potential barrier exists for part of the cycle, and the system 

is partially-stable. 

An always-unstable neuron spikes epileptically3, with no useful temporal structure, and thus 

has no relevance to this study. Therefore choose Ao and AT such that at low temperatures 

the system is partially-stable, and at high temperatures the system is always-stable. Denote 

the critical temperature for which Amax = 1 by Tc, which is defined by 

b(Tc) + A(Tc) = 1 - A(Tc) 

and so, for the linear system (3.11) 

I-bo- 2Ao 
Tc = 2AT - by 

(3.18) 

(3.19) 

(for the coefficients shown in figures 3.6 and 3.7 Tc = 550C). Thus, the nth burst plateau 

corresponds to a partially-stable system for which the time when the barrier is absent is 

commensurate with the time to wind n times round the torus. 

Perhaps surprisingly it is found that TJ < Tc (recall that T J is the temperature beyond 

which the deterministic neuron ceases ever to fire). In fact there is a finite temperature 

range between TJ and Tc for which one would expect the running mode to persist over a 

3i.e. continually and at its maximum frequency 
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Figure 3.8: The potential U(O, t) for one cycle of the slow wave. (aJ Amax < 1, the always­

stable potential. For low noise levels the oscillator tends to remain close to the minima of 

the potential. (bJ Amax > 1, Amin < 1, the partially- stable potential. When the barrier is 

absent the oscillator may escape beyond 211', generating an action potential. The particle 

is then re- injected at 0 = O. The inset figur'es caricature the respective potentials at times 

t = (2n + 1)7r/f!, nE Z. 
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significant part of the oscillation period even though, in the limit D -4 0, no spikes are 

generated. This is a consequence of critical slowing down close to the bifurcation. If Amaz 

is only marginally greater than unity then a 'ghost' [8tr94) of the half-stable fixed point 

causes the relaxation time TO to become comparable to the slow wave oscillation period. 

The system is then unable to escape beyond this laminar region before A decreases again 

below unity and the system undergoes a second saddle-node bifurcation. 

A condition for beating to occur may in fact be derived. For at least one action potential 

to be generated per oscillation, (J must pass through 1r within the first half of the cycle, i. e. 

within TO < 1r /0.. If (J passes through 1r after one cycle then it moves so slowly that it is 

unable to escape before the bifurcation recurs and it becomes trapped by the barrier. Thus, 

if the oscillator is found at the stable state, 8. = cOS-1{-Amin), at t = 0, this imposes the 

condition: 

(3.20) 

The envelope function (3.lO) is a heuristic that loosely predicts how the deterministic pat­

tern varies with temperature. However, for this deterministic case, it is possible to predict 

exactly how many action potentiais are actually generated during one cycle. Following 

Ermentrout and Kopell [EK86) the zero-noise limit of (3.13) may be recast as a Mathieu 

equation. Use the transformation 

~i.V= l+bcot(~) 
Vdt 2 2 

(3.21) 

and the identity 

(3.22) 

to obtain 

d2 
ds2 V + [a - 2qcos{2s)) V = 0 (3.23) 
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where time has been rescaled so that 28 = lit and I have introduced, to accord with 

convention [McL47], the coefficients a and q 

A{b + I} 
q = 112 {3.24} 

The Mathieu equation {3.23}, is a linear equation with periodic coefficients [McL47], and 

hence, according to Floquet's theorem {see appendix A.l}, has a general solution of the 

form 

{3.25} 

where Cl and C2 are constants, PI and P2 are termed characteristic exponents, and the 

Pi {s} are periodic functions with the same minimal period as the periodic coefficient of the 

original equation {3.23}. Four solution classes occur PS87]: 

(i) Ph P2 E C with PI = f3i, P2 = pi, and f3 E IR, and the general solution is 

(3.26) 

All solutions are therefore bounded and oscillatory but generally quasi-periodic since 

two frequencies, f3 and 2 {i.e. the forcing frequency of (3.23)}, are present. 

(ii) Ph P2 E IR with PI = et > 0, P2 = -PI, and the general solution is 

(3.27) 

All solutions are therefore unbounded. 

(iii) Ph P2 = 0, there is One solution of period 211" (and one unbounded solution). 

(iv) PI,P2 = !" there is one solution of period 411" (and one unbounded solution). 

The (a, q) plane is divided into a countable set of simply connected regions for which either 

all solutions fall into class (i) - the stable regions, or they belong to class (ii) - the unstable 
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regions. This situation is depicted in the Strutt stability map (figure 3.9). The boundaries 

between the stable (shaded) and unstable (un-shaded) regions are given by curves containing 

solutions of either class (iii) or class (iv) (bold and dashed lines respectively). 
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Figure 3.9: The Strutt map: stability and instability regimes for the Mathieu equation. The 

graph is symmetric about the ordinate. 

The labelled 'tongues' in the Strutt map are instability regimes and contain unbounded 

solutions. Let I j denote the j'h instability tongue, corresponding to general solutions of the 

form (3.27). Unbounded solutions generally fall into two qualitative types [NM95J: either 

oscillatory but with an amplitude that increases exponentially with time, or non-osciJIatory 

but exponentially increasing; my interest is with the former. According to the Sturm 
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oscillation theorem [CL55], each of the periodic functions, PI(8) and P2(8) of a solution in 

the jlh instability region has exactly j zeros per oscillation period of the slow wave. 

Returning to the original variable 

8(8) = 2 cot-I [2 (Cl (O:PI (s) + p~ (8)) + C2 exp [-20:8] (-O:P2(8) + P~(8)))] 
(1 +b)(CiPI(8) + C2exp [-20:8]P2(8)) 

(3.28) 

since 0: > 0, then if Cl # 0, 8(8) exponentially approaches the stable periodic solution 

8.(8) = 2cot-1 [2 (O:PI(8) + P~(8))] 
PI(s)(1 + b) 

(3.29) 

Since PI (8) has j zeros over the period of the slow wave oscillation, the argument to 

cot- I(. .. ) 'blows up' j times over this period. Consequently 8 passes through zero j times 

within a period. Furthermore, by use of (3.7) and (3.9) it is simple to verify that each time 

8 passes through zero, it does so with a positive velocity, 0. Thus, 8 wraps around the torus 

j times per slow wave cycle. This then corresponds to a burst containing j spikes. 

The coefficients of the Mathieu equation (3.23) are parameterized by the temperature, and 

so as T varies it carves a trajectory across the (a, q) plane. As the trajectory passes through 

the kth instability region the neuron has a burst length of k spikes, generating the plateaus 

previously seen in figure 3.7. 

3.4.2 Stochastic dynamics of bursting and beating - smoothing the Mathieu 

staircase 

To clarify how the transitions between plateaus become 'smoothed' as noise is introduced, 

I will examine the transition from beating to quiescence, occurring at T = T" however my 

conclusions will extrapolate to each transition between the nth and (n _1)th plateaus. 

Now introduce a small amount of noise into the dynamics, D # 0. For T marginally greater 

than TI the neuron now emits a succession of single spikes which are entrained to the 

underlying slow wave, but occasionally cycles are skipped. As the temperature increases 
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beyond TJ, periods are skipped more frequently until the neurOn becomes silent. At any 

temperature the skipping rate depends on the noise level. Rappel and Strogatz [RS94a] and 

Gang et al. [GDNH93] have argued that (depending upon whether the system is above or 

below the saddle-node bifurcation) noise can propel the neuron either through the laminar 

bottleneck (T < Te), or over the incipient barrier (T > Te), and thus aid it to fire. The 

spectral signatures of such noise-induced crossings of a critical point, with an attendant 

rotation, have been termed noisy precursors by [Wie85, NSS97]. 

Conversely, for temperatures slightly below TJ the noisy neuron is seen to occasionally 

misfire and thus skip a period of the slow wave oscillation. In this regime, although the 

deterministic neuron is able to fire, the noise can trap the system above the ghost bottle­

neck and postpone its firing. To understand this, note that critical slowing down in the 

laminar bottleneck means that the noisy dynamics has negligible drift in this region and 

so approximates a one-dimensional Wiener process. Thus, the neuron is equally likely to 

'diffuse in either direction. If the diffusion acts to diminish 8, the firing condition (3.20) may 

be violated and firing retarded. Qualitatively similar retardation and trapping due to noise 

has been noted by Apostolico et al. [AGMS94] as a failure mechanism in bi-stable switches 

and by Mantegna et al. [MS96b] in the variations of the voltage across a periodically driven 

tunnel diode when coupled to an RC circuit and a source of noise. 

These two skipping modes have a natural interpretation in terms of the Strutt map. Neural 

dynamics close to a transition temperature correspond to a region in parameter space that 

is close to a tongue boundary. The inclusion of noise allows the neuron to execute a random 

walk through the map, and so to explore adjacent regions of the parameter space. Thus, if 

the neuron is in the jth tongue but lies close to the (j + l)th, then the noise can carry the 

neuron over the boundary, and thus augment the burst. Conversely, if the neuron lies closer 

to the boundary with the (j - l)th tongue, the noise can delete a spike from the burst. 
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The skipping rate 

I have shown that (equation 3.20) for the deterministic neuron, a spike is only generated if 

IJ passes through 1f within the first half of the cycle. Numerical investigations of equation 

(3.14) show that the condition (3.20) generalizes to the case of weak noise, however now the 

probability that IJ is greater than 1f after half a driving period must be considered instead. 

Introduce the conditional probability density p(IJ, tlIJo, to) subject to the initial condition 

p(IJ, OIB" 0) = c5(IJ - Bs) (3.30) 

Therefore the probability P(IJ > 1f, tlB" 0) that at a time t, (J is greater than 1f is given by 

12" 
P(IJ > 1f, tlB" 0) = " p(IJ, tlB" O)dIJ (3.31) 

which is equal to the probability of generating an action potential. By performing an 

ensemble average, this quantity may be equated with the mean firing, or skipping, rate 

(when measured in spikes per slow wave cycle). 

The conditional probability density obeys a Smoluchowski equation (section 1.3 and [Ris89j) 

8 A 8[, D8] A 

8tP((J, tl(J" 0) = 8IJ U (IJ, t) + "2 8IJ p((J, tl(J" 0) (3.32) 

where U'(IJ, t) represents the spatial derivative of the potential. The time-dependence of 

the potential forbids a general closed solution to (3.32), and furthermore makes a numer­

ical solution difficult to obtain. However, an approximation to the probability density, 

p(IJ, tlBs, 0) may be ascertained. First, numerically iterate an ensemble of N receptors IJi(t), 

i = 1 ... N, for half a slow wave period, subject to the initial condition IJi(t = 0) = Bs 
Vi E N. An approximation to p(IJ, t18" 0) will be given by a normalized histogram of the 

ensemble of IJi(t = 1f /0.) and so an estimation of the firing rate may be found from equation 

(3.31) (see figure 3.10). 
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Figure 3.10: An estimation of the firing rate close to the transition temperature T\. The 

squares show numerically obseroed firing rates (measured in spikes per slow wave cycle) 

while the bold line depicts the rate as estimated by the method of section 3.4.!!. Parameters 

are: Ao = 0.3, AT = 0.001, be = 0.675, br = 0.007, 0 0 = -7r/150, OT = 7r/1500, and 

D = 10-4 • The inset figure shows a histogram approximation to the probability density 

pto, t = 7r/OIOs , 0) at T = 42°C. 

3.5 Analysis of the near-threshold regime - noise enhanced sta­

bility and resonance 

In this section I wish to shift the focus of attention to how the firing patterns depend upon 

noise intensity rather than upon the temperature. Understanding the influence of noise on 

the phase model (3.7) can provide insight into its effect on temporal coding in this and 

other systems. I have established that noise can increase the dynamic range of a bursting 

neuron, and so now ask how this enhancement depends upon the noise strength. 
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Figure 3.11: Inter-spike interval histograms for T < Tj. Parameters are: Aa = 0.3, AT = 

0.001, bo = 0.675, by = 0.007, no = -71"/150, nT = 71"/1500, and T = 38°C. Several values 

of the noise standard deviation 0 are shown. 

3.5.1 Stability and trapping for T < T j 

N (T) is too coarse a measure of the neuronal dynamics when considering the influence of 

noise since it neglects much of the fine detail of the distribution of firing times. A more 

informative measure is the inter-spike interval histogram (ISIH). First consider the neuronal 

spike train generated when T < T j (figure 3.11). To compute the ISIH, the time intervals 

between 2 x 104 consecutive spikes are measured, normalized, binned and histogrammed. 

The resulting histogram for D = 0
2 = 0 has a single narrow peak at 271" In, corresponding 

to one spike per cycle with infrequent skipping. The width of the peak indicates that each 

spike is tightly synchronized to the slow wave. For increasing D the ISIH begins to show a 

multi-peaked structure with peaks located at sub-harmonics of the slow-current, and with 

heights that decay exponentially. Furthermore, as D increases, the peaks begin to splay 

showing that synchronization to the slow-wave becomes less exact. 

There is a critical noise level, Dc, which is strongly temperature-dependent and for which 
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the multi-peaked structure is most pronounced. For D > Dc the higher sub-harmonics 

subside and a new peak close to the origin begins to dominate the histogram. Examination 

of the spike trains for D ~ Dc shows that the high noise causes the generation of several 

spikes in one period, 21r /n, indicating that the new peak in the ISIH corresponds to a 

noise-induced intra-burst period. However, such phenomena are rare in the experimental 

data [BBH80] and so it is clear that these noise levels are unphysical. The major result of 
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Figure 3.12: Residual SR: the variation with noise of the area under the 2nd and 3rd sub­

harmonic peaks, (P2 (1 Pa) for T < TI , (T = 38 and T = 41). The standard deviation of 

the noise, a, is shown rather than the variance D since the maxima are better defined on 

this axis. For clarity the curves drawn are interpolations through the data, the symbols are 

merely meant to guide the eye. 

both [AGMS94] and [MS96b] was that the mean escape time for a periodically modulated 

particle moving in a partially-stable potential depends strongly, and non-mono tonically, 

on the noise strength. In this formalism, an escape event corresponds to the firing of an 
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action potential. For vanishingly small noise levels, firing is entrained to the slow wave 

and thus the mean firing time is close to one period of oscillation, 21r /0. For high levels 

of noise, escape events are noise driven and interval times are randomly distributed with a 

mean that is much less than 21r /0. However, intermediate noise levels can trap the particle, 

causing it to skip cycles of the slow oscillation and thus prolonging the mean escape time 

(a related phenomenon arises in the thermally-dependent Plant model [LH96]). In this 

intermediate noise regime the distribution of firing times shows the multi-modal structure 

[CM94j previously observed. A resonance effect was noted [AGMS94j, termed residual 

stochastic resonance: as the noise increases, the area under each peak except the first 

increases to a maximum, and then decreases. As we have seen, all sub-harmonics reach 

their maximum simultaneously, and thus the mean escape time is maximized. This maximal 

condition signifies a resonance, which further implies that two (or more) of the system's 

time-scales must match. In fact, resonance is attained when the trapping time due to noise 

is close to half of the driving period [AGMS94J. 

To measure Dc at a particular temperature, we follow [GMS95j and compute the strength 

of the nth peak according to (1.48). 

A plot of Pn , (n # 1) versus noise, now gives the uni-modal graph shown in figure 3.12. 

Furthermore, it is clear that Dc is a function of the temperature: as T increases, Dc 

decreases. This may be readily explained by considering that since the oscillation frequency 

O(T) is a function of temperature, so too is the resonance condition. 

Residual SR should be contrasted with the complimentary effect for sub-threshold forcing 

[GMS95j in which resonance is attained when the first, or harmonic, peak is maximal (see 

section 1.5 and below). 

3.5.2 Resonance for T > T\ 

The dogfish data of [BWSH94j indicates that noise is an important determinant of the neu­

ronal discharge pattern. Furthermore, the experiments reported in section 1.5.3 indicate 

that noise might also aid the transduction of small sub-threshold signals by various sensory 
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neurons. Autonomous SR (ASR) [GDNH93] (also termed "coherence SR" [NSS97]) is noise­

induced coherent motion in systems that are not subject to an external forcing. Longtin 

[Lon97] has shown that autonomous stochastic resonance can occur in other models of neu­

ronal bursting: the Plant model and also the Hindmarsh-Rose model (a spike-driven burst­

ing model) [HR84]. The slow wave is an endogenous excitation, coupling multiplicatively 

to the dynamics, and consequently this model is a likely candidate to exhibit autonomous 

SR. 

2 3 4 5 • 
Time (in multiples of the driving period, 271/0) 

Figure 3.13: Inter-spike interoal histogrnms for T > TJ. Parnmeters are: Ao = 0.3, AT = 

0.001, bo = 0.675, br = 0.007, no = -11"/150, n T = 11"/1500, and T = 44°C. Severnl values 

of the noise standard deviation a are shown. 

At first glance, the discharge patterns for T > TJ are indistinguishable from those for 

T < TJ, since the spike trains for both regimes comprise single spikes with skipping. How­

ever, computation of histograms of firing intervals at various noise levels (figure 3.13), now 

shows that the histogram for D ~ 0 is multi-peaked, with peaks located at sub-harmonics 
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of the driving force, and with an exponential fall off. With increasing noise the height 

of each harmonic first rises and then decreases, reaching a maximum at a critical noise 

strength. For high noise levels a new peak close to the origin occurs again, representing 

noise induced bursts of spikes. In contrast to residual SR the peaks do not reach their 

maximum simultaneously, instead each peak has a unique critical noise (figure 3.14) and so 

this model also exhibits ASR. 
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Figure 3.14: Stochastic Resonance: the variation with noise of the area under the first three 

harmonic peaks (PI, P2 & P3) for T > Tc, (r = 38 and T = 41). The standard deviation 

of the noise, a, is shown mther than the variance D since the maxima are better defined on 

this axis. For clarity the curves dmwn are interpolations through the data, the symbols are 

merely meant to guide the eye. 



CHAPTER 3. A TEMPERATURE-DEPENDENT COLD RECEPTOR MODEL 74 

3.6 Discussion 

3.6.1 Paths for other receptors 

There are many different thermally responsive bursting cells [BSWH84], for example: the 

feline lingual and infra-orbital nerves, the Boa constrictor warm fibre, and the dogfish 

ampullae of Lorenzini. The discharge patterns of all of these cell types exhibit many similar 

qualitative features, but quantitatively they differ, e.g. differing burst lengths at a given 

temperature. In addition, there can also be considerable variation within a single cell type 

(recall section 3.2). Therefore, this paradigm of a temperature-<iependent noisy trajectory 

through the Strutt map allows a universal model that may explain the discharge patterns 

of all of these cells. 

3.6.2 Chaos 

The existence of chaos in thermo-responsive neuronal spike-trains has been recently studied 

in both real, [BSV+97] and model, [LH96] neurons. However, the phase model reported 

here does not support chaos, instead its spike-train irregularities have a stochastic origin. 

Is this important? For this class of neurons at least, the answer is "probably not", since 

it is more likely that the bursting pattern itself is the fundamental carrier of information 

rather than the timing of individual spikes within a burst. Such patterns are more reliably 

detected by higher neurons due to synaptic facilitation, and furthermore even a single burst 

cause long-term synaptic modification [Lis97]. 

3.6.3 Noise distributions 

I have chosen to describe thermal and pump noise by a simple, additive, white noise term. 

Recall that the discharge pattern derives from a random walk through the Strutt map, 

and that spike augmentation and deletion arise when the random walk crosses a tongue 

boundary. In consequence, note that other additive noise distributions will produce quali-



CHAPTER 3. A TEMPERATURE-DEPENDENT COLD RECEPTOR MODEL 75 

tatively similar burst patterns, and so the actual noise distribution is not pertinent to an 

understanding of the general model. However, the noise distribution is extremely important 

when describing a specific burst pattern. 

3.6.4 Asymmetric burst patterns 

In contrast to this phase model, discharge patterns from real cold-receptors do not exhibit 

symmetric burst patterns. Typical [BBH80] burst profiles comprise a rapid increase followed 

by a slower decrease in spike frequency, resulting in a 'sawtooth' profile. Such a saw tooth 

could be generated by a fast-activating and slowly in-activating calcium dynamics, e.g. 

calcium-induced--calcium release from internal stores. Within the phase model paradigm, 

the spike distribution within a burst may therefore be changed by a selecting a different 

functional form of the slow oscillation. However, as a consequence of the lack of intra­

cellular recordings, there is no experimental evidence to guide this choice, and so as a first 

approximation I have chosen a cosine for its tractability. 

3.7 Conclusions 

I have presented a tractable phase-model for cold-receptor function. This canonical phase­

model can be related to more complex, bio-physical, models of neuronal operation. I 

have investigated the phase-model (both numerically and analytically) in the deterministic 

regime and also when subject to a finite amount of thermal noise. Numerically obtained 

spike trains and inter-spike interval histograms from the phase model agree well with the 

experimental data. My investigations indicate that skipping might be caused by noise. I 

have further shown that both the number of spikes in a burst, and also the skipping rate at 

any given temperature may be predicted. I have studied how altering the noise level affects 

the dynamics and I have seen the skipping regime may be sub-divided: the first part of 

skipping is caused by noise-induced trapping and the second part is due to noise-induced 

spiking. Finally, I have demonstrated that the phase-model displays a non-monotonic 

dependence on noise strength, and in fact exhibits both resonant trapping and autonomous 

stochastic resonance. The main results of this chapter are to appear in [RBL98]. 



~ ~------------------------------------~ 

The perception of ambiguous images 

4.1 Introduction 

The perception of an ambiguous figure is a multi-stable process [Att71]. An ambiguous 

figure is one that has two (or more) perceptual alternatives, and classic examples are the 

Necker cube [Nec32] (figure 4.1 (a)) and Fisher's man/girl figure [Fis67] (figure 4.1 (b)). 

When one looks steadily at such a figure, the information impinging upon the retina remains 

constant. In spite of this, the perception of the figure is found to flip continually and 

randomly between the possible interpretations, although both are never seen simultaneously. 

This reversal of perception can be influenced by will and practice, but cannot be prevented. 

The perceived pattern is stable between flips, but if a subject looks at an image for several 

minutes the stability periods initially habituate for 1-3 minutes during which time the 

flipping rate increases. After this initial time a stable average period is observed, and 

this average stability period of an interpretation is approximately constant if all other 

factors are held fixed. However, mean stability times differ significantly between people and 

between patterns. A probability distribution of switch times may be generated by taking 

an histogram of the switching time series, and the resulting distribution has been fitted to 

76 
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a gamma distribution' [BDA+72J. 

(a) (b) 

Figure 4.1: Ambiguous figures: (a) the Necker cube and (b) Fisher's man/girl figure (repro­

duced from [GA9S}). 

An instructive demonstration of how stable an interpretation can be is to fold a piece of 

card along its longitudinal axis and place it on a flat surface. When the card is viewed 

from above at a 45° angle for several seconds with only one eye, it is seen to reverse and 

appears to stand up on end like an open book. If one's head is now moved from side to 

side while the card is reversed, the brain attempts to make sense of the resulting change 

in perspective. The only way it can do this is by attributing motion to the card and so it 

appears to twist backwards and forwards. 

One can clearly observe 'locking in', or stabilization, of a perceptual alternative while view­

ing the Leeper-Boring figure (frontispiece). For example, if the nose/chin line is tentatively 

identified as a nose, then the line below is assumed to be a mouth and the shapes above 

to be eyes. These partial identifications mutually support each other to form the stable 

perception of an old woman. If however the line is seen as a chin then a similar process 

provides the perception of a young woman. Which facet is perceived first depends not 

only on accidental factors, such as which part of the figure is seen first, but also on the 

subject's pre-conceptions. For example, initial interpretations of the Leeper-Boring figure 

IThe gamma distribution of integer order a > 0 is the waiting time to the ath event in a Poisson process. 

A gamma deviate has the probability density 

x·- 1 exp( -x) 
P.(x) = r(a) (4.1) 

where ro is the gamma function. When a = 1 it reduces to the exponential distribution. 
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are distributed among the general population according to 40% perceiving the old and 60% 

perceiving the young woman. If a group is first exposed to a strongly biased version of 

the figure (figure 4.2) and is then shown the unbiased one, close to 100% perceive the old 

woman first. Furthermore, spontaneous reversals are inhibited until the other aspect of the 

figure is pointed out to the subject. 

Figure 4.2: The biased Leeper-Boring figure (compare with frontispiece). If a group of 

subjects is first exposed to this figure and then shown the unbiased one, close to 100% will 

perceive the old woman first (see text). (Reproduced from {Hakgl]}. 

This notion of the brain dynamics locking in to an attractor is a metaphor that has proved 

invaluable to the understanding of associative memory [Hop82) and olfactory recognition 

[Fre91). Furthermore, such a paradigm relates well to Shepherd's thesis [She87) of a metric 

of similarity: the brain represents objects as points in some psychological space in such 

a way that 'similar' objects inhabit proximal regions. The putative neural mechanism for 

recognition is [Att71, SH95) that each interpretation is represented by a distinct attractor, 

and the dynamics relaxes to whichever attractor has the greatest overlap with the retinal 

input. Reversal was originally thought to be due to habituation: active neurons would be­

come satiated and fire less frequently, de-emphasizing the attractor. However, habituation 

is a largely deterministic process, and analysis of the return map of the switching times 

[SH95) reveals that the switching dynamics is stochastic with no causal component. Rever­

sal is therefore a noise-induced transition between two attractors, and is due to fluctuations 

in the perceptual process. It has little dependence on habituation. Since switching can still 



CHAPTER 4. THE PERCEPTION OF AMBIGUOUS IMAGES 79 

occur without changing one's focus of attention, these fluctuations are presumed to have a 

neural origin (chapter 2). 

With the exception of the Necker cube, the two perceptual alternatives are rarely of equal 

strength and typically one interpretation is preferred. Reversion still occurs if this bias 

is weak, but the reversion times of each individual component differ and the stronger the 

bias, the longer the reversion time. To invoke the attractor metaphor, such a preferred 

interpretation would be an attractor with a deeper minima than the other. 

Perceptual ambiguity is not confined to humans, since other animals appear to exhibit 

similar responses to these figures. If hens are exposed to figure 4.3 moving to the left a fear 

response is elicited since it resembles the motion of a bird of prey. However, if it is shown 

moving to the right it appears to be a goose in flight and so is ignored [SK95]. 

Figure 4.3: If the figure moves to the left it appears as a bird of prey and so genemtes a 

fear response in hens, but moving to the right it resembles a goose and is ignored. 

4.2 Stochastic resonance in cognition 

Recent experiments imply that perceptual fluctuations can interact with a periodic bias in 

a manner that is consistent with stochastic resonance. 
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4.2.1 Riani and Simonotto's experiment 

Figure 4.4: The biased Necker cube: fixation on the red dot skews one's perception toward 

the lower left corner appearing in the foreground, while fixation on the blue emphasizes the 

upper right as foreground (see text). 

There is a weak correlation between one's fixation point on a figure and one's interpretation 

of that figure [ES7S]. This is readily seen by fixing on one of the dots in figure 4.4: fixation on 

the red dot skews one's perception toward the lower left corner appearing in the foreground, 

while fixation on the blue emphasizes the upper right as foreground. Riani et al. [RS95] 

have exploited this fact to bias periodically a Necker cube. They superimposed a moving 

coloured spot which travelled along a line contained within the middle of the figure and 

inclined at 60° to the horizontal. The amplitude of the trajectory was smaller than the 

dimensions of the cube, and its motion was sinusoidal with a period of 10 seconds. For 

the unbiased Necker cube, reversal times are symmetric, and they are gamma distributed. 

The mean and the standard deviation of the gamma distribution depend upon the size 

and aspect ratio of the cube [BCR+S2], increasing for larger cubes. The dimensions of the 

cube therefore parameterizes the effect of perceptual fluctuations On the recognition process. 

Thus we have a bi-stable system with a deterministic time-scale and a variable source of 

noise. 

Cubes of varying size were presented to test subjects and a time series of reversal periods 

taken. The power spectra of the time series clearly show the effect of periodic modulation. 
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Pronounced peaks appear at the signal frequency and at its higher harmonics, which are 

absent when there is no external modulation. Such peaks indicate that reversal times are 

partially entrained to the periodic bias, and are clear evidence of stochastic resonance. 

4.2.2 Chialvo and Apkarian's experiment 

1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 

Figure 4.5: Interpolations between the two extremes (figures 1 and 17) of Fisher's man/girl 

figure. (Reproduced from [GAgS]. 

Two biased versions of Fisher's man/girl figures were drawn [CA93j, representing each of 

the two possible interpretations. A series of 17 images interpolating between them was 

generated, as shown in figure 4.5. Images from this series were selected at random and 

presented to each of a group of subjects, and the subject was asked to rank each image 

as to its position in the series. As the histogram in figure 4.6 clearly shows, the subjects 

wrongly identified most of the images. They tended to classify them to the two extremes -

the man's face and the young girl, and rarely identified them as transitional images, showing 

that each person's perception can be reduced to a bi-stable map. 

Therefore, in analogy with other work on noisy bi-stable systems, image perception was 

studied iteratively. An initial image was presented and categorized from 1 to 17 by the 

subject. A random number and a sinusoidal modulation were added to the number corre­

sponding to the identified image, and the resulting number determined the next figure to 

present. This new figure was then categorized and the process repeated, and so on. 
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Figure 4.6: Perception as a bi-stable map. (a) Images were dmwn at mndom from the 

interpolated sequence (figure 4.5) and then presented to a subject. The gmph shows how 

frequently a particular image was presented during the experiment. (b) The images were 

classified by the subject. The gmph shows how frequently a classification was made. (After 

[CA93j. 

To continue with the analogy to a bi-stable system, the authors define a 'residence time' as 

the number of images presented before perception switches from one extreme interpretation 

to the other. Both the statistics of residence times, and the signal to noise ratio of the 

switching time series clearly show a degree of coherence between the reversal times and the 

(masked) periodic modulation, again suggesting stochastic resonance at the cognitive level. 

4.3 A cognitive model of the perceptual process 

Rumelhart et al. have used the framework of Parallel Distributed Processing (POP) 

[RSMH86] to describe the perception of ambiguous figures, and have devised a constraint 

satisfaction network capable of interpreting the Necker cube. Such networks are equivalent 

to a suitably configured Hopfield network [Hop82], where each node corresponds to a hy­

pothesis about the image, and each connection represents constraints between hypotheses. 

Connections, Wij, between nodes are either excitatory (hypotheses i and j are complemen­

tary), or inhibitory (they are conflicting). If the activation of the ith node is ai E {O, 1 } 
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then each node evolves according to 

ai -+ 1 if E#i Wijaj > 0 

ai -+ 0 otherwise 

and the network is updated asynchronously. It can be shown [Hop82] that the energy 
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(4.2) 

(4.3) 

is a Lyapunov function for the dynamics. The connections, Wij, are chosen so that the 

energy landscape of the network has two global minima, and each minimum corresponds to 

one interpretation of the cube. 

The analysis of [RSMH86] extends only to recognition, and switching does not occur in 

their model. An obvious extension is to model perceptual fluctuations by the inclusion of a 

random component in either the energy function, or each nodal activation. If enough noise 

is present, transitions between minima will occur. With this in mind, Riani and Simonotto 

[RS94b] have extended the PDP model to account for stochastic resonance. The network 

is again updated asynchronously, and noise is added at each update by randomly selecting 

a single neuron and flipping it (i. e. 0 -+ 1 or 1 -+ 0) and evolving the network according to 

the Metropolis algorithm [HKP91]: the new network state has an acceptance probability of 

P(dE) depending on the energy change dE:::; 0, with 

P(dE) = 1 

P(dE) = exp (-l:T) 
if dE:::; 0 

(4.4) 
otherwise 

where kB is Boltzman's constant, and the parameter T now introduces a 'temperature' into 

the dynamics. Thus, the network state can now switch between minima with a mean rate 

that has an Arrhenius dependence on T. When a weak periodic driving term (of amplitude 
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A and frequency n) is added to the energy function, such that 

(4.5) 

(where {A} is the set of active nodes, and {B} the set of inactive ones) then transitions be­

tween minima become partially entrained to the forcing and the network displays stochastic 

resonance. 

4.4 Haken's competitive network 

A second model of the perceptual process is due to Haken [Hak87, Hak91]. Haken's network 

obeys a competitive gradient dynamics in a potential which has strictly-localized ground 

states: a single node is active and all others silent. To model the interpretation of ambiguous 

figures: the recognition process is identified with the network's relaxation to a ground state, 

and each such state is ascribed to one of the possible interpretations of the figure. 

The remainder of this chapter will analyse the dynamics of Haken's network and further 

show how it may be extended to model reversal and stochastic resonance. 

4.4.1 Network dynamics 

Haken's original model comprises a single-layer network of N nodes, where the state of the 

ith node is qi E IR with i = 1 ... N. Each activation qi is interpreted as the overlap between 

a presented pattern and some stored prototype. A network of N nodes can therefore store 

and recognize N percepts. Each prototype is first encoded as a vector Vk with k = 1 ... N, 

for example its components could be pixel values of the image. The image to be recognized 

is then pre-processed and similarly encoded to give a vector v. This vector is then presented 

to the network, and the overlap 

(4.6) 
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with each prototype computed. The network then evolves according to the gradient dy­

namics [Hak91) 

. 8U(q) ( 2 
qi = --- = 1-2Z(q) +q·)qi 

8qi • 
(4.7) 

with 

1 1 2 1,,4 
U(q) = -2Z (q) + 2Z(q) - 4 ~qi 

i 

(4.8) 

and 

Z(q) = Lq; (4.9) 

represents a form of global coupling. Note that the lack of local interactions implies that 

there is no natural network topology. Figure 4.7 shows a plot of the potential U(q) for a 

network of two neurons, ql and q2. 

Equation (4.7) is invariant under the transformation q -+ -q. Moreover, qi(t) ~ 0 for all 

t > 0 and i if qi(O) ~ 0 for all i. For suppose that qi(t) = 0 and qj(t) ~ 0 for all j i- i. 

Setting qi = 0 on the right-hand side of equation (4.7) shows that qi(t) ~ O. That is, qi 

cannot cross over to the negative real axis. The network converges to one of the stationary 

states of the potential U, that is, 

8U 3 
-- = qi + (1 - 2Z)qi = 0 

8qi 

for all i. Thus the equilibria of equation (4.7), denoted by q, satisfy 

iii = 0 or iii = ";2Z - 1 

(4.lO) 

(4.11) 

with Z determined self-consistently. Hence the set of stationary states can be divided into 

N + 1 classes, each of which is determined by the number m of excited sites. For a given 
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Figure 4.7: Plot of the potential for a two-neuron network. Minima are shown at (1,0), 

(0,1), (-1,0), (0,-1) and a maximum at (0,0). 

m, 

z= m 
(2m - 1) 

and the corresponding potential at a stationary state is 

u(m) = _ m 
(8m - 4) 

(4.12) 

(4.13) 

Linear stability analysis [Hak91, Bre97] establishes that only the stationary states m = 1 

are stable, whereas all other stationary states are either unstable (m = 0) or saddle points 

(m > 1). For each state in the class m = 1, there exists a single excited site, io say, such 

that iii = "io,i. Moreover Z = 1 and U(I) = -to These are the N strictly localized ground 

states of the network. There are two homogeneous stationary states given by the vacuum 
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state m = 0 and the dissipative state m = N. The former satisfies qi = 0 for all i and 

U(O) = 0 and the latter has 

_ 1 

qi = .,j2N-1 lIi (4.14) 

and 

N 
(4.15) 

(8N - 4) 

In conclusion, the ground states of the system consist of strictly localized states in which 

a single site is excited and the remainder are silent; the particular ground state selected 

depends on the initial data and/or additional applied inputs. If there are no external inputs, 

then the excited node is the one with the highest initial activity (see figure 4.8). The network 

therefore assigns the pattern to the prototype with which it had the largest initial overlap. 

In other words it dynamically realizes a winner-takes-all strategy, and such networks are 

also known as competitive networks. Competitive networks signify their outputs by the 

firing of a single node, or a small proximal group of nodes. They thus classify data by 

the firing of the same node(s) for all inputs that belong to a single category. The network 

can therefore recognize only one pattern at a time, and thus dis-ambiguates its input in a 

way that is consistent with the perception of ambiguous figures. It can also be shown that 

these winner-takes-all networks are equivalent to associative memories [Koh84J, and Haken 

has demonstrated that this particular network can perform associative recall of digitized 

photographs [Hak91J. 

One obvious drawback to this model is its inability to learn. Output states are 'hard wired' 

into the dynamics, and all have the same size basins of attraction. For a truly biological 

system one would want the facility to learn new categories, and also to emphasize or de­

emphasize others (for example the biasing of the Leeper-Boring of figure 4.2). In fact, 

Haken's original formulation included variable synaptic strengths but for simplicity I have 

set them to be equal to unity and thus have neglected their effect. 
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Figure 4.8: Evolution of Haken's network. Given the initial set of activations (overlaps) 

shown in (a), the network evolves to a stationary state (b) such that the node with the 

highest initial activation also has the highest final activity (q = 1), while all others are 

silent (q = 0). 

4.4.2 Stochastic dynamics of the Haken model 

Since Haken's network is a tenable model for the perception of ambiguous figures, it is 

illuminating to push the analogy further. Ditzinger and Haken [DH89] reformulate the 

model to include habituation-induced reversal. Specifically, they describe a network of two 

nodes (n = 1, 2) which satisfy 

qi = (Ai(t) - 2Z(q) + q?) qi (4.16) 

where the An(t) are termed attention pammeters, and evolve according to 

Ai(t) = a - b Ai(t) - C qi + (i(t) ( 4.17) 

where (i(t) is a zero-mean white-noise source. In the absence of noise, the coupled equations 

(4.16) and (4.17) naturally oscillate; and so the inclusion of noise simply causes fluctuations 

about a mean oscillation period. This model can therefore reproduce experimentally ob-
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tained reversal-time distributions. The underlying switching dynamics of Ditzinger's model 

are periodic (albeit with a stochastic component which 'randomizes' the switching times), 

however the return-map analysis of Schiiner et al. [SH95) has shown that reversal is a 

purely stochastic process and has no periodic component, and this weakens the plausibility 

of Ditzinger's model. 

Instead, model the reversal phenomena by introducing a simple, local, additive-Gaussian 

noise to the dynamical equation of each neuron (equation (4.7)). This could correspond, 

say, to the inclusion of internal neuronal noise (chapter 2). Transitions between states (each 

of which is a reversal) will now be dictated by the Arrhenius-type escape rate discussed in 

section 1.4 and so will be exponentially distributed. 

Furthermore, to explore the possibility of stochastic resonance, select two neurons i = 1,2, 

say, and drive the network with the weak periodic bias 

Ii(t) = A(Oi,l cos2(!1t) + Oi,2 sin2(!1t)) (4.18) 

(such a bias could correspond to the moving coloured dot in figure 4.4). Further impose 

that the forcing be weak (A is small), so that the bias itself is unable to cause transitions 

between states, i. e. a sub-threshold forcing. Equation (4.7) then becomes 

. aU(q) 
qi(t) = --a- + (i(t) + Ii(t) 

qi 

where (;(t) = is a zero-mean Gaussian white noise process with 

Thus the noise is un-correlated between neurons, and has variance D = u2. 

(4.19) 

(4.20) 

Numerical simulations show that at low noise levels the network tends to remain in one 

of two possible output states, and that switching events between these two states occur 
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exceedingly rarely. In the limit of zero noise these states correspond to qi = "i,1 and 

qi = "i,2, and the occupied one depends on initial conditions. As the noise is gradually 

increased the network begins to jump between output states with a transition rate that is 

partly entrained with the driving force. For high noise levels the network randomly flips 

between output states and there is no synchrony with the driving signal. Simulations also 

show that in the entrained regime there is a clear separation of time-scales for the system, 

the two scales are: the time to relax to an output state trelax , and the mean residence time 

of an output state, treso with tres » trelax . Therefore make the adiabatic assumption and 

neglect the relaxation time. 

To quantify the behaviour of the network, tabulate and histogram the residence times of an 

output state (recall section 1.5). The resulting distribution typically displays peaks centred 

at 

( 4.21) 

where T = IT /0. is the driving period. These peaks are superimposed on an exponentially 

decaying background (see inset to figure 4.9). Denote the strength of the kth peak by 

Pk, computed according to (1.48). Recall that each Pk passes through a maximum as a 

function of both noise strength and also of the forcing period [GMS95), and further that for 

a particular driving frequency 11 = T-I , stochastic resonance is attained at the particular 

noise strength a for which the strength of the first harmonic, PI, is maximal. Figure 4.9 

shows how PI for the Haken network varies with noise strength a. Several values of the 

driving frequency are shown. It is seen that the maximal value of PI occurs at a non-zero 

value of 11, and that as 11 increases, this maximum is shifted to higher noise levels. 

To analyse the dynamics of this system, its effective dimensionality must be reduced and 

it is not a priori obvious how to do this. However, note that for low noise levels qn (t) ~ 

o V nIl, 2, and thus to a good approximation equation (4.19) reduces to a two-dimensional 

system (n = 1,2) with U given by equation (4.7) for N = 2. In the positive quadrant the 

potential U(qJ,q2) has two minima CIa at (1,0) and (0,1), and a saddle at qs = (ta,~) 
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Figure 4.9: Variation of PI with noise strength a for the non-diffusive network. Three 

different values of the driving frequency v are shown, and as v increases a opt increases. 

The inset shows a typical exponentially decreasing histogram of residence times: time is in 

multiples of To (see text). 

with U(q.) = -~, see figure 4.7. Since the periodic forcing is chosen to be positive-valued 

the system is retained in the positive quadrant and thus the effects of the minima at (-1,0) 

and (0, -1) may be neglected. Recall that the system remains in the positive quadrant in the 

absence of any noise or external forcing. U may therefore be reduced to a two-dimensional 

bi-stable potential, provided that the driving amplitude, A, is not too small and the noise, 

a, is not too large. 

To qualify as resonance, the time-scale matching relation (1.46) must be satisfied. Recall 

that this occurs when PI is maximal (see chapter 1). Assume that all transition events occur 

at the saddle point, since transitions at all other points are exponentially less likely. Recall 

that the mean escape-rate from a given minimum in an unperturbed multi-dimensional 
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multi-stable potential is given by the generalized Kramers' rate formula (equation (1.41)) 

oX 
r(T) = 2.". 

detH(qa) (2OU) 
I detH(q.) I exp -~ 

The Hessian H of the potential has components 

( 4.22) 

(4.23) 

and is evaluated at the minima, qa, and the saddle, q •. oX is the positive eigenvalue of the 

Hessian of the potential at the saddle, and OU = Us - Ua = l2 is the height of the potential 

barrier at the saddle. For this system the pre-factor in equation (4.22) has the value 0.39. 

Resonance occurs when the time for the system's mean residence in one minimum is close to 

half the driving period [GMS95), thus r = 2v. Therefore, for a particular driving frequency 

v, the optimal noise level, (Topt, for resonance may be experimentally determined. Using 

(4.22), aopt determines ropt, the corresponding theoretical escape rate. Thus ropt may be 

compared with the original driving frequency v. Figure 4.10 shows plots of r(a) versus noise 

strength a, and 2v versus optimal noise strength aopt. It is seen that the optimal noise level 

matches well that predicted by the theory. 

Note that in the absence of any periodic forcing the histogram of residence times is es­

sentially a decaying exponential as predicted from Kramers' theory and as observed in 

Borsellino's reversal data [BDA +72). 

4.5 The diffusive Haken model 

Connectionist models such as Rumelhart's describe psychological phenomena in terms of 

the interactions between such cognitive processes as ideas and schemata. They are therefore 

high level explanations of how ambiguous figures are perceived. The question therefore arises 

as to the low level neural substrate underlying this effect. 
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Figure 4.10: Stochastic resonance: the matching of the theoretical escape rate r with twice 

the driving frequency 1/. 

Electra-physiological recordings from single cortical cells indicate that in the brain the 

representation of sensory information is not encoded by the global activity of the entire 

cortex, but rather by the firing patterns of small groups of neurons (see [FY95] and references 

therein). Furthermore, neurobiologists have noted that in many regions of the cortex, groups 

of adjacent neurons appear to form higher functional units that serve to analyse some 

particular stimulus feature such as the orientation of an edge of an image [Swi96], or the 

position of a sensory stimulus on the skin [KNS+79]. If each node in a competitive network 

is interpreted as a neuron, then such networks can provide rudimentary models of how 

perception and categorization may occur in real brains [vdM73]. However, it is clear that 

a competitive network with a single output neuron is not robust to degradation: if a single 

cell is destroyed then the entire corresponding category is lost. Neural network models 

of the formation and behaviour of these coherent structures in brain activity therefore 

generally involve two aspects: (i) a selection mechanism that determines the centre of a 

localized excitation in response to an input, and (ii) an interaction mechanism that serves 

to spread the response over a neighbouring region of the network, leading to a distributed 
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response. Haken's network dynamically implements a selection mechanism, and recent work 

[SB92, Bre95, Bre97] has extended the model to take into account a simple interaction 

mechanism, resulting in a distributed representation. 

This interaction mechanism comprises the inclusion of a diffusive coupling term in the 

potential of the original Haken model. For certain values of the coupling strength there 

can exist a balance between the effects of this diffusion and of the localizing potential, 

yielding new states that are localized excitations (or bubbles) distributed over many neurons. 

These bubbles represent a very robust coding of information since neighbouring cells aid 

the reconstruction of lost information following the 'death' of a single cell. Furthermore, 

Kohonen [Koh82] has shown that such bubbles can enable the construction of topogmphic 

maps. 

First impose a d-dimensional square lattice topology upon the network; the diffusive Haken 

model has a potential [SB92] 

U{q) = ~ 2)qi - qj)2 + U{q) 
(iJ) 

(4.24) 

where (i, j) denotes summation over nearest neighbour pairs. The first term on the right­

hand side of equation (4.24) represents a diffusive interaction with coupling strength 1-'. 

Using the idea of an anti-continuum limit [Aub95] a uniform continuation from the zero 

diffusive coupling (I-' = 0) case can be performed (see appendix A.2) to show that de­

localizations of the original ground states occur (see figure 4.11), and that these continued 

solutions can persist for SOme finite coupling (i.e. for I-' < I-'c). 

Furthermore one can show that to a first approximation each state has a potential 

(4.25) 

where d is the dimensionality of the network. It may be shown that such states persist for all 

values of I-' in one-dimension [SB92], whereas for d > 1 there exists a critical coupling I-'c{d) 
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Figure 4.11: Evolution of the diffusive Haken network. Given the initial set of activations 

shown in (a), the network evolves to a stationary state (b) such that the node with the 

highest initial activation also has the largest final activity (say q', with q' ~ 1). However, 

now adjacent neurons are also excited, and the original ground state is de-localized (compare 

with figure 4.8). 

beyond which localized ground states cease to exist and the effects of diffusion dominate 

[Bre95). The critical coupling can also be computed and is found to be 

(4.26) 

In fact, the analysis of [Bre95) shows that these continued solutions occur for more general 

forms of coupling than the simple diffusive one considered here. The only criterion being 

that the interaction function be Cl [MS95) and that coupling strength decays exponentially 

with distance [Bre95) (where the distance between two points on the lattice is measured as 

being the number of lattice sites separating them). 

4.5.1 Stochastic dynamics of the driven diffusive model 

For concreteness, consider a one-dimensional lattice and select two neurons separated by X 

lattice sites with X sufficiently large such that the ground states centred at the two sites 
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have very little overlap. As in the non-diffusive case, introduce local additive noise together 

with a periodic stimulation of the two selected neurons given by A cos2 (Ot) and A sin2 (Ot) 

respectively. The equations of motion are thus of the form 

. aO(q) 
qi(t) = --a- + C7~i(t) + 1.(t) 

q. 
(4.27) 

with O(q) given by (4.24). A resonant effect is again observed with the system switching 

between the states localized about the two centres (see figure 4.12). 

0.3 (a) (b) 0.3 
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. .;;: 

< J. ) 
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100 125 150 175 200 100 125 150 175 200 
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Figure 4.12: Two snapshots of the evolution of the network with diffusive coupling JJ = 0.5: 

(a) before and (b) after the network has flipped between states. For clarity the low noise 

case is shown. 

Plots of PI versus C7 are shown in figure 4.13 for various coupling strengths. Observe that 

as JJ is increased, the maxima of PI, corresponding to resonance, is shifted to lower noise 

levels. This may be explained by noting that increasing JJ causes a decrease in the barrier 

height "O(JJ) and thus an increase in the unperturbed transition rate (4.22). A method for 

calculating ,,0 (JJ) is shown below. 

When JJ is sufficiently large, the localized solutions of the one-dimensional diffusive Haken 

model (in the absence of noise and external forcing) are distributed over many lattice sites 

suggesting that they can be approximated by a continuum version of the model. Following 
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Figure 4.13: Variation of PI with noise strength 17 for the diffusive network. Three different 

values of the coupling strength I' are shown, and as I' increases l70pt decreases. The driving 

frequency v is held constant. 

[8B92, Bre97l, the potential governing the gradient dynamics of the continuum model takes 

the form 

U[q,l'l = 100 dx [I!. (8q(X))2 _ q(X)4] _ ~z + ~Z2 -00 2 8x 4 2 2 
(4.28) 

with 

Z[q] = fa dx q(X)2 (4.29) 

and I' a renormalized diffusion constant. By means of the Euler-Lagrange equation, sta­

tionary solutions of the dynamics satisfy 

d2q 
I' dx2 = (2Z[q] - 1) q(x) - q(x)3 (4.30) 
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Localized states can now be interpreted as finite energy configurations, or instantons, of 

the continuum model. Using phase-plane analysis it can be shown that for fixed Z, an 

instanton centred at x = 0 is described by [SB92, Bre97): 

q(x) = qo [COSh (~)]-I ( 4.31) 

where the instanton amplitude is 

qo = J(2Z - 1)2 (4.32) 

This leads to a self-consistency condition for Z of the form 

(4.33) 

which has real solutions provided that 

(4.34) 

Keeping only the lower energy solution, the amplitude of the instanton as a function of the 

coupling J.' is 

( 4.35) 

It follows that the energy of the instanton is (note that equation (4.25) is only valid in the 

limit J.' -+ 0) 

(4.36) 

The barrier height for transitions between two single-instanton states can now be computed. 

Suppose that the instantons are centred at XI and X2 respectively (ef. figure 4.12), and 
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further that Xl. X2 are well separated on the lattice. The most probable path of escape is 

therefore via a saddle consisting of an instanton doublet centred about the two selected 

sites. By solving the self-consistency condition for Z, the height of each instanton in the 

doublet is found to be 

(4.37) 

Figure 4.14 shows how the amplitudes of the single instanton, and a member of the doublet, 

vary with the coupling strength 1'. As expected, the continuum limit breaks down for small 

1'. 

The energy of the doublet (assuming that the local interaction energy of the two instantons 

can be neglected) is 

( 4.38) 

and the required barrier height is 

(4.39) 

The inset to figure 4.14 demonstrates that the barrier height rapidly decreases with increas­

ing coupling strength, as expected. One consequence of this is that there appears to be 

a trade-off between the strength of the local coupling, 1', and hence the network's ability 

to withstand damage, and its robustness to noise. Strong coupling (I' > 0.2) means that 

information about an output state is dispersed over many neurons, making a resilient sys­

tem. However this also means that the barrier height between output states becomes so 

small that noise induced transitions become important, even for low noise levels. Thus the 

network is unable to function as a classifier. 
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Figure 4.14: The variation of the instanton amplitudes, qo and I/o, with coupling strength 

J.l. The dashed curve shows the singlet amplitude, {equation {4.95}}, the bold one shows 

the doublet amplitude {equation {4.97}}. Simulation results are also shown: results for the 

singlet state are represented by a plus sign, and for the doublet state by a circle. Inset: The 

variation of the bamer height with coupling strength J.l is shown both analytically {solid line} 

and numerically {circles}. 

4.6 Discussion 

This chapter has been concerned with the role of noise in the perception of ambiguous 

figures. To motivate my study I first reviewed the psycho-physics of this phenomenon, 

and I then introduced Haken's network, a possible model for this perceptual process. I 

believe that Haken's model provides a useful toy model for mental categorization tasks in 

the same way that the Hopfield model, though biologically implausible, is a viable metaphor 

for associative memory. 

Two sets of experiments show that stochastic resonance can be present even at this cognitive 

level. By the incorporation of weak noise and a sub-threshold driving signal I have extended 
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Haken's treatment first to account for SR, and then incidentally to explain the distribution 

of spontaneous reversals. 

In common with many mathematical models, Haken's network admits more than one inter­

pretation. When a diffusive coupling is included in the dynamics, the ground states become 

de-localized and the network becomes more robust. Related competitive networks have 

previously been used as models of cortical function, and so I have proposed that Haken's 

network might also function as a low level model for recognition. Stochastic resonance per­

sists even in the presence of this diffusive coupling, and I therefore suggest that perceptual 

SR might originate from the dynamics of either single neurons, or small groups of neurons. 

Despite superficial similarities, the behaviour of Haken's model must be distinguished from 

array enhanced stochastic resonance [LMD+95] which is a noise induced phase locking phe­

nomenon. My analysis has shown that for small diffusive coupling the stochastic Haken 

model can be approximated by a bi-stable system and thus has more in common with 

traditional SR models. 

The main results of this chapter were published in [BR98]. 



~ ~------------------------------------~ 
Neuronal dynamics with intrinsic noise 

5.1 A deterministic leaky-integrate-and-fire neuron 

The neuronal spike train is largely determined by the membrane potential, V{t}, at the 

trigger zone {recall section 2.1.5}. Recall: afferent excitatory and inhibitory PSPs are 

summed in the soma, and a spike is fired if the total charge at the trigger zone exceeds 

a threshold. Following excitation, the membrane slowly resets to its resting value, say Vo, 

and there is a refractory period during which the cell may receive input, but cannot fire. If 

instead the PSP summation is sub-threshold, V{t} relaxes towards Vo without spiking. 

5.1.1 Continuous time formalism 

A simple model of the time course of V{t} is due to Lapicque [Lap07, Thc88]. If the mem­

brane of cell i has a constant resistance R.; and a capacitance Ci, the Ohmic current through 

it will be V;/ R.; and the current through the capacitance will be CidV;/dt. Therefore, by 

conservation of current: 

dVi Vi 
Ci-' = --' + Ii{t} 

dt R.; 
{5.1} 

102 
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(compare with the full Hodgkin-Huxley model, section 2.1.5) where Ii(t) represents all 

extra-cellular input currents. For convenience let I< = (RC)-1 and Ii(t) = Ii(t)/Ci. IHt) 

has three contributions: any time-independent inputs or biases 10; external time-dependent 

input h(t) such as a physical stimuli; and time-dependent inputs from the other N neurons 

of the network, IN(t) = L: Aij(t), so that 

d\!; N 
dt' = -I<V; + 10 + IE(t) + L Aij(t) 

1=1 

(5.2) 

where Aij(t) is the input signal from the jth to the ith neuron. For the present assume 

that there is no external input, and so h(t) = O. In the absence of other neuronal input 

(IN(t) = 0), the neuron has a stable state corresponding to a resting potential at Vo = 10 /1<. 

There is no natural threshold for this model, and one must be imposed. A simple choice 

is a variable threshold hi(t) that remains constant, hi(t) = hi, until V;(t) > hi, at which 

time a spike is fired. The effect of a refractory period is then included by setting hi(t) to 

be infinite for a time tR after firing, after which it returns to its original value. A further 

natural time-scale for the neuron is the synaptic delay td, which accounts for the finite 

time between the arrival of a PSP and the resulting change in the membrane potential at 

the trigger zone. Spikes have no structure in this model, but could be represented by any 

suitable function, e.g. the alpha-function of [JNT75J. 

The output, aj(t), of the j'h neuron at a time t is therefore some function of the its membrane 

potential, V;(t) and its threshold hi(t), so that 

(5.3) 

For simplicity assume that a spike is well described by a delta function. Thus the time­

course of llj(t) becomes a set of delta functions, with one located at each firing time. This 

signal propagates via the axon and telodendria to a synapse on the ith neuron. If the 

finer details (e.g. ion channel processes) of dendritic and synaptic processing are ignored, 

the resulting input signal, Aij(t), depends upon how this synapse modulates the impinging 
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action potential. It comprises two parts: the original spike, "j( t), and a term Wij quantifying 

transmitter release 

(5.4) 

where a delay td has been included to describe the synaptic processing time. 

In contrast with other leaky-integrator models, e.g. [GM64], the membrane potential is not 

artificially reset to zero following firing. Discontinuous reset is known [RL93] to cause the 

elimination desirable biological features such as positive correlations between inter-spike 

intervals. Instead, therefore, V (t) decays exponentially during the refractory period. 

5.1.2 Discrete time formalism 

The ith neuron spikes for the nth time at 7.:, thus equation (5.4) may be written 

00 

Aij(t + td) = Wij L o(t - r,!) (5.5) 
n=l 

Subsequent neuronal firing times are determined by both the refractory period t R and the 

synaptic delay td. Following the generation of an AP at 7.:, two possibilities may occur: 

• the membrane potential remains above threshold after the refractory time and the 

neuron spikes again, irrespective of its input 

and (5.6) 

• after the refractory time, the membrane potential is sub-threshold and so is unable to 

fire. The neuron therefore fires its next action potential at a time td after the arrival 

of an afferent spike from another (say the lh) neuron at a time r! 

V(7.: + tR) < hi and (5.7) 
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note that T? + td > r.: + tR since the neuron is unable to spike during a refractory 

period. 

The r.: are therefore determined by the iterative condition 

(5.8) 

and so 

N 

r.: = I: A;;~k + B~tR + C~td ·th Aik Bi C i E '" Wl n' n' n fU (5.9) 
k=l 

Thus, the firing times are distributed on a lattice spanned by tR, td, and the set of first 

firing times, {7;k}. For convenience, set 

(5.10) 

and further choose initial conditions such that the first firing times are all integer multiples of 

the delay, thus Tt = k.", V j and for k E Z. Thus, the discrete-time equation (corresponding 

to (5.3)) for the output aj 0 at the mth time step is 

ai(m.,,) = e [V; (m.,,) - hi] (5.11) 

where the step function 6(x) = 1 if x 2: 0 and 6(x) = 0 if x < 0, and so a;(m.,,) = 1 if 

T[' = m." for some n 2: 1, and ai(m'1) = 0 otherwise. Therefore, the neuronal input (5.4) 

may now be written 

00 

Aij(t +.,,) = Wij I: d(t - m.,,)aj(m.,,) (5.12) 
m=O 
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Following [BT91]' a discrete time approximation to this Lapicque model may be constructed 

by first solving equation (5.2), subject to the initial condition, V(O} = 0 (assuming le = O) 

V;(t} = f ds (t Aij(S -1/) + 10) exp (-K(S - t)} 
o 1=! 

(5.13) 

[, t N 
= ~ (1 - exp( -Kt)} + in ds L Aij(S - 1/} exp (K(S - t)} 

K 0 j=! 

In the absence of any other input, the first term on the RHS of equation (5.13) imposes 

the exponential relaxation V -+ Vo . However, substitution of equation (5.12) into (5.13) 

shows that the second term is completely specified by its solutions at the discrete times 

t = m1/, m ~ O. Thus, a natural discretization is to consider the evolution of (5.2) at 

integer multiples of 1/ 

V(n + I} - V(n} = 1/ ( -KV(n) + ~ A;j(n} + 10 + IE(n}) nE Z (5.14) 

5.1.3 Single neuron dynamics 

To illustrate the dynamics, consider the N = 1 case with no external input (lE = O) 

V(n + I} - V(n} = 1/ (-KV(n) + we [V(n} - h] + Io} (5.15) 

which describes a single neuron with a self-coupling!, w. Note that real neurons do not 

synapse directly to themselves in this manner, but instead any such feedback is mediated 

by one or more inter-neurons. For example, various sensory neurons are thought to receive 

some form of active feedback: e.g. the hair cells of the auditory system [NK86]. Two 

related single neuron approximations may be derived from the large network limit: Schieve 

et al. [SBD91] assume that all other neurons in the network relax on a faster time-scale 

IThe bi-stable element represented by equation (5.15) has applicability outside the neural domain. It 

has, for example, been used to describe an AID converter [WC94]. 
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than does the ith neuron, and so adiabatically eliminate them to derive a single effective 

neuron. In contrast, Ohira and Cowan [OC93J replace interactions from other neurons by 

a self-consistent mean field, and show that this is equivalent to self-coupling. 

For the moment assume that w is time-independent, and that h = O. If the self-coupling 

is inhibitory (i.e. w < O) and 10 > 0 then the model (5.15) reduces to the Nagumo-Sato 

equation [NS72J. Neuronal dynamics are therefore generated by a circle map, and exhibit 

either periodic or quasi-periodic behaviour [ATT90, BS90J. If instead the self-coupling is 

excitatory, so that w > 0, and also 10 < 0 with w + 10 > 0 then the deterministic dynamics 

is trivial. Equation (5.15) has two stable fixed points 

(5.16) 

with a basin boundary at V = O. Consequently the neuron relaxes to one of two possible 

equilibria: at VI it is perpetually sub-threshold and never fires, while at V2 it is always 

super-threshold and so fires at every time step. 

5.2 Intrinsic noise 

In the deterministic limit, a neuron with excitatory self-coupling displays trivial dynamics. 

However, the inclusion of noise induces a richer behaviour. Single neuron models with addi­

tive [OC95J and multiplicative [BBJ89J Gaussian noise have been previously been studied. 

Both of these models show qualitatively similar behaviour in their respective deterministic 

limits, both exhibiting two stable fixed points. 

Ohira and Cowan's model The ad hoc inclusion of additive Gaussian white noise to the 

model of Ohira and Cowan [OC95J induces a bi-modal stationary probability distribution. 

The distribution is symmetric about some mean activation, and the peak widths increase 

with noise strength. 
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The single effective neuron In contrast, two such noise sources are included by Bulsara 

et al. The self-coupling term includes multiplicative noise, and there is also an additive 

Langevin term. It is found that the multiplicative noise both suppresses the bi-stable 

nature of the underlying deterministic system, and also induces bi-stability in parameter 

regimes where such effects would not otherwise be expected. 

The motivation for inclusion of noise in both of these models is to aid the analysis of an 

electronic model neuron due to Babcock and Westervelt [BW86, BW87]. Both the manner 

in which noise is included, and also the interpretation of its effects therefore have weak 

biological credentials. It is therefore interesting to consider what effect a more plausible 

noise source might have on neuronal behaviour. 

The sources of neuronal noise with the strongest influence on the firing dynamics are thresh­

old and synaptic (chapter 2): 

5.2.1 Synaptic noise 

Synaptic noise may be incorporated by taking the synaptic efficacy w to be a random 

variable w(n) drawn at each time-step according to some probability distribution and also 

according to the state of the neuron. The components of synaptic noise are (section 2.2.1) 

a Poisson distributed vesicular release probability, and a Gaussian distributed vesicle size. 

The probability of release due to an afferent AP is p, and in the absence of excitation it is 

pi, with pi «p. 

For simplicity set pi = 0, and so neglect spontaneous fluctuations. Furthermore assume 

that all quanta have the same size, say Wo, and that the synapse is excitatory (wo > 

0). A synapse from the mammalian eNS typically contains less than ten vesicles [KF87]. 

Therefore consider the one-vesicle model of [Bre92], and assume that an incident action 

potential can only cause the release of a single vesicle. Thus, if the neuron fires at the nth 

time-step then w(n) = Wo with probability p and w(n) = 0 with probability 1 - p; if the 

neuron does not fire then w( n) = 0 with probability 1. 
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5.2.2 Threshold noise 

Threshold noise is best modeled by making h a stochastic variable h(n), generated at each 

time-step from a fixed probability density p(h). For tractability, I will approximate Lecar 

and Nossa!'s distribution of firing probabilities, P(V), for a given excitation, V, [LN71b] 

(recall section 2.2.3) 

P(V) = ~ [1 + erf (~) ] (5.17) 

by a similar (but more tractable) sigmoidal firing probability, and so choose the threshold 

at the nth time-step, h(n), to be drawn from the distribution 

p(h) = d~ (l+ex~(-,8hJ (5.18) 

(this density has been shown [BT90] to reproduce the update rule for the Little model 

[Lit74].) Therefore, the probability of firing for a given V is 

100 1 
P(V) = p(h)8(V - h)dh = 1 (,8V) 

-00 +exp-
(5.19) 

where,8 parameterizes the spread of the distribution2, and the mean threshold is (h(n)) = O. 

5.3 Stochastic dynamics 

With the inclusion of noise, equation (5.15) becomes a stochastic difference equation of the 

form 

V(n + 1) = V(n) + 1/Fo(n) (V(n)) (5.20) 

2 A Taylor expansion of both (5.17) and (5.19) shows that the two distributions agree to first order when 

(J = -4/(S.,fi) 
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where the index a = 0,1 and Fa(n) = Fa with probability .pa(V(n)), so that 

Fo(V) = -I<V + la and Fl(V) = -I<V + la + w (5.21) 

with respective probabilities 

.po(V) = 1 - pP(V) and .pl (V) = pP(V) (5.22) 

Equation (5.20) implies that the time course of V is specified completely by the random 

symbol sequence {a(n),n = O,l...la(n) E {O, I}} together with the initial value V(O). 

Further note that the symbol sequence specifies the output spike train of the neuron. The 

interval [Vl, V2], with Vl and V2 given by equation (5.16), is an invariant domain of the 

dynamics. If V(n) E [Vl, V2] then V(m) E [Vb V2] V m> n, and so if Venters the interval 

it is confined there indefinitely. 

The set {Fa, .pala E {O, I}} defines a random iterated function system (random IFS) on the 

interval [Vl, V2] [Bar95], and has been used by Bressloff [Bre92] to show that the stochastic 

dynamics converge to a unique3 stationary probability density uoo(V). An approximation 

to U OO (V) may be obtained by sub-dividing the V -axis into small intervals and plotting an 

histogram of numerical iterates of equation (5.20). 

5.3.1 Heuristic results 

Assume for concreteness that la = -~pwo, which is half the mean transmitter release (this 

choice will be explained later). Equation (5.16) therefore gives Vl ~ 0 and V2 > O. First 

consider zero-synaptic noise, i.e. p = 1, and so Vl = - V2 • In the limit (3 -t 00 the 

deterministic limit is recovered and the neuron has two stable states, Vl and V2 . As (3 is 

decreased, these two states become de-localized with a stationary probability distribution 

3For the system considered here, convergence to a unique U OO (V) is guaranteed since it is Markovian and 

so can be described by a master equation (see later). Such convergence may 'be proved by constructing the 

entropy, which is a Lyapunov function for the dynamics [Rei98]. 
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that is bi-modal and symmetric about the origin. The peaks of the distribution are located 

close to VI and V2 and their widths depend On f3 (figure 5.1(a)). 

0.04 (a) ( (b) 
I \ 0.06 

.2:- 0.03 I \ .-- \ .- 0.04 

fJ 0.02 .I> 

J: 0.02 
0.01 

0 0 
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 

Membrane potential, V 

Figure 5.1: Approximations to the stationary probability distribution junction uoo(V) (bold 

lines) obtained from numerical iterates of equation (5.20). f3 large: (a) zero synaptic noise 

(p = 1), (b) non-zero synaptic noise (p = 0.8). The dashed lines show the corresponding 

probability densities obtained from the Fokker-Planck analysis (section 5.3.2). Parameters 

are: Ii = 1 and w = 1 

Such a bi-modal distribution has a simple physical interpretation. Recall that the mean 

threshold probability is (h) = O. The negative maximum therefore represents a quiescent 

state: the neuron remains close to its membrane resting potential and fires only rarely. The 

mean firing rate is r = l/{P) "" IN(vll, where (P) is the mean firing probability. On the 

other hand, the positive maximum corresponds to a de-polarized state. Here the neuron 

has a high probability of firing, and if the neuron remains in this state for several time steps 

it will fire regularly and thus exhibit bursting. Transitions from the negative to the positive 

state are due to the neuron firing at least once whilst in the quiescent phase, and this in 

turn is caused by the selection of a low threshold. The converse transition is caused by the 

neuron failing to fire even though it is excited: the consequence of an high threshold. The 

neuron spends little time in the transition region. 

If the synaptic noise is now switched on, by decreasing p, the bi-modal probability density 
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becomes asymmetric with a negative maximum that has a greater area than the positive 

one (figure 5.1(b)). This asymmetry is caused by there now being two ways in which the 

neuron can fail to receive excitatory input: either the imposition of a high threshold at the 

previous time-step, or vesicle release failure. In this regime the neuron will therefore spend 

most of its time in the silent state until a 'rare' event causes it to cross over to the bursting 

phase. 

However, in the limit f3 --t 0 and p = 1 the firing probability is uniform at each time step, 

with P(V) = 0.5 '</ V E [V\, V2]. Therefore 

Wo 
Fo(V) = -I<V - -

2 
(5.23) 

with cf>o(V) = cf>1(V) = 0.5. Equation (5.20) therefore has two components: an exponential 

drift term by which V tends to the origin, and a uniform random walk (of step-size (f/wo)/2) 

which causes V to diffuse away from the origin. The stationary probability distribution is 

therefore uni-modal and symmetric about V = 0 (figure 5.2). Now for p < 1, the random 

walk becomes biased toward the negative, thus breaking the symmetry of the stationary 

probability density (figure 5.2). 

f3 is an order parameter for the dynamics. Hence there a critical value, say /3c, such that for 

/3 > f3c the stationary probability distribution is bi-modal, while for /3 < /3c is uni-modal. 

5.3.2 Fokker-Planck analysis 

An approximation to the stationary probability density tioo(V) can be found analytically. 

Define a probability density tin(V) on the sample space of membrane potentials V E [VI, V2], 

so that the probability of finding the membrane potential in some interval [a, b] at the nth 

time-step is 

(5.24) 
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Figure 5.2: Approximations to the stationary probability distribution function uoo{V) (bold 

lines) obtained from numerical iterates of equation (5.20). {3 small: (a) zero synaptic noise 

(p = I), (b) non-zero synaptic noise (p = 0.4). The dashed lines show the corresponding 

probability densities obtained from the Fokker-Planck analysis (section 5.3.2). Parameters 

are: " = 1, W = 1, and {3 = 0.2 

The noise introduced in section 5.2 lacks temporal correlation and so this system is Marko­

vian (see section 1.2 and appendix B.2). The probability density un{V) therefore evolves 

according to a Chapman-Kolmogrov (CK) equation (recall section 1.2) 

l
v, 

Un+! (V) = 1>(V!V')un (V')dV' 
v, 

(5.25) 

where the transition probability 1>{V!V') is the conditional probability that the system will 

be found in state V given that it was in V' at the previous time step, and is given by 

1>(V!V') = L <I>.,(V')8(V - V' - ,.,F.,(V')) (5.26) 

recall (equation 1.12) that in the limit,., -+ 0, the discrete-time CK equation may first be 

transformed to a continuous-time master equation, and then {by way of the Kramers-Moyal 
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expansion - section 1.3) to a Fokker-Planck equation: 

~ __ ~ (I) ~~ (2) at u(V, t) - av D (V)u{V, t) + 2 aV2 D (V)u(V, t) (5.27) 

where the drift and the diffusion coefficients D(I) and D(2) are the first and second moments 

of 5V{n) = V{n + 1) - V{n) (recall equation (1.24)) 

(5.28) 

(5.29) 

The I-dimensional Fokker-Planck equation has a unique stationary solution, Ust{V), which 

satisfies 

Define the stationary probability current .J{V), such that 

VI and V2 are reflecting boundary conditions and so 

therefore Ust{V) has the form (recall section 1.3.1) 

Ust(V) = N exp{ -Ss(V)) 

where N is a normalization constant such that 

l
v, 

Ust(V) = 1 
VI 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 
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and 3 s(V) satisfies 

(5.35) 

Ust(V) is the Fokker-Planck approximation to the true stationary density uco(V), and the 

function 3 s(V) is an effective potential function for the dynamics. Comparing Ust(V) with 

the histogram of iterates of (5.20) shows that this Fokker-Planck approximation describes 

well the qualitative and quantitative aspects of the stochastic dynamics (figures 5.1 and 

5.2). 

5.4 Noisy dynamics in an effective potential 

The notion of an effective potential function allows an intuitive description of the neuronal 

dynamics. More importantly it also permits prediction of the critical value f3c. 

5.4.1 Deterministic sub-system and the critical temperature 

An estimate of f3c (and also a motivation for the choice for 10 ) may be found by considering 

the stochastic system (5.20) as comprising an underlying deterministic trajectory which is 

perturbed by small Huctuations. Such an intuitive picture forms the basis of van Kampen's 

'small Huctuations expansion' [vK76, vK92]. 

A deterministic system obeying gradient dynamics has the potential function [vK92] 

Ud(V) = - Iv D(l)(V')dV' (5.36) 

with D(l)(V) given by equation (5.28). First note the identity: 

(5.37) 
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Thus the deterministic potential function (5.36) is 

Ud(V) = - Iv [WoPP(V') - "V' + I] dV' (5.38) 

= - Iv [W~p tanh (f3~') - "V' + (W~P + 10)] dV' 

The stationary points of Ud(V) satisfy D(1) (V) = O. This yields an equation identical in 

form to the Weiss mean field equation for an Ising ferra-magnet at a temperature T' = 2/ f3 

and subject to an external magnetic field (Io + !pwo), see e.g. [CL95j. 

The stationary points can be determined graphically from the intercepts of the straight line 

(5.39) 

with the sigmoid 

1 (f3V) y = 2"woP tanh 2 (5.40) 

When 10 = - !wop the dynamics displays a phase transition at the critical value f3c = 

(4,,)/(wop). Below f3c there is a single intercept at V = 0 and Ud(V) has a single minima. 

However, above f3c there are three intercepts: one at V = 0 and two others symmetrically 

arranged about the origin, and so Ud(V) is bi-stable (figure 5.3(i)). If instead, 10 i' -!woP 

then the intercepts (and hence the stable states) become shifted along the V -axis (figure 

5.3(ii)). In fact, a large enough 10 can also induce a phase transition. 

5.4.2 The effective potential 

The membrane potential of the neuron therefore executes a random walk in an effective 

potential that is sculpted by the noise parameters. Synaptic noise, p, breaks the symmetry 

of Bs(V) (figure 5.4(b)), while threshold noise, f3, determines oB(f3): the height of the 

barrier between the minima. As f3 is increases, so too does oB (figure 5.4(a)). 
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Figure 5.3: Ground states of the deterministic sub-system are determined by the intercepts 

between y = Ko V + 10 + ~wop and y = ~wop tanh ( ~). (i) 10 = - ~woP: (a) (3 > (3c and Ud 

is bi-stable (the ferromagnetic phase), (b) f3 = (3c, (c) f3 < f3c and Ud is mono-stable. (ii) 

f3 > (3c: (d) 10 < -~woP (e) 10 = -~woP (f) 10 > -~wop. 

Consider a fixed synaptic noise, with poll, and f3 > f3c, such that the effective potential 

is asymmetric and bi-stable. There are two natural time-scales for these dynamics: the 

mean escape time from the negative global minimum (the silent state) via the barrier 6312 

to the positive meta-stable state (the bursting state); and the mean time for the Converse 

transition over 6321 (figure 5.4(b)) and both of these time-scales will exhibit an Arrhenius4 

dependence on their respective barrier heights. Following the bursting paradigm, these 

two times may be identified with the mean inter-burst interval and the mean burst length 

respectively. The inter-burst interval therefore depends solely on f3 and so is solely due to 

threshold noise, while the burst length is a function of both p and (3, and so is determined 

by both threshold and synaptic noise. 

Spike trains obtained from numerical iterates of equation (5.20) confirm this picture. There 

are long periods during which the neuron fires only occasionally, and at times that are 

separated intervals of order 1/ P(V1). Even rarer are the highly correlated bursts of spikes 

4Unfortunately, a Kramers' rate (section 1.4) is not computable since it requires derivatives of the po­

tential, and S(V) is obtained from numerical integration of equation (5.35) (see appendix B). 
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Figure 5.4: The effective potential for various noise strengths: (a) zero synaptic noise 

(p = 1) but varying threshold noise (f3). (b) constant threshold noise (f3 = 6.0), and varying 

synaptic noise. 
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that signify occupation of the depolarized state. The occasional spikes should be considered 

as spurious background activity, but the bursting states are much more significant. (For 

example, recall that in chapter 3, bursting was shown to be a useful coding for temperature.) 

Therefore, how are these bursts distributed in time? An analogous measure to the inter­

spike interval histogram is the inter-burst interval histogram (IBIH). Assuming that the 

time spent in the transition region of:=: is small, this may be found numerically from a large 

number of trials, each of which consists of taking the initial point V(O) = VI and iterating 

equation (5.20) until V(n) '" V2 for the first time. 

If the neuronal input is constant, such a distribution is uni-modal with an exponential tail 

(figure 5.5). 
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Figure 5.5: Histogram of escape times (the IBIH) for an asymmetric, bi-stable neuron with 

constant input. 

5.5 Periodic Modulation and Response 

Bulsara et al. [BJZ+91] have used both analysis and analog simulation to demonstrate that 

their single effective neuron model will exhibit SR when subject to weak periodic forcing. 
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To look for commensurate behaviour in this one-vesicle model, first introduce a weak, 

periodically modulated external input 

IE(n) = {sin(Qn) 

subject to the adiabatic approximation 

211" -» 1 
Q 

so that equation (5.20) becomes 

V(n + 1) = V(n) + 7) (F,,(V(n)) + {sin(!1n)) 

(5.41 ) 

(5.42) 

(5.43) 

where the {F,,{V{n))} are defined by equation (5.21). Furthermore, to ensure that lE alone 

is too weak to switch the neuron between quiescent and bursting states, impose 

(5.44) 

In chapter 3 such input was associated with a slowly oscillating autocatalytic calcium cur­

rent, but it has a wider range of applicability [Lan97j. For example: a sinusoidal tone 

applied to an auditory neuron [LBM91j; a periodic tactile stimulus [CIG96j; or even the 

action of a single pacemaker neuron [CBGC96j. 

Computation of the IBIH5 for various values of threshold noise shows that the escape times 

from the resting state VI can become partially entrained to the periodic signal. The typical 

multimodal distribution is again apparent: peaks occur at integer multiples of the driving 

period, and with exponentially decaying heights (e.g. figure 5.6). 

l:iThese histograms are obtained by iterating the neuron equation, (5.20), for a fixed time (of the order of 

10 times the forcing period). If the neuron switches into a bursting state then the switch time is noted, if it 

does not switch within this time then a null result is noted. The neuron is then reset to the quiescent state 

and restarted. This process is repeated many times to obtain reasonable histograms. 
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Consider how this entrainment is affected as the noise parameter f3 is swept through its 

range. Note first that the condition of maximal threshold noise occurs when f3 -t 0, and 

furthermore that the deterministic limit derives from f3 -t 00. For f3 low (i. e. high noise), 

8312 is small and all transitions occur within the first cycle of driving. As f3 increases (i.e. 

the noise decreases), then so too does 8312 and higher sub-harmonics of the driving appear. 

As f3 -t 00 (deterministic limit) the forcing becomes impotent and escape is prevented. 
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Figure 5.6: An inter-burst interval histogram for the one-vesicle model subject to weak 

periodic driving. 

A plot of the area6 of each peak versus f3, shows a set of resonance conditions: for each 

peak k, there is a value of f3, say f3:'ax , for which the peak area is maximal (figure 5.7). For 

f3 "" f3;"ax, the noisy transition rate is comparable to the driving period, and so escape is 

maximally synchronized to the signal. 

6The area is computed according to Gammaitoni's prescription [GMS95] (equation (1.48)) 
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Figure 5.7: The variation in area under the first four peaks of the IEIH, versus increasing 

threshold noise. Parameters are: t< = 0.5,w = 0.5, n = 0.05 and A = 0.05. 

5.6 Discussion 

To conclude, I have shown that a simple stochastic model of a spiking neuron can exhibit a 

much richer discharge than can its deterministic counterpart. For certain parameter values 

the neuron can burst, with burst lengths and inter-burst intervals that are Poisson dis­

tributed. I have demonstrated that the bursting dynamics may be described by a random 

walk of the membrane potential in a (possibly asymmetric) bistable potential. I have iden­

tified the two minima of this potential with the bursting and quiescent states, and I have 

shown that noise can cause transitions between these two states. The noise parameters, f3 

and p, therefore tune the discharge pattern. Threshold noise controls the forward transition 

(i. e. from quiescence to bursting), and hence determines the inter-burst interval. In con­

trast, the backward transition (from bursting to rest - i.e. the burst length) is determined 

by both threshold and synaptic noise. I have further shown that when the cell is driven 

by a weak periodic signal the bursting dynamics become stochastically phase-locked to the 

forcing, and the neuron exhibits a form of stochastic resonance. 
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There are obvious limitations to this work: restriction to a single neuron model with feed­

back has aided the analysis, but represents an extreme oversimplification. However, it is 

plausible that the feedback mechanisms present within some real neuronal networks may 

initiate equivalent behaviour. A further difficulty arises from the imposition of the adia­

batic condition (5.42). The slow signal is necessary to ensure the system remains near an 

equilibrium state, and therefore the validity of the analysis. However, the long time pe­

riod means that the residence times in the bursting state, and hence burst lengths, become 

unrealistically long: of the order of several hundred spikes per burst. 

It should be noted that this choice for the probability distribution for threshold noise, while 

simplifying the analysis, is not crucial to the behaviour discussed here. Any sigmoidal 

density will behave comparably. 

The main results of this chapter are to appear in [BR99). 



~ ~------------------------------------~ 
Conclusions 

" 'I have done that,' says my memory. 'I cannot have done that' says my pride, 

and remains adamant. At last - memory yields." 

Nietsche 

It has been said that a thesis is never finished ... but is only ever abandoned, and unfor­

tunately this work subscribes to that sentiment. It is inevitable that the completion of any 

piece of work (almost) always suggests a myriad of ways in which it might be continued. 

With this in mind, after first summarizing what 1 have achieved, 1 want to take the time to 

indicate some ways in which my work should be extended. 

Chapter 1: contained some of the necessary mathematical and physical background to this 

thesis. Specifically 1 discussed what noise is, and how it may be treated mathematically. 1 

introduced briefly the Langevin equation and discussed its connection to the master equation 

and to the Fokker-Planck equation. 1 then showed how to compute the mean rate of escape 

of a noisy particle from a meta-stable state. 1 completed the chapter with a brief review of 

stochastic resonance. 

Chapter 2: was a review of the biology of neurons, and a brief summary of the Hodgkin-

124 
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Huxley model for action potential generation. I then discussed what various sources of noise 

contributed to the neural dynamics. 

Chapter 3: presented my studies on cold-receptor function. I first showed that complex 

ionic models could (in the spirit of Ermentrollt and Kopell [EK86]) reduce to canonical 

phase-models which possess qualitatively similar dynamics. I then investigated the phase­

model (both numerically and analytically) in the deterministic regime and also when subject 

to a finite amount of thermal noise. I showed that numerically obtained spike trains and 

inter-spike interval histograms from the phase model agree well with the experimental 

data. By way of Floquet analysis and the Mathieu equation, I showed that the temperature 

dependence of the discharge pattern of these cells might be viewed as a trajectory through 

the mode-locked solutions of a Strutt map. My investigations also suggest that skipping 

might be caused by noise and I indicated how both the number of spikes in a burst, and 

also the skipping rate at any given temperature may be predicted. I studied how altering 

the noise level affects the dynamics and I showed that the skipping regime may be sub­

divided: the first part of skipping is caused by noise-induced trapping and the second part 

is due to noise-induced spiking. Finally, I demonstrated that the phase-model displays a 

non-monotonic dependence on noise strength, and in fact exhibits both resonant trapping 

and autonomous stochastic resonance. 

Chapter 4: Here I turned to the problem of the perception of ambiguous figures. I first 

reviewed the psycho-physics of how such figures are interpreted by the brain, and I discussed 

two experiments that indicate that stochastic resonance might occur at a cognitive level. 

I proposed Haken's winner-takes-all network as a model for the interpretive process and 

showed how it might be extended to model the phenomena of reversal. I then investigated 

how Haken's model might elucidate a mechanism for cognitive stochastic resonance. I then 

turned to the diffusive Haken model (due to Schmutz and Banzhaff [SB92j and Bressloff 

[Bre95, Bre97]) a model previously proposed to explore how the neural substrate might 

perform pattern recognition. I showed how this network could also support stochastic 

resonance but that there was a trade off between the strength of the diffusive coupling 

between neurons (a factor that determines the network's robustness to the loss, or 'death', 
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of individual cells) and the amount of noise that the network could support. 

Chapter 5: in this chapter I showed how specific noise distributions for synaptic and 

threshold noise might affect neuronal dynamics. To obtain a framework for the inclusion 

of noise, I first indicated a method by which the dynamics could be discretized. I then 

investigated these discrete dynamics first via a master equation and subsequently by means 

of a Fokker-Planck equation. Using these techniques I was able to show that (for certain 

parameter regimes) this system may be interpreted as evolving in a generalized bistable 

potential. I identified residence of the excited stable-state with bursting, and residence of 

the negative stable-state as being a time of quiescence. I then presented numerical results 

to show that in the absence of any external input, transitions between these two states, 

and hence inter-burst intervals, are exponentially distributed. I completed my study by 

showing that the introduction of a weak, periodic input could (stochastically) entrain the 

neuron in a manner that is related to stochastic resonance. 

Without re-iterating the conclusions of previous chapters, a 'wish-list' of future projects 

and unsolved problems include: 

• In this thesis (with the exception of chapter 5) I have considered additive, Gaussian 

noise. However, as discussed in chapter 1, such noise is a mathematical fiction, and 

so the most obvious extension to this thesis would be to consider how coloured-noise 

sources (see e.g. [HJ95J) might change the neural dynamics. 

• I feel that my work on cold-receptor function holds promise for a deeper understanding 

of the operation of these cells. However, to achieve this, a concrete identification 

between the parameters of the model and those of real cells need to be made. Longtin 

[RBL98] has made some headway with this, but more needs to be done. 

• There are few published numericall techniques for obtaining general solutions to the 

time-dependent Fokker-Planck equation (recall section 3.4.2). Numerical algorithms 

for the solution to such partial differential equations is a large area of research, and is 

beyond the scope of this thesis, but this is definitely something that requires attention. 

1 Nor are there any analytic approximations. 
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• Recalling that skipping in the cold-receptor model may be interpreted as a noise­

induced crossing of the j = 0 and j = 1 tongue boundary of the Strutt map. An 

alternative strategy for computing the skipping rate might therefore be to find the 

mean first-passage time for this transition (in terms of the variables, a and q, of 

equation (3.24)) . 

• Stochastic resonance (in the bona-fide sense as discussed in section 1.5) demands that 

the time-scale matching relation equation (1.46) be fulfilled. However, I have not 

yet been able to prove an equivalent relation for resonant trapping and autonomous 

stochastic resonance in the cold-receptor model close to its saddle-node bifurcation. 

Such a relation first requires that the velocity of a noise-induced passage through 

a bifurcation be evaluated, and a possible technique for this has been suggested by 

Sigeti [Sig88]. 

The most compelling lesson from my work has been to glimpse at the richness of the 

interaction between noise and dynamical systems. However, much of the current neural 

computing literature falls into either the deterministic camp (i. e. investigations of purely­

deterministic neural dynamics2 such as those described in [HI97]), the neural-coding and 

information-theoretic camp (e.g. the book by Rieke et al. [RWdRvSB97]) or what might 

be termed the mean-field camp (i.e. those that consider noise in large networks, e.g. the 

replica-symmetric standpoint of [Ami89]). Although all of these approaches are extremely 

valid, there little cross-over between them. It is particularly salutatory that the amongst 

the many references to noise in the index of Arbib's exhaustive compendium [Arb95], there 

is no entry pertaining to neuronal noise in the sense considered here. One notable exception 

to my classification is of course the recent interest in stochastic resonance in neural systems, 

however this phenomena (SR) is only a small part of the larger field of 'noise in dynamical 

systems' and there is much of the latter that has a wide applicability for neural modellers. 

2In this category I include treatments of, for example: synchronization phenomena, ion channel models, 

and chaos in neuron models. 
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thus obtaining the fundamental matrix w(t) = exp (I~ Q(s)ds), with X(t) = w(t)Xo· 

Furthermore, note that the integral may be split into 

rHT rT rHt 

10 Q(s)ds = 10 Q(s)ds + 1T Q(s)ds (A.4) 

and so 

w(t+7) = exp (1T 
Q(S)dS) exp U:+t Q(S)dS) (A.5) 

but since Q(t) = Q(t + 7), we have 

rHt rt 

1T Q(s)ds = 10 Q(s)ds (A.6) 

and therefore 

w(t + 7) = w(T}w(t) (A.7) 

and since T is fixed, C = w(T) is a constant, and so we have the required periodic solution. 

Furthermore, also note 

(A.8) 

The number 

w(7) = exp (1T 
Q(S)dS) = exp(pT) (A.9) 

is called a Floquet multiplier, while p is called a Floquet exponent. Note that p is only 

defined up to a constant 

1 2mri 
p = T 10g(W(7)) + T n EZ (A.lO) 
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x = 0 is a stationary point of the system, to investigate its stability define 

p(t) = ll1(t) exp( -pt) (A.ll) 

thus 

p(t+T) = ll1(t+T)exp(-p(t+T)) = ll1(t) exp (-pt) =p(t) (A.12) 

and so p(t) is periodic and bounded, and the solution may be written 

X(t) = ll1(t)Xo = p(t) exp(pt)Xo (A.13) 

and so if IRe p < 0 the solutions decay, while for IRe p > 0 they are unbounded. 
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A.2 Multistability in networks of weakly coupled bistable units -

the anti-continuum limit 

The stationary states of a network of weakly-coupled bistable units can be shown to be 

analytic continuations of the stationary states of the network in its de--coupled limit. Fol­

lowing MacKay and Sepulchre [MS95] consider a large (and possibly infinite) network of N 

bistable oscillators. Suppose that the i,h oscillator is described by a state variable Xi and 

that in the absence of any other oscillator, it evolves according to 

Xi = f(xi) (A.14) 

where the function f( ... ) is Cl and has two stable states corresponding to Xi 

(n = 1,2). 

The state of the network may be written as the N-dimensional vector X, with components 

Xi, (i = 1, ... N). X is assumed to evolve according to 

x = F(X) + jjK(X) == G(X,jj) (A.15) 

where F is the map 

F(X) = (J(Xi))iEN (A.16) 

K( ... ) is some Cl function that describes interactions between units, and jj describes the 

strength of the coupling. 

When jj = 0 the network exhibits 2N stationary states X~), (j = o ... 2N), each of which 

satisfy F(X~») = 0, and hence also G(X~), 0) = O. As a consequence of the implicit 

function theorem (see e.g. [Gle94]), the zero (X~), 0) of G has a local continuation (termed 

the anti-continuum limit [Aub95]) about jj = 0 if (i) G is Cl and (ii) the Jacobian of G 
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(taken with respect to X) is invertible at (X~), 0) with a bounded inverse. These continued 

solutions are therefore delocalizations of the original ground states X~). 

A.2.1 Continued solutions of the diffusive Haken model 

With reference to the diffusive Haken model discussed in chapter 4, denote the state of the 

network by Q(/-I, Z) where Z :; Z(/-I) is now implicitly a function of the coupling strength 

1'. Stationary states satisfy 

(1 - 2Z)qi + q~ + /-I L (qj - qi) :; [G(Q, /-I, Z)Ji = 0 
<j,i> 

where Z is determined self-consistently from (equation (4.9)) 

(A.17) 

(A. is) 

The introduction of this self-consistency complicates the stability of the continued solutions. 

First consider Z fixed, e.g. Z:; Zo, such that Zo > !, and for /-I = 0 the equilibria of (A.17) 

satisfy 

iii=O or iii=±J2Zo-1;t0 (A.19) 

(if negative solutions are included). Denote the Jacobian 8G/8Q by 8G. Since 

(A.20) 

where Cl :; Q(O, Zo) is a zero of G( .. . ), Xi = -(2Zo - 1) if iii = 0 and Xi = 2(2Zo - 1) 

if iii ;t O. 8G is invertible at the stationary point (Cl, 0, Z), and so from the implicit 

function theorem (1FT) there exists a sufficiently small coupling I' for which there exist 

local continuations of each Cl [Bre95J. 
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Now let Z be no longer fixed, but instead determined by the self-consistency condition 

equation {A. IS) (equation (4.9). By a second application of the 1FT it is possible to show 

[Bre95] that there exists 1'0 such that for 11'1 < 1'0, there is a locally unique continuation of 

Z{J.I) and of the network state Q{J.I, Z{J.I)) such that 

(A.21) 

and so these continued states are also delocalizations of the original ground states of the 

network. 
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Computer generated random numbers are rarely truly random, since there's usually a trade­

off between computational efficiency and how 'random' a sequence must be for a given task. 

Thus, computer generated random numbers are more properly called pseudo-random. There 

is no 'best' random number generator (RNG) and in fact the ANSI1 standard for the C 

langnage merely gives an example of an RNG. Thus, RNG implementations are usually 

machine and compiler dependent. A typical algorithm is the linear congruential generator, 

which generates a sequence of numbers according to 

Xn+1 = aXn + c (mod m) a,c,m E Z+ (B.l) 

where a, c, and m are called the multiplier, the increment and the modulus, respectively. 

Random numbers are generated by supplying an initial 'seed', xo, (e.g. an integer composed 

from a reading of the system clock) and iterating the generator. However, since m is an 

integer, the generator is actually periodic with maximal2 period m. In consequence, poor 

implementations of (B.l) (e.g. those with small values of m) can give dangerous results3 . 

An even simpler RNG is the simple multiplicative congruential (SMC) algorithm 

X n +1 = aXn (mod m) a,m E Z+ (B.2) 

provided that a and m are chosen very carefully and that Xo # 0, then this generator can 

perform as effectively as, and is generally faster than, most other algorithms [PTVF92j. 

Park and Miller [PM88j recommend 

a = 75 and m = 231 - 1 (B.3) 

which has a period of 231 - 2", 2.1 X 109 . 

1 American National Standards Institute 
2(8.1) has its maximal period when m is prime. 
3[PTVF92] is particularly scathing about how such generators are implemented (note the emphasis on 

implementation) in most commercial compilers. 
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However, there is a complication when using the SMC algorithm to create a sequence of 

random numbers. First note that successive iterates of (B.2) differ only by a multiple of 

~ 1.7 x 104 (out of a total modulus of ~ 2.1 x 109). Thus when the SMC generates a very 

small number, its immediate successor in the sequence will be another small number. For 

example, if the SMC algorithm returns Xj = 10-7 , then Xj+! will be of order 1.7 X 10-3 • 

Such sequential correlations can be removed by means of a shuffiing algorithm due to Bays 

and Durham (see e.g. [PTVF92]). When the RNG algorithm is first called, the shufBe 

routine creates a table of, say 32, random numbers (see figure B.1). Although the elements, 

b;, of the table will be serially correlated, an un-correlated sequence may be created by 

selecting members at random from the table. The method proceeds as follows: each time 

the algorithm is called, the random number bo is used to choose an element, say b4 , from 

the table which is then output. b4 is now copied into bo for use during the next iteration, 

and a new element b4 is created by the RNG. 

B.1.1 Transformation methods and non-uniform deviates 

Uniform deviates are all well and good, but random numbers drawn from other distributions 

are required more frequently. 

To transform one distribution into another [PTVF92J, consider first the function y(x) of the 

uniform deviate x. If x has a probability density p(x), then if y(x) will have a probability 

density 

p(y) = p(x) I :: I 

However, for a uniform deviate on the interval (0,1) 

{ 

dx ifO<x<l 
p(x) dx = 

o otherwise 

(B.4) 

(B.5) 

therefore, any arbitrary distribution of y's, say p(y) = F(y), can be found from solving 
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Figure 8.1: The Bays and Durham shuffle algorithm for removing serial correlations in 

a sequence of iterates of the simple multiplicative congruential generator (equation (B.2)). 

Each time the algorithm is called, the random number bo is used to choose an element, 

say b4 , from the table which is then output. b4 is now copied into bo for use during the 

next iteration, and a new element b4 is created by the RNG (see e.g. [PTVF92]). [After 

[PTVF92]]. 

(B.4), subject to (8.5), so that 

x = F(y) = f F(y)dy (8.6) 

and so the transform from a uniform distribution to an arbitrary one is given by 

y(x) = p-l(X) (8.7) 

provided the inverse of F, F- \ exists. 

This procedure has an intuitive geometrical interpretation [PM88j (figure 8.2). Note first 



, 
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that F(y) is the area to the left of y under the distribution curve F(y). Therefore, the 

procedure is to pick a uniform deviate x and then to find the value y corresponding to a 

fraction x of the area to the left under the distribution curve. 

uniform deviate in 

x 

o 
transformed 

Y deviate out 

Figure 8.2: Geometric interpretation of the transformation method for generating non­

uniform deviates. Given a uniform deviate, x, and a (non-uniform) distribution, F(y), the 

required non-uniform deviate, y, is the point corresponding to a fraction x of the area to 

the left under the distribution curve. [After [PTVF92j]. 

Normal deviates and the Box-Muller algorithm 

The transformation method generalizes to more than one dimension, and is used in an 

efficient algorithm (due to Box and Muller - see [PM88j) for generating normal deviates. 

step 1 Generate two deviates distributed uniformly on the unit circle. This may 

be achieved by first transforming two iterates, Xi (i = 1,2), of the LCM generator, so 

that (2Xi - 1) -+ Zi. If Z == Li zl ;:: 1 then these two are rejected, two new Xi are 

generated and the process is repeated. 

step 1 The Box-Muller transformation. The two deviates, Zi, are now transformed to 

normal deviates according to 

J 2In(Z) 
y\ = Z\ - Z and (8.8) 
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B.2 Numerical simulation of noisy dynamical systems 

Consider the stochastic differential equation (SDE) 

d 
dt X(t) = F(X, t) + 1/(t) (B.9) 

where 1/(t) is a zero-mean white noise process4 . The random process X(t) is Markovian 

[Gil96a], and so 

(i) X(t + dt) depends solely on t, dt and X(t), i.e. X(t) has no memory. 

(ii) the increment 

V(dt; X(t), t) = X(t + dt) - X(t) (B.1O) 

is a smooth function of its arguments. 

(iii) X(t) is a continuous function of t, in the sense that V(dt; X(t), t) --t 0 as dt --t 0, 

V x,t. 

To numerically integrate an SDE, one must first decide upon a satisfactory discretization 

[Gil96a]. First write (B.9) as an integral equation 

I
t+ll.t It+ll.t 

X(t + At) = X(t) + t F(X, t)dt + t 1/(t)dt (B.U) 

in the absence of the last term, a simple Euler scheme could be used. Setting the time-step 

At to be small but finite, (B.U) would therefore become 

4 Any non-zero mean, i.e. (f}(t») == ij ::F 0, can be can be incorporated into the function F(x, t) to leave 

the zero-mean process '1'(t) = '1(1) - ij. 
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where 

Xm '" x(t) It=t', Xm+1 '" X(t) It=t'+£.t and Fm'" F(X, t) It=t' 

However, since '1(t) is non-differentiable, care must be taken when discretizing the cor­

responding random process. Consider first dividing the interval It, t + Ll.t) into n > 1 

sub-intervals of equal length Ll.t/n such that ti = t + i(Ll.t/n), (i = 0 ... n). We then have 

n 
X(t + Ll.t) - X(t) = X(tn) - X(to) = L [X(ti) - X(ti-dl (8.12) 

i=l 
n 

= L [X(ti-l + Ll.t/n) - X(ti-dl (8.13) 
i=l 

- V(Ll.t; X(t), t) 

therefore 

n 

V(Ll.t; X(t), t) = L V(Ll.t/n; X(ti-d, ti-d (8.14) 
i=l 

As a consequence of conditions (i) and (ii) (above), Ll.t can be made so small that all of the 

t;'s are arbitrarily close to t. Thus, to lowest order in Ll.t we can replace 

ti-l --t t and X(ti-d --t X(t) '" x (8.15) 

and so, to lowest order in Ll.t and for all n > 1, 

n 

V(Ll.t; x, t) = L Vi (Ll.t/n; x, t) (8.16) 
i=l 

and from the Markov condition (i) above, the ViO are n statistically-independent copies 

of the random variable V(Ll.t/n; x, t). Furtbermore, the mean and variance of each of the 

ViO are finite due to condition (iii). Therefore, if n is allowed to become arbitrarily large, 
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the central limit theorem may be invoked to show that the sum V(t.t; X(t), t) is normally 

distributed. Furthermore, so too are the n statistically-independent random quantities 

V(t.t/n; X(t), t). Thus, the mean and variance are given by 

n 

(V(t.t; X(t), t)) = :E (Vi (t.t/n; x, t)) 
i=l 

= n x (V(t.t/n; x, t)) (B.I7) 

n 

(V2(t.t; X(t), t)) = :E (V;(t.t/n; x, t)) 
i=l 

= n x (V2(t.t/n;x,t)) (B.IS) 

Now, a smooth function h(y) can only satisfy h(y) = n x h(y/n), I;f n E Z+ if it is a linear 

function of y, i.e. h(y) = By where B is a constant. Thus 

(V(t.t; X(t), t)) = A(x, t)t.t 

(V2(t.t; X(t), t)) - D(x, t)t.t 

therefore, since VO is normal, 

(B.I9) 

V(t.t; X(t), t) = N (A(x, t)t.t, D(x, t)t.t) == A(x, t)t.t + vi D(x, t)t.t N(O, 1) (B.20) 

and so the noise term is proportional to the square root of the time-step. The discretization 

therefore becomes 

(B.2I) 

The Euler scheme therefore generalizes to numerical integration of (B.9), subject to the 

initial condition, say X(t = 0) = Xo. (B.2I) is iterated by choosing a noise term, T}n, at 

every time-step, according to the Box-Muller algorithm (B.S). 
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As with the numerical integration of ordinary differential equations, the Euler scheme is 

far from being the most accurate (for a review and comparison of numerical techniques 

for the integration of SDEs see [Man89, Man97J). However, provided that the time-step 

D.t is chosen to be small enough, it is generally fairly reliable [Man97]. In the simulations 

performed for this thesis, stability and convergence were confirmed by trying several different 

time-steps. It was generally found that D. = 0.1 gave accurate results, while also allowing 

fast integration. 



Bibliography 

[AB85) 

[AGMS94) 

[Ami89) 

[Arb95) 

[Att71) 

[Att85) 

[ATT90) 

[Aub95) 

W.B. Adams and J.A. Benson. The generation and modulation of endoge­

nous rythmicity in the aplysia bursting neurone R15. Progress in Biophysics 

and Molecular Biology, 46:1-49, 1985. 

F. Apostolico, L. Gammaitoni, F. Marchesoni, and S. Santucci. Resonant 

trapping: a failure mechanism in switch transitions. Physical Review E, 

55{1}:36-39, January 1994. 

D.J. Amit. Modeling Brain Function - the world of attractor neural net­

works. Cambridge University Press, 1989. 

M. Arbib, editor. Handbook of Brain Theory and Neural Networks. MIT 

University Press, 1995. 

F. Attneave. Multistability in perception. Scientific American, 225{6}:62-

71, 1971. 

J. Attali. Noise: The Political Economy of Music. University of Minnesota 

Press, 1985. 

K. Aihara, T. Takabe, and M. Toyoda. Chaotic neural networks. Physics 

Letters A, 144{6/7}:333-340, March 1990. 

S. Aubry. Anti-integrability in dynamical and variational problems. Physica 

D, 86:284-296, 1995. 

143 



BIBLIOGRAPHY 144 

[Bar95] 

[BBH80] 

[BBJ89] 

[BC97] 

[BG96] 

[BJS90] 

M.F. Barnsley. Froctals Everywhere. Academic Press, New York, second 

edition, 1995. 

H.A. Braun, H. Bade, and H. Hensel. Static and dynamic discharge patterns 

of bursting cold fibres related to hypothetical receptor mechanisms. Pfliigers 

Archiv - European Journal of Physiology, 386:1-9, 1980. 

A.R. Bulsara, R.D. Boss, and E.W. Jacobs. Noise effects in an electronic 

model of a single neuron. Biological Cybernetics, 61:211-222, 1989. 

P.C. Bressloff and S. Coombes. Physics of the extended neuron. Interna­

tional Journal of Modern Physics B, 11{20}:2343-2392, 1997. 

A. Borsellino, F. Carlini, M. Riani, M.T. 'lUccio, A. DeMarco, P. Penengo, 

and A. Trabucco. Effects of visual angle on perspective reversal for ambigu­

ous patterns. Perception, 11:263-273, 1982. 

A. Borsellino, A. DeMarco, A. Allazetta, S. Rinesi, and B. Bartolini. Re­

versal time distribution in the perception of visual ambiguous stimuli. K y­

bernetik, 10:139-144, 1972. 

A.R. Bnlsara and L. Gammaitoni. 'lUning in to noise. Physics Today, pages 

39-45, March 1996. 

H.A. Braun, M.T. Huber, M. Dewald, K. Schii.ffer, and K. Voigt. Computer 

simulations of neuronal signal transduction: The role of nonlinear dynamics 

and noise. International Journal of Bifurcation and Chaos, 8{5}:881-889, 

1998. 

A.R. Bulsara, E.W. Jacobs, and W.C. Schieve. Noise effects in a nonlin­

ear dynamic system: the rf Superconducting Quantum Interference Device. 

Physical Review A, 42:4614-4621, 1990. 

A. Bulsara, E.W. Jacobs, T. Zhou, F. Moss, and L. Kiss. Stochastic reso­

nance in a single neuron model: theory and analog simulation. Journal of 

Theoretical Biology, 152:531-555, 1991. 



BIBLIOGRAPHY 145 

[BPSV82] 

[BR98] 

[BR99] 

[Bre92] 

[Bre95] 

[Bre97] 

[BS90] 

[BSW90] 

[BSWH84] 

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in 

climatic change. Tellus, 34{1}:1O-16, 1982. 

P.C. Bressloff and P. Roper. Stochastic dynamics of the diffusive Haken 

model with subthreshold periodic forcing. Physical Review E, 58{2}:2282-

2287, August 1998. 

P.C. Bressloff and P. Roper. Stochastic resonance and bursting in a binary­

threshold neuron with intrinsic noise. In R. Baddeley, P. Hancock, and 

P. Foldhik, editors, Information Theory and the Brain. Cambridge U niver­

sity Press, 1999. In press. 

P.C. Bressloff. Analysis of quantal synaptic noise in neural networks using 

iterated function systems. Physical Review A, 45{1O}:7549-7559, May 1992. 

P.C. Bressloff. Neural networks, lattice instantons, and the anti-integrable 

limit. Physical Review Letters, 75{5}:962-965, July 1995. 

P.C. Bressloff. A self-organizing network in the weak-coupling limit. Physica 

D, 110{3-4}:195-208, 1997. 

P.C. Bressloff and J. Stark. Neuronal dynamics based on discontinuous circle 

maps. Physics Letters A, 150{3,4}:187-195, 1990. 

H.A. Braun, K. Schii.ffer, K. Voigt, R. Peters, F. Bretschneider, X. Pei, 

L. Wilkens, and F. Moss. Low-dimensional dynamics in sensory biology 1: 

Thermally sensitive electroreceptors of the catfish. Journal of Computational 

Neuroscience, 4:335-347, 1997. 

H.A. Braun, K. Schiifer, and H. Wissing. Theories and models of tempera­

ture transduction. In J. Bligh and K. Voigt, editors, Thermoreception and 

Thermal Regulation, pages 18-29. Springer-Veriag, 1990. 

H.A. Braun, K. Schafer, H. Wissing, and H. Hensel. Periodic transduction 

processes in thermosensitive receptors. In J. Bligh and K. Voigt, editors, 



BIBLIOGRAPHY 146 

[BT90] 

[BT91] 

[BW86] 

[BW87] 

[BWSH94] 

[CA68] 

[CA93] 

[Car67] 

[CBGC96] 

[CCB91] 

Sensory Receptor Mechanisms, pages 18-29. World Scientific Publishing, 

1984. 

P.C. Bressloff and J.G. Taylor. Random iterative networks. Physical Review 

A, 41{2}:1126-1137, January 1990. 

P.C. Bressloff and J.G. Taylor. Discrete-time leaky integrator network with 

synaptic noise. Neural Networks, 4{6}:789-801, 1991. 

KL. Babcock and R.M. Westervelt. Stability and dynamics of simple elec­

tronic neural networks with added inertia. Physica D, 23:464-469, 1986. 

KL. Babcock and R.M. Westervelt. Dynamics of simple electronic neural 

networks. Physica D, 28:305-316, 1987. 

H.A. Braun, H. Wissing, K Schiifer, and M.C. Hirsch. Oscillation and noise 

determine signal transduction in shark multimodal sensory cells. Nature, 

367:270-273, January 1994. 

D.O. Carpenter and B.O. Alving. A contribution of an electrogenic Na+ 

pump to membrane potential in aplysia neurons. Journal of General Phys­

iology, 52{1}:1-21, 1968. 

D.R. Chialvo and A.V. Apkarian. Modulated noisy biological dynamics: 

three examples. Journal of Statistical Physics., 70{1/2}:375-391, 1993. 

D.O. Carpenter. Temperature effects on pacemaker generation, membrane 

potential, and critical firing threshold in aplysia neurons. Journal of General 

Physiology, 50{6}:1469-1484, 1967. 

F. Chapeau-Blondeau, X. Godiver, and N. Chambert. Stochastic resonance 

in a neuron model that transmits spike trains. Physical Review E, 53{1}:{1-

6}, January 1996. 

C.C. Canavier, J.W. Clark, and J.H. Byrne. Simulation of the bursting 

activity of neuron R15 in aplysia: Role of ion currents, calcium balance, 

modulatory transmitters. Journal of Neurophysiology, 66:2107-2124, 1991. 



BIBLIOGRAPHY 147 

[CFJ98] 

[CIG96] 

[CL55] 

[CL95] 

[CM94] 

[DeF81] 

[DH89] 

[DWPM93] 

[EK86] 

[ES78] 

[Fis67] 

[Fit61] 

M.H. Choi, R.F. Fox, and P. Jung. Quantifying stochastic resonance in 

bistable systems: response vs residence time distributions. Physical Review 

E, 57{6}:6335-6344, June 1998. 

J.J. Collins, T.T. Imhoff, and P. Grigg. Noise enhanced tactile sensation. 

Nature, 383:770, 1996. 

E.A. Coddington and N. Levinson. Theory of ordinary differential equations. 

Mc-Graw-Hill Book Company, New York, 1955. 

P.M. Chaikin and T.C. Lubensky. Principles of condensed matter physics. 

Cambridge University Press, 1995. 

J .M. Casado and M. Morillo. Distribution of escape times in a driven 

stochastic model. Physical Review E, 49{2}:1136-1139, 1994. 

L.J. DeFelice. Introduction to Membrane Noise. Plenum, New York, 1981. 

T. Ditzinger and H. Haken. Oscillations in the perception of ambiguous 

figures - a model based on synergetics. Biological Cybernetics, 61:279-287, 

1989. 

J.K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss. Noise enhancem­

ment of information transfer in crayfish mechanoreceptors by stochastic res­

onance. Nature, 365:337-340, 1993. 

G.B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system 

coupled with a slow oscillation. SIAM Journal of Applied Mathematics, 

46{2}:233-253, April 1986. 

S.R. Ellis and L. Stark. Eye movements during the viewing of Necker cubes. 

Perception, 7:575-581, 1978. 

G.H. Fisher. Measuring ambiguity. American Journal of Psychology, 

46{2}:233-253, April 1967. 

R. FitzHugh. Impulses and physiological states in theoretical models of 

nerve membrane. Biophysical Journal, 1:445-466, 1961. 



BIBLIOGRAPHY 148 

[FK50) 

[FK52) 

[Fre91) 

[FY95) 

[Gar85) 

[GDNH93) 

[GHJM98) 

[GHT82) 

[Gil96a) 

[Gil96b) 

[Gla95) 

P. Fatt and B. Katz. Some observations on biological noise. Nature, 166:597-

598, 1950. 

P. Fatt and B. Katz. Spontaneous subthreshold activity at motor nerve 

endings. Journal of Physiology, 117: 109-128, 1952. 

W.J. Freeman. The physiology of perception. Scientific American, 

264(2}:34-41, February 1991. 

P. Fiildiak and M. P. Young. Sparse coding in the primate cortex. In 

M. Arbib, editor, Handbook of Brain Theory and Neural Networks, pages 

895-898. MIT Press, 1995. 

C.W. Gardiner. Handbook of Stochastic Methods. Springer Veriag, New 

York, second edition, 1985. 

H. Gang, T. Ditzinger, C.Z. Ning, and H. Haken. Stochastic resonance 

without external periodic force. Physical Review Letters, 71(6}:807-81O, 

August 1993. 

L. Gammaitoni, P. Hiingii, P. J ung, and F. Marchesoni. Stochastic reso­

nance. Reviews of Modern Physics, 70(1}:223-286, January 1998. 

A.L.F. Gorman, A. Herman, and M.V. Thomas. Ionic requirements for 

membrane oscillations and their dependence on the calcium concnetration 

in a molluscan pace-maker neruone. Journal of Physiology, 327:185-217, 

1982. 

D.T. Gillespie. The mathematics of brownian motion and johnson noise. 

American Journal of Physics, 64(3}:225-240, March 1996. 

D.T. Gillespie. The multi-variate langevin and fokker-planck equations. 

American Journal of Physics, 64(1O}:1246-1257, October 1996. 

L. Glass. Chaos in neural systems. In M. Arbib, editor, Handbook of Brain 

Theory and Neural Networks, pages 186-189. MIT Press, 1995. 



BIBLIOGRAPHY 149 

[Gle94] 

[GM64] 

[GMS95] 

[Hak87] 

[Hak91] 

[Ham73] 

[HH52] 

[HI97] 

[HJ95] 

P. G lendinning. Stability, instability and chaos. Cambridge University Press, 

1994. 

G.L. Gerstein and B. Mandelbrot. Random walk models for the spike ac­

tivity of a single neuron. Biophysical Journal, 4:41-68, 1964. 

L. Gammaitoni, F. Marchesoni, and S. Santucci. Stochastic resonance as 

a bona fide resonance. Physical Review Letters, 74(7):1052-1055, February 

1995. 

B.J. Gluckman, T.r. Netoff, E.J. Neel, W.L. Ditto, M.L. Spano, and S. J. 

Schiff. Stochastic resonance in a neuronal network from a mammalian brain. 

Physical Review Letters, 77(19}:4098-4101, November 1996. 

H. Haken. Synergetic computers for pattern recogntition and associative 

memory. In H. Haken, editor, Computational Systems - Natuml and Arti­

ficial, pages 2-22. Springer-Verlag, 1987. 

H. Haken. Synergetic Computers and Cognition. Springer-VerJag, 1991. 

R. Hamming. Numerical methods for scientists and engineers. McGraw­

Hill, second edition, 1973. 

C. Heneghan, C.C. Chow, J.J. Collins, T.T. Imhoff, S.B. Lowen, and M.C. 

Teich. Information measures quantifying aperiodic stochastic resonance. 

Physical Review E, 54(3):R2228-R2231, 1996. 

A.L Hodgkin and A.F Huxley. A quantitive description of membrane cur­

rent and its application to conduction and excitation in nerve. Journal of 

Physiology (London), 117:500-544, 1952. 

F.C. Hoppensteadt and E.M. Izhikevich. Weakly Connected Neuml Net­

works, volume 126 of Applied Mathematical Sciences. Springer-VerJag, New 

York, 1997. 

P. Hiingii and P. Jung. Colored noise in dynamical systems. Advances in 

Chemical Physics, 89:239-326, 1995. 



BIBLIOGRAPHY 150 

[HKP91] 

[HLQ69] 

[HoI76] 

[Hop82] 

[HR84] 

[HTB90] 

[lva90] 

[JNT75] 

[JS87] 

[Kan89] 

[Kat66] 

J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the theory of neuml 

computation. Addison-Wesley, 1991. 

J.I. Hubbard, R. Llinas, and D.M.J. Quastel. Electrophysiological Analysis 

of Synaptic Transmission, volume 19 of Monogmphs of the Physiological 

Society. Camelot Press, London, 1969. 

A.V. Holden. Models of the stochastic activity of neurons, volume 12 of 

Lecture Notes in Biomathematics. Springer-VerJag, Berlin, 1976. 

J.J. Hopfield. Neural networks and physical systems with emergent collective 

computational abilities. Proceedings of the National Acadamy of Science 

USA., 79:2554-2558, April 1982. 

J.L. Hindmarsh and R.M. Rose. A model of neuronal bursting using 3 

coupled 1st order differential equations. Proceedings of the Royal Society of 

London Series B-Biological Sciences, 221(1222):87-102, 1984. 

P. Hiingii, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years 

after Kramers. Reviews of Modern Physics, 62(2):251-341, April 1990. 

K.P. I vanov. The location and function of different skin thermoreceptors. 

In J. Bligh and K. Voigt, editors, Thermoreception and Thermal Regulation, 

pages 37-43. Springer-VerJag, 1990. 

J.J.B. Jack, D. Noble, and R.W. Tsien. Electric Current Flow in Excitable 

Cells. Clarendon Press, Oxford, 1975. 

D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations. Ox­

ford Applied Mathematics and Computing Science Series. Clarendon Press, 

Oxford, second edition, 1987. 

E.R. Kandel. Small systems of neurons. In R.R. Llinas, editor, The biology 

of the bmin from neurons to networks, pages 70-86. Scientific American, 

1989. 

B. Katz. Nerve, muscle and synapse. McGraw-Hill, New York, 1966. 



BIBLIOGRAPHY 151 

[KF87] 

[KM72] 

[Koh82] 

[Koh84] 

[KSJ91] 

[Lan97] 

[Lap07] 

[LBM91] 

[LH96] 

H. Korn and D.S. Faber. Regulation and sigificance of probabilistic mecha­

nisms at central synapses. In W.M. Edelman, W. Gall, and W.M. Cowan, 

editors, Synaptic functions, pages 57-108. John WiJey and Sons, 1987. 

B. Katz and R Miledi. The statistical nature of the acetylcholine potential 

and its molecular components. Journal of Physiology, 224:665-700, 1972. 

J.H. Kaas, RJ. Nelson, M. Sur, C.S. Lin, and M.M. Merzenich. Multiple 

representations of the body within the primary somatosensory cortex of 

primates. Science, 204:521-523, May 1979. 

T. Kohonen. Self--{)rganized formation of topologically correct feature maps. 

Biological Cybernetics, 43(1):59-69, 1982. 

T. Kohonen. Self organisation and Associative Memory. Springer-Verlag, 

1984. 

E.R Kandel, J.H. Schwartz, and T.M. Jessel. Principles of Neuml Science. 

Elsevier Science, New York, third edition, 1991. 

P. LanskY. Sources of periodical force in noisy integrate-and-fire models of 

neuronal dynamics. Physical Review E, 55(2):2040-2043, February 1997. 

L. Lapicque. Recherches quantitatives sur l'excitation electrique des nerfs 

traitee comme une polarization. Journal de Physiologie et de Pathologie 

Genemle, 9:620-635, 1907. 

A. Longtin, A.R Bulsara, and F. Moss. Time-interval sequences in bistable 

systems and the noise-induced transmission of information by sensory neu­

rons. Physical Review Letters, 67(52):656-659, July 1991. 

A. Longtin and K. Hinzer. Encoding with bursting, subthreshold oscilla­

tions, and noise in mammalian cold receptors. Neuml Computation, 8:215-

255, 1996. 



BIBLIOGRAPHY 152 

[Lis97] 

[Lit74] 

[LM74] 

[LM96] 

[LMD+95] 

[LN71a] 

[LN71b] 

[Lon97] 

[Man89] 

[Man97] 

J .E. Lisman. Bursts as a reliable unit of neural information: making un­

reliable synapses reliable. Trends in Neuroscience, 20{1}:38-43, January 

1997. 

W.A. Little. The existence of persistent states in the brain. Mathematical 

Biosciences, 19:101-120, 1974. 

I. Lundstrom and D. McQueen. A proposed l/f noise mechanism in nerve 

cell membranes. Journal of Theoretical Biology, 45:405-409, 1974. 

J.E. Levin and J.P. Miller. Broadband neural encoding in the cricket cercal 

sensory system enhanced by stochastic resonance. Nature, 380:165-168, 

March 1996. 

J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, and A.R. Bulsara. 

Array enhanced stochastic resonance and spatiotemporal synchronization. 

Physical Review Letters, 75{1}:3-6, July 1995. 

H. Lecar and R. Nossal. Theory of threshold fluctuations in nerves: 11 

analysis of various sources of membrane noise. Biophysical Journal, 11:1068-

1084, 1971. 

H. Lecar and R. Nossal. Theory of threshold fluctuations in nerves: 11 rela­

tionships between electrical noise and fluctuations in axon firing. Biophysical 

Journal, 11:1048-1067, 1971. 

A. Longtin. Autonomous stochastic resonance in bursting neurons. Physical 

Review E, 55{1}:868-876, January 1997. 

R. Mannella. Computer experiments in nonlinear stochastic physics. In 

F. Moss and P.V.E. McClintock, editors, Noise in nonlinear dynamical sys­

tems: Experiments and simulations, volume 3, pages 189-217. Cambridge 

University Press, 1989. 

R. Mannella. Numerical integration of stochastic differential equations. Un­

published, 1997. 



BIBLIOGRAPHY 153 

[McL47] 

[Me194] 

[MK78] 

[Mos94] 

[MP094] 

[MS95] 

[MS96a] 

[MS96b] 

[MW89] 

[Nec32] 

N.W. McLachlan. Theory and Application of Mathieu Functions. Clarendon 

Press, Oxford, 1947. 

B. W. Me!. Information processing in dendritic trees. Neural Computation, 

6:1031-1085, 1994. 

G. Matsumoto and T. Kunisawa. Critical slowing down near the transition 

region from the resting to time-ordered states in gant squid axons. Journal 

of the Physical Society of Japan, 44(3):1047-1O48, March 1978. 

F. Moss. Stochastic resonance: from the ice ages to the monkey's ear. In 

G.H. Weiss, editor, Contemporary problems in Statistical Physics., chap­

ter 5, pages 205-253. SIAM, Philadelphia, 1994. 

F. Moss, D. Pierson, and D. O'Gorman. Stochastic resonance: tutorial and 

update. International Journal of Bifurcation and Chaos, 4(6):1383-1397, 

1994. 

R.S. MacKay and J. A. Sepulchre. Multistability in networks of weakly 

coupled bistable units. Physica D, 82:243-254, 1995. 

R.S. Maier and D.L. Stein. The weak-noise characteristic boundary exit 

problem: old and new results. In M. Millonas, editor, Fluctuations and 

Order: The New Synthesis, pages 109-118. Springer-Veriag, 1996. 

R.N. Mantegna and B. Spagnolo. Noise enhanced stability in an unstable 

system. Physical Review Letters, 76(4):563-566, January 1996. 

B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Physical 

Review A, 39(9):4854-4869, May 1989. 

L.A. Necker. Observations on some remarkable phenomenon which occurs 

on viewing a figure of a crystal or geometrical solid. The London and End­

in burgh Philosophical Magazine and Journal of Science, 3:329-337, 1832. 



BIBLIOGRAPHY 154 

[NK86] 

[NM95] 

[NS72] 

[NSS97] 

[OC93] 

[OC95] 

[Pec39] 

[Per92] 

[Pla81] 

[PM88] 

[PTVF92] 

S.T. Neely and D.O. Kim. A model for active elements in cochlear biome­

chanics. Journal of the Acoustical Society of America, 79(5):1472-1480, 

1986. 

A.H. Nayfeh and D.T. Mook. Nonlinear Oscillations. Wiley Classics Library. 

John Wiley and Sons, 1995. 

J. Nagumo and S. Sato. On a response characteristic of a mathematical 

neuron model. Kybernetik, 10:155-164, 1972. 

A. Neiman, P.!' Saparin, and L. Stone. Coherence resonance at noisy precur­

sors of bifurcations in nonlinear system. Physical Review E, 56(1):270-273, 

July 1997. 

T. Ohira and J. Cowan. Master equation approach to stochastic neurody­

namics. Physical Review E, 48:2259-2266, 1993. 

T. Ohira and J. Cowan. Stochastic single neurons. Neural Computation, 

7:518-528, 1995. 

Ch. Pecher. La fluctuation d'excitabilite de la fibre nerveuse. Archives 

Internationales de Physiologie, 49:129-152, 1939. 

P. Peretto. An Introduction to the Modelling of Neural Networks. Mono­

graphs and Texts in Statistical Physics. Cambridge University Press, 1992. 

R.E. Plant. Bifurcation and resonance in a model for bursting nerve-cells. 

Journal of Mathematical Biology, 11(15):15-32, 1981. 

S. Park and K. Miller. Random number generators: Good ones are hard 

to find. Communications of the Association for Computing Machinery, 

31(10):1192-1201, 1988. 

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical 

Recipes in C: the Art of Scientific Computing. Cambridge University Press, 

second edition, 1992. 



BIBLIOGRAPHY 155 

[RBL98] 

[Rei98] 

[Ric54] 

[Ric95] 

[Rin87] 

[Ris89] 

[RL87] 

[RL93] 

[RS94a] 

[RS94b] 

P. Raper, P.C. Bressloff, and A. Longtin. A phase model of temperature­

dependent mammalian cold receptors. Neural Computation, 1998. Submit­

ted. 

L. Reich!. A Modem Course in Statistical Physics. Wiley-Interscience, New 

York, second edition, 1998. 

S.O. Rice. Mathematical analysis of random noise. In N. Wax, editor, 

Selected Papers on Noise and Stochastic Processes, pages 133-294. Dover 

Publications, 1954. 

L.M. Ricciardi. Diffusion models of neuron activity. In M. Arbib, editor, 

Handbook of Brain Theory and Neural Networks, pages 299-304. MIT Press, 

1995. 

J. Rinze!. A formal classification of bursting mechanisms in excitable sys­

tems. In E. Teramoto and M. Yamaguti, editors, Mathematical Topics in 

Population Biology, Morphogenesis and Neurosciences, number 71 in Lec­

ture Notes in Biomathematics, pages 267-281. Springer-Verlag, 1987. 

H. Risken. The Fokker-Planck Equation. Springer Verlag, New York, second 

edition, 1989. 

J. Rinzel and Y.S. Lee. Dissection of a model for neuronal parabolic bursting. 

Journal of Mathematical Biology, 25:653-675, 1987. 

J.P. Raspars and P. LanskY. Stochastic model neuron without resetting of 

dendritic potential: application to the olfactory system. Biological Cyber­

netics, 69:283-294, 1993. 

W. Rappel and S.H. Strogatz. Stochastic resonance in an autonomous sys­

tem with a nonuniform limit cycle. Physical Review E, 50(4):3249-3250, 

1994. 

M. Riani and E. Simonotto. Stochastic resonance in the perceptual inter­

pretation of ambiguous figures - a neural-network mode!. Physical Review 

Letters, 72(19):3120-3123, 1994. 



BIBLIOGRAPHY 156 

[RS95] 

[RSMH86] 

M. Riani and E. Simonotto. Periodic perturbation of ambiguous figure - a 

neural-network model and a non-simulated experiment. n Nuovo Cimento 

D, 17{7-8):903-913, 1995. 

D.E. Rumelhart, P. Smolensky, J.L. McCleliand, and G.E. Hinton. Parallel 

Distributed Processing., volume 2. MIT Press, 1986. 

[RWdRvSB97] F. Rieke, D. Warland, Rob de Ruyer van Steveninck, and W. Bialek. Spikes 

- exploring the neural code. MIT Press, 1997. 

[SB90] 

[SB92] 

[SBD91] 

[SBH82] 

[SBR88] 

[SBR90] 

[SH95] 

K. Schiifer and H.A. Braun. Modulation of periodic cold receptor activity 

by oubain. Pfliigers Archiv - European Journal of Physiology, 417:91-99, 

1990. 

M. Schmutz and W. Banzhaf. Robust competitive networks. Physical Review 

A, 45(6):4132-4145, March 1992. 

W.C. Schieve, A.R. Bulsara, and G.M. Davis. Single effective neuron. Phys­

ical Review A, 43(6):2613-2623, March 1991. 

K. Schiifer, H.A. Braun, and H. Hense!. Static and dynamic activity of cold 

receptors at various calcium levels. Journal of Neurophysiology, 47(6):1017-

1028, June 1982. 

K. Schiifer, H.A. Braun, and L. Rempe. Classification of a calcium conduc­

tance in cold receptors. Progress in Brain Research, 74:29-36, 1988. 

K. Schiifer, H.A. Braun, and L. Rempe. Mechanisms of sensory transduction 

in cold receptors. In J. Bligh and K. Voigt, editors, Thermoreception and 

Thermal Regulation, pages 30-36. Springer-Veriag, 1990. 

G. Schiiner and H. Hock. Concepts for a dynamic theory of perceptual 

organization: an example from apparent motion. In P. Kruse and M. Stadler, 

editors, Ambiguity in Mind and Nature, pages 275-310. Springer Veriag, 

1995. 



BIBLIOGRAPHY 157 

[She87] 

[She94] 

[Sig88] 

[SK86] 

[SK95] 

[Str94] 

[Swi96] 

[TLM+88] 

[Tuc88] 

[VD68] 

[vdM73] 

RN. Shepherd. Towards a Universal Law of Generalization for psychological 

science. Science, 237:1317-1323, September 1987. 

G.M. Shepherd. Neurobiology. Oxford University Press, third edition, 1994. 

D.E. Sigeti. Universal results for the effects of noise on dynamical systems. 

PhD thesis, Department of Physics, The University of Texas at Austin, 

1988. 

S. Shimonoto and Y. Kuramoto. Phase transitions in active rotator systems. 

Progress of Theoretical Physics, 75(5}:1105-111O, 1986. 

M. Stadler and P. Kruse. The function of meaning in cognitive order forma­

tion. In P. Kruse and M. Stadler, editors, Ambiguity in Mind and Nature, 

pages 5-21. Springer Verlag, 1995. 

S.H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, 

MA, 1994. 

N. V. Swindale. The development of topography in the visual-cortex - a 

review of models. Network - Computation In Neural Systems, 7(2}:161-

247, 1996. 

RW. Tsien, D. Lipscombe, D.V. Madison, K.R Biey, and A.P. Fox. Mul­

tiple types of neuronal calcium channels and their selective modulation. 

Trends in Neuroscience, 11(10):431-437, 1988. 

H.C. Tuckwell. Introduction to Theoretical Neurobiology, volume 1 of Cam­

bridge Studies in Mathematical Biology. Cambridge University Press, 1988. 

A.A. Verveen and H.E. Derksen. Fluctuation phenomena in nerve mem­

brane. Proceedings of the IEEE., 56(6}:906-916, June 1968. 

C. von der Malsburg. Self-organization of orientation sensitive cells in the 

striate cortex. Kybemetik, 14:85-100, 1973. 



BIBLIOGRAPHY 158 

[Ver61] 

[vK76] 

[vK92] 

[Wal91] 

[WC82] 

[WC94] 

[WGC74] 

[Wie85] 

[WJ98] 

[WM95] 

A.A. Verveen. Fluctuations in Excitability: Research Report on Signal 

1hmsduction in Nerve Fibres. PhD thesis, Netherlands Central Institute 

for Brain Research, Amsterdam, 1961. 

N.G. van Kampen. The expansion of the master equation. Advances in 

Chemical Physics, 34:245-309, 1976. 

N.G. van Kampen. Stochastic processes in Physics and Chemistry. North­

Holland, 1992. 

P.M.B. Walker. Chambers Science and Technology Dictionary. Chambers, 

Edinburgh, 1991. 

M.L. Wiederhold and 0.0. Carpenter. Possible role of pacemaker mecha­

nisms in sensory systems. In 0.0. Carpenter, editor,' Cellular Pacemakers, 

volume 2, pages 27-58. Wiley-Interscience, 1982. 

C.W. Wu and L.O. Chua. Symbolic dynamics of piecewise-linear maps. 

IEEE Transactions on Circuits and Systems II - Analog and Digital Signal 

Processing, 41(6}:420-424, 1994. 

J.A. Willis, G.L. Gaubatz, and 0.0. Carpenter. The role of the electrogenic 

pump in modulation of pacemaker discharge of aplysia neurons. Journal of 

Cellular Physiology, 84:463-471, 1974. 

K. Wiesenfeld. Noisy precursors of nonlinear instabilites. Journal of Statis­

tical Physics, 38(5/6}:1071-1O97, 1985. 

K. Wiesenfeld and F. Jaramillo. Minireview of stochastic resonance. Chaos, 

8(3}:539-548, September 1998. 

K. Wiesenfeld and F. Moss. Stochastic resonance and the benefits of back­

ground noise: from ice ages to crayfish and squids. Nature, 373:33-36, 

January 1995. 



BIBLIOGRAPHY 159 

[WR95] 

[WW74] 

[ZMJ90] 

X.J. Wang and J. Rinzel. Oscillatory and bursting properties of neurons. 

In M. Arbib, editor, Handbook of Brain Theory and Neural Networks. MIT 

Press, 1995. 

W.A. Wilson and H. Wachtel. Negative resistance characteristic essential for 

the maintenance of slow oscillations in bursting neurons. Science, 186:932-

934, 1974. 

T. Zhou, F. Moss, and P. Jung. Escape-time distributions of a periodically 

modulated bistable system with noise. Physical Review A, 42(6):3161-3169, 

September 1990. 




