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Abstract  

Discrete dislocation dynamics (DDD) has been used to model the deformation of nickel-

based single crystal superalloys with a high volume fraction of precipitates at high 

temperature. A representative volume cell (RVC), comprising of both the precipitate and the 

matrix phase, was employed in the simulation where a periodic boundary condition was 

applied. The dislocation Frank-Read sources were randomly assigned with an initial density 

on the 12 octahedral slip systems in the matrix channel. Precipitate shearing by 

superdislocations was modelled using a back force model, and the coherency stress was 

considered by applying an initial internal stress field. Strain-controlled loading was applied 

to the RVC in the [001] direction. In addition to dislocation structure and density evolution, 

global stress-strain responses were also modelled considering the influence of precipitate 

shearing, precipitate morphology, internal microstructure scale (channel width and 

precipitate size) and coherency stress. A three-stage stress-strain response observed in the 

experiments was modelled when precipitate shearing by superdislocations was considered. 

The polarized dislocation structure deposited on the precipitate/matrix interface was found 

to be the dominant strain hardening mechanism. Internal microstructure size, precipitate 

shape and arrangement can significantly affect the deformation of the single crystal 



superalloy by changing the constraint effect and dislocation mobility. The coherency stress 

field has a negligible influence on the stress-strain response, at least for cuboidal 

precipitates considered in the simulation. Preliminary work was also carried out to simulate 

the cyclic deformation in a single crystal Ni-based superalloy using the DDD model, although 

no cyclic hardening or softening was captured due to the lack of precipitate shearing and 

dislocation cross slip in this alloy. 

Keywords: Discrete dislocation dynamics; Precipitate shearing; Size effect; Precipitate 

morphology; Cyclic response. 

 

1. Introduction 

Single crystal nickel-based superalloys are a class of high temperature and highly corrosion 

resistant materials, which are widely used in aerospace, marine and power generation 

industries. They mainly consist of two phases: Ductile face centred cubic (FCC) solid solution 

(the  γ  phase) and coherent L1�-ordered Ni3Al precipitates (the γ� phase). The Ni3Al phase is 

regularly distributed as roughly cuboidal or spherical particles in the matrix. As an important 

class of structural materials, nickel-based superalloys are usually exposed to high static or 

cyclic loads in non-ambient environments, and hence a fundamental understanding of their 

constitutive behaviour is essential for safe life and damage tolerance assessment for 

fracture critical applications. In the last two decades, considerable work has been carried 

out to model the constitutive behaviour of the materials, which may be generally classified 

into the following three categories. The first category treats the material as a homogeneous 

single phase material where channel width, precipitate size and other specific 

microstructure features are not explicitly accounted for (McHugh and Mohrmann, 1997; 



Shenoy et al., 2005). The second considers the two-phase nature of superalloys directly 

(Ohashi et al., 1997; Busso et al., 2000), where the shape, dimensions and properties of both 

phases are taken into account as model parameters. The third case is a homogenization 

model statistically introduces the microstructure information at macroscopic level (Fedelich, 

1999; 2002; Tinga et al., 2010). All these models are formulated within a continuum 

framework. Although some interactions between the dislocations and the microstructure 

may be considered by the strain gradient (Busso et al., 2000) or statistic laws (Fedelich, 1999; 

2002), these methods are limited in the study of the interaction between dislocations and 

the superalloy microstructure (Yashiro et al., 2006), as the statistic laws may not be 

appropriate at the microscale or nanoscale of precipitates and channels. 

 

Plastic deformation in crystalline metals is a consequence of nucleation, multiplication and 

motion of a large number of dislocations. Discrete Dislocation Dynamics (DDD) method 

(Kubin et al., 1992, 1999; Van der Gienssen et al., 1995; Ghoniem et al., 2000; Devincre et al., 

2001; Zbib et al., 2002; Arsenlis, et al., 2007; Liu et al., 2009) has been developed to 

calculate the plastic deformation directly from the evolution of a large number of 

dislocation segments. The three dimensional (3D) DDD method was originally developed by 

Kubin et al. (1992; 1999) based on the discretisation of dislocations of arbitrary shape into a 

succession of edge and screw piecewise segments. While in Zbib et al. (1998), the 

dislocations were treated as a piecewise continuous array of straight line segments with 

mixed character. On the other hand, Ghoniem et al. (2000; 2002) developed a parametric 

dislocation dynamics (PDD) model by representing dislocations as spatial spline curves 

connected through dislocation nodes. To improve the computational efficiency in the study 

of large-scale plastic deformation, Wang et al. (2006) presented a parallel algorithm for the 



3D PDD. Recently, DDD becomes a popular method to study the intrinsic mechanism of 

mechanical responses of materials (Madec, 2003; 2008). Since an intrinsic length scale, i.e. 

the Burgers Vector, is included in such a method, it is possible to capture the size effect of 

internal micro-structure parameters (Vattre et al., 2010). By introducing atomistic 

information, DDD can predict the experimentally observed plastic anisotropy and tension-

compression asymmetry (Wang et al., 2009; 2010). Also DDD models the dislocation slip, 

multiplication, annihilation, jog, junction, cross slip (Rhee et al, 1998; Madec et al., 2002; 

Wang et al., 2007) and climb (Gao et al., 2010) directly, thus it can explicitly capture the 

interactions between dislocations on different slip systems (Queyreau et al., 2009), the 

interactions between the dislocations and internal microstructures as well as the formation 

of different heterogeneous dislocation microstructure such as slip band (Kubin et al., 1992, 

1999; Wang et al., 2008; Akarapu et al., 2010) under various loads. Since both the 

dislocation-internal microstructure interaction and the formation of dislocation 

microstructures are the keys to understanding the deformation mechanisms, DDD has 

become an important method to investigate the mechanical behaviour of materials and its 

intrinsic dislocation mechanisms for both monotonic (Motz et al., 2008) and cyclic loadings 

(Depres et al., 2004; 2006). For monotonic loading, Groh et al. (2005) performed a three 

dimensional (3D) DDD simulation of the stress-strain response of particle-reinforced metal 

matrix composites. They found that the constraint effect on dislocation mobility by the 

matrix channel width significantly influences its mechanical response. For cyclic loading, 

Shin et al. (2007) modelled the fatigue behaviour of shearable particle hardened materials 

by the DDD method, and their results showed that the particle size influences the manner of 

interaction between dislocations and particles, further the cyclic behaviour. Single crystal 

nickel superalloys are two-phase materials with a high fraction of phase boundaries, which 



is similar to the particle hardened materials. Thus it is feasible to use the DDD method to 

simulate the dislocation- γ�  precipitate interaction, the formation of dislocation 

microstructures and the montonic/cyclic responses of single crystal Ni-based superalloys, 

which may lead to a more fundamental microscopic understanding of their deformation 

mechanisms. 

 

The DDD method has been employed to investigate the mechanical behaviour of nickel-

based superalloys and their dislocation mechanisms. Rao et al. (2004) calculated the room 

temperature yield stress of a nickel-based superalloy containing up to 40% γ� precipitate by 

the DDD method. The influence of selected parameters, such as the precipitate size, shape, 

volume fraction and anti-phase boundary (APB) energy, on the mechanical behaviour of the 

material, has been investigated. However, the work considered only one slip plane and 

modelled just one pair of 1/2<110> dislocations with either screw or 60� initial character. 

Consequently, the effects of strain hardening on the yield stress as a result of dislocation 

accumulation and interaction between different slip planes and slip systems, could not be 

adequately captured; and the yield stress was simply assumed as the minimum stress 

required for the dislocation pair to sweep through the considered glide plane. Within the 

DDD framework, Yashiro et al. (2006) proposed a back force model to simulate the cutting 

of dislocation pairs into the precipitate phase and investigated the blocking effect of 

interfacial dislocation network on precipitate shearing by these dislocation pairs. Vattre et al. 

(2009) extended Yashiro et al.’s (2006) model by introducing the Kear-Wilsdorf (KW) 

unlocking stress in the precipitates to account for the influence of high temperature. They 

predicted the critical resolved shear stress (CRSS) for precipitate shearing at temperature 

850
0
C for a range of high precipitate volume fractions (40%~70%), but again considered just 



one dislocation pair on a specific slip plane. On the other hand, Vattre et al. (2010) used the 

discrete dislocation-continuum model (DCM) to simulate the anisotropic mechanical 

response of a single-crystal nickel-based superalloy at 1123K. The uniaxial anisotropic 

yielding behaviour along [001] and [111] directions was found to be related to the 

difference in dislocation localization, interfacial dislocation microstructures and dislocation 

density evolution. However, in this work, the precipitates were assumed to be elastic and no 

precipitate shearing was taken into account. So far, for nickel based superalloys, the 

interaction between the internal microstructure features, such as the channel width, 

precipitate size and morphology, and the dislocation behaviour has not been well 

understood, hence more systematic studies are required to obtain a thorough 

understanding of the strengthening mechanisms for this type of alloys. To our best 

knowledge, no DDD studies have been published in the simulation of cyclic behaviour of the 

materials. 

 

The objective of this work is to carry out a 3D DDD simulation of mechanical deformation of 

typically experienced in single crystal Ni-based superalloys, focusing on the interaction 

between dislocation and internal microstructure. A representative volume cell (RVC) was 

analysed under strain-controlled loading in the [001] direction, where dislocation sources 

were distributed on all 12 octahedral slip systems in the matrix channel. Precipitate shearing 

by superdislocatons was particularly considered in the DDD simulation. Dislocation structure 

and density evolution were monitored during the simulation. The effects of precipitate 

shearing, microstructural features and coherency stress on the global stress-strain 

responses were investigated. Preliminary DDD simulation was also carried out to model the 

cyclic deformation of the material. 



 

2. DDD Simulation Methodology 

2.1 Simulation model 

As shown in Fig.1, a representative volume cell (RVC), containing a  �� cubic precipitate of 

edge length 	 and � channels of width 
, was built to represent nickel-based single crystal 

superalloys such as CMSX4 (Tinga et al., 2010). Both the � and �� phases were assumed to 

be isotropic with the same shear modulus � � 37��� and Poisson's ratio � � 0.37. The 

magnitude of the Burgers vector b in both phases was chosen to be 0.25��. An uniaxial 

load was applied to the RVC in the �001� direction (z axis) under strain-controlled condition. 

Periodic boundary condition (PBC) was applied to the RVC to satisfy the mechanical 

equilibrium, dislocation flux balance and dislocation line continuity conditions at the 

boundaries. As the PBC condition is applied to the RVC, artificial self-annihilation of 

dislocation loops occurs (Madec et al., 2003). To avoid this, the RVC needs to have a non-

perfect cubic shape, which also leads to a non-perfect cubic shape for the precipitate if the 

channel width is kept fixed. For instance, at a channel with 
 � 250� and a precipitate 

volume fraction � � 63%, the dimensions of the RVC and the precipitates are 1670� �
1750� � 1830� and 1420� � 1500� � 1580�, respectively. The size of precipitate given in 

this paper is therefore an average value of the three sides.  

 

2.2 Peach-Kohler force calculation 

Following the DDD framework developed by Zbib et al. (1998; 2002), all dislocation lines and 

loops of arbitrary shape were discretized into short line segments and the evolution of each 

dislocation segment is determined by the motion of dislocation nodes. The Peach–Kohler 



(PK) force  !, which controls the motion of a given dislocation segment ", may be expressed 

as: 

 ! � #∑ %&'()*+) , %-../�! � 0!     (1) 

where ∑ %&'()*+)   is the long-range stress caused by all the other (N-1) dislocation segments, 

%-.. is the externally applied stress, �! and 0! are the Burgers vector and line sense vector 

of segment ", respectively.  

 

For each dislocation segment, the free glide velocity of dislocation �!  during a simulation 

time step may be determined as: 

  �! � 1 0                                           "�    ��34 !56!789 : ��34;<�!  9  <=>?=@ABCDEFG(CHI!5J4<=>?=@A9G= K                 "�     ��34 !56!789 L ��34;<�! 9                     M(2) 

where  !56!78 is  the glide component of the Peach–Kohler force  !  on the slip plane, ;< a 

constant friction stress,  ;!JN  an initial internal stress introduced by lattice mismatch 

between γ/γ� phases (i.e., the coherency stress field) and anti phase boundary (APB) and Q 

the viscous drag coefficient. 

 

For efficient computation of the PK force  !  (Eq.(1)), the RVC was further divided into a 

series of subcells (Zbib et al., 1998). For dislocations within the same and immediate 

neighbouring subcells, their contribution to PK force on dislocation " was computed at the 

centre of the dislocation segment " directly. While, for dislocations in other remote subcells, 

their contributions to PK force were computed only at the centre of the subcell containing 

the dislocation segment i. The analytical de Wit formulation (de Wit, 1967) was used to 

calculate the interaction force. In addition, the dislocation interaction stress between 

periodic RVCs was calculated using the "multipolar expansion" method (Zbib et al., 1998), 



which reduces the computational cost from the order of R� to RSTU4R9. Also, a parallel 

long-range stress calculation was realized by the OpenMP interface to further improve the 

computational efficiency. 

 

When a dislocation glides in the � channel, the solute atoms have a hindering effect on it. 

This is a chemical solid-solution force, which was taken into account in the DDD simulation 

by a friction stress ;< � 200V�� opposing the dislocation motion in Eq.(2). This chemical 

force is considered as the elementary mechanism controlling the critical resolved shear 

stress (CRSS) of the � phase, which is in the order of hundreds MPa (Vattre et al., 2009). In 

Rao et al.'s (2004) DDD simulation on single crystal superalloy, the friction stress was 

assigned in the range of 100-500MPa. In the present simulation, the chosen 200MPa is in 

the same order as Vattre et al. (2009) and Rao et al. (2004), which also gives the initial 

yielding stress of 900MPa coincident with that of CMSX-4 (Tinga et al., 2010). The 

dislocation-precipitate interactions included Orowan looping and precipitate shearing 

(Fedelich, 2002), while dislocation climb was neglected in the DDD simulations. The Orowan 

looping is a direct result of dislocation motion in the channel, thus no special treatment is 

needed.  For precipitate shearing, it can occur either by dislocation pairs or by Superlattice 

Intrinsic Stacking Faults (SISF) (Fedelich, 1999; Tinga et al., 2010). Since partial dislocations 

and dislocation dissociation were not introduced in the DDD program, the cutting of 

coherent intermetallic  �� precipitates was simulated by the glide of W110X superdislocations. 

Such superdislocations are pairs of  
)� W110X  dislocations, namely a leading dislocation and a 

trailing dislocation, separated by an antiphase boundary (APB) (Veyssiere and Saada, 1997; 

Yashiro et al., 2006; Vattre et al., 2009). When the leading dislocation cuts into the �� phase, 

the L12 order of atoms in the glide plane is destroyed, thus an APB with energy density YZ[K 



is produced in the swept area behind the leading dislocation. As a result, a strong back 

stress ;Z[K � \YZ[K �⁄   corresponding to the internal microstructure stress ;^JN in Eq. (2) 

exerts on the leading dislocation. When the trailing dislocation shears into the precipitate 

following the leading one, the L12 order of atoms is recovered and the APB only exists in the 

glide plane between the leading and trailing dislocations. Thus a stress on the trailing 

dislocation  ;Z[K � YZ[K �⁄  pointing towards the leading dislocation is introduced. It should 

be mentioned that this stress only exerts on trailing dislocation when it enters into the 

precipitate. By experimental observation, Sun et al. (1999) suggested that YZ[K in the _111` 
octahedral slip plane is 144 a 20�b/��. Consequently, in the present paper, YZ[K , was 

taken as 162.5�b/��. 

 

The screw dislocations in the �� precipitate on the octahedral slip planes can cross slip to the 

_010` cubic planes and introduce the Kear-Wilsdorf (KW) locking (Kear and wilsdorf, 1962). 

These KW locks then act as obstacle points to the dislocation motion and is believed to be 

the mechanism for the anomalous flow stress dependence on temperature. Devincre et al. 

(1997; 1999) simulated the formation and the destruction of KW locks in �� precipitate by 

DDD method. In the present paper, the KW locks were not simulated directly but considered 

by a KW unlocking stress ;cd, which acts as a friction stress in the precipitate corresponding 

to the ;<  in Eq. (2), and may be expressed as (Vattre et al., 2009; Demura et al., 2007): 

                                           ;cd � e�Q�f G6g hij k\ ∆mn�opq     (3) 

where r is the Boltzmann constant, �f  a Debye frequency factor, 	I the screw segment 

length, s the absolute temperature and ∆t� the activation enthalpy for KW locks. 

 



To simulate precipitate shearing by a series of superdislocations, it is necessary determine 

whether the dislocation segment entering into the �� phase is a leading dislocation or a 

trailing dislocation. The method used in the DDD simulations is described as follows. For a 

dislocation segment " in the precipitate, two glide forces are defined as: 

  -.. � #%-... �! � 0!/. 4� � 0!9    and     ̂ J- � 4%^J-. �! � 0!9. 4� � 0!9   (4)  

where � is the normal vector of the slip plane of dislocation segment ",   -.. is the glide 

force induced by the external loads %-.. and %^J- is the stress at the centre of dislocation 

segment " introduced by an interacting dislocation. As shown in Fig.2, the interaction 

dislocation for segment i is defined as the closest neighbouring dislocation segment j. It lies 

in the same slip plane and has the same character as the segment i (the same Burgers 

vector and line direction), but belongs to a different dislocation loop. If the interacting 

dislocation cannot be found, the stress %!J- � 0 . Otherwise, if  -...  ̂ J- u 0  and 

��34 ̂ J-9 L vYZ[K, the dislocation segment " is a trailing dislocation while it will be a 

leading dislocation if  -...  ̂ J- w 0 and ��34 ̂ J-9 L vYZ[K. Here, considering the balance 

of the interaction force between leading and trailing dislocations and the configuration 

force induced by the APB, the total force on a trailing (leading) dislocation introduced by the 

whole leading (trailing) dislocation will be equal to YZ[K. As the interaction dislocation 

defined above is only one segment of the leading (trailing) dislocation, the interaction force 

 ̂ J- will be less than the total force YZ[K, and consequently α should be less than 1. 

However, α cannot be too small, otherwise the third dislocation of pile-ups near the γ/γ� 
interface, which is further away, may be misjudged as a trailing dislocation although it is not. 

As verified by a series of calculations, this misjudgment can be eliminated by choosing α = 

0.25 which has been used throughout our DDD simulations. 

 



Due to the lattice mismatch between the γ and γ� phases, an internal coherency stress field 

is normally presented in Ni-based superalloys. The parameter δ � 24aγz \ aγ9/4aγz , aγ9 is 

generally used to quantify the lattice mismatch, where aγz and aγ are the lattice parameters 

for the precipitate and the matrix channel, respectively.  According to Brien et al. (2001), the 

misfit stresses in the channels can be written as 

                                   1%��{ � %||{ � }~            "� �����h	 �T���	 �T i) �i"3%)){ � %||{ � }~             "� �����h	 �T���	 �T i� �i"3%)){ � %��{ � }~             "� �����h	 �T���	 �T i| �i"3M                          (5) 

where } is the bulk modulus. The misfit stress in the precipitates can be obtained from 

stress equilibrium, i.e., zero resultant stress in the RVC. At temperature 850��, the lattice 

mismatch ~ is negative, which causes a biaxial compressive stress state in the matrix 

channels  according to Eq.(5). While the precipitate is subjected to tensile misfit stress. Here, 

the lattice misfit parameter is chosen as ~ � \1.1 � 10(| at 850�� (Tinga et al., 2010). In 

the DDD simulation, the coherency stress field (5) is included by assigning an initial internal 

stress field to the RVE and is considered as an internal stress  ;!JN in Eq.(2) . 

 

2.3 DDD short range interaction and time step scheme 

Initial dislocation sources were assigned in the � matrix only. Under mechanical loading, the 

dislocations not only glide under the PK force but also interact with each other by short 

range interactions. These short-range interactions, such as dislocation annihilation, jogs and 

junctions, were monitored at every time step by a series of constitutive laws (Rhee et al., 

1998). The screw dislocation cross slip was determined numerically using a Monte-Carlo 

type simulation (Zbib et al., 2002, Shin et al, 2007). To simulate the dislocation 

multiplication, initial dislocation Frank-Read sources with a given density was randomly 

distributed on the 12 octahedral slip systems in the FCC matrix channel. As no dislocation 



motion was found on cubic slip planes by the TEM observations (Wang et al., 2009), cubic 

slip systems were not considered. All the initial dislocation sources have a length twice the 

channel width 
, so the dislocation sources can be active even before reaching the channel 

width-controlled Orowan threshold stress τ�� � k μb d⁄  (r a pre-factor accounting for the 

dislocation line tension). If the length of initial dislocation sources is smaller than the 

channel width 
, the influence of 
 on the initial yielding stress %!JN�  will be shielded and the 

%!JN�  can be significantly and unrealistically elevated.  

 

The equations in the DDD system are solved using a forward explicit integration algorithm.  

At the ��� loading step, i.e., from time �J to time �JB), the dislocation glides under a 

constant applied stress %J-.., which produces a plastic strain increment ∆�[. At the next 

loading step, i.e., from time �JB) to time �JB�, the applied stress is updated as %J-.. ,
���4�JB) \ �J9 \ �∆�[, where � is the Young's modulus and �� is the strain rate. Unless 

otherwise specified, the strain rate was chosen to be 1/s considering the computational cost. 

To choose the time increment, a truncated dislocation velocity �N��J � 0.1�I�8-� was used, 

where �I�8-� is the shear wave speed. If the ratio 
∆���� 4NE��(NE9 � ∆���� ∆N   is less than 0.01, it is 

believed that most dislocations cannot glide efficiently under the applied stress %J-.., and 

thus the next time increment will be doubled 2∆� � 24�JB) \ �J9  to speed up the 

computation. This type of time increment scheme can deal with the problem of high 

dislocation speed oscillation near the γ/ γ�  interfaces more efficiently and does not 

influence the simulation accuracy.   

 

3. Results and Discussion 



DDD simulations were carried out at a temperature of 850°C to reflect the working 

environment of nickel superalloys. Also at this temperature, no rafting will occur for the 

applied strain level. The RVE was loaded, at a strain rate of 1/s, up to 2.0% strain which 

allows the precipitate shearing to come into effect. The RVC was divided into 12 � 12 � 12 

subcells and 4-order multipolar expansion of dislocations (Zbib et al., 1998) was adopted in 

the simulation.  

 

3.1 Monotonic stress-strain response and its mechanism 

For a RVE with a precipitate size of 1420� � 1500� � 1580� and a channel width of 250b, 

the simulated stress-strain response in [001] direction is shown in Fig.3 for the cases with 

and without considering precipitate shearing. The volume fraction of �� phase in the RVE is 

calculated to be � � 63%. It can be seen from Fig.3 that, without considering precipitate 

shearing, only two-stage deformation can be observed: the initial elastic stage A and the 

hardening stage B. During stage A, since the initial dislocation sources in the channels are 

inactive or just slip slightly towards the  γ/ γ� interfaces, both the matrix and precipitate 

phases remain elastic. When the resolved shear stress on the slip systems becomes larger 

than the Orowan stress τ�� � k μb d⁄ , where d is the channel width and r a pre-factor 

accounting for the dislocation line tension, the initial yielding occurs and hardening stage B 

begins. At the beginning of the hardening stage, no dislocation pile up is observed in the 

channel. With the increase of applied load, pile-ups are formed around the interface, which 

decreases the effective width of the channel and increases the hardening rate. However, 

when precipitate shearing is considered, a softening stage or a steady stage C, following the 

elastic stage A and the hardening stage B, is observed in the stress-strain response, which is 

consistent with the experimental observation (Tinga et al., 2010; Busso et al., 2000). This 



seems to suggest that the precipitate shearing by dislocations, which introduces plastic 

deformation in the precipitates, is the mechanism for the strain softening in the third stage. 

Also, it is recommended that the precipitates should be treated as inelastic, instead of 

elastic in continuum FE studies, in order to accurately simulate the plasticity-associated 

softening behaviour of the material. 

 

Fig.4 shows the dislocation microstructure at 0.2% plastic strain, which is within the second 

hardening stage. In the simulation, eight out of the twelve octahedral slip systems are active, 

except for the 41119�1�10�, 41�1�19�1�10�, 411�19�1�1�0� and  41�119�1�1�0� slip systems as their 

Burgers vectors are normal to the resolved shear stresses on the slip planes. Both 

dislocation junctions and jogs can be observed in the channels and they contribute to the 

strain hardening. Most dislocation segments are deposited on the γ/ γ� interfaces, with 

either a screw character or a mixed character (Burgers vector at a60� to the dislocation line 

direction). Similar to the TEM observation of Tian et al. (2000), these deposited dislocations 

form a kind of network of dislocation lines which are normal to each other. As indicated by 

the black arrow in Fig.4, the deposited dislocations have a strong blocking effect on the 

subsequent motion of bypassing dislocations, which contributes to strain hardening. In 

particular, ‘V’-shaped dislocations are formed on the interfaces, which is the result of 

collinear annihilation of dislocations, with the same Burgers vector, on different slip planes 

(Devincre et al., 2007). For example, if two dislocations glide in the channels on the slip 

systems 41119�1�10� and 41�1�19�1�10�, respectively, they can annihilate each other at the 

intersection line of these two slip systems, which generates two 'V'-shaped immobile 

dislocation debris on the precipitate interfaces as shown in Fig.4. Since the mobile parts of 



these two dislocations disappear, it leads to a decrease of dislocation sources and plastic 

deformation and consequently increases the strain hardening.  

 

The evolution of total dislocation density ρ���, junction dislocation density ρ&�� and jog 

dislocation density ρ&�� without considering precipitate shearing are plotted in Fig.5 as a 

function of plastic strain ε�. The junction dislocation density is calculated by averaging the 

total length of junction segments over the RVC volume, while the jog dislocation density is 

the average of the total length of dislocations with jogs over the RVC volume. It can be seen 

that both junction and jog dislocation densities make negligible contributions to the total 

dislocation density within the applied strain level. For example, as shown in Fig.5 for 

simulations without considering dislocation shearing, the density of dislocations with jogs 

and junctions at 0.4% plastic strain are 5.2 � 10))�(� and 6 � 10)|�(�, which are two to 

four orders less than the total dislocation density 1.25 � 10)��(�. This is also true for the 

simulations with dislocation shearing. In this case, at 0.4% plastic strain, the density of 

dislocation with jogs and junctions are 4.5 � 10))�(� and 5.6 � 10)|�(� while the total 

dislocation density is 1.0 � 10)��(�. This suggests that the dislocation junctions and jogs 

play minor roles in the strain hardening behaviour. In addition, from the dislocation micro-

structure, it can be seen that only few ‘V’-shaped dislocations are formed, therefore their 

contribution to strain hardening may be limited. To quantify the dislocation network 

deposited on the interfaces, an equivalent polarised dislocation density α�  which may be 

defined as: 

v8¡ � 3"U�4v))9¢v!*v!*                                                            (6) 

where v!* is the Nye tensor. For discrete dislocation simulations, the Nye tensor may be 

expressed as (Arsenlis and Parks, 1999): 



v!* � )£∑ 	o�!o�*o'o+)                                                             (7) 

where R is the total number of segments, V the volume of the RVC, and 	o, �o and  �o  are 

the length, the unit vector and the Burgers vector of the dislocation segment k, respectively. 

The distribution of the equivalent polarised dislocation density α�   across the �001� 
horizontal channel is plotted in Fig.6 at the 1.5% applied strain level, where the x-axis 

represents the normalised distance (x/d) across the width of the channel. Interestingly, it 

seems that the equivalent polarised dislocation density increases drastically towards the 

interfaces (i.e. x/d=0 and 1), where the dislocation network forms. These polarized 

interfacial dislocations can introduce high internal back stresses which reduce the Peach-

Kohler force and subsequently the mobility of dislocations in the channels. This suggests 

that the dislocation network formed at the interface is the major source for strain hardening, 

amongst other mechanisms such as the formation of dislocation junctions and jogs and the 

‘V’-shaped configuration. In addition, it should be mentioned that, similar to the work in 

literatures (Vattre et al., 2009; Rao et al., 2004 and Shin et al., 2007), the difference in 

elastic properties between the two phases were not considered, although it is very small 

(shear modulus 100.2 GPa for γ and 105.2GPa for γ’ (Tinga et al., 2010)). This difference will 

introduce both an image stress on the dislocation and the inhomogeneous stress field, 

which are expected to increase the hardening effect of the material. We are currently 

updating the DDD framework which can consider the difference in elastic properties 

between the two phases to investigate such effects quantitatively. 

 

In the third stage C, precipitate shearing by superdislocations occurs, as evidenced from the 

dislocation microstructure in Fig.7 at 0.8% plastic strain level. A series of superdislocations 

cutting into the precipitate can be easily identified, which consist of leading and trailing 



dislocations. When the superdislocations shear into the precipitate, they can bow out with a 

larger curvature radius than those in the channels due to the loss of confinement imposed 

by the narrow channels. For dislocation gliding in the channel, they need to overcome a high 

internal back stress to bypass the dislocation network already deposited on the interface. 

However, for superdislocations gliding in precipitates, although they need to cut through 

the dislocation network on the interface, most part of these superdislocations is far from 

the deposited dislocation network and experience much smaller internal obstruction. As a 

result, when a superdislocation forms and cuts into the precipitate, the two dislocations will 

form a superdislocaton which can relatively easily sweep a large area in precipitates and 

produce a high plastic strain increment for a given time step.  As long as the plastic strain 

increment is larger than or equal to the applied strain increment, softening occurs. On the 

other hand, the leading dislocation of a superdislocation is generally the Orowan dislocation 

loop already deposited on the interface. Therefore, when a superdislocation cuts through 

the precipitate, the leading Orowan dislocation loop disappears, resulting in a decreased 

density of dislocations deposited on the interface. This can be seen from the dislocation 

density evolution in Fig.5, where the dislocation density increases linearly during the 

hardening stage while decreases or increases only slightly during the softening stage when 

precipitate shearing comes into effect. This decrease of interfacial deposited dislocations 

will reduce the internal back stress in the channels, and further weaken the strain hardening 

of the matrix phase. The cross slip is also believed to be a mechanism to reduce the 

hardening response. However, in our simulation, the cross slip events are very limited for 

the considered �001� tensile loading, as the signs of the resolved shear stresses are opposite 

to each other for all six pairs of cross-slip systems (Tinga et al., 2010). 

 



3.2 Effect of the internal microstructure scale  

The stress-strain response of the RVC is shown in Fig.8a for three selected channel widths 


 � _250,300,350`� at a fixed precipitate size of 1420� � 1500� � 1580�, corresponding 

to a volume fraction of 63%, 58% and 53%, respectively. As seen in Fig.8a, at the strain 

hardening stage, the narrower the channel width, the higher the yielding stress and the 

hardening rate. In addition, at the precipitate shearing stage, the stable flow stresses are 

also significantly higher for the material with smaller channel width.  

 

To explain the above phenomenon, the dislocation density evolution is plotted in Fig.8 as a 

function of the plastic strain �. (b) and the total applied strain � 4c9 , respectively. From 

Fig.8(b), it seems that, at the plastic hardening stage, the dislocation density evolution fits 

very well with the following equation: 

                                                          
§¨§�© � �√«7G .        (8) 

This means that, at the hardening stage, the ratio of dislocation density to plastic strain is 

controlled by the channel width 
. In fact, Eq.(8) can be obtained as follows. When a 

dislocation with Burgers vector 
G√� �01�1� glides on the slip plane 41119, as shown in Fig.9, its 

length will be increased by 2	, a result of the two segments deposited on the γ/ γ� interface, 

at a given time step ∆t. Consequently, the plastic strain increment during this time step can 

be express as: 

                                                         ∆�.���)� � ∆Z £ ����)�����)� � 67 £ ) √| G√�   (9) 

where ∆­ is the swept area by dislocation motion during the time step, � is the volume of 

the RVC,  ����)�  and ����)� are the components of the unit normal vector of 41119 slip plane  



and Burgers vector along the �001� direction, respectively. As a result, the dislocation 

density increment during this time step  ∆t can be written as: 

                                                         ∆® � �6 £ .                                (10) 

Dividing Equation (10) by Eq. (9) leads to Eq. (8). Since no precipitate size is specified in 

obtaining Eqs.(8-10), Eq.(8) is valid for materials with any precipitate size. It further proves 

that, at the hardening stage, most dislocation segments are deposited on the γ/ γ� interface 

and the storage of forest dislocations (i.e. dislocation junction) in the channels is negligible. 

The tangent modulus of the hardening stage can be calculated by: 

�N � �� ∆N(∆�©�� ∆N � � �� ∆N(¯°∆ρ/�√«�� ∆N �.    (11)     

As shown in Fig.8(c), the dislocation density increment ∆ρ for a given time step ∆t is 

basically the same for different channel width, and consequently, according to Eq.(11), the 

material with a narrower channel width 
 would have a higher hardening modulus.  

 

For the third softening stage, the stress increment ∆σ during a specified time step ∆t should 

be smaller than or equal to 0, i.e. 

∆σ � E#ε� ∆t \ ∆ε�/ � Ekε� ∆t \ ∆ε�²��� \ ∆ε�³��q : 0                          (12) 

where ∆ε�²��� and ∆ε�³�� are the plastic strains caused by dislocation overlooping and cutting 

the precipitates, respectively. Obviously, to produce the same magnitude of ∆ε�²���, a larger 

applied stress σ is needed for superalloys with smaller channel width according to the 

Orowan formula. On the other hand, since Eq. (11) is valid for the hardening stage which has 

dislocation overlooping but no shearing, it can be further written as: 

�4��∆� \ ∆ε�²���9 � �N��∆�                                                (13) 



Substituting Eq. (13) into Eq. (12), the condition for the third softening stage to occur can be 

derived as: 

     ∆ε�³�� w �N��∆�                              (14) 

For smaller channel width, as the tangent modulus Et tends to be higher, more dislocation 

cutting events are required in order to produce a larger ∆ε�³�� to satisfy the above condition 

(14) for the softening stage. However, in narrower channels, dislocation motion and 

formation of superdislocation are more difficult and thus prohibit the occurrence of further 

dislocation cutting, which consequently leads to a higher flow stress in the third stage. 

 

The stress-strain responses of the RVC is shown in Fig.10 for three selected precipitate sizes 

	 � _750,1050,1420`� at a constant channel width 
 � 250�, corresponding to a volume 

fraction of 45%, 55% and 63%, respectively. As shown in Fig.10, both the hardening modulus 

at the second stage and the flow stress at the third stage increase with the increase of 

precipitate size. Since the channel width remains the same, so does the mobility of the 

dislocations in the channels. As a result, a dislocation tends to sweep the same area at a 

given time step irrespective of the precipitate size. As the RVC volume is larger for larger 

precipitates, the plastic strain increment induced by the dislocation will be reduced 

according to Eq.(9), leading to a higher second-stage hardening rate (or a higher tangent 

modulus �N). For a reduced precipitate size, the radius of the dislocation loop deposited on 

the precipitate surface becomes smaller, which will enhance the self-interaction or 

contraction of the loop leading to increased line tension. Consequently, the 

superdislocations consisting of these dislocation loops have a lower critical stress to 

overcome for shearing into the precipitate. When a dislocation shears through a smaller 

precipitate, it also produces a larger plastic strain increment ∆ε�³�� according to Eq.(9). 



Therefore, for smaller precipitate size, less precipitate shearing events are required to meet 

the condition (14) at the softening stage, hence a lower flow stress is expected. 

 

For a fixed precipitate volume fraction 463%9, the stress-stress responses are plotted in 

Fig.11 for three selected RVC sizes, which correspond to a channel width of 
 �
_200,250,350`� and a precipitate size of 	 � _1200,1500,2100`�, respectively. It can be 

seen from Fig.11 that, at the second hardening stage, both the 0.2% proof yielding stress 

(%� � _1100, 1050, 955`MPa) and the hardening rate increase with the decrease of the RVC 

size. In fact, the channel width and the precipitate size decrease simultaneously with 

decrease of the RVC size. The decreased channel width tends to increase the hardening rate 

and the yielding stress, while the decreased precipitate size has the opposite effect. Thus it 

seems that decreased channel width contributes, predominantly, to the increase of the 

yielding stress and the hardening rate. For the third softening stage, the situation is  more 

complex. The flow stress at this stage is at the same level for the case with 
 � 200�, 

	 � 1200� and the case with 
 � 250�, 	 � 1500�, which might be due to the opposite 

effects produced by the channel width and the precipitate size. However, the flow stress is 

clearly smaller for the case with 
 � 350� and 	 � 2100�, which indicates that the effect of 

channel width becomes more significant than that of precipitate size with the increase of 

the RVC size. Using the gradient-dependent crystallographic constitutive formulation, Busso 

et al. (2000) also investigated the size effect of the stress-strain response of a single crystal 

superalloy CMSX4 based on the FE analyses. Their results, however, showed a monotonic 

increase of the flow stress in the third stage with the decrease of the RVC size. This might be 

due to their assumption that the plastic deformation only occurs in the � channel while the 

�� precipitate remains elastic with no shearing by dislocations. In fact, the dislocation cutting 



into the precipitate can reduce the dislocation accumulation at the � ��⁄  interface and 

decrease the geometrically necessary dislocation density in the channel, leading to a 

reduced flow stress. Thus, the size effect on mechanical response is not only associated with 

the deformation gradient in the channel but also related to the dislocation shearing of 

precipitate which should be considered in simulations.  

 

3.3 Effect of precipitate morphology 

To investigate the precipitate morphology effect, simulations were carried out for the RVC 

containing spherical and cuboidal precipitates with a fixed volume fraction of � � 55%. The 

spherical precipitate has a radius of � � 700�  while the cuboidal one has a size of 

S � 1130�, resulting the same volume from both cases. The spherical precipitates have a 

body faced cubic (BCC) arrangement in order to accommodate the high volume fraction. The 

stress-strain responses for the two cases are similar in the elastic and the softening stage, 

although in the hardening stage, the hardening rate and the yielding stress are higher larger 

for spherical precipitate than those for cuboidal one (Fig.12). The yield stress (0.2% proof 

strain) is about 1130MPa for spherical precipitates and 970MPa for cuboidal ones. 

According to the Taylor hardening τ � τ� , αμb√ρ, highly accumulated dislocation density ρ 

can lead to an increased hardening rate. However, the DDD simulated dislocation density for 

spherical precipitates is much smaller than that for cuboidal ones, which cannot rationalise 

the higher hardening rate for spherical case using this classical storage-recovery theory. For 

a fixed precipitate volume fraction, the narrowest distance dµ¶� between neighbouring 

precipitates is much smaller for spherical-shaped precipitates than that for cuboidal-shaped 

ones. According to the Orowan formula τ�� � k μb dµ¶�⁄ , a much higher-level resolved 

shear stress is required to drive the dislocation to glide through these narrowest parts of 



matrix channels for spherical precipitates. As these narrowest parts of matrix channels are 

periodically distributed, they tend to produce an effective blockage to the motion of 

dislocations, as shown in Fig.13. Therefore, the mobility of dislocations is lower for the 

spherical precipitates, leading to lower plastic deformation and higher hardening rate when 

compared to that of cuboidal precipitates.  

 

For the RVC model presented in Fig.1, the precipitates are arranged in an ideal simple cubic 

(SC) manner. Simulations were also carried out for a BCC arrangement and the results are 

compared in Fig. 14 against that for SC arrangement. For both cases, the precipitate size and 

the volume fraction were kept the same, i.e.,  l � 1500b and f � 63%, respectively, and the 

initial dislocation source densities are set to be ρ¹�� � 1.1 � 10)|m(�. It can be seen that, 

in the second hardening stage, the strain hardening rate, as well as the 0.2% proof yield 

stress, for BCC arrangement is significantly higher than that for SC arrangement. This is 

because the precipitates in the BCC arrangement tend to block some of the infinite long 

channels existing in the SC arrangement, which decreases the dislocation mobility 

significantly. Due to the anisotropy of dislocation line tension, the dislocation loops expand 

preferentially in those channels where their edge segments can move a longer distance. As 

soon as the motion of dislocations in these channels is hindered by the precipitates, a 

higher-level of stress is required for them to glide into alternative but non-preferential 

channels. Thus, both dislocation blockage by precipitates and line-tension anisotropy 

contribute to the increased hardening behaviour in BCC arrangement. Consequently, in the 

work of Pollock and Arogn (1992), Meissonnier et al. (2001) and Choi et al. (2005), the 

hardening rate and yielding stress were inevitably underestimated, as the precipitates were 

assumed to be in a perfect SC arrangement in their explicit unit-cell FE model.  



 

To examine the effect of the precipitate edge feature on the stress-strain response, DDD 

simulations were carried out considering precipitates with sharp and round edges (Choi et 

al., 2005). The channel width and the precipitate size were chosen to be 250b and 1500b, 

respectively. The edge radius for the roundly edged precipitate case was 200b , 

corresponding to a precipitate volume fraction of 61%. The simulation results show that the 

stress-strain responses are very similar for these two edge geometries, indicating a weak 

influence of precipitate edge feature. This differs from the findings of Choi et al. (2005), who 

predicted that a change of the radius of the γ» precipitate edge can influence the constraint 

on plastic flow significantly, resulting in drastic changes in the stress-strain curves, especially 

for the softening stage. However, the present DDD simulations show that the most 

important constraint effect on dislocation motion comes from the channel width. A small 

modification of the precipitate edge geometry does not change the channel width 

significantly, hence influence little  the dislocation mobility or the associated plastic flow 

within the channels. 

 

3.4 Effect of lattice misfit  

For nickel alloys, the lattice mismatch between γ and γ’ phases gives rise to the misfit strain 

and the associated coherency stress in the material, which can be calculated by Eq.(5) and 

the results agree well with the FEM simulations (Ohashi et al., 1997). Following Brien et al. 

(2001), the coherency stress was considered as an internal stress field in the present 

simulations. The results in Fig.15 showed that, the coherency stress has negligible influence 

on the stress-strain behaviour for a precipitate size l � 1500b and volume fraction f = 63%. 

This may be explained as follows. When a dislocation overloops a precipitate under the [001] 



tension loading, the resolved shear stress on the slip plane from the misfit stress field can 

promote the dislocation motion in the [001] horizontal channel but obstruct the dislocation 

motion in one of the two vertical channels. The promotional effect and the obstructive 

effect cancel out each other and consequently no influence on the stress-strain response is 

introduced by the misfit stress field. The present simulation follows the work of Brien et al. 

(2001) by assuming that the coherency stress was distributed uniformly both in the matrix 

phase and in the precipitate. In Rao et al.'s DDD simulation (2004), a non-uniform coherency 

stress suggested by Duesbery et al. (1992) was employed, where the coherency stress is 

largest at the interface and decays rapidly (~�(�) from the interface. They found that the 

non-uniform coherency stress can enhance the critical resolved shear stress (CRSS) to a 

certain extent depending on the APB energy. However, the study was carried out for 

spherical precipitates. For cubic precipitates, effects of the non-uniform coherency stress on 

the mechanical response need to be further investigated. Furthermore, the lattice misfit 

introduces not only the coherency stress but also the intrinsic misfit dislocation around the 

�/�� interface. These intrinsic misfit dislocations knocking out the long-range coherency 

stress, which are formed before loading but not considered in the present DDD simulation, 

could interact with dislocations approaching the interface and impede them from shearing 

into the precipitate and thus contribute to the hardening effect. Although the coherency 

stress has negligible effect on the stress-strain response, the lattice misfit between two 

phases can still strengthen the superalloy by the formed intrinsic misfit dislocations. 

  

3.5 Simulation of cyclic deformation 

Some strain-controlled cyclic responses were modelled for the RVC using the DDD method. 

The cyclic loading, with a triangular waveform, was applied in the [001] direction at a strain 



rate of 0.001s() and a strain range of 2%. For the purpose of comparison, the precipitate 

size  and  channel width are selected to be 1920� � 2000� � 2080�  and 250b , 

respectively, which are the typical values for CMSX4 (Tinga et al., 2010). Due to computing 

limitation, only the first two cycles were simulated and shown in Fig.16, where the 

simulated stress-strain loops are compared with the stabilised loops of CMSX-4 obtained 

experimentally by Vattre (2009). It can be seen from Fig.16 that there is little cyclic 

hardening or softening for the material, consistent with the experimental observation by 

Vattre et al. (2009), and the simulated stress-strain loops of the first two cycles fit well with 

the stabilised hysteresis loop in Vattre (2009). It is recognised that cyclic hardening or 

softening is associated with the precipitate shearing and the formation of irreversible 

dislocation structure. Cross slip plays an important role in the formation of the irreversible 

dislocation structures such as the persistent slip band (PSB) (Shin et al., 2007). In the present 

DDD simulation, for the applied loading level and direction, cross slip is hard to occur (Tinga 

et al., 2010) and this is also true for precipitate shearing by superdislocations. Thus the 

dislocation motions are mostly reversible and no cyclic hardening or softening is obtained. 

This can be verified from the simulated dislocation density evolution, which shows that the 

dislocation density can decrease to a value close to the initial dislocation density due to the 

reversible motion of most dislocations.  

 

In the present paper, the mechanical behaviors of single crystal nickel-based superalloy 

were modeled by the DDD method. It would be ideal to carry out experimental observations 

for validation of the present results. For instance, to validate the connection between the 3-

stage stress-strain responses and dislocation precipitate shearing, it is desirable to have an 

in-situ TEM observation of the dislocation evolution in both the matrix and precipitates. Also, 



the TEM observations can be used to quantify the total dislocation density, junction density 

and jog density, which can be compared with the DDD simulation to validate the proposed 

hardening mechanism. The effect of the channel width and precipitate size on the stress-

strain behavior and the dislocation density evolution could be validated from mechanical 

tests of materials processed with varying channel width and precipitates sizes. This 

information will provide invaluable guidance for further development of the DDD 

framework. 

 

4. Conclusions 

3D DDD simulations of mechanical deformation of  single crystal Ni-based superalloys have 

been carried out by considering the interaction between dislocation and internal 

microstructure. Precipitate shearing by superdislocaitons is shown to be responsible for the 

softening behaviour of the material observed experimentally. The results also show that 

most of the dislocations are deposited on the two-phase boundaries and form a highly 

polarised network by dislocation reaction, which may be the main mechanism for the 

hardening behaviour of the material. Although the dislocation junctions and jogs, as well as 

the “V”-shaped configuration, can be found in the dislocation microstructure, their presence 

is too low to contribute significantly to the hardening behaviour. 

 

For a fixed precipitate size, the smaller the channel width, the higher the hardening rate at 

the second stage and the higher the flow stress at the third stage. For a given channel width, 

the larger the precipitate size, the higher the hardening rate in the second stage and the 

higher the flow stress in the third stage. It is easier for dislocation pair to cut into smaller 

precipitates. For a given precipitate volume fraction, the scale-dependent hardening rate 



and the 0.2% proof yield stress at the second stage are mainly controlled by the channel 

width, i.e., increase with the decrease of the channel width. While, at the third softening 

stage, the channel width and the precipitate size both influence the flow stress.  

 

The shape of the precipitate was found to affect the stress-strain response. For a given 

precipitate volume fraction, spherical precipitates tend to enhance the hardening rate and 

yield stress than cuboidal ones,  due to the presence of the narrowest channel sections 

which block the motion of the dislocations. The precipitate arrangement also influences the 

mechanical behaviour, where the hardening rate and yield stress are higher for BCC 

arrangement than those for ideal SC arrangement.  The coherency stress field caused by 

lattice misfit has a negligible effect on the stress-strain response, at least for the cuboidal 

precipitates considered in this work. 

 

Preliminary cyclic simulations were also carried out using the DDD model. No cyclic 

hardening or softening was found in the material due to the lack of precipitate shearing and 

dislocation cross slip, consistent with the experimental results of Vattre (2009). 
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Fig.1 The representative volume cell (RVC) comprising of γ� precipitate and γ matrix.  The 

RVC was divided into 12x12x12 subcells. 
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Fig. 2. Schematic of the interaction dislocation (segment j) of the segment i and the 

corresponding forces acting on them. 
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Fig 3. The stress-strain response with and without considering the precipitate shearing by 

superdislocations. 
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Fig 4. The dislocation microstructure at 0.2% plastic strain, which shows the dislocation 

network, junctions, jogs and 'V'-shaped configuration. 
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Fig 5. Evolution of the dislocation density as a funtion of the plastic strain with and without 

considering precipitate shearing by superdislocations.  
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Fig 6. Density of the polarised dislocation against the normalized horizontal channel width x/d 

at 1.5% strain. 
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Fig.7 The dislocation microstructure at the 0.8% plastic strain, which shows a series of 

superdislocations cutting into the precipitate. 
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Fig.8 (a) The stress-strain response for 

precipitate size of 1420b×1500b×1580b

(a) 

strain response for three selected channel widths d={250,300,350} (b) at a fixed 

precipitate size of 1420b×1500b×1580b. 
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Fig.8(b) Evolution of dislocation density as 

channel widths d={250,300,350}b at a fixed precipitate size of 1420b×1500b×1580b

 

 

(b) 

The dashed lines is the fit curves of Eq. (8) 

slocation density as a function of the plastic strain �
channel widths d={250,300,350}b at a fixed precipitate size of 1420b×1500b×1580b
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Fig.8 (c) Evolution of dislocation density as 

selected channel widths d={250,300,350}b at a fixed precipitate size of 1420b×1500b×1580b
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Fig.9 Schematic diagram of dislocation motion in the matrix channel during the time step ∆t. 
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Fig.10 The stress-strain response for three selected precipitate sizes 
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Fig. 11 The stress-stress response for three different RVC sizes for a fixed precipitate volume fraction 
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Fig. 12 Effect of precipitate shape on t
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Fig. 13 Dislocation microstructure formed around spherical precipitates, where dislocations are 

blocked at the narrowest parts of the channel between two neighbouring precipitates. 

Dislocations blocked in these narrow positions 



 
 

 

Fig. 14 The influence of precipitate arrangement on the stress-strain response. 
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Fig. 15 The stress-strain response with and without lattice misfit strain. 
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Fig. 16 The simulated stress-strain response for the first two cycles, with comparison against the 

experimental data for the stabilised hysteresis loop (Vattre, 2009). 
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