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I 

 

Abstract 

Spam emails are flooding the Internet. Currently, over 90% of emails are spam in the 

network. Spam emails cost people, ISPs and online services additional money and 

time, degrade the networks‘ performance, cause the consumptions of computing and 

network resources, and cause security problems in networks.  

Research to prevent spam is an ongoing concern. A lot of anti-spam techniques have 

been developed and employed to identify and block spam emails in the network. The 

commonly used anti-spam email technologies and equipments are DNS-based 

blackhole lists, content filters, cost based systems, check-sum filters, ham passwords, 

heuristic filters, honeypots, and so on. However, all the work is not enough, and 

anti-spam fighters are losing the ground. 

SMTP traffic was collected from different sources in real networks and analyzed to 

determine the difference regarding SMTP traffic characteristics of legitimate email 

clients, legitimate email servers and spam relays. It is found that SMTP traffic from 

legitimate sites and non-legitimate sites are different and could be distinguished from 

each other. Some methods, which are based on analyzing SMTP traffic 

characteristics, were purposed to identify spam relays in the network in this thesis. 

An autonomous combination system, in which machine learning technologies were 

employed, was developed to identify spam relays. This system identifies spam relays 

in real time before spam emails get to an end user. The information that is used to 

identify spam relays never involves email real content in this system. A series of tests 

were conducted to evaluate the performance of this system. The results obtained 

from tests show that the system can identify spam relays with a high spam relay 

detection rate and an acceptable ratio of false positive errors. 
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Chapter 1: Introduction 

This thesis is about detecting email spam relays by SMTP traffic characteristics in 

Networks. Definition of spam emails and related work are reviewed in this thesis. 

SMTP Traffic, which collected from real networks, is analyzed to determine the 

differences regarding the SMTP traffic characteristics of legitimate email clients, 

legitimate email servers and spam relays. Also, an autonomous system for detecting 

spam relays is designed and tested.  

 

In the following paragraphs, the definition of spam emails is presented followed by 

harm of spam emails and spammers‘ activity. The last sections discuss the battles with 

spam emails, challenge of anti-spam emails issue and the contributions of this 

research. 

 

1.1 What are Spam Emails? 

The 21
st
 century is an information century and a network century. The Internet is 

playing more and more important roles in human lives. But spam emails are harassing 

people every day through the Internet. There were about 262 billion spam emails sent 

by spammers per day in 2010 [1]. Only 3% of email is the stuff we want [2]. There are 

a lot of costs associated with the email spam, including the cost of lost productivity, 

user education, security problems, network-infrastructure loads, and the development 

of anti-spam technologies [3]. 

What is a spam email? A spam email is commonly defined as an unsolicited bulk email 

(UBE), an unsolicited commercial email (UCE), or a junk email [4] [5] [6]. They are 
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the emails that not asked for (unsolicited) and received by multiple recipients (bulk). So 

a spam email should meet the following three characteristics [7]: 

1. A spam email is unsolicited. 

2. A spam email is a part of a ―mass mailing‖. 

3. The sender of a spam email is a stranger to the receiver. 
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1.2 Harm of Spam Emails 

Email is currently one of the cheapest and most convenient ways to delivery 

information to others [8]. It is a very efficient sending mechanism, because it could 

send your information all over the world in one second. Spam emails are flooding 

networks，simply as a spammer can make a profit or achieve its selfish purposes by 

sending spam emails. However spam emails are doing harm to others, both networks 

and human society. Spam emails cost people time and money, cause the consumptions 

of computing and network resources, degrade the network performance, and lead to a 

lot of security problems from the networks. 

1. Spam emails cost people, ISPs and online services additional time and attention 

to dismiss these unwanted message. Every day spam emails can be found in 

mailboxes. They could be business advertisements or activity information. Even 

worse they could be computer or network viruses. They occupy the room in the 

mailbox, and it takes time to deal with them. 

2. Spam emails cost people, ISPs and online services a lot of money. A recent study 

by Nucleus Research Inc. reports that the management of spam costs U.S. 

business owners well over $71 billion per year in lost productivity - that 

translates to $712 for each employee [9]. Every year, billions of dollars are also 

spent on the additional equipments, software, and manpower needed to combat 

the problem. 

3. Spam emails cause the consumption of computing and network resources. They 

degraded the networks‘ performance. They not only consume the widthband of 

the networks and reduce the networks‘ effective transmit speed, but also do harm 

to the machines in networks. More than 97% of all emails sent over the network 

are unwanted, and the global ratio of infected machines was 8.6 for every 1,000 

uninfected machines [10]. 
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4. Spam emails lead to serious security problems. It is one of the most popular 

ways to deliver computer viruses and other attaches by using spam emails. Most 

viruses were broadcasted by sending spam email over the network. Also a lot of 

crime is related to spam emails. You could be involved in a crime as a victim, 

because you respond a spam email.  

People have to always keep an eye on spam emails. They are bad for our lives and 

society. Nobody could forecast how many and how serious would be the problems they 

would cause in the future. But it is certain that we can‘t stop fighting with the spam. 
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1.3 Spammer Activity 

Spammers are these hosts, which send spam emails to other hosts in the network. The 

following sections will introduce how a spammer works. 

Firstly, spammers have their own ways to harvest email addresses from anywhere in the 

network such as web pages, mail lists, chat rooms, UseNet and so on. Spammers will 

send spam emails to these destination mail addresses including those have been 

harvested and those which look like they exist or are used [11]. 

Secondly, Spammers always try to compose messages that are more likely to capture 

the recipients‘ attention in order to entice recipients into opening the spam emails. 

And spammers also try to avoid certain keywords and the phrases that are included in 

the majority of spam because of the increased use of automated anti-spam filtering 

tools [12]. But most spam emails in an outbreak from a spammer have similar 

information. If too many changes are made in each spam email, it will increase the 

cost of sending the spam and reduce the profit of spammers. 

Thirdly, Spammers always send spam emails to a lot of different destinations in the 

network, after they get a large number of email addresses and compose spam emails. 

Various spam emails tools [13] are used by spammers to make their messages get 

through. To avoid detection, spammers usually hide the point of origin. Spammers can 

send spam emails and remain anonymous by using open mail relays, open proxies, 

botnets, and so on [14].  

Fourthly, while researchers try to develop anti-spam technology, spammers are trying 

to find new ways to send spam emails. Spammers resort to re-routing their e-mails 

through third party e-mail servers to avoid detection, and exploit the additional 

resources of these relay servers. In addition to open relays, spam relays are also 

established on compromised hosts, which enable spammers to change the IP address of 
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the spam email source. Nearly 80% of all spam is received from mail relays [15]. 

Once a bot or zombie is installed on a victim computer system, the controller 

(Spammer) can send commands to deliver spam emails by this bot. Illegal spam 

emails sent by zombies has increased dramatically in recent years [16]. After many 

open relays were closed or placed on the blacklists of the other servers, most spam 

relays are established on compromised hosts in networks, which enable spammers to 

change the IP address of the spam email source.  

Spammers never think about receivers and networks. What they want to do is send 

these emails, to increase their profits or for their selfish purposes. 
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1.4 Battles with Spam Emails 

Both end users and administrators of email systems have used various anti-spam 

techniques to prevent email spam. Most anti-spam techniques can be broken into three 

broad categories according to the operators: anti-spam techniques used by email end 

users, anti-spam techniques used by e-mail administrators, and anti-spam techniques 

used by e-mail senders. There are also some anti-spam techniques that are only 

employed by researchers and law enforcement officials [17]. Some of these 

techniques have been employed into products, services and software to identify and 

block spam emails in the network. 

The commonly used anti-spam email technologies and equipment are DNS-based 

Black Lists, Content Filters, Statistical Filters, Cost Based Systems, Check-Sum Filters, 

Authentication and Reputation (A&R), Sender-support Whitelists and Tags, Ham 

Password, Heuristic Filters, Honeypots, Hybrid Filtering, Outbound Spam Protection, 

PTR/Reverse DNS Checks, SMTP Callback Verification, Egress Spam Filtering, Spam 

Report Feedback Loops, and so on. [18][19][20][21][22][23][24] 

A large number of techniques have been playing an important role in the war of 

anti-spam emails. But the general consensus is that a single technical solution that is 

able to prevent the propagation of spam is unlikely to be found given the constraints of 

the current Internet architecture [25]. And each has trade-offs between spam detection 

rate vs. false positive error rate, and the trade-offs between the associated costs and 

effort. So a composite approach that applies many of techniques introduced above 

could be more helpful to solve the problem and reduce the amount of the spam emails. 

In 2004 Bill Gates claimed, ―Spam will be a thing of past‖ [26]. But in Microsoft's 

biannual report on the state of computer security in 2009, the company said that over 

97.3 percent of email traffic was unwanted spam in the second half of 2008 [27].  
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Figure1.1 shows the percentage of spam in email in August 2010. [28] 

 

Figure 1.1：Percentage of Spam in Email in August 2010 

The amount of spam detected in mail traffic averaged 82.6% in August 2010. A low of 

79.4% was recorded on 2
nd

 August 2010, with a peak value of 89.7% being reached on 

7
th

 August 2010. In another statistical report from Computer Services of the 

Loughborough University, it has been shown that the percentage of the emails that have 

been flagged as junk and rejected has increased by a dramatic amount [29].  

A lot of time and resources have been spent on developing and applying anti-spam 

technology. But the anti-spam fighter is losing ground before the spam with dramatic 

speed.  
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1.5 Challenge of Anti-spam Email Issue 

Spam emails have been flooding over the network since email became one of popular 

communication methods. People tried to fight back by producing all kinds of 

anti-spam emails techniques. 

Currently, more and more money and manpower have gone into the anti-spam actions. 

But anti-spam fighters still keep on losing ground before spammers. Why is the 

situation becoming more serious? There are maybe three main reasons, which involve 

not only the limitation of anti-spam techniques but also human social issues. 

1. Spam fighting is an unbalanced war. It is easy for spammers to find a way to break 

these anti-spam systems. But it is difficult for spam fighters to find a way, which is a 

good way which does not harm other legitimate users, to fight back.  

2. Spam is a fascinating topic. Dealing with spam mails involves several fundamental 

rights, including free speech, privacy, private property and freedom of association [30]. 

It also raises some remarkably strong emotions. It is difficult to deal with these cases by 

strict laws. Little support from laws and human society make the problem difficult and 

serious. 

3. Targets of the anti-spam actions lost their way. Targets of most anti-spam techniques 

are protecting email end users. The majority of anti-spam systems focus on filtering the 

spam email at the end-users‘ terminals. It is helpful to prevent the legitimate email users 

from receiving spam emails, but fighting with spam can‘t be only on the end-users. 

More anti-spam techniques, which detect and block spam emails at different stages, 

need to be developed and take part in anti-spam fighting. 

In the future, more powerful combination anti-spam methods should be researched 

and produced. Anti-spam email fighting should occur not only in the receiving email 

stage but also in the transmitting email stage. The fight should not only be in technical 
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areas, but also in human social areas including law and morality.  

Legitimate users, networks and human society require the stopping of the spam emails. 

Today spam emails are doing harm to every area of human lives. Spam email is a big 

problem because of the shared and private resources it consumes; Spam email is a big 

problem because of the large number of victims it involves; and spam email is a big 

problem because of the difficulty of getting rid of spam in the network. So we can 

never stop the fight with spam emails. 
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1.6 Contributions to the Anti-spam Issue 

1. The first contribution of this thesis is the collection of SMTP traffic data from real 

networks. There are some SMTP traffic datasets in the public domain for download. 

But we didn‘t use any dataset in the public domain in this thesis, because we do not 

know any detail about the network in which these datasets collected. SMTP traffic data 

in this thesis are from two networks: One is a nationwide ISP‘s local network, and the 

other is the Loughborough University campus network. A sniffer was created in the C 

programming language to collect SMTP traffic data from the Loughborough 

University campus network. We have also access to a national ISP‘s traffic which had 

been previously collected by Dr Peter Sanford. SMTP traffic was from not only the 

good sources (legitimate email clients and legitimate email servers) but also the bad 

sources (spam relays). SMTP traffic data was used for analysis to determine the 

differences regarding SMTP traffic characteristics of legitimate email clients, 

legitimate email servers and spam relays.  

2. The second contribution of this research is the analysis of SMTP traffic 

characteristics of legitimate email clients, legitimate email servers and spam relays. 

Legitimate sites (legitimate email clients and servers) and illegitimate sites (spam 

relays) have been shown to have their own SMTP traffic characteristics in this research, 

and can be distinguished from each other by using SMTP traffic characteristics. The 

understanding of the SMTP traffic characteristics of different hosts (legitimate email 

clients, legitimate email servers and spam relays) suggested some methods, which 

might be possible to be used to identify spam relays in networks. The methods are 

evaluating the successful connection rate by the FIN/SYN flag set, counting the total 

number of the connections in a particular time interval, comparing the size of payload 

in each connection, evaluating the ratio of Out/In SMTP packets with SYN flag set, and 

evaluating the relativity between SMTP traffic and time of day. 

3. The third contribution of thesis is in developing an autonomous system for detecting 
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spam relays by SMTP traffic characteristics. Six algorithms, which are correlated to the 

methods suggested by the analysis of SMTP traffic characteristics, are combined in the 

classifier of the system. The results from the tests show that this proposed system has a 

good performance of spam relay identification. Over 90% of spam relays could be 

identified by this system, and the rate of false positive errors is about 0.13 % on 

average.  

4. Spam relay identification in this system avoids infringing upon the rights of 

people‘s privacy, because it never involves reading the email real content. Only the 

TCP/IP header information of the SMTP packets are logged and used for detection in 

this system. 

5. This system is able to identify spam relays on the spam‘s transmit stage. It is better to 

improve the performance of the network than remove the spam emails at the receivers‘ 

terminals. 

6. The system can be adjusted by network administrators to achieve a satisfactory 

performance, which meets to the requirements of the network management. Changing 

of percentile value for thresholds in this system has been shown to affect the 

performance. Setting this percentile value can help administrators to achieve a 

satisfactory performance.  

7. In this thesis, it is also shown that a combination system could have a better 

performance of spam relay identification. Although each individual algorithm 

combined in the classifier is able to pick out a number of spam relays; a system, in 

which more algorithms are combined, can have more opportunities to provide better 

performance. 
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1.7 Thesis Organization 

The thesis is organized in the following way: 

Chapter 1 (this chapter) gives an insight into the research work. It reviews the definition 

of spam emails, and discusses the harm of spam emails and spammer activities. It also 

introduces the battles with the spam emails and the challenge of anti-spam issues. 

Finally, the contributions of this research are presented. 

Chapter 2 explores the background and related work. It reviews the protocol of SMTP, 

and explains how the disadvantages of SMTP lead to the spam email explosion. A 

larger number of anti-spam techniques (e.g. DNSLs, Content Filters, Bayesian Spam 

Filter, Checksum Based Filters, and so on) commonly used in networks are introduced. 

Finally, the structure of a typical pattern recognition system is presented. 

Chapter 3 introduces the collection of SMTP traffic data. Firstly, the TCP/IP header 

structure and 3-way handshake and teardown protocol are reviewed to help understand 

the process of collection. Secondly the process of SMTP data collections from a 

commercial ISP‘s network and Loughborough University campus network are 

introduced in detail. 

Chapter 4 is dedicated to the analysis of SMTP traffic data, which has been collected. In 

Chapter 4, SMTP traffic is analyzed to determine the differences regarding the SMTP 

traffic characteristics of legitimate email clients, legitimate email servers and spam 

relays. It states that the SMTP traffic characteristics of legitimate sites and illegitimate 

sites are different and can be distinguished from each other. In that chapter, it is also 

suggested that some automation methods may be used to identify spam relays in the 

network.  

Chapter 5 of this thesis proposes an autonomous system, which identifies spam relays 

by using SMTP traffic characteristics. In Chapter 5, the proposed system is described in 
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detail including the components and identification mechanism. Finally, the detection 

process of the system is explained step by step by using the flow chart of the system 

structure. 

Chapter 6 discusses the training and tests of the system. The training process of the 

system is introduced in this chapter. A series of tests have been conducted to evaluate 

the performance of the detection system. Results obtained from the series of tests are 

presented in this chapter. In Chapter 6, it is also shown that each individual algorithm 

gives a contribution to the spam relay identification; however, a combination system 

can provide a better performance. In this chapter, it indicates how the percentile value 

for thresholds affects the performance of the system by using test results. Finally in 

Chapter 6, test results indicate that the update process in the system works well in 

keeping the performance of spam relay identification as good as expected. 

Chapter 7 summaries the conclusions and gives glances of future research work. 

 

 

 

 

 

 

 

 

 



15 

 

1.8 Summary  

Spam emails are unsolicited bulk emails. They do harm to people‘s lives and society. A 

lot of money and manpower have been invested in anti-spam actions, but people still 

keep losing ground before spam. We can never stop the fight with spam email.  

The objective of this research work is to determine the differences regarding the SMTP 

traffic characteristics of legitimate email clients, legitimate email servers and spam 

relays, and to develop an autonomous system for detecting spam relays by using SMTP 

traffic characteristics. 
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Chapter 2: Background and Related Work 

In this chapter, background and related work about this research are introduced. 

Firstly Simple Mail Transfer Protocol is reviewed, and it also indicates that the 

disadvantages of SMTP lead to the spam emails explosion. Secondly, a lot of various 

anti-spam techniques commonly used in networks are introduced in details. At last in 

this chapter, the structure of a typical pattern recognition system is presented, which is 

able to help to design an autonomous system involving machine learning technology 

for detecting spam relays in the network. 

 

2.1 Simple Mail Transfer Protocol and Extension 

Simple Mail Transfer Protocol was originally used to exchange text messages between 

nodes on the United States Department of Defense‘s Defense Advanced Research 

Projects Agency (DARPA) internetwork. Currently, it is widely used as an Internet 

standard for electronic mail transmission across Internet Protocol (IP) networks. 

SMTP was first defined in RFC 821 (STD 15) (1982) [31], and last updated by RFC 

5321 (2008) [32], which included the extended SMTP (ESMTP) additions. 

SMTP can be used to send and receive emails by email servers and other mail transfer 

agents (MTA). However, most time user-level client applications only use SMTP for 

sending emails to a mail server for relaying. Clients application usually use either the 

Post Office Protocol (POP) [33] or the Internet Message Access Protocol (IMAP) [34] 

to access their mail accounts on a mail server for receiving email messages. Sometimes 

a system (e.g. Microsoft Exchange) is used to receive email messages from an email 

server by email users. SMTP is specified for outgoing mail transport and uses TCP port 

25. 
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SMTP has aided in the widely using of emails in the network, but has contribution to 

the abuse as well. The abuses of email cause that spam emails are flooding Internet. 

As one of the most important transmission protocols in the network, SMTP was 

intended to be simple and robust. It was designed to be open and use human-readable 

commands. Relaying is necessary for a robust message delivery. Therefore, relaying 

is a legitimate function of SMTP. Relaying enables an MTA to send an email message 

to the nearest available MTA if the intended receiving MTA is offline and 

unreachable. But abuses of relaying generate vast spam emails, which are doing harm 

to both people and networks. SMTP proxies (also known as SMTP application-level 

gateways) are popularly used to transmit emails across network boundaries. Similar to 

relays, proxies can also be used for sending spam if they are not properly secured. [35]  

It would be very difficult to replace SMTP outright because of the global acceptance 

and reliance. Therefore, it is important to find ways to prevent abuse of relaying 

service, which causes mass spam emails in the network. Address restrictions, SMTP 

authentication and some network-security mechanisms (e.g. IPSec, TLS) can be used 

to limit accesses for preventing the abuse of relaying. Also many anti-spam techniques 

have been developed to identify and block spam emails in the network. The following 

sections will introduce some commonly used anti-spam techniques. 
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2.2 Anti-spam Technology 

Currently, using an anti-spam technical solution is the most effective and commonly 

used means to prevent spam emails. A variety of methods have already existed, but 

each with its respective merits and disadvantages. Most anti-spam techniques can be 

divided into three categories according to the operators: End-User Techniques, 

Automatic Techniques for Email Administrators, and Automatic Techniques for Email 

Sender (such as MTA, email servers). 

The following subsections are to introduce several commonly used anti-spam 

techniques. 

2.2.1 Techniques of End Users 

There are a number of techniques which email end users can use to reduce and 

prevent spam emails. The most popular methods are about restricting the availability 

of their email addresses to spam. Disposable email address, discretion sharing the 

email addresses only in limited groups, and avoiding responding to spam could help 

to avoid the spam email addresses harvesting. These techniques could help to prevent 

spam email. Also, people could report spam emails to the anti-spam service on 

networks, such as a network abuse clear-house. This can help the network 

administrators to terminate the spam services. 

2.2.2 Automatic Techniques for Email Administrators 

A number of appliances, services, and software, which can be used by email 

administrators, have been employed to reduce spam emails on email systems and 

mailboxes. Some of these (e.g. DNSBLs) reduce spam by rejecting emails that are from 

those sites known or likely to send spam emails. Other more advanced techniques are 

able to detect spam emails by analyzing message patterns in real time.  Machine 
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learning techniques, which can improve accuracy over manual methods, are popularly 

employed in many anti-spam filtering systems. The following subsection is to 

introduce several commonly used automatic anti-spam techniques for email 

administrators. 

DNSLs 

DNSLs are DNS-Based Lists. DNS-Based Lists Anti-spam Systems list good (white) 

or bad (black) IPs or URLs, including RHSBLs and URIBLs [36].  

A system listing the good sources could be named DNSWLs (DNS-Based White Lists 

System). In this kind of systems, the emails coming from these sources that have been 

listed will be passed at any time in any situation. The most obvious disadvantage of 

such a method is that it restricts communication to already established contact, which is 

impractical for majority of end users. [37] 

The most popular used DNSLs anti-spam system is DNSBLs (DNS-based Blackhole 

Lists). DNSBLs are used to block a series of particular lists (typically of IP address) via 

the DNS [38]. DNSBLs are popularly used by ISPs and anti-spam service companies to 

keep track of a group of IP addresses that generate spam emails. The emails sent from 

these IP addresses that have listed in the system will be rejected out-of-hand. In such a 

way, the mail servers can easily be set to reject mail from some unwanted sources. 

These sources could be known as email spammers, spam supporters or spam relay 

hosts.  

These DNSLs systems are the good spam-fighters. A lot of these sources for the lists 

are available on the Internet [39] [40]. They make decisions by strict rules. But the 

spammers will normally change the source IPs or use the other hosts to do their jobs. In 

order to make decisions accurately, these lists should be upgraded as frequently as 

possible. 
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Content Filtering 

Spam content filters identify spam mails by the nature of the content of each email. 

Content filtering is commonly implemented by many email end users. It is popularly 

used to reduce unsolicited bulk Email (UBE), which is most like to contain some 

predictive keywords. These predictive keywords are used to identify spam emails in 

content filters [41]. The information, which could be used to detect spam emails, is 

contained in the mail bodies or on the mail headers (like ―subject‖). The techniques 

applied in content filters, are Bayesian Classifier [42][43][44], memory-based 

approach [45][46], support vector machine (SVM) [47][48][49][50][51], the technique 

of maximum entropy [52][53], neural networks [54][55][56][57][58], genetic 

programming [59][60], and so on. 

One of the most popular content filters is the Bayesian filter. The Bayesian Spam 

Filter [42][43][44][45][61] is a statistical technique of email filter, and it makes use of 

a Naive Bayes Classifier to identify spam emails. Basically, Bayesian-based filtering 

approach uses the knowledge of prior events to predict the future events. Email 

messages are marked as spam and non-spam, and Bayesian-based filters can learn to 

automatically put messages from the same source or with the same kind of patterns 

into the corresponding category. Bayesian-based filters identify email spam based on 

some pre-defined tokens (words, phrase or sometimes other things) [62]. 

Keywords-based Bayesian spam filtering [63] are employed to identify spam emails 

popularly in the network. Particular words have particular probabilities of occurring in 

spam emails and in legitimate emails. The probability that an email with a particular 

set of words is computed by using these word probabilities then is used to identify 

which category (spam or non-spam) this email belongs to. Only pre-defines keywords 

give their contributions to the email‘s probability in most Bayesian-based content 

filters. This contribution is called the posterior probability and computed using Bayes‘ 

theorem [64]. Then, if an email‘s probability exceeds a certain threshold, the filter 
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will mark the email as a spam email. The formula used by the software to determine 

that is derived from Bayes‘ theorem [65]. 

 

Where: 

 is the probability that a message is a spam, knowing that the typical 

word is in it;  

 is the overall probability that any given message is spam;  

 is the probability that the typical word appears in spam messages;  

 is the overall probability that any given message is not spam (ham);  

 is the probability that the typical word appears in ham messages.  

The first known Bayes classifier program used to sort mails into folders was Jason 

Rennie's iFile program released in 1996 [66]. The first scholarly publication on 

Bayesian spam filtering was by Sahami in 1998 [61]. In 2002 Paul Graham was able 

to greatly improve the false positive rate, so that it could be used on its own as a 

single spam filter [67] [68]. Bayesian spam filters are one of the most effective 

anti-spam techniques, and Bayesian mathematics can be applied to the spam problem. 

Bayesian spam filters results in an adaptive ―statistical intelligence‖ technique that 

can achieve a very high spam detection rate and gives low false positive spam 

detection rates that are normally acceptable to most.[69][70] 

Some other common content filters are attachment filters, mail header filters, Language 

filters, Regular Expression filters, content-encoding filters, HTML anomalies filters, 

and so on [71]. 

Usually the content filters are also used for anti-virus protection. They can scan the 
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binary attachments of the mails or the HTML contents. It is a good way to help to stop 

the leaking of secret information.  

Checksum-Based Filtering 

Checksum-based filters detect spam emails based on the fact that the spam messages 

will be identical with only small variations. Checksum-based filters strip out 

everything (such as name of receiver, date) that might vary between messages, reduce 

what remains to a checksum, and look that checksum up in a database which collects 

the checksums of messages that email recipients consider to be spam. If the checksum 

is already in the database, this message is likely to be spam. 

An advantage of checksum-based filtering is that it lets ordinary email users take part 

in identifying spam. But spammers can insert unique invisible gibberish (known as 

hashbusters [72]) into each of their messages, which makes each message unique and 

has a different checksum. This leads an arm race between the anti-spam developers of 

the checksum-based software and the developers of spam generating software. 

Checksum based filtering methods include Distributed Checksum Clearinghouse and 

Vipul‘s Razor, which will be introduced in the following subsections. 

 Distributed Checksum Clearinghouse 

Distributed Checksum Clearinghouse (also referred to as DCC) is a hash sharing 

method of spam email detection [73]. The basic logic in DCC is that most spam 

emails are sent to many recipients. The email, that has the same message body 

appearing many times, is therefore a spam email. DDC, as an antis-spam system, 

is made up of a distributed collection of Clearinghouse (servers), where counts of 

email messages received by email clients are maintained. DDC identifies spam 

emails by taking a checksum and sending that checksum to a Clearinghouse. The 
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Clearinghouse responds with the number of that checksums received. A spam 

emails can be identified due to its response numbers is high. 

DCC is resistant to hashbusters because ―the main DCC checksums are fuzzy and 

ignore aspects of messages. The fuzzy checksums are changed as spam evolves‖ 

[74].DCC is likely to identify mailing lists as bulk email unless they are white 

listed. The content is not examined. DCC works over the UDP protocol and 

causes some additional network traffic.  

 Vipul‘s Razor 

Vipul's Razor, as a checksum-based, distributed, collaborative system for 

identifying and filtering spam emails in a distributed fashion, consists of a set of 

Razor servers that hold the database of known spam. A user‘s email client is 

configured to submit income emails to a razor client that queried a server if it is a 

known spam. Detection is done with statistical and randomized signatures that 

efficiently spot mutating spam content. Users can not only add spam emails to the 

database maintained on the servers, but also can flag emails misidentified as spam 

in the system. The weight assigned to a given user‘s classification is determined 

by a trust level, which is generated by considering ―consensus‖ of this user‘s 

previous classifications and system‘s. [75] 

Vipul's Razor was written in Perl by (primarily) Vopul Ved Prakash. Razor is not 

only used directly by some email clients, but also used by some server-side spam 

filters, for example SpamAssassin [76]. And a commercial derivative of Razor, 

named Cloudmark Authority, is available from Cloudmark [77]. 

Statistical Filtering 

Statistical filtering was first proposed in 1998 by Mehran Sahami, at the AAAI-98 

Workshop on Learning for Text Categorization [61]. And statistical filtering was 
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popularized by Paul Graham‘s influential 2002 article A Plan for Spam. Based on 

collections of spam and non-spam ("ham") email submitted by users [67], that article 

proposed the use of naive Bayes classifiers to predict whether messages are spam or 

not. 

Statistical content filtering doesn‘t need to require maintenance per second after it is set 

up. The system users mark emails as spam or non-spam. And the filtering software 

collects these judgments and keeps these judgments as records for detecting the spam 

emails. A statistical content filter is a kind of document classification system, and a 

number of machine learning research have turned their attention to this direction. 

Machine learning technologies employed in statistical filters not only make anti-spam 

statistical filters responding quickly to the changes of spam without administrative 

intervention, but also improve the performance of identifying spam.  

Not only natural real contents of emails are looked at in statistical filtering, also email 

message headers can be considered. Thereby, statistical filters identify spam emails 

also by considering peculiarities of the transport mechanism of the email. Some 

algorithms in statistical filtering involve email inter-arrival times, email size, number of 

recipients per email and so on. Characteristics of spam traffic and spammers are also 

widely used in statistical filtering to identify spam email.  

Software programs implementing statistical filtering include Bogofilter, the e-mail 

programs Mozilla and Mozilla Thunderbird, and later revisions of SpamAssassin [78]. 

Another interesting project is CRM114 which hashes phrases and does Bayesian 

classification on the phrases [79]. 

Cost Based Systems 

Low cost is one of the important reasons for the spammers to broadcast the information 

by spam mails. Each spam email cost spammer less than $ 0.00001 on average [80]. The 
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cost factors for a spammer can be grouped in four categories—hardware cost H, 

software cost S, operating cost O, and labor cost L. So a basic cost model for 

spammer can be defined as: Total cost C= H + S + O + L [81]. So most spam-fighters 

advised to use cost based systems to increase the spammers‘ cost. 

One of the cost based plans is the stamp system. The sender will pay electronic money 

to the recipient, or the ISP, or some other gatekeeper. The spammers will spend a lot of 

electronic money on the spam sending. Also, it provides another way to point out the 

spammers by counting the stamps used by the sender in their account. A refinement to 

stamp systems is that the method of requiring that a micropayment only be made if the 

recipient considers the email to be abusive. Therefore in stamp systems, popular free 

legitimate mailing list hosts would be unable to continue to provide their services if 

they had to pay postage for every message they sent. 

Another plan is the Proof-of-work systems and similar systems [82][83]. They ask the 

sender to pay a computational calculation cost, which will take the sender several 

seconds per email. But for a spammer, the millions of spam mails that he sent will cost 

him a long time. The large number of calculations will slow down the spammer‘s 

computer [84]. The point is to slow down hosts that send mostly spam-often millions 

and millions of them. While a user that want to send email to a moderate number of 

recipients suffers just a few seconds‘ delays, sending millions of emails would take an 

unaffordable amount of time. Proof-of-work such as Hashcash and Penny Black require 

that a sender pay a computational cost by performing a calculation that the receiver can 

later verify. Verification must be much faster than performing the calculation, so that 

the computation slows down a sender but does not significantly impact a receiver. The 

disadvantage of these techniques is that they will suffers when the sender maintains a 

computation farm of their own or used zombies. 

These two plans increase the spammer‘s cost of the money and time. But these systems 

will also inconvenience legitimate email users. And most users will feel uncomfortable 
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paying for email sending. 

Pattern Detection 

Pattern detection is an approach to detect spam emails in real time before they get to 

an end user. Many spam messages have similar content or may contain similar 

attachments which this detection technique can catch. Pattern detection techniques 

identify spam patterns by monitoring a large database of messages worldwide.  

Recurrent Pattern Detection (RPD) is one of anti-spam software tools based on pattern 

detection techniques. This method is developed by Commtouch, a developer of 

Anti-Spam software. Recurrent Pattern Detection is more automated than most 

because the service provider maintains the comparative spam database instead of the 

system administrator. This software can be integrated into other appliances and 

applications. The following subsection will introduce Recurrent Pattern Detection. 

Recurrent Pattern Detection [85]: 

Recurrent Pattern Detection (RPD) technology, a patent-pending technology based on 

Commtouch‘s U.S. patent, identifies and classifies all types of suspecious patterns of 

email in real-time by extracting and analyzing relevant email patterns. RPD is hosted 

by the Commtouch® Detection Center, which proactively analyzes vast amounts of 

Internet traffic in real-time. Both distribution patterns and structure patterns are able 

to be classified by RPD. The distribution patterns represent the characteristics of 

senders (how many, location) and the volume of emails sent over a period of time. 

The structure patterns are about random combinations of text from the header, and body of 

the message as well as URLs found to be repeated in different messages [86]. The Analysis 

results are kept in a database of classifications. RPD can not only be used to identify 

new suspicious patterns, but also be used to modify or enhance classifications of 

already identified email patterns. RPD is also designed to distinguish between the 

patterns of solicited bulk emails (‗good‘ messages such as newsletters, mailing lists, 
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etc.) from unsolicited bulk emails by applying a reverse analysis. 

The RPD technology does not require human intervention and is designed to be fully 

automated. It can identify new threat outbreaks within minutes since they are 

generated on the internet. Hashed values of email patterns are analyzed in RPD 

technology. And email real content is never involved, which ensure maximum privacy 

and business confidentiality. 

Ham Passwords 

Some anti-spam techniques by using ham passwords ask unrecognised senders to 

include a password indicating that this email is a ―ham‖ (not spam) message in their 

email. It must be made sure that the legitimate senders will be able to find the ham 

password. Typically people use a web page to give the email address and password 

that is expected to be used by legitimate senders. The email address could be given as 

a set of instructions, and the ham password could be given as shrouded graphical 

image. Generally, this information about email address and password can‘t be easy to 

read by machine. [87] 

The ham password may be included in the ―subjected‖ line of an email address. Also 

it could be appended in the ―username‖ part of the email address, such as the plus 

addressing technique. Ham passwords not only can be used to identify unauthorized 

emails, but also are often combined with filtering systems to evaluate the risk that a 

filtering system will accidentally identify a ham message as a spam message. 

Honeypots 

A honeypot is a trap set to detect unauthorized use of the information systems. 

Honeypots help to improve the overall security architecture by providing early 

warning, which is about new attacks, attacking techniques and so on. Honeypots help 

to monitor attackers as they exploit systems. [88] 
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Honeypots are being used to reduce spam emails by setting up ―trap‖ email accounts 

to identify the sources and nature of the emails received [89]. An approach is that 

setting up an imitation MTA which gives the appearance of being an open mail relay, 

or an imitation TCP/IP proxy server which gives the appearance of being an open 

proxy. Spammers who probe systems for open relays/proxies will find such a host and 

attempt to send mail through it. This ―trap‖ system not only causes spammers wasting 

their time and resources, but also could collect the sources and nature of spam emails 

which spammers are sending to the ―trap‖. Such information collected by the 

honeyposts could be used to identify the spam. For example, the sources of spam 

emails that are collected by the honeypots could be submitted to DNSBLs for stop the 

spam. [90][91] 

2.2.3 Techniques of Senders 

There are a variety of techniques which emails senders can use to make sure that they 

do not send spam emails, such as background checks, confirmed opt-in mailing lists, 

egress spam filtering, rate limiting, limit email backscatter, and so on. The following 

subsections will represent some of anti-spam techniques of email senders. 

Background checks on new users and customers 

Most email senders do background checks on new users and customers to avoid their 

systems being used to send spam emails. CAPTCHAS [92] [93] is popularly used on 

new account by most ISPs and web email providers to verify that it is a real human 

registering the account, instead of an automated spamming system. 

Confirmed Opt-in Mailing Lists 

To prevent spam abuse, all mailing lists are encouraged to use confirmed opt-in (also 

known as verified opt-in or double opt-in) by MAPs and other anti-spam 
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organizations. Whenever a new subscriber (an email address) asks to be subscribed to 

the mailing list, the list software should send a confirmation message to verify it is 

really them. Confirmed Opt-in mailing list software should send a confirmation 

message to the address, which is presented for subscription to the list. The 

confirmation message must not contain any advertising content, so it is not construed 

to be a spam message itself. New subscriber is not added to the live mail list unless 

the recipient responds to the confirmation message, such as clicking a special web 

link or sending back a reply e-mail. [94] 

2.2.4 Summary of Anti-spam Techniques 

A lot of anti-spam techniques have been used by end-users, email administrators and 

even legitimate email senders. Some commonly used anti-spam techniques have been 

represented in the previous sections. These techniques are playing an important role to 

identify and block spam emails in the network, but all these techniques are not 

enough. There are still hundreds of billions of spam emails in a year. Spam 

characteristics and lots of detection methods are employed in anti-spam techniques. 

However, there is still not a single technique that is able to prevent the propagation of 

spam in current networks. In this thesis, we try to find different SMTP characteristics 

among email user clients, legitimate email servers and spam relay hosts, and build an 

autonomous system to detect the spam relays via their SMTP traffic characteristics. 
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2.3 Typical Pattern Recognition System 

In this research, we try to build an autonomous system, which employs machine 

learning techniques, for detecting the spam relays by using SMTP traffic characteristics 

in the network. Machine learning is one of the branches of artificial intelligence. It is a 

science of developing algorithms that allow the machine to make inferences from 

observing data (empirical data, such as from sensor or databases), generalize it to rules 

and make predictions on attributes or future data. Currently, machine learning 

technologies are widely used for data mining, autonomous discovery, data updating, 

programming by example, etc. [95] 

Classification, which is also referred to as pattern recognition, is one of the important tasks of 

machine learning techniques. Pattern recognition techniques are employed in a proposed 

system for detecting spam relays in this research. A typical pattern recognition system 

usually includes 5 parts: sensing, segmentation, feature extraction, classification and 

post-processing. Figure 2.1 is the slightly more elaborate diagram of the components 

of a typical pattern recognition system. [96] 
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Figure 2.1: Structure of a Typical Pattern Recognition System 

 

2.3.1 Sensing 

The Sensing element of a pattern recognition system gets inputs from the environment 

or object, which is being monitored. The most important work in design of sensor is to 

choose which information should be collected from the monitored object. A good 

design of sensors for a pattern recognition system helps to collect the exactly original 

information, which can improve accuracy of system‘s output. 

The difficulty of the problem may be well depend on the characteristics and limitations 

of the sensor, such as its bandwidth, resolution, sensitivity, distortion, signal-to-noise 

ration, latency etc.  
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2.3. 2 Segmentation 

Segmentation is one of the deepest problems in pattern recognition. Individual patterns 

have to be segmented for pattern recognition system to use as inputs. A way must to be 

found when we have switched from a pattern to another. 

2.3. 3 Feature Extraction 

A feature extraction is used to characterize an object to be recognized by measurements 

in a system. It picks up the distinguishing features, whose values are very similar for 

objects in the same category and very different for the objects in different categories, 

and passes them to a recognition system for identification. 

Different feature extraction methods are designed for different representations of 

characteristics, such as solid binary characteristic, character contours, and skeletons or 

gray level sub-image [97]. Texture and Shape features are widely used for the analysis 

in the area of image processing. In this area, feature extraction methods commonly 

used include statistical grey level features, histogram features, the surrounding region 

dependence method, GLCM features, grey –level difference methods, axis of least 

inertia, center of gravity, average bending energy and so on [98][99]. Feature 

extraction, an essential component in data mining and anomaly detection, also 

summarizes the behavior from a traffic data packet steam. Features monitored in 

network data traffic could be one or several from the group of source address, 

destination address, traffic volume, port, payload, distribution characteristics and so 

on.[100][101]  

A good feature extractor would make the job of the classifier easier. To help the 

classifier to make the correct decisions, it yields inputs describing the distinguishing 

features. Selection of a feature extraction method is probably the single most 

important factor in achieving high recognition performance. 
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2.3. 4 Classification 

The classifier component of a pattern recognition system is used to assign an object to 

its related category via the distinguishing features provided by the feature extractor. 

The general task of most classifiers is to determine the probability for each possible 

category.  

It is impossible to find a ―perfect‖ classifier. Performance of a classifier is affected by 

the difficulty of the classification problem, which depends on the variability (due to the 

complexity or noise) in the feature values for objects in the same category and the 

relativity of the difference between feature values in different categories [96]. A single 

technical solution that is able to stop spam is unlike to be found currently. Spam 

identification algorithms are combined in a classifier, such as Bayesian classifier, SVM 

classifier, linear classifier and so on, to fight spam emails. A lot of anti-spam techniques 

have been introduced in section 2.2.  

The simplest measure of classifier performance is the classification error rate, which is 

the percentage of new patterns assigned to the wrong category. Positive false error rate 

and Negative false error rate are commonly used to evaluate the performance of a 

pattern recognition system. 

2.3. 5 Post Processing 

It is very important for a pattern recognition system to improve the performance 

automatically in its classification process. The post-processor uses the output of the 

classifier to evaluate the performance and decide on the recommended action that can 

be used to improve the performance of system. The recommended actions include 

updating of the system, generations of thresholds and parameters, and so on. All of 

these actions help the system to be automatically operated and improve the 

performance of the system. 
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2.4 Summary 

Currently, Simple Mail Transfer Protocol (SMTP) is widely used for sending and 

receiving mails by email servers and other mail transfer agents. The abuse of relaying, 

which SMTP allows for robust message delivery, causes the explosion of spam email. 

A lot of anti-spam techniques have been developed and employed for identifying and 

removing spam emails in the network, such as DNSLs, Cost Based Systems, 

Checksum Based Filters, Content Filters, Bayesian Spam Filter, and so on.  

Machine learning technologies are popularly used in autonomous systems. An 

important task of machine learning is pattern recognition. And a pattern recognition 

system usually includes 5 parts: sensing, segmentation, feature extraction, 

classification and post-processing. Each part gives the contributions to the performance 

of the system. An autonomous system, in which machine learning technologies are 

employed, was proposed to identify spam relays in the network in this research work. 
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Chapter 3: Data Collection 

In this research, SMTP traffic characteristics of legitimate email clients, legitimate 

email servers and spam relays were analyzed with the aim of finding a method to 

identify spam relays in the network. To do this, SMTP traffic was collected from real 

networks. In this chapter, the collection of SMTP traffic is described in detail.  

The TCP/IP header structure and 3-way handshake & teardown protocol are reviewed 

in this chapter for helping to understand the process of the SMTP traffic data collection. 

This review is followed by explanation of SMTP traffic data collections used in this 

research, including introducing the real networks which the data was collected from, 

indicating the parameters and flag sets which were recorded in the traffic data 

collection processes, and presenting the processes of SMTP data collections from the 

different sources. 

 

3.1 TCP/IP Header Structure and 3-Way Handshake & Tear 

Down Protocol 

Understanding the TCP/IP Header Structure and 3-ways Handshake & Tear down 

Protocol can help explain why and how we collected these parameters and flag sets 

from the packet headers of SMTP traffic. 
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3.1.1 TCP/IP Header Structure 

 

Figure 3.1：TCP/IP Header Structure [102] 

Figure 3.1 shows the TCP/IP header structure. From the information of the packet‘ 

TCP/IP header Structure , it is easy to got the packet‘s Total Length, Source Address 

(Source IP), Destination Address (Destination IP), Sequence Number, Source Port, 

Destination Port, States of the TCP flags, and so on. All of the SMTP traffic packets 

have a destination port value of 25.  

3.1.2 3-Way Handshake & Tear Down Protocol 

The three-way handshake in the Transmission Control Protocol, also called the 

three-message handshake, is the method used to establish and tear down the network 

connection. This TCP handshaking mechanism is designed so that two computers 

attempting to communicate can not only negotiate the parameters of the network 

connection before beginning communication but also establish separate connections at 
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the same time. [103] 

 

Figure 3.2: TCP Three-way Handshake and Tear Down Protocol 

The process of the TCP three-way handshake and tear down is shown in the Figure 3.2, 

and the following characteristics can be determined: 

1. The outgoing SMTP packets with SYNchronize flag set are closely correlated 

to the TCP connections which the host tried to establish. 

2. Packets with FINish flag set are correlated to the number of completed 

connections. 

3. The size of the payload for each connection is related to the contents which 

have been sent. 

So in the process of SMTP data collection, Capturing times, Source IP, Destination IP, 

States of flags (SYN, FIN, ACK, RST), and size of payload of each captured packet are 

recorded. These parameters related to the characteristics previously described. A 

summary of the volumes of packets with specific flag set in a particular time interval set 

is also made for each monitor period by the sniffer process. 
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3.2 SMTP Traffic Data Collection 

SMTP traffic data for analysis in this research does not involve the e-mail‘s content 

itself. The process of data collection only recorded the SMTP packets‘ TCP/IP header 

information that includes capturing time, source IP, destination IP, flag sets (SYN, FIN, 

ACK, RST), sizes of payloads, and so on. Summaries of what has been logged will be 

provided after every monitor process cycle is completed. SMTP traffic data was 

collected from two difference monitoring sources: one was a national wide ISP‘s local 

network, and the other was Loughborough University (i.e. the Loughborough 

University mail servers). A 24-hour period was set as the monitoring period for data 

collection as it relates to a standard human activity cycle. It will later be shown that the 

traffic characteristic for SMTP activity follows a 24-hour pattern.  

In the national wide ISP‘s local network, there were known to be no legitimate email 

servers. Thus, all the hosts were legitimate email clients, spam relay hosts or 

illegitimate mail servers. Traffic data from this network is therefore helpful to indicate 

the SMTP traffic characteristics of legitimate email clients and spam relay hosts. The 

university email servers by contrast are legitimate servers with effective management. 

So the data from these servers can help to find the difference between a legitimate 

server‘s traffic and the spam relay‘s traffic by comparing with the data collected from 

the two networks.  

3.2.1 Data from a National ISP’s Network 

We have access to a national ISP‘s traffic which had been previously collected by Dr 

Peter Sanford. The SMTP traffic data was collected from a national local network. Over 

70 hours‘ SMTP traffic was logged and more than 10000 IP addresses were involved in 

this monitoring process. The SMTP packets‘ header information was recorded in detail. 

The packets, which have a destination port value of 25 with the SYN flag set, were 
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logged. These packets are closely correlated to TCP connections with mail servers [25]. 

In section 3.1.2, it tells that a host firstly sends a packet with SYN flag set for requesting 

to establish a connection according to TCP three-way handshake protocol. And a host 

attempted to establish a TCP connection sent one and only packet with SYN flag set in 

both a completed connection and an uncompleted connection. SMTP packets are all 

have a port value of 25 according to the Simple Mail Transfer Protocol. Therefore, the 

number of packets with a SYN flag set and port value 25 is correlated to the number of 

SMTP connections requested to establish. An analysis tool named the SMTP Log 

Analyzer was used for analysis of the SMTP traffic connection profiles. SMTP Log 

Analyzer was written by a previous researcher in the HSN group at Loughborough 

University. It can display every 24-hour monitor period‘s distribution of packets for 

each source by loading the traffic data, and is also able to present all the Destination IP 

addresses related to a source appearing in a monitoring period. Figure 3.3 shows the 

user‘s interface of the SMTP log analyzer. 

 

Figure 3.3: SMTP Log Analyzer 

 

3.2.2 Data from the University Email Servers 

The SMTP Traffic data from Loughborough University was collected from two email 
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servers in the university. These two email servers are legitimate email servers with 

effective management.  

The data collected from one of the monitored university servers monitored represented 

all the SMTP traffic going in and out that server. A total of 15 days‘ traffic was gathered 

(fifteen 24-hour monitor periods), including 4 weekend periods. There were three days‘ 

data in which recorded all the SMTP packet header information including Capture time, 

Source IP, Payload Size, states of the flags in header (SYN, FIN, ACK, and RST) were 

record. The summaries, which come from the capture progress in these 3 days, counted 

the total number of SMTP packets, packets with SYN, packets with FIN, packets with 

RST, and the size of payload every 5 minutes. The other 12 days‘ data only included the 

summary of the number of SMTP packets, the number of packets with the SYN flag set, 

the number of packets with the FIN flag set, the number of packets with RST, and the 

size of payload transferred every 30 minutes. 

The data from the other email server only recorded the outgoing SMTP traffic from that 

server. This monitoring recorded a total of 16-day‘s traffic including 4 weekends‘ 

periods. In these 16 days‘ traffic, 4 days‘ traffic was recorded with full details of each 

SMTP packet‘s header information and a summary was made every 5 minutes. For the 

other 12 days, a summary was made every 30 minutes and did not include the full detail 

about every SMTP packet header. 

There were in total 14.6 Gigabytes of data collected from university mail servers in 31 

days. A large amount of traffic data make the data processing and analysis difficultly 

and complicated. Therefore, there are in total 7 days‘ worth of SMTP traffic recorded 

with full detail of every SMTP packet‘s header information, and only summary data 

was collected in the other days. This summary data included the summary of the 

number of SMTP packets, the number of packets with the SYN flag set, the number of 

packets with the FIN flag set, the number of packets with RST, and the size of payload 

in each monitor time interval that is 30 minutes. The summary data is able to help to 
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analyze and understand the general and overall situation of legitimate email servers. At 

the same time the data with full detail is able to provide the particulars of SMTP traffic 

situation. Collection of summary data is not only able to reduce the total size of 

collection data and make the analysis processing of data easier, but also enough to 

provide valid data for the analysis with some data of full details together. 
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3.3 Summary  

SMTP Traffic data was collected from different sources including legitimate email 

clients, legitimate email servers and spam relays in real networks (an ISP‘s local 

network and Loughborough University campus network).  The header information of 

SMTP packets was logged by a sniffer. The information, which logged by the sniffer, 

included capturing time, source IP, destination IP, flag sets (SYN, FIN, ACK, RST), 

sizes of payloads, and so on. And email real content was never involved in the SMTP 

traffic data collection process. 

SMTP traffic, which had been collected, will be analyzed in the next chapter to 

determine the differences regarding SMTP traffic characteristics of legitimate email 

clients, legitimate email servers and spam relays. 
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Chapter 4: SMTP Traffic Characteristics of 

Legitimate emails clients, Legitimate Server 

and Spam Relay Hosts 

The hosts that send SMTP packets can be divided into legitimated email clients, 

legitimate email servers and spam relay hosts. In this chapter, it will be found that 

legitimate email clients, legitimate email servers and spam relays have their own SMTP 

traffic characteristics. SMTP traffic characteristics of legitimate sites and illegitimate 

sites are different and may be used to distinguish each other in the network. Some 

methods based on analyzing SMTP traffic characteristics are suggested to identify 

spam relays in network at the last in this chapter. 

The following sections review the related research work in SMTP traffic characteristics, 

followed by representing the differences regarding SMTP traffic characteristics of 

legitimate email clients, legitimate email servers and spam relays as found by analyzing 

the SMTP traffic collected from real networks. 

 

 

 

 

 

 

 



44 

 

4.1 Related Work 

A lot of email classification methods have been employed in anti-spam techniques. 

Most features used in these classification methods are able to be divided in two 

categories: one is per-email features, and the other is features calculated over a 

sending window. 

Per-email features include the Single Email Multinomial-Valued Features (i.e. 

presence of HTML, presence of embedded image, presence of hyperlink, mime types 

of file attachment) and per email continuous features (i.e. number of attachments, 

number of words, and number of characters of subject or body). Features calculated 

over sending windows are number of senders, number of unique email recipients, 

ratio of email with attachment, and so on. [104] 

Spam identification metrics have been introduced in papers in which characteristics of 

email servers, spam hosts (bots), and spam traffic are analyzed. These metrics 

involved size and type of attachment, number of recipients per email, email workload, 

email size, email inter-arrival time, path analysis, SMTP connection distribution, and 

so on [25][105][106][107][108][109][110][111][112][113][114]. Each metric can be a 

way to find out the spammers or spam traffic.  

In the following sections, characteristics of legitimate email clients, legitimate email 

servers and spam relays will be determined with not only per email features but also 

features calculated over a monitor window by analyzing the SMTP traffic data 

collected from real networks. Difference in characteristics of the legitimate sites and 

spam relays will be presented in volume of SMTP connections, the rate of successful 

connections completed in SMTP connection requested, the number of similar emails, 

the rate of email response by the receiver, and SMTP connections distribution. 

As previous section 1.1 said that spam emails are a part of ―mass mailing‖. Therefore 

one of significant characters of spam hosts is sending out a large volume of emails 
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(requesting to establish a large volume of SMTP connections). The volume of emails 

and SMTP connections are popular used parameters with other techniques for 

identifying spam hosts in the networks. 

The legitimate mail traffic is two way traffic induced by social network [105], but the 

spam traffic is one way traffic [106]. 70% of spam emails are sending by spam bots. 

The spam-bot sends many spam mails, but it receives no mail because it doesn‘t have a 

domain which can be used for receiving emails and is only designed to send emails. 

Therefore, a high ratio of outgoing mails with a low ratio of email response by receivers 

is a characteristic of spam mail host [107]. This characteristic might be used with other 

anti-spam filtering techniques to improve the spam detection performance. This 

characteristic of legitimate and spam relays will be analyzed in the following sections 

in this thesis. 

Email size also may be a parameter used with other filtering techniques to improving 

the effectiveness of spam identification. The sizes of non-spam emails are much more 

variable and have a much heavier tail in comparison with spam emails sizes [115]. 

Spammers typically send a large number of short e-mails. Most time they prefer to send 

large number of similar emails to mass receivers. The characteristics about numbers of 

similar email having similar email size from legitimate site and spam relays will be 

analyzed in this thesis. 

Also analyzing the distribution of SMTP connections in a day is a popular way to 

identifying spam traffic. As a legitimate email server, the average number of requests 

exhibits large fluctuation over 24 hours [109]. The load is lightly in the early hours in a 

day. Then it gradually increases. It also exhibits self-similar behaviors [109]. 

Traditional non-spam e-mail traffic presents two distinct and roughly stable regions: a 

high load diurnal period (i.e., working hours), and a low load period covering the 

evening, night and early morning. On the other hand, the intensity of spam traffic is 

roughly insensitive to the time of the day [105]. As observed for daily load variations, 
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the impact of spam on the aggregate traffic is a less pronounced. SMTP connection 

characteristics were analyzed in [25]. It was found that the characteristics on 

distributions of SMTP connections can be used to detecting spam relays in the network. 

SMTP connection characteristics of legitimate email clients, legitimate email servers 

and spam relays were analyzed in this thesis.  

In this thesis, a new characteristic on successful connection rate completed will be 

analyzed to find the difference between the legitimate email user and spam relays. 

Because the rejection of the connection requests from spam relays, it could be a way 

to be used with other anti-spam filtering techniques to improve the performance of the 

anti-spam filters 
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4.2 SMTP Traffic Characteristics of Legitimate Email 

Clients 

In the national ISP‘s local network, there were no legitimate email servers. All the 

SMTP traffic data should therefore come from legitimate email clients. After the 

analysis of the data, we are able to suggest that there were also some spam relay hosts.  

The ISP‘s local network data represented three days of SMTP traffic collected by a 

gatherer in a national ISP‘s network. There were a total of 2865 separate Source IP 

addresses in this data set. In other words, 2865 hosts‘ three days SMTP traffic was 

recorded in this data set. 2865 hosts were corresponding to these users who are in 

different careers, ages, background, habits, and so on. According to ISP‘s policy on 

this network using, there should be no illegitimate email servers and spam relays. 

Traffic data was analyzed, and it was found that most hosts in this network were 

legitimate email clients, also there are a few of illegitimate users (illegitimate email 

servers and spam relays). The following words in this section will try to determine 

SMTP characteristics of legitimate email clients by analyzing this SMTP traffic date 

set generated in a local network in which most hosts are legitimate clients. Significant 

characteristics of legitimate emails clients will be represented in this section. Figure 

4.1 shows the distribution of the number of Source Addresses, which are divided into 

different groups by the number of SMTP connections that they try to establish in a 

day.  

 

Figure 4.1: Distribution of Source IP by Number of Connection Established 
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Figure 4.1 shows that over 90% of hosts try to establish less than 100 connections 

with email servers in a day. This suggests that a legitimate email client may establish 

a few connections to mail servers each day. By analyzing the SMTP traffic data set, it 

was found that a legitimate email client would be usually expected to make limited 

connections in a few hours to one or several mail servers a day. For much of the day, 

it would remain silent. A 24-hour period is relates to a standard human activity cycle. 

Therefore, a 24-hour daily pattern in a particular day is able to more accurately 

represent the traffic characteristics for SMTP activity of a host. An averaged 

distribution over many days can shows the characteristics in a quite long period, but it 

also attenuates the variations in the distribution figures in a-day period. It is not 

expected to identify a spam relay by many days monitoring work, so we focus on 

analyzing characteristics for SMTP connections distribution in a particular day in this 

thesis. Figure 4.2 shows the distribution of SMTP connections established by a 

typical legitimate email client in a particular day. A day‘s connection distribution 

pattern could be used to distinguish legitimate email client from legitimate email 

servers and spam relays which will be analyzed in the following sections. 

 

Figure 4.2: SMTP Connection Distribution of a Typical Legitimate Email Client 

In Chapter 1, it has stated that spam emails are a part of a ―mass mailing‖. Therefore 

most of the time a spam relay establish a lot of connections in a day. So in simple 
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term, it may be possible to separate legitimate email clients from spam relays in a 

network by counting the number of connections established in a monitoring period. 

Characteristics on volume of connections established by spam relays will be 

determined in later sections by analyzing SMTP traffic data collected from real 

network. 

There may also be some illegitimate hosts sending limited number of emails to a 

target group of people for some selfish objective. However, this will affect the system. 

But this is a security problem, and it is not a problem of mass spam emails.  
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4.3 SMTP Traffic Characteristics of Legitimate Email 

Servers 

The following subsections discuss the general characters of the University servers‘ 

SMTP traffic in terms of the volume of connections made, the ratio of the FIN/SYN 

flags, the payload-size of emails and the relation between patterns and time. This 

information could help to understand the SMTP traffic characteristics of legitimate 

email servers. 

4.3.1 Volume of Connections 

An obvious expected difference between email clients and mail servers is the volume of 

the connections. In the previous section 3.1.2, it has been explained that the number of 

packets with a SYN flag set from a host is closely correlated to the number of TCP 

connections which the host requested to establish. Therefore, the number of packets 

with SYN flag set was used to count the volume of connections that a monitor host 

requested to establish. A mail server makes a lot of connections every day, and a lot of 

emails are passed. There were nearly 20800 connections requested to establish by each 

Loughborough University email server on average every weekday, and 5020 

connections on a weekend day. Figure 4.3 shows the number of connections for 

thirteen days. The first ten bars are for the weekdays, and the last three are for the 

weekends.  
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Figure 4.3: Number of Connections Requested to Establish by University Server 

per Day 

In the busiest day there are 23520 connections. The minimum number of connections is 

at a weekend, and it is 3947. Figure 4.4 shows the distribution for the number of 

connections requested to establish by the monitored university email server in a 

particular day. In a busy hour, the monitored server established about 2000 connections. 

There are only about 100 connections at mid-night, which is the quietest period for a 

server in a day. 

 

Figure 4.4：Distribution of Connections Established by University in a Particular 

Day 
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There are a lot of connections on the mail servers in every hour and every day. In 

contrast, an email client, as seen in the previous section 4.2, establishes only a few 

connections in an hour and only operates for a few hours in a day.  

4.3.2 Ratio of FIN/SYN Flag Set 

FIN/SYN flag set is defined as the ratio of the number of packets with the FIN flag set 

to the number of packets with the SYN flag set. The TCP 3-way handshake and tear 

down protocol tells us that there should be two packets with SYN and two packets with 

FIN sent by the Source IP for every completed connection. So for an ideal host without 

an unhealthy connection, the value of the FIN/SYN ratio should be 1.  

From the data collected from the university servers, it is found that the average value of 

FIN/SYN is 0.82 in the traffic data collection period. The value during the weekday is 

higher than the value at the weekend. The average value of the FIN/SYN ratio is 0.57 at 

the weekends. Due to the uncompleted connections existed on each server, the value of 

FIN/SYN ratio is lower than 1. Figure 4.5 shows the relationship between the value of 

FIN/SYN flag set and the number of the packets with a SYN flag set in every one-hour 

monitored time interval.  

 

Figure 4.5: Distribution of the FIN/SYN ratio from a University Server 
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In contrast, most spam relay hosts may be expected to have many uncompleted 

connections with a lower value of FIN/SYN flag set because connections requested 

from these hosts could be refused by some legitimate servers and users for various 

reasons. For example a spam filter may stop unrecognized the email addresses which 

have been harvested from the web. Figure 4.6 shows the distribution of the FIN/SYN 

flag set from a suspicious spam relay host in the ISP‘s local network. The packet 

transmission volume from this address is much higher than that expected from a 

legitimate email client. SMTP connections from this address were established in 6 

hours in two time intervals, and each interval is 3 hours. The profiles of these 

connections in these two time intervals are the same. The profile of SMTP connections 

from this host is not expected from a legitimate mail server. In this case, it appears as 

expected a spam relay host sends spam emails cyclically and periodically. 

 

Figure 4.6: Distribution of the FIN/SYN ratios from a Suspicious Spam Relay 

The different distributions in Figure 4.5 and Figure 4.6 point out that there may be a 

way to distinguish the legitimate email servers from spam relay hosts by the value of 

the FIN/SYN ratio when both of them generate a lot of SMTP connections.  
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4.3.3 Payload for the Emails on Servers 

Content filtering is often used to fight spam emails by identifying what is in the emails. 

Actually a spammer sends similar emails to a lot of different email addresses in an 

outbreak most of the time. Similar emails should have similar size data contents. In 

other words, the payload for each connection should be similar for spam traffic. Some 

anti-spam techniques based on identifying similar contents and payloads in spam email 

have been developed. [116][117] 

According to the TCP tear down protocol, there is a packet with a FIN flag set sent by 

the Source Address after the data transmission. Therefore the ratio of payload size to 

the number of packets with FIN flags set in a short time could be used to indicate if 

there are the connections with different payloads. Figure 4.7 shows the values of 

Payload/FIN for SMTP traffic on a University server. The monitoring time interval is 5 

minutes. 

 

 

Figure 4.7: Distribution of Payload/FIN in Each Time Interval (bytes) 
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It is seen that many SMTP connections generated by this university server have 

different sizes of payload. In contrast, SMTP connections from a spam relay hosts 

sending similar emails should have similar size of payloads. 

4.3.4 Patterns Related to Time  

Human activity (study, work etc) is related to time. So a significant characteristic of the 

SMPT traffic from a legitimate mail server could be that the resulting profiles are 

related to time. Figure 4.8 shows the average number of packets with a SYN flag set in 

every hour from one of the University Servers for 3 weekdays.  

 

Figure 4.8: Distribution of Packets with SYN Flag from a University Server on 

Weekdays 

Figure 4.4 has already shown a distribution of packets with SYN flag set from a 

university server for a 24-hour monitoring period on a weekday. The data comes from 

the same university server but on different days. The two profiles are visually very 

similar. From 0:00 AM to 7:00 AM, it is early morning, and in this period few people 

have got up to deal with emails. So this period is the quietest period in a day with an 

average connections number about 100. Then since 8:00 am, people have started to join 

work so that the number of connections is increasing. At 10 o‘clock in the morning, 
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most of people have already been working and studying. So from 10:00 am to 12:00am, 

the number of packets with SYN flag is stable. There is a dramatic decrease around 

13:00 pm not only in Figure 4.4 but also in Figure 4.8. It is thought that most people‘s 

lunch break time is around 13:00 pm. After the lunch break, the number reaches to the 

peak of the day. It could be explained that the most popular thing is checking and 

dealing with the emails after people come back from the break. The number of 

connections has decreased since 15:00 PM, because people start to leave the campus. 

After 17:00 PM the number is less than 800, and then it keeps decreasing till midnight, 

which is the quietest point in a day. So SMTP traffic of a legitimate university email 

server is related to the time in the day. 

Other days‘ profiles were also investigated, and the Kolmogorove-Smirnov Test was 

used to analyze these profiles. The Kolmogorove-Smirnov Test (K-S Test) is a 

non-parameter test for equality continuous, one-dimensional probability distributions. 

K-S test not only can be used to compare a sample to a reference probability 

distribution (one sample K-S test), but also can be used to compare to two samples 

(two sample K-S test) [118] [119]. The numbers of SMTP packets with SYN Flag set 

in every one-hour interval from three independent 24-hour monitor periods are shown 

in Figure 4.9. 

 

Figure 4.9: Distributions of SMTP Packets with SYN Flag Set from 3 Weekdays 

The maximum number of SMTP packets with the SYN Flag set in a one-hour interval 

in these three 24 hour monitor periods is 5152, and the minimum number is 44. There 
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are 826 SMTP packets with SYN Flag set every one-hour interval on average in these 

periods. Also, in the working time of University (from 9:00 AM to 6:00 PM), the 

numbers of SMTP packets with SYN Flag set is bigger than 800, by contrast with the 

number is less than 800 in off-working time. Figure 4.10 shows the distributions of 

one-hour intervals, which are divided into different groups by using the number of the 

SMTP packets with SYN Flag set.  

 

Number of SMTP packets with 

SYN Flag set in a one –hour 

interval 

Number of 

intervals in Day 

1 

Number of 

intervals in Day 

2 

Number of 

intervals in Day 

3 

0~800 15 15 15 

800~1600 4 5 3 

1600~2400 5 4 5 

Over 2400 0 0 1 

Figure 4.10: Distributions of One-hour Intervals 

The Kolmogorove-Smirnov Test for Day1 and Day 2, gives the statistic D= 0.0417. 

The Kolmogorove-Smirnov Test for Day1 and Day 3, gives the statistic D= 0.0833. 

The Kolmogorove-Smirnov Test for Day2 and Day 3, gives the statistic D= 0.0833. 

So the maximum result value of the Kolmogorove-Smirnov Test is 0.0833. The 

number of elements in a sample is n=24. For n=24, the table value [120] is 

0.32286. In our tests the maximum value of D is 0.0833, which is less than the table 

value. So the distributions of SMTP packets with SYN Flag set are similar on 

university server on weekdays. And all of these profiles are related to time in the same 

way. 
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Figure 4.11: Distribution of Packets with SYN Flag Set from a University Server 

on a Weekend Day 

It was found that the total number of packets with the SYN flag set at the weekend is 

much less than the number on a weekday. Also the profile is usually different to the 

profiles on a weekday. However the number of packets with SYN flag set in the 

daytime is greater than that for the number at night.  

As such, patterns of SMTP traffic from a legitimate email server can be seen to be 

related to the time (different time in a day and workday or weekend), because these 

relate to a human‘s daily activities. However most spam emails from spam relay hosts 

are generated by automatic processes. Another section later in this chapter will point 

out that most SMTP traffic from spam relay hosts will be just related to the spammer‘s 

habits or the parameters set up for the Spam emails bots. 

4.3.5 Ratio of Out/In SMTP Packets with SYN Flag Set 

The incoming SMTP packets with SYN Flag Set are correlated to the connections 
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which the server is required to establish to receive the data. And the outgoing SMTP 

packets with SYN Flag set are correlated to the connections which the server tries to 

establish to send the data to others. As such, the ratio of Out/In SMTP Packets with 

SYN Flag set should be correlated to the response ratio, which is the rate representing 

the percentage of emails delivered by this server that are responded by the receiver. Few 

people will make a response to a spam email. Therefore, it may be possible to 

distinguish the legitimate email servers and emails spam relay hosts by the ratio of the 

Out/In SMTP packets with the SYN Flag set. 

A total of 15 days SMTP traffic including the outgoing traffic and incoming traffic on a 

Loughborough University email server was analyzed. For a Loughborough University 

server, the average ratio of Out/In SMTP packets with the SYN flag set is 0.63. The 

minimum ratio is about 0.52 and the maximum is 0.87. There are of course suspicious 

spam relay hosts, which had sent a lot of SMTP packets with their SYN flag set, in the 

ISP‘s local network. However we haven‘t found any SMTP packets with the SYN flag 

set, in which the destination IP address is one of these suspicious IPs. Due to few people 

responding to a spam email, the ratio of Out/In SMTP packets with the SYN flag set of 

a spam relay should be a very large. 

The difference between the legitimate email servers and suspicious spam relays is 

shown by the ratios of Out/In SMTP packets with the SYN flag set. Today, some 

legitimate email users send a lot of no-reply emails to their applicants. For example, a 

receipt will be send to you by email after you finish a shopping activity, but you will 

never make a response to this receipt via email. Therefore this ratio may be used to pick 

up suspicious spam relays in the network, but it is not good enough to identify spam 

relays. 
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4.4 SMTP Traffic Characteristics of Email Spam Relays 

There are no legitimate email servers on the ISP‘s local network. Therefore if we 

remove the legitimate email clients‘ SMTP traffic, the rest of the traffic should come 

from suspicious spam hosts. Spammers always send a mass of similar spam emails to a 

lot of different email addresses [7]. Most email spam relays have unhealthy connection 

states. The following section presents some profiles from suspicious spam relay hosts‘ 

24-hour SMTP traffic. From these profiles, the SMTP traffic characteristics of spam 

relays can be determined.  

 

Figure 4.12: Profile of Suspicious Spam Relay (1) 

Figure 4.12 shows a 24 hour profile of the connections for a host from the ISP‘s local 

network. In the day there were 20 one-hour monitored periods which have over 5000 

connections. For a legitimate email server at Loughborough University, there are only 

about 2500 connections in the busiest hour in a day, and there are about 15 quiet 

one-hour time intervals, in which only about 100 connections are established each hour. 

Therefore the ISP‘s local network host sent out more emails not only in the daytime 

periods, but also at nighttime periods.  
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Figure 4.13: Profile of Suspicious Spam Relay (2) 

The host with the profile shown in Figure 4.13 has established more than 50000 

thousand connections in 24 hours. Also there are over 2500 connections in every hour. 

Obviously it is not a legitimate email client, but also it could not be a legitimate email 

server. This is because the number of connections has been seen to be related to the time 

of day for legitimate servers and they do not keep sending a large number of emails 

every hour over the day. The profile shown by Figure 4.14 shows the same situation of 

nearly constant SMTP traffic generation.  

 

Figure 4.14: Profile of Suspicious Spam Relay (3) 

In Figure 4.14, 12000 connections are sent over a 24-hour period. This is acceptable for 
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a legitimate server in a day, but the number of connections in every hour is almost 

exactly same. Hence, the traffic rate is not related to time, and this is not considered as 

a manual email transmission. In this case it could be said that a spam host or a spam 

relay machine was continuously sending out emails using automatic the spam emails 

transmission tools. 

Both Figure 4.13 and Figure 4.14 show that the hosts send a lot of emails, irrespective 

of time of day, They could be the spam hosts or compromised hosts used as spam relay 

hosts. 

 

Figure 4.15: Profile of Suspicious Spam Relay (4) 

Figure 4.15 shows that a host tried to establish about 30000 connections in 24 hour 

period.  However, the 30000 connections were established in 6 hours in two time 

intervals, and each interval is 3 hours. The profiles of the connections in these two time 

intervals are the same. In this case, it looks as though a spam relay host sends spam 

emails cyclically and periodically.  
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Figure 4.16: Profile of Suspicious Spam Relay (5) 

In Figure 4.16, there are more than 15000 connections in a single one hour period, but 

nearly none in the other 23 hours during the day. Although this host exhibits quite 

different characteristics to the others previously shown, it is again immediately obvious 

that this profile does not fit that of a legitimate mail server or an email user client. 

 

Figure 4.17: Profile of Suspicious Spam Relay (6) 

The host with the profile in Figure 4.17 establishes about 15000 connections in 24 

hours. The profile is related to the time (similar to a legitimate server‘s). But in the 
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ISP‘s local network there are no legitimate email servers. So it could be an illegitimate 

email server in the network. We can‘t say it‘s a spammer, but it is against the policy of 

the ISP. 

Overall, hosts sending spam emails have their own characteristic SMTP traffic. All of 

them establish a huge amount of connections, and most of the characteristic profiles are 

not related to the time of day as was seen to be the case for legitimate email servers. 

 

Figure 4.18: Profiles of Suspicious Spam Relays 

There are another two profiles of connections from hosts in the ISP‘s local network, 

which are shown in Figure 4.18. Because there are no legitimate email servers inside 
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this network, these two profiles should have come from illegitimate mail servers or 

spam relay hosts. However these profiles do not indicate that they are from spam 

generators, and we must consider that some spam sources may not be distinguished 

from their traffic profiles.  

The previous sections have described the SMTP traffic characteristics of legitimate user 

clients, legitimate email servers and spam relay hosts.  All of these characteristics 

could be used to help in identifying the spam relay host in networks. The following 

section will provide an overview about the differences in the characteristics, which 

could be used to distinguish between the legitimate users (clients and servers) and spam 

relay hosts in the networks. 
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4.5 Differences in SMTP Traffic between Legitimate Users 

and Spam Relays 

Email legitimate users in the network include legitimate email clients and legitimate 

email servers. 

A legitimate email client is expected to establish a few connections over hours to one or 

several mail servers. Most of the time, it is silent. The SMTP traffic from a legitimate 

mail server is related to time of day. A lot of connections are established every day, but 

most of these connections are concentrated in a particular period that is related to 

human activity. Various emails coming from different writers are passed through a 

legitimate mail server. A legitimate server has been shown to have a stable number of 

emails passed through daily by the Kolmogorove-Smirvon Test analysis. Because of 

the responses of the email receivers, most of these servers should have not only 

outgoing SMTP traffic but also incoming SMTP traffic.  

A mass of similar emails are delivered to a huge number of destination addresses by a 

spam relay host repeatedly. The profiles of SMTP traffic from a spam relay host do not 

relate to time in most cases. They are related to the spammer‘s working habits or the 

parameters set by the spam email-sending tools. Most spam emails are sent by 

automatic processes. And as such, cyclical and periodic phenomena often appear on the 

profiles of the Spam relay‘s traffic. Due to the use of some anti-spam techniques in the 

network, some of spam relay hosts could find that their attempts to establish 

connections were rejected. Also there is little incoming SMTP traffic for these spam 

relay hosts, simply because few people will respond the spam emails. 

It should be possible to distinguish between email spam relay hosts and the legitimate 

email users by analyzing their SMTP traffic characteristics. The following subsections 

introduce some methods and parameters, which may be able to be used to identify spam 

relay hosts in the network. 
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4.5.1 Evaluation of the Successful Connection Rate verses the 

FIN/SYN Ratio 

A low successful connection rate means a lot of connection requests from the host are 

refused. In other words, this host is not acceptable to most of the other hosts in the 

network. As such, it is a suspicious host with problems. Spammers harvest and 

download email addresses from the web, Usenets and the directories of email address 

used by the ISP as their spam emails‘ destination addresses. A lot of these email 

addresses could be invalid email addresses, which are unrecognized or nonexistent. 

Invalid destination email address could cause the rejection of the connection request. A 

lot of anti-spam tools have been applied by email users, for example Anti-Spam 

Assistant [121]. A spam host could have been detected by some of these and listed on 

the blacklists. Connection requests from these suspicious hosts would be rejected. So a 

host with a low successful connection rate has a big chance of being a spam host or a 

spam relay host. As the previous section has said, the ratio of the FIN/SYN flags set 

could be used to distinguish between the legitimate sites and illegitimate sites in 

networks when the hosts generated a lot of SMTP connections 

4.5.2 Count the Total number of the Connections in a Particular Time 

Interval 

Selfish Spammers always send out a large number of emails to reduce the price per 

email. A legitimate server has a stable number of emails passing through it daily. And 

email user clients are only expected to send several mails to one or several mail servers 

each hour. So the number of connections may not only help to identify the mail servers 

and spam hosts from the networks, but also distinguish spam hosts and legitimate mail 

servers. A particular time interval here refers to a monitoring period, for example an 

hour or a day. 
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4.5.3 Compare the Size of the Payload in Each Connection. 

The size of the payload in a connection is related to the size of the real content in the 

related email. As the identified in the previous section 4.2.3, a spammer usually sends 

similar emails to a lot of destination addresses in an outbreak, but a legitimate email 

server generally passes different emails with the different payloads. In other words, the 

payload in each connection from a spam host in an outbreak should be similar most of 

the time. But for an email client and a legitimate server, different emails are sent with 

different payloads. Therefore, we may be able to identify the spam relay hosts by 

comparing sizes of payloads in connections in an outbreak. 

4.5.4 Evaluate the Ratio of Out/In SMTP Packets with SYN Flag Set 

Few people reply to spam emails. Most spam emails are deleted directly after they are 

confirmed as spam by receivers. So spam hosts and spam relay hosts always try to 

establish a lot of connections to send a lot of spam email, but there is little incoming 

SMTP traffic. This phenomenon could be used to help to identify the spam hosts in the 

network. But a white-list scheme is also necessary for detecting spammers if using this 

phenomenon, because not every legitimate email user expects the receiver give a 

response back. A white-list scheme can help to reduce the ratio of false positive errors. 

4.5.5 Evaluate the Relationship between the SMTP Traffic, Time of 

Day and Human Habits (Human Actions) 

Human actions are related to time of day and human habits. So SMTP traffic, which is 

created by people‘s email sending, should be related to time of day and the human‘s 

habits. As the previous sections have said, the profiles of legitimate email servers relate 

to time of day well, but most of profiles of spam relay hosts are not related to time of 

day. 



69 

 

As such, evaluating of the relationship between the SMTP traffic, Time of Day and 

Human Habits could help to identify spam relays, which have profiles different from 

human email profiles. Patterns of SMTP traffic could help identifying spam relays in 

this area.  

These five methods never involve the actual email content. But they are correlated to 

successful connection rate (not-reject rate), volume of SMTP connections (number of 

emails sent out), payload size of emails in an outbreak, response rate (the rate of email 

response by the receiver), and the relationship to human activity (how humans generate 

emails). One of these methods maybe not enough on its own to identify spam relay 

hosts in the network, because of the false negative and false positive responses. It may 

be possible that combinations of these five methods in an anti-spam classifier could 

reduce such errors and improve the detection performance.  

The following chapters design and evaluate an autonomous system, which combines 

these five methods to detect spam relay hosts in networks. Machine learning 

technology was also employed in this system. This approach detects spam relay hosts at 

the transmit stage via SMTP traffic characteristics, but it never involves the real actual 

email content. 
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4.6 Summary 

SMTP traffic characteristics from legitimate email clients, legitimate email servers 

and spam relays are analyzed in this chapter. It has been shown that there are 

differences regarding the SMTP traffic characteristics of legitimate email clients, 

legitimate emails servers and spam relays. Also it was found that the SMTP traffic 

from the legitimate sites and illegitimate sites can be distinguished from each other by 

using SMTP traffic characteristics. 

In this chapter, the understanding of the SMTP traffic characteristics from the 

different sources (legitimate and illegitimate sites) suggested some methods that 

might be used for detecting spam relays in the network. These methods will be 

employed in an autonomous spam relays detecting system, which will be introduced 

in the following chapter. 
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Chapter 5: An Autonomous System for 

Detecting Spam Relays by Using SMTP 

Traffic Characteristics 

In this chapter, an autonomous spam relay detection system has been designed and 

presented. The components and the principles of operation of the system will be 

introduced in detail. 

5.1 Components in the Autonomous System 

In chapter 2, a typical pattern recognition system has been introduced in section 2.3. 

There are five parts in a typical pattern recognition system: sensor, segmentation, 

feature extraction, classification and post-processing. As an autonomous system for 

detecting spam relays by using SMTP traffic characteristics, our solution should 

achieve the following five functions: SMTP data collection, dealing with original 

traffic data to extract feature factors, launching the system decision scheme, classifying 

hosts in different categories and deciding on recommended actions to improve the 

system performance by outputs of the classifiers. Therefore in our autonomous spam 

relay detection system, we designed five elements corresponding to five functions: 

Sniffer, Pre-processor, Trigger, Classifiers and Post-Processor. Figure 5.1 is the 

diagram of the proposed autonomous spam relays detection system. 
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Figure 5.1: Diagram of Autonomous Spam Relay Detecting System 

There are also two databases for helping the detection work in this system: SMTP 

Traffic Database and Spam Relay Database. The SMTP Traffic Database, in which all 

SMTP traffic information collected from the monitored network is stored, provides 

related traffic data to make the detection decisions. All the information about the spam 

relay hosts identified by the system in the monitored network is stored in the Spam 

Relay Database. Also the Spam Relay Database gives support to deciding on the 

recommended actions to improve the performance of the system. Both of these 

databases are automatically updated. 

The following sections will introduce these five elements and two databases in detail. 
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5.2 The Five Parts of the Autonomous System 

In our proposed spam relay detection system using SMTP traffic characteristics, there 

are five specifically designed elements: Sniffer, Pre-processor, Trigger, Classifiers and 

Post-processor. The following sections will present the functions of each element in 

more detail. 

5.2.1 Sniffer 

The sniffer element (also known as a network analyzer, protocol analyzer or packet 

analyzer) is computer software or hardware that can intercept and log traffic passing 

over a network or part of a network [122]. According to the particular types of networks 

in which a sniffer is used, sniffers can be divided into two categories: Ethernet sniffer or 

Wireless sniffer. As data streams flow across the network, the sniffer captures each 

packet and eventually decodes and analyzes its content according to the appropriate 

RFC or other specifications. 

In Chapter 4, the SMTP traffic characteristics from legitimate sites and illegitimate sites 

were analyzed and compared. There, it was also recommended that some methods and 

parameters may be able to help to distinguish email spam relays from legitimate email 

users in networks. As our sniffer should provide SMTP traffic data that is necessary for 

detecting spam relays by system in the network, a special sniffer has been designed. 

The sniffer in this system collected the SMTP packets‘ TCP/IP header information from 

the network monitored as a sensor. This information forms the original inputs for the 

system. 

The sniffer, which is employed in the proposed system in this thesis, captures the 

TCP/IP header information of each SMTP packet with the destination port value of 25. 

This original information captured by the sniffer includes Capturing Time, States of the 

Flags (SYN, FIN, ACK, and RST), and Size of the Payload for each packet, Source IP, 

and Destination IP. The SMTP traffic is monitored by the system, but the real content of 
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the email is never involved in this system. 

5.2.2 Pre-Processor 

The pre-processor deals with the entire SMTP traffic data logged by the sniffer. The 

SMTP Traffic Database is designed to store this useful header information that is 

necessary to make the detection decisions in our autonomous system. There is a data 

structure to store its information for each Source IP, which generates the SMTP traffic 

in the monitored network. Figure 5.2 shows the data structure in the SMTP Traffic 

Database for an active host in the monitored network.  

 

Figure 5.2: Data Structure of an Active Host in the SMTP Traffic Database  

The pre-processor generates the SMTP Traffic Database, in which the Parameters are 

ready for the use of detection scheme. The pre-processor is written in the C 

programming language. When an arrival SMTP packet is logged by the sniffer, the 

pre-processor will check whether a data structure with the arrival packet‘s source IP is 
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available in the SMTP Traffic Database. If it is available, each parameter of this data 

structure will be updated according to the related TCP/IP header information of this 

packet. Otherwise, a new data structure will be generated to store the related TCP/IP 

information of this arrival packet. The following subsection will introduce the details 

about each parameter in the data structure and the updating process of these parameters 

in the SMTP Traffic Database. 

 IP Address（Source IP） 

The IP Address in this data structure is the Source IP of the SMTP packet. When the 

sniffer captures a SMTP packet, the source IP will be picked out firstly. Then it will be 

determined whether this source IP exists as IP Address (Source IP) of a data structure 

in SMTP Traffic Database. If this source IP is an inexistent IP Address in the database, 

a new data structure for this source IP will be created, and then the related parameters 

will be updated according to the arrival packet‘s TCP/IP head information logged by 

the sniffer. In this new data structure, the IP information in IP Address is the source IP. 

If this source IP is already available as an IP Address (Source IP) of a date structure in 

the SMTP Traffic Database, the related parameters will be updated in its exclusive data 

structure. The details about the updating process of each parameter will be represented 

in the following subsections. 

Every valid active host, which has generated SMTP traffic captured by the sniffer, 

should have its own data structure in the SMTP Traffic Database. The system then sorts 

these SMTP packets in different categories by IP Addresses. 

 Number of Packets with SYN in 𝑵𝒕𝒉 Interval 

Those packets, which have the SYN flag set and a destination port value of 25 (this 

indicates SMTP), are closely correlated to TCP connections with mail servers. The 

pre-processor counts the number of packets with the SYN flag set sent out by an active 

host in the network every monitoring time interval, then stores this number to the 
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related place（Number of Packets with SYN in 𝑵𝒕𝒉Interval）in the data structure 

which belongs to the active host. When time passes from an old interval to the 

following new interval, the number in the column related to the new interval will be set 

as 0. Then, when each new packet with the SYN flag set from the active host arrives, 

the number in the related column will increase by 1.  

The monitoring interval of the system is set up as one hour. Therefore there are total 24 

monitoring intervals in a day. Parameters in columns for Number of Packets with 

SYN in 𝑵𝒕𝒉 Interval are only related to the most recent 24 hours. Any overtime 

parameters will be replaced by 0. The number in each time interval is correlated to the 

number of SMTP connections which the host tried to establish in this time interval.   

The parameters of Number of Packets with SYN in 𝑵𝒕𝒉 Interval not only present 

the distribution of SMTP connections in the most recent 24 hours, but also are 

necessary parameters for the calculation of the ratio of FIN / SYN flags set, which has 

been present in Chapter 4 as a possible way to distinguish spam relay hosts from 

legitimate email users in the network. 

 Number of Packets with FIN in 𝑵𝒕𝒉 Interval 

The pre-processor not only counts the numbers of packets with the SYN flag set, but 

also counts the number of packets with the FIN flag set in each time interval. Number 

of Packets with FIN in 𝑵𝒕𝒉 interval is the number of the packets with the FIN flag 

set in the 𝑁𝑡ℎ time interval. This number is correlated to the number of completed 

SMTP connections established by the active host in this time interval. These parameters 

are also necessary to calculate the ratio of the FIN/SYN flag set. The time interval of 

Number of Packets with FIN in 𝑵𝒕𝒉 interval corresponds to the time interval of the 

Number of Packets with SYN in 𝑵𝒕𝒉 Interval  

When time turns into a new interval, the number in the column related to the new 

interval will be set as 0. Then, if a new packet with FIN flag set from the active host 
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arrives in this interval, the number in the related column will increase by 1. Parameters 

in columns of Number of Packets with FIN in 𝑵𝒕𝒉 Interval are only related to the 

most recent 24 hours. Any overtime parameter will be replaced by 0. 

 Number of Outgoing Connection [7] 

Number of Outgoing Connection refers to the number of connections which an active 

host tried to establish. It is closely correlated to the number of SMTP packets with the 

SYN flag set, in which the source IP is the same as the value in IP Address. The 

pre-processor counts this number every day by calculating the sum of parameters in 

columns for Number of Packets with SYN in 𝑵𝒕𝒉 Interval.  

There are seven numbers stored in ―Number of Outgoing Connection [7]”, and each 

number responds to a day. Therefore it represents seven days‘ distribution of outgoing 

SMTP connections. The oldest number will be replaced by the new one that is 

generated after seven days. Parameters in Number of Outgoing Connections are not 

only able to present the total volume of SMTP connections attempted to be established 

by an active host in the recent seven days, but also they are essential parameters for 

calculating the ratio of Out/In SMTP connections. 

 Number of Incoming Connection [7] 

Number of Incoming Connection is referring to the number of connections which an 

active host are requested to establish a connection. It is correlated to the number of 

SMTP packets with the SYN flag set, in which the destination IP is same to the IP in IP 

Address. Parameters in Number of Incoming Connection [7] are also essential to the 

calculation of the ratio of Out/In SMTP connections. 

There are seven numbers corresponding to the most recent seven days kept in 

“Number of Incoming Connection [7]”. Every arrival of a SMTP packet with SYN 

flag set, whose destination IP is the same as the value in IP Address in the structure, 
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will add 1 to the corresponding number in Number of Incoming Connections [7]. 

After system has been operational for seven days, the next arrival one will cause the 

value of 1 to take the place of the oldest value. 

 Payload-size of the Current Connection 

This part in the data structure is actual a counter, which is used to calculate the size of 

payload in each SMTP connection logged by the sniffer. The size of payload for each 

completed SMTP connection is related to the content of the corresponding email. 

Similar emails should have similar sizes of payload. Our spam relay detecting system 

checks whether the target emails are similar emails by using the size of the payload of 

each completed SMTP connection, and the real email content is never involved. Each 

completed SMTP connection may include several SMTP packets. Payload-size of the 

Current Connection in the data structure is the memory place to accumulate the sum 

of the payload sizes in related SMTP packets in a completed SMTP connection. The 

sum is the size of payload for the logged SMTP connection. 

The method of counting the payload-size of the current connection is as follows: 

For a completed SMTP connection, it will always start with a packet with the SYN flag 

set and finish with a packet with the FIN flag set. When a packet with the SYN flag set 

arrives, the parameter of Payload-size of the Current Connection in the 

corresponding data structure, in which the arrival packet‘s source IP is the same as the 

IP in IP Address, will be assigned as 0. Then the payload size of each packet comes 

from the same source IP will be added to the parameter, until a packet with the FIN flag 

set arrives. Then this parameter will be assigned to Payload-size of the Last 

Connection, which will be introduced in the following subsection. The parameter in 

Payload-size of the Current Connection will never be changed unless a new packet 

with the SYN flag set arrives from the same source IP. And the parameter will be never 

handed to the Payload-size of the Last Connection unless a new packet with the FIN 
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flag set arrives from the same source IP. 

 Payload-size of the Last Connection 

The parameter in Payload-size of the Last Connection is the size of payload in the 

most recent SMTP connection from the corresponding IP. In the previous subsection, 

it has already been explained that the parameter in Payload-size of the Last 

Connection would be replaced by the one in Payload-size of the Current 

Connection after a SMTP connection has completed. Before this replacement, these 

two parameters are compared to identify whether the payload-size of the current 

SMTP connection is similar to the last one, which was from the same source. 

 Number of Connections with Similar Payload-size 

When a SMTP connection has completed, the parameter in Payload-size of the 

Current Connection is the size of the payload for this connection. Then it will be 

compared with the parameter in Payload-size of Last Connection. If these two 

parameters are similar, the related parameter in Number of Connections with Similar 

Payload- size will plus 1. Then the parameter in Payload-size of Last Connection will 

be replaced by the parameter in Payload-size of the Current Connection. Most 

spammers send a large number of similar emails in an outbreak. So if the number of 

connections with similar payload-size is over the threshold of the detection system, the 

active host may be a spam relay host. 

There are a total of seven numbers, which correspond to the most recent seven days, are 

recorded in Number of Connections with Similar Payload-size. After seven days, the 

next arrival one will use 1 to take the place of the oldest number. 

 Time of Last Packet Arriving 

The capturing time of the last SMTP packet from an active host is recorded in this part 

of the related data structure, in which the IP in IP Address is the same as the IP address 
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of the active host. This time is related to the host‘s last activity logged by the sniffer. 

According to this time, the update schemes of the system can remove the expired data 

in the database. For example, the data structure, in which an IP Address has kept silent 

over seven days, will be removed from the database. Update schemes will be detailed in 

another section later in this chapter. 

5.2.3 Trigger  

The Trigger element is designed to increase the operation efficiency of the detection 

system. A lot of IP addresses will be involved in the spam relay detection process by our 

system in monitored network. Also mass SMTP packets will be logged by system to 

make detections.  It is not possible and necessary to pass the related information to 

classifier to make decision every single time when a SMTP packet is logged by the 

system. If we did, it will cost lots of resources and degrade the system performance. 

Therefore, only a portion of data from the suspicious spam relay hosts will start a 

trigger and be sent to the classifier for identification.  

In Chapter 4, it was found that most hosts were the legitimate email clients in a real 

network. As a legitimate email client, it is expected to send several emails in hours 

every day. But the definition of spam emails discussed in Chapter 1 tells us that the 

spammer always send mass spam emails to a lot of receivers. A legitimate email server 

sends fewer emails than a spammer sends in a session most of the time. So in our 

system, the number of connections, which a host tried to established, is used to trigger 

the handover of the related data to the classifier for identification.  

The number of SMTP packets with the SYN flag set is closely correlated to the SMTP 

connections established by hosts, so it is used to start the trigger in our system. There 

are two numbers which could start a trigger in our system: one is the number of SMTP 

packets with SYN flag set in current monitoring time interval (𝑻𝒄𝒖𝒓𝒓𝒆𝒏𝒕), which is the 

parameter in the current column for Number of Packets with SYN in 𝑵𝒕𝒉 Interval in 
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the SMTP Traffic Database; and the other is the total number of SMTP packets with 

SYN flag set in recent 24 hours (𝑻𝒕𝒐𝒕𝒂𝒍), which is the sum of all parameters in Number 

of Packets with SYN in 𝑵𝒕𝒉 Interval in the SMTP Traffic Database. In our detection 

system, a time interval is set as one hour. A day is divided into 24 time intervals. 

The trigger is designed as a threshold based system. There are two types of thresholds 

for the trigger system: one is the average number of SMTP packets with the SYN flag 

set from hosts in current monitoring interval in the SMTP Traffic Database 

(𝑻𝒄𝒖𝒓𝒓𝒆𝒏𝒕−𝒕𝒉[𝒊],  the current time interval is the 𝑖𝑡ℎ  interval in a monitor day, 

i=0,1,2,…,23.), which corresponds to  𝑻𝒄𝒖𝒓𝒓𝒆𝒏𝒕 , and the other is the average total 

number of SMTP packets with the SYN flag set from the hosts in the SMTP Traffic 

Database (𝑇𝑡𝑜𝑡𝑎𝑙−𝑡ℎ), which corresponds to 𝑻𝒕𝒐𝒕𝒂𝒍. 

𝐓𝐜𝐮𝐫𝐫𝐞𝐧𝐭−𝐭𝐡[𝐢] =
∑𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝐢𝐭𝐡  𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥

𝐓𝐨𝐭𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐇𝐨𝐬𝐭𝐬 𝐢𝐧 𝐒𝐌𝐓𝐏 𝐓𝐫𝐚𝐟𝐟𝐢𝐜 𝐃𝐚𝐭𝐚𝐛𝐚𝐬𝐞
 

𝐓𝐭𝐨𝐭𝐚𝐥−𝐭𝐡 =
∑∑ 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝐢𝐭𝐡𝟐𝟒

𝐢=𝟏  𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥

𝐓𝐨𝐭𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐇𝐨𝐬𝐭𝐬 𝐢𝐧 𝐒𝐌𝐓𝐏 𝐓𝐫𝐚𝐟𝐟𝐢𝐜 𝐃𝐚𝐭𝐚𝐛𝐚𝐬𝐞
 

In the 𝑖𝑡ℎ time interval only if  𝑻𝒄𝒖𝒓𝒓𝒆𝒏𝒕 ≥ 𝑻𝒄𝒖𝒓𝒓𝒆𝒏𝒕−𝒕𝒉[𝒊] or 𝑻𝒕𝒐𝒕𝒂𝒍 ≥ 𝑻𝒕𝒐𝒕𝒂𝒍−𝒕𝒉, the 

trigger will hand the related data to the classifier for spam relay identification. The 

update scheme of the system will calculate and update these thresholds every 24 hours 

in the update process. This update process will improve the performance of the system. 

5.2.4 Classifier  

When the trigger hands over the related SMTP data of a suspicious spam relay host, the 

classifier will identify whether this host is a spam relay host or not automatically. The 

classifier combines six algorithms. These algorithms correspond to the Ratio of 

FIN/SYN flag set, the Relationship between the traffic pattern and Time of day, Similar 

Payload-size Connections, Volume of Connections in Current Interval, Volume of 

Connections in the Recent 24 Hours and Ratio of Out/In SMTP packets with the SYN 
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flag set. These six algorithms have been presented as possible methods to identify spam 

relays in the network by using SMTP traffic characteristics discussed in the previous 

chapters. 

Each algorithm will generate a value. According to these six values, a decision scheme 

based on weight factors will generate a single numerical value result. Then a final 

decision will be made by comparing the numerical value result with a threshold. The 

following sections will introduce the six algorithms and the decision scheme in 

classification. 

5.2.4.1 Algorithms in the Classifier  

 Algorithm 1: Ratio of FIN/SYN Flag Set  

As Chapter 4 has said, the numbers of packets with the SYN flag set and the FIN flag 

set should be a pair in a completed SMTP connection. Therefore, this ratio is correlated 

to the percentage of the completed connections in all the connections attempted by the 

active host. When a host sends a lot of SMTP packets with the SYN flag set to try to 

establish connections, the ratio of FIN/SYN flag set could be used to distinguish 

between spam relays and legitimate email servers. A legitimate email client is only 

expected to establish several connections in each hours of a day, so a host (a legitimate 

email client) that established several SMTP connections will not be passed to classifier 

by trigger. Therefore the ratio of FIN/SYN flag set may be able to identify spam relay 

hosts by classifier in the network. An algorithm using this ratio was applied in our 

classifier. 

Parameters in columns for Number of Packets with FIN in 𝑵𝒕𝒉   Interval and 

Number of Packets with SYN in 𝑵𝒕𝒉 Interval are able to be used to calculate the 

ratio of FIN/SYN flag set. 
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Ratio of FIN/SYN flag set = 
∑ 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐅𝐈𝐍 𝐢𝐧 𝒊𝒕𝒉  𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥24
𝑖=1

∑ 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝒊𝒕𝒉  𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥24
𝑖=1

 

The coordinate of (FIN/SYN flag set, SYN), in which FIN/SYN flag set is the ratio of 

FIN/SYN flag set and SYN is the total number of the packets with SYN flag set, is 

introduced in this algorithm for identifying spam relays. In Chapter 4, when a host 

sends mass SMTP packets with SYN flags, the coordinates (FIN/SYN flag set, SYN) of 

legitimate email servers occupy the up-left area of the coordinate system. But the 

coordinates (FIN/SYN flag set, SYN) of suspicious spam relay hosts occupy the 

down-left area of the coordinate system. These coordinates are used to identify spam 

relay hosts in our system by using an average value approximation method. An 

approximation is a representation of something that is not exact, but still close enough 

to be useful.  The following subsections will represent how to identify suspicious spam 

relays using this approximation method of Algorithm 1 in the system.  

The system generates a group of coordinates of suspicious spam relay hosts from the 

Spam Relay Database. When a new coordinate (A, B) arrives, which needs to be 

identified, it will be put into this group. A is Ratio of FIN/SYN flag set, and B is number 

of SMTP packets with SYN flag set. In chapter 4, it has been presented that the location 

of this coordinate may be used to distinguish spam relays from legitimate email servers. 

The location depends on the values of A and B. It is also found that the value of A is 

related to the value of B. As a spam relay attempted to establish mass SMTP 

connections, the value of A could be decreased. So these coordinates will then be 

ordered by the number of SMTP packets with SYN flag set (the value of B). Now we 

have a group of coordinates (𝐴𝑖 ,𝐵𝑖), where i = 1, 2…..N. Assume the coordinate, which 

needs to be identified, is (𝐴𝑛 ,𝐵𝑛 ), where  𝑛 ≠ 0 . In this group, we will use an 

approximation method to identify whether a host is a spam relay or not. Several 

coordinates in this group will be picked out for working out the identification threshold 

for this algorithm. These selected coordinates called nearest coordinates, because the 

values of 𝐵𝑖  in these coordinates are closer to the value of 𝐵𝑛  than the other 
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coordinates in this group. Then we use the average value of the values of Ai in these 

nearest coordinates as the threshold (𝑻𝑯𝑭−𝑺). If 𝐴𝑛 ≤ 𝑻𝑯𝑭−𝑺 , the host will be 

identified as a suspicious spam relay. There are a total of up to 2m values of Ai 

which are used to calculate the threshold (𝑻𝑯𝑭−𝑺) . There are m values of Ai from 

the m closest left side coordinates to the target coordinate (𝐴𝑛 ,𝐵𝑛), and the other m 

values of Ai  from the m closest right side coordinates to the target coordinate 

(𝐴𝑛 ,𝐵𝑛). If there are not enough coordinates on any side of the target coordinate 

(𝐴𝑛 ,𝐵𝑛) for calculating the threshold, the number of coordinates on the shorter side will 

be defined as the temporary 𝑚𝑡 . In this case, 𝑚𝑡 values of Ai from the 𝑚𝑡 closest 

left side coordinates to the target coordinate (𝐴𝑛 ,𝐵𝑛) and 𝑚𝑡 values of Ai from the 

𝑚𝑡  closest right side coordinates to the target coordinate (𝐴𝑛 ,𝐵𝑛 ) are used to 

calculate the threshold. If the target coordinate (𝐴𝑛 ,𝐵𝑛) is the first one in the ordered 

group of coordinates, the m or 𝑚𝑡  closest right side coordinates are used to calculate 

the threshold. If the target coordinate (𝐴𝑛 ,𝐵𝑛) is the last one in the ordered group of 

coordinates, the m or 𝑚𝑡   closest left side coordinates are used to calculate the 

threshold.  The following words represent how the threshold (𝑻𝑯𝑭−𝑺) is calculated 

by using this group of coordinates for (𝐴𝑛 ,𝐵𝑛). In our system m is set as 5. 

If n=1: 

While N≤ m;   𝑇𝐻𝐹−𝑆 =
∑ 𝐴𝑛
𝑁
𝑖=2  

𝑁−1
. 

While N>m; 𝑇𝐻𝐹−𝑆 =  
∑ 𝐴𝑛
𝑚+1
𝑖=2  

𝑚
. 

If 1<n≤N-n: 

While m<n;  𝑇𝐻𝐹−𝑆 =
∑ 𝐴𝑛−𝑖+𝐴𝑛+𝑖
𝑚
𝑖=1  

2𝑚
. 

While 1<n≤m;  𝑇𝐻𝐹−𝑆 =
∑ 𝐴𝑖+𝐴𝑛+𝑖
𝑛−1
𝑖=1  

2(𝑛−1)
. 
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If N > n>N-n: 

While n<N-m;  𝑇𝐻𝐹−𝑆 =
∑ 𝐴𝑛−𝑖+𝐴𝑛+𝑖
𝑚
𝑖=1  

2𝑚
. 

While N>n≥N-m;  𝑇𝐻𝐹−𝑆 = 
∑ 𝐴𝑛−𝑖+𝐴𝑛+𝑖
𝑁−𝑛
𝑖=1  

2(𝑁−𝑛)
 . 

If n=N: 

While N≤m;  𝑇𝐻𝐹−𝑆 =
∑ 𝐴𝑛
𝑁−1
𝑖=1  

𝑁−1
 . 

While N>m; 𝑇𝐻𝐹−𝑆 =
∑ 𝐴𝑛
𝑁−1
𝑁−𝑚  

𝑚
. 

 Algorithm 2: Relationship to Time of Day  

The number of connections established by legitimate email servers relates well to time 

of day. But for a spam relay host, the connections number may be great in the network 

quiet period, or connections occur periodically and cyclically. In Chapter 4, it was 

found that a legitimate email server establishes over 90% of its SMTP connections in 

8-hour period (8:00~ 16:00), which is the busy period every day. And the other two 

8-hour periods (0:00~8:00 and 16:00~24:00) are very quiet. But the working period of a 

spam relay only depends on the spammer‘s fancy. 

A simple method has been designed to identify spam relay hosts by using this 

phenomenon. Time is divided into three periods including two quiet periods (0:00~8:00 

and 16:00~24:00) and one busy period (8:00 ~ 16:00) in a day. The ratio of the number 

of packets with SYN flag set in quiet periods / total number of packets with SYN flag 

set in a day is calculated. If the ratio is greater than the corresponding threshold 

(𝑻𝑯𝑻𝒊𝒎𝒆), the host will be considered to be a suspicious spam relay. The threshold 

(𝑻𝑯𝑻𝒊𝒎𝒆) will be generated by the system every 24 hours, which will be detailed in a 

subsection later in this chapter. 
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 Algorithm 3: Similar Payload-size Connections 

For each active host‘s data structure in the SMTP Traffic Database, there are parameters 

in the columns for Number of Connections with Similar Payload-size [7], which 

present how many similar payload-size connections have been established. Most 

spammers send similar emails in a session. If the number of similar payload-size 

connections from a host in the current day is over the corresponding threshold 

(𝑻𝑯𝒑𝒂𝒚𝒍𝒐𝒂𝒅), this host will be identified as a spam relays. 

 Algorithms 4&5: Volume of Connections in Current Interval & Volume of 

Connections in Recent 24 Hours 

Both of these two algorithms are used to identify spam email sessions according to the 

spam relay host‘s characteristics of mass connections established. When the trigger 

hands a host to the classifier, the number of packets with the SYN flag set in the 

current interval from that host is greater than the corresponding average number in the 

network, or the number of connections in most recent 24-hour period from that host is 

greater than its corresponding average number. 

There are another two thresholds (𝑻𝑯𝑽𝒐𝒍−𝑪𝒖𝒓𝒓𝒆𝒏𝒕 &  𝑻𝑯𝑽𝒐𝒍−𝒕𝒐𝒕𝒂𝒍) from the Spam 

Relay Database, which relate to these two algorithms. If a host‘s volume is greater 

than the corresponding threshold (𝑻𝑯𝑽𝒐𝒍−𝑪𝒖𝒓𝒓𝒆𝒏𝒕 𝐨𝐫  𝑻𝑯𝑽𝒐𝒍−𝒕𝒐𝒕𝒂𝒍), this host will be 

identified as a suspicious spam relay. 

 Algorithm 6: Ratio of Out/In SMTP Connections 

The ratio of Out/In SMTP connections is correlated to the reply rate to emails sent by 

the specific host. A legitimate email user will be replied after its legitimate emails are 

received by contact persons most of the time. But as a spammer, few people will 

respond to the spam emails sent by them. Therefore a host could be healthy if the 

amounts of incoming SMTP connections and outgoing SMTP connections have a 
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reasonable relationship. Otherwise, the host may be a suspicious spam relay. In Chapter 

4, it has been said the ratio of Out/In SMTP Connections may be used to distinguish 

between legitimate users and spam relay hosts. 

The number of SMTP Connections is closely correlated to the number of SMTP 

Packets with the SYN flag set. Therefore the ratio of Out/In SMTP connections is 

correlated to the ratio of Out/In SMTP packets with SYN flag set. The following 

describes how the system calculates an active host‘s ratio of Out/In SMTP Connections 

by using the data in the SMTP Traffic Database. 

For an active host in the network, there is a data structure to store the related 

information in the SMTP Traffic Database. In the host‘s own data structure, there are 

seven numbers in the column for Number of Outgoing Connections [7], and there are 

also seven numbers in the column for Number of Incoming Connections [7].  

While the sum of incoming connections is not 0: 

The ratio of Out/In SMTP Connections (
𝑶𝑼𝑻

𝑰𝑵
𝑹𝒂𝒕𝒊𝒐): 

𝑂𝑈𝑇

𝐼𝑁
𝑅𝑎𝑡𝑖𝑜 =

∑ Number of Outgoing Connection [i]7
i=1

∑ Number of Incomming Connection [i]7
i=1

 

If 
𝑂𝑈𝑇

𝐼𝑁
𝑅𝑎𝑡𝑖𝑜 > corresponding threshold( 𝑻𝑯𝒐𝒖𝒕−𝒊𝒏) in the system, this host will be 

considered as a suspicious spam relay host.  

While the sum of incoming connections is 0: 

The host will also be thought as a suspicious spam relay host. 
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5.2.4.2 Final Decision Scheme 

The six algorithms will generate six results (𝐑𝐢), where i =1, 2……6. If the 𝐢𝐭𝐡 

algorithm identified the host as a suspicious spam relay, then 𝐑𝐢 = 𝟏 ; otherwise 𝐑𝐢 =

𝟎. The final job of classification is to make a final decision to identify whether the 

suspicious host is a spam relay host or not in the network. The following describes 

how this final decision is made by the system. 

Final Decision Scheme Based on Weight Factors 

Weight factors are estimated values that indicate the relative importance [123]. A 

weight factor is assigned to a variable to emphasize its contribution to a final effect or 

result. Most time a decision scheme based on weight factors is able to provide a more 

accurate result than the scheme, in which each variable is considered to contribute 

equally to the final result. In our system, weight factors are used to present the 

contributions of the six algorithms to the spam relay detection. There are a total of six 

weight factors (𝐖𝐢) corresponding to the six algorithms in the classifier. 

Bayes‘ theorem is popularly used to indicate the contribution of an element to a final 

result. In Chapter 2, it was said that the Bayesian Content Spam Filter used this 

theorem to evaluate the contribution of each word in emails. The formula 

is P(S  ) =
 (   )  ( )

 (   )  ( )+ (   )  ( )
. if the overall probability that any given message 

is spam and the overall probability that any given message is not spam are the same, 

then Pr(S)= Pr( )= 50%. Then the formula P(S  ) =
 (   )

 (   )+ (   )
 is derived 

from that. In our system, this formula is used to evaluate the contribution of each 

algorithm to the final result.  

The weight factor for each algorithm is: 

𝑾𝒊 =
 (A  )[i]

 (A  )[i]+ (A  )[i]
 ,   i=1, 2, …..6.  



89 

 

Where: 

𝐏(𝐀 𝐒)[𝐢] is the probability of a host identified as a suspicious spam relay by the 𝑖𝑡ℎ 

algorithm being identified as a spam relay by the final decision scheme. 

𝐏(𝐀 𝐇)[𝐢] is the probability of a host identified as a suspicious spam relay by the 𝑖𝑡ℎ 

algorithm being identified as a legitimate user by the final decision scheme. 

Method for calculating P(A S)[i] and P(A  )[i]: 

When the 𝑖𝑡ℎ algorithm identifies a host as a suspicious spam relay, a counter will be 

launched .There are two numbers in this counter: one is the number (𝑵𝒔[𝒊] ) of hosts 

that have been identified as a suspicious spam relay by both the 𝑖𝑡ℎ algorithm and the 

final decision scheme, and the other is the number 𝑵𝒍[𝒊] of legitimate hosts that have 

been identified as a suspicious spam relay by the 𝑖𝑡ℎ algorithm. Then the probabilities 

could be calculated 

 P(A S)[i] =
𝑵𝒔[𝒊]

𝑵𝒍[𝒊] + 𝑵𝒔[𝒊]
 

P(A  )[i] =
𝑵𝒍[𝒊]

𝑵𝒍[𝒊] + 𝑵𝒔[𝒊]
 

The final decision is: 𝐃 = ∑ 𝐖𝐢 × 𝐑𝐢
𝟔
𝐢=𝟏  

The threshold for the final decision scheme of the system ( 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝) and weight 

factors ( 𝐖𝐢 ) are generated automatically by the Post-processor, which will be 

introduced in the following section. 𝐑𝐢=1, when the 𝐢𝐭𝐡 algorithm identified the host 

as a suspicious spam relay, and 𝐑𝐢=0, when the 𝐢𝐭𝐡 algorithm identified the host as a 

legitimate user. 

If  𝐃 ≥ 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 , the host is a spam relay host in the network, otherwise it is a 

legitimate user.   
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5.2.5 Post-Processor 

The Post-processor uses the output of the classifier to decide on the recommended 

actions. It is very important to improve the performance of the system. There are three 

main functions of the Post-processor in our system: generate the Spam Relay Database, 

generate the system parameters and thresholds, which will be used by the trigger, the 

classifier, and so on, and update the databases in the system. The following section 

explains how the Post-processor achieves these functions. 

5.2.5.1 Generating the Spam Relay Database 

There are two Databases to store and manage the hosts‘ information. The Pre-processor 

generated the SMTP Traffic Database, and the Spam Relay Database is generated by 

the Post-processor. This Spam Relay Database stores and manages valid information 

about the hosts that have been identified as spam relay hosts by the system. 

After a host is identified as spam relay host by the classifier, the information of this host 

would be passed to the Post-processor. The Post-processor then generates the Spam 

Relay Database by processing this information. In Spam Relay Database each spam 

relay host has a data structure to record the related information. Then the information in 

the Spam Relay Database is used to generate a series of system parameters and 

thresholds to improve the performance of the spam relay detection process. This 

database expresses the characteristics of the identified spam relays. 

The Figure 5.3 shows a data structure of a spam relay host in the Spam Relay Database.  
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Figure 5.3: Data Structure of a Spam Relay Host in Spam Relay Database 

It is seen that the first 13 columns of the data structure of the SPAM Relay Database are 

the same as the data structure in the SMTP Traffic Database. When a host has been 

identified as a spam relay, the parameters in these 13 columns will be assigned to the 

corresponding columns in the Spam Relay Database. There are three additional 

columns in the data structure of Spam Relay Database: Ratio of OUT/IN SMTP 

Connection, Decision Results of each Algorithm, and Result from Final Decision 

Scheme. The details about the 3 additional columns of the data structure are explained 

in the following sections. 

 Ratio of Out/In SMTP Connection 

Algorithm 6 of the classifier calculates the ratio of Out/In SMTP connections, when the 
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host data was handed to the classifier by the trigger. Details about the calculation are 

presented in Section 5.2.4.1. After the host was identified as a spam relay host by the 

final classification, the value of this ratio would be assigned as a parameter in the 

column for Ratio of Out/In SMTP Connection of the data structure in the Spam Relay 

Database. If the number of incoming connections is 0, the ratio, whatever it is in this 

column, will be no meaning. 

 Decision Results of Each Algorithm [6] 

As the previous section 5.2.4.2 has said, each algorithm makes an independent decision 

of suspicious spam relay or not. If a host was identified as a suspicious spam relay host 

by an algorithm, a result valued ―1‖ would be generated; otherwise, a result valued ―0‖ 

would be generated. Therefore there are total six results valued ―1‖ or ―0‖ generated by 

the six algorithms in the classifier. These six values will be assigned in an area of 

Decision Results of Each Algorithm [6]. 

Values in Decision Results of Each Algorithm [6] in the Spam Relay Database are 

used to calculate the Weight Factors of Algorithm. Weight factors present the 

contribution of the corresponding results from the algorithms to the final decision.  

 Result from Final Decision Scheme: D 

In section 5.2.4.2, Final Decision Scheme, it has been said that the final decision 

scheme will generate a result D. The value of D will be stored in the column for Result 

from Final Decision Scheme. 

Also in that section, it was said that the final decision was made by comparing the value 

of D and the value of 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝, which is the threshold for the Final Decision Scheme 

of the system. The value of 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 is calculated from all the values in columns for 

Result from Final Decision Scheme in Spam Relay Database. 
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So far, it can be said that the Spam Relay Database has two main functions: the one is to 

store and manage the spam relay hosts‘ information, which could help to understand 

spam activity and characteristics of spam relays, and the other is to provide the data to 

the Post-processor to automatically generate a series of parameters and thresholds, 

which are used by the system and improve the performance.  

5.2.5.2 Generating Parameters and Thresholds  

Another function of the Post-processor is generating a series of parameters and 

thresholds to keep the system operating automatically and to improve its performance. 

Information in the Spam Relay Database would be used to generate these useful values. 

The following subsections will introduce how the Post-processor generates these 

parameters and thresholds automatically in the system. 

 Generating the Thresholds for the Trigger System 

There are two thresholds used in the trigger system: one is the average total number of 

SMTP packets with the SYN flag set from the hosts in the monitored network 

(𝑻𝒕𝒐𝒕𝒂𝒍−𝒕𝒉), and the other is the average number of SMTP packets with the SYN flag set 

from hosts in the current monitoring interval in the monitored network (𝐓𝐜𝐮𝐫𝐫𝐞𝐧𝐭−𝐭𝐡[𝐢]). 

The formulas for calculating these two thresholds have been presented in the previous 

section 5.2.3. And every 24 hours, new thresholds will be generated by using those two 

formulas. 

 Generating the Coordinates of (FIN/SYN flag set, SYN) 

In Section 5.2.4.1, it was said that Algorithm 1 of the Ratio of FIN/SYN Flag Set 

used a group of coordinates (FIN/SYN flag set, SYN) from the Spam Relay Database to 

identify whether a new arrival host is a suspicious spam relay. This group of 

coordinates is generated by the Post-processor by using data in the Spam Relay 

Database. Each coordinate corresponds to a data structure in the Spam Relay 
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Database. 

The following formulas are used to calculate this group of coordinates (FIN/SYN flag 

set, SYN). 

FIN/SYN flag set = 
∑ 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐅𝐈𝐍 𝐢𝐧 𝒊𝒕𝒉  𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥24
𝑖=1

∑ 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝒊𝒕𝒉  𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥24
𝑖=1

 

SYN = ∑  Number of Packets with SYN in ith
24

i=1
 Interval  

Where:  

Number of Packets with Fin in 𝑖𝑡ℎ Interval is the parameter in the column for Number 

of Packets with Fin in 𝒊𝒕𝒉 Interval in the data structure in the Spam Relay Database. 

Number of Packets with SYN in 𝑖𝑡ℎ Interval is that the parameter in the column for 

Number of Packets with SYN in 𝒊𝒕𝒉 Interval in the data structure in Spam Relay 

Database. 

By using Algorithm 1, a new data entry corresponding to the new arrival host will be 

generated to identify whether it is from a suspicious spam relay host.  

When a new arrival host is identified as a spam relay by the Classifier, its coordinate of 

(FIN/SYN flag set, SYN) will be used for the next identification. 

 Generating the Threshold (𝑻𝑯𝑻𝒊𝒎𝒆) for Algorithm 2 in Classifier 

Algorithm 2 identifies suspicious spam relay hosts by evaluating 

𝐫𝐚𝐭𝐢𝐨 =
𝐓𝐨𝐭𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐭𝐡𝐞 𝐒𝐘𝐍 𝐟𝐥𝐚𝐠 𝐬𝐞𝐭 𝐢𝐧 𝐪𝐮𝐢𝐞𝐭 𝐩𝐞𝐫𝐢𝐨𝐝𝐬 

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐚𝐜𝐤𝐞𝐭𝐬 𝐧𝐮𝐦𝐛𝐞𝐫 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐟𝐥𝐚𝐠 𝐬𝐞𝐭 𝐢𝐧 𝐚 𝐝𝐚𝐲
 

We use the following formula to calculate the corresponding ratio of each spam relay 

host, which has been identified as a spam relay, by using the data structure in the Spam 
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Relay Database. 

𝐫𝐚𝐭𝐢𝐨 =
∑ 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝐢𝐭𝐡 𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥 + ∑ 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝐢𝐭𝐡 𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥)𝟐𝟒

𝒊=𝟏𝟕
𝟖
𝒊=𝟏

∑ 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝐢𝐭𝐡 𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥𝟐𝟒
𝒊=𝟏

 

The 95
th

 percentile value of the ratios is picked up as the threshold (𝑻𝑯𝑻𝒊𝒎𝒆) for 

Algorithm 2. Every 24 hours, a new threshold will be generated 

Percentile Value for Thresholds: 

When the system generated the threshold for Algorithm 2, the 95
th

 percentile was used 

to help generate this threshold.  The standard definition of a reference range for a 

particular measurement is defined as the prediction interval between which 95% of 

values of a control group fall into, in such a way that a total of 5% of sample values 

will be less than the lower limit or larger than the upper limit of the interval [124]. 

The value of 95% is therefore used as the percentile value for thresholds in this thesis. 

This value could be changed by network administrators to other values to meet the 

detection requirements before the system is applied in a real network. This percentile 

value for thresholds determines the percentage of hosts in Spam Relay Database that 

are above to the threshold of the system. Therefore this value affects the performance of 

system. A series of tests have been conducted to determine the effect of changing this 

percentile value on false positive rates and false negative rates.  

 Generating the Threshold ( 𝑻𝑯𝒑𝒂𝒚𝒍𝒐𝒂𝒅 ) for Algorithm 3: Number of 

Connections with Similar Payload-size 

In every data structure in the Spam Relay Database, there are seven parameters in 

columns for Number of Connections with Similar Payload-size. Pick up all the 

parameters that the value is not equal to 0 in the Spam Relay Database, and the 95
th

 

percentile value of these parameters is picked out as the threshold (𝑻𝑯𝒑𝒂𝒚𝒍𝒐𝒂𝒅) for 

Algorithms 3.   
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 Generating the Thresholds (𝑇𝐻𝑉𝑜𝑙−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 &  𝑇𝐻𝑉𝑜𝑙−𝑡𝑜𝑡𝑎𝑙) for Algorithm 4&5 

Both of these two algorithms use the volume of SMTP connections in a particular 

period to distinguish between legitimate hosts and spam relay hosts.  

Algorithm 4 uses the volume of SMTP packets with the SYN flag set in the current 

interval to identify the suspicious spam relay. Assume that the current interval is the 

𝑁𝑡ℎ interval. The connections attempted to establish by each spam relay host are 

closely correlated to the packets with SYN flag set sent by it. Therefore the number of 

packets with SYN in the 𝑁𝑡ℎ interval generated by each host in the Spam Relay 

Database, which can be obtained from the columns for the Number of Packets with 

SYN in 𝑵𝒕𝒉 Interval, corresponds to the number of SMTP connections that the host 

attempted to establish. We pick up the number representing the 95
th

 percentile of 

numbers of SMTP packets with the SYN flag set that was sent out by the hosts in 

Spam Relay Database in this time interval as the threshold (𝑇𝐻𝑉𝑜𝑙−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ) for 

Algorithm 4. 

The volume of SMTP packets with the SYN flag set in the most recent 24-hour 

interval is used to detect spam relays by Algorithm 5. The total number of packets 

with the SYN set for every host in the Spam Relay Database can be calculated by 

using the following formula. 

𝐒𝐮𝐦 = ∑ 𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝐢𝐧 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐜𝐤𝐞𝐭𝐬 𝐰𝐢𝐭𝐡 𝐒𝐘𝐍 𝐢𝐧 𝐢𝐭𝐡 𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥
𝟐𝟒

𝐢=𝟏
 

The threshold ( 𝑇𝐻𝑉𝑜𝑙−𝑡𝑜𝑡𝑎𝑙) for Algorithm 5 is set as the 95
th

 percentile number of 

SMTP packets with the SYN flag set that spam relay hosts send out in the most recent 

24-hour period in the Spam Relay Database. 

 Generating the Threshold ( 𝑻𝑯𝒐𝒖𝒕−𝒊𝒏)  for Algorithm 6: Ratio of Out/In 

SMTP Connection 
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Each data structure has a parameter in the column for Ratio of Out/In SMTP 

Connection, which indicates the situation about the response rate of spam emails sent 

by the host. The 95
th

 percentile of the ratios of Out/In SMTP Connections in Spam 

Relay Database is used as this threshold( 𝑻𝑯𝒐𝒖𝒕−𝒊𝒏). 

 Generating 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 for the Final Decision in the Classifier. 

There is a parameter named D in a column in the data structure in the Spam Relay 

Database, and D is generated by the Classifier as a numeral value of the decision. 

𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 is 95
th

 percentile of these values in the Spam Relay Database. 

5.2.5.3 Automatic Data Update in System 

Updates help the system to automatically do its operations and improve performance. 

The automatically updating work in our system can be divided into two categories: the 

first category is the real time updating work, and the second category is the fixed time 

updating work. 

 Real Time Updating Work 

Most real time updating work is about the generations of the SMTP Traffic Database 

and Spam Relay Database. When a SMTP packet is logged by the Sniffer, the TCP/IP 

header information will be used to update the SMTP Traffic Database. The 

corresponding parameters will be changed in the SMTP Traffic Database. When a host 

is identified as a spam relay by the Classifier, the information about the host will be 

used to update the Spam relay Database. Real time updating helps the system to 

generate and manage both of these two databases. 

The coordinates (FIN/SYN flag set, SYN) are also updated in real time. When a host is 

identified as a spam relay, the coordinate corresponding to this host will be added. 

This real time updating helps the system to keep track of the situation in the network. 
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Also it is able to help system to catch the most recent SMTP characteristics of the 

legitimate sites and spam relay hosts in the network. It should improve the performance 

of system. 

 Fixed Time Updating Work 

Fixed time updating work includes two parts: fixed time updating on the database, and 

fixed time updating of the parameters and thresholds of the system.  

One of the purposes of the fixed time updating on the databases is to remove the time 

expired data structures in each database. It reduces the storage requirements of the 

system. It could also help system to understanding the most recent situation about the 

network and spam activities in the network. It improves the efficiency of the system. As 

it has been said in Chapter 2, the most important periods of time are the day (24 hours) 

and the week (7 days). SMTP traffic from a legitimate email server, whose SMTP 

traffic is related well to the time of day, is also related to the day of the week. In order to 

reduce the requirements of storage size and improve the operational efficiency of the 

system, system will removed the expired data structure, in which the corresponding IP 

address has kept silent for over 7 days. These expired data structures are identified by 

checking the parameters in the column for Time of Last Packet Arriving in the 

structure.  

The other purpose of fixed time updating work is about the generation of system 

parameters and thresholds, such as thresholds for triggers, thresholds for Algorithm 2, 

Algorithm 3, Algorithm 4, Algorithm 5 , Algorithm 6, and 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝. A new series 

of parameters and thresholds help the system to operate automatically more stably and 

accurately. Because they present the most recent related information of network, they 

improve the performance. For Algorithm 1, a new group of coordinates, in which the 

expired coordinates have been removed, will be generated by using a fixed time 

updating process every day. The expired coordinates correspond to the expired hosts, 

which have been removed from the Spam Relay Database.  
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The fixed updating time could be set to the quietest period in a day by the 

administrators. This would improve the efficiency, because the other work is using less 

computing sources. In our system, the updating time is set to 0:00 every day. 

5.2.5.4 Manual Data Update in System 

The previous sections introduced the automatic data update scheme in the system. A 

manual data update scheme is also designed for administrators to check the decision 

results and adjust the performance of this system,  

Administrators of the system can log in the SMTP Traffic Database to know the recent 

situation of the monitoring network. Also they can log in the Spam Relay Database to 

check the decision results of the system. If an administrator does not agree with an 

identification decision to a suspicious host, he can change the decision. When a host is 

identified as a spam relay by an administrator, this host will be put into Spam Relay 

Database. Otherwise the host will be removed from the Spam Relay Database.  

Performance of the system can be evaluated by administrators via checking SMTP 

Traffic Database and Spam Relay Database. Some parameters and thresholds (e.g. 

percentile value for threshold) can be adjusted by administrators to make system meet 

the security requirements of the network. 

Manual data update scheme is designed for administrators to evaluate and adjust the 

performance of the system. It ensures that the system can avoid some ―machine 

mistakes‖ to provide a satisfied performance via the effective management of 

administrators. 
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5.3 Autonomous Detection System Structure 

Figure 5.4 shows the diagram of our autonomous spam relay detection system. The 

following sections will explain the system‘s detection processing step by step by 

reference to this flow chart. 

 

Figure5.4: Diagram of Autonomous Spam Relay Detections System  

When the system is installed in a network by administrators, it will start to work 

automatically. 
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Firstly, the Sniffer logs the relevant information from the SMTP traffic in the network. 

The Sniffer captures the SMTP packets and records the TCP/IP Header information of 

each packet captured. The original information logged by the Sniffer includes source IP 

address, destination IP address, payload size, flag sets, and so on. 

The Pre-Processor processes the original information handed in by the Sniffer and 

generates the SMTP traffic data structure, in which the data is ready for the 

measurements of the identification. Each active host in the network is given a 

corresponding data structure. All of these data structures build up the SMTP Traffic 

Database. If the source IP of the current SMTP packet arrived is already in the SMTP 

Traffic Database, the header information of this packet will be used to update to the 

corresponding columns in the related data structure. Otherwise a new data structure 

corresponding to this IP address will be created to keep the information. 

Thirdly, the Trigger keeps monitoring the updated SMTP Traffic Database. When a new 

data structure is created or an existent one is updated, the trigger will evaluate the 

volume of SMTP packets with the SYN flag set in current interval and the volume in the 

last 24-hour period. If one of these two volumes is above the thresholds of trigger 

system, the trigger will identify the host, which corresponds to the data structure in 

SMTP Traffic Database, as a suspicious host. Then the related information of this host 

in the SMTP Traffic Database will be handed to the Classifier. The Trigger launches the 

identification process of the classifier. 

Fourthly, the classifier identifies whether the host is a spam relay by using the related 

information passed from the SMTP Traffic Database. Each algorithm in the Classifier 

will make a decision independently and generate a numerical result. Then, the classifier 

will make a final decision from these results. 

Fifthly, if the host is not thought to be a spam relay by the Classifier, the identification 

processing finishes and the system returns to standby for the next arrival. Otherwise, 
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when a host is identified as a spam relay host, the information corresponding to the host 

in the SMTP Traffic Database will be passed to the Post-processor. The Post-processor 

will update the Spam Relay Database by using the information. Some parameters and 

thresholds will be updated by the new information as well, such as coordinates 

(FIN/SYN flag set, SYN). 

Finally, when the system finds that it is time to perform fixed updating, it will 

automatically start the daily updating. It removes the expired data in SMTP Traffic 

Database and Spam Relay Database, and generates a series of new system operational 

parameters and thresholds for another 24 hours.   
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5.4 Summary 

An autonomous system for detecting spam relays using the SMTP traffic 

characteristics was proposed in this chapter. This system includes five elements: 

Sniffer, Pre-processor, Trigger, Classifier and Post-processor. The Functions of each 

element have been represented in detail in this chapter. The information that is used to 

identify spam relays in this system never involves the real email content. The Sniffer 

only logs the TCP/IP header information from SMTP traffic packets. 

Machine learning techniques have been employed, so that the system can do 

operations and adjust performance of spam relays identification automatically. There 

are two databases (SMTP Traffic Database and Spam Relay Database) designed to 

store and manage the related information of active hosts in the network. SMTP Traffic 

Database keeps the information of every active host, which has generated SMTP 

traffic in the last seven days. And Spam Relay Database has the information of these 

hosts which have been identified as spam relays. Both of these two databases can be 

updated by updating process of the system. And a series of parameters and thresholds 

that help system to work automatically and improve the identification performance 

can also be generated automatically using the information in these two databases by 

the updating process in the system. 

The following chapter will determine that the performance of spam relays detection of 

the system by using results obtained from a series of tests. 
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Chapter 6: Testing and Results 

A proposed autonomous spam relay detection system has been introduced in Chapter 5, 

where the system detects the spam relay hosts in the network by the characteristics of 

SMTP traffic. Machine learning techniques have been applied in the system. In this 

chapter, the system will be trained by a training data set. The trained system will then be 

tested to indicate the performance of spam relay detection.  A series of tests will be 

conducted and the results will be presented in this chapter. 

 

6.1 Training process of the Autonomous System 

System training processes are used in machine learning and artificial intelligence 

techniques to optimum system performance. Most of the time, such a system can 

continue run in real time after the initial training, allowing the system to adapt to the 

new situation and to changes itself. The initial training is able to help the system 

generate a series of initial parameters, which are necessary to support the automatically 

operations of the system [125]. Training data sets were used in the training process. A 

training set is a set of data used in various areas of information science to discover 

potentially predictive relationships [126]. Training data sets are popularly used in 

artificial intelligence, machine learning, genetic programming and intelligent systems.  

In all these fields, a training data set has much the same role and is often used in 

conjunction with a test data set. 

6.1.1 Training Data Set in Training Process 

The data in the training data set was part of the SMTP traffic data from a national 

ISP‘s local network and the Loughborough University network. Hosts in these 

networks include legitimate email use clients, legitimate email servers and spam relay 

hosts.  
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There are a total of 220 hosts involved in the training data set. Data in the training 

data set including the SMTP traffic data collected from 200 legitimate hosts in a 

24-hour period and the SMTP traffic data collected from 20 spam relay hosts in a 

24-hour period. The data from the legitimate hosts was in the same format as the data 

structure in the SMTP Traffic Database; while the data from the illegitimate hosts was 

in the same format as the structure in the Spam Relay Database. All SMTP traffic data 

in this training data set is not involved the SMTP traffic characteristics analysis in the 

previous chapters. 

 Total Hosts Legitimate Hosts Spam Relay Hosts 

Training Data Set 220 200 20 

Table 6.1: Hosts in Training Data Set 

The training data set will be used by the training process to adjust the parameters of 

the autonomous system. The following subsection will introduce the training process 

in more detail. 

6.1.2 Training Process 

The training Process generates the initial SMTP Traffic Database and Spam Relay 

Database by using the training data set. Then a series of parameters and thresholds for 

the operations of system are generated by using these two databases. After the 

generation of the two databases, system operation parameters and thresholds, the 

autonomous system will be ready to be used in a real network for detecting spam relays. 

 Generating the Initial SMTP Traffic Database and related Parameters 

All of the data in the training data set was input to the system to generate the initial 

SMTP Traffic Database. The initial SMTP Traffic Database would then consist of 220 

data structures, which have been described in Figure 5.2 in Chapter 5. Each data 
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structure corresponds to a host in the training data set. The average numbers of SMTP 

Packets with the SYN Flag set in each time interval and in the most recent 24-hour 

period, which had been established by the corresponding host, can be calculated by 

using the parameters in columns for Number of Packets with SYN in 𝑵𝒕𝒉Interval. 

These two average numbers will be used as the initial thresholds for the trigger system, 

as described in Chapter 5. Appendix 1 shows these thresholds (Tcu  ent−th[i] and 

𝑇𝑡𝑜𝑡𝑎𝑙−𝑡ℎ ) for the trigger system after the training process. 

 Generating the Initial Spam Relay Database and Related Parameters 

The SMTP traffic data from spam relay hosts in the training data set was input to the 

system to generate the initial Spam Relay Database. After the training process, there 

are a total of 20 data structures in this database. Each data structure corresponds to a 

spam relay host in the training data set, and the information of the host will be recorded 

in the data structure.  

A series of parameters and thresholds are generated: the group of coordinates 

(FIN/SYN Flag Set, SYN), thresholds for Algorithms 2, 3, 4, 5 and 6, and 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 

for the final decision of the Classifier. The algorithms for these parameter generations 

have been presented in the Chapter 5. The percentile value for the thresholds is set as 95% 

in the system. Thresholds for algorithms in the classifier, weight values for each 

algorithm and 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 , which had been generated after the training process, had 

been listed in Appendix 2. 

After the generation of the two databases and the series of parameters by using the 

training data set, the training process is completed. The two databases and the 

parameters will then be used to detect spam relays, when the system is applied to a live 

network. The information from the training data set in the system will be replaced by 

new information from the real time SMTP traffic in the network as it expires. The 

following sections in this chapter will present a series of tests by using testing data sets 
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to show the performance of the trained system. 
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6.2 Test Data Sets and System for Tests 

In the previous section, the autonomous spam relay detection system was trained by a 

training data set. In this section, a group of individual test data sets will be used to 

assess the performance of the system. Results obtained from these tests will show the 

system‘s ability to detect spam relays, the contributions of each algorithm in the 

Classifier, and the effect of the percentile value for thresholds on the performance. The 

percentile value for threshold defines the reference range for thresholds used in the 

proposed system. 

6.2.1 Test Data Sets 

The test data sets [127] were from a national ISP‘s local network and the Loughborogh 

University network. But these testing data sets were unique to each other and also to the 

training data set, which was used previously to train the system. In other words, the 

hosts in each data set are totally different. Hosts in each test data set include legitimate 

email sites and spam relays.  

A total of 4 group test data sets were prepared. The hosts in these test data sets represent 

approximately 600 legitimate email users, including servers and clients, and 100 spam 

relay hosts. There were about 700 hosts in total, and were randomly divided into 4 

individual groups. The Data in the test data set was in the same format as the data 

structure in the SMTP Traffic Database. Each data structure was selected and classified 

into spam and non-spam categories by manual inspection. Table 6.2 shows the number 

of legitimate hosts and spam relay hosts in each testing data set after the manual 

inspection. Figures in this table will be compared with the results of the tests to show 

the performance of our spam relay detection system. 

 



109 

 

Test Data Sets Total Hosts Spam Hosts Legitimate Hosts 

Test Data set  1 50 5 45 

Test Data set  2 100 20 80 

Test Data set  3 200 20 180 

Test Data set  4 200 50 150 

Table 6.2: Hosts in Test Data Sets 

 

6.2.2 Autonomous System for Tests 

The autonomous system for tests in this chapter has already been trained by the training 

data set in the previous Section 6.1. So the system has already two initial databases 

(SMTP Traffic Database and Spam Relay Database) and a series of initial parameters 

and thresholds, which have been shown in Appendix 1 and Appendix 2. The percentile 

value for threshold is set as 95% in this system.   

Because the data in the test sets has already been formatted into the structure used by 

the SMTP Traffic Database, the Pre-processor will be disabled. The system will then 

log the data structure into the system, and the trigger process will compare the number 

of SMTP packets in each time interval and the sum of these numbers with the 

corresponding thresholds (Tcu  ent−th[i] and 𝑇𝑡𝑜𝑡𝑎𝑙−𝑡ℎ). If one of the numbers is above 

the corresponding threshold, this data structure will be passed to classifier for 
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identification. The Classifier will identify whether the host is a spam relay by using the 

identification process described in Chapter 5, when a host‘s data structure is handed 

over by the trigger. If a host is identified as a spam relay, the corresponding information 

will be used to update the Spam Relay Database. SMTP Traffic Database in the testing 

system is updated by the logging of each data structure in the test data sets. 
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6.3 Testing Processes and Results 

Four groups of tests were designed to achieve the aims of the testing process. The first 

group of tests was used to evaluate spam relay detection performance. The second 

group of tests was to assess the contribution of each algorithm in the classifier. And the 

third group was for identifying how the percentile value for thresholds affects the 

performance of system. Test results of these three groups of tests have been listed in 

Appendix 3. Results in Appendix 3 included outputs of each algorithm and the value of 

D (final decision) of each host which has been identified as a spam relay by our 

detection system .The last group of tests were used to indicate the performance of the 

update process in the detection system. 

6.3.1 Evaluating the Ability to Detect Spam Relays 

Each test data set was logged by the system, in which the percentile value was set as 

95%. Before a new data set was logged, the system was reset to the initial status, which 

is the status after the training process  

Test results, which including weight of values, 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 , outputs of each algorithm 

for each spam relays detected by the system, and value of final decision D for each 

spam relays detected by the system, were listed in Appendix 3. 

Table 6.3 shows the results of spam relay detection by using these test date sets 
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Test Data Sets Total Host Spam Relays Spam Detected False Positives False Negatives 

Test Data Set 1 50 5 5 0 0 

Test Data Set 2 100 20 17 0 3 

Test Data Set 3 200 20 19 1 1 

Test Data Set 4 200 50 41 0 9 

Table 6.3:  Results of the Tests by Using Test Date Sets 

The maximum rate of spam relay detection was 100% in Table 6.3, when the system 

was tested by using Test Data Set 1. The minimum rate is 82%. On average, 91% of the 

spam relays were positively identified by the autonomous system. There was only one 

false positive error in the four tests. The average ratio of false positives error is around 

0.13%. 

It was also found that the spam relay detection rate increased as the percentage of spam 

relays hosts in the network decreased. The percentage of the spam relays is lower than 

10% in Test Data Sets 1 & 3, and the ratio of spam relay detection corresponding to 

these two test data sets are 100% and 95%. But in the Test Data Set 4, the identification 

rate is only 82%, and the percentage of spam hosts in this data set is 20%.  More 

percentage of the spam relays may be identified in a network with fewer spam relays. 

There is a false positive error occurred in spam relay detection process by using the 

Test Data Set 3. This unique false positive error occurred in the testing, in which 

system was tested by using the test date set with the lowest percentage of spam relay 

hosts.  It may suggest that false positive errors may be introduced into the spam relay 

identification, when this system is applied in a network with fewer spam hosts.  

Every anti-spam technique has trade-offs between the false negative and false positive 

responses. These days, a spam filter is considered effective if it has a detection rate 90% 
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or high [128]. So we are able to say that the proposed system has a good performance 

for detecting the spam relays in networks. It has a high positive detection rate with a 

low false positive rate. 

6.3.2 Assessing the Performance of Each Algorithm in the Classifier  

In the proposed autonomous spam relay detection system, the Classifier is composed 

of six algorithms whose weighted outputs are combined together to produce the 

overall result (D) seen in Chapter 5. Each algorithm was designed according to the 

results of the analysis of the SMTP Traffic characteristics for legitimate and 

illegitimate sites in Chapter 4. In this section, the results from test processes will 

indicate the contribution of each algorithm to spam relay identification of the Classifier. 

Some other results from these test processes will show the necessity of combining a 

variety of algorithms in the Classifier to achieve a satisfying performance.  

The system recorded outputs of each algorithm and final decision values (D) for every 

spam relay hosts that were identified by our system in the test processes. Outputs of 

each algorithm and final decision values have been listed in Appendix 3. In Chapter 5, it 

was stated that each algorithm would generate a result with the value 1 if a host is 

thought to be a suspicious spam relay. According to this, it is easy to find which host 

was identified as a suspicious spam relay by an individual algorithm. 

Table 6.4 shows the spam relay identification result for each individual algorithm in the 

Classifier in the test process, in which Test Data Set 3 was used. Test Data Set 3, 

which includes 180 legitimate hosts and 20 spam relay hosts, was used in this test. The 

value of percentile for thresholds was 95% in this test system, as before. 
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Algorithms Name of 

Algorithms 

Value of 

weight for 

Algorithm 

Spam 

Hosts in 

Test Data 

Set 

Spam Hosts 

Detected 

False 

Positives 

False 

Negatives 

Algorithm 1 Ratio of 

FIN/SYN Flag 

Set 

0.888889 20 7 4 13 

Algorithm 2 Relative to 

Time of Day 

0.684211 20 17 10 3 

Algorithm 3 Similar 

Payload-size 

Connections 

0.666667 20 15 0 5 

Algorithm 4 Volume of 

Connections in 

Current 

Interval 

0.555556 20 20 16 0 

Algorithm 5 Volume of 

Connections in 

Recent 24 

Hours 

0.642857 20 17 6 3 

Algorithm 6 Ratio of 

OUT/IN SMTP 

Connections 

0.863636 20 20 2 0 

Table 6.4: Identification Results of Individual Algorithm in Classifier in the Test 

Process by Using Test Data Set 3 
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Table 6.4 shows that each individual algorithm in the Classifier is able to pick up a 

number of spam relays. However the identification rate and false positive and negative 

rate are not as good as expected. The average identification rate is about 80%, and the 

minimum rate of these algorithms is only 35%. Algorithms 4 and 6 have the high 

identification rates, however the false positive rates of both these algorithms are larger 

than a system in which 6 algorithms combined. Algorithm 4 has 16 false positive 

errors in decisions of 200 hosts. The average false positive error rate is 3.17%.  The 

greater the percentage of false positive errors is in the decisions, the greater the harm 

done to legitimate users in the network. In summary, any one algorithm in the Classifier 

can pick out a number of spam relays, but is not enough to identify spam relay hosts 

with satisfactory performance. 

A total of six algorithms are combined in the classifier. The performance of each 

individual algorithm for the spam relay detection has been discussed in the previous 

section. The following sections will discuss the performance of the system, in which 

only some of these algorithms are enabled. The results from the disabled algorithms 

were set as a constant 0. And then a new  𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 , which only considers the results 

from the enabled algorithms, had to be generated by training process before the system 

was tested. Test Data Set 3 was used for the test processes of these systems in which 

only several algorithms were enabled. Test results, which included outputs of each 

enabled algorithm, weights values of algorithms, value of  𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 and values of 

final decisions (D), have been listed in Appendix 4. 

Table 6.5 shows the spam relay identification results of the test processes by using the 

Test Data Set 3 on these systems, in which only several algorithms were enabled and 

the percentile value was set as 95%. 
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Enabled Algorithms Spam hosts in 

Test Data Set 

Spam Hosts 

detected 

False Positive False 

Negative 

Algorithm 1, 3&5 20 15 3 5 

Algorithm 1, 3&6 20 15 3 5 

Algorithm 3, 4&5 20 15 0 5 

Table 6.5: Test Results from the System with Several Algorithms Enabled 

Table 6.5 shows that a system, which uses only several algorithms in its classifier, can 

also pick up some of the spam relay hosts. The spam relay identification rates of these 

three systems are the same (75%). It shows that they can provide a more stable 

identification performance than an individual algorithm. Also the situation of the false 

positive error rate is improved, when more algorithms are used in the system. The 

average false positive rate is 1.00%, and the maximum rate is 1.50%. It was also found 

that the selection of algorithms could affect the performance of the system. 

In summary, it was found that: 

1. A classifier using just one detection algorithm would not be good enough to be used 

for spam relay host detection. It may be possible to pick up a number of spam relays, 

but it would also produce many false positive errors, which would do harm to the 

legitimate users. 

2. That additional algorithms used in classifier reduce the false positive error rate.  

3. The selection of algorithms, which are enabled in the classifier, affects the 

performance of spam relay detection. 
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6.3.3 Effect of the Percentile Value for Thresholds on the Performance 

of the System 

In our system, the percentile value for the thresholds is used to define the reference 

range of the related measurement. The thresholds for Algorithms 2, 3, 4, 5&6 and final 

decision of the classifier are generated by using this coefficient. It is found that all these 

thresholds are the lower bounds of the reference ranges. So when the percentile value is 

reduced, these lower limits are increased, which will make the identification rules more 

strict. This coefficient (percentile value) can also be set by the network administrators. 

It is probably changes of the percentile value affect the performance of the system. A 

group of tests was designed to investigate this issue. 

Table 6.3 has shown the test results from the system with a percentile value set as 95%. 

Then the system, in which this percentile value was set to 50%, was trained by the same 

training data set. After the training process, the system was tested by the same four test 

data sets. Test results, which included outputs of each algorithm, weight values and 

final decision value D, have been listed in Appendix 3.  Table 6.6 shows the test 

results from the system with the percentile value set to 50%. 

Test Data Sets Total Host Spam Relays Spam Detected False Positives False Negatives 

Test Data Set 1 50 5 3 0 2 

Test Data Set 2 100 20 10 0 10 

Test Data Set 3 200 20 9 0 11 

Test Data Set 4 200 50 17 0 33 

Table 6.6: Test Results of Spam Relay Detection by Using the System with 

Percentile Value 50% 
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It is found that the spam relay identification rate of every test data set was reduced in 

comparison with the corresponding rate in Table 6.3. The average positive spam relay 

identification rate is only 47.25%. In other words, there are only 47.25% of the spam 

relays in the test data sets could be identified. However not everything is disappointing. 

The results in Table 6.6 show that there are no false positive errors generated by this 

system in any of the tests. 

We are therefore able to say that the percentile value for thresholds affects the 

performance of the system. A reduction of this value can reduce the positive spam relay 

identification rate, but also reduce false positive errors. 

6.3.4 Performance of the Update Process in the Proposed System 

In this section, the performance of update process will be presented. A group of tests 

were conducted to evaluate the performance of the update process. The proposed 

system, in which the percentile value was set as 95%, was trained by the training data 

set firstly. Then the system, which had been already trained, was used to test by using 

Test Data Set 3. After this test, new databases (SMTP Traffic Database and Spam 

Relay Database) have been generated. Then the update process was launched. Update 

process in this system generated new thresholds and parameters for the proposed 

system by using the information from new databases. These new thresholds and 

parameters for the system had been listed in Appendix 5.  

Test data Set 1, Test Data Set 2 and Test Data Set 4 were used to test the performance of 

the system, which has the new thresholds and operation parameters after the update 

process. Test results have been listed in Appendix 6, in which there are outputs of each 

algorithm, final decision value, weight values and so on. Table 6.7 shows the spam 

relay identification results of this group of test processes by using the system after the 

update process. 
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Test Data Sets Total Host Spam Relays Spam Detected False Positives False Negatives 

Test Data Set 1 50 5 5 0 0 

Test Data Set 2 100 20 17 0 3 

Test Data Set 4 200 50 42 1 8 

Table 6.7:  Results of the Tests on the Proposed System after Update Process by 

Using Test Date Sets 

The maximum rate of spam relay detection was 100% in Table 6.7, when the system 

was tested by using Test Data Set 1. The minimum rate was 84%. 90% of the spam 

relays were positively identified by the autonomous system on average. There was only 

one false positive in the four tests. The average ratio of false positives was around 

0.17%. Results from Table 6.3 and Table 6.7 tell that both the system before the 

updating and the system after the updating have high spam relay identification rates 

(over 90%) and low false positive error rates (less than 0.2%).  

So we are able to say that the update process, which was designed for the detection 

system, is suitable for the proposed system, because the system can still provide a high 

positive detection rate with a low false positive rate after the update process. 
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6.4 Conclusions of System Tests 

In this chapter, the autonomous spam relay detection system was trained by a training 

data set. The training data set helped the system to generate the initial SMTP Traffic 

Database, the initial Spam Relay Database and a series of initial operational parameters 

and thresholds.  

The system was tested with 4 groups of test data after the training process. A series of 

tests were done to evaluate the performance and understand the influence of the 

changes to the system. A lot of results and analysis have been mentioned in this chapter, 

and are summarized below:  

1. The autonomous system is able to identify spam relays, after it has been trained. 

The positive spam relay identification rate of the system, in which the percentile 

value for thresholds was set as 95%, reached on average number of 91%. At the 

same time the ratio of false positive errors was about 0.13%.  

2. There are six algorithms combined in the Classifier. These algorithms are designed 

according to the analysis of the SMTP traffic characteristics performed in Chapter 4. 

Test results show that every algorithm gives a contribution to the spam relay 

identification of the classifier. On one hand each individual algorithm can pick up 

some of spam relays, on the other hand each individual algorithm could make more 

mistakes in the identification, which would do much harm to the legitimate users. 

An individual algorithm is not enough to provide good spam relay identification. 

3. Test results also indicated that combinations of the algorithms in the classifier could 

improve the performance. The obvious improvement is on the reduction of the false 

positive rate. Different selections of the algorithms also affected the performance of 

the system. However the number of algorithms combined in the classifier would be 

limited in practice due to complexity of the system 
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4. The percentile value for thresholds in the system can affect the performance of the 

system. A reduction of this value can reduce the positive spam relay identification 

rate, but it can also reduce the false positive error rate. This percentile value can be 

set by network administrators to meet the security requirements of the network 

under protection. 

5. The update system in the proposed system is suitable for keeping the performance 

of spam relay identification as well as expected. A series of tests have been 

conducted to present performance of the system in which the update process have 

been launched before the proposed system do next job of the spam relays detections. 

The positive spam relay identification rate of this system still reached on average 

number of 90% in that situation. At the same time the ratio of false positive errors 

was 0.17% on average.  
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Chapter 7: Conclusions and Further Work 

Spam emails are flooding the internet and do great harm to people every day. A lot of 

anti-spam techniques have been developed to fight with spam emails. But so far the 

volume of spam emails is still increasing. In this thesis, the definition of spam emails, 

the harm done by spam emails, spammer activity and anti-spam techniques were 

reviewed. SMTP traffic data was collected from real networks. The SMTP traffic 

characteristics of legitimate email clients, legitimate email servers and spam relays 

were analyzed. An autonomous system for detecting spam relays using SMTP traffic 

characteristics was designed and tested in this research. The following sections will 

present the results and conclusions of this research. 

 

7.1 Results and Conclusions 

Spam emails are unsolicited bulk emails, and spammers send mass spam emails to 

achieve their selfish purposes. Spam email cost people‘s money and time, degrades 

the performance of networks, and also causes a large amount of security problems for 

networks.  

Spammers harvest as many email addresses as they can. They compose spam emails 

that are more likely to capture the recipients‘ attention and resort to re-routing spam 

emails through relay hosts in networks to avoid detection. Spam tools are developed 

and applied for automatic spam activities by spammers. 

A large number of various anti-spam techniques have been developed and employed 

to prevent spam emails. However all this work is not enough, the problem caused by 

spam emails continues to become more and more serious. The general consensus is 

that a single technical solution that is able to prevent the propagation of spam is 
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unlikely to be found given the constraints of the current Internet architecture. In this 

thesis, some commonly used anti-spam techniques have been discussed, e.g. DNSLs, 

Bayesian Spam Filter, and Checksum Based Filters and so on. 

SMTP traffic has been collected from the Loughborough University campus network 

and a national ISP‘s network which is one of the UK national wide ISP local networks. 

SMTP traffic characteristics of legitimate email clients, legitimate email servers and 

spam relays were analyzed and compared. It has been shown that legitimate email 

clients, legitimate email servers and spam relays have their own characteristic SMTP 

traffic profiles. These differences regarding the SMTP traffic characteristics result from 

characteristics such as volume of SMTP connections (number of emails sent out), 

successful connection rate (not-reject rate), payload size of each connection, response 

rate (the rate of reply to email), and the relationship between the traffic and time of day, 

and so on. A legitimate email client is seen to typically establish several SMTP 

connections over hours to one or a few email servers. A lot of connections, in which the 

sizes of payloads are different most of time, are established by a legitimate email server. 

SMTP traffic from a legitimate email server follows a regular time of day profile. By 

Contrast, spam relay hosts send a mass of similar emails to a huge number of 

destination addresses in a session for a lot of time. The SMTP traffic from the spam 

relays is also not well related to time of day most of time in most cases. Cyclical and 

periodic phenomena often appear on the profiles of the spam relay‘s traffic. Also some 

spam relays attempts to establish SMTP connections are rejected, and there is little 

incoming traffic to a spam relay host. 

In this thesis, the understanding of the SMTP traffic characteristics from different 

sources (legitimate email clients, legitimate email servers and spam relays) suggested 

that some methods and parameters might be used to identify spam relays in a network. 

Spam relays may be able to identified by evaluating the successful connection rate via 

the ratio of the FIN/SYN flag set, by counting the total number of the connections in a 

particular time interval, by comparing the size of the payload in each connection, by 
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evaluating the ratio of OUT/IN SMTP packets with the SYN flag set, or by evaluating 

the relationship between the SMTP traffic and time of day. 

An autonomous system for detecting spam relays by using these SMTP traffic 

characteristics was proposed in this thesis. This system included five elements (Sniffer, 

Pre-Processor, Trigger, Classifier, and Post-Processor) and two databases (SMTP 

Traffic Database and Spam Relay Database). Methods and parameters which have been 

mentioned in the previous section were combined into the Classifier in the system. It is 

important to note that the information that is used to identify spam relays in the network 

never involves email real content. The Sniffer only logs the TCP/IP header information 

from the SMTP traffic packets. Machine learning technologies have been employed in 

the system, so that the system is able to operate automatically and improve the 

identification performance via an updating process.  

A series of tests have been conducted to determine the performance of the system. The 

following subsections represent the results obtained from these tests. 

1. After training, the system is able to identify spam relays in the network. The spam 

relay identification rate could reach 91% on average, and the rate of false positive 

errors is 0.13% on average. 

2. Each algorithm, which is combined into the classifier, provides a contribution to the 

spam relay detection. An individual algorithm is not enough to successfully identify 

spam relays. The Combination of algorithms improved the identification 

performance of the system.  

3. The percentile value for thresholds has been seen to affect the performance of the 

system. The reduction of this coefficient can reduce the rate of spam relay 

identification rate, but it also reduces the false positive error rate. 
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4. False positive errors vs. false negative errors are still a problem for the spam relay 

detecting system. However choosing an appropriate threshold percentile could help 

the system to meet the requirements of the monitored network. 

5. The update process designed for the proposed system is suitable for keeping the 

performance of spam relay identification as well as expected. 
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7.2 Summary of Contributions 

A way to collect a set of data from live networks was found. A sniffer was created in 

the C programming language to collect SMTP traffic data from a real network. SMTP 

traffic data sets were generated. In this research, SMTP traffic data was collected from 

different sources (legitimate email clients, legitimate emails servers and spam relays) in 

real networks (A national ISP‘s network and Loughborough University campus 

network).  

The differences regarding SMTP traffic characteristics of legitimate email clients, 

legitimate email servers and spam relays were determined by analyzing SMTP traffic 

that collected from live networks. It was found SMTP traffic from legitimate sites and 

illegitimate sites were different and could be distinguished from each other by using 

SMTP traffic characteristics. Some methods and parameters based on analyzing SMTP 

traffic characteristics were proven to be able to identify spam relays in the network. 

Another contribution of this research is in developing an autonomous system for 

detecting spam relays by using SMTP traffic characteristics. This proposed system 

identifies spam relays in real time before spam emails get to an end user. It is important 

to note that the information that is used to identify spam relays never involves email 

real content. Machine learning technology was employed in this system. Results 

obtained from the tests show that this system has a high spam relay detection rate and 

an acceptable false positive error rate.  

A contribution that must not be neglected is the finding that a combination system is 

able to provide better performance of spam relay detection. An individual algorithm in 

the Classifier can pick up a number of spam relays, but it is no good enough to be used 

for spam relay detection. A series of tests were conducted to state that a classifier that 

employed additional algorithms has more opportunities to provide good performance 

than a classifier using just one detection algorithm. The most significant result of our 
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research is that selection of algorithms focused on different independent area of SMTP 

characteristics provides a high spam relay detection rate and an acceptable false 

positive error rate. 

The last contribution of this research work is finding a way to adjust the performance of 

the system to meet the security requirements of the network under protection. It was 

found that the change of percentile value for thresholds in the system could affect the 

performance of the system. This percentile value can be set by network administrators 

to meet the security requirements.  
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7.3 Further Work 

As was stated in Chapter 1, a single technical solution that is able to prevent the 

propagation of spam is unlikely to be found in the current Internet architecture. So 

currently, combination of systems is popularly employed to fight spam emails. In this 

thesis, it was shown that different combinations of algorithms in the classifier provided 

different levels of performance of identification. Further research could include two 

issues: one is finding more methods that can be combined in this system to identify 

spam relays, and the other is finding a way to build up a combination system with a 

better performance, which involves suitable choices of other anti-spam methods that 

could be combined in the system. 

Currently, there are many anti-spam techniques employed to fight spam emails in the 

internet. Some techniques could be combined into the Classifier in this system as an 

individual algorithm. Therefore, a combination system, in which different types of 

techniques are combined, could be developed. A series of tests would be conducted to 

determine the performance of the new combination systems. Results from these tests 

not only may help to evaluate the performance of the systems, but also evaluate the 

ability of each individual technique to identify spam relays. This work may help to find 

more techniques that are able to be combined in this system to achieve better 

performance of spam relay identification.  

When the system was being designed, consideration was given to its complexity and 

efficiency. Therefore, it is very important to know how to choose the most suitable 

anti-spam methods to be combined in the system. In the process of building and 

evaluating combination systems, it would be useful to find some rules to predict the 

suitable anti-spam methods, which are in a combined system, will improve the 

performance.  

 



129 

 

Reference 

[1] Royal Pingdom, ―Internet 2010 in Numbers‖, 12 January 2011. Retrieve 

2011-10-25, from http://royal.pingdom.com/2011/01/12/internet-2010-in-numbers/. 

[2] Microsoft, ―Microsoft Security Report‖, 8
th

 April 2009. 

[3] Spam Task Force Network and Technology Working Group, ―Anti-spam 

Techniques Overview‖, Telecommunications Engineering and Certification Industry 

Canada, May 2005, Page 9. 

[4] Scott Hazen Mueller，―What is spam?‖, Spam.abuse.net, Retrieved 2011-8-21, 

from:  http://spam.abuse.net/overview/whatisspam.shtml, Retrieved 2011-8-21. 

[5] Infinite Monkeys & Company , ―Spam Defined‖, Retrieved 2011-8-21, from:  

http://www.monkeys.com/spam-defined/ . 

[6] James John Farmer, ―An FAQ for news.admin.net-abuse.email, Part 3: 

Understanding NANAE‖, 27 December 2003. Retrieved 2011-8-21 from: 

http://web.archive.org/web/20040212175535/http://www.spamfaq.net/terminology.sht

ml. 

[7] Brad Templeton, ―Essays on Junk Emails (Spam)‖, templeton.com. Retrieved 

2011-10-26, from: http://www.templetons.com/brad/spam/ 

[8] Carl Eklund,‖Spam -from nuisance to Internet Infestation‖, Peer to Peer and 

SPAM in the Internet Raimo Kantola‘s technical report, 2004, Pages 126-134. 

[9] Spam Laws, ―The Cost of Spam: Financial Risks‖, Retrieved 2011-10-25, from: 

http://www.spamlaws.com/spam-financial-risks.html. 

 

 



130 

 

[10] Darren Waters, ―Spam overwhelms e-mail messages‘, BBC News Website, 8
th

 

April 2009. Available from: http://news.bbc.co.uk/1/hi/technology/7988579.stm, 

Retrieved 2011-10-25. 

[11] Jose Norte Sosa, ―Spam Classification Using Machine Learning Techniques – 

Sinespam‖, Master of Science Thesis, University Politècnica de Catalunya, August 

2010. Page 10.  

[12] S. Hird, ―Technical Solutions for Controlling Spam‖, in Proceedings of 

AUUG2002, Melbourne, September 2002. Page 3. 

[13] Henry Stern, ―A survey of Modern Spam Tools‖, 5
th

 Conference on Email and 

Anti-Spam, CEAS2008, Mountain View, California, Aug 21-22, 2008. Pages 2-4. 

[14] Pedro Calais, Dorgival Guedes, Wagner Meira Jr., Cristine Hoepers, Marcelo 

Chaves and Klaus Steding-Jessen, ―Spamming Chains: A New Way of Understanding 

Spammer Behavior‖, 6
th

 Conference on Email and Anti-Spam, CEAS2009, Mountain 

View, California, July 16-17, 2008. 

[15] Anirudh Ramachandran, Nick Feamster, ‖Understanding the network level 

behaviour of spammers‖, SIGCOMM 06,Pisa, Italy, 2006. Pages 291-302. 

[16] Ahmed Obied, ―Honeypots and Spam‖, Department of Computer Science 

University of Calgary. Page 7. 

[17] KJ Beer, ―SYSTEM AND METHOD FOR PREVENTING THE RECEPTION 

AND TRANSMISSION OF MALICIOUS‖, US Patent App. Application Number: 

12/117,847, Publication Number: US 2008/0282338 A1, Filing data: May 9, 2008. 

[18] Mark Levitt & Brain E. Burke, ―Choosing the Best Technology to Fight Spam‖, 

IDC white paper, April 2004. Pages 5-7. 

[19] Joon S. Park, Hsin-Yang Lu and Chia-Jung Tsui, ―Anti-spam approaches: analyses 

and Comparisons‖, The Open Information Systems Journal, 2009. 



131 

 

[20] Barracuda Networks, ―An Overview of Spam Blocking Techniques‖, Report 

from Barracuda Networks, 10040 Bubb Road, Cupertino, CA 95014. Pages 1-7. 

[21] Tan Ying & Zhu Yuan-chun, ―Advances in Anti-spam Techniques‖, CAAI 

Transactions on Intelligent Systems, 2010 Issue 3, June 2010. Pages 189-201. 

[22] MX Logic, ―Spam Classification Techniques‖, Report from MX Logic, 9780 Mt. 

Pyramid Court, Suite 350, Denver, Co, 80112 USA, 2004. Pages 2-7. 

[23] Prashanth Srikanthan, ―An Overview of Spam Handling Techniques‖, Computer 

Science Department, George Mason University, Fairfax, Virginia 22030, 2003, Posted by 

Gusaul ―Founder‖, July 26 2012. 

[24] Anselm Lambert, ―Analysis of Spam‖, Master of Science Thesis, Department of 

Computer Science, University of Dublin, Trinity College, September 2003. 

[25] P J Sandford , J M Sandford, and D J Parish, ―Analysis of SMTP Connection 

Characteristics for Detecting Spam Relays‖, International Multi-Conference on 

Computing in the Global Information Technology ICCGI06, 2006. Pages 2-3. 

[26] Tim Weber, ―Gates forecasts victory over spam‖, BBC Online Business News, 

24th January 2004.  Retrieved 2011-10-25,                                       

from: http://news.bbc.co.uk/1/hi/business/3426367.stm 

[27] Techgurulive, ―Spam level *declines*… to 97 percent of all email‖, 

www.techgurulive .com. Retrieved 2011-10-25, available from: 

http://techgurulive.com/2009/04/14/spam-level-declines-to-97-percent-of-all-email/ 

[28] Maria Namestnikova, August 2010, ―Spam Report: August 2010‖, the article from 

Securelist. Retrieved 2011-10-25, from: 

http://www.securelist.com/en/analysis/204792138/Spam_Report_August_2010.  



132 

 

[29] Computer service Loughborough University, ―Increase in junk email volume‖, 

Report from Loughborough University IT Service Group, October 2010. 

[30] Nicola Lugaresi, ―European Union vs. Spam: A Legal Response‖, 1st 

Conference on Email and Anti-Spam, CEAS2004, Mountain View, California, July 

30-31, 2004.  

[31] RFC 821, ―Simple Mail Transfer Protocol‖, J.B. Postel, the Internet Society, 

August 1982. 

[32] RFC 5321, ―Simple Mail Transfer Protocol‖, J. Klensin, the Internet Society, 

October 2008.  

[33] Tamara Dean, ―Network + Guide to Networks‖ (fifth edition), Course Technology, 

ISBN-10: 1423902459, March 2009. Page 519  

[34] RFC 3501, ―Internet Message Access Protocol 4rev1‖, M. Crispin, the Internet 

Society, May 2003. 

[35] Spam Task Force Network and Technology Working Group, ―Anti-spam 

Techniques Overview‖, Telecommunications Engineering and Certification Industry 

Canada, May 2005, Page 8. 

[36] RFC 5782, ―DNS Blacklists and Whitelists‖, J.Levine, Internet Research Task 

Force, Taughannock Networks, February 2010. 

[37] S. Hird, ―Technical Solutions for Controlling Spam‖, September 2002, in 

Proceedings of AUUG2002, Melbourne. Page 5. 

[38] Jaeyeon Jung, Emil Sit, ―An Empirical Study of Spam Traffic and the Use of 

DNS Black lists‖, 4
th

 IMC 2004, in Taormina, Sicily, Italy, October 25-27, 2004. 



133 

 

[39] DNSBL.info, ―Spam Database Lookup‖, dnsbl.info. Retrieved 2011-10-26, 

Available from: http://www.dnsbl.info/dnsbl-list.php. 

[40] Spamlinks, ―DNS & RHS Blackhole Lists‖, spamlinks.net. Retrieved 2011-10-26, 

Available from: http://spamlinks.net/filter-dnsbl-lists.htm. 

[41] Active Web Hosting. ―Spam Keywords to Add to Your Filter Lists‖. Retrieved on 

2011-11-17, from: http://www.activewebhosting.com/faq/email-filterlist.html 

[42] Lin Wei, Department of Computer Science, Sichuan Police College, “A Bayesian 

Spam Filtering Method Based on Words Probability‖, ―Computer Technology and 

Development 2011-09‖, September 2011. 

[43] Aris Kosmopoulos, Georgios Paliouras and Ion Androutsopoulos, ―Adaptive 

Spam Filtering Using Only Naive Bayes Text Classifiers‖, 5
th

 Conference on Email 

and Anti-spam, CEAS 2008, Mountain View, California. Aug 21-22, 2008. 

[44] Gumpina V V Satya Prasad, Satya P Kumar Somayajula, ― Bayesian Spam 

Filtering Using Statistical Data Compression‖, in ―Global Journal of researches in 

engineering Numerical Methods‖ Volume 11 Issue 7 Version1.0. Publisher: Global 

Journals Inc. (USA), Online ISSN: 2249-4596& Print ISSN: 0975-5861. December 

2011. 

[45] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos, 

and P. Stamatopoulos, ―Learning to filter spam e-mail: A comparison of a naive 

bayesian and a memorybased approach‖. ―Proceedings of the Workshop on Machine 

Learning and Textual Information Access‖, H. Zaragoza, P. Gallinari, and M. Rajman 

(Eds.), 4th European Conference on Principles and Practice of Knowledge Discovery 

in Databases (PKDD-2000), Lyon France, September 13-16, 2000, Pages 1-13. 

 



134 

 

[46] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spyropoulos, 

and P. Stamatopoulos, ―A memory-based approach to antispam filtering for mailing 

lists‖ , Information Retrieval, 6, 2003, Pages 49-74. 

[47] C. Cortes and V. Vapnik, ―Machine Learning: Support-vector networks‖, Spring 

Netherlands, Vol. 20, No.3, September 1995. Pages 273–297. 

[48] N. Cristiatnini and J. Shawe-Taylor, ―An introduction to Support Vector 

Machines and Other Kernel-Based Learning Methods‖. Published by The Press 

Syndicate of the University of Cambridge, ISBN: 0-521-78019-5, March 2000. Page 7.  

[49] C. J. C. Burges, ―A tutorial on support vector machines for pattern recognition‖. 

Data Mining and Knowledge Discovery, Vol.2, No.2, DOI: 10.1023/A: 

1009715923555, 1998, Pages121–167. 

[50] Enrico Blanzieri , Anton Bryl, ―Instance-based spam filtering using SVM nearest 

neighbor classifier‖, Proceedings of the Twentieth International Florida Artificial 

Intelligence Research Society Conference, May 7-9, 2007, Key West, Florida, USA. 

Pages 441-442. 

[51] Yuewu Shen, ―Using Feature Selection to Speed Up Online SVM Based Spam 

Filtering‖, Asian Language Processing (IALP), 2010 International Conference, Harbin, 

China. December 28-30 2010, Pages 142-145.  

[52] A. Ratnaparkhi, ―A simple introduction to maximum entropy models for natural 

language processing‖, Institute for Research in Cognitive Science, IRCS Technical 

Reports Series, University of Pennsylvania, 1997. 

[53] Shaohong Zhong, ―An effective spam filtering technique based on active feedback 

and Maximum entropy‖, 2010 7
th

 International Conference on FSKD, Vol.5, Print 

ISBN: 978-1-4244-5931-5, Yantai, China, Aug 10-12, 2010, Pages 2437-2440 



135 

 

[54] Chih-Hung Wu and Chiung-Hui Tsai, ―Robust classification for spam filtering by 

back-propagation neural networks using behavior-based features‖, Volume 31, Number 

2 (2009), DOI: 10.1007/s10489-008-0116-0, Applied Intelligence, 2009, Pages 

107-121. 

[55] Chih-Hung Wu, ―Behavior-based spam detection using a hybrid method of 

rule-based techniques and neural networks‖, ―Expert Systems with Applications‖ 

Volume 36, Issue 3, Part 1, April 2009, Pages 4321–4330 

[56] J. Holland, ―Adaptation in Natural and Artificial Systems‖, Publisher: A 

Bradford Book, ISBN-10: 0262581116, Publication Date: April 29, 1992. 

[57] Md. Saiful Islam, Shah Mostafa Khaled, Khalid Farhan, Md. Abdur Rahman and 

*Joy Rahman, ―Modeling Spammer Behavior: Naïve Bayes vs. Artificial Neural 

Networks‖, 2009 International Conference on Information and Multimedia 

Technology, Jeju Island, South Korea, December 18-19, 2009, Conference 

Publication, Print ISBN: 978-0-7695-3922-5, Pages 52-55. 

[58] P.Mohan Kumar. P.Kumaresan. S.Yokesh Babu, ―Accuracy Analysis of Neural 

Networks in Removal of Unsolicited e-mails‖, International Journal of Computer 

Applications, Volume 16– No.3– Article 7, IJCA journal, Published by Foundation of 

Computer Science, ISBN: 978-93-80747-57-9, February 2011. 

[59] Pedro G. Espejo, Sebastian Ventura, Francisco Herrera, “A survey on the 

application of genetic programming to classification‖, Journal IEEE Transactions on 

Systems, Man, and Cybernetics, Part C: Applications and Reviews, Volume 40 Issue 2. 

Publisher: IEEE Press Piscataway, NJ, USA, ISSN: 1094-6977, March 2010. Pages 

121-144. 

 

 



136 

 

[60] HAJIRA JABEEN* AND ABDUL RAUF BAIG, ―Review of Classification 

Using Genetic Programming‖, International Journal of Engineering Science and 

Technology Vol.2, Issue 2, IJEST(ISSN: 0975-5462), February 2010. Pages 94-103. 

[61] M. Sahami, ― A Bayesian Approach to Filtering Junk Email‖, In Proceedings of 

AAAI-98 workshop on Learning for Text Categorization, Madison, Wisconsin, USA, 

1998. 

[62] Joon S. Park, Hsin-Yang Lu and Chia-Jung Tsui. ―Anti-Spam Approaches: 

Analyses and Comparisons‖. The Open Information Systems Journal, 2009, 3. Pages 

36-47. 

[63] Adeleh Jafar Gholi Beik, Ali Haroun Abadi, and karim Ansari Asl, ―Anti Spam 

Filtering keyword-based and multi agent method with personal E-mail messages on 

the basis of interests of user‖, Canadian Journal on Artificial Intelligence, Machine 

Learning and Pattern Recognition Vol. 2, No. 4, May 2011. 

[64] Triola, Mario F, ―Bayes' Theorem‖, Elementary Statistics 11
th

 edition, Publisher: 

Addison Wesley, ISBN10: 0321500245, January 7 2009. 

[65] Richard C. Carrier, Ph.D. ―Bayes‘ Theorem for Beginners: Formal Logic and Its 

Relevance to Historical Method — Adjunct Materialsand Tutorial‖, the Jesus Project 

Inaugural Conference ―Sources of the Jesus Tradition: An Inquiry‖, Amherst New 

York, December 5-7, 2008. 

[66] Frederic P. Miller, Agnes F. Vandome, John McBrewster, " Bayesian Spam 

Filtering", Alphascript Publishing, ISBN6130213492, ISBN9786130213497, July 27 

2010. 

 

 



137 

 

[67] Brain Livingston, ―Paul Graham provides stunning answer to spam 

e-mails:Probability theory shows impressive results‖, InfoWorld, 20
th

 August 2002. 

Retrieved 2011-11-3, from: http://www.infoworld.com 

[68] Paul Graham, ―Better Bayesian Filtering‖, MIT Spam Conference 2003, 

Cambridge, Unite States .17
th

 January 2003.  

[69] Ion Androutsopoulos, John Koutsias, Konstantinos V. Chandrinos, George 

Paliouras and Constantine D. Spyropoulos, ―An Evaluation of Naive Bayesian 

Anti-Spam Filtering‖, Proceedings of the workshop on Machine Learning in the New 

Information Age, G. Potamias, V. Moustakis and M. van Someren (Eds.), 11th 

European Conference on Machine Learning, Barcelona, Spain, 2000, Pages 9-17. 

[70]GFI Software, ―Why Bayesian filtering is the most effective anti-spam 

technology‖, GFI White Paper, 2011, Pages 3-4. 

[71] Altus Security, ―Web and Email Security Solutions‖, Retrieved on 2011-11-7, 

form: http://doublesix-networks.com/security_solutions/url_content_filtering.php. 

[72] David Harley, Andrew Lee, ―the Spam-ish Inquisition‖, ESET antivirus and 

security white papers, ESET, LLC, Califonia, USA, 2007. Pages 3-4. 

[73] Flavio D. Garcia, Jaap-Henk Hoepman and Jeroen van Nieuwenhuizen, ―Spam 

Filter Analysis‖, Security and Protection in Information Processing Systems, IFIP 

International Federation for Information Processing, 2004, Volume 147/2004, Pages 

395-410, DOI: 10.1007/1-4020-8143-X_26. 

[74] Rhyolite Software, ―Distributed Checksum Clearinghouse‖, Rhyolite Software 

LLC. Available from: http://www.rhyolite.com/dcc/, Retrieved 2011-11-7.   

[75] Vipul Ved Prakash. ―Vipul‘s Razor‖, 2007. Retrieved on 2011-11-7, Available 

from: http://razor.sourceforge.net/. 



138 

 

[76] SpamAssassin, ―The Apache SpamAssassin Project‖, Spamassassin official 

website. Retrieved 2011-11-8, available from: http://spamassassin.apache.org/ 

[77] Cloudmark, ―Cloudmark Authority-Server Based Spam Remediation Software‖. 

Cloudmark Inc, 500 Third Street, Suite 265, San Francisco, CA 94107-1805. 30
th

 May 

2003. 

[78] David J. Bilinsky, ―Mastering your Mailbox: E-mail and Information 

Management‖, 2
nd

 Annual Solo and Small Firm Cofference and Expo, Toronto, 

March 2007, Page 14. 

[79] Sourceforge.net, ―Crm114- the Controllable Regex Mutilator‖, Retrieved 

2011-11-8, form: http://crm114.sourceforge.net/ 

[80] Rebecca Lieb, ―Make Spammer Pay Before you Do‖, The ClickZ Network, Jul 26, 

2002. Retrieved 2011-11-8, available from: 

http://web.archive.org/web/20070807113021/http://www.clickz.com/showPage.html?

page=1432751 

[81] Michael Ilger J¨urgen Strauß Wilfried Gansterer Christian Proschinger , ―The 

Economy of Spam‖, Technical Report FA384018-6, Institute of Distributed and 

Multimedia Systems, University of Vienna, 12
th

 September, 2006, Page 3. 

[82] Ben Laurie and Richard Clayton, ―‗Proof-of-Work‘ Proves Not to Work,‖ ALD 

LTD & University Cambridge, Computer Laboratory. May 3, 2004, Pages 2-8. 

[83] Debin Liu, L Jean Camp, ―Proof of Work can Work‖, The 5
th

 Workshop on the 

Economics of Information Security (WEIS 2006), Robinson College, University of 

Cambridge, England. June 26-28, 2006, Pages 2-16. 

[84] Adam Back, "Hashcash - A Denial of Service Counter-Measure", technical report, 

1
st
 August 2002. 



139 

 

[85] PineApp, ―Recurrent Pattern Detection Technology‖, RPD White Paper, January 

2007. 

[86] Commtouch, ― Commtouch – RPD™ Technology Network Based Protection 

Against Email-Borne Threats‖, Commtouch Software Ltd. 2011, Page 3. 

[87] David A. Wheeler, ―Countering Spam by Using Ham Passwords (Email 

Passwords)‖, 11
th 

May 2011. Retrieved on 2011-11-11, Available from: 

http://www.dwheeler.com/essays/spam-email-password.html 

[88] Marcelo H. P. C. Chaves. ―Using Honeypots to Monitor Spam and Attack Trends‖, 

ITU Regional Workshop on Frameworks for Cybersecurity and CIIP, Hanoi, Vietnam. 

August 2007.  

[89] Nick Wallingford. ―A Taste of Honey – UCE (Spam) Reduction Through 

Deception‖. In S. Mann & T. Clear (Eds.), Proceedings of the Eighteenth Annual 

Conference of the National Advisory Committee on Computing Qualifications 2005, 

Pages 323-327. 

[90] Mauro Andreolini   Alessandro Bulgarelli   Michele Colajanni   Francesca 

Mazzoni, “HoneySpam: Honeypots fighting spam at the source‖, SRUTI‘05, 

Cambridge MA, USENIX Association, 7th July 2005, Pages 77-83. 

[91] Kyumin Lee, James Caverlee, Steve Webb, “The Social Honeypot Project: 

Protecting Online. Communities from Spammers*”, Proceedings of the 19th 

international conference on World Wide Web 2010, Raleigh, North Carolina, USA, 

April 26-30, 2010, Publisher ACM New York, NY, USA ©2010, ISBN 

978-1-60558-799-8, Pages 1139-1140. 

 

 



140 

 

[92] Greg, Mori, Malik, Jitendra. "Breaking a Visual CAPTCHA". Proceedings of the 

2003 IEEE computer society conference on Computer vision and pattern recognition, 

Publisher: IEEE Computer Society Washington, DC, USA ,2003, ISBN:0-7695-1900-8 

978-0-7695-1900-5, Pages 134-141. 

[93] Captcha.net, ―the Captcha Project‖, the official captcha site. Retrieved 2011-11-10, 

from: http://www.captcha.net/. 

[94] John S Rhodes, ―Opt In Email List Building: How to Build and Run a Successful 

Opt In List‖, ISBN-10: 1449500536, Publisher: CreateSpace, 24
th

 September 2009, 

[95] Tom M. Mitchell, ―The Discipline of Machine Learning‖, School of Computer 

Science, Carnegie Mellon University,CMU-ML-06-108, July 2006. 

[96] Richard O. Duda,Peter E.Hart, David G.Stork,  ―Pattern Classification (2
nd

 

Edition)‖, Publisher : Wiley-Interscience, ISBN 0471056693, October 2000. 

[97] Øivind Due Trier, Anil K. Jain, Torfinn Taxt, ―Feature Extraction Methodd for 

Character Recognition- A Survey‖, in ―Pattern Recognition‖, Volume 29, Issue 4, 

April 1996, Pages 641–662 

[98] U. Akilandeswari, R. Nithya, B. Santhi, ―Review on Feature Extraction Methods 

in Pattern Classification‖, European Journal of Scientific Research, ISSN 1450-216X 

Vol.71 No.2 (2012), 2012, Pages 265-272. 

[99] Mingqiang, Y., Kidiyo, K., Joseph, R., ―A Survey of Shape Feature Extraction 

Techniques‖. Pattern Recognition Techniques, Technology and Applications, ISBN: 

978-953-7619-24-4, November 1
st
 2008, DOI: 10.5772/6237. 

[100] David Nguyen, Gokhan Memik, Seda Ogrenci Memik, and Alok Choudhary, 

“Real-Time Feature Extraction for High Speed Networks”, 15th 



141 

 

International Conference on Field Programmable Logic and Applications, 

2005, Pages 438-443. 

[101] Anukool Lakhina, Mark Crovella, Christophe Diot, ―Mining Anomalies Using 

Traffic Feature Distributions‖, Proceedings of the 2005 conference on Applications, 

technologies, architectures, and protocols for computer communications, August22-26, 

2005, Publisher: ACM New York, NY, USA, ISBN: 1-59593-009-4, Pages 217-228.  

[102] W. Richard Stevens, ―TCP/IP Illustrated, Volume 1: the Protocols‖, 

Addison-Wesley Professional, ISBN-10: 0201633469, 10
th

 January 1994. 

[103] RFC 793, Transmission Control Protocol, Information Sciences Institute, 

University of Southern California, September 1981. 

[104] Steve Martin, Blaine Nelson, Anil Sewani, Karl Chen, Anthony Joseph, 

―Analyzing Behavioral Features for Email Classification‖, 2
nd

 Conference on Email 

and Anti-Spam‖, CEAS 2005, at Stanford University, USA, July 26-27, 2005. 

[105] Luiz Henrique Gomes, Cristiano Cazita, Jussara M. Almeida, Virg´ılio Almeida, 

Wagner Meira Jr, ―Characterizing a Spam Traffic‖, in the proceeding of IMC‘ 04, Oct. 

2004, Publisher: ACM New York, NY, USA, ISBN:1-58113-821-0, Pages 356-369. 

[106] Cynthia Dhinakaran and Jae Kwang Lee, ―Characterizing Spam traffic and 

Spammers‖, 2007 International Conference on Convergence Information Technology, 

Gyeongju , Source Korea, November 21-23, 2007, Publisher: IEEE Computer Society 

Washington, DC, USA, ISBN:0-7695-3038-9. Pages 831-836. 

[107] Jung-Yoon Kim and Hyoung-Kee Choi, ―Spam Traffic Characterization*‖,   

ITC-CSCC2008 (23rd annual conference), Japan, July 6-9, 2008. 



142 

 

[108] Barry Leiba, Joel Ossher, V.T. Rajan, Richard Segal, Mark Wegman, ―SMTP 

Path Analysis‖, 2
nd

 Conference on Email and Anti-Spam‖, CEAS 2005, at Stanford 

University, USA, July 26-27, 2005. 

[109] Laura Bertolotti, Maria Carla Calzarossa, ―Workload characterization of mail 

servers*‖, the proceedings of SPECT'2000, Vancouver Canada, July 16-20, 2000. 

[110] Robert Beverly and Karen Sollins, ―Exploiting Transport-Level Characteristics 

of Spam‖, 5th Conference on Spam and Anti-Spam, CEAS 2008, Microsoft Research 

Silicon Valley, Mountain View, California, August21-22, 2008.  

[111] Luiz Henrique Gomes, Cristiano Cazita, Jussara M. Almeida_, Virg´ılio 

Almeida, Wagner Meira Jr, ―Workload models of spam and legitimate e-mails‖,  

Performance Evaluation, Volume 64, Issues 7–8, Publisher: Elsevier Science 

Publishers B. V. Amsterdam, The Netherlands, The Netherlands ISSN: 0166-5316 

August 2007, Pages 690–714. 

[112] Fulu Li Mo-Han Hsieh Pawel Gburzynski, ―The Community Behavior of 

Spammers‖, 2011. Available from: 

http://web.media.mit.edu/~fulu/ClusteringSpammers.pdf.  

[113] M. L. Sang, S. K. Dong, and S. P. Jong, ―Spam detection using feature selection 

and parameters optimization‖ in Proceedings of the 4th International Conference on 

Complex, Intelligent and Software Intensive Systems, (CISIS ‘10), Krakow ,Poland, 

February 2010, Publisher: IEEE Computer Society Washington, DC, USA, ISBN: 

978-0-7695-3967-6, Pages 883-888. 

[114] Prasanna Desikan and Jaideep Srivastava, ―Analyzing Network Traffic to 

Detect E-Mail Spamming Machines‖, Proc. Workshop on Privacy and Security 

Aspects of Data Mining, Brighton, UK, 2004, Pages 67–76. 

[115] Luiz Henrique Gomes, Cristiano Cazita, Jussara M. Almeida_, Virg´ılio 

http://web.media.mit.edu/~fulu/ClusteringSpammers.pdf


143 

 

Almeida,Wagner Meira Jr. ―Workload models of spam and legitimate e-mails‖, 

Performance Evaluation-an international journal, Performance Evaluation 64, 

2007,Pages 690–714  

[116] Ni Zhang, Yu Jiang, Binxing Fang, Xueqi Cheng, Li Guo, ―Traffic 

Classification-based Spam Filter‖, IEEE International Conference on Communications, 

Istanbul, June 2006, Print ISBN: 1-4244-0355-3, Vol.5, Pages 2130-2135.  

[117] Steve DiBenedetto, Kaustubh Gadkari, Nicholas Diel, Andrea Steiner, Dan 

Massey and Christos Papadopoulos, ―Fingerprinting Custom Botnet Protocol Stacks‖, 

6th IEEE Workshop on Secure Network Protocols (NPSec), Koyot, October 2010, 

Print ISBN: 978-1-4244-8916-9, Pages 61-62. 

[118] Alfredo H-S. Ang, Wilson H. Tang, ―Probability Concepts in Engineering: 

Emphasis on Applications to Civil and Environmental Engineering‖ 2
nd

 

Edition,Publisher: Wiley, ISBN-10: 047172064X, Publication Date: February 13, 2006. 

Page 293-296. 

[119] Eadie, W.T., D. Drijard, F.E. James, M. Roos and B. Sadoulet. ―Statistical 

Methods in Experimental Physics‖. Publisher: World Scientific. ISBN 981256795X, 

9789812567956, 2006, Page 316. 

[120] Lawrence Lapin and William D. Whisler, ―Quantitative Decision Making‖ 7
th

 

edition, Table G. 24
th

 September 2001. Publisher: South-Western College Pub, 

ISBN-10: 0534380247. 

[121] Anti Spam Assistant, http://antispam-assistant-pro.com/index.asp. 

[122] Kevin J. Connolly, ―Law of Internet Security and Privacy‖, Aspen Publishers 

Online, 2003, ISBN 0735542732, 9780735542730, Page 131. 

[123] Lehigh University, ―Assigning Weight Factor‖, Weight Factor Handout. from: 



144 

 

http://www.lehigh.edu/~inhro/documents/GPS_WeightingFactors_Handout.pdf, 

Retrieved 2011-11-25. 

 

[124] William J. Marshall and Stephen K. Bangert. ―Clinical Biochemistry: Metabolic 

and Clinical Aspects‖, Churchill Livingstone, June 20, 2008. ISBN-10: 0443101868, 

Page 12. 

[125] Robin, ―Machine Learning: An Overview‖. 1
st
 March 2010. 

http://intelligence.worldofcomputing.net/machine-learning/machine-learning-overvie

w.html#, Retrieved 2011-11-11. 

[126] Malathy K, ―An Enhanced Fuzzy c-Means Clustering for Intelligent Prediction‖, 

Proceedings of International Conference on Computing and Control Engineering, 

ICCCE 2012, Dr.M.G.R. Educational and Research Institute University, April 12-13, 

2012, Paper ID: ICCCECS495. 

[127] D.A.DeMillo, R.J.Lipton, and F.G.Sayward, ―Hints on test data selection: Help 

for the practicing programmer‖, Computer, volume: 11, Issue: 4, Publication Date: 

April 1978, Sponsored by: IEEE Computer Society ISSN: 0018-9162, Pages34-41.  

[128] Kaspersky Lab. ―Antispam, Evaluation Guide‖, White Paper from Kaspersky 

Lab, 2011, Page 4. 

 

 

 

 

 



145 

 

 

 

Appendix 1:  Thresholds for the Trigger System after Training 

Process (Percentile Value =95%) 

1. Thresholds for Triggers in Time Intervals (𝐓𝐜𝐮𝐫𝐫𝐞𝐧𝐭−𝐭𝐡[𝐢]): 

Time Interval Threshold for 

Trigger in time 

intervals 

Time Interval Threshold for 

Trigger in time 

intervals 

T0(0:00~1:00) 232.431824 T12(12:00~13:00) 172.218185 

T1(1:00~2:00) 230.831818 T13(13:00~14:00) 147.254547 

T2(2:00~3:00) 238.668182 T14(14:00~15:00) 168.881821 

T3(3:00~4:00) 156.240906 T15(15:00~16:00) 332.427277 

T4(4:00~5:00) 156.240906 T16(16:00~17:00) 150.522720 

T5(5:00~6:00) 156.240906 T17(17:00~18:00) 149.718185 

T6(6:00~7:00) 161.418182 T18(18:00~19:00) 193.068176 

T7(7:00~8:00) 123.381821 T19(19:00~20:00) 149.954544 

T8(8:00~9:00) 178.509094 T20(20:00~21:00) 248.795456 

T9(9:00~10:00) 261.186371 T21(21:00~22:00) 531.049988 

T10(10:00~11:00) 295.463623 T22(22:00~23:00) 255.177277 

T11(11:00~12:00) 302.059082 T23(23:00~24:00) 237.149994 
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2. Threshold for Trigger in a 24-hour Monitor Period (𝑻𝒕𝒐𝒕𝒂𝒍−𝒕𝒉) : 

Ttotal−th= 5220.245605 

Appendix 2: Thresholds and Weight Values for the Detection System 

after the Training Process (Percentile Value =95%) 

1. Thresholds for 24 intervals (𝑻𝑯𝑽𝒐𝒍−𝑪𝒖𝒓𝒓𝒆𝒏𝒕): 

 

Time Interval 

𝑇𝐻𝑉𝑜𝑙−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

(Number of 

Packets with Syn 

Flag set in each 

time interval) 

 

Time Interval 

𝑇𝐻𝑉𝑜𝑙−𝐶𝑢𝑟𝑟𝑒𝑛𝑡  

(Number of Packets 

with Syn Flag set in 

each time interval) 

TH0(0:00~1:00) 736.000000 TH12(12:00~13:00) 135.000000 

TH1(1:00~2:00) 236.000000 TH13(13:00~14:00) 52.000000 

TH2(2:00~3:00) 1253.000000 TH14(14:00~15:00) 48.000000 

TH3(3:00~4:00) 743.000000 TH15(15:00~16:00) 283.000000 

TH4(4:00~5:00) 363.000000 TH16(16:00~17:00) 735.000000 

TH5(5:00~6:00) 645.000000 TH17(17:00~18:00) 463.000000 

TH6(6:00~7:00) 462.000000 TH18(18:00~19:00) 747.000000 

TH7(7:00~8:00) 352.000000 TH19(19:00~20:00) 268.000000 

TH8(8:00~9:00) 219.000000 TH20(20:00~21:00) 835.000000 

TH9(9:00~10:00) 120.000000 TH21(21:00~22:00) 346.000000 
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TH10(10:00~11:00) 81.000000 TH22(22:00~23:00) 2100.000000 

TH11(11:00~12:00) 89.000000 TH23(23:00~24:00) 653.000000 

2. Threshold for total Packets with SYN in 24 hours: 

 𝑇𝐻𝑉𝑜𝑙−𝑡𝑜𝑡𝑎𝑙= 15909.000000 

3. Threshold for the coordinates of (FIN/SYN flag set, SYN):  

(0.112374, 13544.000000)  

(0.431140, 15909.000000)  

(0.356690, 17183.000000)  

(0.276505, 19591.000000)  

(0.375018, 20959.000000)  

(0.540906, 21146.000000)  

(0.384075, 23058.000000)  

(0.154208, 27184.000000)  

(0.251864, 32859.000000)  

(0.419241, 36089.000000)  

(0.274147, 41113.000000)  

(0.399302, 50155.000000)  

(0.490331, 50366.000000)  
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(0.418629, 52629.000000)  

(0.183271, 52938.000000)  

(0.400745, 60707.000000)  

(0.339256, 72435.000000)  

(0.447929, 76530.000000)  

(0.215768, 91251.000000)  

(0.360102, 135545.000000)  

4. Threshold for Number of Similar Payload: 

𝑻𝑯𝒑𝒂𝒚𝒍𝒐𝒂𝒅= 1824.000000 

5. Threshold for OUT/IN Ratio: 

 𝑻𝑯𝒐𝒖𝒕−𝒊𝒏= 109.188797 

6. Threshold for Quiet Period Ratio: 

𝑻𝑯𝑻𝒊𝒎𝒆= 0.328212  

7. Threshold for the final result D: 

𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.062049 

8. Values of weights for Algorithms: 

 Weight for Algorithm 1 (Ratio of FIN/SYN Flag Set) 
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w1=0.888889 

 Weight for Algorithm 2 (Relative to Time of Day) 

w2=0.684211 

 Weight for Algorithm 3 (Similar Payload-size Connections) 

    w3=0.666667 

 Weight for Algorithm 4 (Volume of Connections in Current Interval) 

w4=0.555556 

 Weight for Algorithm 5 (Volume of Connections in Recent 24 Hours) 

    w5=0.642857 

 Weight for Algorithm 6 (Ratio of OUT/IN SMTP Connections) 

w6=0.863636 
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Appendix 3: Results of Test Processes 

Test Data 1:  

1. Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.062049  

Weight values: 

w1=0.888889, w2=0.684211, w3=0.666667, w4=0.555556, w5=0.642857, w6=0.863636 

 

Spam Relay Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 0 1 1 1 1 0 2.549290 

2 1 1 1 1 1 1 4.301815 

3 1 1 1 1 1 1 4.301815 

4 0 1 1 1 1 1 3.412926 

5 0 1 0 1 1 1 2.746260 

 

2. Percentile value=50% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.580796  

Weight values: 

w1=0.888889, w2=0.600000,w3=1.000000,w4=0.730769,w5=1.000000,w6=0.850000 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final 

Result (D) 

1 1 1 1 1 0 1 4.069658 

2 0 0 1 1 1 0 2.730769 

3 0 1 0 1 1 1 3.180769 
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Test Data 2:  

1.  Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.062049  

Weight values: 

   w1=0.888889, w2=0.684211, w3=0.666667, w4=0.555556, w5=0.642857, w6=0.863636 

 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 1 1 0 1 1 1 3.635149 

2 1 1 1 1 1 1 4.301815 

3 1 1 1 1 1 1 4.301815 

4 1 1 0 1 1 1 3.635149 

5 1 1 1 1 1 1 4.301815 

6 1 1 1 1 1 1 4.301815 

7 1 1 1 1 1 1 4.301815 

8 1 1 1 1 1 1 4.301815 

9 1 1 0 1 1 1 3.635149 

10 1 1 1 1 1 1 4.301815 

11 1 1 1 1 1 1 4.301815 

12 1 1 0 1 1 1 3.635149 

13 1 1 0 1 1 0 2.771512 

14 0 1 1 1 1 1 3.412926 

15 1 1 1 1 1 1 4.301815 

16 0 1 0 1 0 1 2.103403 

17 1 0 0 1 1 1 2.950938 
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2.  Percentile value=50% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.580796  

 Weight values: 

    w1=0.888889, w2=0.684211, w3=0.666667, w4=0.555556, w5=0.642857, w6=0.863636 

 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 1 0 1 1 0 0 2.619658 

2 1 1 0 1 1 1 4.069658 

3 1 1 0 1 1 1 4.069658 

4 1 1 0 1 0 1 3.069658 

5 1 1 0 1 0 1 3.069658 

6 1 1 1 1 0 1 4.069658 

7 1 1 1 1 1 1 5.069658 

8 1 0 0 1 1 1 3.469658 

9 0 0 1 1 1 1 3.580769 

10 1 1 1 1 0 1 4.069658 
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Test Data 3:  

1.  Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.062049  

Weight values: 

w1=0.888889, w2=0.684211, w3=0.666667, w4=0.555556, w5=0.642857, w6=0.857143 

 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 0 1 1 1 1 1 3.412926 

2 1 1 1 1 1 1 4.301815 

3 0 1 1 1 1 1 3.412926 

4 0 1 0 1 1 1 2.746260 

5 1 0 1 1 1 1 3.617605 

6 0 1 1 1 1 1 3.412926 

7 1 1 1 1 1 1 4.301815 

8 1 1 1 1 1 1 4.301815 

9 0 1 1 1 1 1 3.412926 

10 0 1 0 1 0 1 2.103403 

11 1 1 1 1 1 1 4.301815 

12 1 0 1 1 1 1 3.617605 

13 0 1 1 1 0 1 2.770069 

14 0 1 0 1 0 1 2.103403 

15 0 1 1 1 1 1 3.412926 

16 1 1 1 1 1 1 4.301815 

17 0 1 1 1 1 1 3.412926 

18 0 1 1 1 1 1 3.412926 



154 

 

19 0 1 0 1 1 1 2.746260 

False 

Positive 1 

0 1 0 1 0 1 2.103403 

2.  Percentile value=50% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.580796  

Weight values: 

   w1=0.888889, w2=0.684211, w3=0.666667, w4=0.555556, w5=0.642857, w6=0.863636 

 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 1 0 1 0 1 0 2.888889 

2 1 0 1 1 1 1 4.469658 

3 0 0 1 1 1 1 3.580769 

4 1 1 0 1 0 1 3.069658 

5 1 0 1 1 0 0 2.619658 

6 1 0 0 1 1 1 3.469658 

7 1 0 1 1 1 1 4.469658 

8 1 0 1 1 0 0 2.619658 

9 0 0 1 1 1 1 3.580769 
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Test Data 4:  

1.  Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.062049  

Weight values: 

   w1=0.888889, w2=0.684211, w3=0.666667, w4=0.555556, w5=0.642857, w6=0.863636 

 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 1 1 1 1 1 1 4.301815 

2 1 1 1 1 1 1 4.301815 

3 1 1 0 1 1 0 2.771512 

4 1 1 1 1 1 1 4.301815 

5 1 1 1 1 1 1 4.301815 

6 1 0 1 1 1 1 3.617605 

7 0 1 1 1 1 1 3.412926 

8 1 1 1 1 1 1 4.301815 

9 0 1 1 1 0 1 2.770069 

10 0 1 1 1 0 1 2.770069 

11 1 1 1 1 1 1 4.301815 

12 1 1 1 1 0 1 3.658958 

13 0 1 0 1 0 1 2.103403 

14 0 1 0 1 0 1 2.103403 

15 1 1 1 1 1 1 4.301815 

16 1 1 0 1 1 1 3.635149 

17 1 0 0 1 1 1 2.950938 

18 0 1 0 1 1 1 2.746260 
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19 0 1 0 1 0 1 2.103403 

20 1 0 0 1 1 0 2.087301 

21 0 1 0 1 0 1 2.103403 

22 0 1 1 1 1 1 3.412926 

23 0 1 0 1 0 1 2.103403 

24 1 0 1 1 1 1 3.617605 

25 0 1 1 1 1 1 3.412926 

26 0 1 0 1 1 1 2.746260 

27 1 1 0 1 1 1 3.635149 

28 1 1 0 1 1 1 3.635149 

29 0 1 0 1 0 1 2.103403 

30 0 1 1 1 1 1 3.412926 

31 1 1 0 1 1 1 3.635149 

32 0 1 0 1 1 1 2.746260 

33 1 1 0 1 1 1 3.635149 

34 0 1 0 1 0 1 2.103403 

35 0 1 1 1 1 1 3.412926 

36 0 1 0 1 1 1 2.746260 

37 1 1 0 1 1 1 3.635149 

38 0 1 0 1 1 1 2.746260 

39 1 1 1 1 1 1 4.301815 

40 1 1 0 1 1 1 3.635149 

41 0 1 0 1 1 1 2.746260 
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2.  Percentile value=50% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.580796  

Weight values: 

   w1=0.888889, w2=0.600000,w3=1.000000,w4=0.730769,w5=1.000000,w6=0.850000 

 

Spam 

Relay 

Output of 

Algorithm 1 

Output of 

Algorithm 2 

Output of 

Algorithm 3 

Output of 

Algorithm 4 

Output of 

Algorithm 5 

Output of 

Algorithm 6 

Final Result 

(D) 

1 1 0 0 1 1 1 3.469658 

2 1 0 0 1 1 1 3.469658 

3 1 0 1 0 1 1 3.738889 

4 1 0 1 1 0 1 3.469658 

5 0 0 1 1 1 0 2.730769 

6 1 0 1 1 1 1 4.469658 

7 1 1 1 1 1 1 5.069658 

8 1 0 0 1 1 1 3.469658 

9 1 0 0 1 1 0 2.619658 

10 1 0 1 1 1 1 4.469658 

11 0 1 1 1 0 1 3.180769 

12 1 0 0 1 1 1 3.469658 

13 1 0 0 1 1 1 3.469658 

14 1 0 0 1 1 1 3.469658 

15 1 1 0 1 1 1 4.069658 

16 1 1 0 1 1 1 4.069658 

17 1 1 0 1 0 1 3.069658 
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Appendix 4: Results from System with Several Algorithms Enabled  

1. Algorithm 1,3&5 Enabled 

Test data set: Test Data Set 3 

Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=0.642857  

Weight values: 

w1=0.888889, w3=0.666667, w5=0.642857 

 

Spam 

Relay 

Output of 

Algorithm 

1 

Output of 

Algorithm 

3 

Output of 

Algorithm 

5 

Final 

Result (D) 

1 0 1 1 1.309524 

2 1 1 1 2.198413 

3 0 1 1 1.309524 

4 1 1 1 2.198413 

5 0 1 1 1.309524 

6 1 1 1 2.198413 

7 1 1 1 2.198413 

8 0 0 1 1.309524 

9 1 1 1 2.198413 

10 1 1 1 2.198413 

11 0 1 0 0.666667 

12 0 1 1 1.309524 

13 1 1 1 2.198413 

14 0 1 1 1.309524 

15 0 1 1 1.309524 

False 

Positive 

1 

 

1 

 

0 

 

0 

 

0.888889 

False 

Positive 

2 

1 0 0 0.888889 
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False 

Positive 

3 

1 0 0 0.888889 

 

2. Algorithm1,3&6 Enabled 

Test data set: Test Data Set 3 

Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=0.863636 

Weight values: 

w1=0.888889, w3=0.666667, w6=0.863636 

 

Spam 

Relay 

Output of 

Algorithm 

1 

Output of 

Algorithm 

3 

Output of 

Algorithm 

6 

Final 

Result (D) 

1 0 1 1 1.530303 

2 1 1 1 2.419192 

3 0 1 1 1.530303 

4 1 1 1 2.419192 

5 0 1 1 1.530303 

6 1 1 1 2.419192 

7 1 1 1 2.419192 

8 0 1 1 1.530303 

9 1 1 1 2.419192 

10 1 1 1 2.419192 

11 0 1 1 1.530303 

12 0 1 1 1.530303 

13 1 1 1 2.419192 

14 0 1 1 1.530303 

15 0 1 1 1.530303 

False 

Positive 

1 

 

1 

 

0 

 

0 

 

2.103403 

False 

Positive 

2 

 

1 

 

0 

 

0 

 

2.103403 

False 

Positive 

3 

 

1 

 

0 

 

0 

 

2.103403 
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3. Algorithm3,4&5 Enabled 

Test data set: Test Data Set 3 

Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=1.198431 

Weight values: 

 w3=0.666667, w4=0.555556, w5=0.642857 

 

Spam 

Relay 

Output of 

Algorithm 

3 

Output of 

Algorithm 

4 

Output of 

Algorithm 

5 

Final 

Result (D) 

1 1 1 1 1.865079 

2 1 1 1 1.865079 

3 1 1 1 1.865079 

4 1 1 1 1.865079 

5 1 1 1 1.865079 

6 1 1 1 1.865079 

7 1 1 1 1.865079 

8 1 1 1 1.865079 

9 1 1 1 1.865079 

10 1 1 1 1.865079 

11 1 1 0 1.222222 

12 1 1 1 1.865079 

13 1 1 1 1.865079 

14 1 1 1 1.865079 
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15 1 1 1 1.865079 

 

 

Appendix 5: Thresholds and Weight values after Update Process  

Update Process was launched after the system was tested by using Test Data Set 3. 

1. Thresholds for 24 intervals (𝑻𝑯𝑽𝒐𝒍−𝑪𝒖𝒓𝒓𝒆𝒏𝒕): 

 

Time Interval 

𝑇𝐻𝑉𝑜𝑙−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

(Number of 

Packets with 

Syn Flag set in 

each time 

interval) 

 

Time Interval 

𝑇𝐻𝑉𝑜𝑙−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

(Number of 

Packets with 

Syn Flag set 

in each time 

interval) 

TH0(0:00~1:00) 464.000000 TH12(12:00~13:00) 89.000000 

TH1(1:00~2:00) 258.000000 TH13(13:00~14:00) 78.000000 

TH2(2:00~3:00) 735.000000 TH14(14:00~15:00) 48.000000 

TH3(3:00~4:00) 324.000000 TH15(15:00~16:00) 48.000000 

TH4(4:00~5:00) 363.000000 TH16(16:00~17:00) 83.000000 

TH5(5:00~6:00) 274.000000 TH17(17:00~18:00) 151.000000 

TH6(6:00~7:00) 462.000000 TH18(18:00~19:00) 364.000000 

TH7(7:00~8:00) 253.000000 TH19(19:00~20:00) 253.000000 

TH8(8:00~9:00) 73.000000 TH20(20:00~21:00) 424.000000 

TH9(9:00~10:00) 119.000000 TH21(21:00~22:00) 177.000000 

TH10(10:00~11:00) 80.000000 TH22(22:00~23:00) 356.000000 

TH11(11:00~12:00) 81.000000 TH23(23:00~24:00) 356.000000 
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2. Threshold for total Packets with SYN in 24 hours: 

 𝑇𝐻𝑉𝑜𝑙−𝑡𝑜𝑡𝑎𝑙= 12570.000000 

 

3. Threshold for the coordinates of (FIN/SYN flag set, SYN):  

(0.556841, 4926.000000)  

(0.393600, 10625.000000)  

(0.335800, 12570.000000)  

(0.564087, 12803.000000)  

(0.112374, 13544.000000)  

(0.431140, 15909.000000)  

(0.983560, 16788.000000)  

(0.356690, 17183.000000)  

(0.276505, 19591.000000)  

(0.375018, 20959.000000)  

(0.540906, 21146.000000)  

(0.349058, 21707.000000)  

(0.384075, 23058.000000)  

(0.635677, 25299.000000)  
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(0.154208, 27184.000000)  

(0.498839, 30146.000000)  

(0.218232, 32053.000000)  

(0.251864, 32859.000000)  

(0.343009, 33314.000000)  

(0.343009, 33314.000000)  

(0.419241, 36089.000000)  

(0.357647, 40512.000000)  

(0.274147, 41113.000000)  

(0.248324, 44309.000000)  

(0.399302, 50155.000000)  

(0.490331, 50366.000000)  

(0.418629, 52629.000000)  

(0.183271, 52938.000000)  

(0.440544, 59742.000000)  

(0.400745, 60707.000000)  

(0.642655, 64190.000000)  

(0.339256, 72435.000000)  
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(0.241232, 75587.000000)  

(0.447929, 76530.000000)  

(0.447929, 76530.000000)  

(0.215768, 91251.000000)  

(0.553942, 102731.000000)  

(0.285980, 102731.000000)  

(0.258148, 110646.000000)  

(0.360102, 135545.000000)  

 

4. Threshold for number of Similar Payload: 

𝑻𝑯𝒑𝒂𝒚𝒍𝒐𝒂𝒅= 1824.000000 

5. Threshold for OUT/IN ratio: 

 𝑻𝑯𝒐𝒖𝒕−𝒊𝒏= 109.188797 

6. Threshold for quiet period ratio: 

𝑻𝑯𝑻𝒊𝒎𝒆= 0.354417 

7. Threshold for the final result D: 

𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.950610 
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8. Values of weights for Algorithms: 

 Weight for Algorithm 1 (Ratio of FIN/SYN Flag Set) 

w1=1.000000 

 Weight for Algorithm 2 (Relative to Time of Day) 

w2=0.941176 

 Weight for Algorithm 3 (Similar Payload-size Connections) 

    w3=1.000000 

 Weight for Algorithm 4 (Volume of Connections in Current Interval) 

w4=0.975610 

 Weight for Algorithm 5 (Volume of Connections in Recent 24 Hours) 

    w5=1.000000 

 Weight for Algorithm 6 (Ratio of OUT/IN SMTP Connections) 

w6=0.975000 
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Appendix 6: Results of Test Processes on System after Update Process 

Test Data 1:  

1. Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.950610  

Weight values: 

w1=1.000000, w2=0.941176, w3=1.000000, w4=0.975610, w5=1.000000, w6=0.975000 

 

Spam 

Relay 

Output of 

Algorithm 

1 

Output of 

Algorithm 

2 

Output of 

Algorithm 

3 

Output of 

Algorithm 

4 

Output of 

Algorithm 

5 

Output of 

Algorithm 

6 

Final 

Result 

(D) 

1 0 1 1 1 1 0 3.916786 

2 1 1 1 1 1 1 5.891786 

3 1 1 1 1 1 1 5.891786 

4 0 1 1 1 1 1 4.891786 

5 0 1 0 1 1 1 3.891786 
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Test Data 2:  

2.  Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.950610  

Weight values: 

w1=1.000000, w2=0.941176, w3=1.000000, w4=0.975610, w5=1.000000, w6=0.975000 

 

Spam 

Relay 

Output of 

Algorithm 

1 

Output of 

Algorithm 

2 

Output of 

Algorithm 

3 

Output of 

Algorithm 

4 

Output of 

Algorithm 

5 

Output of 

Algorithm 

6 

Final 

Result 

(D) 

1 1 1 0 1 1 1 4.891786 

2 1 0 1 1 1 0 3.975610 

3 0 1 1 1 1 1 4.891786 

4 1 1 1 1 1 1 5.891786 

5 1 1 0 1 1 1 4.891786 

6 1 1 1 1 1 1 5.891786 

7 1 1 1 1 1 1 5.891786 

8 1 0 1 1 1 1 4.950610 

9 1 1 1 1 1 1 5.891786 

10 1 1 0 1 1 1 4.891786 

11 0 1 1 1 1 1 4.891786 

12 1 1 1 1 1 1 5.891786 

13 1 1 0 1 1 1 4.891786 

14 0 1 1 1 1 1 4.891786 

15 1 1 1 1 1 1 5.891786 

16 1 1 0 1 0 1 3.891786 

17 1 0 0 1 1 1 3.950610 
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Test Data 4:  

3.  Percentile value=95% 𝐃𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝=2.950610  

Weight values: 

   w1=1.000000, w2=0.941176, w3=1.000000, w4=0.975610, w5=1.000000, w6=0.975000 

 

Spam 

Relay 

Output of 

Algorithm 

1 

Output of 

Algorithm 

2 

Output of 

Algorithm 

3 

Output of 

Algorithm 

4 

Output of 

Algorithm 

5 

Output of 

Algorithm 

6 

Final 

Result 

(D) 

1 0 1 1 1 1 1 4.891786 

2 1 1 1 1 1 1 5.891786 

3 1 1 1 1 1 1 5.891786 

4 1 1 1 1 1 1 5.891786 

5 1 0 1 1 1 1 4.950610 

6 0 1 1 1 1 1 4.891786 

7 1 0 0 1 1 0 2.975610 

8 1 1 1 1 0 1 5.891786 

9 1 1 1 1 0 1 4.891786 

10 1 1 0 1 1 0 3.916786 

11 1 1 1 1 1 1 5.891786 

12 1 1 1 1 1 1 5.891786 

13 1 1 1 1 0 1 4.891786 

14 1 1 0 1 0 1 3.891786 

15 1 1 1 1 1 1 5.891786 

16 1 1 0 1 1 1 4.891786 

17 1 0 0 1 1 1 3.950610 

18 0 1 0 1 1 1 3.891786 

19 0 1 0 1 1 0 3.891786 

20 1 0 0 1 1 0 2.975610 

21 1 0 0 1 1 1 3.950610 

22 1 1 0 1 0 1 3.891786 

23 1 0 1 1 1 1 4.950610 
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24 1 1 0 1 1 1 4.891786 

25 1 0 1 1 1 1 4.950610 

26 0 1 1 1 1 1 4.891786 

27 1 1 0 1 1 1 4.891786 

28 1 1 0 1 1 1 4.891786 

29 1 1 0 1 1 1 4.891786 

30 1 1 0 1 0 1 3.891786 

31 0 1 1 1 1 1 4.891786 

32 1 1 0 1 1 1 4.891786 

33 0 1 0 1 1 1 3.891786 

34 0 1 0 1 1 1 3.891786 

35 1 1 0 1 1 1 4.891786 

36 0 1 0 1 1 1 4.891786 

37 0 1 0 1 1 1 3.891786 

38 0 1 0 1 1 1 3.891786 

39 0 1 0 1 1 1 3.891786 

40 1 1 1 1 1 1 5.891786 

41 1 1 0 1 1 1 4.891786 

42 0 1 0 1 1 1 3.891786 

False 

Positive 

1 

 

0 

 

0 

 

1 

 

1 

 

1 

 

0 

 

2.975610 

 

 

 

 


