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ABSTRACT 

Presently, wireless sensor nodes are widely used and the lifetime of the system is 

becoming the biggest problem with using this technology. As more and more low 

power products have been used in WSN, energy harvesting technologies, based on 

their own characteristics, attract more and more attention in this area. But in order to 

design high energy efficiency, low cost and nearly perpetual lifetime micro energy 

harvesting system is still challenging.   

This thesis proposes a new way, by applying three factors of the system, which are 

the energy generation, the energy consumption and the power management strategy, 

into a theoretical model, to optimally design a highly efficient micro energy harvesting 

system in a real environment. In order to achieve this goal, three aspects of 

contributions, which are theoretically analysis an energy harvesting system, practically 

enhancing the system efficiency, and real system implementation, have been made. 

For the theoretically analysis, the generic architecture and the system design procedure 

have been proposed to guide system design. Based on the proposed system 

architecture, the theoretical analytical models of solar and thermal energy harvesting 

systems have been developed to evaluate the performance of the system before it being 

designed and implemented. Based on the model’s findings, two approaches (MPPT 

based power conversion circuit and the power management subsystem) have been 

considered to practically increase the system efficiency. As this research has been 

funded by the two public projects, two energy harvesting systems (solar and thermal) 

powered wireless sensor nodes have been developed and implemented in the real 

environments based on the proposed work, although other energy sources are given 

passing treatment. The experimental results show that the two systems have been 

efficiently designed with the optimization of the system parameters by using the 

simulation model. The further experimental results, tested in the real environments, 

show that both systems can have nearly perpetual lifetime with high energy efficiency.  

Keywords: WSN, energy harvesting, solar energy harvesting, thermal energy 

harvesting, maximum power point tracking (MPPT), power management   
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Chapter 1. Introduction 

1.1 Background to the research 

Since there have been rapid advances in Micro-Electro-Mechanical Systems 

(MEMS) technology, nanoscale integration, and low energy consumption wireless 

communication technologies, this has  resulted in a new class of miniaturized 

wireless electronic system which  is extremely useful for facilitating monitoring and 

controlling of physical environments from remote locations. To date, because Wireless 

Sensor Networks (WSNs), whose individual devices have limited computation, 

sensing, communication, and energy, based on 802.15.4 wireless standard, represent a 

significant improvement over wired sensor networks with the elimination of the 

hard-wired communication cables, are associated easy installation and low 

maintenance costs,  numerous research studies and applications in this area have 

emerged. Furthermore, the trends in these modern technologies allow the complex 

sensor systems to decrease in size, power consumption and deployment. Due to these 

advantages, more and more large scales of such networks are being considered to carry 

out complex task sets without human intervention in the real world.  

The architecture of a WSN typically consists of multiple pervasive sensor node, sink, 

public networks, manager nodes and end users (Madden et al., 2002). Numerous tiny, 

smart and inexpensive sensor nodes are scattered in the targeted sensor field to 

cooperate with each other via a wireless connection to form an ad-hoc network and to 

collect and analyse data collected from the physical environment. Due to the ad-hoc 

network, the networks can use multi-hop networking protocols to ensure full 

connectivity, fault tolerance and long operational life. A typical WSN, which includes 

sensor nodes, sink node, a connection to the Internet or satellite and a task manager 

node, is depicted in Figure1.1. Initially, the data collected by sensor nodes is routed 

within the sensor field by other nodes through wireless communication. When the data 

reaches the boundary of the sensor field, it is then transferred to the sink node, which 
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can be treated like a gateway. Typically, the gateway node is powered by a main 

power source because it has a higher processing capacity and sufficient memory space 

to supply extra information processing before the data is transferred to the task 

manager node through the Internet or satellite, and then the end user can process the 

receiving data when it becomes available (Akyildiz et al., 2002).  

 

Figure 1.1 Structure of a typical wireless sensor network (Akyildiz et al., 2002) 

To date, some very low power wireless sensor productions, which are regarded as 

stable, inexpensive and computationally efficient, have entered the marketplace. They 

normally consist of a miniaturized microcontroller, a wireless transceiver, one or 

several sensors, and one or several power sources. Typically, batteries are considered 

as the dominant energy source for these wireless applications.  However, the 

disadvantage of using batteries to power the systems is that they need to either replace 

or recharge them periodically. Despite the stringent constraints on size, WSNs are 

usually required to operate for several months or years without any human 

intervention. This makes the frequent battery replacement either unfeasible or 

prohibitive in these applications. Hence, the mobility and stability of WSNs are 

restricted by the use of batteries. Since the trend of sensor nodes’ design is to make the 

sensor node as small as possible in order to be conveniently placed and used, size has 

become one of the most important factors in WSNs. Batteries normally represent a 

primary percentage of the volume and weight of portable products. On the other hand, 

as batteries dominate the majority of volume of the sensor nodes, the small volume 

trend of the device is limited in the amount of energy that the batteries can store. The 

miniaturized battery means that the entire lifetime of the sensor node is sharply 

reduced. Hence, the traditional battery with lower power density cannot be utilized to 

supply power for this micro embedded system. Additionally, a serious environment 
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impact is created by numerous discarded batteries. As the sensor nodes become dense 

in the network, the problem in powering the wireless sensor nodes is becoming critical 

due to these constraints. 

Normally, every WSN desires a long lifetime, and thus many efforts have been 

taken in this area regarding reducing the power consumptions and enhancing the 

capability of energy sources. In respect of the miniaturization of electronic devices and 

a high power consumption of WSNs, reducing the physical power consumption of the 

sensor node is a feasible method. These efforts can be presented by using  duty 

cycling strategies (Ganeriwall et al. 2005), (Dutta et al., 2005),  adaptive sensing 

rates (Liu et al., 2006), tiered system architectures  (Ganwali et al., 2006) and 

redundant placement (Kumar et al., 2008) to reduce the sensor node’s power 

consumption. From the wireless network aspect, depending on the technologies 

available, there are also some possible solutions presented, such as energy-aware 

MAC protocols (Ye et al., 2002), power aware storage (Heinzelman et al. 2000) and 

power aware routing protocols (Abussimeh 2009), to enhance the network’s lifetime. 

Because the WSNs must be able to last for several years, merely reducing the power 

consumption of the system does not meet the requirements.  Hence, it is very 

important to increase the energy density of the energy storage elements. Many 

different types of energy storage technologies are shown in Figure 1.2, in which 

various energy storage technologies and their power density vs. energy density 

characteristics are depicted by a Ragone plot. Research to increase the energy storage 

density of both batteries and super-capacitors has been conducted for many years and 

continues to receive substantial focus (Blomegren, 2002).  
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Figure 1.2 Ragone plot for comparing the energy storage technologies and their 

power density versus energy density characteristics (Tester, 2005)   

While these technologies promise to extend the lifetime of WSN, the lifetime is still 

restricted, especially for wide deployment of WSNs. The maintenance problem is still 

not solved by using these two kinds of technologies, and hence a perpetual power 

supply is needed. In order to overcome the major hindrance of WSNs due to the high 

power consumption of the sensor nodes and the energy storages unpredictable lifetime 

performance, energy harvesting technologies have emerged to alleviate the energy 

supply challenge and there have the potential to result in self-powered, perpetual 

system operations for wireless sensor node. Moreover, unlike a single sensor node 

with an energy harvesting system, an entire sensor network with energy harvesting 

systems have been considered in Kar et al. (2006) and Gatzianas et al. (2010). In their 

works, each sensor node in the network had its own energy harvesting system. Then 

the lifetime and communication performance of the network had been improved based 

on the energy generation.    
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1.2 Energy harvesting technologies  

Energy harvesting is a technique that captures or harvests a variety of unused 

ambient energy sources such as solar light, heat, vibration, radio frequency, and 

directly converts them into electrical energy. Various ambient energy sources and 

energy harvesters are shown in Figure1.3.  

 

Figure 1.3 Energy harvesting source and their Energy Harvesters (Wan et al., 

2010) 

Based on Figure 1.3, there are numerous waste and unused ambient energies which 

can be harvested from the environment. Hence, it is not necessary to expand efforts to 

generate energy for harvesting. In the last few decades, a lot of researches have been 

conducted in the investigation of the energy levels of these energy sources in the 

environment. A compilation of the performance of energy harvesting sources and their 

energy density factors are listed in Table 1.1. According to the table, solar energy 

yields the highest energy density in an outdoor environment that can achieve a higher 

energy density than normal batteries. But, when the solar cells are placed under 

illuminated indoor conditions, the ambient light energy density drops tremendously.  

Moreover, the solar energy is sufficient in the day-time but it is unavailable at night. 

Hence the energy density of the energy sources are highly dependent on the specific 

application areas and time.  
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Table 1.1 Energy harvesting opportunities and demonstrated capabilities (Paradiso 

and Starner, 2005)  

Energy source Performance  Notes 

Ambient light 

         (direct sunlight) 

Common polycrystalline solar cells are 16%-17% efficient, 

while standard mono-crystalline cells approach 20% 

          (illuminate office) 

Thermal a)         at 5K gradient 

b)          at 10K gradient 

Typical efficiency of thermoelectric generators are    

for         

a) Seiko Thermic wristwatch at 5K body heat, 

b) Quoted for thermolife generator at     =10K 

Blood Pressure 0.93W at 100mmHg 

When coupled with piezoelectric generator, the power that 

can be generated is order of    when loaded 

continuously and mW when loaded intermittently 

Vibration 4      (human, motion-Hz) 800   

   (Machiens-kHz) 

Predictions for     generators. Highly dependent on 

excitation (power tends to be proportional to , the 

driving frequency and y0, the input displacement 

Hand linear 

generator  

        Shake-drive flashlight of 3Hz 

Push Button      Quoted at 3V DC for the MIT Media Lab Device 

 

Heel Strike          Per walking step on piezoelectric insole 

Ambient wind 

        

Typical average wind speed of 3m/s in the ambient  

Ambient radio 

frequency 

         Unless near a RF transmitter 

Wireless energy 

transfer 

          Separation distance of 2 meters 
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1.3 Research challenges 

Powering a sensor node by using an energy harvesting technology can increase the 

system lifetime and performance.  Other benefits are stated and elaborated in 

(Mathna et al., 2008) and (Thomas et al., 2006) to end user about using these 

technologies for WSNs, such as reducing the dependency on batteries, installation 

costs, maintenance costs, and providing sensor nodes in hard-to-access hazardous 

environments on a continuous basis, providing long term solutions and reducing 

environmental impact. But there are still some challenges in using these kinds of 

technologies, especially for designing and implementing a micro energy harvesting 

system.   

Firstly, based on sensor node deployment, there could be two or more energy 

sources available for harvesting simultaneously. But unfortunately, based on Figure 

1.3,  there is no unique solution suitable for harvesting all kinds of environmental 

energy sources. As the energy source varies in relation to time and place, it is very 

hard to decide which kind of energy should be harvested.  

Furthermore, because there are plenty of energy harvesting technologies and devices 

available, which vary with efficiency, price, and size, there are plenty of trade-offs 

which should be considered in deciding which kind of energy harvester should be 

used.  

Thirdly, as shown in Table 1.1, the power density of energy sources is extremely 

small. Thus, designing a highly efficient energy harvesting system is extremely 

important for micro-scale energy harvesting systems. Since many system parameters 

should be considered and there is no clear system design guideline in the literature, the 

system design procedure especially for designing a highly efficient energy harvesting 

system is unknown. The situation is even worse when the energy harvesting system is 

used to power a wireless sensor node. Szewcyk’s work shows that the lifetime of a 

sensor node may often be significantly shorter than expected without carefully 

understanding the electrical characteristics of the sensor node (Szewcyk et al., 2004). 

Therefore, inaccurate estimates of the power consumption behaviour of the WSN may 

cause an unexpected error when a new application is placed.  

Fourthly, the environmental energy varies with time, even if energy harvesters can 

ensure a theoretically unlimited amount of energy over time, the energy they provided 

is hard to predict.  In order to design a wireless sensor node with a perpetual lifetime, 
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the system has been able to recover from blackout periods where energy from the 

energy harvester is unavailable. Thus, unlike the battery powered wireless sensor node, 

an energy harvesting system powered wireless sensor node deployment is complex and 

without taking some proper design considerations into account the system might cause 

some significant errors or even cause the application to fail.  

  Last but not the least, WSNs always have numerous sensor nodes which mean 

that the system is restricted by size and cost. The cost and the size of the system are 

sometimes even more important than the efficiency of the system in some applications. 

Hence, the system optimization is very important for reducing the cost and size of 

energy harvesting systems. But unfortunately, there is a big gap between simulation 

and application reality. All the proposed systems can only be evaluated by a real 

experiment. If the system fails, the designers have to re-design and re-test the system. 

This causes a long design cycle. Hence, a simulation model which can be used to 

predict the system performance is critical. But it is very hard to design an accurate 

simulation model because of the diversity of energy harvesting technologies, 

numerous system architectures and system parameters, which should be considered in 

the model construction.  

1.4 Motivation for the research 

As promised by energy harvesting technologies, renewable energy powered 

wireless sensor nodes can potentially run for a long period of time or even perpetually 

without requiring any human intervention. Recognizing the possibility of long-term 

autonomous operation, several energy harvesting implementations have been made 

during the past few years. These works demonstrate that building a WSN with a type 

of energy harvesting system is possible. However, these existing works only address 

particular points in the design domain of the micro energy harvesting system rather 

than providing general design guidance for system designers. As the system design 

procedures become complex and a number of system parameters should be considered, 

it is very hard to develop a system in a short period of time. When a certain type of 

energy harvesting system is placed in a typical application area, which is different 

from its desirable environment, the system without proper design guidance might fail 

to work. Hence, a system-level simulation model which can be used to link the 
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physical electrical level of the system and the simulation level of the system is critical. 

But unfortunately, few research efforts have been channelled into this area. Moreover, 

system efficiency for the current energy harvesting platforms are extremely low and 

cannot meet the requirement of designing a highly efficient micro system. 

Additionally, low system efficiency means that the cost, size, weight and lifetime of a 

system are not as efficient as expected.  

The motivation of this thesis is to design and implement highly efficient 

self-powered, self-sustaining and nearly perpetual operation wireless sensor nodes by 

utilizing energy harvesting technologies. Based on the restraints of wireless sensor 

node, the system should be designed following cost and size effective and energy 

efficient principles. The work also aims to optimize an energy harvesting system using 

both theoretical analysis and a real implementation. In order to achieve this aim, the 

methodology of the research is to determine and trade off three factors of the system, 

which are the energy generation, the energy consumption and the power management 

strategy of the system, by using an analytical model. Moreover, as this research has 

been funded by two public projects, which decides that solar and thermal energy 

harvesting systems should be developed.  

1.5 Research objectives 

The research objectives of this study can be divided simply into four parts: 

 To investigate the existing literature available on micro-energy harvesting 

system powered wireless sensor nodes in order to obtain a better understanding 

of the current problems in this area and to find some possible ways to solve the 

problems.  

 Based on the proposed challenges in the existing area, a theoretical analysis of 

an energy harvesting system is carried out. Some tasks that should be achieved 

in these areas are as follows:  

o To propose a generic system architecture suitable for different  

energy harvesting systems 

o To propose efficient and simplified design guidance for an 

energy harvesting system to meet the energy efficiency and 

cost-volume efficient requirements.  
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o To develop a systematic model based on the generic architecture 

and to use the model predicting the system performance before a real 

system is developed and deployed in a real physical environment.  

 To improve system efficiency and performance based on the simulation results, 

obtained by the proposed model. The following efforts should be achieved.  

o To design an efficient maximum power point tracking (MPPT) 

scheme based power conversion circuit which increases the energy 

transfer efficiency of the system 

o To design an adaptive power management subsystem for an 

energy harvesting system to enable it have an longer lasting lifespan or 

even everlasting. 

  To develop and implement energy harvesting system powered wireless sensor 

nodes in a real environment based on system efficient and cost-volume 

efficient principles. Three processes are considered in this part. 

o To design some wireless sensor nodes without energy harvesting 

systems to provide a deep understanding of the characteristics of a 

wireless sensor node 

o To design a solar powered sensor node based on the design 

guidance proposed in the previous part. The longer lasting lifetime, the 

energy efficient and cost-volume efficient should be satisfied in this 

work. 

o To design and develop a thermal energy harvesting system, 

which is also based on the generic architecture and design guidance. 

These three system requirements should also be satisfied in the design.   

1.6 Contributions of the research 

The contributions of this thesis consist of five parts. 

 Firstly, a generic system architecture, fitted for all kinds of energy harvesting 

technologies, has been proposed. As found in the literature review, each energy 

harvesting application has its own system architecture and none of these 

system architectures can be adapted for other applications. Furthermore, the 

efficiency of the existing system architectures is not efficient enough for 
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micro-energy harvesting systems. Hence, the proposed energy harvesting 

system architecture has considered all the possible components required to 

build up an efficient micro-energy harvesting system for powering a wireless 

sensor node. And the proposed architecture can easily be adapted for other 

applications. Furthermore, as a dual energy buffer design has been used in the 

architecture, the lifetime and energy efficiency of the energy harvesting system 

has greatly improved by a theoretical analysis. Moreover, as the system 

architecture is highly dependent on the harvested energy types, the architecture 

for each kind of energy harvesting technology is different. Based on the finding, 

the main difference of the system architectures can be found in the power 

conversion part. Hence, this part of the system has been discussed. As solar and 

thermal are two environment energy sources considered in this thesis, the 

generic architecture for these two kinds of energy harvesting systems have 

been developed. The rest parts of the thesis are based on this architecture.   

 Secondly, a simplified and efficient system design procedure based on the 

proposed architecture has been developed. This is because designing an 

efficient energy harvesting system powered wireless sensor node is much more 

complex than designing a battery powered sensor node. But unfortunately, 

there is no clear design guideline in the literature that gives a clear guidance for 

a system designer to design a cost-size effective and energy efficient system. 

Most of the design procedures are based on the designers’ experience by using 

a trial-and-error strategy, which might cause a lot of problems. Hence, a simple 

and efficient system design procedure, which can be easily adopted by all kinds 

of energy harvesting systems and applications, have been proposed. The 

methodology of the proposed procedure is that when the system designers 

determine and apply three factors of the systems into the analytical model, 

which developed in the next contribution, the optimal sizes of the system can 

be determined.  

 The third contribution of the thesis presents an analysis and experimental 

evaluation of a generic model representing a micro-energy harvesting system 

powered wireless sensor node. Generally, the simulation model is considered 

the best way to help bridge the gap between physical and simulation domains. 

But rarely are the simulation models presented in literature, and most of them 
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are focused on one type of energy harvesting technology. In order to make the 

simulation model fit for all types of energy harvesting technologies, the model 

is designed based on the generic systematic architecture. By using the proposed 

model, the energy status of each part of the system can be estimated. In order 

to demonstrate the model, two energy harvesting technologies, solar energy 

harvesting and thermal energy harvesting, are employed as two examples.  

 The fourth contribution of the thesis is improving the system efficiency and 

performance by using a Maximum Power Point Tracking (MPPT) scheme and 

a power management strategy. Because the generated energy is very small by 

using a micro-scale energy harvester, the energy efficiency of a micro energy 

harvesting system is critical. Based on the system architecture, the system 

efficiency can be divided into four parts: energy conversion efficiency, energy 

transfer efficiency, buffering efficiency and consumption efficiency. The entire 

system efficiency can be greatly improved by increasing these four types of 

efficiencies. Hence, two kinds of efforts, designing an MPPT based power 

conversion circuit and a power management subsystem, have been developed 

in order to improve the system efficiency.  

 In order to prove the proposed work’s validity, three different cases have been 

developed that can be considered as the fifth contribution of the thesis. In the 

first case study, some wireless sensor nodes without an energy harvesting 

system have been designed. The characteristics of the wireless sensor nodes, 

especially for the shortages, have been studied and highlighted. Then two kinds 

of wireless sensor nodes which are powered by a solar energy harvesting 

system and a thermal energy harvesting system, respectively, have been 

developed in the following two cases. The proposed energy harvesting systems 

have been designed based on the generic system architecture by following the 

proposed design guidance. The experimental results show that both energy 

harvesting systems can efficiently harvest solar energy and thermal energy, 

respectively. The further results demonstrate that both systems can survive for 

a long period of operation in an extreme environment.  

All of the contributions aim to create an efficient way to design and implement a 

micro energy harvesting systems powered sensor node, which has a perpetual lifespan 

and satisfies the requirements of the cost-size effectiveness and energy efficiency.  



Chapter 1. Introduction 

 

 13 

1.7 Organization of the thesis 

The structure of this thesis is organized as follows: Chapter 2 reviews the state of 

existing micro energy harvesting platforms in both solar and thermal energies.  Based 

on the analysis of these existing works, the problems and challenges in designing an 

efficient micro-scale energy harvesting system are identified. By considering these 

shortages of the existing works, Chapter 3 proposes a generic system architecture and 

a design guideline for an energy harvesting system to make the system design 

procedure more simple and efficient. It is difficult to design and implement a micro 

energy harvesting system in the real physical world, and a theoretical analysis model 

of an energy harvesting system is considered as the best way before designing an 

energy harvesting system. Hence, a simulation model of an energy harvesting system 

has been developed in Chapters 4 and 5. In Chapter 4, two kinds of energy transducers, 

which are a solar panel and a thermoelectric generator, are modelled. Subsequently, 

the whole energy harvesting system is modelled in Chapter 5. The system efficiency 

can be greatly improved by considering improving four kinds of energy efficiencies. 

Chapters 6 and 7 show two ways to improve the system efficiency and performance. 

Three different MPPT approaches have been designed and compared in Chapter 6 and 

an adaptive power management unit with an energy buffer system has been developed 

in Chapter 7. Three kinds of case studies to verify the proposed works have been 

achieved in Chapters 8, 9 and 10, respectively. Chapter 8 shows how to design a 

wireless sensor node without an energy harvesting system. A solar energy harvesting 

system and a thermal energy harvesting system are developed in Chapters 9 and 10, 

respectively. Finally, Chapter 11 summarizes the main contributions of the research 

and concludes the thesis by identifying areas for future research.  
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Chapter 2. Literature Review of 

Environment Powered Wireless Sensor 

Nodes 

2.1 Micro-energy harvesting system overview 

Harvesting energy from the environment is a desirable and increasingly important 

capability in several emerging applications of embedded systems, especially, WSNs. 

Given the energy-usage profile of a sensor node, energy harvesting techniques could 

meet part or all of its energy needs by using a proper design procedure. Energy 

harvesting itself is not new, but the challenges are how to build an efficient energy 

harvesting capability into a modern embedded system while satisfying all their 

constraints in terms of systems and application environments. In this chapter, 

state-of-art solar energy harvesting and thermal energy harvesting technologies are 

reviewed.  

2.2 Energy harvesting architecture  

In order to design an electrical system, the architecture of the system is crucial and 

it should be determined before the system is designed. Based on different energy 

sources and different design requirements, numerous system architectures can be 

found in the literature. According to Sudevalayam and Kulkarni (2010), the energy 

harvesting system can be divided into two categories in terms of a system architecture 

used: (1) Harvest-Use: energy is harvested just in time for use and (2) 

Harvest-Store-Use: energy is harvested whenever possible and stored for future used, 

as shown in Figure 2.1 (a) and (b), respectively.  In the Harvest-Use architecture, the 

harvesting system directly powers the sensor node without any energy buffer, which 

means that the power output from the energy harvester has to be continuously above 

the minimum operating point of the sensor node, otherwise the system will die. Dan et 
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al. (2005) designed a thermoelectric generator to produce light from stoves. In their 

system, the light in the stove will be lighted when enough power can be harvested by 

the thermoelectric generator. If the stove is cool down, the light system is 

automatically turned off. The shortfalls of this design are that the system needs a large 

energy harvester and requires a continuous energy source. In order to overcome these 

shortages, a more common system architecture, the Harvest-Store-Use, has been 

proposed. In this architecture, a storage component or even two energy buffers are 

added into the system to store excess energy, which is generated by the energy 

harvester. With the energy buffers, the system can survive when either a harvesting 

opportunity does not exist or energy usage of the sensor node is higher than the energy 

generation.  

 

Figure 2.1 Energy harvesting system architectures with and without a storage 

capability (Sudevalayam et, al., 2010) 

Based on the prior analysis, a micro-energy harvesting system for wireless sensor 

nodes should consist of several components, which are energy collection and 

conversion mechanisms (energy harvester/energy transducer/energy generator), 

electrical power management/conditioning circuit, energy storage device and electrical 

load (wireless sensor node), in an energy harvesting system. There are plenty of 

different ways to build each component by different designers. A general block 

diagram of an energy harvesting system is shown in Figure.2.2.  
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Figure 2.2 General block diagram representation of energy harvesting system unit 

(Wan et al. 2010) 

In Figure 2.2, the function of the energy harvester is to harvest environmental 

energy sources and convert them into electrical energy. Typical examples of the 

energy harvesters, as illustrated in Figure 1.2, include the solar cell to collect solar 

energy, the thermoelectric (TE) generator to harvest thermal gradient energy, 

piezoelectric material converting vibration energy into electricity, and the rectenna 

antenna array to capture radio frequency energy from ambient. The harvested 

electrical energy from an energy harvester is highly dependent on the dynamically 

changing environment. Hence, the harvested energy is unknown when the system is 

implemented in the real environment. As the energy efficiency is very important for a 

small energy harvesting system, the generated energy needs to be conditioned to an 

appropriate form before powering the entire system in order to improve system 

efficiency. In this scenario, a power conditioning circuit is normally used and the main 

objective of the power conditioning circuit is to process and control the energy flow 

from the source to the load in an efficient way. Another function of the power 

conditioning circuit involves the conversion and regulation of electrical voltage at high 

levels into suitable levels for the loads (Tan, 2010). In order to ensure a continuous 

system operation even when the external energy source is weak or temporarily 

unavailable, the excess energy of the system should be stored either in a rechargeable 

battery or a super-capacitor.  

A similar argument is presented by Jenong’s thesis (Jenong, 2009). The 

architecture of a micro solar harvesting system is depicted in Figure 2.3, which has 

been organized by: (a) an external environment that determines the amount of solar 

radiation available to the micro-solar power system, (b) a solar panel that collects solar 

energy, (c) energy storage, where extra energy from the solar panel is stored, (d) a load 
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that will run on top of the power subsystem, consuming energy from the solar panel 

and the energy storage, (e) an input regulator that maximizes input power by matching 

the operating point between the solar panel and the energy storage, and (f) an output 

regulator that regulates the output voltage of the energy storage (Jenong, 2009).  

 

Figure 2.3 A general model for micro-solar power system (Jenong, 2009) 

Recently, numerous research studies have been recorded in literature using an 

energy harvester to obtain energy from the environment to power a wireless sensor 

node. The goal of these studies is to make the wireless sensor node become truly 

autonomous and self-sustainable. Because the different nodes in a sensor network may 

have different energy harvesting opportunities and different environmental energy 

sources have different characteristics, the selection of the energy harvesting technique 

is crucial in the design of an energy harvesting system.  

2.3 Review of the existing solar energy harvesting systems  

Solar energy is both the richest and the most common energy source which can be 

harvested from the environment. Solar energy harvesters (solar cells), using the 

photovoltaic effect, convert solar radiation directly into electric energy; this is a 

widespread technique of solar energy harvesting technology. Generally, the generated 

voltage of a solar cell is dependent on the module’s material and the input solar 

irradiance level. And on the other hand, the generated current of a solar cell is 

approximately proportional to the size of the solar cell. Since the voltage and current 

of a single solar cell is not large enough to meet the power requirement of the sensor 
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nodes, multiple solar cells are commonly combined in series or parallel into an array 

(solar panel) to provide suitable voltage and current (Jenong, 2009).  

Based on some researches, solar energy of an outdoor incident light at midday holds 

a power density of roughly 100mW per square centimetre, i.e. in a small volume of 

     , 100mW of electrical power can be harvested from the sun by using the solar 

panel (Wan et al., 2010). Conversely, based on Randall et. al (2003)’s work, the light 

power density in indoor environments is around          . Commercially thin 

film polycrystalline and amorphous silicon solar cells are normally used because of the 

low cost, but lower conversion efficiency 10-13% is recorded by Randall et. al. (2003). 

Table 2.1 summaries the best measurements for the latest solar cells and sub modules 

under the global AM1.5 spectrum (1000    ) at    . From Table 2.1, it can be 

observed that the highest conversion efficiency is around 32% (GaLnP/GaAs/Ge) by 

testing in the laboratory (Green et al. 2010). Based on Green’s report, some single 

crystal solar cells offer efficiencies of about 20%. But their prices are much higher 

than the amorphous silicon solar cells which are very expensive for environmental 

powered sensor nodes.  

Table 2.1 Confirmed terrestrial cell and sub module efficiencies measured under the 

global AM1.5 Spectrum (Green et. al. 2010) 

Classification  Efficiency (%)  Area 

(   ) 

    (V)     

(        

Si (crystalline)        4 0.706 42.7 

Si(multicrystalline)          1.002 0.664 38 

Si(thin film transfer)          4.017 0.645 33 

Si(thin film sub module)          94 0.492 29.7 

GaAS(thin film)          0.9989 1.07 29.6 

GaAS(multicrystalline)          4.011 0.994 23.2 

InP(Crystalline)          4.02 0.878 29.5 

CIGS (cell)          0.996 1.107 29.6 

CIGS(sub module)          16 0.66 33.6 

CdTe(cell)          1.032 0.845 26.1 
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CdTe(sub module)          35.03 0.838 21.2 

Si (amorphous)          1.036 0.886 16.75 

Si(nanocryctalline)          1.199 0.539 24.4 

Photochemical           1.004 0.729 22 

Dye sensitized (sub module)         17.11 0.719 19.4 

Organic polymer         1.031 0.816 14.46 

Organic (submodule)         208.4 8.62 0.847 

GalnP/GaAs/Ge          3.989 2.622 14.37 

GaAs/CIS(thin film)          4 - - 

a-Si/  -Si (thin film cell)          1.227 1.346 12.92 

a-Si/  -Si (sub module)          14.23 5.462 2.99 

Organic (2-cell tandem)         1.087 1.733 8.03 

2.3.1 Typical solar energy harvesting systems  

Recently, several implementations of solar energy harvesting powered sensor nodes 

have been carried out.  Prometheus (Jiang et al., 2005), Heliomote (Raghunathan et 

al., 2005), Everlast (Simjee and Chou, 2006), Ambimax (Park and Chou 2006), 

Sunflower (Stanley-Marbell and Marculescu, 2007), and HydroWatch (Taneja et al., 

2008) are different types of solar harvesting sensor nodes  

Prometheus and Heliomote are two typical prototypes. In both systems, the solar 

panels are connected with the storage device through a diode. An overview of the 

system architecture and hardware architecture of the Prometheus are depicted in 

Figure 2.4 (a) and (b), respectively. The prototype is an autonomous solar energy 

harvesting system without MPPT technology. By intelligently managing a two-stage 

buffer design, the system lifetime is prolonged. The working principle is that the solar 

panel first charges the super-capacitor. When the charge level of the super-capacitor’s 

terminal voltage is higher than a certain value, the capacitor powers the target system 

only. Otherwise, the system only draws current from the battery. Furthermore, when 

the capacitor’s terminal voltage is higher than another threshold, the capacitor charges 

the battery and powers the system at the same time. Because Prometheus does not 

perform MPPT and there is no power management unit on the platform, the harvesting 

efficiency of this system is not very high. 
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Figure 2.4 (a) System architecture of Prometheus implementation, (b) Prometheus 

platform (Jiang et al., 2005) 

Unlike the Prometheus platform, Heliomote is a single-storage energy harvesting 

system using NiMH batteries which is built based on the Mica2 sensor node platform 

(Hill and Culler, 2002). The architecture and the prototype of the system are illustrated 

in Figure 2.5 (a) and (b), respectively. It uses a solar panel with the following 

dimensions:                       , which outputs 198mW at a voltage of 3.3V. 

Heliomote has an energy monitoring component which measures and conveys 

information regarding the magnitude and variance of energy available in the battery 

(Raghunathan et al., 2005). The gathering battery information is transferred to the 

sensor node which can learn its energy availability and usage through battery-aware 

power management. An analysis of the Heliomote platform shows that the perpetual 

operation of the system can be achieved if the rate of consumption of power is less 

than the rate of sourced power. Moreover, the Heliomote platform was designed as a 

plug-and-play enhancement for Crossbow motes. This means that the DC-DC 

converter is not exactly matched to the battery and the sensor node. Hence, overcharge 

and undercharge protections are designed in the power management unit. Similarly to 

the Prometheus platform, there is no MPPT scheme in the system.   
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Figure 2.5 (a) System architecture of Helimote, (b) Helimote platform (Raghunathan 

et al., 2005) 

Everlast is a super-capacitor operated energy harvesting platform, as shown in 

Figure 2.6, which is an integrated system with sensors, radio, low power MCU and the 

energy harvesting subsystem. The components of the energy scavenging subsystem are: 

a solar cell, a 100F super-capacitor, a Pulse Frequency Modulated (PFM) controller 

and a PFM regulator. Unlike the previous platform, an MPPT function is implemented 

by the PFM regulator. When the solar voltage exceeds the specified MPP reference 

voltage, the PFM controller pulses the PFM regulator to charge 100F super-capacitor. 

This process makes the solar panel work at the peak power position. Once the 

super-capacitor is fully charged, the PFM controller shuts down the PFM regulator by 

comparing its voltage to a reference voltage. Moreover, since all its components are 

controlled by the sensor node, the Everlast is not self-controlled. By using this 

technique, Everlast states a lifetime of 20 years at 50% duty cycle and 1Mbps data 

rate.  

 

Figure 2.6 (a) System architecture of Everlast, (b) Everlast platform (Simjee and 

Chou 2006) 

Park and Chou proposed an autonomous energy harvesting platform, named 

Ambimax, for multi-supply wireless sensor nodes. Like the Prometheus platform, it 

uses the same double-stage storage design. The Ambimax not only harvests solar 
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energy but also harvests wind energy. Each power source has its own harvesting 

subsystem that charges a separate super-capacitor. The energy stored in the 

super-capacitor is used to charge a battery and to supply power to the sensor node. As 

with Prometheus, the battery is used as a supply only when the super-capacitor voltage 

is below the minimum allowed input voltage of the sensor node. The energy 

harvesting subsystem consists of discrete digital and analog components such as 

comparators, switches and a boost DC-DC converter. The platform uses a variant of 

the fractional open circuit voltage techniques to achieve MPPT. It assumes a linear 

relationship between the output of a light sensor and the MPP voltage of the solar 

panel. The voltage of the solar panel is maintained at around its estimated MPP by a 

comparator that compares the voltage of the light sensor with the voltage of the solar 

cell. The comparator output determines whether the boost converter is turned on or off. 

Based on the MPPT scheme, the system efficiency is higher than the Everlast platform, 

but there is no power management unit in the Ambimax. 

 

Figure 2.7 (a) System architecture of Ambimax, (b) Ambimax platform (Park and 

Chou 2006) 

Taneja et al. proposed a HydroWatch node, which is a single-storage solar energy 

harvesting system, for a microclimate sensor network for studies of hydrological 

cycles in forest watersheds. They created a model for each of the constituent 

components and calculated that half an hour of sunlight per day is an appropriate 

requirement for these nodes to operate perpetually (Taneja et al., 2008). Then they 

designed a solar energy harvesting module based on the energy budget predicted by an 

astronomical model of the sunlight. The system architecture and the hardware platform 

are shown in Figure 2.7 (a) and (b). The system uses a solar panel             



Chapter 2: Literature review of Environment powered Wireless sensor nodes 

 23 

          , of which the maximum output power is 276mW at a voltage of 3.11V. The 

harvested energy is stored in two 2500mAh NiMH batteries and an input regulator is 

employed to match the current limit and voltage limit of the battery. The harvesting 

efficiency is quite low because there is no MPPT circuit and power management unit 

in the system. Furthermore, since the input regulator is observed to have 50% 

efficiency, the efficiency of the HydroWatch node is even worse when using this 

architecture. The proposed platform was evaluated by using two deployments, one of 

which was placed in an urban environment and the other in a forest watershed. The 

experimental results show that all nodes received at least half an hour of sunlight 

(         every day in the urban environment. However, when the system was 

placed in the forest watershed, most of the nodes did not receive more than 50mWh of 

energy a day, which was less than the target 79.2mWh/day (Taneja et al., 2008). This 

means that if the platform is placed in a forest, the sensor node may not have a 

perpetual life. 

 

Figure 2.8 (a) System architecture of HydroWatch, (b) HydroWatch platform 

(Taneja et al., 2008) 

Sunflower was designed by using a novel combination of an array of PIN 

photodiodes to harvest light energy. The harvested energy charges a miniature 0.2F 

super-capacitor through a switching regulator. There are four types of sensors; a 

programmable color detector, a microphone, an accelerometer and a temperature 

sensor, integrated on the sensor node and controlled by a low power MCU. The sensor 

node is completely powered by the harvested energy. The operating voltages of the 

sensors are gated with a low-quiescent current FET switch, which can be used to 

switch off the sensor when not in use. The MCU is entered into a deep sleep mode and 

uses an external watchdog timer to wake up the MCU.  
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Figure 2.9 (a) System architecture of Sunflower, (b) Hardware of Sunflower 

(Stanley-Marbell and Marculescu, 2007) 

2.3.2 Comparison of the existing solar energy harvesting platforms  

Table 2.2 lists the comparative results of the existing solar energy platforms 

described in the literature. The table is classified by solar panel size and power rating, 

storage type and storage capacity, sensor node type, and whether to use an MPPT 

circuit or a power management subsystem. As can be seen from Table 2.2, the 

Ambimax platform has the largest solar panel, which can generate maximum 400mW, 

but the Sunflower platform can only generate 20mW power by using 4 PIN photo 

diodes. The difference is because the power consumptions of the target sensor nodes 

are different in these applications. From this point of view, it can be seemed that the 

solar panel size is decided by the energy consumption of the target sensor node. 

Because a Lithium-polymer battery has better charge-discharge efficiency than a 

NiMH battery, Prometheus and Ambimax use smaller capacity Lithium-polymer 

batteries in their design. But, HydroWatch shows that NiMH batteries with a proper 

voltage regulation is much preferred over the complex pulse charging logic of Lithium 

batteries for a low energy harvesting requirement (Sudevalayam and Kulkami, 2010). 

This is because a Lithium battery with a complex charging circuit costs much more 

than a simple NiMH charge circuit. This makes a Lithium battery is not suitable for 

low cost applications. In Ambimax and Prometheus platforms, both platforms are used 

a dual buffer design. Several advantages of using the dual buffer design are concluded 

in their works based on their experiments. Firstly, the charging efficiency of the 

super-capacitor is higher than the energy being directly charged in the rechargeable 

battery. Secondly, the lifecycle of the super-capacitor can be considered as infinite. 
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Hence, the dual buffer design can make system lifetime much longer than using a 

single rechargeable battery design. According to the charging efficiency and the 

lifetime of the system, the using of high-capacity super-capacitor based two buffer 

design can be considered as the  most viable option for long lifetime micro energy 

harvesting systems.  Since efficiency is the most important factor in designing a 

micro-scale energy harvesting system, significant efforts such as an MPPT and a 

power management unit have been made. Unfortunately, there was no system that 

employed both technologies to achieve higher system efficiency. In these platforms, 

only Everlast, Ambimax and HydroWatch are employed a simple MPPT circuit in 

their design. For the power management design, only Heliomote and Sunflower are 

considered types of power management strategy in their systems.  

Table 2.2 Specifications of solar energy harvesting platforms 

Node  Solar Panel 

size(        

      ) and 

maximum generated 

power (mW) 

Energy buffer 

Type/capacity   

Sensor 

node used  

MPPT 

circuit  

Power 

management  

Prometheus 3.23 1.45 

130 

Super-capacitor(two 22F) 

& Li-poly battery 

(200mAH) 

Telos No No 

Heliomote 3.75 2.5 

190 

NiMH battery (1800mAh) Mica2 No Yes  

Everlast 2.25 3.75 

450 

Super-capacitor(100F) NA Yes No 

Ambimax 3.75 2.5 

400 

Super-capacitor(two 22F) 

& Li-poly battery 

(200mAH) 

Telos Yes  No 

HydroWatch 2.3 2.3 

276 

NiMH (2500mAH) TelosB Yes  No 

Sunflower 4Pin Photo diodes 

20mW 

Super-capacitor(0.2F) NA No Yes 

2.4 Thermal energy harvesting  

Thermal energy is another general energy source that can be harvested from the 

environment. Several approaches such as the Seebeck effect, thermo-couples, and 
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Piezo-thermal effect, to convert thermal energy directly into electricity are presently 

under investigation (Hudak and Amatucci, 2008). Many research studies for thermal 

energy harvesting have been examined in literature and a thermoelectric generator 

(TEG) based on the Seebeck effect is one of the popular devices that has been used to 

harvest thermal gradient energy. A summary of the implemented thermoelectric (TE) 

modules, capable of generating from 1-60        at 5K or less temperature 

difference, is described by Hudak and Amatucci in their review paper (Hudak and 

Amatucci, 2008). Table 2.3 shows the characteristics of the state-of-the-art TE 

modules in the Laboratory and commercial market. Both power output and voltage are 

reported in the table. The highest power density was achieved by RTI International 

(Watkins et al., 2005) in which the module can harvest           at a temperature 

difference of 2.7K, but the open circuit voltage was only          . Furthermore, 

two commercially available devices, using        based material, are included in the 

table. The power generated from Micropelt (TGP v 1.9, 2010) achieved a good 

open-circuit voltage          and a relatively high power density 1.2mW     by 

adding a 5K temperature difference on the module (Hudak and Amatucci, 2008). In 

terms of Hudak and Amatucci’s conclusion, the device from Thermo Life (Thermo life, 

2009) reached a higher open-circuit voltage       but a much lower power density 

        . Moreover, employing shorter elements requires higher heat flow to 

maintain a given temperature difference. For example, the thermo life element, of 

which the leg length is 1.4mm, is easier in order to maintain a large temperature 

difference than Micropelt elements, whose the leg length is      (70 times lower 

than the thermo life). But unfortunately, the prices for both modules are around 50 

GBP/module, which is too expensive for designing a micro-energy powered sensor 

node. Hence, a low cost commercial TE module should be considered in the thermal 

energy harvesting system design.  
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Table 2.3 Characteristics of TE power generators (Hudak and Amatucci, 2008) 

Institution  Materials  Dimensions 

(  ) 

No. of 

coupl

es 

Area 

(   ) 

   

(K) 

Power 

(  ) 

Voltage 

(V) 

University of 

Wales  

Silicon        

     

5  5 0.002 0.13 

SeiKo 

Instrumets 

       based       

    

520 0.4 5  0.3 

Fraunhofer 

Institute for 

Physical 

Measurement 

Techniques 

n-       

and 

p-            

         12 0.0112 5 0.67  

Micropelt 

(MPG D-602) 

n-       

and 

p-            

         450 0.082 5 100      

Infineon 

Technologies 

Polycrystalline Si  59400 0.06 5 1.5 <0.8 

Institut Fur 

Mikrotechnik 

Sb and Bi          

   

30  5 0.8  

DTS        based         

     

2250 0.675 5 1.5 1.1 

Thermo Life 

energy 

Corporaation 

       based 1400(length) 5074 0.679 5 27 2.7 

HSG-IMIT Silicon         1000  4 0.2 0.4 

Technische 

University 

Dresden 

Sb and Bi         

    

100  5  <0.042 

JPL/Caltech n-        and 

p-            

 

      

(diameter) 

63 0.029 1.2

5 

1 0.002 

ETH Zurich Cu and Ni         90 0.49 20 0.0059 0.037 
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(diameter) 

 

RTI 

International 

       based 

superlattice 

 30 0.16 2.7 980 <0.04 

UC Santa 

Cruz/UC Santa 

Barbara 

InGa(Al)As 

superlattice 

         200 0.16 5 10  

2.4.1 Typical thermal energy harvesting systems  

Some thermal energy harvesting platforms have been proposed in the literature. 

One of the first applications of thermal energy harvesting in consumer products was 

the Seiko thermic watch, shown in Figure 2.10, produced by the Seiko Company 

(Kishi et al., 1999). It uses a TEG to convert body heat into electrical energy to drive a 

wrist watch. The system consisted of ten TE modules in series, a lithium-ion battery, 

and a DC-DC voltage booster. With about a 1 K temperature gradient between the arm 

and the environment at room temperature, 22 μW can be harvested. The excess energy 

from the TE modules is charged into the battery, which was used to keep the watch 

operation in the absence of heat flow. The authors stated that the DC-DC booster 

increased the output of the modules from 300mV to 1.5V, but no details of the booster 

circuit’s size or efficiency were given.  

 

Figure 2.10 Thermo-electrical wristwatch of SEIKO (Kishi et al., 1999) 

Similar work has been done by Leonov et al (2007). They designed a thermal 

energy harvesting system to harvest body heat energy through TE modules, as shown 

in Figure 2.11 (b). Because the harvested energy is quite low, they designed a power 

conditioning circuit to boost the harvested energy and store the energy into a single 

1.2V NiMH rechargeable battery. The authors stated that the average power generation 

of the system was around       with a 10K temperature difference during the day, 
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corresponding to about         , which is better than solar cells in many indoor 

situations.  

 

Figure 2.11 (a) Power conditioning circuit of the TEG (b) Thermal powered wireless 

sensor node (Lenovo et al. 2007) 

In another thermal energy harvesting research, Lawrence and Snyder (Lawrence 

and Snyder, 2002) considered using a heat sink based TEG to harvest the thermal 

gradient energy between the ground and air, as shown in Figure 2.12. A maximum 

instantaneous power of approximately 0.4mW could be harvested by the 

thermoelectric generator, as shown in the results.  

 

Figure 2.12 Ground source TEG (Lawrence and Snyder, 2002) 

Based on the same principle, Sodano et al. (2007) presented a solar-thermal energy 

harvesting system placed in a greenhouse with a solar concentrator, as seen in Figure 

2.13. The TE generator uses eight pieces of TE modules to harvest thermal gradient 

energy between the heat sink and the ground. The harvested energy is used to charge 

two 300mA NiMH rechargeable batteries. At an estimated temperature difference of 

25K, the harvested energy was able to recharge an 80mAh battery in 33 minutes. The 
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authors have demonstrated that TEG can be used as an alternative to photovoltaic 

devices to harvest solar energy. However, there is little discussion on the power 

management aspects of the solar- thermal energy harvesting system.  

 

Figure 2.13 solar-thermal energy harvesting system (Sodano et al., 2007) 

Mateu et al. (2006) developed an energy harvesting system for powering wireless 

communication modules. The prototype is shown in Figure 2.14. A thermogenerator 

module (TEG) is employed to harvest energy from temperature difference between the 

human body and the ambient. The harvested energy is used to power the EnOcean 

wireless modules (EnOcean, 2010). In order to dispose of the harvested low voltage 

energy, a power conditioning unit consisting of a charge-pump and a step-up DC-DC 

regulator was employed. Based on their results, the minimum 0.236V input energy 

with 50.53% efficiency can be boosted to charge two rechargeable batteries.  

 

Figure 2.14 (a) system overview of the thermal energy harvesting system, (b) 

proposed platform (Mateu et al., 2006) 

Similar to solar power, there is an MPP problem for the TEG. But unfortunately 

there are a few thermal energy harvesting systems adding this function in the system. 
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Eakburanawat and Noonyaroonate (2005) developed a TE generator based battery 

charging system to convert thermal energy from cook-stove, as shown in Figure 2.15. 

There is an MPPT circuit added into the system. They stated that the system with the 

MPPT based converter system has as high as 95.11% transfer efficiency much higher 

than a direct charging method, which has an efficiency level of approximately 15%. 

But this platform is used for high power applications, for which the harvested power is 

around 8W, which is unsuitable for powering the micro sensor node. It was 

recommended in the research that the MPPT circuit was critical for designing a high 

efficiency energy harvesting system.  

 

Figure 2.15 (a) TEG generator (b) Proposed circuit design with MPPT 

(Eakburanawat and Noonyaroonate, 2005) 

2.4.2 Comparison of the existing thermal energy harvesting 
platforms  

The comparison of the existing thermal energy harvesting platforms is listed in 

Table 2.4. Based on the comparison result, the size and the generated energy from the 

TEGs are different in these platforms. These system parameters are decided by the 

application requirements. Furthermore, because the harvested energy is highly related 

to the temperature difference between the TEG, some platforms were employed a heat 

sink system to maintain a large temperature difference. Thirdly, a lot of platforms had 

a regular circuit to boost its power to a high voltage level. This is because the voltage 

of the harvested energy is very low which cannot be used to directly power the target 

system. Additionally, unlike the solar energy harvesting system, the system 

architectures of the thermal energy harvesting platforms are simpler. Almost all the 
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platforms had not considered a power management subsystem into the system and 

only Eakburannawat’s platform had employed a MPPT technology.  According to 

their results, the energy efficiency is greatly improved by using this technology. 

Table 2.4 Specifications of thermal energy harvesting platforms 

Node  TEG size  and 

maximum generated 

power  

Energy buffer 

Type 

Boost 

circuit  

Sensor 

node used  

MPPT 

circuit  

Power 

management  

Thermo-electrical 

watch 

Small TEG system  

      with 1K 

temperature gradient 

Lithium-ion 

battery  

Yes 

Yes 

 
Wristwatch No No 

Leonov’s platform Small TEG system  

250    with 10K 

temperature gradient 

NiMH battery  Yes NA No No 

Ground source TEG Large TEG system 

with a heat sink  

0.4mW 

NA NA NA No No 

Solar-thermal energy 

harvesting system 

Eight pieces TE 

modules (medium) 

with a heat sink  

unknown 

300mAh NiMH 

battery 

Yes NA No No 

Mateu’s platform Medium TEG  

Unknown 

Two NiMH 

batteries  

Yes EnOcean  No No 

Eakburannawat’s 

platform 

Large TEG with a heat 

sink 

Unknown 

Unknown NA NA Yes No 

In conclusion, two problems have to be addressed when power is harvested from 

ambient heat flow, especially for micro-scale thermal energy harvesting system. 

Firstly, low ambient temperature difference may produce a voltage output that is too 

low to recharge a battery or power a device, even to power a boost converter. Hence, 

finding out how to increase the temperature difference or maintain a large temperature 

difference between the thermal energy harvesting system is critical. A high efficient 

heat transfer system should be considered in the thermal energy harvesting system. 

Secondly, the fluctuations in the ambient temperature will produce fluctuation in the 

voltage output of a TEG. Hence, a regulator must be used in the system. In summary, a 

heat sink system and a boost converter system are two essential components in the 

thermal energy harvesting system. Eakburanawat’s work shows that the MPPT circuit 
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can greatly improve the system performance by maintaining the TEG operation at an 

MPP. 

2.5 Summary 

It is evident that the performance of a wireless sensor node can be greatly enhanced 

by using an energy harvesting technology. However, problems can be identified by 

analyzing these energy harvesting platforms both on solar energy and thermal energy. 

Firstly, there are plenty of different ways to build energy harvesting systems, even by 

using the same components. No researchers stated their system architecture was most 

efficient. Because each platform is designed for a typical sensor node and just focused 

on harvesting one type of energy source, the systems cannot easily be expanded to 

harvest another type of energy and use for other types of applications. Since there are 

plenty of design considerations and system parameters to be considered when 

designing a new type of energy harvesting system, the system design procedure is very 

complex and time consuming.  

Secondly, there is no clear system design procedure introduced in the literature to 

guide a system designer to design a new energy harvesting system. The designer 

always follows a trial-and-error procedure to develop a new energy harvesting system. 

This procedure is considered as being inefficient. Hence, if there is a simple and 

efficient design procedure which can be followed, the energy harvesting system design 

progress can be simplified and the developing time can be shortened.  

Thirdly, unlike the battery powered sensor node system, the system lifetime and 

performance cannot be easily predicted by examining the residual energy level of the 

battery, especially for a rapidly changed environment. Generally, a lot of proposed 

systems failed at the first implementation. For instance, as shown in HydroWatch, the 

system can only harvest two thirds of the expected solar energy when they are 

implemented in a forest. While energy harvesting has the potential to enable 

near-perpetual system operation, designing an efficient energy harvesting system that 

actually realizes this potential requires an in-depth understanding of several complex 

tradeoffs. Hence if there is an accurate and efficient system model to model the system 

performance before the implementation, all three aforementioned problems might be 

solved.  
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Moreover, the cost-size effectiveness and system efficiency are two design 

objectives which should be achieved in designing a micro-scale energy harvesting 

system for powering the sensor node. Based on the platforms described in the 

literature, the system efficiency can be divided into four parts, which are the energy 

conversion efficiency, the energy transfer efficiency, the energy buffering efficiency, 

and the energy consumption efficiency. By increasing these four types’ efficiencies of 

the system, the performance of the system can be greatly improved by the form of the 

volume, cost and energy.  

The primary goal of this thesis is to design and implement a self-powered and 

self-sustaining micro-energy harvesting system for powering wireless sensor nodes. 

This means the system should have a perpetual lifetime. Based on Kansal et al’s (2007) 

findings, the system may have perpetual lifetime by achieving an energy neutral 

operation, which means the energy consumption of the sensor node is equal to or less 

than an energy generation of the system at any time. This function can be achieved by 

using a power management unit. Because energy generation is highly dependent on the 

environmental energy, which is dynamically changed, an accurate indication of the 

energy relationship between the energy generation and energy consumption is difficult. 

By analyzing these proposed systems, some authors stated their system can have a 

lifespan of as long as 20 years. But this is achieved by using a larger energy harvester 

and larger energy storage element. This system does not meet the key requirement of 

cost-size effectiveness. Hence, how to decide the energy harvester size and storage 

size should be considered. 
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Chapter 3. Micro Energy Harvesting 

System Architecture Design 

3.1 Background and motivation 

A typical energy harvesting system has three components: an energy source, a 

harvesting architecture and a load. The energy source refers to the ambient source of 

energy to be harvested and the harvesting architecture consists of the mechanisms to 

harness and convert the input ambient energy into electrical energy. The load, which is 

a wireless sensor node, acts as the main energy consumer of the system. Each 

component has its own characteristics and only when these characteristics work 

properly with each other, a good energy harvesting system can be designed. According 

to this point of view, one of the difficulties of building an energy harvesting system is 

to determine the architecture of the system. As stated in Chapter 2, different energy 

harvesting systems have different system architectures, and it is hard to say if any 

particular systems’ architectures have the best performance. Moreover, in a distributed 

system, the energy sources available at different locations vary with the place and time 

and the sensor nodes in the same network may have different energy harvesting 

sources. Hence, flexibility and stability are considered two features of a successful 

micro-energy harvesting system. But unfortunately, none of the existing works meet 

both of these two features and most of them were designed for a typical application 

which cannot be easily expanded to other applications. Moreover, in order to design a 

highly efficient micro-energy harvesting system, a great number of design parameters 

and choices, such as the cost and size of the system, the lifetime and energy efficiency 

of the system, should be considered. But there is no clear design guideline proposed in 

literature to guide the system designer. Most of the existing systems are developed 

based on the worst-case scenario. The systems are normally oversized and not as 

efficient as perhaps expected.  
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3.2 Features of the proposed System 

In this chapter, a generic system architecture for a micro-energy harvesting system 

is proposed. In order to make the architecture useable for all kinds of energy 

harvesting technologies, it is systematically constructed by five parts. According to 

this design, the system architecture can be easily expanded to other applications by 

changing the parameters of the components or adding some additional components 

into the system. Based on the proposed system architecture, a simple and efficient 

design guidance has been proposed to guide and optimize the design procedures of an 

energy harvesting system. Since the small volume, low cost and the highly efficient 

systems are considered as three factors which need to be satisfied in the micro energy 

harvesting system design, the proposed guideline considers these factors into the 

system design procedure.  

3.3 A generic architecture of energy harvesting system 

   The existing energy harvesting systems can be divided into two architectures: 

harvest-use and harvest-store-use, as shown in Figure 2.1. According to the shortages 

and advantages of these two types of system architectures in relation with the features 

of a wireless sensor node, the harvest-store-use architecture is more suitable for 

powering a wireless sensor node. Hence, the proposed generic architecture is based on 

the harvest-store-use architecture.   

Normally, a micro-energy harvesting system consists of several components which 

conduct tasks such as collecting an ambient energy, boosting the harvested energy, 

buffering the excess energy and distributing the harvested energy.  Numerous ways 

of assembling each component of the system have been proposed in Chapter 2, but 

none of those works can be adapted for another type of application or another type of 

energy harvesting technology. Moreover, based on their experimental results, the 

efficiency of these energy harvesting platforms is not efficient enough to sustain an 

everlasting lifetime of a sensor node. Hence, it is essential to design a generic and 

efficient system architecture, which can be adapted for different applications.  

Regarding micro-energy harvesting systems, the maximum energy out of these 

micro-scale energy transducers are extremely small, often only a few mW or even μW. 
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Hence, the energy efficiency of the system is a critical design factor which should be 

considered in the system architecture design in order to make the system extract as 

much energy as possible.As stated in Chapter 2, the energy efficiency of the system 

can be divided into four parts, as shown in Figure 3.1.  

 

Figure 3.1 Block diagram of energy flow and four energy efficiencies of an energy 

harvesting system 

 Energy conversion efficiency determines the total energy harvested by the 

energy harvester. It depends on the features of the harvesting technology, the 

capability of the energy harvester and the environmental factors. This type of 

energy efficiecny can be improved by selecting or designing a high efficient 

energy harvester. If the environemnt energy is         and the maximum 

harvested energy of the energy harvester is           , then the energy 

converion efficinecy               can be expressed as: 

                                                                
          

       
                                          

 Energy transfer efficiency             determines how much the harvested 

energy can  avaialbe for using. This can be calculated as: 

                                                              
          

          
                                             

where            is the regulated energy of the system by a power converison 

circuit.  This type of energy is determined by two factors: how much energy 

can be extracted from the energy harvester and how much the extracted energy 

can be transferred to the system. As stated in (Park and Chou, 2006) and 



Chapter 3: Micro Energy Harvesting System Architecture Design 

 38 

(Eakburanawat and Noonyaroonate, 2005), a system with a proper MPPT 

circuit can greatly enhance system efficiency by maintaining the energy 

harvester working at its MPP. Hence, a MPPT technology can increase the 

energy being extracted from the energy harvester. Hence the energy  

            can be transferred to the power conversion circuit from the energy 

harvester, which is determined by MPPT efficiency of the MPPT circuit 

     . Then             can be expressed as: 

                                                                                                            

Then             will be transferred to the power conversion circuit and a part 

of this energy could be regulated and transferred            to the next circuit. 

           can be calculated as: 

                                                                                                       

where             is the regulating efficnecy of the power conversion circuit. 

By applying Equations 3.3 and 3.4 into Equaiton 3.2,             can be 

rewritten as:  

                                                  
                            

          
                   

 Energy buffering efficincy           determines how much the regulated 

energy of the system can be stored into the energy buffers. The equation can be 

expressed as: 

                                                            
         

          
                                              

where           is the energy being stored in the energy buffer. By dividing 

the charging and discharging processes of the energy buffer,           is 

dependent on the charging efficnecy            and lifecycle of the energy 

buffer. By igonoring the lifecycle and age effect of the energy buffer, 

          can be expressed as: 
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The charging efficinecy            is dependent on characterisctics of the 

energy buffers being used in the system. As stated in Chapter 2, the charging 

efficnecy of the super-capacitor is higher than the charging effciency of the 

rechargeabe battery. In order to enhance the charging efficnecy, the 

super-capacitor should be used to store the regulated energy. But unfortunately, 

the leakage of the super-capacitor is much higher than the rechargeable battery. 

The supercapacitor is not suitable to hold energy for a long time. This is why 

two energy buffer design should be considered in this thesis. This will 

described later.   

 Energy consumption efficiency              is defined as the portion of the 

energy consumed by the sensor node. This can be expressed as: 

                                                              
       

       
                                              

where         is total energy consumed by the entire system and         is 

energy consumption of the target sensor node.         can be calculated by 

knowing the energy consumption of each component of the system.  

                                                        

where      ,                   and                 are the energy overhead 

of the MPPT circuit, power converison circuit and buffer controlling circuit, 

respectively. According to the calculation, in order to make energy 

consumption of the system as efficient as possible, the sensor node should 

consume a large portion of the harvested energy. Since most of the proposed 

energy harvesting platforms have been designed according to the worst 

scenario, the energy buffer is always being fully charged. Then a proportion of 

harvested energy is wasted in these platforms. Hence, a power management 

strategy should be followed in order to increase/decrease the power 

consumption of the sensor node when there is large/small energy generation.  

By considering all the functions and characteristics of an energy harvesting system, 

a generic micro-energy harvesting system is depicted in Figure 3.2.  
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Figure 3.2 Block diagram of a micro-Energy harvesting system powered wireless 

sensor node 

In order for the architecture to be easily adapted to different applications, it consists 

of five subsystems based on the energy flows. The first part of the system is the 

external environment; this determines the kind of energy source and the amount of 

energy available to an energy harvesting system. The second component of the system 

is an energy harvester, which is determined by knowing the energy source of the 

environment. For a micro-energy harvesting system, the selected energy harvester 

normally should be small, low cost and highly efficient. But it is very hard to have all 

these advantages in one device. Hence, a trade-off should be considered and the 

energy harvester should be carefully selected and designed to meet the system 

requirements.  

 According to the energy flow, the harvested energy is small and sometime the 

harvested energy is AC power (RF energy harvesters and kinetic energy devices), 

which cannot direclty charging or powering the system. Hence, it needs an interface 

circuit to transfer the harvested energy can be used by the system.  Based on this 

point, the third component of the system is the power conversion system, which is 

used to harness and regulate the harvested energy. More in detail, this component can 

be divided into two parts: a power extraction circuit and a regulator circuit. The main 

funciton of the power extraction circuit is to optimal power transfer from the generator 

to the regular circuit. It also can be called MPPT circuit. For different energy 

harvesting technologies, the extraction circuits are different, because the harvested 

energy types are different. For example, kinetic energy devices can be roughly seen as 

a current source, which the optimal power transfer from the generator to the load is 
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achieve when the interal resistance of the generator is equal to load. But the situaiton 

for solar energy harvesting system is totally different. This is because that the solar 

cell cannot be considered as a current source. It more like a current and voltage 

combination device. Hence, the maximum power point of solar cells cannot be equal 

the resistance of the generator to laod. In order to track the maximum power point, 

some approches to find the peak power transfer point of the solar cell should be carried 

out.  

The fouth part of the system is the energy buffer system. As mentioned previously,  

the lifetime of the system is determined b the lifetime of the energy buffer system. If 

the system want a nearly perpetual lifespan, the lifetime of the energy buffer should as 

long as possible. According to this point, the dual buffer design with a smart energy 

distribution circuit is used. The advantage of using the proposed system architecture 

can be reflected in the dual buffer design. Table 3.1 lists the comparative results of the 

dual buffer design with other two single buffer designs (single rechargeable battery 

and single super-capacitor). The table is classified by lifecycle, charging efficiency, 

leakage and cost. The results show that the lifecycle of the single rechargeable battery 

is limited by the rechargeable battery, which is around 1000 times. The lifecycle of the 

dual buffer design and single super-capacitor design are determined by the 

super-capacitor, which can be seen as infinite. This is big advantage for an energy 

harvesting system, which desired a long lifespan. By examining the charging 

efficiency of these three designs, the dual buffer design and the single super-capacitor 

design have the almost the same charging efficiency. This is because that the energy in 

both designs is charged in the super-capacitor. The single rechargeable battery design 

has the lowest charging efficiency. This because that the charging efficiency of 

batteries is lower than the charging efficiency of supercapacitors. By comparing the 

current leakage of these designs, the dual buffer design and the single rechargeable 

battery design have small leakage current. This is because that the most of energy is 

stored on the rechargeable battery, which the current leakage is smaller than the 

current leakage of the super-capacitor. Based on this point, the single super-capacitor 

design has large current leakage, which restrains this design to be used in long time 

interval energy sources, such as solar. The fourth factor considered is the cost of the 

system. The single super-capacitor design is the most expensive one in these three 

designs because the high capacitance super-capacitor is expensive by comparing with 
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the low cost rechargeable battery. Hence, the single super-capacitor design is not 

suitable for a low cost system design. For the single rechargeable battery design, it has 

lowest system cost but it has very expensive maintaining cost such as changing the 

rechargeable battery or examining the battery lifecycle. This makes that the total 

system cost of the single battery design is much higher than the dual buffer design, 

which has a medium system cost in relation with a low maintaining cost.  Based on 

the advantages of the dual buffer design over the single buffer designs, the dual buffer 

design is more suitable for using in a high efficient micro energy harvesting system. 

Table 3.1 Proposed dual buffer design vs. single buffer designs  

Name Lifecycle  Charging 

Efficiency  

Leakage  Cost Maintaining 

cost 

Dual buffer 

design  

Infinite High  Small Medium Low  

Single 

rechargeable 

battery 

Limited 

(around 

1000 

times) 

Low  Small  Low High 

Single 

super-capacitor 

Infinite High Large  high Low 

The fifith part of the system is the target sensor node. This is the main energy 

consumer of the system. In order to increase the energy consumption efficiency of the 

system, a power management strategy is considered. Then the entire architecutre of an 

energy harvesting system can be designed by integrateing these five components 

together. In this thesis, solar and thermal energy harvesitngs are considered. In order to 

make the arcticutre more suitable for these two kind of energies, Figure 3.2 is redrawn, 

as shown in Figure 3.3.  In the figure, the power conversion circuit has been changed 

as the regular circuit, which includes the MPPT circuit, the DC-DC boost converter 

and the charge pump circuit (optional). The DC-DC boost converter used in this 

arcthicture is because the boost converter is non-resistor device,which can minimize 

the power consumption of the regular circuit.  
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Figure 3.3 Block diagram of a micro-Energy harvesting system powered wireless 

sensor node 

3.4 A design guideline of a micro energy harvesting system 

Normally, the design process of an energy harvesting system is complex because 

numerous system parameters should be considered. This task is harder when designing 

a highly efficient micro energy harvesting system, because the system should be 

designed in a holistic way of choosing and designing a micro energy harvester and the 

constituent circuit, which a number of system factors, such as the relationship of the 

energy generation and the energy dissipation of the system along with the cost and size 

of the system should be considered. Recently, most of the existing systems have been 

designed based on the trail-and-error procedure. As there is no clear design guideline 

in literature to guide design, the system with this design procedure may cause some 

problems when it is implemented in a real environment directly.  According to these, 

a simple and an efficient design guideline is urgently required for an energy harvesting 

system.  

 Any energy harvesting system, if it has a perpetual lifetime, should satisfy the 

energy generation equal or larger than the energy consumption all of the time. 

According to this rule, the deisgn flow of an energy harvesting system based on the 

proposed system architecutre is depicted in Figure 3.4.  
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Figure 3.4 Design flow of micro-scale energy harvesting system 

Based on the diagram, the design procedure of the energy harvesting system is to 

find the relationship between the energy generation and the energy consumption. This 

can be done by knowing the following three factors of the system:  

 Determining the energy generation of the system,  

 Determining the energy consumption of the system,  

 Determing the power mangement stragegy of the system. 

Normally, the energy generaiton and the energy consumption of the system can be 

obatained by knowing four types of input parameters of the system, provided by the 

user before designing the system. Based on the energy type, these four types of input 

parameters can be classified into two parts, as shown in the left hand side of Figure 

3.4.  

 Energy generation parameters include the target environment conditions such 

as location, temperature and light level, and the possible energy harvesting 

technologies, which include the energy harvest capability, size and cost. 
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 Energy consumption parameters include specifications of the system such as a 

desired system lifetime, the maximum and minimum duty cycle of the system, 

and electrical specifications of the sensor nodes such as the maximum and 

minimum power consumption of the sensor node.  

Then the design procedure can be divided into two routes. The first route follows 

the  energy flow of the  harvested energy. As shown in Figure 3.4, the harvested 

energy of the system can be predicted by understanding the environmental conditions 

and characteristics of the energy harvester. But this is not the exactly energy available 

for the system because some portion of that energy is dissipated by the mismatching 

circuit and the working point of the energy harvester. For each environmental 

condition, there is a unique operation point of the energy harvester at which the 

maximum harvested energy can be transferred to the next circuit. Any MPPT circuit is 

used to track and maintain the system working at the Maximum Power Point (MPP). 

Then the energy transfer to the regulator circuit can be calculated by knowing the 

MPPT efficincy and the power consumption of the MPPT circuit. After that by 

knowing the input energy level  and the energy conversion efficiency of the regulator 

circuit, the amount of energy available to the system can be calculated. In order to 

make the calculation more realistic, the regulated energy is stored into the energy 

buffer before it being used by the system. Hence, the energy availability in the system 

is calculated by knowing the buffering efficiency of the system, which can be 

determined by knowing the parameters of the energy buffers.  

On the other energy router, by knowing the desired system specifications (lifetime 

and duty cycle) and the basic electrical characteristics of the sensor node, the energy 

consuption of the sensor node can be calculated. By adding the energy dissiaption of 

the MPPT circuit, the power conversion circuit and the control circuit of the energy 

buffers, the desired energy level of the system can be calculated.  

And then by knowing the system requirements proposed by the end user such as the 

cost, size, lifetime and  performance of the system, the power mangement strategy 

can be determined by setting different priority level of these parameters. For example, 

if the end users concern system lifetime more than the performance of the system, than 

the energy neutral operation should have high prioirty than maximizing the system 

performance. Moreover, if the end users want the system has compact size and they do 
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not care about the cost of the system, then the power management strategy is changed 

to reduce the sizes of the energy buffers and the energy harvesters. In this thesis, in 

order to desing an everlasting energy harvesting system, the power management 

strategy is that the energy neutral operation has high priority level over the system 

performance.  

By applying these three system factors, the energy generaiton, the energy 

consumption, and the power management stragety, in a simulaiton model, the energy 

relaitonship of the system can be determined. Then the sizes of the energy buffer and 

energy harvester can be calculated. Additionally, the energy buffers and the energy 

harvester are varied in price and volume. Due to optimize the system cost and size, the 

trade-off between these two components should be considered. According to Figure 

3.4, the rest of the system can be designed. By knowing what kind of MPPT 

technology being selected and what type of DC-DC converter circuit being used, the 

MPPT based power conversion circuit can be desinged.  According to the energy 

buffer type and the power management stragegy, the power managmeent subsystem 

can be developed. Then the entire energy harvesitng system can be constructed by 

integrating these components together, as shown in Figure 3.5.  

 

Figure 3.5 Components of an energy harvesting system 

3.5 Summary 

In this chapter, a generic architecture of an energy harvesting system and the design 

guideline based on this architecture are proposed, which form the foundation of the 
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remainder of the chapters. Since the system efficiency is critical for any energy 

harvesting system, most of the efforts in the following chapters are focused on 

improving system efficiency and performance. 
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Chapter 4. Energy Harvesting 

Transducer Modeling 

4.1 Background and motivation 

Knowing the energy generation of the system is essential in the design of an energy 

harvesting system. As stated in Chapter 3, the harvested energy is highly dependent on 

both the environment where the system is placed and the characteristics of the energy 

harvester which is used. Normally, the environment conditions can be obtained by 

some environment sensors or querying the historic data of the environment and the 

characteristics of the energy harvester can be determined by the datasheet, which is 

provided by the manufacture of the energy harvester. But the dynamically changed 

environment makes the electrical characteristics of an energy harvester, especially for 

a micro scale energy harvester, change rapidly and it is very hard to predict the energy 

generation of the system by simply knowing the harvesting capability of the energy 

harvester. Modelling an energy harvester in a mathematic way is considered as an 

efficient way to analyse and feature the energy generation of an energy harvester. To 

date, numerous models of energy harvesters have been developed in the literature to 

predict the energy generation of the energy harvesting system. But the low model 

accuracy and the complex model structure are the two main shortages in the existing 

models. In this chapter, two energy harvesters’ models, solar and thermal, are 

developed as two illustrative examples to show energy transducers can be modelled 

and characterized. The accuracy and the system complexity are the two factors, which 

are being considered.  

4.2 Solar panel modelling 

Modelling a solar energy harvester is best way to know the characteristics of the 

solar energy harvesting technology.  Normally, a photovoltaic system (solar panel) is 

used as a solar energy harvester to directly converter light energy into electricity. The 

output power of a solar panel highly depends on the environment conditions such as 

position, light intensity and temperature. The light intensity primarily affects the 
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amount of current generated and the temperature determines the voltage produced by 

the solar panel (Dezso et al., 2007). All of these factors need to be taken into 

consideration when modelling a solar cell. Recently, numerous solar cell models are 

presented in literature and these models can be roughly classified into a single diode 

model and a more sophisticated two or more diodes model. The detailed descriptions 

of these models are summarised in Xiao et al. (2004). The single diode model is the 

most developed and most common equivalent circuit for a silicon solar cell because of 

the simple model structure, as shown in Figure 4.1. According to Figure 4.1, five 

parameters, which are a photocurrent    , a dark saturation current   , a shunt current 

    and a shunt resistor    and a series resistance   , should be determined before 

modelling a solar cell. But unfortunately, these parameters are not given in the 

manufactures’ datasheets, which normally provide the open-circuit voltage      , the 

short circuit current      , the panel voltage and current at the maximum power point 

       and       . Hence, a straightforward approach, which uses the information 

provided by the data sheet, to construct a model of a solar cell should be considered. 

According to this idea, (Dezso et al., 2007), (Farivar and Asaei, 2010), (Villalva et al., 

2009) and (Petreus et al., 2009) have proposed different solar cell’s models to simulate 

the electrical characteristics of the solar cells. In order to extract parameters easily and 

to simulate the model rapidly, a solar cell model based on the first empirical model 

(Petreus et al., 2009), has been adopted in this work. The I-V characteristics of a solar 

cell can be written as Equations 4.1. 
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  {

   
      

          
    

            

   
    

      

     
   

   
      

      
  

     

 
(

 

            
)                                

            

And       ,         are the output voltage and the maximum power of a solar cell, 

respectively.  
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  Figure 4.1 The equivalent circuit of the one diode model 

According to Equation 4.1, a solar cell model can be constructed by knowing 

       ,      ,       ,         , and       . Ordinarily, the open circuit voltage 

       and short circuit current       of a solar cell are easily extracted from an 

experiment. By following two linear relationships between the open circuit voltage 

and the MPP voltage (      ) of the solar cell, and the short circuit current and MPP 

current (       ) of the solar cell, the MPP of the solar cell in a certain light condition 

can be determined (Esram et al., 2007).  

                                                                                                                                  

                                                                                                                                      

                                                                                                                             (4.4) 

where      is the coefficient of a linear relationship between the MPP voltage and the 

open circuit voltage of a solar cell, and     is the coefficient of a linear relationship 

between the MPP current and the short circuit current of the solar cell.  In this chapter, 

a SANYO amorphous solar panel AM-5412 (SANY AM-5412, 2008) has been 

selected to verify the solar cell model. In order to simplify the model description, two 

fixed coefficients           and           are employed to estimate the MPP 

voltage and current of the solar cell. The parameters of the solar panel are illustrated in 

Table 4.1. The first column is the data when the solar panel is illuminated by a 50kLx 

standard light. This data is directly provided by the manufacturer. But this is not 

enough to characterize the solar cell in different situations. Some additional 

experimental tests should take place to obtain enough information for the model 
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construction. In this work, three additional tests, which the light intensities are 35kLx, 

8.12kLx and 2.93kLx, were tested in the laboratory and the open circuit voltages and 

the short circuit currents of these three tests were recorded. By using Equations 4.2, 

4.3 and 4.4, the other three parameters of the solar cell’s model are determined, as 

shown in Table 4.1.  

Table 4.1 Experimental parameters of the AM-5412 solar cell 

50kLx 35kLx 8.12kLx 2.93kLx 

Parameter Ratings Rating Rating Rating 

                 3.4 V 3.14V 2.88V 2.61V 

    19.4mA 13.2mA 2.33mA 0.592mA 

     44mW 27.4054mW 4.4369mW 1.008mW 

     16.9mA 11.484mA 2.0271mA 0.515mA 

      2.6V 2.3864V 2.1888V 1.9575V 

By applying these parameters into the simulation model, the I-V and P-V 

characteristics of the solar panel can be depicted. In order to evaluate the accuracy of 

the model, an experimental test has been taken place at the laboratory to validate the 

model. A 100W desk lamp has been used to produce a stable light irradiance in the 

laboratory. The output voltages and currents of the solar panel have been measured 

with a variable resistor, which can adjust its resistance from 100 ohms to 1Mohms. 

Figure 4.2 (a) and (b) plot the I-V curves and P-V curves of the solar panel in different 

light conditions for both the simulation and experiments. According to the figures, the 

accuracy of the model is around 92% at MPPs. Moreover, by analysing the P-V curve 

of the solar cell, the output power of the solar cell is highly related to the light 

irradiance levels and the output power of the solar panel is highly related to the output 

voltage of the solar cell in a fixed light condition. For each light condition, there is a 

peak power output point, MPP of the solar panel, where the solar panel can provide 

maximum output power when it operates at this point.  
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Figure 4.2 (a) I-V characteristic and (b) P-V characteristic of the solar cell 

4.3 Thermoelectric generator modelling  

The thermal energy harvesting is another energy harvesting technology being 

considered in this thesis. As stated in Chapter 2, recently TE materials improvements 

and advanced Micro Electro Mechanical System (MEMS) designed make more and 

more researches focus on using Thermoelectric Generators (TEGs) to harvest thermal 

gradient energy from environment. By comparing with other energy harvesting 

technologies,  a TEG has some advantages such as no moving parts, no working fluid, 

a reduction of maintenance, long system lifetime and  silence operation. A TEG is 

normally comprised by couples of TE modules, which are placed between two thermal 

transfer systems (a hot side heat exchanger and a heat sink). Unlike solar energy 

harvesting systems, the energy harvesting efficiency of the TEG system is much lower. 

Due to this, many researches have been concerned about developing an appropriate TE 

module and optimizing a TEG geometry design to enhance the energy harvesting 

efficiency, as shown in (Venkatasubramanian et al., 2011), (Kushch et al., 2001), and 

(Whalen et al. 2008). All these improving works rely on knowing the behaviour of the 

thermal energy harvester. According to this point, developing a simple accurate model 

for TEG is becoming a critical issue for both manufacturers and end users. A good 

simulation model of a TEG can not only simulate its corresponding behaviours, 

analyse its performance and improve predictive power of convertible heat energy, but 

also can optimize the TEG design to cut down the design cycle and the system cost. 

However, because of the complex system architecture of the TEGs, an accurate and 

simplified TEG model is one of major challenge in this area.  
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Recently, numerous analysis models of the TEG have been proposed. In these 

proposed works, a simple analytical one-dimensional (1-D) model of TEG is very 

often referred in the literature and these approaches can be derived from both the 

classical heat transfer theory (Chen et al., 2005) and irreversible thermodynamics 

(Chen et al., 2009), (Nuwayhid et al., 2000). But the complex heat transfer problems 

are not solved in these models. According to this point, a popular method of solving 

the heat transfer problems by converting the thermal equations into an equivalent 

electrical circuit, which has been proved to be helpful in understanding a complex 

thermal problems in a simple way, has been used in some research works to construct 

the TEG model (Chen et al., 2009), ( Gao and Rowe, 2007). Based on the equivalent 

electrical circuit, a mathematical software Matlab (Chen et al., 2005), or a circuit 

simulator PSPICE (Chen et al., 2009) can be used to build the TEG model. These 

existing works are basically for analysing a TE module rather than analysing the 

performance of the entire TEG system that their model did not address the constraints 

associated with the external heat transfer system. Furthermore, in order for a TEG 

system to generate a quantity of electric, a comparatively large amount of heat should 

be moved through the TE module because of its low thermodynamic efficiency. Hence, 

the design of the hot side and the cold side heat exchangers as well as matching the 

TEG requirements is critical for a high efficient thermal energy harvesting system. But 

unfortunately, a proper thermal system design and an optimization of the heat 

exchangers model have been ignored in the most of TEG models. And hence, some 

critical factor in determine the efficiency of the system has been neglected in these 

TEG models.  

4.3.1 Constructing a TEG model 

In order to develop a TEG model, the structure of the TEG should be determined. A 

typical configuration of a TEG is depicted in Figure 4.3, where the system is 

constructed by couples of TE modules, a hot side and a cold side heat exchangers, heat 

source, cooler (air) and thermal grease. The TE modules are sandwiched between two 

heat exchangers with two thermal grease layers. The thermal energy flow will conduct 

from the heat source to the TE module through the hot side heat exchanger and it will 

release from the cold side heat exchanger (heat sink) into the air. By analysing the 

function of each part of the system, the model of the TEG system could be divided into 

a TE module model part and a heat exchanger model part. In order to construct the 



Chapter 4: Energy Harvesting Transducer Modeling 

 54 

simulation model more accurate, two different situations are considered. The first 

condition is a TEG placed in an effective infinite heat source, such as radiator. In this 

situation, the maximum power of the TEG can be obtained when the maximum heat 

flow can be drawn from the heat source. The second situation is that the thermal 

energy harvesting system is placed in a limited heat environment, such as human body. 

In this case, the maximum power of the TEG system is when the thermal resistance of 

the TEG matches the thermal resistance of the heat source. In this thesis, the infinite 

heat source condition is considered.   

 

        Figure 4.3 A TEG system 

4.3.1.1 Constructing a TE module model 

For any TEG system, the TE module is the core part, which is used to convert 

thermal gradient energy directly into electrical energy. Normally, the TE module is 

constructed with many pairs of P-type and N-type semiconductor legs jointed by metal 

interconnects (typically Cu) connected in series. These legs are soldered thermally in 

parallel between two ceramic plates, as shown in Figure 4.4. If ignoring the material 

difference between the legs, the model of a TE module can be indicated by modelling 

a P-N type semiconductor couple and multiplying it with the number of couples (N) 

included in the module.  
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     Figure 4.4 Typical diagram of a TE module 

Some phenomena, which take place in the TE module, should be determined before 

constructing a TE module model. In order to simplify the design process, the TE 

module model is divided into a thermal part and an electrical part. Five thermal 

phenomena, which are the reversible Seebeck and Peltier effect, Thomson effects, and 

the irreversible Fourier conduction and Joule heating, can be observed in the thermal 

part. Seebeck effect is the basic operation principle of a TE module that is the process 

when the two junctions of two dissimilar materials are held at different temperature 

conditions and a voltage          is generated between the two junctions. The 

Seebeck coefficient,        , defined as the ratio of the voltage          generated by 

the Seebeck effect and the applied temperature difference    , is given by (Lineykin 

and Ben-Yaakov, 2007). 

                                                                   

(4.5) 

Meanwhile, an invertible effect, the Peltier effect, occurs when a current   flows 

through the TE module and the heat    absorbed or generated by the Peltier effect at 

the junctions is given by Equation 4.6.  

                                                         (4.6) 

where   is the Peltier coefficient. The relationship between the Peltier coefficient and 

the Seebeck coefficient is indicated in Equation 4.7.  

                                                                (4.7) 

where      is the temperature of the TE moduelin Kalvin. Moreover, when a 

temperature gradient is imposed on the TE module, the Seebeck coefficient varies 
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from place along the length direction of the TE legs. If there is a current flow I, 

flowing through the TE couples, the Thomson effect occurs. The Thomson heat QThomson, 

absorbed or released from the TE module depends on the temperature difference     

and the current flow  .   

                                                      (4.8) 

The Thomson coefficient, , is proportional to both the changes in the Seebeck 

coefficient and the temperature gradient of the TE module.  

                                                         (4.9) 

where           is a Seebeck coefficient difference. The Joule heating and the 

Fourier conduction are other two common thermal effects which can be detected in the 

TE module. The Joule heating is the process of heat dissipation on the resistive loads 

when an electrical current   pass through the module. This effect can be expressed as:  

                                                        (4.10) 

where      is total internal electrical resistance of the TE leg and     can be 

calculated by: 

                                (4.11) 

where  is the electrical resistivity of the material using in the TE leg, h is the height 

of the TE leg,  and A is the across section area of the TE leg.  

  The Fourier conduction states that when a temperature gradient exists within a 

material, heat energy will flow from the high temperature side to the region of low 

temperature. The heat absorbed or released by the Fourier conduction    is 

expressed as: 

                                                            (4.12) 

where        is thermal resistance of the TE leg and it can be calculated by: 

                                                        (4.13) 
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where   is thermal conductivity of the material,   is height of the TE leg and A is 

the across section area of the TE leg. Then the five thermal phenomena are introduced. 

  In order to simplify the thermal analysis, a formal analogy between heat and 

electrical conduction is adopted in this chapter. A list of the analogies between thermal 

and electric variables and their units are given in Table 4.2. According to the table, a 

heat flow source and a temperature difference can be modelled as an electrical current 

and a voltage of an electrical circuit. Moreover, a thermal resistance        can be 

represented by an electrical resistance R. A thermal mass        can be treated as a 

capacity in the electrical circuit and it can be described by the expression (Lineykin 

and Ben-Yaakov, 2007). 

                                                                (4.14) 

where         is volume of the material,   is density of the material and    is 

specific heat capacity of the material. 

Table 4.2 Analogies between electrical and thermal variables 

Thermal variable Electrical variable 

Parameter Unit Parameter Unit 

Heat flow (  ) W Current flow (I) A 

Temperature difference (  ) K Voltage (V) V 

Thermal Resistance (      )       
Electrical Resistance (R)  

Thermal mass (      ) J/K
 

Electrical capacity (C) F 

Absolute zero temperature 0K Ground  0V 

According to Table 4.2, the schematic model of TE module can be transformed into 

an equivalent electrical circuit scheme by simply changing the variables. The five 

thermal processes are considered as five different power sources in the circuit. As the 

model is fabricated for low temperature applications, it can be assumed that the inside 

of the TE legs is homogeneous and the legs are insulated both electrically and 

thermally from their surroundings, except at the junction contacts. The proposed 

thermal model of the TE module is depicted in Figure 4.5. The model is split evenly 

into two parts: hot side and cold side. As the Joule heat    and the Thomason effect 
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   generated in the TE module follows its own temperature gradient, these heats can 

be split evenly between two sides with one half being conducted to the hot side and the 

other being conducted to the cold side. Moreover, the Peltier heat    is divided into 

           and            to express the Peltier effect occurs in the hot side and cold 

side, respectively. The    is used to display the Fourier conduction heat of TE couple. 

Additionally,   ,   ,   ,    are used to express the Fourier conduction taking place 

at the ceramic layer, the Cu layer and the solder of the TE module.  

 

Figure 4.5 Scheme of the thermal-electric analogy of the TEG model 

Before taking the numerical analysis of the TE module, the electrical part of the TE 

module should be determined. This can be presented by using a simple equivalent 

circuit consisting of a series-connected thermally induced voltage         , which is 

generated by the Seebeck effect, and an internal electrical resistance of the TE module. 

As a TE module is formed by N-type and P-type semiconductor materials, the Seebeck 

voltage          and the Seebeck coefficient of the TE couple can be expressed by 

combination of the Seebeck coefficients of the N-type and P-type semiconductor 

materials.  

                                 (     )                    (4.15) 

                                                            (4.16) 

where   is the number of thermal couples included in a TE module, and         ,  

   and    are the Seebeck coefficients of the TE couple, the P- and N-type 

thermoelements, respectively.  



Chapter 4: Energy Harvesting Transducer Modeling 

 59 

  The electrical part of the TE module is illustrated in Figure 4.6, in which the internal 

resistance of the module consists of the electrical resistance of the P- and N- type 

thermoelectric materials (   and   ),  resistance of interconnects (Cu)     and 

contact resistances          between each interface. In order to simplify the 

calculation, the contact resistances of the TE couple at each interface is assumed has 

the same value. Hence, the total contact resistance of the TE couple is expressed by 

          . Then the internal electrical resistance of the TE couple              is 

expressed in Equation 4.17. 

                            [                       ]     (4.17) 

 

         Figure 4.6 Electrical part of the TE module 

As shown in (Altazin et al, 2011), the electrical contact resistance in the TE legs 

causes a growth of the module’s electric resistance and results in the drop of their 

energy conversion efficiency. Hence, an approximate specific contact resistance  

                   (Altazin et al., 2011) is adopted in this work to calculate the 

contact resistance,        , of the thermo-couples.  

                                                          (4.18) 

where    is the area of the electrical contact of pellets which is equal to the contact 

area A.  

 By integrating the thermal part and the electrical part of the TE couple together, the 

model of the TE couple can be expressed. The model of a TE module can be 

calculated by multiplying the model of the TE couple by number of n, which is the 

number of the TE couples included in the TE module. In order to simplify theoretical 

analysis of a TE module, the TE parameters (Seebeck coefficient, electrical resistivity 
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and thermal conductivity) are assumed independent of the temperature. The heat    

transfer from the hot side heat exchanger to the hot side of the TE module at 

temperature          and the heat    release from cold side of the module at 

temperature           to the heat sink can be expressed as follows by using Equations 

4.5-4.14.  

                          
 

 
   

 

 
                               (4.19) 
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where    is the Forier heat, and            and             are the heat generated 

by the Peltier effect in both hot side and cold side of the TE module, respectively, and 

   and    are the temperatures at the hot end and cold end of the TE couples, 

respectively, and I is current flow into the TE couple. According to Equation 4.13, the 

total thermal resistance of TE couple,      , can be expressed by: 

                               
 

 (     )
                   (4.21) 

where    and    are the thermal conductivity of the N-type and P-type materials, 

respectively. For the low temperature applications, the Thomson effect is very small as 

compared to the Seebeck effect. Hence, the Thomson effect is neglected in this work 

because the WSNs are used in the normal environment.  

  According to Fourier’s heat conduction law, the thermal energy enters the hot 

junction and leaves from the cold junction of the TE module that can be expressed as:  

                             
           

     
                    

(4.22) 

                           
            

     
                  (4.23) 



Chapter 4: Energy Harvesting Transducer Modeling 

 61 

where           and           are the temperatures of the TE module at the hot 

junction and the cold junction, respectively, and       is total thermal resistance of 

the TE module without considering the thermal resistance of the TE legs. This is sum 

of thermal resistance of the ceramic plate   , Cu conductor    and solder   .  

               
  

    
 

  

    
 

  

        
               

(4.24) 

As the thermal balance between the thermal flows entering the hot junction and 

leaving from the cold junction of the TE module, Equations 4.19 and 4.20 are equal to 

Equations 4.22 and 4.23 by ignoring the Thomason effect   . By combination these 

equations, the heat balance equations at two junctions of the TE module are illustrated 

as: 
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                  (4.26) 

4.3.1.2 Constructing a heat exchanger model  

As the energy conversion efficiency of even the best TE modules available is very 

low, a proper heat exchanger system design is essential for a good TEG system design. 

A larger temperature difference between the two sides of the TE module means that 

more electrical energy can be generated by the TE module. Hence, it is very important 

to maintain a large temperature difference between the two sides of TE module. When 

the internal thermal resistance of the TE module is equal to the sum of all external 

thermal resistance, the maximum output power occurs (Chen et al., 2005). As shown 

in Figure 4.3, the external thermal resistance is determined by contact resistance 

between parts and between the surroundings, and the thermal resistance of the 

exchangers themselves. In order to maximize the efficiency of the heat exchanger 

system and to predict the performance of the generator, a numerical model of the heat 

exchangers subsystem should be designed and associated with the TE module model.  

A heat exchanger subsystem is composed of two heat exchangers, one is attached to 

a heat source to harvest heat from the heat source and another is exposed to thermal 

interface (air) to evacuate the heat from the cold side of the module. Because metals 
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are good thermal conductor materials, a piece of metal is considered as an ideal hot 

side heat exchanger. Moreover, as a large temperature difference between the heat 

source and the TE module can be obtained to compensate an inefficient hot side heat 

exchanger, a 1.7mm thickness and        square cross-section aluminium plate 

has been employed as the hot side heat exchanger in this chapter. The diagram of 

Figure 4.7 is being used to determine the thermal resistance of the hot-side heat 

exchanger. In Figure 4.7, T1 and T2 are the temperature of the hot side and cold side 

of the hot side heat exchanger, dT=T1-T2 is the temperature difference between the 

two sides of the heat exchanger, and Q is heat being absorbed by the hot side heat 

exchanger. The total thermal resistance of the hot side exchanger      is the sum of 

the thermal resistance of the hot side heat exchanger          and the contact 

resistance of between the heat source and the hot side heat exchanger, as expressed: 

                       

         will be described in the later section.  For the thermal resistance of the hot 

side heat exchanger, it can be expressed in Equation 4.27.  

                         
  

   
 

       

                   
             (4.27) 

where    is thermal conductivity of the aluminium plate and the value is        

    according to datasheet of aluminium material (Aluminium, 2010), and A and h1 

is the surface area and the thickness of the aluminium plate, respectively.  
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Figure 4.7 Circuit analysis of the hot side heat exchanger 

Because the system energy conversion efficiency is dependent on the temperature 

difference between two sides of the TE module, the cold side heat exchanger is 

another critical design parameter which should be determined. A solid to air interface 

is normally used in a lot of TEG systems. But unfortunately, this interface represents 

the largest barrier for the heat dissipation. Hence, a high efficient heat sink should be 

used to dissipate the tremendous amount of heat from the cold side of the TE module. 

The cold side heat exchanger is shown in Figure 4.8 and the overall thermal resistance 

of the heat sink,          , can further be decomposed into three classical components: 

thermal resistance of heat sink      , thermal contact resistance         , and thermal 

resistance of ambient         .  

                                              

(4.28) 

 

             Figure 4.8 Analysis circuit of a heat sink 

Based on Equation 4.13, the thermal resistance of the heat sink is  

                                                                

(4.29) 

where       is the thickness of the heat sink used in a TEG system,        is the 

thermal conductivity of the heat sink,       is the effective surface area of the heat 

sink.   
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  The thermal resistance between the heat sink and ambient,         , is normally 

estimated by the thermal resistance of  convection              and the heat body 

radiation           . 

                             
 

           
 

 

          
              

(4.30) 

where the thermal resistance of the convection is: 

                                                   )                (4.31) 

where              is the convection heat transfer coefficient, which depends on the 

type of media (gas or liquid) and the flow properties such as flow velocity. Generally, 

the convective heat transfer coefficient for ambient air   is within the ranges of 

5-25       and           (AN-1057, 2009) has been chosen in this chapter. 

The heat sink radiates the heat to air by the hot body radiation and the thermal 

resistance of the radiation            is expresses as (AN-1057, 2009).  

           
 

                
             

(4.32) 

where  the radiated heat transfer coefficient            is expressed in Equation 4.33.  

                                                               
          

            

(4.33) 

where       is the hot body absolute temperature (K) of the heat sink,          is the 

cold surrounding absolute temperature of air,   is the Stefan-Boltzmann constant 

(                   ) and   is the emissivity of the object, which normally is 

0.2-0.31 for an aluminium plate when it has a temperature of 300K .   

Thirdly, attaching a heat sink to a semiconductor package requires two solid 

surfaces being brought together into intimate contact. Unfortunately, no matter how 

well-prepared, solid surfaces are never really flat or smooth enough to permit intimate 

contact because all surfaces have a certain roughness. When two rough surfaces are 

pressed together, they actually touch only at a limited number of discrete parts of the 

interface, leaving the untouched area filled with air, as shown in Figure 4.9 (a). 
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Therefore, the real heat transfer area of the joints only occurs at several points of the 

apparent contact area and the thermal contact resistance is relatively high when the 

two rough surfaces are placed together. Because two ceramic plates are used as the 

two surfaces of the TE module to isolate electrical contact of the P- and N- type 

semiconductor, the surfaces of the TE module is very rough. The thermal contact 

resistance between the TE module and the hot side heat exchanger, as well as the 

thermal contact resistance between the TE module and the heat sink are considered in 

this chapter. As air is poor conductor of heat, it should be replaced by a more 

conductive material to increase the joints conductivity and to enhance the heat flow 

across the thermal junctions. Thermal joint compounds, typically bulk properties 

material, are usually used to enhance the contact area of the junction. Then the surface 

contact area can be redrawing as illustrated in Figure 4.9 (b).  

 

Figure 4.9 (a) Junction with no thermal interface and (b) Junction with thermal 

interface 

Based on the simplified assumption of homogeneous properties of the materials, the 

joint thermal resistance to the heat flow that incorporates the thermal joint compounds 

of the interstitial layer can be schematically shown in Figure 4.10.  
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Figure 4.10 Equivalent thermal resistance circuit for two plates with thermal 

interface material 

The joint thermal resistance, Kj, at the interface can be defined as (Marotta et al., 

2002)  

                             
 

   
 

 

   
        

 

   
 

 

   
               

(4.34) 

where Kb is the thermal resistance of thermal interface material, which is determined 

by the thermal grease used in the system and the thermal contact resistances     and 

    can be calculated by using Equation 4.35 (Wang et al., 2010).  

                
       

     
 

 

√     
  

 

 
                             (4.35) 

where   and     are the thermal conductivity of the two contacting surfaces, 

respectively, P is the contact pressure (MPa), H is the surface micro-hardness (MPa) of 

the softer of the two contacting surface, and    and    are the surface roughness (m) 

of the two adjoining surfaces, respectively. The effective absolute mean asperity slope 

m can be obtained from the approximate correlation equation from (Antonetti et al., 

1993) 

                        √                              (4.36)
 

   and     from Equation 4. 34 are the thermal gap resistances at each interface. 

They can be calculated by using Equation 4.37 (Antonetti et al., 1993). 
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                                                   (4.37) 

where             , which is the thermal conductivity of air, and   is gas 

parameter, which is assumed to be zero for the two plates with thermal interface 

material and Y is the mean plane separation, estimated to be 0.05mm (Antonetti et al., 

1993). The model of the heat exchanger subsystem is constructed by integrating the 

hot side heat exchanger and the heat sink together. 

4.3.1.3 Integrated TEG model 

 

           Figure 4.11 The Equivalent circuits of TEGs 

The integrated TEG model is comprised of the TE module model and the model of 

the heat exchanger system, as shown in Figure 4.11. In order to simplify the numerical 

model, the ideal hot and the cold sources are employed in this work. It is assumed that 

the hot side heat exchanger is attached to an ideal heat source with a constant 

temperature             , while the heat sink is open to an ideal cold source (ambient 

air) with a constant temperature         .            is the rate of heat transfer from 

the heat source to the hot side heat exchanger at temperature           , and      is 

the rate of heat releasing from the heat sink at temperature       to ambient. Then 

Equations 4.19 and 4.20 can be rewritten as follows： 
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The total temperature difference         applied to the TEG can be expressed as: 

                                                       (4.40) 

                                      

                                                            

(4.41) 

A cubic equation for    can be obtained by combining Equations (4.38-4.41).  

                              
                       

(4.42) 

where 
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Three roots can be obtained from Equation 4.42.  
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Only one real root      is meaningful. Hence, the output voltage, current and power 

of the TEG can be calculated by integrating the real root.  
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                                                    (4.47) 

                                                                                      (4.48)   

                                                                                   (4.49) 

4.3.2 Model validation 

A laboratory prototype of a TEG was built, as shown in Figure 4.12, to determine 

the accuracy of the computational model. As stated in the previous work, a Bi2Te3 TE 

module is well suited for low temperature applications. The prototype was built by 

using a commercially available TE module TEC1-12706 (TEC1-12706, 2008) with a 

size of          . The TE module has been inserted between the massive 

aluminium plate with the size of                 and an aluminium heat 

sink with size of               . An electric heater was employed to 

simulate the constant heat source. A thermal insulation box, which is designed by 

using some pieces of spong to surround the TE module, has been employed in the 

prototype in order to thermally insulate the TE module from air. Then the heat flow of 

the TEG can be consider only be dissipated from the cold side of the TE module 

through the heat sink to air. In order to maintain a constant room temperature, the 

prototype has been set in the room with air conditioning, where the room temperature 

is maintained at    . According to the experimental test, the thermal balance is 

reached in around 30 minutes. Hence, the prototype of TEG has been tested after the 

thermal equilibrium was reached. Moreover, in order to demonstrate the maximum 

power point of the TEG, a 1K potentiometer has been connected to the TEG to imitate 

the electrical load      .  
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   Figure 4.12 Test prototype of thermal energy harvesting 

4.3.2.1 Parameter setting 

In order to simulate the experimental conditions by using the proposed model, some 

parameters of the system should be determined. Normally, the TE properties for both 

p-type and n-type Bi2Te3 semiconductors, which are the Seebeck coefficient 

(       ), the thermal resistance of the thermal couple (     ) and the internal 

resistance of the module (         ), should be determined before simulation. But 

unfortunately, the manufactures of TE modules use the following parameters to 

specify their products, as shown in Table 4.3. 

Table 4.3 Performance specifications of TEC1-12706 module 

Parameters Description Value  

   Hot side temperature      

      The largest temperature differential that can 

be obtained between the hot and cold 

ceramic plates  

    

     The maximum input current added on the 

TEM to produce the maximum possible  

    

6.4 A 

     The maximum DC voltage that will deliver 

the maximum possible    at the supplied 

     

16.4 V 

     The maximum amount of heat that can be 

absorbed at TEM’s cold plate at      and 

   equal    

57 (watts) 

Three equations could be used to calculate the parameters of the proposed model 

(Lineykin and Yaakov, 2004).  
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By inserting the parameters from Table 4.3 into Equaitons 4.50, 4.51 and 4.52, the 

prameters of the proposed model can be calculated. And thus:                  , 

                   and    2.19 K/W and n=127. The other parameters of the 

TEG system are listed in Table 4.4. A thermally conductive heat sinking compound 

fills the gaps between the surfaces to lower the contact thermal resistance. And then 

the thermal resistance of a contact between the TE and the plate is estimated at 

          (AN-1057, 2009).  

Table 4.4 The parameters of the TEGs 

Parameters Value  Parameters  Value 

Effective Area of TE 

leg 

          Thermal resistance 

of  the TEM 

without TE legs 

      
     

 
 

Ceramic plate’s 

Height  

          Thermal resistance 

of the heat sink  

                

Solder Height          Thermal resistance 

of the hot side heat 

exchanger 

                   

 

Cu lead Height             Thermal contact 

resistance 

           

Thermal conductivity 

of Ceramic  

              

            

Thermal 

conductivity of 

solder 

                  

Thermal conductivity 

of Cu 

       

             

  

The experimental results of physical TE modules are compared with the computer 

simulation result shown in Figure 4.13. According to the figure, the accuracy of the 
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computational model can be observed to be around 89%, which means there is a great 

agreement between measurement and simulation.  

 

Figure 4.13 Power generated for different    

4.3.2.2 Capabilities of a TE module  

As stated in the previous sections, the capability of a TE module is the crucial factor 

in determining the TEG’s conversion efficiency. The capability of a TE module is 

determined by the TE material parameters, including Seebeck coefficient, internal 

electrical resistance, and thermal resistance. For the limited heat environment, the 

maximum system performance can be obtained when the thermal resistance of the TE 

module equals to the thermal resistance of the heat exchanger system. For the infinite 

heat environment, the following parameters have been evaluated by the model.  

In order to determine the relationship between Seebeck coefficient and the power 

generated by the TEG, four groups of Seebeck coefficients have been compared by 

using the simulation model, as shown in Figure 4.14 a. By observing the curves, when 

the Seebeck coefficient improved 35%, more than 80% of power can be generated by 

the same system. This is why plenty of research works focus on developing high 

coefficient TE materials for improving TEG’s efficiency. The experimental results of 
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              V/K have been compared with the simulation results to show the 

accuracy of the model, and the results show this to be 90%.  

The second parameter being considered in this chapter is the internal resistance of 

the TE module. Figure 4.14b shows different internal resistances of the TE module 

influences the output power of the TEG. It can be seen that, the less internal resistance 

of the TE module has, the more electric power can be generated. According to this rule, 

the TE module with less internal resistance is preferred in a highly efficient thermal 

energy harvesting system design. The corresponding internal resistance of 2.3ohms 

has been evaluated in the laboratory. The accuracy of the model is 91%.  

Thirdly, in order to determine how the thermal resistance of the TE module affects 

the system performance, the thermal resistance of the TE legs and the external thermal 

resistance of the TE module have been simulated respectively. The simulation results 

are shown in Figures 4.14 c and d, respectively. In these two figures, the same trend 

has been found by examining the curves. The maximum power can be generated when 

the lowest thermal resistance of the module exists. The corresponding experimental 

results (                                 are obtained in the laboratory. 

The accuracy in these two cases are 91.2% and 90.6%, respectively. Hence, a 

conclusion can be made that a good TE module should combine a high Seebeck 

coefficient, a low thermal resistance and a low electric resistance. The simulation 

results match the corresponding experimental results.  
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Figure 4.14 (a) Power generated with different Seebeck coefficient (b) Power 

generated with different internal electric resistances (c) Power generated with 

different internal thermal resistances (d) power generated with different external 

thermal resistance of the module 

4.3.2.2 Capabilities of a heat exchanger systems  

The second evaluation process is to simulate the heat exchanger system and find the 

corresponding relationship between the performance of the heat exchanger system and 

the whole TEG system. Similar to evaluate the TE module, four different situations 

have been considered respectively and the corresponding experimental tests have been 

carried out to validate the accuracy of the model. Figure 4.15 a, b, c, and d show the 

results of these four situations. With respect to the material being used in TEG 

construction, a good thermal conductor is required in order to transfer the heat from 

the heat source to TE module to achieve high system efficiency. Three kinds of hot 

side heat exchangers are compared in the model, as shown in Figure 4.15 a. The most 

efficient one is copper plate, because the thermal behaviour of copper is better than the 

other two types of metal plates. The corresponding experimental test, which uses an 

aluminium plate, has been tested in the laboratory with the test setup to show the 
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accuracy of the model. The results show the accuracy of the proposed model is around 

89.7% in the worst case.  

As the energy conversion efficiency of the TEG is highly relative to the heat 

dissipation capability of the heat sink, three types of heat sinks have been simulated by 

the model, respectively. The simulation results are depicted in Figure 4.15 b. The 

energy generation of electric power of the TEG is increased by around  50% when 

the heat dissipation capability has been improved 40%.  In order to examine the 

model, a real experiment, using a 1K/W aluminium heat sink, has been tested in the 

laboratory and the result shows that the accuracy of the model is around 89.4%.  

Furthermore, in order to show that the ambient temperature can affect the system 

performance, the model has been simulated with five different air temperatures. The 

result is illustrated in Figure 4.15 c. By examining the curves, the generated electrical 

power is sharply increased by reducing the air temperature. Figure 4.15 d shows that 

system performance can be affected by the thermal contact resistance of the TEG 

system. Two different contact resistance values have been integrated into the model to 

see the difference. According to the curves, the lower thermal contact resistance the 

system has, the higher generated power the system can achieve. By analysing the 

contact resistance in Equation 4.34, several critical parameters such as surface 

roughness of two touching surfaces, contact pressure, density of interstitial gas, heat 

capacity, thermal and mechanical properties of the filling thermal grease, could be 

used to determine the value of the contact resistance when two surfaces are attached 

together. In conclusion, the electric power of the TEG increases considerably when 

these heat exchangers’ thermal resistances, surrounding air temperature, and contact 

resistance decrease. These results illustrate that how critical of  designing a high 

efficient heat exchanger system (hot side heat exchanger and heat sink), reducing 

temperature of the surrounding air and reducing the thermal contact resistance in TEG 

applications. The properly design of the heat exchanger system can easily generated 

more than double power than the improperly design. This is critical in low temperature 

TEG applications, which the harvesting efficiency is quite low. 
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Figure 4.15 (a) Power generated with different hot side heat exchangers (b) Power 

generated with different heat sinks (c) Power generated with different ambient air (d) 

power generated with different contact resistance 

Whilst keeping the heat source and sink at a stable temperature, change the status of 

the circuit with different load resistors. The current, voltage and power characteristics 

of the TEG for different ΔT are plotted in Figure 4.16. As shown in the figure, 

variations in temperature difference result in variations in output power of the TEG. 

The same as solar panels, there is a unique MPP for the system at a fixed temperature 

difference. For instance, the output voltage of the TEG is in the range of 0-0.16V 

when there is a     temperature difference between the TE module and at the MPP, 

in which maximum power output is around 0.023W when the system is working at 

0.0806V. If the design requires a TEG system working at the MPP, the output voltage 

of the TEG should always satisfy the half of its open circuit voltage         . This can 

be shown in Equation 4.53 

                                                              (4.53) 

where           .  
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Figure 4.16 (a) power output with different load resistor (b) maximum power point 

at different    

4.4 Summary 

In this chapter, two computational models of a solar panel and a TEG system have 

been developed, respectively. The feature of these two models is that they are designed 

based on manufacturers’ specification datasheets. This allows the proposed model to 

be quickly constructed. For the model of a solar panel, the simulation model of a solar 

cell developed by Petreus et al (2009) is adapted in this chapter because of the fast 

way to extract five parameters from a solar panel. The test results show that the model 

is well related with the solar cell placed in the real environment.  

For a thermal energy harvesting system, a new computational model, based on 

manufacturers’ specification datasheets, has been developed based on an equivalent 

circuit which several non-electrical processes are emulated by electrical analogies. The 

numerical model is used at a system level optimization to determine the optimal design 

of both the heat exchangers system design and the TE module selection. Two main 

components, which are a TE module model and the heat exchanger system model, 

assembly together to emulate the performance of the TEG. The proposed model has 

been evaluated by the experiments tests held in the laboratory. The accuracy of the 

model is around 89.4% by showing in the comparison results. Then the model has 

been simulated in three different ways at the infinite heat situation to show the 

performance of the TEG is highly dependent on the TE material, the heat exchanger 

system and load. Based on these findings, the system designers can improve the TEG’s 
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energy conversion efficiency by selecting a proper TE module, designing a high 

efficient heat exchanger system and tracking MPP of TEG.  

  By examining the accuracy of the two computation models, the results show that 

there is a good agreement between the real measurements and simulations. Hence, 

these two models, which can be used to express the harvested energy in a known 

environment, will be adopted in the later chapter as the models of energy harvesters.   
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Chapter 5. Modeling micro-energy 

harvesting systems  

5.1 Background and motivation 

The difficulties of building a micro-energy harvesting system are that the complex 

design process, and the system development and deployment take a long time, 

especially when a trial-and-error approach is being used. By using this approach, the 

performance of the developed system highly depends on the designers’ experience. 

Designing a highly efficient micro energy harvesting system needs to face a great 

number of design parameters and component selections that make even an experienced 

designer spend a lot of time and effort to figure out a proper solution to enhance the 

system efficiency. The design processes become harder when the energy harvesting 

system is designed for a distributed system, in which numerous sensor nodes are 

randomly placed in a big area. This is because not only the energy sources available at 

different locations are varied in relation with time, but also the energy consumption of 

the sensor nodes in the distributed system. Due to the complex system architecture, it 

is difficult to quickly evaluate the performance of the system at the early design phase 

and the performance can only be evaluated at a very late stage. If the evaluation result 

shows a poor system performance or even a functional failure, a new design cycle is 

needed that normally prolongs the design cycle and increases the expenditure. 

Moreover, most of the proposed energy harvesting systems are designed based on the 

worst case scenario which means the systems are oversized and energy inefficient. The 

compact size, the low system cost and the high energy efficiency are three basic 

factors which should be included in a micro energy harvesting system, an 

energy-size-cost efficient design process should be considered in the energy harvesting 

system design. Additionally, as the everlasting lifetime is desired by the wireless 

sensor nodes, no existing energy harvesting platforms can provide this capability to the 

sensor nodes. According to these shortages of the existing energy harvesting platforms, 
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it is essential to theoretically analyse the performance of the energy harvesting system 

before it is developed and implemented in a real environment.  

Normally, a good simulation model for an energy harvesting system allows the 

system designers to quickly examine the performance of the proposed energy 

harvesting system in the early design phase. It can also be used to evaluate the system 

performance at the different system parameters and design choices. On the other hand, 

as the simulation model enables systematic design space exploration by various 

actions, such as lowering the system cost, improving the system efficiency and 

reliability, it can significantly reduce the inherent design complexity and greatly 

shorten the development time and cost. Hence, a theoretical analysis by using a 

simulation model is becoming more and more critical for designing an efficient energy 

harvesting system. But unfortunately, the system level methods to exploit these 

sources for optimizing an energy harvesting design are lacking in literature.  

5.2 Overview of micro energy harvesting system model 

To date, numerical energy models of a wireless sensor node powered by battery 

have been proposed to support design space exloration (Egea-Lopez et al., 2006), 

(Merrett et al., 2009). But unfortunately, none of these works have been considered to 

employ an energy harvesting system as a power source. Since the environmental 

energy varies and is unpredictable, and the average harvested energy is extremly small, 

design and optimization of energy harvesting circuits in a wirless sensor node ask for a 

careful understanding of all aspects of the system, such as energy harvesting 

capability, battery behavior, DC-DC converter efficiency and energy consumpiton of 

sensor nodes. According to this, some energy harvesting system models have been 

developed in the literature to tune system performance. A general overview of energy 

device modeling and combination was given in Weddell et al. (2009). They show that 

the system model can be divided into energy source part, energy storage part and 

energy consumer’s part, but the detail system model was not addressed. An analytical 

prediction of harvested energy and consequence for battery charge level was examined 

in Kruger et al. (2009). The presented results show that the model is not accurate 

enough to optimize system design. Bader et al. (2009) present a simulation model of 

micro-energy harvesting system, in which the sizing of modules and the sizing of the 
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system were addressed and their work focused on a simple system architecture, which 

just has an energy harvester and a super-capacitor. The accuracy of the model was not 

addressed in their work. A commercial PV cell and a TEG were modelled in Lu et al. 

(2005). They characterized two commercially available micro-scale energy transducers 

and based on the characterizations, an optimized power converter system for such 

ultra-low voltage energy transducer was developed. They stated that the proposed 

power converter results in an increase in harvested power by up to 30% compared to 

linear topology charge pump based designs. But the entire energy harvesting system 

model was not considered in their work. Later, Jeong described modeling a 

micro-solar power system in his thesis (Jeong, 2009) and the primary goal of his 

model was used to validate his system architecture rather than a dimension of a given 

system architecture.  A further work described by Jeong was published in Taneja et 

al. (2008), which addressed capacity planning of micro solar energy harvesting 

systems. But their work focused on how to implement a micro-system rather than 

analyse the system.  

By analysing the existing works of the simulation model for energy harvesting 

systems, it can be found that some of them have focused only on a particular 

component of an energy harvesting system and in this case the performance of the 

entire system cannot be predicted. Other works focus on using the models to validate 

the system but they do not consider using the model to guide an energy harvesting 

system design. In this chapter, a high level simulation model is developed to capture 

the inherent design parameters and choices to tune the system performance of an 

energy harvesting system. In order to make the model adaptable for other applications 

or other types of energy harvesting technologies, the model is designed based on the 

generic system architecture, proposed in Chapter 3. Distinguished from the existing 

works, the simulation model can be used to guide the system design and the selection 

of the system components, such as the energy harvester, the power converter circuit, 

the energy storage elements and the target sensor node.  Two energy harvesting 

technologies, solar and thermal energy harvesting technologies, have been chosen as 

examples to validate the proposed model. The performances of the two models have 

been compared with corresponding experiments.  

The model is considered the best way to bridge the gap between the physical world 

and the theoretical analysis. It enables a system designer to quickly evaluate the 
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impact of various design choices and the system parameters of an energy harvesting 

system at an early design phase. It can also be used to estimate the energy status of 

each component of the system without measuring it by physical connection. In order to 

simplify the model design procedure, an energy flow of an energy harvesting system 

based on the proposed generic system architecture has been proposed, as depicted in 

Figure 5.1. Firstly, the energy harvesting device harvesting energy from environment 

and converter it into electrical energy. By using a MPPT device, the maximum power 

of the harvested energy can be deliveried to a DC-DC converter circuit, which boost 

this energy to a proper voltage level. The regulated energy will charge the 

supercapacitor. With a decision generated by a control unit of energy storage 

subsystem, the supercapacitor will directly power the target sensor node or charge the 

rechargeable battery. Then the model of the entire energy harvesting system can be 

divided into the model of an energy harvester, the model of the power conversion 

circuit, the model of the energy storage subsystem, and the model of the target sensor 

node. In this chapter, the models of two types of energy harvesters, solar and thermal, 

developed in Chapter 4, are adopted. Then the system modelling procedure can be 

focused on modeling the electrical circuit parts of the energy harvesting system.   

 

Figure 5.1 Energy flow of a micro-energy harvesting system 

5.3 Model of a power conversion circuit 

As said in Chapter 3, the power conversion circuit is used to extract as much 

energy as possible from the energy harvester and converter this energy into a useful 

level to charge or power the system. In this thesis, because the power conversion 
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circuit is designed for solar and thermal energy harvestings, the proposed model 

cannot be used for other type of energy sources, such as kinetic energy.  

The complete power conversion circuit has two main components, which are the 

DC-DC converter circuit and the MPPT circuit, as shown in Figure 5.1. Due to an 

ultra-low harvested energy generated from a micro energy generator, a switching 

power DC-DC boost converter is used to regulate the input voltage to a constant high 

output voltage for the target system. This is because this type of converters is 

commonly available on the market with high energy conversion efficiency. Based on 

the different harvesting technologies, some energy transducers’ output power is 

alternativing current (AC) power, which cannot be directly used to power the 

electronics. An optional rectifier circuit is used to convert AC power into DC power. 

Because only solar and thermal energy harvesting technologies, which are DC power 

generators, are considered in this thesis, the rectifier circuit is neglected. The second 

component of the power conversion circuit is an MPPT unit, which is designed to 

maintain the energy harvester operating at its peak power mode.  

If the energy transfer efficiency of the power conversion circuit is identified, the 

available energy for the next circuit of the energy harvester system can be determined. 

According to the proposed generic system architecture given in Chapter 3, three kinds 

of energy losses in the power conversion circuit can be identified, as shown in Figure 

5.2. The first energy loss in the power conversion circuit is a mismatching between the 

energy generator and the power conversion circuit, which reduces the energy extracted 

from the energy generator. Despite the fact that an MPPT unit can significantly 

improve the energy being extracted from the energy generator, there is a mismatch still 

between the system operation point and the MPP. Normally, an MPPT efficiency 

      is used to identify the energy loss between the operation point and the MPP of 

the energy harvester. Since no electrical circuit is seen as ideal, no boost converter 

circuit can completely transfer the input energy to the output energy. The second 

energy lost that in the DC-DC converter circuit. This can be illustrated by the transfer 

efficiency of the boost circuit            . Because the harvested energy is extremely 

small, the energy dissipated by the MPPT circuit cannot be neglected. The third energy 

loss in the power conversion circuit is the energy consumed by the MPPT circuit. In 

order to simplify the model construction process, the model of the power conversion 
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circuit can be divided into the model of the MPPT unit and the model of a DC-DC 

boost converter.  

 

Figure 5.2 General Architecture of power conversion circuit 

5.3.1 Model of the MPPT unit 

The model of the MPPT circuit can be divided into two parts: (1) energy loss caused 

by the mismatching between the MPP and the operation point of the energy harvester 

and (2) the energy consumed by the MPPT circuit. Numerous MPPT technologies 

have been proposed in literatures which vary at the MPPT efficiency and the circuits’ 

overhead.  Hence, the power extracted from the energy generator             can be 

expressed as: 

                                                                                           (5.1) 

where            is the power harvested by the energy generator, and       is the 

MPPT efficiency by using a type of MPPT unit, and               is the power 

dissipation of the MPPT circuit. In this work, a typical            is used to 

identify the MPPT efficiency.               is assumed independent of the load 

condition and it can be expressed in Equation 5.2.  

                                                                                                          

where               and                are the voltage crossed and current 

consumed by the MPPT circuit, respectively.  
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5.3.2 Model of the DC-DC boost converter 

In order to provide a sufficient voltage for a portable system from a micro-scale 

energy harvester, boost DC-DC pulse width modulated (PWM) converters are widely 

used. The boost converters can be classified into the asynchronous type and the 

synchronous type. A general diagram of an asynchronous boost converter is depicted 

in Figure 5.3. It consists of a power semiconductor switch Q, a diode D, an input filter 

inductor L, an output capacitor C, and a resistor R. A control signal, which has a 

switching cycle duration      , is applied to the semiconductor switch Q to turn the 

converter on/off.  

 

Figure 5.3 Simple asynchronous DC/DC boost converter structure 

A synchronous boost converter circuit is shown in Figure 5.4. It has the same 

working principle as the asynchronous one. The difference between the two types of 

boost circuits is that a synchronous boost converter uses a p-type MOSFET    with a 

proper control signal, depicted in Figure 5.4, to replace a diode D, as shown in Figure 

5.3. Normally, a synchronous one is considered more efficient than an asynchronous 

one, because of avoiding using a big energy consuming diode in the circuit. Due to the 

high energy efficiency desired by the system, a synchronous type boost converter is 

selected as the power regulator circuit in this thesis.  
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Figure 5.4 Synchronous boost converter 

Normally, a commercial boost converter is used to build a power conversion circuit 

for boosting a low input voltage to a constant high output voltage because of its high 

system efficiency, low cost and compact size. Hence, the boost converter should 

operate over a wide range of input voltages. However, the datasheets provided by the 

manufacturer, which only depict the energy efficiency curve of the circuit at a certain 

operation point. This is not sufficient for calculating the energy transfer efficiency of 

the boost converter, because the same device may be used at different input voltages. 

Thus, in order to predict the performance of the boost converter in any input voltage 

conditions, a simulation model, which can provide a quick and easy way to obtain the 

system’s efficiency without needing to make laboratory measurements, is needed. 

Over the last two decades various approaches to model DC-DC converters in 

continuous conduction mode (CCM) and discontinuous conduction mode (DCM) have 

been developed. Based on these existing works, an approach by identifying all of the 

individual power losses in the converter circuit as proposed in Aloisi and Palumbo 

(2005) and Liu et al. (2008) has been adopted in this chapter. The power losses in the 

inductor          , the capacitor           , the two MOSFET transistors           

and          are the main power dissipation sources in a DC-DC converter circuit. 

Despite many manufacturers stating that the power dissipation of the control circuit 

and the power lost in the miscellaneous circuit in the commercialized DC-DC 

converter IC are extremely low, these energy consumptions cannot be neglected in a 

micro energy harvesting system because of an ultra-low harvested energy. Similarly, 

the energy consumed by the MPPT control circuit, the static power dissipation of the 
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boost IC can be consumed independent of the load condition. Hence, the power 

consumed by the boost IC                  is expressed as:  

                                                                         ，              ，                           

where            ，  ,                are the voltage across the boost IC and the 

quiescent current of the boost IC, respectively.  

  Then the power dissipation of the boost converter circuit can be expressed as adding 

these power dissipation sources together, as expressed in Equation 5.4.  

                                                                      (5.4) 

And the efficiency of the boost converter can be written as: 

                                               
                      

           
                                         

where             is the power extracted from the energy generator, introduced in the 

previous section.  

  To achieve a simple numerical model, a generic model is adopted from Aloisi and 

Palumbo (2005). The advantage of using this model is that all the parasitic 

components and their power losses of the boost converter are considered. Figure 5.5 

shows all the components of the boost converter in relation to their own parasitic 

resistance.  In order to simplify the analysis, some assumptions, which are made by 

(Aloisi and Palumbo, 2005), have been used in this chapter.  

 The N-type transistor Q is seen as a capacitor,    parallel connection with a 

series combination of a linear resistor   , and a switch   , which can switch 

on or off by a control signal.  

 Similar to N-type transistor Q, the P-type transistor    is assumed as the 

capacitor     connected with a series combination of a linear resistor     

and switch    .    is controlled by the boost IC. 

 Passive components like inductors and capacitors are assumed to be linear, 

time invariant and frequency independent. In addition, the equivalent series 

resistance (ESR),    and   , of the inductor and the capacitor, respectively, 

are supposed to be independent from their operating temperature.  
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 Power dissipation in the control circuit is consumed at a constant value 

               in this work 

 Assuming the transistor Q is turned on and off at the constant switching 

frequency,       , where T is the entire switching cycle. 

 R is the load resistor. 

 

Figure 5.5 boost converter equivalent circuit including the parasitic 

components 

As stated in the previous part, a boost converter can operate in DCM and CCM 

modes. These two modes are defined based on the inductor current condition of a 

boost converter circuit. The operation mode of DCM can be classified in terms of the 

energy stored in the inductor, which is delivered to the load during each switching 

cycle and the inductor current ramps down all the way to zero during the switch off 

time. Otherwise the mode is classified as CCM when only part of the energy is 

delivered to the load. As shown in many research works, the performance of a boost 

converter in the CCM and the DCM are significantly different in terms of voltage 

regulation and energy transfer efficiency. Thus, the model of a boost converter should 

be constructed in both of the CCM and the DCM, respectively.  

(A) Boost converter in the CCM  

Assume the boost converter is working in CCM. The ratio M, related to the input 

and output voltage can be obtained as follows: 
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where                and               are the output and input voltage of the boost 

converter and D is duty cycle of the boost converter, which is expressed as:  

  
   

        
 

where     and      are the duration of the “on” state and “off” state of the 

converters, respectively.  

(1) Power dissipation in the inductor 

The power dissipation in the inductor is caused by the conduction loss in it and this 

can be expressed as (Aloisi and Palumbo, 2005) 

                                                              
                        

(5.7) 

where          ,    ,  and       are the power dissipation, Equivalent Series 

Resistance (ESR) and Root Mean Square (RMS) current of the inductor using in the 

boost converter circuit, respectively.        can be expressed by Equation 5.8.  

                                                      
  

   
 

  
 
 
                                                            

where      is the output current of the boost converter and     is the ripple of the 

inductor current, which is given by:  

                                                   
    

    

   

  
                                                                     

where      is the output voltage of the boost converter and L is the inductance of the 

inductor. In order to simplify calculation, an assumption of               is 

typically used to calculate    . This is adopted in this work. By applying these in 

Equation 5.8 , the inductor current can be calculated by Equation 5.10.  

                                      

(5.10) 

(2) Power dissipation in N-type MOSFET  

The power consumption of N-type MOSFET           consists of a conduction 

loss   , which is caused by the turn-on resistance   , and a switching loss      , 
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which is caused by V-I overlapping and parasitic capacitances charge and discharge 

(Aloisi and Palumbo, 2005) 

                                                          (5.11) 

                                                    
    

   

 
      
                                               

where        is RMS current of switching the transistor. It is assumed that either the 

switching transistor current or voltage rises or falls linearly when the transistor 

switches. Then, the switching loss caused by parasitic capacitances and overlapping is 

                                
 

 
(           ) (      

   
 

) (      )                             

where     and    are the rise and fall times of drain-source voltage and drain current, 

respectively, and          and    represent the “on” state voltage of the MOSFET 

switch and the forward voltage drop in the body diode, respectively.  

(3) Power dissipation in the P-type MOSFET 

   The power consumption of the P-type MOSFET    (         ) is similar to the 

N-type MOSFET and it can be expressed as: 

                                                                                         (5.14)  

             
      

              

             
      
   

where     is the on-time drain-to-source resistance of the P-MOSFET and        is 

RMS current of the P-MOSFET. 

(4) Power dissipation in the output capacitor 

   For the power dissipated by the output capacitor           , it is caused by the 

ESR of the capacitor   . The expression can be written as: 

                                
  

 
      
        

             

(5.15) 

(5) Power dissipation in the entire boost converter circuit  
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   The switching loss of the converter IC is neglected in the model in order to 

simplify the calculation. By collecting these power dissipation sources of the boost 

converter together, the total power dissipated by the circuit can be written as follows. 

                                                                              

          
  (

  

 
      
        

 )    

   

 
      
          

  

 
      
 

                         

(B) Boost converter in the DCM  

     When the boost converter is operating at the DCM, the formulae of the power 

dissipation of the inductor, the output capacitor and the N-type MOSFET switches are 

the same as expressed in the CCM. The differences are the expressions of        and 

      (Aloisi and Palumbo, 2005).  
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(      )                                 

By ignoring     , the simulation model can be developed by integrating Equation 

5.17 with Equation 5.16.  

(C) Model Validation 

 A commercial synchronous boost converter TPS61222 (TPS61222, 2010) from 

TXAS instruments is employed in this chapter to evaluate the proposed model of the 

boost converter. This is because the TPS61222 has high system efficiency with an 

ultra-low input voltage, which can be operated as low as 0.7V input voltage range. The 

technical parameters are listed in Table 5.1 and all the parasitic parameters of the 

circuit components are extracted from their datasheets.  
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Table 5.1 Main technique parameters for TPS61222 and external components 

Parameters Value 

L,    4.7uH, 145mohms 

C,    10uF, 2ohms 

    1000mΩ 

   600mΩ 

        2000kHz(2.4V) 

TPS61222 Quiescent current                   

            3.3V 

Output voltage 5V 

In order to identify the converter operating at the CCM or DCM, an approximation 

equation from the datasheet (TPS61222, 2010), has been used.   

                                                    
         

   
                                                        

As long as the in-equation 5.19 is true, the boost converter operates in the CCM, 

otherwise the converter operates in the DCM. Then the model has been validated by 

comparing the efficiency curves, which are provided by the manufacturer in order to 

examine the accuracy of the model.  A 5V constant output voltage has been set by the 

model. Then three types of input voltages (2.4V, 1.2V and 0.7V) have been simulated, 

respectively. The simulation results have been compared with the corresponding 

experimental results, supplied by the manufacturer, as shown in Figure 5.6. By 

examining the curves, the error of the model is around 5% in the worst case scenario. 

Furthermore, in these three input voltage ranges, the converter circuit is most efficient 

when the 2.4V input voltage is applied and the 0.7V curve shows the circuit has the 
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lowest power conversion capability. This trend shows that when the input voltage is 

closer to the output voltage, the boost converter has a higher energy transfer capability.  

 

Figure 5.6 Output current vs. Efficiency (2.4V and 1.2V input voltage) 

Figure 5.7 shows the efficiency of the boost converter by the fixed output power in 

relation to the various input voltages. In order to show the difference, three output 

conditions (10mA, 1mA and 100uA) have been simulated. The simulation results have 

been compared with the corresponding efficiency curves described in the datasheet. 

The error of the model is around 5% when comparing the results. In these three cases, 

the most efficient curve is found when the output current is fixed at 10mA. This is 

because the efficiency of the boost converter is increased with the increase of input 

power. In summary, the proposed model of the boost converter can be used to predict 

the energy condition of the regulator circuit.  
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Figure 5.7 Different input voltages vs. energy transfer efficiency 

5.3.3 Model of the entire power conversion subsystem 

According to the figure shown in Figure 5.2, the model of integrated power 

conversion circuit can be developed by integrating the model of the MPPT circuit and 

the model of the boost converter together. The output power of the power conversion 

circuit          can be determined by knowing the power lost in the individual 

components of the power conversion circuit and the formula of            can be 

expressed as: 
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5.4 The model of the energy storage subsystem  

The energy storage subsystem is designed to accumulate the available energy and to 

sustain the system when no energy can be harvested. According to the generic 

architecture described in Chapter 3, a hybrid energy storage design (Park and Chou 

2006), which combines super-capacitors and rechargeable batteries, are considered in 

this work to take advantage of two complementary technologies providing an 

everlasting lifetime to the system. Table 5.2 lists some commonly used energy storage 

elements and their characteristics, along with energy density, power density, volume, 

weight, self-discharge rate, charge-discharging efficiency, cycle life, cost, and 

charging method.  

Table 5.2 Different types of energy storage elements for micro-energy harvesting 

system (Taneja et al., 2008) 

Type  Lead 

Acid  

NiCd NiMH Li-ion  Li-polymer  Super-capacitor 

Make  

Model No. 

Panasonic 

LC-R061R3P 

Sanyo  

KR-1100AAU 

Energizer  

NH15-2500 

Ultralife  

UBP053048 

Ultralife 

UBC433475 

Maxwell  

BCAP0350 

Nominal voltage  6 V 1.2V  1.2V 3.7V 3.7V  2.5V 

Capacity 1300mAh 1100mAh 2500mAh 740mAh 930mAh 350F 

Energy  7.8Wh 1.32Wh 3.0Wh 2.8Wh 3.4Wh 0.0304Wh 

Weight energy 

density 

26Wh/Kg 42Wh/Kg 100Wh/Kg 165Wh/Kg 156Wh/Kg 5.06Wh/Kg 

Volume energy 

density  

67Wh/L 102Wh/L 282Wh/L 389Wh/L 296Wh/L  5.73Wh/L 

Weight  300g 24g 30g 17g 22g 60g 

Volume  116.4    8.1    8.3    9.3    12.8    53    

Self-discharge 

(per month) 

3%-20% 10% 30% <10% <10% 5.9%/day 

Charge-discharge 

efficiency  

70%-92% 70%-90% 66% 99.9% 99.8% 97%-98% 

Capital cost 

($/kWh) 

100-200 800-1000 450-1000 600-2500 600-2500 20,000-50.000 

Cycle life 500-800 2000-2500 500-1000 1000-10,000+ 1000-10,000+ 50,000+ 
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(cycles) 

Memory effect No  Yes  No No No No 

Charging method Trickle  Trickle/pulse Trickle/pulse Pulse  Pulse Trickle 

Figure 5.8 schematically shows the structure of proposed active hybrid energy 

storage subsystems which comprise input and output stages, a rechargeable battery and 

a super-capacitor associated with a control circuit. In order to provide a high buffering 

efficiency in relation with an everlasting system lifetime, the energy storage subsystem 

will be operated in four different states: 

 Sustaining the system by directly using environment energy when enough 

energy can be harvested from the environment; 

 Charging the rechargeable battery and meanwhile powering the system when a 

sufficient harvested energy is available on the system; 

 Using rechargeable batteries to power the system when insufficient energy or 

no energy can be harvested from the environment; 

 Disconnect rechargeable battery when the battery is overcharged or 

over-discharged. 

In order to achieve these functions, the following processes should take place. 

Firstly, the entire energy harvesting system draws energy from the rechargeable 

battery and uses the energy to sustain the whole system operation. The super-capacitor 

is directly connected to the power conversion subsystem and it is charged with a 

constant output voltage from the boost converter. When sufficient energy is available 

on the super-capacitor, which can directly power the whole energy harvesting system, 

the system stops drawing energy from the rechargeable battery and switches to using 

the super-capacitor powering the system. Due to the linear relationship between the 

voltage and the energy of the super-capacitor, a voltage threshold       is set for the 

system to indicate if the super-capacitor can directly power the system. In this 

situation, the super-capacitor is still being charged when sufficient energy is harvested 

by the energy generator. As long as the energy level of the super-capacitor is rising, 

when the second charge threshold        is reached, the super-capacitor charges both 

the rechargeable battery and powers the sensor node at the same time. According to 
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the electrical characteristics of the super-capacitor, the energy on the super-capacitor 

could quickly be transferred to the rechargeable battery. After the super-capacitor 

quickly charges the rechargeable battery, the capacitor’s voltage drops rapidly. When 

it drops below the third threshold        , the super-capacitor stops charging the 

rechargeable battery but still powers the entire system. If there is no harvested energy, 

or the harvested energy is not enough to power the system, the energy of the 

super-capacitor drops. As soon as it drops below the fourth voltage threshold       , 

the system switches to using the rechargeable battery to power the system and the 

super-capacitor is charged.  

 

Figure 5.8 Functional diagram of the hybrid combination of energy storage 

system 

According to Figure 5.8, the model of the energy storage subsystem can be divided 

into three parts: the energy model of the super-capacitor, the energy model of the 

rechargeable battery and the energy consumption of the control circuit. In this chapter, 

in order to simplify the model description, the detailed control circuit of the storage 

subsystem is neglected and the power consumption of the control circuit            is 

assumed as a constant value. Then the energy storage subsystem can be simplified as 

modelling the super-capacitor and the rechargeable battery.  

5.4.1 Model of the super-capacitor 

A super-capacitor, often referred to an electrical double layer capacitor, has similar 

characteristics to a normal capacitor, but offers significantly higher capacitance values 

per unit volume. According to Table 5.2, the super-capacitors have a superior cycle 

efficiency which reaches around 97%-98% and more than 50,000 cycle life. Since the 
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model of super-capacitors is introduced for fast lifetime calculation, it is inconvenient 

to use a complex super-capacitor’s model. In this work, for achieving fast simulation, 

a simple super-capacitor model, which is just taking into account the super-capacitor 

parameters from the datasheet, is developed. The equivalent circuit of the 

super-capacitor is shown in Figure 5.9. From the figure, a series resistor       can be 

determined by measuring the potential difference    between the two terminals at the 

beginning when charging the super-capacitor with a large constant charging current. 

      is very close to the equivalent resistance value provided by the super-capacitor 

datasheet (Zhang and Yang, 2011). Thus, it is assumed that       is equal to the 

equivalent resistance of the super-capacitor. Since the charging frequency is quite low 

in energy harvesting systems, the series inductor     is neglected in this work. The 

parallel capacitor      value can be determined by the capacitance of the 

super-capacitor. As the super-capacitor has a high self-discharge behaviour, a high 

parallel resistor       is used to model a leakage resistor. In order to identify the 

value of       , the self-discharge process has been conducted in the laboratory.  

 

Figure 5.9 Proposed electrical equivalent circuit of super-capacitor 

Normally, the capacitor model description can be divided into the charging mode 

and discharging mode, as illustrated in Figure 5.9. The relationship for the electrical 

charges of the super-capacitor        and the terminal voltage of the super-capacitor 

       is 

                                                       (5.21) 
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where     is the capacitance of the super-capacitor. From the current side of view, the 

charges of the capacitor can be expressed as: 

                       ∫            
 

 
                         (5.22) 

         
       

  
 

where        refers to the initial charges on the capacitor before 

charging/discharging and          is electrical current charging the super-capacitor at 

time t, and         is electrical charge difference during a time interval   . As 

shown in Table 5.2, a capacitor is not an ideal electrical circuit, the charge and 

discharge efficiency of a super-capacitor           , is considered. According to the 

super-capacitor’s characteristics,            is around 97%-98%. Based on Figure 5.9, 

the charging current          is approximately equal to the output current of the power 

conversion circuit          times charge and discharge efficiency           . By 

considering the leakage current of the super-capacitor            . The relationship 

between            and          can be expressed as:  

                                                                   
                    

          
                                      

The discharging current            from the super-capacitor is:  

                                                                   
                       

          
                              

where             is the current consumed by the whole energy harvesting system at 

the time t. Equation 5.22 can be rewritten as:  

                         
 

   
∫            

 

 
                  (5.25) 

                               
 

   
∫             

 

 
              (5.26) 

where        refers to the initial voltage of the super-capacitor. Generally, to 

characterize the model with different I-V inputs, the model description can be 

extended to have a constant voltage charging/discharging phase. 



Chapter 5: Modeling micro-energy harvesting systems  

 100 

(1) Charging/discharging using a constant voltage 

By using a constant voltage to charge a super-capacitor, the previous equations can 

be rewritten by using Kinhowff’s voltage laws to analyse Figure 5.9. The charging 

voltage              of the super-capacitor can be expressed mathematically as: 

                            
 

   
∫            

 

 

                                                  

                                     
                    

          
      

 

   
∫            

 

 
         

By assuming             is a constant value which is equal to         , Equation 5.27 

can be rewritten as: 

                                            
        

          
      

 

   
∫                                    

 

 

 

where           
        

          
     . By multiplying     between two sides of 

Equation 5.28, the equation can be rewritten as:  

                                    
        

          
           ∫            

 

 

                 

By using the Laplace transform, Equation 5.29 can be expressed as  

                        
                

 
 

        

          
           

 

 
         

      

 
           

where S is the notation of Laplace transfer. By writing the equation as the expression 

of         , Equation 5.31 can be obtained. 

                                           
         

           
          

  
 
[               ]

     
                             

Because  
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, then the express          becomes: 

                                      
          

  
          

         

 
[               ]

     
                                       

Equation 5.32 can be inverse-transformed into: 

                                             
[               ]

     
  

( 
          

         
  )

                        

By integrating Equation 5.33 into Equation 5.25, the equation is rewritten as:  

                              
[               ]

         
∫  

( 
          

         
  )

  
  

 

                   

  (               )  * 
( 

          

         
   )

  +          

The charging time period   , which is the time that the supercapacitor is charged from 

       to        ,  can be expressed as: 

                                 
         

          
   

                              

               
               

If using a constant voltage                 to discharge the super-capacitor, it yields 

similar results to the charging process. By assuming                     , the 

discharge voltage                  can be expressed by using Kinhowff’s voltage 

laws: 

                  
 

   
∫              

 

 

                                                         

  
 

   
∫              

 

 

                                              

By using                         , Equation 5.36 can be simplified as: 

                             
 

   
∫                                            
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By using Laplace transform, Equation 5.37 can be rewritten as: 

                            
         

                
  ， 

     

[                  ]

     
                 

                                   

 
          

  
 

            
  ， 

     

[                  ]

     
 

By inverse transforming Equation 5.38,            can be expressed as 

                             
 

          
 
[                  ]

         
 

(
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By integrating Equation 5.39 into Equation 5.26, the expression can be written as: 

              
 

          
 
[                  ]

         
∫  

(
  

                    
  )

  
    

 
                

=(                  )  [ 
(

  

                    
     )

  ]          

The discharging time period      needed to discharge the super-capacitor to a certain 

voltage        can be given by:  

                               
                                 

                  
            

(2) Charging and discharging with a constant current 

Similar to using a constant voltage to charge/discharge a super-capacitor, it can also 

be charged or discharged by using a constant current   . Then Equations 5.23, 5.24, 

5.25, and 5.26 can be rewritten as:  
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The duration    or      it takes by using a constant current to charge or discharge the 

super-capacitor to a certain voltage         can be calculated by Equations 5.46 and 

5.47, respectively.   

                                                        
                    

     
                                             

                                                        
                    

       
                                           

(3) Model evaluation  

In order to evaluate the model, the leakage resistance of the super-capacitor under 

various states should be determined. As stated in (Guan and Liao, 2008), charge on the 

super-capacitor drops by around 35% per month due to the leakage. . The 

self-discharge resistance of the super-capacitor             can be estimated as (Guan 

and Liao, 2008): 

                                                     
      

      [
      

                 
]
                                

where            is super-capacitor’s voltage decreased by self-discharging during a 

time duration       .            and        can be determined by experiments. For 

the evaluation of the model, a 2.3V 22F super-capacitor from Panasonic (Panasonic 

22F super-capacitor, 2008), was used in this work. The specifications of the 

super-capacitor are listed in Table 5.3.  

Table 5.3 Specifications of Panasonic Super-capacitor (Panasonic 22F 

super-capacitor, 2008) 

Parameter Specification Unit 

Capacitance 22 F 
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Internal resistance at 1KHz 0.1 Ω 

Maximum operating voltage 2.5 V 

In order to determine the self-discharging resistance of the super-capacitor, 

experiments have been conducted in the laboratory with constant environmental 

factors (25  and 30% humidity). Initially, the super-capacitor was fully charged by 

using a DC power supply and the self-discharge process has been taking place for two 

hours after removing the power source. In order to reduce random measurement errors, 

the experiment has been repeated ten times by using four 22F super-capacitors. The 

average value gained from these experiments and the testing results are shown in 

Figure 5.10. By integrating the parameters into Equation 5.48, the self-discharging 

resistor can be estimated. By comparing the simulation results with the experimental 

results, the error of the self-discharging model is around 2.7%.  

 

Figure 5.10 Self-discharging effect of 22F 2.5V super-capacitor 

The accuracies of the proposed model during the charging and the discharging 

processes have been evaluated by using experiments. Firstly, the model was validated 

with a 2.V constant charging voltage and the result is depicted in Figure 5.11(a). The 

corresponding experimental test, which used a 2.5V battery as the constant voltage 



Chapter 5: Modeling micro-energy harvesting systems  

 105 

source to directly charge the super-capacitor, has been carried out in the laboratory. 

The accuracy of the proposed super-capacitor model is 96.1% by comparing the 

simulation result with the experimental result. Figure 5.11 (b) shows the model, in 

which the super-capacitor is charged by a constant current source. In order to see the 

difference, 10mA and 5mA input currents have been simulated, respectively. Initially, 

the voltage level of the super-capacitor is set to be 1.3V. By using these two current 

sources to charge the super-capacitor with the same time interval (3200s), respectively, 

the final voltages of the super-capacitor in these two cases are 2.49V and 1.9V, 

respectively. The corresponding experiments have been tested and the final voltages of 

the super-capacitor in these two experiments are 2.39V and 1.79V, respectively. By 

comparing the simulation results and the experimental results, a 6% error could be 

found in the worst case scenario.  

 

Figure 5.11 (a) 2.5v constant charging voltage (b) 10mA and 5mA constant charging 

current 

The discharging processes were simulated and tested with constant discharge 

voltages and constant discharge currents, respectively. Figure 5.12 shows that fully 

charged super-capacitors were discharged by 1.1V and 1.2V batteries. The simulation 

results show that the time periods for discharging the capacitors from 2.5V to 1.5V are 

2.5s and 3.2s, respectively. The corresponding test results are 3s and 3.5s, which 

indicate the error of the model is around 20%. The increase of the model error is 

caused by a measurement error, which is normally caused by the equipment and those 

running the tests. The discharging model was evaluated by constant current sources, 

for which 5mA and 10mA were selected. The simulation results show that the 

capacitor needs 2680s and 1448s to discharge from 2.5V to 1.8V respectively. In order 
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to evaluate the accuracy of the proposed model, experimental tests have been held. 

The comparison results show that the capacitor needs 2200s and 1309S to discharge 

from 2.5V to 1.8V by using these two current sources and the error of the model is 

around 10%.  

 

Figure 5.12 (a) constant discharge voltages (b) constant discharging current 

5.4.2 Model of the rechargeable battery 

Since the lifetime of the micro-energy harvesting system is highly related to the 

lifetime of the rechargeable batteries, an accurate rechargeable battery model is critical 

to predict the lifetime of the system. The performance of the battery highly depends on 

which type of battery technology is used and in what external environment it is 

operated in.  Hence, before designing a battery model, the battery type being used in 

the energy harvesting system should be determined. Some popular rechargeable 

battery technologies such as Lead Acid, Nickel Cadmium (NiCd), Nickel Metal 

Hydride (NiMH) and Lithium Ion (Li-ion) are normally used in energy harvesting 

systems. The typical values of parameters across different battery technologies are 

shown in Table 5.2. In these technologies, NiMH and Li-based batteries emerged as 

good choices for energy harvesting applications based on their advantages. As shown 

in the table, Li-ion batteries have the highest output voltage, energy density, power 

density, charge-discharge efficiency and moderately low self-discharge rate 

(Sudevalayam and Kulkarni, 2011) and they do not suffer from memory effect-loss of 

energy capacity due to repeated shallow recharge. These make them become a very 

popular energy buffer option for an energy harvesting system application.  However, 

Li-ion batteries normally require a complicated charging circuit that makes this 
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technology unsuitable for some micro energy harvesting systems, which require small, 

compact and simple circuits.  

On the other hand, NiMH batteries can be trickle charged and they do not need a 

complex pulse charging circuit. This means NiMH batteries can be directly connected 

to an energy source being charged. This is why NiMH batteries are more suitable for 

use in micro energy harvesting systems. Furthermore, by comparing the cost of the 

NiMH battery with other battery technologies, it has a reasonably high energy density 

and a high number of recharge cycles. But the charge-discharge efficiency of NiMH 

batteries is lower than Li-based batteries. In summary, both Li-ion and NiMH batteries 

have their own advantages and disadvantages; the battery selection depends on the 

application requirements and energy constraints. In this thesis, because the small size, 

low cost and less circuit complexity are concerned in the energy harvesting system 

design, a NiMH battery is chosen.  

NiMH batteries require simple maintenance to maintain batteries for optimal 

performance and extension of battery life. NiMH batteries are good for 500 to 1000 

cycles if properly used. Below are some methods on NiMH battery maintenance.  

 NiMH batteries should be discharged fully before first used and the new battery 

requires charging and discharging three to five times to active battery internal 

cathode and anode materials.  

 NiMH batteries do not accept full charge and discharge if the temperature is above 

    or below   . It should maintain the battery temperature around      , 

otherwise the battery lifetime will be sharply reduced. 

 NiMH batteries can hold full charge for a month if store in normal temperature. If 

the battery is kept near hot objects or exposed in sunlight for hours, the charge 

will drop in one day. In this case, in order to maintain the charge on the NiMH 

battery, it should avoid facing the sunlight and nearing the hot source.  

 NiMH batteries should avoid over-charged and over-discharged. This is because 

these two processes could damage the battery.  

According to these, it can be observed that the battery lifecycle and the 

self-discharging rate are highly dependent on the maintenance of the battery. The 

battery can have long lifecycle and small self-discharging rate when it has good 

maintenance. Thus, the battery modelling is highly related to the maintenance of the 
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battery. In order to simplify the modelling process, it assumed that the NiMH battery 

has been properly maintained in an ideal environment, where the temperature, 

humidity, and light are constant.   

As stated in the previous part, the performance of the battery depends on how and 

where it being used. Some undesirable effects, including the loss of rated capacity, 

faster temperature rises during operation, less charge acceptance, higher internal 

resistance, lower voltage, frequency self-discharge, overcharge, and over discharge, 

will significantly shorten the lifetime of the battery. There are several parameters 

associated with battery modelling, and these parameters are briefly explained below.  

 State of Charge (SoC) is an expression of the present battery capacity as a 

percentage of the maximum capacity. The open circuit voltage of the battery 

depends on its present SoC.  

 Depth of Discharge (DoD) of a battery is defined as the percentage of the battery 

capacity that has been withdrawn from a battery compared to the maximum 

capacity. The DoD, which is the inverse of SoC, is an alternate way to indicate a 

battery’s SoC. It is a measurement of how deeply a battery is discharged. When a 

battery’s SoC is 100%, then the DoD is 0%. Conversely, when the battery is 100% 

empty, the DoD is 100%.  

For further understanding of the rechargeable battery, some specifications from the 

manufacturer’s datasheet should be understood when choosing a battery (MIT Electric 

Vehicle Team, 2008).  

 Nominal voltage (          ) is the reported or referenced voltage of the battery. 

 Cut-off voltage (         ) is the minimum allowable voltage, which is also 

defined as the empty state of the battery.  

 Nominal capacity (Ah) is the total Amp-hour available when the battery is 

discharged at a certain discharge current (specified as a C-rate) from 100% SoC to 

the cut-off voltage (MIT Electric Vehicle Team, 2008).  It is also called 

coulometric capacity, which is calculated by multiplying the discharge current (in 

Amps) by the discharge time (in hours). 

 Self-discharge rate is a phenomenon in batteries in which the electrical capacity is 

lost when the cell is not in use. It is used to measure how quickly a cell will lose 



Chapter 5: Modeling micro-energy harvesting systems  

 109 

its energy while not in use. The rate depends on the battery chemistry, the 

temperature and age. 

 Internal Resistance of the battery is illustrated as the total resistance of the battery 

when it is charging or discharging 

 Overcharging and Over-discharging resistance indicate that when the battery is 

overcharged or over-discharged, the internal resistance will be increased 

significantly due to the electrolyte dissuasion.  

 Cycle-life is defined as the number of complete charge-discharge cycles a battery 

can perform before its nominal capacity falls below 80% of its initial rated 

capacity. The cycle life of a battery is estimated for specific charge and discharge 

conditions.  

 The C rate is the measure of the rate at which a battery is discharged related to its 

maximum capacity (MIT Electric Vehicle Team, 2008).  For instance, if a 

2000mAh rechargeable battery discharges at its 1C rate, the rechargeable battery 

will discharge the entire capacitance in one hour. And the discharging current 1C 

rate for this type of rechargeable battery is 2000mA. 

Nowadays, a wide variety of battery models with varying degrees of complexity 

have been developed for different applications. These models can be classified into 

three different categories. The electrochemical models (Gomadam et al., 2002), are 

considered as the most accurate battery models, and are based on the chemical 

processes taking place in the battery to describe battery processes in detail. However, 

the proposed models are too complex. Oppositely, to predict the performance of a 

battery, many different mathematical models exist (Rong and Pedram, 2003) and 

(Rakhmatov et al., 2003). Although these models are useful to system designers to 

quickly predict system level behaviour such as battery runtime, they are considered too 

abstract to express the practical process of the battery. Furthermore, mathematical 

models cannot offer any I-V information which is important for circuit simulation and 

optimization. By considering these limitations, electrical models have been proposed. 

This technology has accuracy between electrochemical and mathematical models. 

There are three kinds of electrical models in the existing literature, including a runtime 

based model (Benini et al., 2001), impedance-based model (Buller et al, 2003) and 

Thevenin-based model (Valvo et al., 1996) and (Chen and Rincon-Mora, 2006). By 

comparing the advantages and disadvantages of each approach, an electrical model 
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provided by (Chen and Rincon-Mora, 2006) has been adopted in this work to model a 

NiMH battery. This is because this model has a capability of predicting lifetime and 

I-V performance of the rechargeable battery. The equivalent schematic battery model 

is shown in Figure 5.13. The model is divided into battery lifetime part and 

voltage-current characteristics part. 

 

   Figure 5.13 Electrical battery model (Chen and Rincon-Mora, 2006) 

On the left side of Figure 5.13, a capacitor       and a current source      , 

inherited from runtime based models, represent the present SoC and discharge current 

of the battery, respectively (Chen and Rincon-Mora, 2006). In order to represent the 

usable capacity decreasing slowly with time when no load is connected to the battery, 

a self-discharge resistor                 is used. The right side of the circuit emulates 

the voltage and current characteristics of the battery. The two series connected RC 

parallel networks, similar to a Thevenin-based model, are used to indicate the transient 

response of the battery. In the first RC network, it was used              and 

             to describe the short-time constant of the step response. The later RC 

network uses             and             to response a long-time constant of the step 

response. Furthermore, in order to show the response of the instantaneous voltage drop 

of the step response, a series resistor        , which is assumed to be the constant part 

of the internal resistor, is used (Chen and Rincon-Mora, 2006). A controlled voltage 

source      whose value depends on the open circuit voltage     of the battery is 

used to bridge SoC of the battery to an open circuit voltage. The full capacity of a 

battery           , when the SoC is 100%,  represents the whole charge stored in the 

battery and can be expressed as (Chen and Rincon-Mora, 2006). 
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                                                                 (5.49) 

where           is the nominal capacity of the battery in Ahr and            and 

         are cycle number and temperature dependent correction factors of the 

battery, respectively. Due to the aging effect, the full capacity of the battery is reduced 

as the battery goes through cycles of charging and discharging, especially for deep 

discharging. Hence, in order to achieve a long battery lifespan, the SoC of the battery 

is desirably kept within appropriate limits. By searching the NiMH battery datasheet, 

the life cycles of the battery are around 700 times when the battery is discharged when 

it reaches DoD=80%. By considering there is a linear relationship between the cycles 

and usable capacity of the battery,            can calculate by:  

                                                                    (  
   

   
)                                    

where         is present battery cycles. Similarly, in order to express temperature 

affecting the usable capacity of the battery, a temperature factor          is used. 

Because wireless sensor nodes are normally designed for using in a normal 

environment, the usable capacity of the battery is not affected by the environment 

temperature. To simplify the simulation,            is assumed in this work. As 

the NiMH battery has a high self-discharge rate, 1% of the capacity lost in the battery 

per day is used. Hence, the self-discharging resistor of the battery                can 

be simplified as a large resistor. Because rechargeable batteries can step into charging 

or discharging phases, the battery efficiency can be divided into the charge efficiency 

           and the discharge efficiency              parts: 

                                                                  
          

           
                                               

                                                                    
              

          
                                          

where             and                are the total energy which are charged in or 

discharged from the battery,  and            is total energy adding on the battery 

when it being charged, and             is total energy being lost in the battery when 

it being discharged. Their units are the charge in coulombs.  
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According to Table 5.2, the NiMH battery has a charging/discharging efficiency of 

around 66%. In this work, in order to make the charging/discharging process more 

clear, the charging and discharging efficiency are separated into                and 

                . When the battery is being charged by using a current source 

             , the SoC of the battery is changed dynamically. The present SoC of the 

battery is calculated by using the original capacity plus the charged capacity, as shown 

in Equation 5.53.  

                                   
 

          
∫                      

 

 

                        

where t is the charging or discharging period, and        and        are SoC value 

at time t and 0, respectively. If using a discharge current                  to discharge 

the battery, the        is expressed as the original capacity minus the discharged 

capacity.  

                                         
 

          
∫

               

            
  

 

 

                            

Normally, the lifetime of the rechargeable battery        , can be simply calculated 

based on the total amount of energy       , which can be put into and taken out of a 

battery over all the cycles in its lifetime before its capacity reduces to 80% of SoC. It 

is assumed that rechargeable batteries are discharged in a constant current              

and the self-discharge effect is neglected; then the         can be calculated. 

                
                       

            
 

∑                              
   

            
         

where DoD=80% means this is the end of lifecycle of the rechargeable battery.  

In order to determine the lifetime as well as the I-V character of the battery, the 

present SoC of the battery is a key point. However, it is very hard to accurately predict 

the battery SoC because it depends on many factors such as temperature, battery 

capacitance, and internal resistance. One approximate way to estimate the SoC of the 

battery is through the open circuit voltage of the rechargeable battery      , which is a 

function of SoC and can be described as:  
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By knowing the SoC of the battery, the open circuit voltage can be determined. 

Unlike an ordinary battery, the relationship between the SoC and open circuit voltage 

of NiMH battery is non-linear. In order to achieve a more precise battery model, a 

piecewise linear approach proposed by Windarko et al. (2009), has been adopted in 

this chapter. According to their experiments, in which 10 NiMH batteries were tested 

respectively, the relationship between SoC and open circuit voltage of the NiMH 

battery is plotted in Figure 5.14. It can be observed that the relationship can be divided 

into three linear segments, which are 0 to 10%, 10% to 80%, and 80% to 100% in 

terms of SoC.  Table 5.4 shows the open circuit voltage (OCV) values in these points. 

Based on these estimations, a piecewise linearization formula has been proposed.  
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Table 5.4 The relationship between the experience OCV and SOC of NiMH battery  

(Windarko et al., 2009) 

OCV（V） 1.2 1.28 1.35 1.39 

SoC （%） 0 10 80 100 
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Figure 5.14 The relationship of SoC and OCV of NiMH battery (Windarko et al., 

2009) 

Typically, open circuit voltage of a battery       can be obtained by a direct 

measurement, by temporarily disconnecting the battery charging or discharging 

processes, which is considered inconvenient. Thus the left side circuit of Figure 5.13 is 

used to calculate       by knowing the battery output current       and battery 

voltage         . By using Kirchoff laws, the          can be expressed by using a 

constant current       to discharge and charge the battery. In the discharging mode, 

         can be expressed as: 
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In the battery Charging mode,           can be expressed as: 
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where                              and                             .  
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where                              and                             . The rest 

of the symbols are illustrated in Figure 5.13.  

Before simulating the model, some parameters of the NiMH battery must be 

identified. A  Duracell HR03 NiMH battery (HR03, 2008) rated at 1.2V and 

800mAH is used as an example. In order to calculate the open-circuit voltage of the 

battery,        ,             ,             ,              and              should be 

determined. Based on (Chen and Rincon-Mora, 2006), the parameters extracted from 

their work have been adopted in this model to calculate the open-circuit voltage. Table 

5.5 shows the battery simulation parameters.  

Table 5.5 NiMH battery parameters 

Parameters Value 

                            

                  

                   

                  

                  

                   

Maximum Voltage 1.49V 

Minimum voltage 1.2V 

Capacity      800mAH 

Cycles      700 times 

DoD      80% (1.29V) 

Experiments have taken place at the laboratory to evaluate the accuracy of the 

proposed NIMH battery model. In order to avoid the environment factors affecting the 

experiments, the temperature and humidity of the laboratory are maintained at the 

same level. To evaluate the model, the simulation results of open circuit voltage with 

different charge and discharge currents are plotted in Figure 5.15. The open circuit 
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voltages of the batteries were recorded every 500 seconds. Due to the recovery effect 

of the battery, the open circuit voltages vary significantly after rapidly charging or 

discharging. In order to get stable results, the battery was allowed to discharge for one 

hour. This is because there is no significant change in the open circuit voltage after 

one hour of resting. By examining the curves, the simulation results are close to the 

experimental results. And the error of the model is around 6% in the worst case 

scenario. By using the simulation model to calculate the lifetime of the battery by 

using 1C and 0.5C discharge rate, the lifetime of the batteries are 3453s and 7282s, 

respectively. The relatively experimental results are 3275s and 7150s, respectively. 

The error of the model is around 5.4%.  

 

Figure 5.15 Battery’s Open-circuit voltage with different discharging currents and 

charging currents. 

5.5 The model of the energy consumer 

Normally, a wireless sensor node is the primary energy consumer in the 

micro-energy harvesting system. In this chapter, a Jennic 5139 MCU based platform is 

chosen as a target energy consumer. A popular low power sensor node, DR1048 

(Jennic DR1048, 2008), from NXP company, has been chosen as an example to 

demonstrate and verify the proposed model. The electrical characteristics of DR1048 

board are listed in Table 5.6.  
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Table 5.6 DC current consumption of the DR1048 

Description Current  

CPU Sleep mode 0.0035mA 

CPU active mode 7.41mA 

Radio (Receiving mode) 37mA 

Radio (Idle mode) 37mA 

Radio (Transmission mode) 38mA 

Temperature & Humidity sensor (Idle Mode) 3.5uA 

Temperature & Humidity sensor (Sleep Mode) 0.3uA 

Light sensor (active mode) 0.35mA 

Light sensor (power down mode) 10uA 

LED 2mA 

Using a voltage and current meter to monitor the power consumption of the DR1048 

board, the active power consumption and the sleep power consumption of the sensor 

node are measured at 35.23mW and 6.63mW, respectively. If using duty cycle D=25%, 

the average power consumption of the sensor node                  is: 

                                                                      

5.6 Model of the entire energy harvesting system  

The model of the whole energy harvesting system has been constructed based on 

Figure 5.16 by integrating each component of the model together. In order to highlight 

the energy flow, the efficiency of each component is tracked. The power consumptions 

in the control circuits have been taken into account and deduced the available power 

from the system. The energy model of the entire system can be described based on the 

three different states of the energy storage subsystem, which are using the battery to 

power the system, using the capacitor to power the system, using the capacitor to 

power the system and to charge the battery at the same time. The following are 

descriptions of these three states. 
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Figure 5.16 Power transfer in micro-energy harvesting system 

It can be assumed that the system starts at a given time instant          and the 

initial energy level of the rechargeable battery and the super-capacitor are recorded as 

                   and              , respectively. By assuming                     , 

the systemdraws energy only from the rechargeable battery. Then the total power 

consumed by the energy harvesting system          can be calculated by adding the 

power consumption of MPPT circuit               , the power consumption of the 

boost converter                , the power consumption of the control unit from the 

power conversion subsystem           , and the average power consumption of the 

sensor node                  together. This can be expressed as shown in Equation 

5.61.  

                                                                             

Because the whole system is powered by the same energy source, Equation 5.61 can 

be rewritten as a current form, as shown in Equation 5.62. 

                                                                               

where           ,                              ,           ,                  are the 

current consumption of the entire system, the MPPT circuit, the boost converter, the 

control unit of the energy storage system, and the sensor node, respectively. Based on 

the energy harvester’s characteristics and the environment, the harvested energy 

        can be determined. By using the MPPT circuit, the exact power 

                transferred from the energy harvester to the boost converter can be 

calculated by Equation 5.1.            is the input power of the DC-DC boost 

converter. By considering all the power dissipation sources in the DC-DC converter 
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circuit, the efficiency of the converter           (t) can be calculated and therefore, 

the output power of the boost converter           (t) can be obtained as:  

                                                                                                        

The system can step in different states by knowing the energy level of the 

supercapacitor, as shown in Figure 5.17If the terminal voltage of the super-capacitor  

             , the system draws energy from rechargeable battery and the harvested 

energy is stored in the super-capacitor. This can be observed as the black curve in 

Figure 5.17. If                     , the system switches to use super-capacitor 

as the main power source. This can be seen as the red curve in Figure 5.17. As soon as 

             , the super-capacitor charges the rechargeable battery and powers the 

system at the same time. The charging battery process will stop when              . 

This can be displayed by the green curve.  In this time period, the system is still 

powered by the super-capacitor and this process will be stopped when        

      . According to the figure, the theoretical analysis can be divided in three 

different cases.  

 

Figure 5.17 System states Vs. four voltage thresholds.  
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(1)               

  In the case one,              , the system only draws energy from the 

rechargeable battery. As long as the super-capacitor voltage rise, the system will 

extract energy from the super-capacitor until              . By assuming energy 

harvesting system is a constant current source in a short time interval   , the terminal 

voltage of the super-capacitor        can be expressed as: 

                                               
 

   
∫       

 

 
                               (5.64) 

where     is the capacitance of the super-capacitor. By considering the charge and 

discharge efficiency            of the super-capacitor and the self-discharging current 

of the super-capacitor          , the exactly charging current        can be expressed 

                                                                                                              

Then the time interval between the initial systems to this point      can be calculated 

as: 

                                  
                          

∫        
   

 
  

                                                          

Where         is the charging current in the time period    . During the time period 

   , the useful energy of the energy harvesting system              is the energy 

being stored on the super-capacitor            , which is expressed in Equation 5.67.  

                                     (
 

 
)          

          
                        

On the other hand, the total energy consumed by the system in this time interval is 

drawn from the rechargeable battery. By assuming energy harvesting system is a 

constant current consumer, the energy consumed in this time period can be expressed 

as: 

                                                  ∫         
   

 

                                            

where       and          are the terminal battery voltage and the current drawn 

from the rechargeable battery. By considering the discharging efficiency of the 
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rechargeable battery, total capacity lost in the rechargeable battery in     

            is: 

                                                     ∫
         

            
  

   

 

                                             

where             is discharging efficiency of the rechargeable battery. Then the 

energy extracted from the battery               during this time interval is: 

                ∫          
         

            
                                                              

   

 

   

 
                   

 
             

where           is open circuit voltage of the rechargeable battery in a time instance t. 

By knowing the open circuit voltage is a function of SoC, Equation 5.57 can be 

rewritten as:  

                        
                               

          
               

where  

  {

                                                            

                                        

                                            
   

 (2)                      

In the second state, the energy harvesting system detected that the super-capacitor’s 

voltage higher than        , the system  uses only the energy from the 

super-capacitor to power the system. In this state, there are two different cases which 

should be considered respectively. In the first case, the charging current of the 

super-capacitor       >                      +           , and then the super-capacitor 

continues to increase its terminal voltage until the second voltage threshold        is 

met.  In this case, the charging current of the super-capacitor          can be 

rewritten as: 
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The time interval in this situation is     and it can be expressed as: 

                                         
                   

∫        
   

 
  

                                                          

In order to simplify the model, the self-discharging and the recovery effect of the 

rechargeable battery are ignored in this period. Then the energy level of the battery is 

maintained in this time period. In this time period, the useful energy from the energy 

harvester        (     is the sum of the energy being consumed by the system 

               and the energy being stored in the super-capacitor            , as 

shown in Equation 5.74.  

                                                                                                      

where                ∫       
   

 
    

          

          
   and             (

 

 
)      

       
        

  .  

   In the second case, the charging current of the super-capacitor is less than the 

current drawn from the super-capacitor; the system draws energy from the 

super-capacitor until the fourth voltage threshold        is met. The fourth voltage 

threshold        is set because frequently switching energy sources generates a lot of 

noise to the sensor node which makes the system performance unstable. After the 

system detects             , the system uses the battery to power the system again. 

In this case the current draw from the supercapacitor            can be expressed as: 

                                                         

By assuming the discharging process of the super-capacitor is using a constant current 

source, the time period     can be obtained by  

                                                       
    [             ]

∫             
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  Moreover, the useful energy of the energy harvesting system        (     is the 

energy difference between the total energy dissipation of the system                

and the energy lost in the supercapacitor            .  

                                                                                                

where                ∫       
   

 
    

          

          
   and             (

 

 
)      

       
        

  . In this case, the battery voltage is maintained at the same level.  

(3)               

In order to use the super-capacitor to power the system and meanwhile charge the 

rechargeable battery, sufficient energy should be harvested by the energy harvester. As 

soon as the voltage condition of the super-capacitor               is met, this state 

will occur. Normally, a charging window is used to stabilize the system charging 

process. A stop charging voltage threshold        is used to indicate the stop 

charging battery point of the super-capacitor. If               , the capacitor stops 

charging the rechargeable battery but it still powers the system. The charging battery 

process can be considered as using a constant voltage source to discharge the 

supercapacitor. The discharging voltage                is equal to battery voltage 

           . In order to simplify the calculation,             can be seemed as a 

constant value                 . Then the charging battery time     is: 

                (              )                                                                     

   
                         

           
                                               

According to the electrical characteristics of the super-capacitor, the charging 

process is very quick and it can be seemed as an instantaneous process by comparing 

with other processes. In order to simplify the analyses, it is assumed no energy 

consumption in this time period. The total electrical charge         lost in the 

super-capacitor during the charging process in the rechargeable battery.  

                                                 (             )                                          
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where            is discharging efficiency of the super-capacitor. Furthermore, by 

considering the charging efficiency of the rechargeable battery          , only a part 

of         could be charged in the rechargeable battery. The energy being charged in 

the rechargeable battery             can be expressed as: 

                                                                                                                       

The SoC of the battery                 in this period can be expressed as  

                                                                                               

Where                is the previous SoC of the rechargeable battery.              

is adding SoC in this time period and it can be calculated by  

             
           

          
 

where            is nominal full battery capacitor.  

Furthermore, if the energy harvester can still supply sufficient energy to raise the 

voltage of the super-capacitor from        to       , the charging current of 

super-capacitor        in this case can be expressed as: 

                                                                      

The time interval in this process     can be expressed as: 

                                                
                   

∫        
   

 
  

                                          

The useful energy from the system              in this time period is the sum of 

energy dissipated by the system and energy stored into the super-capacitor.  

                                                                                                      

where                ∫       
   

 
    

          

          
   and             (

 

 
)      

       
        

  . 
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  On the other hand, if there is less energy or no energy to be harvested by the system, 

the voltage of the super-capacitor drops rapidly. As soon as the super-capacitor’s 

voltage drops below       , the system switches to use battery power the system 

again. The discharging current            draws from super-capacitor is: 

                                                        

The time interval     of this period is expressed as:  

                                                     
                   

∫             
   

 

                                                 

  Similar to      process, the useful energy in this period        (   ) can be 

expressed as: 

                                                                                                      

where                ∫       
   

 
  

          

          
   and             (

 

 
)      

       
        

  . And the battery energy is maintained at the same level.  

5.7 Theoretical analysis of an energy harvesting system   

After the entire model construction, the performance of a micro-energy harvesting 

system can be analysed. As shown in previous chapters, the lifetime and the energy 

efficiency of the system are the two critical factors for any energy harvesting platform. 

Hence, the system performance can be analysed in terms of the two metrics: the 

lifetime prediction and the daily energy conversion efficiency.  

5.7.1 The lifetime prediction 

The lifetime of the system is the key performance factor to indicate whether the 

proposed system is successful or not. Based on previous analysis, the lifetime of the 

system is determined by the lifetime of the energy buffers. The energy profile of the 

environment energy source can be obtained by the historical record or experience tests. 

By integrating the environment energy data into the integrated energy model of an 

energy harvesting system, the available energy of the system can be determined. On 

the other hand, the energy dissipation of the system can be calculated by using the 
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model as well. By comparing the energy difference between the energy generated and 

the energy dissipation, and comprehensively considering the residual energy level of 

the energy buffers, the lifetime of the system can be calculated. In order to simplify the 

description, it assumes that the system is powered by the rechargeable battery all the 

time and the harvested energy is stored into the super-capacitor before it charging the 

rechargeable battery. Then the total energy dissipation of the system                

and the total energy generated by the system               can be expressed as  

                                                                                                         

                                                           
                                    

where         is the supply voltage of the energy harvesting system and           is 

the lifetime of the system. The total energy harvested by the energy harvester through  

the lifetime          ,                    is: 

                                                              ∫        
          

 

                                 

where         is the peak power of the energy harvester. At the same time, the 

residual energy of the rechargeable battery                can be calculated by 

Equation 5.87.  

                                                                                                         

where        is the current SoC of the battery, and            is the full capacitor 

of the battery, and            is the nominal battery voltage. The lifetime           

can be calculated by when Equation 5.88 is true.   

                                                                                                   

And the calculated t is the lifetime of the system.  

                

Moreover, in order to make the system have a perpetual lifetime, an energy neutral 

operation (Kansal, et. al., 2007) is introduced here. When the available energy of 
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system is equal to the energy dissipation of the system in a cycle, the system is 

considered to operate at the energy neutral operation, as shown in Equation 5.89. 

                                                                                                   

If the system in any test cycle Equation 5.89 is true, the system can be considered 

having an everlasting life system. But unfortunately, the energy generation of the 

system varies rapidly with the dynamic environment conditions and it is very hard to 

make the system operate at the energy neutral operation all the time. Hence, a power 

management algorithm should be considered in the system to achieve energy neutral 

operation.  

5.7.2 Daily energy conversion efficiency 

The efficiency of the energy harvesting platform is another factor to indicate the 

system performance. This is extremely important for the micro-scale energy harvesting 

system, because the higher efficiency the system can shrink the system cost and size. 

In this chapter, daily energy conversion efficiency, which is defined as 24 hours 

energy conversion efficiency, is introduced to evaluate the system performance. A 24 

hour test window is selected in this work because the energy availability from the 

environment is normally daily based. The daily energy conversion efficiency 

                 refers to the ratio between the energy delivered to the system 

          , which is the sum of energy consumed by the system and energy stored in 

the energy buffers, and the energy harvested by the energy harvester           in a 

day.  

                                                           
          

          
                                              

                                     [                                ]    

where                 is total energy consumed by the system in 24 hours, and 

               ,                 are the residual energy and initial energy level of 

the system, respectively.  The initial energy stored in the energy harvesting system is 
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where                   and                     are the pre-stored energy on the 

rechargeable battery and the supercapacitor, respectively. The initial energy on the 

rechargeable battery can be calculated by knowing            and the initial battery 

capacitance                    

                                                                                                            

On the other hand, the initial energy stored on the super-capacitor can be calculated as: 

                                                          
 

 
        

                                               

After 24 hours of operation, the remaining energy in the energy storage elements are: 

                                                                                      

                                                                      (      )                        

                                                           
 

 
        

  (      )                                 

where         (      ) and              are the final capacitor of the battery and 

final voltage of the super-capacitor, respectively. Total energy consumed by the 

system during a day can be expressed as: 

                                                            ∫           

       

 

                              

where                                        . To simplify the calculation, 

             is considered as a constant value 2.8V which is the terminal voltage of 

the two series connected NiMH batteries. The total energy harvested by the energy 

harvester through a day is: 

                                                                    ∫        
       

 

                            

Then the daily efficiency of the system can be calculated according to Equation 5.90.  
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5.8 Model Validation 

In the model evaluation, the component and entire system model are validated 

against reference experiments to show the accuracy of the model which is expected to 

predict the system performance. The system simulation could be carried out to 

simulate system behaviour in different situations and with different dimensioning 

parameters of components used by the system. The mathematical model is simulated 

by Matlab, which provides a strong capability of mathematic calculation and 

flexibility for simulation. As stated in the previous sections, individual components of 

the energy harvesting system were validated. In order to validate the entire system 

model, two actual deployments, solar and thermal energy harvesting systems, have 

been implemented in the laboratory. The evaluation processes can be divided into 

different steps based on the function of each subsystem.  

5.8.1 Set up the test environments 

Before designing the prototypes to evaluate the simulation mode, a controllable test 

environment should be developed. This is because the harvested energy is extremely 

dependent on the environment where the energy harvester is deployed. For instance, 

the performance of a solar panel depends on the solar irradiance levels, dust and the 

environment temperature. And the harvested energy from the TEG system is highly 

related to the surrounding temperature and air flow. As these environment factors are 

difficult to predict in a certain place at a certain time, it is hard to evaluate the 

proposed model in a real environment. But if the environment factors are controllable 

and being known by the designer, the model evaluation can be carried out. For solar 

energy, a 100W controllable desk lamp has been employed to emulate a controllable 

solar light in door. The different light conditions can be obtained by adjusting the 

output of the lamp or varying the distance between the solar cell and the lamp. For 

emulating a controllable thermal energy in the laboratory, a 50 W electric heater has 

been used. The temperature of the heater can be adjusted by the on board controller 

and the room temperature has been maintained at a constant value by an air condition.  

5.8.2 Evaluate the energy transfer efficiency 

As concerned by all the energy harvesting researchers, the system transfer 

efficiency is critical in designing any energy harvesting system. Hence, the first 

evaluation step is to verify the energy harvester with the MPPT based power 
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conversion system. This is because the energy harvester and the power conversion 

subsystem are the two main parts to determine the system’s efficiency. In this part, the 

energy consumer and the energy storage subsystem are ignored. As mentioned in 

previous parts, the amorphous solar cell AM-5412 from SANYO and eight pieces of 

Bi2Te3 TE modules TEC1-12709 from the Taicang TE cooler company have been 

used to harvest the light energy and the thermal energy, respectively. Hence, these 

devices have been used as the energy harvester in both the simulation models and the 

evaluation prototypes. In this chapter, the synchronous boost converter TPS61221 

from TEXAS instrument has been employed as the regulator circuit for boosting the 

low input voltages and regulated the voltages to a constant 5V output voltage. In order 

to calculate the harvested energy, two 22F super-capacitors from Panasonic, series 

connected, have been used as the energy buffer. There are some reasons to use 

super-capacitor as the energy accumulator. First, the charging efficiency of the 

super-capacitor is near 100%, which the energy lost in charging process can be 

neglected. Secondly, the energy stored on the super-capacitor can be easily calculated 

by knowing the voltage level of the super-capacitor. In order to ensure the initial state 

of the super-capacitors at the same level in all the experiments, the super-capacitors 

have been pre-charged to 1.3V.  

For the MPPT circuit, in order to simplify the evaluation test setup, the open circuit 

voltages of the solar panel and the TEG for each test environment have been measured. 

Based on the results in relation with the linear relationship between the open circuit 

voltages to the MPP of the energy harvesters, the MPPs of the energy harvesters in 

these test conditions can be calculated. These results have also been used as the peak 

power, harvested by the energy harvesters, to calculate the energy efficiency of the 

system. By knowing the MPPs in these test conditions, an ultra-low power single 

comparator LTC1440 from Linear (Linear technology LTC1440, 2008) has been used 

as the MPPT circuit to make the system working at MPPs. The schematic diagram of 

the MPPT unit is shown in Figure 5.18. The on chip 0.5V reference voltage is 

connected to the Pin 4 as one input of the comparator. This is the reference voltage to 

indicate the output voltage of the energy harvester, which has been reached MPP. 

Another input Pin3 is connected to the output voltage of the energy harvester through 

two adjustable resistors   and   . Their resistances can be adjusted based on the 

calculation shown below: 
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where      is the voltage of the MPP of the energy harvester in a test condition,    

and    are the resistances of two adjustable resistors, and                . By 

comparing these two inputs values, when the output voltage of the energy harvester is 

equal to the voltage of the MPP, the comparator sends a control signal to switch on the 

DC-DC boost converter. Based on this principle, the simplified MPPT based power 

conversion circuit has been developed. By ignoring the power consumption of the 

periphery circuit of the comparator, the overhead of the MPPT circuit can be 

calculated by knowing the quiescent current of the comparator circuit, which is       

according to the datasheet. In order to avoid the MPPT circuit extracting energy from 

the energy harvesting system to make calculation complicate, an external 3V battery 

has been used to sustain the MPPT circuit. Then the power consumption of the MPPT 

circuit can be estimated              . 

 

Figure 5.18 Schematic diagram of MPPT circuit 

Three different light levels, 50kLx, 35kLx and 8.12kLx, have been used to evaluate 

the energy transfer efficiency of the solar energy harvesting system. According to the 

tests, the open circuit voltages of the solar panel in these three conditions are 2.6V, 

2.39V and 2.19V, respectively, when the environment temperature is set at    . 

Based on the Equations 4.3 and 4.4, shown in Chapter 4, the MPP of the solar panel in 

these three conditions are 1.976V, 1.864V and 1.664V, respectively. By typing these 

energy sources into the model of the boost converter, the corresponding converter 

efficiencies are 81.2%, 80.1% and 79.8%, respectively. By considering the      
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    and                             , the regulated energy of the solar 

energy harvesting system can be calculated. Normally, the charging time is the best 

way to indicate system efficiency.  Table 5.7 shows the charging time of simulation 

and experimental results. By examining the comparison results, the accuracy of the 

model is around 81.5% in the worst case. The accuracy of the model is acceptable. It is 

noticed that there are some differences between the simulation and the real 

measurement. This is caused by an idealistic modelling of the individual subsystems. 

But the simulation results capture the trend that the energy conversion efficiency is 

roughly increased in proportion to the strength of the harvested energy.  Based on 

analysing results, the charging time is proportional to the harvested energy. 

Furthermore, the energy conversion efficiency of the energy harvesting system      

could be calculated by knowing the total energy harvested from the environment, total 

energy stored into the capacitors            , and total energy consumed by the 

MPPT circuit during a time interval t.  

     
                 

                 

 

 
         

        
              ∫               
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where         and          is the peak power of the energy harvester. By 

applying charging times into Equation 5.99, the efficiency of the system can be 

calculated, as shown in Table 5.7. Based on the results, the energy conversion 

efficiency of the system is highest when the light level is 50kLux. This indicates the 

system efficiency is highly related to the input level of the light energy. It also can be 

observed that the highest system efficiency can be found when the super-capacitor’s 

voltage is in range of 4.1V to 5V and the lowest system efficiency is in the range of 

(1.3V to 3V). This is because when the super-capacitor is charging from 1.3V to 3V, 

the charging current drawn from the boost converter is the maximum output current of 

the boost convert. And the conversion efficiency of the boost converter in this 

condition is the lowest, which are around 40%. When the terminal voltage level of the 

super-capacitor approaches the charging voltage 5V, the charging current drops but the 

energy transfer efficiency increases. Based on this point of view, the higher system 

efficiency can be obtained when the charging voltage is set to near the highest voltage 
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threshold of the super-capacitor. Moreover, based on the experimental result, when the 

light input level is 8.12kLux, the supercapacitor cannot be charged to 5V. This is 

because the leaking current of the super-capacitor is higher than the charging current.  

Table 5.7 Charging the super-capacitors with different light irradiances 

Input 

power  

 

Charging time (From 1.3V 

to 3V) 

Efficiency 

Charging time (From 3V to 

4.1V) 

Efficiency 

Charging time (From 4.1V to 5V) 

Efficiency 

Simulation  Experiment

al  

Simulation  Experimental  Simulation  Experimental  

44mW 

(50kLux) 

2791 (s) 

32.74% 

2820 (s) 

32.4% 

1805 (s) 

54.08 

2294 (s) 

42.55% 

1476 (s) 

69.35% 

1606 (s) 

63.7% 

27.41mW 

(35kLux) 

4720 (s) 

31.07% 

4758 (s) 

30.8% 

3053 (s) 

51.3% 

3947 (s) 

39.7% 

2606 (s) 

63.308% 

3000 (s) 

54.77 

4.44mW 

(8.12kLux

) 

70122 (s) 

12.9% 

84146 (s) 

10.76% 

45383 (s) 

21.3% 

68074 (s) 

14.21% 

27186 (s) 

37.31% 

Capacitor can only 

be charged to 4.4V 

Moreover, in order to show the MPPT circuit is critical in enhancing energy 

efficiency of the system, two different working points (3V and 2V) of the solar panel 

have been selected when the solar energy harvesting system is illuminated under 

50Klx light condition. When the system operates at the MPP, the solar panel has 

44mW output power. But when the 3V working point has been set by the system, the 

output power drops to 9.3mW. The simulation and the corresponding experimental test 

results are shown in Table 5.8. By comparing charging times, when the system works 

at MPP, it has the most efficient charging time. By integrating the simulation results 

into Equation 5.99, the system conversion efficiencies at 3V and 2V working points 

are 7.86% and 22.89%, respectively. By integrating the experimental results in 

Equation 5.99, the efficiencies are 6.8% and 20.88% at the points 3V and 2V, 

respectively. By comparing with the system efficiency of 41.57% at the MPP, the 

system efficiency rapidly deceased when the solar energy harvesting system is not 

working at the MPP.  According to this point, the MPP circuit is critical for an energy 

harvesting system which requires high system efficiency.  
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Table 5.8 The comparison results of MPP vs. other two working points 

Input power From 1.3V to 5V 

Simulation  

(second) 

Experimental 

(second) 

44mW (Maximum Power 

point) 

6072 6720 

9.3mW (3V, 3.1mA) 37000 42678 

26.4mW (2V, 13.2mA) 12718 13950 

The same processes have been used to evaluate the model of thermal energy 

harvesting system, which use the TEG model to replace the solar panel model in the 

previous part. Because of the ultra-low harvester voltage, eight pieces of TE modules 

were connected in series to enhance the harvester voltage in this test. In order to show 

the difference, 10K and 15K temperature differences have been used. Similar to the 

solar energy harvesting system, the open circuit voltage of the TEG have been 

measured before the simulation.  Based on Equation 4.53, showed in Chapter 4, the 

MPPs of the TEG system under these two temperature conditions can be calculated. 

Similar to the solar energy harvesting system, the testing and simulation results of the 

charging time and efficiency are listed in Table 5.9.  

By comparing the simulation and the testing results, the accuracy of the model is 

around 83.1% in the worst case. The energy conversion efficiency of the system in 

these two conditions is 40.31% and 36.46% by integrating the experimental results in 

the Equation 5.99. By comparing the efficiency with the solar energy harvesting 

system, the conversion efficiency of the thermal energy harvesting system is much 

lower than the solar energy harvesting system. This is why this energy harvesting 

technology is not as popular as the solar one.  
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Table 5.9 Charging the super-capacitors with different temperature differences 

Input power  Charging time (From 1.3V to 

3V) 

Efficiency  

Charging time (From 3V to 

4.1V) 

Efficiency  

Charging time (From 4.1V to 

5V) 

Efficiency 

Simulation  Experimental  Simulation  Experimental  Simulation  Experimental  

41.6mW 

(dT=15K) 

3512 (s) 

27.52% 

4218 (s) 

22.91% 

2271 (s) 

45.46% 

2895 (s) 

35.66% 

1857 (s) 

58.3% 

2055 (s) 

52.69% 

23.4mW 

(dT=10K) 

6885 (s) 

24.96% 

8269 (s) 

20.77% 

4454 (s) 

41.21% 

5791 (s) 

31.7% 

3644 (s) 

52.8% 

6167 (s) 

31.21% 

In order to see the MPPT circuit affects the performance of the thermal energy 

harvesting system, the comparison results of the TEG system which works at MPP and 

other two selected (0.8V and 1.6V) working points are showed in Table 5.10. 

According to the results, the system efficiencies have been dropped to 29.22% and 

20.61% in the real experimental tests. By comparing the conversion efficiency of 

40.31% when the system is working at MPP, the system efficiency drops significantly 

when the system is not working at the MPP. It can be observed that 0.8V working 

point has much more efficient than the 1.6V working point. This is because the 0.8V 

working point is much closer to the MPP. In summary, the system efficiency can be 

rapidly enhanced when the working point of the energy harvester is close to the MPP 

of the energy harvester.  
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Table 5.10 The comparison results of MPP vs. other two working points of TEG 

Input power From 1.3V to 5V 

Simulation Results 

(second) 

Experimental 

Results  (second) 

41.6mW  

(0.98V) 

7640 9168 

38.9mW 

(0.8V) 

8956 10536 

24.1mW 

(1.6V) 

12679 14916 

5.8.3 Evaluate the model of the energy storage subsystem 

The second evaluation step is to verify the model of the energy storage subsystem. 

In this part, the models of the power storage subsystem and the sensor node have been 

integrated together. In order to evaluate the model in a real environment, an 

experimental system has been developed based on the schematic diagram shown in 

Figure 5.19. Two 850mAH NiMH batteries and two 22F super-capacitors have been 

chosen as the power storage elements and the DR1048 sensor node has been employed 

as the energy consumer. The control circuit has been designed by using a PIC16F688 

MCU from Microchip INC (PIC16F688, 2008), a MAX890L P-channel switch from 

MAXIM (Max890, 2007), and a dual P-channel MOSFET FDS9933A from Fairchild 

(Fairchild, FDS9933A, 2007). The functions of each component are described below: 

 The PIC16F688 MCU has been used to monitor super-capacitors’ voltage and 

batteries’ voltage levels. As stated in the previous part, the power storage system 

can be in one of three states, which are using batteries powering the system, using 

capacitors powering the system, using capacitor powering system meanwhile 

charging the batteries, by examining the voltage level of the super-capacitor. 

Hence, the monitored super-capacitor voltages have been compared with four 

pre-setting voltage threshold 3V, 4.1V, 3.8V and 2.8V. By calling the UART 

function on the PIC MCU, the monitoring results can display on the computer.  
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 The MAX890L P-channel switch has been used to achieve charging or stop 

charging the NiMH batteries.  

 The FDS9933 dual P-channel MOSFET has been used to supply a select function 

of the system, which the system can decide to use the battery or the 

super-capacitor to power the system.  

The power consumption of the control circuit can be simply assumed as the power 

consumed by the PIC16F688 MCU and the MAX890L microchip. Based on their 

specifications, the current consumptions at 3.3V are       and     , respectively. 

Then the total overhead of the control circuit  

                           

where           and                 . 

 

Figure 5.19 schematic diagram of the Power storage subsystem 

In order to ensure the state of the super-capacitors and rechargeable batteries at the 

beginning of each experiment were the same, the super-capacitors and the 

rechargeable batteries have been pre-charged to 1.3V and 2.7V (SoC 80%), 

respectively. A programmable DC power supply (62000P Series, 2008) has been used 

to directly charge the super-capacitors. Two output levels 5V, 10mA and 5V, 20mA, 

have been selected respectively to emulate the harvested energy. Initially, the system 

draws energy from the rechargeable battery. When the voltage of the super-capacitors 

reaches four different voltage thresholds, the system decides to use battery or 

super-capacitor to power the system or charge the battery. Table 5.11 shows the 

charging time of the super-capacitors to reach 3V, 4.1V voltage thresholds with these 

two energy sources. The corresponding experiments show the accuracy of the model is 

around 93.4%.  
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Table 5.11 Charging time of the super-capacitors 

Input 

power  

 

From 1.3V to the fist threshold 

voltage  3V (Second) 

From 3V to the second threshold 

4.1V (Second)         

From 3.8V to 4.1V (Second) 

Simulation  Experimental  Simulation  Experimental  Simulation  Experimental  

50mW 1870 2002 2114 2263 576 617 

100mW 935 1001 769 823 209 224 

5.8.4 Evaluate the entire energy harvesting system model 

For the hybrid model evaluation, both energy harvester model and the power 

conversion model have been implemented with the energy storage model. The energy 

levels of the super-capacitors and the rechargeable batteries have been recorded with 

different time stamp. In order to evaluate the model, two deployments of each system 

have been tested in the laboratory, where the solar panel was illuminated by a constant 

50Klx light irradiance and the temperature difference of the TEG system has been 

maintained at 15K. To examine the accuracy of the model, the experimental and the 

simulation results are compared in Table 5.12. By comparing with the charging times, 

the accuracy of the model is around 81.4% in the worst case.   

Table 5.12 Charging the super-capacitors with solar energy harvesting system and 

TEG 

Input 

power  

 

From 1.3V to the fist 

threshold voltage  3V 

(Second) 

From 3V to the second 

threshold 4.1V  (Second)          

From 3.8V to 4.1V 

(Second) 

Simulation  Experimental  Simulation  Experimental Simulation Experimental 

Solar cell 

44mW 

(50kLx) 

3080 3850 

 

6748 8477 1840 2300 

TEGs 

41.6mW 

(dT=15K) 

3747 4683 16970 21453 4628 

 

5850 

In order to calculate the daily conversion efficiency of the system, the prior test 

setups have been tested in the laboratory for 24 hours. Figures 5.20 and 5.21 show the 

complete voltage curves of the super-capacitors and the rechargeable batteries in these 
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conditions both by simulation and experiment. By examining the voltage curves of the 

super-capacitors in Figure 5.20, the super-capacitor’s terminal voltage rises rapidly 

when the terminal voltage is less than 3V. After the terminal voltage is higher than the 

3V, the slope of the voltage curves becomes flat. This is because the system switches 

to using the super-capacitors to power the system. When the terminal voltage is higher 

than 4.1V, it drops rapidly to 3.8V. This is because the energy from the 

super-capacitors is charging the rechargeable battery. By calculating the times of 

super-capacitors charging the batteries, the simulation results show the batteries have 

been charged 42 and 15 times during one day operation by solar energy and thermal 

energy, respectively. The experimental results show the batteries have been charged 28 

and 12 times during a 24 hours test. Figure 5.21 depicts the corresponding battery 

voltage of the two prototypes. It can be observed that the battery voltage rises as 

expected. The simulation results show the terminal battery voltage are 2.727V and 

2.703 for solar and thermal energy harvesting system. The experimental results show 

the final battery voltages of the two platforms are 2.721V and 2.702V, respectively. In 

order to calculate the daily conversion efficiency of the platform, the simulation and 

the experimental results are integrated into Equations 5.90-5.98, respectively. The 

daily conversion efficiencies of the solar and the thermal energy harvesting systems 

are 41.07% and 36.8%, respectively. The corresponding experimental results show 

that the daily energy conversion efficiency of the system are 36.8% and 32.85% in 

these two cases. The accuracy of the model is around 80% which is acceptable to 

predict the performance of an energy harvesting system.  
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Figure 5.20 The super-capacitors voltages with solar and thermal energy harvesting 

system     
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Figure 5.21 The terminal battery voltage of the system by using the solar panel and 

the TEG 

5.9 Summary 

When designing and deploying a micro-energy harvesting system, a careful 

understanding of numerous parameters of the system, such as the energy level of the 

harvested power, the power consumption of the system and the efficiency of the 

system is required.  Due to the price and volume constraints of wireless sensor nodes, 

and the fact that it normally a perpetual lifetime, the design procedure becomes more 
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complex and difficult. Hence, using an analytical model to theoretically analyse the 

performance of a proposed system is critical. In this chapter, based on the architecture 

and energy flows, each building block of the system has been modelled. The accuracy 

of each component model has been validated in the laboratory. In order to explore how 

these components impact the system performance, a hybrid system model has been 

established by compositing these component models. Solar and thermal energy 

harvesting systems have been selected as two examples to show how to create the 

model. The models have been evaluated in the laboratory with the controllable 

environments. The experimental results show the accuracy of the model is no worse 

than 80%, which is acceptable for evaluate an energy harvesting system design. 

According to the results, the model could be used to prevent excessive system testing 

or undesired results from miss-dimensioning. The model also shows the system 

performance is highly related to some key system parameters, such as environment 

conditions, the efficiencies of the MPPT circuit and the regulator circuit. These 

findings can be used to guide the designers to make decisions on selecting components 

under a known environment. As mentioned before, energy harvesting systems are 

always over-designed by using larger energy transducers and energy storage elements 

than necessary. Hence, the model could be used to derive a cost-effective and energy 

efficient design for an energy harvesting system.  
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Chapter 6. Design and implementation 

of a power conversion circuit based on 

MPPT technologies 

6.1 Background and motivation 

Energy efficiency is a critical factor in designing a micro energy harvesting system. 

The existing energy harvesting platforms are low energy efficient in terms of energy 

conversion efficiency. As the cost and volume are constrained by designing a micro 

energy harvesting system, it is necessary to use a highly efficient circuit design to 

scale down the cost and volume in term of using small and compact energy generators 

and energy storages. As stated in the previous chapters, system efficiency can be 

divided into four parts: energy conversion efficiency, energy transfer efficiency, 

buffering efficiency and consumption efficiency. In this chapter, improving both the 

energy conversion efficiency and the energy transfer efficacy are considered.  

Normally, the energy conversion efficiency is determined by the capability of the 

energy harvester and the energy level of the energy source, in which the energy 

harvester is placed. Once the energy harvester has been designed, the energy 

conversion efficiency is determined. Then the available energy of the system is 

decided by knowing how much of the harvested energy can be transferred to the 

system.  The energy conversion efficiency is especially low for a micro energy 

harvesting system because of the difficulty of tracking the maximum power point of 

the micro-scale energy harvester. On the other hand, for the energy transfer efficiency, 

it is determines how much the generated energy can be transferred as useful energy, 

which can be used to power the system or be stored into the energy buffer. As 

illustrated in Chapter 5, an energy harvesting system can achieve a high performance 

by using an efficient power conversion system with a proper Maximum Power Point 

Tracking (MPPT) technology. Nowadays, many researches focus on this area to 

extract as much energy as possible from the energy harvesters. But the efficiency of 
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the intermediate circuit is low which is considered as a bottleneck in designing and 

deploying a micro energy harvesting system.  

6.2 Feature of proposed work  

In this chapter, a power conversion circuit, based on the proposed system 

architecture illustrated in Chapter 3, has been designed. In order to enhance the energy 

harvesting system’s performance in terms of the energy efficiency, both the MPPT 

technology and the boost converter circuit are considered. In the first part, a high 

efficient boost converter, which is used to regulate the ultra-low input voltages at a 

constant value, is designed. In order to make the system meet the cost-size and the 

energy efficiency requirements, the components of the boost converter are chosen 

based on the proper design considerations. Secondly, in order to track and maintain the 

system working at peak power level, an efficient MPPT circuit is needed. Three 

existing MPPT technologies, which are normally used for micro energy harvesting 

systems, are compared with each other in various conditions to show the 

characteristics of these technologies. As power consumption is the main concern factor 

in designing a micro energy harvesting system, low power consumption is considered 

in both parts of the power conversion circuit.  

6.3 Proposed MPPT based Power conversion subsystems 

A generic block diagram of MPPT based power conversion circuit is illustrated in 

Figure 6.1. The circuit is divided into two parts: the regulator circuit and the MPPT 

control circuit. The regulator circuit is built by a boost converter IC with its peripheral 

components to boost the low input voltages to a constant higher output voltage, which 

can be used to directly power or charge the system. The MPPT circuit is used to track 

the peak power of the energy harvester. The working principle is that the MPPT circuit 

generates a proper control signal to turn on or off the boost converter circuit through a 

MOSFET device    according to make the peak energy from the energy harvester 

which can be transferred to the regulator circuit.  
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    Figure 6.1 Block diagram of micro energy harvesting system 

6.3.1 Regulator circuit design 

Since the amount of harvest energy is limited, an efficient regulator circuit, which 

operates at a high efficiency over a wide load range, is a key in the design of any high 

efficient power conversion subsystem. A DC-DC boost converter is employed as the 

regulator circuit in this study. By considering the constraints of the micro energy 

harvesting system, the regulator circuit should be made extremely energy efficient, 

low cost and compact size in order to be integrated into an energy harvesting system. 

6.3.1.1 Design considerations for a regulator circuit 

The efficiency is a critical factor in designing a regulator circuit. Based on the 

datasheets, for a specific range of loads, some boost converters can be designed with 

efficiency greater than 90%. But with variations of loads and input power levels, their 

efficiency might vary significantly. Hence, optimizing a DC-DC boost converter 

design is very important for designing a highly efficient energy harvesting system. As 

shown in Chapter 5, a boost converter circuit can be optimized by decreasing energy 

losses caused by its components, which are the MOSFET switches, the inductor, the 

capacitors and the control IC. By choosing a set of proper components to reduce their 

energy loss, the performance of the boost converter can be enhanced.  

(1) Inductor selection  

Since the boost converter is used to provide a stable high output voltage from a 

given low input voltage, the power inductor selection is very important in designing a 
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highly efficient regulator circuit. Based on the datasheet of the boost converter 

(TPS61222, 2010), the boost converter, which works at Continuous Conduction Mode 

(CCM), can have high energy efficiency. In order to keep the converter working at 

CCM all the time, it is necessary to make the inductor’s value higher than a boundary 

condition.  The critical inductor value,        , is selected based on Equation 6.1 

(Hasaneen and Elbaset, 2008).  

                                         
          

              
            

                                    

where      is the maximum duty cycle of the boost converter and            and 

          are the output voltage and the maximum output current of the boost 

converter and    is the minimum switching frequency of the converter. Normally, the 

size and the performance of the inductor is highly dependent on the switching 

frequency   , which the higher switching frequency the boost converter has, then the 

smaller inductor can be used. But the high switching frequency causes a large 

switching loss in the boost circuit. On the other hand, a larger inductor means the 

boost circuit is more energy efficient.  But the size of the system is also increased. 

Hence, there is a trade-off between the performance and size of the inductor. Choosing 

a proper switching frequency with a proper size of the inductor is very important in 

designing a high efficient regulator circuit. Moreover, because the main contributor of 

power loss in the inductor is caused by the Equivalent Series Resistance (ESR) of the 

inductor, the small ESR of the inductor should be used to reduce the power loss. Based 

on this point, the inductors with a coil and low resistance should be used for achieving 

high system efficiency.  

(2) MOSFET selection 

The power losses in the MOSFET switches (Q and Q2), shown in Figure 6.1, are 

other energy loss sources in the boost converter circuit. In order to limit these energy 

losses, a low power N-channel MOSFET and P-channel MOSFET should be used in 

the circuit. In this chapter, a synchronous boost converter TPS61222 from Texas 

Instruments is selected as the control Integrated Circuit (IC) of the boost converter. 

These two MOSFET switches are integrated into the boost IC that saves time for 

selecting a proper MOSFET switches for the boost circuit.  

(3) Selection of the required capacitor  
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There are two functions of the output capacitor. Firstly, it used to deliver energy to 

the load during switch on time of the boost converter. Second, it can be used as a filter 

to reduce the output ripple voltage. The primary criterion for selecting the output 

capacitor is its capacitance and ESR. This is because that the capacitance decides the 

volume of the capacitor and ESR decides the energy dissipation of the capacitor. 

Typically, the output capacitor is chosen to meet an output voltage ripple specification. 

An approximate equation for the required capacitance can be expressed as (Hasaneen 

and Elbaset, 2008): 

                                                                      
 

 
                                                                      

where      is the capacitance of the output capacitor and L is inductance of the 

inductor which is used in the converter circuit. Capacitors’ ESR affects conversion 

efficiency and a good performance can be produced by using low ESR capacitors. 

Hence, a ceramic capacitor with a low ESR has been normally used in designing a 

high efficient DC-DC converter. Moreover, connecting a few capacitors in parallel is 

considered as a possible way to reduce ESR of the capacitor.  

6.3.1.2 Design and implementation of a regulator circuit 

The synchronous boost converter TPS61222 has been selected as the regulator IC 

because of its low quiescent current of 0.5uA and high system efficiency even at low 

input powers. And it saves time for choosing two MOSFET switches. Based on Figure 

6.1, the input voltage of the boost converter is equal to the output voltage of the micro 

energy harvester, which is dependent on the characteristics of the energy harvester, the 

environment condition and the MPPT control circuit. Based on the datasheet, the 

schematic diagram of TPS61222 is shown in Figure 6.2.  
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Figure 6.2 Schematic diagram of the boost converter TPS61222 

The boost converter circuit must have low power overhead because of micro-scale 

energy harvesting used. The parameters of the boost converter IC are listed in Table 

6.1. The peripheral components can be decided by knowing these parameters.  

Table 6.1 Some design specifications of the boost converter 

Parameters Value 

Maximum switching frequency 100Khz 

Input voltage (   ) Range  1.2-2.5V 

Max ripple current  200mA 

Output current  19.2mA 

Output voltage      4.1V 

According to the results shown in Chapter 5, the system efficiency is highly 

dependent on the output voltage of the super-capacitor, which the highest system 

efficiency can be obtained when the output voltage of the boost converter is equal to 

the highest voltage threshold of the super-capacitor. As illustrated in (TPS61222, 

2010), a 100nF ceramic capacitor are normally used as the input capacitor, which 

improves the transient behaviour  and the Electro-Magnetic Interference (EMI) 

behaviour of the regulator circuit by reducing its input impedance and stabilizing the 

input power. Moreover, the input capacitor also can be used as a voltage sensor to 

indicate the power status of the energy harvester.  
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Two resistors R1 and R2 are used to adjust output voltage of the boost IC,     . 

Equation 6.3 shows the relationship between these two resistors and      .   

                                                                 (
    

   
  )                                                        

where     is 0.5V, provided by the datasheet (TPS61222, 2010). In this chapter, 

          is set by the system. Then the value of   and    can be calculated.  

   As said before, in order to make the system work at a high efficiency mode, the 

converter circuit should work in CCM all the time., This means the inductance value 

should be higher than the critical value, calculated by Equation 6.1. However, 

TPS61222 boost IC is not a fixed frequency converter IC, which operates by 

regulating the ripple current in the inductor around 200mA. The datasheet provides an 

easy way to estimate whether the boost converter work at CCM or Discontinue 

Conductance Mode (DCM), as shown in Equation 6.4.  

                                       
                     

   
                                                      

where            and            are the output voltage and current of the boost circuit 

and     is input voltage of the boost circuit. As setting           and          , 

the boundary output current of the converter, operating at CCM, is 19.2mA. In order to 

calculate the critical value of the inductor, the maximum duty cycle      should be 

determined. The      can be calculated by introducing the minimum input voltage 

              and the constant output voltage           into Equation 6.5. The 

calculation result shows       is equal 0.76.  

                                                          (
        

    
)                                                          

By adopting 100Khz working frequency for the converter, the critical value of the 

inductor can be obtained:  

                                                                                                                                        

When an inductor higher than the critical value is selected, the boost converter 

works at CCM. In this chapter, a 10uH choke coil inductor with a high permeability 

and a high flux density ferrite core from Murata power solutions (29L103C Inductor, 
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2007), has been selected. Based on the inductor’s datasheet, the DC parasitic 

resistance of the coil is 15mΩ, which is very small by comparing with other circuit.  

  In this design, two series connected 22F super-capacitors have been chosen as the 

output capacitor to accumulate the regulated energy from the boost converter. 

Normally, the boost converter needs the output capacitor being placed close to the 

boost IC. But considering the size, these two capacitors cannot be placed close to the 

boost IC. Hence, an extra small ceramic capacitor is placed close to the IC to reduce 

the output voltage ripple. Based on Equation 6.2, the value of the output capacitance 

value needs to be no less than half the inductance value. Hence, a 10uF capacitor has 

been chosen as the output capacitor in this design.  

The efficiencies of the proposed boost converter have been calculated by using the 

DC-DC converter model explained in Chapter 5. Figure 6.3 illustrates the efficiency 

graph of the TPS61222 with different power inputs. In order to validate the accuracy 

of the simulation results, the corresponding experiments have been tested in the 

laboratory. The comparison result shows that the simulation results highly match the 

experimental results.  

 

Figure 6.3 Efficiency vs. Input voltage of TPS61222 

6.3.2 Maximum power point tracking unit 

The MPPT control unit decides how much the harvested energy can be delivered to 

the power conversion circuit. But sometimes this goal is hard to achieve because there 

are some obstructions in this area. Firstly, the MPP for an energy harvester varies with 

the strength of the environmental energy sources, which rapidly changed with time and 

location. The dynamic energy sources make a simple MPPT scheme hardly to locate 
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the exact MPP of the energy harvester or even mislead the system. Secondly, as the 

location of the MPP in the I-V plane is unknown a priori, normally a complicated 

MPPT algorithm and a high capability MCU should be used to trace the MPP of the 

system during various situations. Since the size of the energy harvesters is scaled 

down, the harvested power drops into the range of micro watt, which presents a new 

design challenge for low power MPPT circuit design.  Based on these analyses, the 

design specifications for an MPPT circuit in a micro energy harvesting system are 

efficiently tracking the MPP of the energy harvester and ensuring the minimal power 

overhead.  

6.3.2.1 Conventional MPPT methods 

MPPT controlled energy harvesting systems have been widely implemented and 

their effectiveness is well proven (Simjee and Chou, 2006, Park and Chou 2006, 

Eakburanawat and Noonyaroonate, 2005). Ordinarily, these approaches can be roughly 

divided into the analog and digital parts. An analog MPPT circuit uses an analog 

circuitry and a classical feedback control to make the energy harvesting system 

approaching MPP. They are mainly characterized by their simplicity, low overhead 

and low cost, but are more problematic to control (Tanouti et al., 2010). A digital 

MPPT circuit use a MCU based with digital and adaptive algorithm to track MPP of 

the system. The benefits of this design are that it is normally more reliable and more 

efficient than an analog one. But the power consumption is the main challenge for 

using this approach in the micro energy harvesting systems. In this section, an 

overview of several existing MPPT approaches, which can be used for a micro energy 

harvesting system, is described below.  

(1) Design time component matching (DTCM) approach  

The DTCM MPPT approach is used in Heliomote solar harvesting platform 

(Raghunathan et al., 2005). The MPP operation is achieved by  careful selection of 

the specific solar cell and the rechargeable battery. In their platform, the terminal 

voltage of the batteries is around 2.8V when they are charged. Meanwhile, the solar 

panel’s MPPs varied between 2.5V-3V. They stated that the Heliomote system can 

always operate with few tenths of a voltage difference of its exact MPP.  The zero 

tracking overhead is the main advantage of using this approach. But the drawbacks of 

this approach are obvious. Firstly, direct connection makes the system has very low 
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efficiency, because the solar panel stops charging the rechargeable batteries when the 

panel’s terminal voltage is lower than the rechargeable battery. Secondly, without 

MPP tracking system, the system can just work around the MPP of the system. This 

makes the MPPT efficiency of the system very low by comparing with other precise 

MPPT approaches.  

(2) Fractional Open Circuit Voltage (FOC) approach/ Fractional Short Circuit 

current (FSC) approach 

FOC and FSC approaches are two automatic MPPT approaches proposed in the 

literature. The principle of the algorithms is based on that there are approximately 

constant ratios between the MPP’s voltage to open circuit voltage and the MPP’s 

current to short circuit current. By either measuring the open circuit voltage or 

measuring the short circuit current of an energy harvester, the MPP voltage or MPP 

current can be approximated. Based on these linear relationships, simple approaches to 

estimate      or     by momentarily disconnecting the solar cell from the load to 

sense open circuit voltage or short circuit current were proposed in (Masoum et al., 

2002), (Simjee and Chou, 2006) and (Bekker and Beukes, 2004). An interface circuit, 

which is a charge pump or a boost converter, is used to adjust the operation point of 

the energy harvester. The MPPT is complete once the energy harvester’s output 

voltage or output current reaches the reference voltage or current. Because the simple 

open-loop control and does not require any intensive computation in these approaches, 

they are considered as suitable MPPT approaches for micro energy harvesting systems. 

But the main drawback of these two approaches are that periodically disconnected the 

energy harvester from the system causes temporary energy loss, which restricts the 

efficiency of the system. In order to address this shortage, an improved design was 

presented in (Park and Chou, 2006), where an additional tiny solar cell is used in the 

energy harvesting system as a pilot cell. This is also called the sensor driven MPPT 

approach. The open-circuit voltage of the pilot cell is used in place of the open-circuit 

voltage of the main solar cell. This approach eliminates doing any open circuit voltage 

sensing on the main solar cell to improve system efficiency. While the shortage of this 

approach is straightforward, the pilot cell covers a much smaller area than the main 

solar panel that might not yield a representive MPP of the main solar panel, if dust or 

shadow on the panel does not cover the pilot cell in the same proportion. Thus, with 
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this approach, the pilot cell should be carefully chosen and placed to ensure that the 

voltage relationship is close to the main solar cell (Esram and Chapman, 2007).  

(3) Hill-climbing/Perturb and Observe (P&O) approach  

In order to solve the problems facing by previous approaches, an alternative 

tracking method by using a hill climbing or Perturb and Observe approach (P&O) has 

been proposed in (Esram and Chapman, 2007), (Eakburanawat and Noonyaroonate, 

2005), and (Lu et al.,2010). The essential working principle of this method is adopting 

an iterative trial and error approach to track MPP (Esram and Chapman, 2007). It can 

be achieved by continuously sensing the output current and voltage at either the output 

of the transducers or the output power of the converter, and multiplying them to obtain 

the current power output of the system. A small perturbation is applied to the interface 

circuit by varying the duty cycle of the boost converter (Eakburanawat and 

Noonyaroonate, 2005) or the switching frequency of a charge pump (Shao et al., 2009), 

and then the effect on the output power of the energy harvester is noticed. The 

working principle is described as below. It assumed that the perturbation results in an 

increase in the terminal voltage of an energy harvester and the output power is 

recorded and compared to the previous power output before the perturbation.  If the 

perturbation results indicates the power increasing, another perturbation in the same 

direction is applied, which results in a further increasing the terminal voltage of the 

energy harvester. Otherwise, a perturbation in the opposite direction is performed. The 

MPPT process is continuously repeated until the MPP is reached. There is a tradeoff, 

which is the relation between responding speed and MPPT efficiency, should be 

considered in the algorithm design. The large step size corresponds to a rapid response 

time to the environmental variances, but oscillates with a large swing near the MPP. A 

small step size can minimize the oscillation swing, but slow down the tracking speed 

(Lu et al., 2010). By contrasting to the advantages, the circuit complexity and the 

power consumption with respect to the FOC approach are considered as two main 

drawbacks of this approach. Moreover, because the algorithm has many steps to 

approach the MPP, this technique is unsuitable for those energy transducers under 

rapidly changing atmospheric condition. Hence, in the rapidly changing environment, 

an improvement P&O approach should be considered (Sera et al., 2006).  

(4)  Commercial DC-DC boost converter with built-in MPPT algorithm 



Chapter 6: Design and implementation of a power conversion circuit based on MPPT technologies 

 154 

Recently, several types of commercially available DC-DC boost converter with 

built-in MPPT algorithm have been developed, such as SPV1020 from ST 

Microelectronics (SPV1020, 2010), LTC3105 from LINEAR Technology (LTC3105, 

2010), and SM72441 from TEXAS Instruments (SM72441, 2010). Based on their 

datasheets, they state that these devices can easily be used in low voltage, high 

impedance alternative power sources such as photovoltaic cells and TEGs, because of 

a small start-up capability and integrated MPP controller. The advantages of using this 

technology are simple design process and short time for debugging the circuit. But the 

MPPT efficiencies of the circuits are unknown.  

6.3.2.2 The comparison of three MPPT approaches 

A number of existing MPPT approaches for a micro energy harvesting system have 

been described in the previous section. But there is no consensus on which approach is 

most efficient. The most of the present systems were just compared with a direct 

connection approach. The lack of comparison between the MPPT approaches comes 

from the fact that the literature did not know the absolute efficiencies of MPPT 

approaches.  Furthermore, as the environment energy sources have different 

characteristics, the MPPT scheme suits in one type of energy may not suit for another 

one. Hence, a selecting guidance in this area is needed. But unfortunately, no guidance 

has been proposed in literature to guide the designer selecting a proper MPPT 

technology in their application. According to these two reasons, the system designers 

are hard to select and design a proper MPPT technology for their system. Hence, three 

commonly used MPPT approaches have been designed and compared in this thesis to 

show the characteristics of each approach. And a guidance of selecting a proper MPPT 

technology for a micro energy harvesting application has been proposed.  

According to the previous analysis, some general design considerations, both on the 

systematic aspect and the component aspect should be considered to optimize the 

MPPT circuit design. Firstly, MPPT circuit may incur nontrivial overhead, sometimes 

even higher than the amount of the harvested energy by the micro energy harvester. 

Hence, the MPPT circuit for a micro system must consider the amount of power that 

can be transferred after subtracting the MPPT circuit overhead. Moreover, based on 

some research works (Shao et al., 2009), the most efficient working point of the 

energy harvesting system may different from the MPP of the energy harvester. This is 
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because the working point of the converter circuit also affects the energy efficiency. 

Therefore, the MPPT circuit should ensure that the energy harvester operates at the 

MPP of the entire system instead of operating at the MPP of the energy harvester alone. 

Thirdly, as described in the previous chapters, the system is targeted for micro energy 

harvesting system, which usually imposes strict constraints on cost, weight, volume 

and lifetime. Hence, it is desirable to avoid using any high power, large size current 

and voltage sensors, time multiplexing hardware and the power hungry MCU. 

Fourthly, the sensor nodes placed at different positionsmay have different 

opportunities to harvest various ambient energies. The MPPT scheme should have a 

capability of easily expanding for other energy harvesting systems. In conclusion, a 

simple, low cost, low overhead, high MPPT tracking efficiency and compact size 

MPPT circuit is desired in a micro energy harvesting system to force the energy 

harvester operating over the various environment conditions. Because the MPP of a 

solar panel has typical characteristics of other energy harvesting technologies, three 

types of MPPT circuits are designed for a solar energy harvesting system to simplify 

the work.  

(1) Sensor driven MPPT  

A sensor driven approach is the first MPPT scheme adopted in this chapter. This is 

an analog MPPT approach and the conceptual diagram is depicted in Figure 6.4 by 

adopting the same design principle described in (Park and Chou, 2006). It uses an 

additional small PV module, which has the same material of the main solar panel, as a 

pilot cell to present the characteristics of the solar panel in the various conditions. In 

more detail, the fundamental relationship between the MPP voltages of the solar panel 

can be represented to the open-circuit voltage of the pilot cell when they are exposed 

to the same light condition. The output voltage of the pilot cell        is acted as a 

reference voltage, sent to a low-power comparator. By matching the        to the 

solar cell’s operating voltage           , the MPP operation can be achieved. Equation 

6.7 shows the basic relationship between        and           .  

                                                                (             )                        

where            and        are the coefficients between the open circuit voltage and 

MPP voltages of the solar panel and the miniaturized PV module, respectively.  
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Figure 6.4 Conceptual diagram of the sensor driven MPPT for solar energy 

harvesting 

Some design considerations should be satisfied when designing and implementing 

a proper sensor driven MPPT circuit. Firstly, a proper type of pilot cell, which meets 

the requirement of Equation 6.7, should be selected. As shown in Chapter 5, the 

amorphous solar panel AM-5412 from SANYO was chosen as the solar energy 

harvester for the solar energy harvesting design. Based on its specification, the same 

material photodiode S1087 from Hamamatsu (Hamamatsu S1087, 2007) has been 

selected as the pilot cell in this work.  Table 6.2 lists the comparing result of the 

output parameters of the solar panel and the S1087 photodiode in the same test 

environment. It displays the output voltage of the pilot cell is near linear of the open 

circuit voltage of the solar cell.  

Table 6.2 operating voltage of the pilot cell and open circuit voltage of the solar cell 

under the same light intensity 

Light intensity Open circuit voltage of the 

solar cell 

Output voltage of the pilot 

cell 

50Klx 2.6V 0.54V 

35Klx 2.39V 0.48V 

8.12Klx 2.19V 0.44V  
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The power overhead of the MPPT circuit is the second design consideration to be 

considered. An ultra-low power comparator LTC1440, used in Chapter 5, has been 

adopted as a core control part of the sensor driven MPPT circuit. As the comparators 

have a hysteresis window for operation, the actual operating point of the solar cell is 

oscillates around its MPPs. Hence, the third design consideration is that which tunes 

the hysteresis window of the comparator to make the system become more efficient. 

The narrow hysteresis window means the system can operatecloser to the MPP than 

the large hysteresis window being used that means more energy can be transferred 

from the energy harvester to the regulator circuit. But on the other hand, the narrow 

window size indicates the system operating at high switching frequencies, which may 

lead to more power consumption and more system noise. Hence, a proper hysteresis 

window being used is very important. According to (Brunelli et al., 2008), a band of 

15mV is shown as the best performance for the sensor driven MPPT scheme. Hence, a 

15 mV hysteresis window has been selected in this work. By considering the boost 

converter circuit, the completed prototype of the sensor driven MPPT is shown in 

Figure 6.5.  

 

Figure 6.5 The complete Sensor-driven MPPT circuit 

(2) A classical P&O MPPT approach 

The second MPPT circuit being chosen is based on a classical P&O method, which 

uses a digital MCU as core control part. The system architecture is shown in Figure 

6.6. In order to reduce the power overhead of the circuit, a low cost and low power 

consumption MCU should be used. It also must have capability to process an 
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analog-to-digital converter function, which can be used to capture the feedback signals 

sending from the voltage and current sensors.  

According to these signals, a classical P&O MPPT algorithm can be designed and 

implemented in the MCU. The design principle is based on the trend of the output 

power level by comparing the current power level to the previous power level of the 

energy harvester, the MCU chip generates a control signal to turn on/off the boost 

converter approaching the MPP of the system.  

 

 Figure 6.6  A schematic drawing of the implementation of MPPTs 

Figure 6.7 shows the relationship between the terminal voltage and output power 

generated by a solar cell. It can be observed that the MPP of the solar cell under a 

certain environment is obtained when the condition         is met, which is pint 

C in Figure 6.7. If the operating voltage of the solar cell is perturbed in the increasing 

condition and the operation point of the solar cell is in the position A, where 

       , the perturbation moves the solar cell’s operation point toward the MPP of 

the solar cell. If d       is found, it can be assumed that the system is working at 

point B. If the algorithm keeps increasing the operating voltage of the solar cell, the 

operation point of the solar cell is away from the MPP. The output power of the solar 

cell is decreased in this case. Hence, the P&O algorithm should reverse the direction 

of the perturbation, which reduces the operation voltage of the solar cell to increase the 

output power. But all these analysis is according to a fixed environment condition.  
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Figure 6.7 Sign of the dP/dV at different position on the power characteristic of a 

P-V curve 

According to the previous analysis, the flowchart of the classical P&O algorithm is 

depicted in Figure 6.8. Initially, the algorithm sets a reference voltage      for the 

solar panel, which is at the operating point A or B. The corresponding output power of 

the solar cell,     , is calculated by sensing the output voltage     and current      of 

the solar panel in this term. In the first perturbation cycle, a positive increment of 

voltage    is added on the reference voltage     . The voltage and the current 

sensors measuring the current power status of the solar cell       , based on the new 

operating point        . By comparing       with the previous power reading 

    , the algorithm can decide the system’s working point. If             is 

observed, it indicates the starting point of the system is A and      will keep on 

increasing in the next iteration until the MPP is reached. In contrast, if             , 

it indicates that the start point of the system is B. In order to obtain a higher power in 

the next iteration    is subtracted from the current voltage point. By repeating this 

searching process, which maintains the direction if the new power is not less than the 

previous one, whereas reverses the direction if the new one is less than the previous 

one, the MPP will be tracked and the system will approach the MPP. It should be 

known that the system is eventually operating around MPP when the steady state is 
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reached. As this algorithm is designed for slowly changing environments, the 

algorithm might track in the wrong way when the system is placed under rapidly 

changing environment. This is the big drawback of using this type of algorithm.  

 

   Figure 6.8    The flowchart of the P&O MPPT method 

   Before completing the hardware design of the classical P&Q MPPT scheme, some 

design considerations should be concerned. Firstly, in order to reduce the total 

overhead of the MPPT circuit, a low power MCU PIC16F688 from Microchip 

(PIC16F688, 2008) has been chosen as the control IC. The chip provides 12 I/O pins 
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with individual direction control, two analog comparators and a multiplexed 10-bit 

ADC. The MCU has a capability to handle a variety of functions. This is very 

beneficial in the low power application, which the power loss of the auxiliary 

components can be kept to a minimum.  

Secondly, the voltage and the current sensors are other two components should be 

determined in this design. According to the simplify the circuit design and minimizing 

the power consumption rules, simple, low cost and low power consumed sensors 

should be used. Based on these rules, the voltage sensor can be simplified by using a 

capacitor, which is placed between the solar cell and the boost converter as the input 

capacitor of the boost converter. As the small capacitor is used, the terminal voltage of 

the capacitor can be considered as the output voltage of the solar panel. The voltage 

can be monitored by using an ADC pin of the PIC MCU.  

For the current sensor parts, a small current sensor, series connected into circuit, is 

normally used. By measuring the small voltage drop of the current sensor, the current 

flows into the circuit can be determined. But, an extra low noise and high gain 

amplifier should be used in this design.  This will cause some drawbacks in the micro 

energy harvesting system. Firstly, by considering the additional power consumption of 

the low noise amplifier together with the added power loss of the current sensor, the 

power consumption of the MPPT circuit is quite high, especially by comparing with 

the ultra-low harvested energy. Secondly, the auxiliary components used for the 

amplifier makes the system become more complex and bigger. Hence, an alternative 

current sensor design should be investigated. The P&O algorithm traces the MPP of 

the system by knowing the value       is positive or negative. The value of    can 

be obtained by the voltage sensor. Then the system just want to know the value of    

is positive or negative.    can be calculated by: 

                                                                                                                            

where   ,   ,     , and      are two adjacent voltage and current readings of the 

energy harvester. By supplying            in   6.8, the equation can be 

rewritten as: 
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where    is the current difference between these two current readings. Then the value 

of    is positive or negative that can be determined by knowing a relative changing 

of the current    of the solar cell. This means the current sensor does not require the 

absolute accuracy of the current reading or any instantaneous current values. It just 

needs to know the difference between the two measurements. Based on this view, a 

lossless current sensing technology (Pilawa et al., 2010), which uses the inductor’s 

voltage to measure the inductor’s current, can be adopted here to measure the current 

difference of the system between the different working points. The inductor current 

can be calculated by knowing the average voltage drop across the inductor and the 

relationship between inductor current    and sensed voltage drop    is given by 

(Pilawa et al., 2010). 

                                                                                                                      

where      is the parasitic resistance of the inductor, which is a constant value. The 

average voltage    and   are produced by the first-order RC low pass filters (Pilawa 

et al., 2010), as shown in Figure 6.9. By using two different ADC pins of the MCU 

with a built-in gain amplifier, the    and   can be obtained directly. The current 

reading can be determined by integrating    and   into Equation 6.10. Then the 

value of    can be calculated. The benefits of using this design are that the current 

sensing circuit is achieved without integrating a power consuming series current 

sensor into the circuit and an additional amplifier. The power consumption of this 

design is much lower than using the current sensor.  

 

    Figure 6.9 Schematic diagram of the lossless current sensor 

   By integrating the voltage and current sensors into the system, the completely 

prototype has been designed, as shown in Figure 6.10. 
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     Figure 6.10 The complete MCU based MPPT circuit 

In order to ensure a high performance of the MPPT hardware design, several steps 

have been considered in the algorithms. As the output voltage and current of the solar 

cell varies rapidly when the boost converter stays at the ON state. The proposed 

algorithm should sample the solar panel’s voltage and current at the same time 

instance in the switching period to ensure consistent values of voltage and current. 

This could be done by using high capacitance capacitors of    and    and high 

resistance resistor     and   . Based on the datasheet of (TPS61222, 2010), the 

frequency of theTPS61222 boost converter is around 1.25 MHz, which the switching 

cycle of the boost converter        is:  

       
 

       
       

In order to ensure the current sensor reading is equal to the mean current through the 

inductor, the RC time constants of the    and   , and     and   , should much 

larger than       . In this application,             and            

have been selected. The RC time constants of these two RC circuits    and    are: 

                             

Based on the calculation,    and    are ten times bigger than       . Then the 

current reading of the current sensor can be seen as the mean current through the 

inductor. And this value can be used to calculate    of the solar cell. When the 

MPPT algorithm starts to work or restarts from an error condition, the initial reference 
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voltage of the MPP is set automatically by the system. By choosing a proper initial 

reference voltage     , the MPPT cycles can be reduced and the system performance 

can be improved. This can be achieved by knowing the roughly energy profile of the 

energy harvester in the environment. Furthermore, the MPPT circuit’s tracking speed 

is determined by choosing a proper value of   . The large perturbation    increases 

the response speed of MPPT but it reduces the MPPT accuracy of the system. Hence, a 

trade-off between the peak power operation and the response speed of the MPPT 

circuit should be considered. Fourthly, the cycle period of the proposed algorithm 

affects the system efficiency. In the rapidly changing environment, a long time interval 

between two cycles will cause the algorithm to be inefficient or even to fail to track 

MPP. In order to achieve the high performance, the sampling rate should be set as fast 

as possible. But on the other hand, a short cycle time, increases the power overhead of 

the whole MPPT circuit. Hence, a trade-off according to this point should be 

considered in the MPPT algorithm design. In conclusion, a good MPP algorithm can 

optimize the system efficiency by choosing a proper initial reference voltage, a proper 

perturbation    and a proper cycle period. By examining the experimental results of 

the solar cell show in Chapter 5, the parameters of the MPPT algorithm have been set 

as:        ,         and the cycle period is 50ms in this work.  

As stated in previously, the actually achieved peak point of the system by using the 

MPP algorithms oscillates around the exact MPP of the system. In order to avoid the 

system oscillating around the MPP when MPP has been reached, a simple 

improvement from (Hohm and Ropp, 2003), which adds a waiting function into the 

algorithm to avoid the system oscillating at the MPP, has been adopted in this work. If 

the MCU records the algebraic sign of the perturbation reversed several times in 

consecutive sample cycles, the system is considered that has reached the MPP. In this 

design, if the reversed    has been found four times continuously, the system will be 

considered to have approached MPP. Then the MPPT circuit will stop varying 

     for couple of cycles until the output power of the transducer is changed. This 

improvement approach can reduce the oscillation about the MPP in the steady state 

and improve the system efficiency under constant irradiance conditions. But for 

rapidly changed environments, the MPPT circuit still has a chance to mislead the 

system.  
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(3) Enhanced P&O MPPT approach 

As discussed in the previous section, the classical P&O algorithm might track in a 

wrong direction in the rapidly changing environments. Hence, some modification 

algorithms have been proposed in the literature to overcome this shortfall. One 

possible improvement algorithm presented in (Pilawa-Podgurski et al, 2010), involves 

measuring the solar panel’s power    at a reference voltage   , and then it perturbs 

the voltage to a new reference voltage    and gets the reference power   . After 

that, it adjusts the reference voltage back to its previous value    and re-measures the 

panel’s power    . By comparing the two measurements results at   , the algorithm 

can determine whether the irradiance of the light is changed or not. According to the 

same working principle, an improvement P&O method proposed by (Sera et al., 2006) 

has been adopted in this work to avoid the shortfall of the classical P&O method. The 

working principle is that the MPPT circuit determines the correct tracking direction by 

performing an additional measurement at the same reference voltage to make an 

estimate of how much the irradiance has changed between two sampling periods. The 

working principle is shown in Figure 6.11. In the first sampling cycle, the recorded 

power is     . The power difference     between the previous reading        and 

the current power reading      can be calculated: 

                                                             [           ]                                                   

    contains the change in power caused by the perturbation of the MPPT plus the 

irradiation changes.  In order to separate the power difference caused by MPPT unit, 

another measurement has been taken place in the next cycle by maintaining the same 

reference voltage. Then        can be obtained. The power difference     can be 

calculated  

                                                               [           ]                                                    

    only reflects the change in power due to the environmental changes. By 

choosing a quite small sample rate, it can be found that the rate of change in the 

light irradiation is constant over two sampling periods. Hence, the power 

difference caused by perturbation of the MPPT circuit can be obtained by using 

Equation 6.11. 
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Figure 6.11 Measurement of the power between two MPPT sampling instances (Sera 

et al., 2006) 

According to this principle, the flowchart of the enhanced P&O MPPT approach is 

shown in Figure 6.12. Initially, the system is tested for three samples, one with the 

reference voltage     and the rest two with the reference voltage     . By using 

Equation 6.11, the     can be calculated. If      is observed, then the algorithm 

comparing two reference voltages      and   . If          , it indicates that 

the operating point of the solar panel is on the left side of the P-V curve. Then, the 

algorithm increases the reference voltage and maintains this voltage in the two test 

cycles. Otherwise, the system decreases the reference voltage. On the other hand, if 

     is founded, at the same time if           is observed, it indicates the 

system is working at the right side of the P-V curve. In order to approach the MPP, the 

system decreases its reference voltage. Otherwise, the system increases its reference 

voltage. In order to avoid making system oscillating at MPP, if      is founded, 

the system maintains the same reference voltage in couple of circuits until    has 

been changed. Based on this, the shortfall of the classical P&O approach has been 

solved. But the shortfall of this modification is that it increases the number of sample 

cycles which slows down the tracking speed. The same hardware and algorithm 
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considerations, mentioned in the classical P&O MPPT scheme, have been adopted in 

the enhanced P&O MPPT system design.  

 

Figure 6.12 The flowchart of the enhanced P&O method 

6.4 System evaluation 

In order to verify the proposed power conversion circuit, a test environment used in 

Chapter 5, has been adopted here. In order to compare artificial light with outdoor 

light, the two solar cells were placed outside during a normal sunny day in 

Loughborough where the maximum 150mW power could be harvested. As discussed 

in the previous sections, the power overhead and the MPP tracking efficiency are two 

critical design factors needed be verified in the system evaluation.  

6.4.1 Power overhead 

As stated in the previous sections, the power consumption is crucial to design a 

micro-scale energy harvesting system. In order to distinguish the power consumption 

of each proposed power conversion circuits, each part of the system and entire system 

have been tested. As analysed in Chapter 5, the power losses of the boost converter 
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depend on the input power levels. This means the power consumption of the boost 

converter is not fixed. But the same boost IC and peripheral circuit are used in these 

three designs. By neglecting the system differences, the power consumption of the 

boost converter is assumed the same, which can be neutralized in the power 

consumption calculation. Then the proposed power conversion system can be 

simplified to distinguish the power consumption of the MPPT circuits. For the 

sensor-driven MPPT circuit, the main power consumption part is the ultra-low power 

comparator LTC1440. Based on the relevant datasheet (LTC1440, 2009), the 

minimum power consumption is      . The real experimental result shows the 

comparator consumes less than 20uW. For the other two MCU based power 

conversion circuit, they have the same hardware. By neglecting the power 

consumption variation caused by different algorithms, these two designs can be 

assumed have the same power consumption. Based on their hardware design, the 

power consumed by the MPPT circuit come from the MCU and its peripheral circuit. 

Based on the datasheet (PIC16F688, 2008), the PICF688 MCU consumes      

when it operates. But it consumes 3nW when it stays at standby mode. In order to 

simplify the design procedure, the MCU is stayed at the operating mode all the time. 

The experimental result shows the power consumption of the MCU based MPPT 

circuit is around     . Moreover, the entire power conversion circuits have been 

tested with a constant DC power input. The power consumption of each proposed 

systems are shown in Table 6.3. Based on these experimental results, the sensor-driven 

circuit has the lowest power consumption. 

Table 6.3 Power consumption of three proposed MPPT based circuit  

Boost converter 

mode 

Sensor-driven 

MPPT based Power 

conversion circuit  

P&O MPPT based 

Power conversion 

circuit 

Improved P&O 

based Power 

conversion circuit 

Switch-off                   

Switch-on                   

6.4.2 Tracking efficiency  

The tracking efficiency is another critical factor to examine the MPPT technologies. 

Before determining the tracking efficiency, the MPP tracking speed is examined. 

Table 6.4 lists the tracking speeds when the solar energy harvesting system is executed 
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with three MPPT methods under three different light conditions. According to Table 

6.4, the elapsed times of the sensor-driven MPPT method are the shortest under all 

conditions, which is followed by the classical P&O method. This is because the 

sensor-driven MPPT algorithm uses the sensing result to directly achieve MPP. The 

enhanced P&O method has the longest elapsed time owing to its more complicated 

judgment procedure than those of the other two methods.  

Table 6.4 Comparison of the MPP tracking speed for different MPPT based power 

conversion systems 

  Elapsed time of MPPT 

Light Irradiance  35 Klux  10Klux  5Klux 

Temperature  25  22  22  

Sensor-driven MPPT instant instant instant 

Classic P&O 500ms 650ms 750ms 

Enhanced     510ms 665ms 771ms 

The MPPT efficiency can be defined as  

                                                                
∫              

 

 
 

∫          
 

 

                                            

where          is the actual power produced by the PV array under the control of the 

MPPT, and      is the maximum power produced by the PV array under a given 

temperature and light irradiance. Since it is not easy to measure the energy transferred 

in a single pulse without a high speed digitizer,          and      are very hard to 

measure in a real experimental environment. One alternative option is to use the power 

conversion efficiency of the entire power conversion circuit to indicate the MPPT 

efficiency. The entire power conversion efficiency can be calculated by knowing the 

energy being stored in an energy storage element and energy being generated by the 

solar cell, as shown in Equation 6.12. 
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where             and            are the conversion efficiency of the entire power 

conversion system and the efficiency of the boost converter, respectively. In order to 

determine             , a super-capacitor is used to store the harvested energy. Then 

             is computed as the value of increasing the energy level from        to 

     during a given time interval T.  

                                                
   

 
                                         

where     is capacitance of the energy buffer, and      and        are the two 

voltage levels of the energy buffer during a testing cycle. Hence, the conversion 

efficiency can be simplified by comparing the energy output by the solar cell with the 

increase in the capacitor’s energy level during a test period T. By using the same boost 

converter circuit except MPPT circuits in the power conversion system, the only 

difference in Equation 6.12 is        of each employed MPPT approach. Hence, the 

simple way to interpret system efficiency is to compare the capacitor’s voltage of each 

system when there are placed at the same environment. In this chapter, two 22F 

super-capacitors placed in series are used as the energy storage element. In order to 

ensure the state of the capacitors at the beginning of each experiment being the same, 

the capacitors are pre-charged to 1.3V. Generally, the outdoor light irradiance can be 

roughly divided into three groups, which are constant light conditions, slow changing 

light condition, and rapidly changing light condition. In order to obtain the overall 

efficiency of the energy harvesting systems in all these conditions, three trials have 

been conducted for each system.  Each algorithm has been tested three times under 

the same condition and the equal value of these three tests for each system has been 

obtained to reduce the testing error.  

For a constant light condition, three different light inputs 35kLux, 10kLux and 

5kLux have been tested with each system for 20 minutes. Table 6.5 shows the 

comparison results of experiment tests. The efficiencies for each system under these 

three different light irradiances are calculated by introducing the parameters into 

Equation 6.12. The calculation results are shown in Table 6.5. Since the MPP of a 

solar cell is very sensitive to its temperature, it was very important to ensure the 

panel’s temperature was kept at a constant value during the experiment. Therefore, the 

tests have been examined when the solar cells had been illuminated by the lamp for 
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about 30 minutes to ensure that the temperature of the solar panel had reached a stable 

state. The comparison results show that the sensor-driven MPPT based conversion 

circuit has the minimum capacitors’ voltage which indicates that it has the minimum 

energy transfer efficiency during these tests. This is because the light sensor’s output 

power is not 100% matching the solar cell’s output power. The P&O and the enhanced 

P&O algorithms have very similar overall efficiencies and the P&O method even has a 

slightly better efficiency than the enhanced P&O algorithm. This is because the 

enhanced P&O algorithm is complex and needs more time to decide MPP. This makes 

the enhanced P&O method not as efficient as the classical P&O method in the constant 

light condition.   

Table 6.5  Comparison of the MPP tracking efficiency for different MPPT based 

power conversion system at the constant light condition 

Terminal voltage of the super-capacitors  

Light Irradiance  35kLux  

(27.4mW) 

 10kLux 

(6.43mW) 

 5kLux  

(4mW) 

Temperature  25  22  22  

Charging time slot  30 mins 30 mins  30mins 

Sensor-driven MPPT 2.825V (70.2%) 1.777V (69.8%) 1.601V (67.1%) 

P&O 2.887V (74.1%) 1.801V (73.8%) 1.623V (72.1%) 

improved P&O 2.886V (74%) 1.8 V( 73.7%) 1.623V (72.1%) 

If the solar energy harvesting systems were placed outside in a cloudy day, the 

environment condition could be considered as a slow changing light condition. In 

order to emulate the dynamic light conditions in the laboratory, a brightness adjusting 

lamp has been used. The lamp started at 5kLux for 5mins, and then it was suddenly 

adjusted to reach its maximum 35kLux. It kept the maximum output for 5mins and 

returned to a low value about 5kLux as a cycle. The experiment lasted for an hour and 

the results are shown in Table 6.6. Based on the comparison result, the maximum 

efficiency can be achieved by using the classical P&O algorithm, which is followed by 

the enhanced P&O method. The difference between the classical P&O and the 

enhanced P&O methods are much bigger than one when they were placed at a constant 
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light condition. This is because the P&O algorithm has a simpler algorithm to track the 

MPP at a slow changing environment. The worst case is found by using the 

sensor-driven MPPT.  

Table 6.6 Comparison of the MPP tracking efficiency for different MPPT based 

power conversion system at the slow changing light condition 

Terminal voltage of the super-capacitors and conversion efficiency  

Sensor-driven MPPT 2.965V (69.3%)  

P&O 3.04V (73.48%) 

Enhanced P&O 3.01V (71.8%) 

For a partly cloudy day, the light condition might changes rapidly. If the proposed 

system is placed at this environment, the results will be different. The rapidly dynamic 

light environment has been emulated in the laboratory by rapidly changing the lamp 

output power between the maximum value (35klux) and the minimum value (5klux) in 

every 2 seconds. The test lasted for 1 hour. Table 6.7 shows the comparison result of 

different power conversion systems illuminated in this condition. From the result, the 

enhanced P&O method achieves the maximum efficiency of the all three MPPT 

algorithms.  

Table 6.7  Comparison of the MPP tracking efficiency for different MPPT based 

power conversion system at the rapid changing light condition 

  Terminal voltage of the super-capacitors and efficiency  

Sensor-driven MPPT 2.965V (69.1%) 

Classic P&O 2.982V (70.08%) 

Enhanced  P&O 2.998V (71.2%) 

In order to evaluate the proposed system in the real environment, three designed 

power conversion systems have been tested in an outdoor environment for 5 days. In 

these five days, the systems have been placed outside of the laboratory through 9am to 

7pm. And after each testing days, the systems have been reset back to their initial state.  

In order to supply enough capacitance for the energy buffer, a large capacitance 

rechargeable battery has been employed to replace two 22F capacitors as the energy 
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buffer in these designs. The rechargeable batteries have been pre-charged to 2.1V 

ensuring that the state of the battery at each experiment is the same. The terminal 

voltages of the rechargeable batteries in these testing days have been recorded, as 

depicted in Figure 6.13.  Based on the figure, the terminal battery voltage of the 

enhanced P&O method is the highest in each testing day indicating the enhanced P&O 

method is the most efficient one in these three MPPT methods when they are placed at 

outdoor environments. The sensor driven MPPT approach is the most inefficient one. 

It can be concluded that the enhanced P&O method is the best selection when the solar 

energy harvesting system is placed at outdoors. 

 

Figure 6.13 Overall tracking efficiency of the proposed power conversion 

system 

6.5 Summary 

By analysing the present states of micro energy harvesting systems, a low system 

performance in terms of energy conversion makes the design of high efficient power 

conversion subsystem, including the design of efficient power converter and a high 
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efficient MPPT scheme, becoming an active area of research. In this chapter, three 

integrated cost-effective MPPT algorithms based power conversion circuits for 

micro-scale solar energy harvesting systems have been compared. The proposed 

systems have been tested in the laboratory on both the power overhead and overall 

system efficiency. The experimental results show that the sensor-driven MPPT based 

power conversion circuit has a minimum power overhead, but it has the lowest 

tracking efficiency. The enhanced P&O MPPT system has the same power overhead 

of the classical P&O MPPT system, but it has the most efficient when the system is 

using in the rapid changed environment. The classical P&O MPPT system has the 

maximum system performance when the environment conditions changed slowly or 

maintained.  In order to verify the system performance in the real environment, three 

systems have been tested outdoor for 5 days. The results show the enhanced P&O 

based power conversion circuit has the maximum efficiency and it is considered as the 

best option when the system is placed at the rapidly change environment.  
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Chapter 7. Design and implementation 

of a power management system for an 

energy harvesting system 

7.1 Background and motivation  

The energy harvesting technologies have the potential to make the WSNs have 

near-perpetual operation. In order to have this potential, the energy harvesting system 

requires high energy efficiency with high system reliability. As mentioned in previous 

chapters, a lot of effort has been proposed in this area to enhance the system 

performance both on energy efficiency, and on system lifetime. But these efforts are 

not sufficient to give a perpetual lifetime to the system. In order to make the system 

becoming everlasting, a power management subsystem is required. There are some 

reasons to employ a power management subsystem in a micro energy harvesting 

system. Firstly, the harvested energy depends on the energy available from the 

environment, but different sensor nodes, which come from the same WSN, placed at 

different places may have different energy harvesting opportunities. The unstable and 

uncontrollable environment makes the harvested energy unstable and undependable 

that makes the existing energy harvesting systems not suitable for other applications. 

Secondly, as the wireless sensor nodes perform three basic functions: data collection, 

data communication and sleeping, the power demands for achieving these functions 

are significantly different. Based on these two reasons, the energy budget and the 

energy usage of the energy harvesting system are unpredicted. The system, without 

knowing this energy relationship, may not operate properly as expected. Moreover, by 

considering the constraints on the cost, size, and energy, the micro energy harvesting 

system without a proper energy usage strategy may cause some unexpected problems 

when the system is deployed in the real environment. Hence, an energy management 

capability is a key factor enabling an energy harvesting system adaptable to any 

working conditions.  
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The power management is not new in the design of WSNs. As described in the 

literature, energy management technologies are extremely useful in the battery 

powered embedded system in order to prolong the lifetime and maximize the system 

performance under energy constraints. As shown in Chapter 1, significant research 

efforts have been dedicated to achieving efficient energy utilization in WSNs in the 

past year, such as dynamic voltage scaling, reducing the number of bits to transmit and 

dynamic power management. But power management strategies will be significantly 

different when the energy source of the sensor node changes from the fixed battery to 

a harvesting device.  

Firstly, unlike a battery driven sensor node, whose performance has been 

constrained by its limited power sources, an environmental energy driven sensor node 

with an added capability of a renewable energy makes the system having potentially 

infinite amount of energy. With appropriate choice of data sampling rate and a routing 

protocol, the lifetime of the sensor node could be infinite. In conclusion, the power 

management strategies of a battery system is there to minimize the energy 

consumption of the system as much as possible under energy constraints that differ 

from the power management strategies of an energy harvesting system, which make 

the lifetime and the system performance maximization based on balancing the energy 

consumption and the energy generation of the system.  

Secondly, the power management strategies for the battery driving sensor node are 

required to have a battery level close to full, but in the case of the sensor node with 

energy replenishment, a fully charged battery means that no energy could be charged 

and the system misses the opportunity to utilize the replenishment energy. Due to the 

limitation of the energy buffer’s capacity, conservative energy expenditure may lead 

the system missing charging opportunities. But on the other hand, the aggressive 

energy usage of the sensor nodes along with an unstable harvested energy may lead to 

a lack of coverage or connectivity when the system is working with low residual 

energy level. Hence, determining the right balance between the residual battery level 

and the energy consumption of the system becomes a complex issue for a power 

management algorithm design for an energy harvesting system.  

The power management strategies for the sensor node driven by environmental 

energy must have the capability to balance these contradictory goals in order to 

maximize the system performance and the system lifetime, simultaneously. Nowadays, 

a lot of effort is put into developing efficient power management algorithms for sensor 
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nodes powered by an energy harvesting device. Kar et al. (2006) and Gatzianas et al. 

(2010) have proposed activation schemes for rechargeable sensors to maximize the 

network-level utility of sensing networks. Both authors assume that all the sensor 

nodes have the same energy replenishment possibility and they look at the whole 

system energy utility instead of focusing on analysing node-level performance. But in 

the most WSN applications, only parts of sensor nodes have energy replenishments. 

The power management schemes focusing on individual environment powered sensor 

nodes become more realistic and more useful for real applications. In relation to this 

point, Kansal et al. (2006) introduced the concept of energy neutral operation, which 

has been introduced in Chapter 5, into the power management algorithm design. A 

power management unit for dynamically adapting the duty cycle of a sensor node with 

energy harvesting capabilities has been developed according to this concept. They 

used adequate historical data obtained by experiments to indicate the energy budget of 

the system. Since the environmental energy is dynamical and unpredictable, the energy 

budget of the system, which is based on previous experiments, cannot accurately 

predict the energy generation of the system. Hsu et al. (2006) extended this idea and 

proposed an adaptive power management algorithm for harvesting-aware duty cycling 

of wireless sensor nodes. Three objectives have been achieved by their algorithm: (a) 

achieving energy neutral operation, (b) maximizing the system performance based on 

an application utility model subject to the above energy neutrality constraint, (c) 

adapting to the dynamics of the energy source at run-time (Hsu et al., 2006). However, 

in both works, the authors assumed a priori knowledge of the energy profile which is 

hardly possible to obtain in a real environment. An improvement approach, which the 

energy relationship between the energy budget and the energy dissipation is indicated 

by monitoring the battery level of the system, is proposed by (Vigorito et al., 2007). 

However, this model-free approach cannot be accurate enough to indicate the energy 

variations in a short period that prevents this approach from being used in a micro 

energy harvesting system. 
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7.2 Feature of proposed strategy 

Based on the above discussions, a power management subsystem for an energy 

harvesting system is proposed. Three objectives have been achieved by the subsystem, 

which are the energy neutral operation, system performance maximization and a 

perpetual lifespan of the system.  The design process is divided into two parts: an 

energy distribution and a power management parts. According to this, both hardware 

and software have been designed based on the entire system perspective.  A solar 

energy harvesting system has been used to evaluate the proposed power management 

subsystem both in a laboratory and at outdoor environment. The experimental results 

illustrate the proposed algorithm is able to have the better system performance by 

comparing with other two simple designs.  

7.3  Proposed power management system 

Normally, the everlasting life, the energy neutral operation and the maximum 

system performance are considered as three basic objectives which should be achieved 

in a high efficient micro energy harvesting system. According to these requirements, 

the power management subsystem can be divided into the energy distribution and the 

power management parts, as illustrated in Figure 7.1.  An energy harvester is 

connected with an MPPT based power conversion circuit to create appropriate voltage 

level for the energy buffers, which is included in the energy distribution part.  It is 

also used to decide which energy buffer being used by the system according to the 

energy level of the buffers. Then the power management unit is used to monitor 

energy budget of the system and adapt energy dissipation equal or less than the energy 

generation of the system.  
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Figure 7.1 Generic architecture of power management system 

7.3.1 Energy distribution unit 

The main function of the energy distribution part is to use an intelligent control 

algorithm to efficiently distribute the energy to each part of the system. According to 

feature of the energy distribution unit, the design processes can be divided into 

choosing the energy storage elements and designing an efficient charging and 

discharging mechanism, which satisfy a set of system requirements such as lifetime, 

capacity, current draw, size and weight.  

7.3.1.1 Energy buffer design  

The energy buffer system decides the whole system lifetime of the energy 

harvesting system. This part is very important for designing a long lifetime system. In 

order to give the system a nearly perpetual lifetime, the hybrid combination energy 

storage design, mentioned in Chapter 5, is adopted in this chapter. Because of the high 

charging/discharging efficiency along with infinite charge/discharge cycles, a 

super-capacitor is employed as the primary buffer, which is directly charged by the 

harvesting system. It powers or charges the system when enough energy is available 

on its. The rechargeable batteries are used as the secondary buffer by considering the 

large capacitance and high capability of holding energy. It is used to cover the black 

area of the system when there is no or small amount of energy can be harvested by the 

energy harvester. Based on these special requirements, the super-capacitor should be 

as large as possible to minimize the charging/discharging process to increase the 

system efficiency and prolong the lifetime of the rechargeable batteries. But a larger 

capacitance of the capacitor has a greater leakage current, which is the main energy 

dissipation of the energy buffer system. Hence, an optimal capacitance level of the 
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super-capacitor should be considered. By considering the power management unit, 

which will be described later, there is a minimum value of the super-capacitor should 

be stratified. The principle is that the minimum capacitance of the super-capacitor 

should ensure the system can only step into one status at a cycle T. This means that the 

maximum energy consumption of the entire system through a time interval T, which 

should be less than the energy that can be drawn from the super-capacitor from the 

stop charging battery stage to the using battery powering system stage. The 

mathematical description is shown in Equations 7.1, 7.2 and 7.3.  

                                                      (7.1) 

                                                                    (7.2) 

                            
        

 
       

        
          (7.3) 

where          is the capacitance of the super-capacitors, and        and         

are the two voltage thresholds of the super-capacitor to indicate the stop charging 

battery stage and the using battery powering system stage, and             is the 

energy drawn from the super-capacitor from        dropping to       , and 

                 and                  are the maximum energy 

consumption and the maximum power consumption of the system. 

The secondary buffer is used when the energy at the primary buffer cannot directly 

power the system. Hence, a high energy density, a low breakdown voltage and a low 

leakage current have been considered as the three basic design requirements of the 

secondary buffer. By considering the charging/discharging efficiency and the 

complexity of the charging circuit, a NiMH type rechargeable battery is used. In order 

to use the rechargeable battery as efficiently as possible, several actions should be 

considered in the system design.  A bigger battery size and high cost are not suitable 

for a micro system. The optimal battery size can be estimated by calculating the 

difference between the maximum energy consumed and the minimum energy 

generated through a year. Secondly, if a battery is subjected to a deep discharge cycle, 

the lifecycle of the battery is degraded. For instance, a NiMH battery yields a lifecycle 

about 500 cycles, when it is subjected to repeated 100% discharge rate. But, if the 

battery is cycled at 10% Depth of Discharge (DoD), it will last for over 5000 cycles 

before it reaches the end-of-life (Karsal et al., 2006). Therefore, the power 

management system should keep the battery operating at a shallow DoD to preserve 
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battery endurance (Karsal et al., 2006). Thirdly, rechargeable batteries have two 

voltage limitations which characterize the maximum and the minimum amount of 

charge present on the battery. If a rechargeable battery exceeds the upper voltage 

limitation or drops below the lower voltage limitation, the lifetime of the battery will 

be significantly decreased. Hence, an over charging and under charging protection 

should be considered to protect the rechargeable battery.   

7.3.1.2 Control Unit  

A control unit is quite essential for the buffering system, especially when a hybrid 

combination energy storage design has been used. Several system requirements should 

be satisfied when the highly efficient circuit is desired.  Firstly, the control circuitry 

should oversee the operation of the energy transducers, manage the energy buffers and 

routers the energy consumption of the system with a proper policy. Secondly, in order 

to enhance the hardware longevity, the overcharge and undercharge protection should 

be included. Thirdly, because the power management system makes an energy usage 

decision based on the energy budget, the control unit should have a built-in energy 

measurement capability to monitor the energy levels of the two energy buffers. 

Furthermore, the low cost, small size and the simple circuitry are required. Based on 

these requirements in relation with the characteristic of a digital circuit, which the 

circuit is simpler than an analog circuit, a low power MCU based control circuit is 

developed. In this chapter, a multiple function MCU PIC16F688 with very low power 

consumption is used and the schematic diagram is depicted in Figure 7.2. The rest of 

the circuit includes a dual P-channel MOSFET FDS9933A playing as an energy 

source switch, and a 1.2A current limited, P-channel switch Max890L working as a 

battery charger.  
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Figure 7.2 Hardware design for power management subsystem 

In this circuit, two ADC channels from the MCU are used to monitor energy levels 

of the super-capacitor and the rechargeable battery. By comparing the terminal voltage 

of the super-capacitor      and using a configured threshold voltage       , the 

control circuit determines which energy sources, either the super-capacitor or the 

rechargeable battery should be used to power the system. If the terminal voltage of the 

super-capacitor is higher than       , the super-capacitor powers the system. 

Otherwise, the system draws energy from the rechargeable battery. Frequently 

switching the power sources generates noise, which is harmful for an MCU based 

system, a 0.6V window has been set by the control unit to stabilize the power stage. 

When the super-capacitor’s voltage drops below the voltage threshold        

           , the control unit switches to using battery to power the entire system.  

Furthermore, in order to charge the rechargeable battery when sufficient energy is 

available,        is set by the MCU to indicate the charge status. When the 

rechargeable battery is not fully charged while            , the rechargeable 

batteries are charged by the super-capacitor. In order to avoid frequently charging the 

batteries, a 0.3V charging window is selected. This means that another voltage 

threshold                    has been set, which indicates that the system 

should stop charging the batteries.  
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As the lifespan of the rechargeable battery is critical for determining the entire 

system’s lifetime, an overcharge and undercharge protection is designed to extend the 

lifetime of the batteries. Hence, two battery voltage thresholds        and        are 

chosen for the battery to avoid overcharging and undercharging processes. In order to 

simplify the hardware design, the control logic has been uploaded into the PIC MCU 

that the number of physical components and quiescent current consumption can be 

reduced. The software has complete control over buffer selection, charging process, 

instantaneous energy measurement and communication with the sensor node. The 

driver for the control unit is shown in Table 7.1 by using simple if-else statement to 

achieve the functions mentioned above.  

Table 7.1 Control and charge DRIVER      

  Driver 

1 Set       ,       ,       ,        and        

2 Measure      and            

3 

If                          
If             

Battery powered system=True 

Charge battery=False 

Cap powered system=False 

4 

If                          
If                    

Battery powered system=False 

Charge battery=False 

Cap power system=Ture 

 

5 

If                          
If             

Battery powered system=False 

Charge battery=Ture 

Cap power system=Ture 

6 

If                          
If             

Battery powered system=False 

Charge battery=False 

Cap power system=Ture 

7 
If                   
Charge battery=False 

8 
If                   

Battery powered system=False 

9  

Sending      and           , number of charging 

battery         and number of using super-capacitor 

power the system        

to sensor node 

7.3.2 Power management algorithm design 

The power management part is crucial for adapting the energy usage to the energy 

budget of the system. This is the core part for an energy harvesting system to achieve 

the energy neutral operation and maximize the performance.  
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7.3.2.1 Theoretical analysis of a power management strategy 

In order to design a proper power management algorithm for an energy harvesting 

system, a theoretical analysis should be conducted before the algorithm is designed. 

The energy neutral operation is the most important function to be achieved by the 

power management algorithm. It can be determined by knowing the energy status of 

each part of the system.         is defined as the power harvested from the 

environment at time t by the energy harvester while the power being consumed by the 

system at that time is           . In order to model the energy budget in a more 

practical way, a non-ideal power conversion circuit with an MPPT control unit and a 

non-ideal energy storage buffers are considered in this part. Hence, the MPPT 

efficiency      , the regulator circuit’s efficiency          , the battery charging and 

discharging efficiency              and                , and the super-capacitor 

charging and discharging efficiency                     and                       are 

used to indicate the energy losses in the system. In order to simplify the calculation, an 

efficiency of the entire power conversion circuit            , which combines       

and          , is introduced.  

                                                                                                                     (7.4) 

Based on the same reason, unified buffering efficiency          is introduced in 

Equation 7.5  

                                                                                                                       

Normally, the charging and discharging efficiency of the super-capacitor is the same 

which is expressed as           . Then the buffering efficiency of the 

super-capacitor                 can be expressed as: 

                                                                                                                        

Based on the energy flow of the system, shown in Figure 5.16, the rule of the energy 

neutral operation can be expressed in two different conditions by using these notations.  

 Case 1: If the harvested energy is higher than the energy consumed by the 

system, then the energy relationship can be expressed as  
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                          ∫                                    
 

 

              

                                                                                                            

 where                  is the initial battery level and T is cycle duration and         

is energy leakage of the rechargeable battery. 

 Case 2: If the harvested energy is less than the energy consumption of the 

system, then the part of the energy consumption is drawn from the rechargeable 

batteries. The equation in this case is:  

                ∫                                               
 

 

           

                                                                                                                   

If the buffer size of the rechargeable battery is limited, Equations 7.6 and 7.7 can be 

rewritten as: 

                          ∫                                    
 

 

              

                                                                                                      

and  

                 ∫                                               
 

 

           

                                                                                                             

where               is the maximum energy can be stored in the rechargeable battery. 

Because if the rechargeable battery is full, no harvested energy could be stored in the 

battery and the harvested energy will be wasted that is considered as an inefficient 

design for an energy harvesting system. A proper power management strategy should 

ensure that the system operating at any time t must satisfy Equations 7.8 and 7.9. This 

can be achieved by that if the system consumes more energy than the energy 

generation, its performance should be scaled down to meet the requirement of the 

energy neutral operation. On the other hand, if the harvested energy is sufficient and 
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the rechargeable battery is near full, the system must enhance its performance in order 

to maximize system performance by avoiding waste of the harvested energy.  

 In order to adjust the system performance based on the energy budget, the energy 

used directly from the harvested source and the energy stored in and used from the 

battery may be computed as follows. The time axis is discretized into slots of a 

duration    and the entire window size is   slots. The following energy profile 

variables are defined with the index i ranging over {1,…,  } and        is the 

harvested power in the slot i.              is the residual battery energy at the 

beginning of the slot i. similarly, two possible cases for        will occur in    .  

 Case 1: If        is higher than           , all the energy consumed is 

directly sustained by the harvested source and the excess energy is stored in the 

battery.  

                                                                                                                           

                                [                                             ] 

 If         is lower than           , part of the energy is drained from the 

battery, and Equation 7.9 can be rewritten as  

                                                                                                                          

                                                   

In order to simplify the analysis, the power consumption of the energy harvesting 

system itself can be roughly assumed to be of a constant value   . Hence, the energy 

consumption of the system only varies based on the performance of the sensor node, 

which can be scaled/enhanced by using several techniques, such as duty-cycling 

among different power modes, radio transmit power adjustment and dynamic voltage 

scaling. These techniques require hardware support and may not be always be 

available on the resource constrained sensor node. In this work, in order to simplify 

the algorithm in relation with the hardware limitation, a common performance scaling 

technique, which uses duty-cycling between active and sleep modes, has been used.  

   The power consumption for the sensor node at these two modes are         and 

      , respectively, and the average power consumption of the sensor node,         , 
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and the power consumption of the energy harvesting system            in a time slot 

i are calculated as: 

                                                                                                  

                                                                                

where     is the power consumption of the control circuit of the energy harvesting 

system and          is the duty cycle of sensor node in active mode.  By 

substituting Equation 7.13 into Equations 7.10 and 11, the equations can be rewritten 

related to the duty cycle of the sensor node: 

                                                                                                                         

                     [                                               ]    

                                                          

 (         )  

                                                                   (7.15) 

   [                                               ]             

                                                  (         )  

The energy neutral operation and maximum system performance can be achieved 

when the battery level at the end of the test window N is greater than or equal to the 

initial battery level, as shown in Equation 7.16.  

                                                                                                           

The system performance can be determined by calculating the average duty cycle of 

the system          during the test window.  

                                                      
 ∑         

 
    

 
                                                        

The power management algorithm can be designed by knowing the power 

consumption and the power generation of the system at any time.  
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7.3.2.2 Power management algorithm design  

The energy neutral operation in relation with maximizing the system performance is 

considered as the feature, which should be satisfied in the proposed power 

management system. In order to distinguish with other works, the proposed algorithm 

attempts to achieve this function without knowing the whole map of the energy 

generation. The proposed power management algorithm consists of three basic parts, 

as shown in Figure 7.3. The first part is the system specification part, which provides 

the basic requirements of the system, such as the power consumption, the duty cycle 

and the lifetime. The second part is characterizing the relationship between the power 

consumption and the power generation of the system, which can be achieved by 

monitoring the energy status of the energy buffers. The third part of the system is 

adapting the sensor node’s performance in response to the energy budget of the system 

according to achieve the energy neutral operation in relation with maximizing the 

system performance.  

 

Figure 7.3 System architecture of power management subsystem 

(1) The specification component 

The specification component in the proposed system provides an interface to the 

power management strategy and the user policy. Normally, a sensor node has general 

system requirements, such as network lifetime and the maximum and the minimum 
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duty cycle of the sensor node. By knowing these requirements, the range of the 

maximum and the minimum system performance can be addressed. Moreover, the 

power management algorithm is designed to ensure the system satisfies the 

requirements, but sometimes the system cannot meet all the requirements at the same 

time. Hence, the priorities of these requirements should be determined before the 

algorithm is designed. For instance, if the lifetime of the system is more important 

than the performance of the sensor node, the power management strategy should 

maximize the system lifetime rather than to enhance the system performance when the 

system is operating at the energy restrained condition. The typical requirements of the 

sensor node for this work are listed in Table 7.2.  

Table 7.2 Specification of the sensor node 

Priority Description 

1 System lifetime of at least 5 years 

2 Sample all sensors at least 30 minutes and send 

reading to a network coordinator  

3 The maximum sample rate is 5 seconds per 

sample 

(2) Characterizing the energy relationship 

According to the theoretical analysis, described in the previous section, the energy 

characteristic of the system is essential for designing a power management algorithm. 

This characteristic can be determined by having a complete knowledge of the energy 

generation, the energy consumption and the residual energy in the energy buffers. But 

unfortunately, all these factors are hard to obtain, especially for the energy generation 

of the system, which is varied with dynamic environments.  Hence, a practical way, 

which measures the energy level of the energy buffers to indicate the energy 

relationship, is used in this work. In order to avoid the shortfall by using the battery 

level to indicate the energy relationship of the system, proposed by (Vigorito et al.,  

2007), the system monitors the energy level of the super-capacitor used to indicate the 

instantaneous energy relationship of the power generation and the power consumption.  

The sizes of the test window and the time slot should be determined before 

characterizing the energy relationship. As different environment energy sources have 
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different energy characteristics, the window size and the time slot size are judiciously 

chosen based on the characteristics of the energy harvesting system. For instance, as 

the solar energy has a diurnal cycle, the window size is chosen to be a twenty-four 

hour duration. Because sunlight is normally changed rapidly, the size of the time slot 

should be as small as possible in order to increase the accuracy of the algorithm. But 

frequent comparison increases the overhead of the system, which should be avoided in 

the micro energy harvesting system. A trade-off should be considered in the algorithm 

design. In this design, each time slot is taken to be 20 minutes as the variation in 

generated power by the solar panel using this setting is less than 10% between each 

adjacent time slot.  

In this work, making the sensor node which can adapt quickly changed harvested 

energy for a long period of time, a simple mechanism for determining both the 

short-time and long-time energy relationship is proposed. Any time the battery level 

            is higher or less than the initial battery level                   , it donates 

the energy consumption of the system is less or higher than its generation. But the 

energy relationship cannot be indicated when the battery level equals to the previous 

one. In order to recognize the relationship in this situation, the energy level of the 

super-capacitor is used to indicate the instantaneous energy relationship of the system. 

As shown in the previous section, the system can work at three different modes, which 

are using battery, using the super-capacitor or charging the battery modes, by knowing 

the energy level of the super-capacitor. Hence, the energy relationship of the system 

can be simplified by knowing the system status. There are two voltage thresholds of 

the super-capacitor,        and       , that have been chosen to indicate the system 

status. If the super-capacitor’s voltage              , the system uses the 

rechargeable battery to power the system that indicates the energy generation is less 

than the energy consumption. The system need to reduce its power consumption to 

adapt its energy generation. At any time slot, if                      , the system 

is powered by the super-capacitor and the energy consumption approximately equals 

to the energy generation. If              , the super-capacitor powers the system 

and charges the rechargeable battery at the same time. In this case, the generated 

energy is higher than the energy consumption. By choosing a proper capacitor size, 

which can be calculated, based on Equation 7.1, the super-capacitor can only stay at 
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one status in one time slot and the energy relationship in the time slot can be indicated 

by examining the energy level of the super-capacitor.  

On the other hand, by considering the condition of maximizing the system 

performance, any situation in which the battery energy is full (              

              ) indicates that the harvested energy has not been efficiently used. Thus, if 

the system  satisfies                             at any time, the harvested energy is 

efficiently being used by the system. By combination the energy neutral operation and 

maximizing the system performance, the proper power management algorithm should 

make the battery energy satisfying                                               at 

any time period.  

(3) Algorithm design  

By knowing the energy relationship of the system, the power management 

algorithm can be designed. As the system performance is highly related to the duty 

cycle of the sensor node, the algorithm adapts its duty cycle by following the energy 

usage law. The adaptive duty cycle should be restricted in a limited interval, which are 

the highest duty cycle and the lowest duty cycle of the sensor node. In order to avoid a 

large variance between neighbouring cycles, which may cause the system performance 

to become unstable, the algorithm should consider a smoothing function to keep the 

variance of the duty cycle to a minimum. A duty cycle          has been automatically 

set by the algorithm when the system starts to work. The battery at the first time slot 

powers the system and the measurements of the energy level of the two energy buffers 

are taken at the end of the cycle. Then the system compares the current battery voltage 

reading to a 2.2V voltage threshold. If the battery voltage is higher than 2.2V, which 

means that the battery is in a healthy state. Then the system goes to the next stage. 

Otherwise, the system reports the battery energy is almost depleted and the sensor 

node will report an error message to the local server and then go to sleep.  

When the system ensures the battery is in the healthy state, it compares the residual 

battery energy to the initial battery energy. The system also records the status of the 

super-capacitor by using        and          to indicate that the system is being 

powered by the battery and the system is charging the battery, respectively. Based on 

the previous analysis, three different cases will occur and the corresponding reactions 

will be considered.  
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 Case I: if the current battery reading is less than the previous one, the energy is 

drained from the battery by the sensor node. In order to maintain the energy 

neutral operation in this shortfall condition, the duty cycle of the sensor node 

should be reduced. By considering smoothing the duty cycle, three different duty 

cycle variations    ,     and    , are set by the algorithm based on different 

situations.  If the residual battery level            is lower than a setting 

threshold       , which indicates that the system cannot last long enough to meet 

the next testing window, the minimum duty cycle of the sensor node      is 

chosen for the system to ensure the system charging the battery. This is because 

the charging battery process has the top priority in this situation. If        

                 , the task of charging the battery still has the higher priority 

than maximizing the system performance. The largest duty cycle variation     is 

chosen for the system to reduce the power consumption of the system to make 

sure more the extra energy could charge the battery. If                   

      , which means the residual battery energy is in the good condition, and the 

system wants to enhance its performance rather than to store energy in the battery. 

A smaller cycle variation     is defined by the algorithm to reduce the power 

consumption of the system. If                  , the residual battery energy is 

nearly full. In order to maximize the performance of the system and keep a small 

duty cycle variation between two adaptive processes, the smallest duty cycle 

variance     is set by the algorithm.  

 Case II: when the battery voltage is higher than the previous one, the harvested 

energy is higher than the energy consumption of the system. In this case, the 

system will increase the duty cycle in the future time slot to maximize system 

performance. The same duty cycle variations    ,     ,and    , as set in the 

Case I, are used to meet different situations. There are four different situations 

being considered in the algorithm. If           <      , the charging battery is the 

most important task to be achieved. Hence, the minimum duty cycle      is 

selected by the algorithm. If                          , which the charging 

battery procedure has the higher priority, the smallest      is added onto the 

previous duty cycle to balance the charging battery procedure and improving the 

system performance procedure. If                         , the system 

performance is more important than the energy neutral operation. A larger duty 



Chapter 7: Design and implementation of a power management system for an energy harvesting system 

 193 

cycle variation     is added onto the previous duty cycle to improve the system 

performance. If                  , which means the battery energy is nearly full, 

the largest duty cycle variance     is added to rapidly increase the power 

consumption of the system.  

 Case III: when the battery voltage is equal to the previous one, the more complex 

judgements should be concerned to indicate the energy relationship.  In this work, 

the super-capacitors’ status has been used to indicate the energy relationship. By 

considering the residual energy of the batteries, the system is faced with four 

different situations. If           <      , the system must charge the batteries. 

Hence, the minimum power consumption of the sensor node should be used. If 

                        , there are three different situations that will be 

observed by the system. If the charging battery status has been found, which 

indicates             , the energy generated of the system is higher than the 

energy consumption of the system. By considering the fact that the charging 

battery process has the higher priority, the system maintains the same duty cycle 

in the next time slot to expect energy being store in the battery. At the same 

situation, if             is detected, which indicates the harvested energy is 

less than the energy consumption,     is reduced from the previous duty cycle to 

guarantee more energy could be stored in the battery. The last scenario for this 

case is that if there is no          or            being recorded, which means 

that the energy consumption nearly equals to the energy generation, the smallest 

duty cycle variation     is reduced from the previous one. For the situation 

                        , the system wants to consume more energy than the 

energy being stored in the battery. The three situations are distinguished by 

examining the status of the super-capacitors. If             , the energy 

generation is higher than the energy consumption. In order to increase the system 

performance,     is added to the previous duty cycle to increase system 

performance. If           ,     is taken from the previous duty cycle to 

maintain energy neutral operation. If               and            , the 

system maintains its duty cycle. In the last situation, where                  , 

the residual battery energy is nearly full. For efficiently using the harvested 

energy,     is added onto the previous duty cycle to ensure the system consumes 
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more energy than it has harvested.  

The proposed power management algorithm is shown in Table 7.3 using the simple 

else-if statements. Moreover, as stated in the previous section, in order to avoid over 

draining the energy from the battery, the sensor node needs to be switched-off when 

the battery voltage drops below the lowest voltage threshold.  

Table 7.3 Power management algorithm pseudo code 

 Driver 

1 

Initial system 

 Measuring initial battery level             and set initial duty cycle 

        for sensor node  

 Setting       ,       ,      ,     ,          ,    , and     

          and           

2 During time slot T, the system recorded            ,        amd        , respectively 

3 

If                 

{ Comparing the battery level            to the previous battery level reading 

             

   Case 1: if                          

  { if                  ,  D=    ; 

                             Else if                         ,             

   ; 

                            Else if                         ,            

   ; 

Else If                   ,                  

} 

 

Case 2: if                          

{If                  , D=     

  Else if                         ,               ; 

 Else if                         ,               ; 

Else if                  ,               ; 

  } 

 

Case 3: If                         

{If                  , D=    ; 

 Else if                          

{If             , D=        ; 

Else If           ,                 

Else if           ,           ,                ; 

} 

Else if                          

{If             ,               ; 

Else if           ,                 

} 

Else if           ,           ,             

} 

 

If                  ;                 

} 

} 

 

4 

            and                          

          and           

Return to step 2 

5 
Else If                    

Report error to coordinator and enter sleep mode 

6 end 

The reason the algorithm set different rechargeable battery voltage thresholds, 

       and       , for the system is that the system wants to save some unused energy 
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to cover some extremely cases, such as a long term rainy. Moreover, as the 

super-capacitor is charged by the boost converter, which is powered by the energy 

harvester, the system can be cold-started from the battery depleted condition.  

7.4 System evaluation 

In order to evaluate the proposed power management system in a real environment, 

the power management system for a solar energy harvesting system has been designed 

and implemented, as shown in Figure 7.4. A Jennic wireless module based sensor 

node, DR1048 board (DR1048, 2007), was employed as the target system. The power 

consumption of the sensor node is 43mW in active mode and 6mW in sleep mode, 

respectively. By adding the overhead of the control circuit, the maximum power 

consumption of the system is around 14mW when 20% duty cycle is applied on the 

sensor node. The control and charge algorithm has been designed based on Table 7.1 

and implemented in the PIC16F688 MCU to distribute and monitor the available 

energy in the energy buffers. By considering the specifications of the sensor node and 

the energy buffers, the six voltage thresholds are set            ,            , 

           ,            ,           and            , respectively. As 

knowing a 30 minute time duration is selected by the power management algorithm, 

the capacitance of the super-capacitor can be calculated by using Equations 7.2 and 

7.3.  

                                       

     
                  

      
        

 
       

Based on the calculation, the minimum 7.94F super-capacitor can supply sufficient 

energy capacitance to the system. By considering the energy leakage and 

charging/discharging efficiency, a much higher capacitance capacitor should be used. 

In this work, a 22F super-capacitors has been chosen as the primary energy buffer. 

Moreover, in order to supply a sufficient energy capacitance to the system when no 

energy can be harvested, two series connected 800mAh NiMH rechargeable battery 

are used as the secondary energy buffer. 
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Figure 7.4 Schematic diagram of the simple solar powered wireless sensor 

node 

The first step of the system evaluation is to verify the control and charge algorithm. 

A bread board circuit has been designed and implemented in the laboratory. In order to 

simplify the testing procedure, the circuit board is connected and powered by a DC 

power supply, which is used to emulate the harvested energy from the environment. 

Initially, the sensor node is powered by the rechargeable batteries while the DC power 

supplier charges the super-capacitors. It can be observed that when the first voltage 

threshold           is met, the system is powered by the super-capacitor. If the 

input energy is higher than the energy consumption, this indicates that the 

super-capacitor’s voltage is growing. When it reaches the second charging threshold 

         , the PIC16F688 switches on the MAX890L charging chip and the energy 

from the super-capacitor is rapidly transferred to the rechargeable battery. As long as 

the capacitor’s voltage drops less than 3.7V, the control and charge circuit stops 

charging the battery and the terminal voltage of the super-capacitor rises again. After 

several charging cycles, the DC power supply turns off and the terminal voltage of the 

super-capacitor drops. As soon as the super-capacitor’ voltage drops below 2.7V, the 

battery starts to power the system again. In order to examine the overcharge protection 

and undercharge protection, another experiment has been taken performed. To 

simplify the testing procedure, the super-capacitor is used to emulate the battery. The 

experiment results show that the system stops charging the super-capacitor when its 

voltage level is higher than 3V and the system reports an error message to the local 

controller when the 2.2V voltage threshold is met. The experimental results also show 
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that the MCU monitors the energy buffer’s terminal voltage correctly and the sensor 

node receives the measuring data at each testing cycle. The power overhead of the 

control and charge circuit is around       when 3.3V voltage source is supplied.  

By knowing the energy characteristics of the system, the power management 

algorithm has been designed and implemented into the Jennic chip in order to achieve 

energy neutral operation and maximize the system performance. The same hardware 

has been used to evaluate the power management algorithm. In order to simplify the 

testing procedure and reduce the testing time, a 10 minutes testing window has been 

chosen and each iteration of the power management algorithm is run every minute. 

The duty cycle range is set between [2%, 100%] and the maximum power 

consumption and the minimum power consumption of the system are 43.6mW and 

7.34mW, respectively. The initial duty cycle of the sensor node is 20% and the 

corresponding power consumption of the system is 14mW. The battery is pre-charged 

to 2.7V and the rest of the parameters are set by the algorithm which is listed in Table 

7.4.   

Table 7.4 The parameters for the power management algorithm 

                          Parameters of the algorithm 

            

            

            

    

     

    

       

                         

The system is powered by the DC power supply and the evaluation results are 

depicted in Figure 7.5 (a) and (b). Initially, a constant 10mW power, which is less than 

the power consumption of the system, is supplied to the system for running 3 hours. In 

this case, the majority of the energy is drained from the rechargeable batteries, as 

shown in Figure 7.5(a). Since the batteries’ voltage drops, the algorithm reduces its 

duty cycle to adapt available energy during the time interval 0-152 minutes, as 

depicted in Figure 7.5(b). It can be observed that the battery voltage has risen when the 

power consumption drops below the input energy. After 3 hours, the system switches 

to be powered by 20mW power source. It can be observed from the curves that the 

batteries’ voltage has risen faster after the new power source was added to the system. 

Because the input energy level is far more than the power consumption, the duty cycle 
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of the sensor node has risen simultaneously to adapt the  new input energy. The 

maximum 3V battery voltage was achieved at 253 minutes and then the system 

stopped charging the battery. In order to attain maximum the system performance to 

reduce the energy wastage, the sensor node continues to raise its duty cycle to 

consume more energy than the input energy. At last the duty cycle maintains around 

37%, which the power consumption equals to the input energy source. Based on the 

testing results, the proposed power management algorithm has the ability to maintain 

an energy neutral operation in relation with maximizing the system performance.  

 

Figure 7.5 Testing results of Power management algorithm 

The proposed power management system has been evaluated by using actual solar 

energy. Based on the system specifications and the characteristics of the solar energy, 

a 24 hours test window and a 30 minutes time slot have been set, respectively. The 

energy relationship is measured at each time slot. Based on the system specification, 
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shown in Table 7.2, the maximum duty cycle and the minimum duty cycle of the 

sensor node are 20% and 0.05%, respectively. The corresponding power consumptions 

of the system are 14mW and 7.5mW, respectively. Based on the duty cycle restriction, 

the parameters of the solar power management algorithm are shown in Table 7.5. 

Table 7.5 The parameters of the solar power management algorithm 

                         Parameters of the algorithm 

            

            

            

                                      

In order to verify the system’s efficiency and the performance, the proposed 

algorithm has been compared with two simple designs. The first design is to achieve 

energy neutral operation by sampling the battery voltage. It is based on the principle 

that the sensor node increases/decreases its duty cycle when the battery voltage 

increased/reduced. The second approach is using two fixed duty cycles based on the 

diurnal cycle of solar energy and two constant duty cycles 10% and 1% are set by the 

system during the day and night, respectively. In order to maintain the same 

experimental conditions for these three systems, the same solar cells has been 

connected with them and placed at the same environment. The initial duty cycle 10% 

and the same residual battery energy 2.6V were uniformly set by the systems.The 

experimental tests were conducted at Loughborough University for 5 days and the 

results are shown in Figure 7.6 (a) and (b).  

The battery voltages were recorded during these five days, as shown in Figure 7.6 

(a).  It can be observed that the systems with the prior two types of power 

management algorithms can achieve energy neutral operation, for which the terminal 

voltage of the battery is around 2..7V at the end of each testing window. But for the 

system with two fixed duty cycle algorithm, the battery voltage was not oscillating 

around the 2.7V and the battery voltage dropped below 2.6V at the last testing 

window. Based on this trend, it seems that the system has not had an energy neutral 

operation that it cannot survive for a long term operation. The corresponding duty 

cycles of each design are depicted in Figure 7.6(b). It indicates that the proposed real 

time power management algorithm is able to achieve a performance level depending 
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on the energy availability. In addition, in order to show that the system with the power 

management algorithm can have the best system performance, the mean values of the 

duty cycle for each system during these five test windows are listed in Table 7.6. The 

comparison results demonstrate that the proposed power management algorithm has 

the largest mean duty cycle compared with the other two algorithms. This means the 

proposed power management algorithm can make the system has the higher system 

performance than other two approaches.  

 

Figure 7.6 Experimental results of three different power management  

Table 7.6  Performance comparison of the power management algorithms 

Algorithm The proposed  Simple battery 

based algorithm 

Two fixed duty 

cycle algorithm 

Mean value of duty 

cycles 

5.515 5.15 5.5 

7.5 Conclusion 

In this chapter, an efficient power management unit has been designed. The various 

issues in power management for an energy harvesting system have been discussed. In 

order to cover the shortfalls of existing power management designs, the energy 

distribution unit and the power management algorithm have been designed. The 

proposed system has a  significant advantage over currently used methods, which are 

based on estimating energy profile to adapt the sensor node’s performance. The energy 
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relationship between the power generation and the power consumption can be 

indicated by the residual energy levels on the batteries and the super-capacitors. This 

make the algorithm, which makes a decision of increasing or decreasing the power 

consumption of the system based on the real energy budget of the system. Moreover, 

the proposed algorithm is realized in most energy harvesting scenarios without making 

any assumptions about the profile of the harvested energy source. The system has been 

implemented in a real environment comparing with other two existing power 

management algorithms. The experimental results illustrate that the proposed 

algorithm can achieve the energy neutral operation in these test days and the system 

has the better system performance than other two approaches.  
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Chapter 8. Design a wireless Sensor 

node  

8.1 Wireless sensor platforms 

Before designing energy harvesting system, the characteristics of the target sensor 

node is very important. This is because that the energy consumption of the system is 

highly related to the power consumption of the sensor node.  Hence deeply 

understanding a wireless sensor node and its platform is essential before designing an 

efficient energy harvesting system. According to this point, several wireless sensor 

nodes have been designed in this chapter for us to understand the characteristics of the 

wireless sensor nodes. Furthermore, in order to show how to design an energy 

harvesting system, two types of sensor nodes, developed in this chapter, have been 

selected as the target sensor nodes, which are powered by the solar and thermal energy 

harvesting systems in Chapters 9 and 10, respectively. 

Wireless sensor nodes should be small, cheap and energy efficient because a large 

number of sensor nodes are deployed in the environment to construct a WSN. More in 

detail, the constraints in physical side decides that the sensor nodes cannot use a large 

capacity battery as the power source. The cheap and energy efficient requirements 

determine that a sensor node must use a low power consumption processor, a small 

radio with limited bandwidth and transmission range, and low power consumption 

sensors. Hence, wireless sensor nodes are constrained in terms of computation and 

communication capabilities. A generic wireless sensor node hardware structure is 

comprised of four main subsystems: a) a computing subsystem consisting of a 

microcontroller with memories to process data collected by the sensing subsystem; b) 

a communication subsystem consisting of a short range radio system for wireless data 

communication; c) a sensing subsystem consisting of a group of sensors and actuators 

to monitor the physical environment; d) a power supply subsystem, which normally 

use batteries to power the whole sensor node, as depicted in Figure 8.1. In order to 
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design a wireless sensor node, the system should be constructed based on these four 

subsystems.  

 

Figure 8.1 A generic Wireless Sensor node architecture 

8.2 Data processing subsystem 

A data computing and a data transmission subsystem can be seen as the data 

processing subsystem.  Normally, these two modules are integrated into one chip as a 

module. In order to design a wireless sensor node, the first step is to select a 

microcontroller platform, which is the heart of all types of wireless sensor nodes. 

Nowadays, there are plenty of wireless modules in the market such as TI/CHIPCON’s 

CC2430/CC2431, EMBER’s EM250/260, FREESCALE’s MC13211/212/213, 

MICROCHIP’s MJ2440 and JENNIC’s JN5121/5139/5148. Some of these microchips 

have integrated a built-in 2.4GHz IEEE 802.15.4 compliant radio transceiver. The 

comparison of different wireless MCUs is shown in Table. 8.1; the prices come from 

the DigiKey website. 
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Table 8.1 ZigBee Chips Comparison 

Manufac

turer 

 

 

Part 

Number 

Supply 

voltage 

(V) 

Sleep 

Current 

(UA) 

TX 

Current 

(MA) 

RX 

Current 

(MA) 

TX 

Power 

(DBM) 

RX 

Sensitivit

y (DBM) 

Security Price 

(USD) 

ATMEL AT86RF

231 

1.3-3.6 0.02 14.3 13.2 3 -101 AES 4.73 

FREESC

ALE 

MC1319

2 

2.0-3.4 1 30 37 4 -91 None 4.67 

 

TEXAS 

INSTRU

MENTS 

 

CC2420 

 

2.1-3.6 

 

20 

 

17.4 

 

18.8 

 

0 

 

-95 

CTR 

CCM 

AES 

 

8.75 

 

MICROC
HIP 

 

MRF2J40 

 

2.4-3.6 

 

2 

 

19 

 

23 

 

0 

 

-95 

CCM 

CTR 

AES 

 

9.95 

 

JENNIC 

 

JN5139 

 

2.7-3.6 

 

2.6 

 

37 

 

37 

 

2.5 

 

-96 

CBC 

CCM 

CTR 

AES 

 

14.21 

Ember EM2420 2.1-3.6 0.5 17.4 19.7 10 -94 AES 17.23 

ST SN260 2.1-3.6 1.0 35.5 35.5 2.5 -100 AES 29.41 

In this thesis, the Jennic JN5139 microchip (JN5139, 2009) is selected as the 

wireless MCU platform. There are three reasons to use this platform as an example. 

Firstly, the Jennic module is a ready-made component and the module integrates all of 

the 2.4GHz RF components, which removes the need to perform expensive RF design 

and test. This can extremely reduce the product developing time. 

 Secondly, the JN5139 module is a high capability wireless module, which is 

equipped with a 32-bit RISC processor, 192kB ROM, 96kB of RAM, and a rich 

mixture of analog and digital peripherals. This means that the sensor node has a high 

capability for handling different types of sensors and functions at the same time. The 

block diagram of JN 5139 wireless module is shown in Figure 8.2.  
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Figure 8.2 JN5139 Module and the block diagram (Jennic 5139, 2009) 

Thirdly, the Jennic module provides different power consumption modes for the 

end users to smartly control the power consumption of the sensor nodes. The 

controllable power consumption modes of the Jennic module can be divided into MCU 

part and wireless transceiver part. Based on the (Jennic 5139, 2009), the Jennic MCU 

has four different power consumption modes: active processing mode, doze mode, 

sleep mode, and deep sleep mode. Table 8.2 presents the resulting energy consumption 

for the JN5139 CPU at different modes. In active processing mode, all of the 

application processes take place and all of the peripherals are available to use. In this 

mode, the sensor node consumes the largest power. In order to reduce power 

consumption of MCU, the CPU can enter into doze mode, which CPU operation is 

stopped but the chip remains powering and digital peripherals continue running. In 

terms of the datasheet, the module in doze mode uses more power than sleep and deep 

sleep modes but it requires less time to restart the module. This mode can be used for 

radio communication, where the CPU operation is not required. The third mode is 

sleep mode, which the module can enter this mode to greatly save energy. When the 

CPU enters sleep mode most of the internal chip functions are shut down, the state of 

DIO pins is retained to preserve any interface to the external peripherals. Whilst in 

sleep mode, there is an option to quickly wake up the CPU by retaining the code in the 

RAM without reloading it from flash memory, but       energy consumption will be 

added. In order to further reduce the power consumption, the module can be forced to 

the deep sleep mode. In this mode, the module just consumes 250nA current, but the 

module can only be waken up by using an external interrupt.  
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Table 8.2  Power consumption for the JN5139 microcontroller at different power 

mode (JN5139, 2009) 

Mode Current  Mode Current  

CPU active processing 2.85+0.295/MHz mA Sleep mode with I/O wakeup 0.1uA 

ADC 655 uA Sleep mode with I/O and RC 

oscillator timer wake up 

1.2uA 

DAC 215/235 uA The following current figures should be 

added to those above if the feature is being 

used 

Comparator 67.5 uA RAM retention 2.4 uA 

UART 95 uA Comparator  1.2uA 

Timer 65uA Deep sleep mode (Waiting 

on chip Reset or I/O event) 

250nA 

2-wire serial interface  75uA 

CPU Doze mode 2.85mA   

Similar to the MCU, the 2.4GHz radio of JN5139 module can also have different 

power levels and power consumption modes. Table 8.3 shows the current draw from 

the 2.4GHz radio through different power levels and modes. The module provides 

seven different power levels for data transmission. This function can be used to further 

reduce the energy consumption by knowing the transmission distance between the two 

nodes.  
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Table 8.3 Different power level settings for 2.4GHz transceiver 

Mode Power level (dBm) Current 

(mA) 

TX -30 

-24  

-18  

-12 

-6 

+1.5 

+3 

8.4 

9.8 

12.3 

19.4 

25 

38 

42 

RX  37 

Idle   37 

Fourthly, because almost all the peripheral devices are integrated on a small PCB 

board, the size of the module is small. The compact form makes Jennic modules 

highly suitable for many applications, including medicine, environmental monitoring, 

new computer human interface, and ambient intelligence.  

8.3 Sensing subsystem  

 The sensing subsystem is a bridge which links a wireless sensor node to a physical 

world. It produces output signals in response to the value, quantity, or condition of 

some physical variables. Before selecting a sensor, the type of sensor and the output 

signal of the sensor should be determined. This process can be held by classifying the 

sensors. Normally, there are different ways to classify sensors. Based on the power 

supply point of view, the sensors can be divided into passive sensors and active 

sensors. The passive sensors do not need any additional power source to sustain the 

sensor operation. They directly generate an electrical signal in response to physical 

variables. A photodiode, which generates different analog signals with different light 
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illumination conditions, is a typical passive sensor. On the other hand, an active sensor 

needs an external energy source to maintain its operation. The temperature sensitive 

resistor is an outstanding example of the active sensor. The sensors also can be 

classified by their output signals, which are the digital or analogue signal. Normally, 

digital sensors provide simple ON/OFF or TRUE/FALSE commands or the binary 

signals to the controller. But an analog sensor generates an analogue signal, normally a 

voltage, to react the physical environment. In order to make the sensor readings can be 

read by the MCU, this type of sensor needs a peripheral device such as ADC to 

convert the analog signal to a digital one.  

After sensor classification, the sensor selection process can be held. Normally, the 

sensor with high sensitivity, high accuracy, high repeatability, low power dissipation, 

low cost, and ease of using is considered as an idea sensor for the design. 

Unfortunately, it is very hard to have all these advantages in one sensor. Hence, 

selecting a proper sensor for a particular application necessitates prioritizing the 

requirements for that application. Sensor selection means balancing these requirements. 

There are several of the factors that play significant roles when selecting a sensor. 

These parameters can be conveniently collected from three aspects: 

 Environmental condition: the operating temperatures, pressure, light, humidity 

and position. 

 Design parameters: purpose of the measurement, human engineering requirements, 

data transmission technique to be used, data processing system to be used 

(JN5139), type of data display to be used, signal conditioning required and load 

on the transmission or data processing systems 

 Sensor parameters: sensor package size, response time, accuracy of the 

measurement, transducer’s effect on the measured, lifetime, power requirement, 

available accessories, temperature range, maximum error that can be tolerated 

during static conditions and during and after exposure to transient environmental 

conditions, transducer excitation voltage, current drawn from the excitation supply 

and cost.  

   In this chapter, an environment monitoring sensor node, which incorporates a 

temperature sensor and a Carbon Monoxide (CO) gas sensor, is designed as an 

example to show how to select a proper type of sensor for a type of application. The 

sensing subsystem design consists of a temperature monitoring circuit design and a 
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CO gas monitoring circuit design.  

8.3.1 Temperature sensor selection 

There are plenty types of temperature sensors in the market. Using one perspective, 

they can be simply classified into three groups: Thermocouple, Resistance 

Temperature Detector (RTD), thermistor and IC temperature sensors. Thermocouple, 

which was discovered by Thomas Seebeck in 1822, is one of the most common 

industrial thermometers. It consists of two dissimilar metals, joined together, and 

produces a small unique voltage at a given temperature. Thermocouples are considered 

as the smallest, fastest and most durable temperature measurement solution (Sensor 

selection, 2010). It can be used over an extremely wide temperature range and in harsh 

environmental conditions. The thermocouple junction can often be placed together to 

the desired point of measurement. There are three disadvantages with thermocouples. 

Firstly, temperature measurement with a thermocouple requires two temperature be 

measured. Secondly, the relationship between the process temperature and the 

thermocouple output voltage is not linear. Thirdly, thermocouple sensors need a 

special compensation technique if using it to approach temperature accuracies of 1%. 

RTD is basically a positive temperature coefficient device, which means that the 

resistance increases with temperature. Characteristics include high accuracy, low drift, 

wide operating range, repeatability, and reasonable linearity. A RTD is the most 

suitable type of the sensor when extremely stable and precise measurements are the 

most important criteria. A thermistor is also a type of resistor sensor whose resistance 

varies with temperature. But the difference between thermistors and RTDs is that the 

material used in a thermistor is generally a ceramic or polymer, while RTDs use pure 

metals. The most common thermistors have a negative temperature coefficient of 

resistance. Characteristics include moderate temperate range, low cost, poor but 

predictable linearity. Thermistors are ideal for measuring applications that require high 

accuracy sensitivity over a relatively narrow range of temperatures (Sensor selection, 

2010). IC temperature sensors, which are produced in the form of ICs, are complete 

silicon based sensing circuits with either analog or digital outputs. The use of IC 

temperature sensors is limited to applications where the temperature is within a -55 

centigrade to 150 centigrade ranges. But they have several advantages by comparing 

with other types of temperature sensors. Firstly, IC temperature sensors are considered 

as small, accurate, excellent linearity and inexpensive type of temperature sensors. 
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Secondly, they are easy to interface with other device such as amplifiers, and 

microcontrollers. All these factors are summarized in Table 8.4. 

Table 8.4 Temperature sensors 

Attribute Thermocouple RTD  Thermistor IC temperature 

Sensors 

Temperature 

range 
-190 Co to 1821 Co   200 Co  to 850 Co   -90 Co to 130 Co  -55 Co  to 150 Co  

Accuracy Poor High  Medium High 

Response Time Fast Moderate  Fast Fast 

Stability Not as stable Stable over long 

periods  

 Moderate Stable over long 

periods 

Linearity Moderate Good  Poor Best 

Sensitivity Low Medium  Very high Very High 

Interchange 

ability 

Moderate Excellent  Poor Moderate 

Repeatability Poor Good  Moderate Excellent 

Size Small to large Medium to  

small 

 Small to 

medium 

Small to medium 

Because of the advantages of IC temperature sensors, Maxim IC temperature sensor 

DS18B20 (DS18B20, 2009) has been chosen as the temperature sensor in our design. 

The DS18B20 digital thermometer provides 9-bits to 12-bits Celsius temperature 

measurements and has an alarm function with non-volatile user-programmable upper 

and low trigger points (DS18B20, 2009). The DS18B20 requires one data line for 

communication with a central microprocessor. The features are shown in below: 

 Power supply range: 3.0V to 5.5V 

 Measures temperatures from : -55   to +125  

 Accuracy: +/- 5  from -10  to +85  

 Thermometer resolution is user selectable from 9 to 12 Bits 

 Converts temperature to 12-Bit digital word in 750ms 

 Available in 8-Pin SO (150 mils), 8-Pin SOP, and 3-Pin TO-92 packages 

The application schematic diagram is shown in Fig.8.3. The DS18B20 chip is 

powered by an external power supply to the VDD pin. The current consumption of the 

temperature sensor is 1mA when it steps into active mode. And current consumption 

of the temperature sensor is dropped to 750nA when it operates in idle mode.  
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Figure 8.3 DS18B20 circuit 

8.3.2 CO gas sensor selection 

As mentioned in the previous part, the power consumption is a big issue in selecting 

a sensor for using in a wireless sensor node. Hence, an electrochemical gas sensor, 

which is a passive sensor, should be used in this work. Based on this point of view, a 

CO gas sensor TGS5042 (CO gas sensor, 2010) from Figaro company, has been 

selected. The features of the TGS5042 CO gas sensor are: 

 Battery operable 

 High repeatability/selectivity to CO 

 Linear relationship between CO gas concentration and sensor output  

 Simple calibration  

 Long life 

 Target gases: Carbon monoxide 

 Typical detection range: 0 to 10,000 ppm 

 Output current in CO: 1.2 to 2.4nA/ppm 

 Operating temperature range: -40°C to +70 °C 

 Response time (T90): within 60 seconds 

 Weight: 12g 

 Fig.8.4 shows the basic measuring circuit of TGS5042, as recommended by the 

datasheet (CO gas sensor, 2010). The sensor generates a small electric current which is 

converted into sensor output voltage by an op-amp/resistor combination circuit. Hence, 

a low power consumption amplifier AD708 has been used in the circuit design. And 

the current consumption of the CO gas sensor circuit is 4mA when it works in active 

mode. The current consumption is dropped to     when the sensor steps into sleep 

mode.  
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Figure 8.4 CO gas sensor circuit 

8.4 Power supply subsystem 

The power supply is a crucial component for wireless sensor nodes which 

determines the lifetime of the system. In most of the case, a battery is used as the 

power source. When selecting a battery for powering a sensor node, a number of 

factors should be considered.  

 Average current consumption of the sensor node: this is the most significant factor 

that affects the choice of the battery. As the current drawn from the battery varies 

depending on the state of the wireless sensor node, it is necessary to determine the 

current consumption for each state of the system. By knowing the amount of time 

spent in each state, the average current consumption of the sensor node           

can be calculated, as shown in Equation 8.1. 

                                     
    

      
    

    

      
      

    

      
                        

                        

where    (i=1,2,…n) is the instantaneous current in the given state,      

(i=1,2,..n) is the time spent drawing current in that status and       is the total 

time spent in a cycle of the state. In this thesis, the sensor node can be treated as 

working at two operation modes, sleep mode and active mode, for simplifying the 

calculation. Then Equation 8.1 can be rewritten as:  
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where        and         are the current consumption of the sensor node at sleep 

and active modes, respectively, and        and         are the total operation time 

during these two modes. By using a more common expression duty cycle to 

rewrite Equation 8.2, the average current consumption of the sensor node is 

                                                                                                

where         is duty cycle of the sensor node when it works at active mode. 

 Once the average current consumption has been calculated, Equation 8.4 can be 

used to calculate the capacity                    required to power the device over 

the desired battery lifetime         . 

                                                                                                 (8.4) 

 As mentioned in Table 5.2, there are plenty of battery technologies, which could 

be used. These technologies very in price and size. As the wireless sensor nodes 

are low cost device, the cost of battery is another factor should be considered in 

the power supply subsystem design. In this application, as the sensor nodes are 

normally placed on the roof of a building, the size of the system is not critical. 

Hence, the small size of the battery is not a priority.  

By considering these factors, two 1800mAh AAA batteries are employed as the 

power source for the sensor node. The schematic diagram and the PCB view of the 

sensor node are shown in Figure 8.5 and Figure 8.6, respectively.   
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Figure 8.5 Schematic diagram of the Temperature & Co gas 

sensor 

 

Figure 8.6 PCB view of the temperature & CO gas sensor 

8.5 Lifetime calculation 

Table 8.5 shows the based requirements of a typical sensor node. In order to 

evaluate the sensor node, the lifetime should be calculated.  

Table 8.5 Specification of the door security sensor node 

Priority Description 

1 System lifetime of at least 1 years 

2 Minimum duty cycle: 0.05% 

3 The maximum duty cycle: 100% 

4 The mean duty rate of year      =10%  
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The current consumptions of the sensor node in active mode and sleep mode are 

18mA and 0.006  , respectively. A minimum duty cycle 0.05% is required by the 

sensor node. The average current consumption of the sensor node is calculated by 

Equation 8.3.  

                                         

The lifetime of the system is 

         
                   

        
                  

The lifetime of the sensor node is around 83days, which is far less than a year required 

by the application. Hence, a larger battery, a smart power management algorithm or an 

energy harvesting system should be added into the system. In this thesis, some more 

wireless sensor nodes for different applications have been developed, as depicted in 

Table 8.6. Most of them are powered by using two AAA batteries and the lifetime of 

them are constrained by this limited energy source. This causes some problems when 

these sensor nodes are used for outdoor applications.   

Table 8.6 wireless sensor node designs 

Name  Function PCB board 

ZigBee 

Enable Light 

Switch 

Wirelessly control an 

electrical lamp. This is a 

demonstration of control a 

high power electrical 

device in a house.   

ZigBee 

Controller 

Board 

This is a local controller to 

supply an interface for end 

users.   
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ZigBee 

Enabled 

Radiator 

Valve 

(ZBARV) 

This device wirelessly 

controlled a residential 

radiator.  

 

ZigBee to 

USB adapter 

This device is designed to 

link the ZigBee network to 

a personal computer.  

 

ZigBee to 

Wi-Fi adapter 

This is a gateway board, 

which bridges the ZigBee 

network to the Internet. 

 

ZigBee 

Router board 

This device is used to 

relay the wireless 

communication, when two 

devices are placed too far 

away. 

 

ZigBee 

sensor board 

This device uses a 

temperature and a CO gas 

sensor  to monitor 

enviroment.  
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Wireless 

based 

location 

tracking 

sensor node  

The location tracking 

function is achieved by 

this device.   

 

Door security 

sensor node  

This device monitors 

outdoor enviroment and  

door status  

 

8.6 Summary 

Any energy harvesting system cannot be properly designed without knowing the 

characteristics of the target sensor node. In this chapter, some wireless sensor nodes 

without an energy harvesting system have been designed for deeply understanding the 

electrical characteristics of the sensor node. In order to show how to efficiently design 

a wireless sensor node, the temperature and CO gas sensors is selected as the case 

study. Then, other either types of sensor nodes have been designed and most of them 

are powered by the batteries. Based on the lifetime calculation, most of the systems 

last longer than the minimum lifetime requirement. Hence, several energy efficient 

efforts such as implementing a power management algorithm, using a larger capacitor 

battery or adding an energy harvesting system, should be considered. In the next two 

chapters, the door security sensor and the ZigBee Enable Radiator Valve have been 

selected as the target sensor nodes powered by the solar and thermal energy harvesting, 

respectively.   
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Chapter 9. Solar energy harvesting for 

wireless sensor nodes 

9.1 Background and motivation  

 Solar energy is considered as the richest energy source in the environment. By 

comparing solar energy harvesting technology to other energy harvesting technologies, 

it has the most benefit and the least drawbacks for outdoor applications. Hence, solar 

energy harvesting becomes the most popular way of powering wireless sensor nodes in 

outdoor deployments. 

9.2 Feature of the established system 

In this chapter, a solar energy harvesting system is designed to power a wireless 

sensor node in a real environment. The system is designed based on the previous 

chapters. By determining and applying three factors of the system into the proposed 

theoretical model, developed in Chapter 5, the optimal size of each component of the 

solar energy harvesting system has been determined. By considering the MPPT based 

power conversion circuit and the power management subsystem, which developed in 

Chapters 6 and 7, a high system efficiency and nearly perpetual lifetime solar energy 

harvesting system has been designed. In order to evaluate the system, the proposed 

system has been evaluated both in the laboratory and outdoor.  

9.3 System design considerations 

Before designing an efficient energy harvesting system, some design considerations 

should be considered based on both entire system perspectives and the component 

perspectives. A block diagram of an energy flow of a solar energy harvesting system is 

shown in Figure 9.1.  
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Figure 9.1 Energy flow diagram of solar energy harvesting system 

In the diagram, the solar panel draws energy from the ambient environment and the 

harvested energy powers a sensor node through a power converter circuit, which 

includes an MPPT circuit to ensure the maximum power being transferred from the 

solar panel. This design minimizes the required size of the solar panel. The energy 

buffers are used to store the harvested energy when the system is placed in a sufficient 

light environment. At night time or when the system cannot harvest enough energy to 

power the system, the stored energy is drawn from the energy buffers.  A power 

management control unit, which is used to monitor and control the energy distribution 

procedure, is employed to enhance the lifetime of the system. Hence, the proposed 

solar energy harvesting system includes the solar panel, the MPPT based power 

conversion circuit, the energy buffers with the power management unit and the target 

sensor node. According to the proposed design procedure shown in Figure 3.4, the 

system can be optimally sized by applying three factors of the system into the 

analytical model. Hence, the energy generation, the energy consumption and the 

power management strategy should be determined.  

9.3.1 Energy storage vs. Energy generation 

Normally, a simple trade-off, which is that the smaller energy storage is used when 

the larger energy transducer is employed, can be followed.  A larger energy 

transducer means more system cost and on other hand a larger energy buffer means 

larger system size. Hence, the system designer should balance these two factors to 

optimize the system design. There is always an optimal balance point between these 

system parameters when the energy relationship between the energy generation and 

the energy consumption is known. Hence, in order to determine the size of the energy 
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harvester and the energy buffer, the energy relationship of the energy harvesting 

system through one year operation should be determined. The following sections show 

how to obtain the relationship in the real environment.   

9.3.1.1 Energy dissipation of the sensor node 

Normally, the energy consumption of the system can be calculated by knowing its 

load (sensor node), which is the main energy consumer in an energy harvesting system. 

In this chapter, a door security sensor node designed for an IEEE 802.15.4 based home 

automation system, as shown in Figure 8.3, is employed as the target sensor node to be 

powered by the proposed micro-scale solar energy harvesting system.  

 

Figure 9.2  Prototype of Door security sensor node 

The door security sensor is used as a micro-climate monitoring sensor for tracking 

outdoor environments such as light levels, temperature, humidity and door status. In 

order to achieve these functions, a temperature and relative humidity sensor SHT11 

(SHT11, 2009), a light sensor TAOS TSL2550 (TSL2550, 2009) and a compact PIR 

sensor from Panasonic AMN14112 (AMN14112, 2010) are placed on the sensor layer. 

The Jennic 5139 wireless MCU is used to process the data and update the information 

through 2.4GHz wireless channel to the central controller, which determines how to 

control the whole home automation system. The DC current characteristics of the door 

security sensor node are shown in Table 9.1  
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Table 9.1 DC current consumptions of the components of the sensor node 

Description  Current  

CPU Sleep mode  0.0035mA 

CPU active mode  7.41mA 

Radio (Receiving mode) 37mA 

Radio (Idle mode) 37mA 

Radio (Transmission mode)  38mA 

Temperature & Humidity sensor (Idle Mode) 3.5uA 

Temperature & Humidity sensor (Sleep 

Mode) 

0.3uA 

Light sensor (active mode) 0.35mA 

Light sensor (power down mode) 10uA 

AMN14112 PIR sensor ( Standby mode)  300uA 

AMN14112 PIR sensor ( detecting ) 400uA 

The power consumption of the sensor node can be calculated by knowing the 

system specification, as shown in Table 9.2.   

Table 9.2 Specification of the door security sensor node 

Priority Description 

1 System lifetime of at least 5 years 

2 Minimum duty cycle: 0.05% 

3 The maximum duty cycle: 50% 

4 The mean duty rate of year      =10%  

The power consumptions of the door security sensor in active mode         and 

sleep mode        are 43.5mW/s and 1.25mw/s., respectively. Based on the required 
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system design specification shown in Table 9.2, the duty cycle of the system      is 

     . Then the minimum average power consumption of the sensor node is 

calculated by introducing      into Equation 9.1   

                                                                                         

The lifetime of the sensor node is around 194 days when it is powered by 1800mAh 

battery. This is far shorter than the user requirement, which requires five years lifetime. 

Hence, using a battery as the power supply is not suitable for this application, which 

the battery replacement progress is very expensive and inconvenient. As this type of 

sensor node is normally used at outdoor, a solar energy harvesting system is 

considered as an ideal power replacement.  

 In order to calculate the power consumption of the sensor node over the course of a 

year, a mean duty cycle       is introduced. By introducing           into 

Equation 9.1, the average power consumption of the sensor node is 5.475mW. The 

energy dissipated by the sensor node in a certain month               can be 

approximated by  

                                                                                                           

where       is the number of days in month M and the energy consumed by the 

sensor node can be expressed in Table 9.3. 

Table 9.3 The energy consumed by the sensor node during each month of the year 

Month          (mWh) 

Jan 4047 

Feb 3656 

Mar 4047 

Apr 3917 

May 4047 

Jun 3917 

Jul 4047 
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Aug 4047 

Sep 3917 

Oct 4047 

Nov 3917 

Dec 4047 

Total  47653 

9.3.1.2 Available solar energy in a certain place 

The second step of determining the energy relationship of the system is to calculate 

the energy available of the system through one year operation. This can be achieved by 

knowing the available solar energy in a certain place through a twelve month period, 

the solar cell’s specifications and the power conversion efficiency of the MPPT 

approach based power conversion circuit.  

As stated in previous chapters, solar energy varies significantly with the time-of-day 

and location of the solar cell. This is because the solar irradiance is continuously 

changing as a result of environmental factors such as latitude as well as the typical 

weather patterns at the deployment location. Moreover, the orientation to the sun and 

the environment temperature also affect the amount of energy that could be harvested 

from the environment. As the environmental factors play a crucial role in determining 

the harvested energy, the primary condition in deciding solar energy is the location in 

which the system is deployed.  

By knowing the solar energy level in the certain place, the second factor to decide 

the harvested energy level is the solar panel’s technology and its specifications. If the 

harvested energy from the solar panel is known, the energy availability of the system 

can be calculated by knowing the MPPT efficiency and the power conversion 

efficiency of the system. But unfortunately, the solar cell’s manufacturers provide 

information about how much energy the panel can deliver under the defined laboratory 

light conditions that makes the amount of energy generated by a solar panel, when it is 

placed at outdoor environment, hard to be determined.  

According to previous analysis, knowing the harvested energy level in a certain 

place and the electrical characteristics of the energy harvesting circuit are two critical 



Chapter 9: Solar energy harvesting for wireless sensor nodes 

 224 

factors to determine the available energy of the system. In this chapter, a theoretical 

analysis model, based on previous chapters, is proposed to roughly predict the energy 

generation of the system. The historical solar insolation data from the solar irradiance 

calculator (Solar irradiance calculator, 2011) is adopted here as the input to 

approximate realistic solar energy level outdoor. Table 9.4 shows the average solar 

insolation figure, measured on a solar panel, which is set a 37° angle toward south in 

Loughborough, UK. The data is stated in         per month and a yearly 

cumulative radiation around             is achieved in the table.  

Table 9.4 Average monthly solar radiation for Loughborough, UK 

Month Daily solar radiation 

          

Days in 

month 

Monthly solar radiation 

          

Jan 124 31 3844 

Feb 206 28 5768 

Mar 274 31 8494 

Apr 357 30 10710 

May 409 31 12679 

Jun 405 30 12150 

Jul 414 31 12834 

Aug 399 31 12369 

Sep 314 30 9420 

Oct 240 31 7440 

Nov 155 30 4650 

Dec 106 31 3286 

Total  365 103644 

As the environment energy level is being determined, the energy conversion 

efficiency of the energy harvester should be obtained to calculate the harvested energy 

through a year in this place. In this chapter, an amorphous solar cell from Sanyo 
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AM5410, which has benefits of lower manufacturing costs and being produced in a 

variety of shapes and sizes, is employed as the solar energy harvester. According to 

the solar cell’s simulation model, proposed in Chapter 4, the energy conversion 

efficiency        is around 0.06. By introducing        into Table 9.4, the harvested 

energy               in a certain month              can be calculated as:  

                                    (9.3) 

where           is the average monthly solar radiation illustrated in Table 1 and A is 

the effective area of the solar panel, which is around  12    obtained from (SANY 

AM-5412, 2008).  

Furthermore, in order to calculate the available energy of the system, the MPPT 

efficiency and the power conversion efficiency should be determined. Based on 

Chapter 5, the enhanced P&O MPPT technology based power conversion circuit, 

which has the most efficient in the rapidly changed environment, is adopted here to 

enhance the system efficiency. Based on the experimental results taken at the 

laboratory, the conversion efficiency of the circuit is around 71.8%, as mentioned in 

Chapter 6. By considering the worst case at outdoor, 70% conversion efficiency is 

employed in this chapter to calculate the energy generation of the system during a year. 

By applying these parameter in the proposed solar energy harvesting model,  The 

energy generation of the system         in a certain month can be predicted as 

                                                                                                  

By introducing the parameters, listed in Table 9.4, into Equations 9.3 and 9.4, the 

harvested energy and the energy generation of the system by using the single solar 

panel can be calculated. The results list in Table 9.5.  

Table 9.5  The harvested energy and the available energy of the system in a certain 

month by using a single solar panel 

Month               (                         

Jan 2767 1937 

Feb 4383 3068 

Mar 6455 4519 

Apr 8139 5697 
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May 9636 6745 

Jun 9234 6464 

Jul 9754 6829 

Aug 9400 6580 

Sep 7159 5011 

Oct 5654 3958 

Nov 3534 2474 

Dec 2497 1748 

Total 78612 55028 

9.3.1.3 Determining the energy relationship of the system 

After calculating the total energy consumption and the energy generation of the 

system over a year, the energy relationship of the system can be created by knowing 

the power management strategy of the system. As introduced in previous chapters, the 

power management strategy in this thesis is to balance the energy usage and energy 

generation. The roughly calculation of the energy difference between these two factors 

can be expressed as: 

                               (9.5) 

Table 9.6  The comparison results of energy consumption and energy generation 

through a year by using a single solar panel 

Month                                                 

Jan -2110 4047 1937 

Feb -588 3656 3068 

Mar 472 4047 4519 

Apr 1780 3917 5697 

May 2698 4047 6745 

Jun 2547 3917 6464 
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Jul 2782 4047 6829 

Aug 2533 4047 6580 

Sep 1094 3917 5011 

Oct -89 4047 3958 

Nov -1170 3917 2474 

Dec -2299 4047 1748 

Total 9760 47653 55028 

By introducing Tables 9.3 and 9.5 into Equation 9.5, the energy difference between 

the energy consumption and the energy generation is obtained, as shown in Table 9.6. 

The excess 9760mWh energy can be calculated by comparing the total energy 

generated and the total energy consumed over a year. This means that a single solar 

panel can supply enough energy to power the system over a year. As the solar energy 

heavily varies over the year, the energy relationship may not be the same in these 

months. Hence, the comparison should take place at each month. By calculating the 

energy relationship in each month, the energy harvesting system cannot supply enough 

energy to power the system in five months in Loughborough, which are October, 

November, December, January and February. When the system operates in these five 

months, the system dissipated more energy than the energy generation and the energy 

shortage is compensated by the rechargeable battery. According to the calculation, 

3495mWh energy shortage can be obtained by accumulating the energy shortages in 

these five months. In order to maintain the system working through these months, the 

minimum 4992mWh energy should be pre-stored in the rechargeable battery by 

considering 70% charging and discharging efficiency. On the other hand, for the 

remaining months, the energy generation is much bigger than the energy dissipation of 

the system. The excess energy stored in the rechargeable battery to cover the energy 

shortage of those five months. By calculation, the accumulated excess energy is 

         through a year and the total 9734mWh energy can be stored in the 

battery by calculating with 70% charging efficiency. Based on the calculation, if the 

deficit energy during the cold months can be compensated by the energy stored in the 

battery at times when the system harvested more energy than it spent, the system can 

be seen as having a perpetual lifetime. By considering the self-discharging rate of the 
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battery, a much larger capacitance battery should be used. In this case, the minimum 

5000mWh should be used.  

As the battery dominates the primary part of the system volume, a larger battery 

being used means that the system size is being increased. This is not suitable for a 

micro energy harvesting system application. On the other hand, the energy deficit of 

the system can be reduced by using a larger solar panel. If a larger solar panel is used, 

the energy shortage of the year is reduced and small rechargeable battery could be 

used. Based on this point of view, a larger solar panel is considered in this application 

to reduce the size of the rechargeable battery. By calculating if two solar panels, which 

are connected in parallel, are used by the solar energy harvesting system, the energy 

relationship of the system can be rewritten, as shown in Table 9.7. In the table, the 

energy shortage can be found only in December and January, which total 724mWh 

energy deficit is calculated. By considering the charging/discharging efficiency and 

self-discharge rate of the NiMH battery, an initially 900mWh energy pre-stored on the 

batteries could cover the energy shortage. On the other hand, 62403mWh energy 

excess during a one year operation is calculated. Hence, a significantly larger battery 

should be used to store the excess energy making the system not waste energy. As the 

power management strategy, developed in Chapter 7, being used in this design, the 

power consumption of the system can be enhanced when the sufficient solar energy is 

harvested. By assuming the system is operated with a 50% duty cycle through a year, 

the total energy consumption is 84990mWh. By comparing this with the energy 

generation of the system, 17691mWh energy is excess through one year’s operation. 

By considering the charging/discharging efficiencies of the super-capacitor and 

rechargeable battery respectively, two 1200mAh NiMH rechargeable batteries with 

900mWh initial energy can satisfy the system requirements.  

Table 9.7 The comparison results by using two solar panels 

Month                                                

Jan -173 4047 3874 

Feb 2823 3656 6136 

Mar 5519 4047 9038 

Apr 8143 3917 11394 
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May 10233 4047 13490 

Jun 9767 3917 12928 

Jul 10407 4047 13658 

Aug 9883 4047 13160 

Sep 6693 3917 10022 

Oct 4331 4047 7916 

Nov 421 3917 4948 

Dec -551 4047 3496 

Total 62403 47653 55028 

9.4 System design and implementation 

Once the sizes of the solar panel and the rechargeable battery have been 

dimensioned, other components of the system can be determined. Based on the 

previous chapters, the system performance is substantially increased by applying both 

an MPPT based power conversion circuit and a power management subsystem. In this 

chapter, these two proposed works have been adopted. The schematic diagram of the 

solar energy harvesting system is depicted in Figure 9.3, which includes two solar cells, 

the enhanced MPPT based power conversion circuit, the power management 

subsystem and the sensor node.  
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Figure 9.3 Schematic diagram of the solar energy harvesting system 

9.4.1 Energy harvester 

The energy harvester consists of two amorphous solar cells, which are connected in 

parallel, to harvest solar energy outdoor. In order to make the solar panels harvest as 

much solar energy as possible, the orientation and the facing angle of the solar panels 

are critical. Based on results shown in the solar irradiance calculator (2011), if the 

solar panel is set at a 37° angle in a Southward direction in Loughborough, it can 

harvest the maximum solar energy during a year. Hence, this setting has been adopted 

in thesis, as shown in Figure 9.4.  

 

Figure 9.4 Solar cells design 

9.4.2 MPPT based power conversion subsystem 

For a long-term remote control application, the micro-scale energy harvesting 

system needs a high efficient and reliable power conversion system to harness the 

harvested energy in different situations. As the ultra-lower power is generated by the 

micro energy harvester during days with the weak light irradiations, the power 

conversion circuit should have low power consumption, simple circuitry, and high 
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efficiency. By considering the MPPT technologies listed in Chapter 6, the digital 

methods are strongly preferred due to the proliferation of low-power MCU and 

programmable logic devices. By comparing the system efficiency when the system is 

placed at the rapidly changed environment, the enhanced P&O MPPT method has the 

highest system efficiency. Hence, this type of MPPT approach has been selected to 

track the MPP of the solar panel in this work. As the same multifunction MCU 

PIC16F688 is used in both the power conversion subsystem and the power 

management subsystem, the complexity of the circuit and the power overhead of the 

system can be reduced by integrating all these functions into the one MCU.  

9.4.3 Power management subsystem 

As stated in Chapter 7, the main functions of a power management subsystem for an 

energy harvesting system should have: 

 An intelligent distribution capability to increase the energy buffering efficiency 

and the energy usage efficiency, 

 A battery care function, which can prevent over-charge and over-discharge, to 

maximize the lifecycle of the rechargeable battery, 

 A monitoring function, which could reports the current information of the energy 

buffers, 

 And a power management function, which can achieve the energy neutral 

operation and maximize the system performance based on a real-time energy 

relationship, 

Based on these functions, the power management subsystem, developed in Chapter 7, 

is adopted here. A 24 hour window size and a 10 minute time slot are selected in the 

power management algorithm. By considering the maximum and the minimum power 

consumptions of the system in relation with the energy generation, the parameters of 

the algorithm are listed in Table 9.8.  

Table 9.8 The parameters for the solar power management algorithm 

                                                Algorithm Parameters 
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When the time period of each time slot and the maximum power consumption of the 

system are determined, the minimum capacitance of the super-capacitor can be 

calculated by using Equations 7.2 and 7.3. The results are shown in Equations 9.6 and 

9.7.  

                                          
(         )  

                                               

                                                
                  

      
        

 
                                               

Based on the calculation, the minimum 4.27F super-capacitor should be used to 

maintain it at one status at each time slot. By considering the energy leakage and 

charging/discharging efficiency of the system in relation with the system size and 

efficiency, two 22F super-capacitors connected in series are used in this work as the 

primary energy buffer.  

9.4.4 Energy consumer 

   As stated in previous sections, the door security sensor is employed as the target 

sensor node in this chapter.  

9.5 System Evaluation  

In this section, the solar energy harvesting system has been evaluated in both the 

laboratory and outdoors.  The integrated system is shown in Figure 9.5.  
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Figure 9.5 Micro-scale solar energy harvesting system powered door security sensor 

node 

Since the performance of a solar energy harvesting system is extremely dependent 

on solar irradiance levels, weather conditions, dust and temperatures, which are hard to 

predict in outdoor conditions, the proposed energy harvesting system should be 

evaluated in the laboratory before the system is deployed in the real environment.  A 

high power adjustable halogen lamp is used to produce a reproducible and controllable 

light source in the laboratory. An indoor experimental test setup has been developed 

by using a simple Zigbee based wireless network, which includes a network 

coordinator and an end device, as shown in Figure 9.6. In the network, a USB based 

sensor node has been configured as the network coordinator, which is designed to 

establish the wireless network. It has been connected to a laptop through USB port to 

display the obtained data from the end device. In this scenario, the solar powered door 

security sensor node has been employed as the end device, which gathers the 

environment data and sends to the coordinator. In order to make the experimental 

repeatable, the battery, the super-capacitor and the duty cycle of the sensor node are 

set at 2.7V, 0V and 10%, when the system is initialized. In order to emulate the diurnal 

characteristic of the solar energy, the system is illuminated by the desk lamp for 12 

hours per day and the system keeps running without light in the rest of 12 hours. For 

further distinguishing the light levels of the day, four different light input levels, which 

are 50Klx, 35Klx, 10Klx, and 8Klx, are used to irradiate the solar panels for three 

hours at each testing day. The system has been tested for five days. The experimental 

results are depicted in Figure 9.7 (a) and (b).  
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Figure 9.6 Indoor experimental test setup 

Figure 9.7 (a) shows the terminal battery voltages of each time-slot during the five 

day test. All the data generated in the graph is sampled by the on-board ADC pins. 

Taking a close look at the graph, throughout the night, the batteries are drained and the 

battery voltage drops, and during the day time, the system charges the batteries when 

the energy generation is higher than the energy consumption. The energy neutral 

operation can be observed that the terminal battery voltage at the end of each test day 

is maintained around 2.7V, which is equal to the initial battery voltage. The 

corresponding duty cycle of the sensor node is depicted in Figure 9. 7 (b). It can be 

observed that the duty cycle is adapted with the energy budget of the system. By using 

strong light to irradiate the solar cells, the sensor node increases its duty cycle rapidly 

in order to adapt to the energy generation. During the night, or if insufficient energy 

can be harvested, the sensor node reduces its duty cycle. During the five day test, the 

mean duty cycle of the sensor node is 24.9%, which is higher than 10% duty cycle 

requirement, mentioned in Table 9.2. It can be seen that the system performance is 

highly improved by using the solar energy harvesting system in relation with the 

power management algorithm.  



Chapter 9: Solar energy harvesting for wireless sensor nodes 

 235 

 

Figure 9.7 Five day indoor stress test 

Because the main design criterion of the solar energy harvesting system is that the 

system can last through the limited solar radiation months, the time of the outdoor 

experiment has been chosen to be the dark period of the year at the given location. If 

the system could keep running during this month, it could survive for the rest of 

months and the lifetime of the system could be considered as everlasting. Based on the 

Table 9.4, December is the darkest month in Loughborough and the experiment is to 

examine if the proposed system that could survive in this month. Hence, the hybrid 

solar energy harvesting system has been deployed on the campus in Loughborough, 

UK, in December, 2010, as shown in Figure 9.8. The same wireless network, set at the 

laboratory, is used here to record the experimental data. According to the previous 

analysis, 800mWh energy pre-stored in the rechargeable batteries can cover the energy 

deficit during the coldest months of a year. By considering the energy lost and the 

charging and discharging efficiency, a much higher energy is pre-stored in the 

batteries. According to the battery model, described in Chapter 5, when 900mWh 

energy is stored on the battery, the terminal voltage of the two series connected 

800mAh rechargeable batteries is 2.64V. Hence, the battery pack has been initially 

charged to 2.7V before the experiment has been held. The solar panel has been set at a 

37° angle towards the south and a 10% initial duty cycle of the sensor node has been 

set by the system. The super-capacitors have been charged from the depleted condition 

when the solar energy was harvested by the solar panels. In order to observe and 

predict the system lifetime, the energy levels of the energy buffers in relation with the 
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duty cycle of the sensor node have been packed into the sensor data, which has been 

reported to the local server through a 2.4GHz wireless channel.  

 

Figure 9.8 Depiction of the experimental setup at the deployment site 

The 30 day measurement results are shown in Figure 9.9 (a) and (b), which the 

terminal voltages of the batteries in each hour are depicted in Figure 9.9 (a) and the 

duty cycle of the sensor node is recorded in Figure 9.9 (b). As it can be seen, the 

system has a periodical behaviour, in which the battery voltage increases at the day 

time and drops at night, mostly determined by the daily cycle of available solar 

irradiance levels. Because of using the adaptive power management algorithm, the 

sensor node’s duty cycle is adapting with the residual battery energy level and energy 

relationship between the energy consumption and energy generation. The adaptive 

duty cycle of the sensor node is depicted in Figure 9.9 (b), which can be observed that 

the duty cycle is increased with the increasing battery voltage and it is decreased when 

a lower trend is detected. The recorded mean duty cycle is 2.9% through the 30 day 

experiment that is much smaller than the 10% duty cycle requirement. But according 

to the experiment taken at the laboratory, the mean duty cycle of the sensor node could 

be increased when the sufficient environment energy could be harvested. Hence, the 

minimum mean duty cycle of 10% through a year could be easily achieved by 

adapting a much higher duty cycle during the rest of months. After 30 days test, the 

terminal battery voltage has been recorded at 2.702V, which is almost equal to the 
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initial battery voltage 2.7V. This indicates that the solar energy powered door security 

sensor node could maintain the energy neutral operation during the darkest month and 

the lifetime of the system could be seen as eternal by neglecting the hardware lifespan.  

 

Figure 9.9  30 days outdoor testing 

9.6 Summary 

In this chapter, an efficient micro-scale solar energy harvesting system has been 

developed based on the previous chapters. The analysis model has been designed to 

determine the energy relationship of the solar energy harvesting system. Based on the 

energy relationship in relation with the energy harvesting design procedure, the sizes 

of the solar panel and the energy buffers are determined.  In this work, the door 

security sensor node, whose lifetime is heavily restricted by the battery volume, has 

been chosen as the target sensor node to be powered by the solar energy harvesting 

system. By equipping the enhanced MPPT technology based power conversion circuit 

in relation with the power management unit, the energy efficiency and the 

performance of the system are significantly enhanced.  

The proposed system has been evaluated in the laboratory before the system was 

implemented in a real environment. The experimental results show that the system can 

adapt its duty cycle to its energy generation. Then the system has been tested in the 

darkest month outside of the laboratory for 30 days to examine its performance. The 

experimental results show that the system works as expected and the lifetime of the 

system is as long as the lifetime of the hardware, which could be seen as eternal.  
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Chapter 10. Thermal energy harvesting 

for Wireless sensor nodes 

10.1 Background and motivations 

Similar to solar energy, heat is another major energy source which can be harvested 

from the environment. Normally, heat sources can take on many different forms, 

including hot surfaces such as radiators furnaces, exhaust gases, sunlight and even the 

human body. Recent developments on Thermoelectric (TE) materials have led to 

renewed interest in TE generator designs. There are two reasons to develop a thermal 

energy harvesting system in this thesis. Firstly, numerous investigations and some 

successful applications of thermal energy harvesting systems have been developed. 

But the efficiency, cost, size and lifetime of the systems are not satisfying the 

requirements of the sensor nodes. The situation becomes worse when a micro-scale 

thermal energy harvester is used. Secondly, the solar energy harvesting system based 

on the proposed system architecture and the design procedure has been developed in 

Chapter 9. In order to verify the proposed architecture and works, which can be easily 

expanded to other type of applications, the thermal energy harvesting system based on 

the same architecture and design procedure is developed.  

10.2 Feature of the proposed system 

Normally, a permanent energy harvesting system with high energy efficiency and a 

simple and compact construction is considered an ideal battery replacement for 

wireless sensor nodes. In this chapter, an efficient thermal energy harvesting system 

has been designed to power a wireless sensor node. The following contributions have 

been carried out: 
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 Based on the proposed system design procedure, a theoretical analytical model 

of a thermal energy harvesting system is established in order to optimize the 

sizes of thermal energy transducer and the energy buffers.  

 Because of the low energy efficiency of the system, the proposed system 

enhances its energy efficiency by four parts: (1) Designing a TE generator to 

increase the energy conversion efficiency, (2) Using an MPPT technology based 

power conversion circuit to improve the energy transfer efficiency, (3) 

Employing a multiple energy buffer design to increase the buffering efficiency, 

and (4) Developing a power management algorithm to improve the energy 

consumption efficiency. The proposed works and efforts, described in previous 

chapters, are employed and verified in this chapter.  

 The developed thermal energy harvesting system is used to replace the batteries 

to power a ZigBee based automatic radiator valve (ZBARV). The system is 

evaluated both in the laboratory and the real environment. The experimental 

results show that the system can survive for a long period operation without any 

human intervention.  

10.3 System design considerations 

Similar to the solar energy harvesting system design, the proposed thermal energy 

harvesting system is based on the same system architecture and design procedure. 

Three groups of the system parameters, which are listed below, are determined before 

knowing the energy relationship between the energy generation and the energy 

consumption of the system.  

 Determining the energy consumption of the target sensor node 

 Determining the characteristics of the energy source and the energy harvesting 

technology being used 

 Determining the energy generation of the system when it is placed at the target 

environment 



Chapter 10: Thermal energy harvesting for Wireless sensor nodes 

 240 

10.3.1 Energy consumption of the target sensor node 

As stated in Chapter 9, the specification and electrical characteristics of the sensor 

node are used to decide the energy consumption of the system. In this chapter a 

practical wireless home automation application, a ZBARV, is employed as the target 

sensor node, as illustrated in Figure 10.1. It is used as the wireless temperature 

controller, which adjusts the room temperature by turning on/off the radiator. The 

command signals are sent by a local controller through a 2.4GHz wireless channel. 

The ZBARV sensor node provides two basic functions, which are adjusting the 

radiator based on the command sent by the local controller and measuring the room 

temperature and reporting it to the local controller. Hence, a SHT11 temperature 

sensor is used to measure the room temperature and a stepper motor connected to the 

rotary knob of the radiator is designed to adjust it. 

 

Figure 10.1 ZBARV sensor node 

On board, a JN5139 wireless MCU is used as a control and communication 

microprocessor of the sensor node. The DC electrical characteristics of the ZBARV 

and the general system specification are described in Tables 10.1 and 10.2, 

respectively.  
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Table 10.1  DC current consumption of the ZBARV sensor node 

Description  Current  

CPU Sleep mode  3.5uA 

CPU active mode  7.41 

Radio (Receiving mode) 37 

Radio (Idle mode) 37 

Radio (Transmission mode)  38 

Temperature & Humidity sensor (Active 

mode)  

0.55mA 

Temperature & Humidity sensor (Idle Mode) 3.5uA 

Temperature & Humidity sensor (Sleep 

Mode) 

0.3uA 

Step motor  50mA 

Step motor (sleep)  3uA 

Table 10.2 General system specification of ZBARV sensor node 

Priority Description 

1 System lifetime of at least 3 years 

2 Receive the control signal 

 The minimum duty cycle of the measuring the room temperature is 0.05% 

 The minimum step motor working duration is 15 seconds per 30 minutes 

(duty rate is 0.83%) 

 The maximum duty cycle for controlling step motor is 20% 

3 Receive switch off signal 

 Monitoring the room temperature at least every 30 minutes and sending the 

sensor reading to the local controller 
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 The maximum duty cycle is 20% 

As two functions, the temperature measurement and the temperature adjustment, 

have been achieved by the sensor node, respectively, the power consumptions of the 

sensor node at these two conditions are different. In the first condition, if no control 

signal has been received from the local controller, the sensor node just samples the 

room temperature by using the temperature sensor in every 30 minutes. The power 

consumption of the sensor node in active mode and sleep mode are 28.67mW and 

21.45    . The average power consumption             can be calculated by 

introducing the minimum duty cycle 0.05% duty cycle into Equation 10.1.  

                                                                        

For the second condition, the sensor node has received a control signal, which has 

been sent by the local controller, it regulates the motorized radiator valve until the 

room temperature reaches the setting one. Based on the system specification, the 

sensor node powers the step motor for 15 seconds in every 30 minutes and the room 

temperature is also monitored in this cycle. The power consumptions at active mode 

and sleep mode are 192mW and 21.45    in this condition. By introducing the 

minimum duty cycle 0.83% into Equation 10.2, the average power consumption of the 

sensor node             is: 

                                                                     

By only considering the sensor node, which is working at the second condition, the 

longevity of the sensor node is around 152 days by using two 1800mAh batteries. This 

is much less than the lifetime required by the system specification and the battery must 

be changed at least every six months, which fails to allow the sensor node to be widely 

used in a normal house. A thermal energy harvesting system is considered as the best 

way to cover the shortfall of the battery powered ZBARV sensor node.  

Similar to the solar energy harvesting system, knowing the energy dissipation of the 

sensor node over the course of a year is essential for designing a thermal energy 

harvesting system. As stated in previous section, the power consumption of the 

ZBARV sensor node is highly dependent on the functions the sensor node achieving.  

And these two functions are determined by the weather conditions, particularly the 
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temperature of the target area and the personal preference. In order to simplify the 

analysis model, the personal preference of the end users is neglected in this chapter. 

Hence, the temperature of the target place is the critical factor in deciding whether to 

turn the residential radiator on or off. Figure 10.2 shows the average monthly 

temperaure of Loughborough, UK from 2009 to 2011 (Leicester weather station, 

2012).  

 

Figure 10.2 Average monthly temperature for Loughborough, UK 

Based on the figure, Jun, July and August are normally the warmest months and 

December and January are the two coldest months in Loughborough. By assuming the 

house-holder turns off the central heating system when the monthly average 

temperature is higher than    , and by examining the bar figure, based on the rule, 

the radiator is turned off in June, July, August and September. In these four months, 

the sensor node only measures the room temperature and the central heating system is 

turn off. The sensor node consumes          energy per day. Furthermore, if the 

monthly average temperature is in the range of                    , it 

assumes that the radiator works 12 hours per day. By examining the figure, the 

average temperature in the months of April, May, October and November are satisfied 

this condition. Hence, the central heating system in a house can be assumed to operate 
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8 hours per day. In order to simplify the power calculation, the sensor node is assumed 

to adjust the radiator by using the duty cycle of       in the operation 8 hours. In 

the rest 16 hours the sensor node just measures the room temperature with the duty 

cycle of 0.05%. The energy dissipation of the sensor node is          per day. The 

other four months are the coldest months in Loughborough and the radiator is assumed 

to work 16 hours per day. In these hours, it is assumed that the sensor node adjusts the 

radiator in every 30 minutes.  For the rest of 8 hours, the sensor node just measures 

the room temperature with the duty cycle of 0.05%. Then the total energy consumption 

of the sensor node in these four months is           per day. According to these 

assumptions, the energy consumed by the sensor node in a certain month can be 

approximated in Table 10.3.  

Table 10.3 The energy consumed by the ZBARV sensor node during each month 

Month          (W.h) 

Jan 1205.28 

Feb 1088.64 

Mar 1205.28 

Apr 666.6 

May 688.2 

Jun 165.6 

Jul 171.12 

Aug 171.12 

Sep 165.6 

Oct 688.2 

Nov 666.6 

Dec 1205.28 

Total  8087.24 
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10.3.2 Characteristics of energy source 

Determining the energy source and energy density in the environment, where the 

energy harvesting system is located, is the second consideration in designing an energy 

harvesting system. In this application, the sensor node is placed beside the radiator, 

which can generate tremendous thermal energy. Based on Fourier’s law, a domestic 

hot radiator typically delivers approximately         when it is heated from  

    to    . Hence, if an energy harvesting device could harvest the thermal energy 

from the radiator and store the harvested energy to power the sensor node, the obstacle 

of the sensor node, mentioned previously, could be solved. According to the thermal 

law, extraction of energy from a thermal source requires a thermal gradient and the 

greater temperature difference the system has, the greater the thermal transfer 

efficiency of the system will be. In this work, a radiator is the heat source and the 

temperature gradient between the radiator and the ambient can be harvested by a TE 

generator. It is assumed that the radiator’s temperature is maintained at     when it 

works, and the room temperature is     , the thermal energy density of the radiator 

is         .  

10.3.3 Energy generation characteristics  

After understanding the energy source and the energy density, the energy generation 

of the system is determined by knowing the energy conversion efficiency of the energy 

harvester. In the thermal energy harvesting system, a good TE module usually plays 

the most important part to decide the energy conversion efficiency of the system. 

Hence, selecting a proper type of TE module is critical in the design of an efficient 

thermal energy harvesting system. Generally, TE materials and module construction of 

the TE modules are considered as the two primary issues in the TE module selection. 

In the natural world, there are many materials which can produce power from 

temperature differences, but they vary in cost, operation temperature and efficiency. 

Micropelt utilizes Bismuth(Bi), Antimony(Sb), Tellurium(Te) and Selenium(Se); all of 

which are compounds that have the best material properties with the  operating 

temperature around the room temperature and up to      (Humida et al.,2009). 

Since the price of Bi2Te3 material is quite low, it is widely used in Pelteir coolers and 

the Bi2Te3 module price is very cheap by comparing with other materials. Hence, this 

type of TE module has been chosen as the thermal energy harvester for this design. On 

the other hand, the module construction affects the maximum power and the 
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voltage/current characteristics of the TE generator. Normally, a TE module is 

composed of hundreds of TE elements, which are formed by P-type and N-type 

semiconductors, connected in series electrically and in parallel thermally between two 

ceramic layers. The voltage generated from the TE module is proportional to the 

number of elements since they are combined electrically in series. An interesting 

observation from (Masterbergen et al., 2005) shows that the power generated from the 

TE module increases as the thermoelement leg length decreases. Moreover, the test 

result from (Meydbray et al., 2005) illustrates that as the surface area of the TE 

generator increases, the power generated increases in parallel. Taking these into the 

considerations, a low cost Bi2Te3 TE module TEC1-12709 from Taicang company 

has been chosen as the TE module in this chapter to harvest the thermal energy 

radiated by the residential radiator. Assuming that a     temperature difference can 

be maintained by both the hot side and the cold side of the TE module, a 1.2mW 

(0.09V) power            could be generated by using the simulation model 

proposed in Chapter 4. As the generated voltage (0.09V), which is significantly lower 

than the minimum start-up voltage 0.7V of the boost converter, 8 pieces of the TE 

modules connected in series should be used to increase the generated voltage. 

According to the simulation results shown in Chapter 5, the conversion efficiency of 

the boost converter circuit is around 68.8%. By assuming 90% MPPT efficiency of the 

MPPT circuit in the power conversion circuit and applying these parameters in the 

thermal energy harvesting model, proposed in Chapter 5, the total power transfer 

efficiency of the system is 61.92%. By considering the error of the model, a 55% 

conversion efficiency             is used to calculate the energy generation of the 

system. It assumed the system works at this situation for one hour, the energy 

generated by the thermal energy harvesting system is:  

                                        

where T is one hour duration. According to the radiator operation assumptions, 

mentioned in the previous section, the energy generated in each month is listed in 

Table 10.4.  
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Table 10.4 The harvested energy and the available energy of the system in a certain 

month by using 8 pieces of the TE modules.   

Month                 

Jan 4285.44 

Feb 3870.72 

Mar 4285.44 

Apr 2073.6 

May 2142.72 

Jun 0 

Jul 0 

Aug 0 

Sep 0 

Oct 2142.72 

Nov 2073.6 

Dec 4285.44 

Total  25159.68 

10.3.4 Energy and energy generation  

As stated in Chapter 9, the volume of the energy storage elements can be 

determined by comparing the energy generation and the energy dissipation of the 

system. The comparison result is shown in Table 10.5. According to the comparison 

result, 17072.44mW.h energy slops over the energy consumption through one year 

period. This means that the thermal energy harvesting system with proper energy 

storage elements can harvest enough energy to power the sensor node. Based on the 

table, the energy deficit can be found in June, July, August and September, when the 

radiator is totally turned off and the total 761.28mW.h energy shortage is accumulated 

in these four months.  By considering discharging efficiency and self-discharging rate 

of the NiMH battery, the energy deficit can be covered by storing 1200mW.h energy 

in the rechargeable battery before the system is used. The energy generation is greater 
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than the energy dissipation of the system in the other eight months and the excess 

energy will be stored in the battery. By considering the power management unit, the 

power consumption of the system will be adapted according to the energy budget of 

the system. If the system is working at the maximum duty cycle (20%) in these eight 

months, the power consumptions of the sensor node are         and        

when it works at adjusting room temperature and measuring temperature modes, 

respectively. Then the total energy consumption of the sensor node in these eight 

months is           , which is higher than the total energy excess in a year 

(         ). Hence, the capacitance of the battery is only dependent on the energy 

deficit. By considering the charging and discharging efficiency in relation to the 

self-discharge rate of the energy buffers, a 1200mAh NiMH rechargeable battery, 

which has initially been stored 1200mW.h energy, can satisfy the system working at 

any situation.  

Table 10.5 The energy consumed by the ZBARV sensor node during each month 

Month Energy 

difference 

(mW.h) 

              

(mW.h) 

               

Jan 3080.16 1205.28 4285.44 

Feb 2782.08 1088.64 3870.72 

Mar 3080.16 1205.28 4285.44 

Apr 1407 666.6 2073.6 

May 1454.52 688.2 2142.72 

Jun -165.6 165.6 0 

Jul -171.12 171.12 0 

Aug -171.12 171.12 0 

Sep -165.6 165.6 0 

Oct 1454.52 688.2 2142.72 

Nov 667.2 666.6 2073.6 



Chapter 10: Thermal energy harvesting for Wireless sensor nodes 

 249 

Dec 3080.16 1205.28 4285.44 

Total 17072.44 8087.24 25159.68 

10.4 System design and implementation 

After determining the sizes of the energy harvester and the rechargeable batteries, 

the rest of the system can be designed. Figure 10.3 shows the scenario diagram of the 

thermal energy harvesting system. The hot water is assumed to flow from side A to 

side B and the motorized valve is installed on side A to control the water flow rate. 

The radiator emits a large amount of thermal energy when the valve is open and the 

temperature gradient between the TE modules can be harvested and transferred into 

electrical energy, which is being stored in the energy buffer to drive the sensor node.   

 

Figure 10.3 A scenario diagram of TE generator 

By considering all aspects of ambient power sources in the light of the special 

characteristics of ZBARV, the thermal energy harvesting system has been designed. 

Figure 10.4 shows the general architecture of the thermal energy harvesting system 

powered ZBARV system, which is composed of four subsystems: the thermal energy 

generator, the MPPT based power conversion subsystem, the power management 

subsystem and the ZBARV sensor node. The thermal energy generator harvests 

thermal energy and converts it into electrical energy, which is delivered to the MPPT 

based power conversion subsystem. The output voltage of the conversion circuit is 

maintained around 5V, which is used to charge the energy buffers when there is extra 

energy available on the system. The power management unit is used to manage the 

energy generation and the energy consumption of the system.  Energy neutral 

operation and maximizing the system performance are considered as two basic 

functions that should be achieved by the power management unit. The ZBARV sensor 
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node is the end device of the system which consumes most of the harvested energy. By 

comparing the thermal energy harvesting system with the solar energy harvesting 

system, the energy efficiency of the thermal energy harvesting system is much lower 

than the solar one. Hence, some efficient ways to improve the system efficiency are 

considered in this chapter. The details are given in the following sections.  

 

Figure 10.4 Function diagram of a Thermal Energy Harvesting System 

10.4.1 Thermal energy harvesting subsystem 

Since the thermal energy harvesting efficiency is a critical factor that constrains the 

use of any thermal energy harvesting system, a highly efficient thermal energy 

generator is the basic requirement for a successful energy harvesting system design. 

As stated in the previous parts, the conversion efficiency of the TE generator is 

dependent on the efficiency of the TE module and the thermal energy passing through 

the modules. Hence, the performance of a TE generator can be enhanced by increasing 

the TE material capability, maintaining a large temperature difference across the TE 

module and producing high thermal flows through the generator. Bi2Te3 TE module 

TEC1-12709 is employed as the thermal energy transducer. The physical properties of 

the TE module are shown in Table 10.6.  
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Table 10.6  Physical properties of the TE module 

Parameter Value 

Dimensions  

(       

         mm 

Maximum temperature 

difference 
77Kelvin 

Number of 

thermocouple junctions 
127 

Device resistance 3.78 ohms 

Resistivity 1.37 ohm cm 

The temperature difference and the thermal flow are two critical factors. Based on 

Chapter 4, the temperature difference across the module is a significant factor in 

determining the efficiency of the entire harvesting system. In an environment in which 

a huge thermal gradient is present, the whole harvesting efficiency is raised while it 

drops where there are only small temperature differences. In order to maintain a large 

temperature difference across the module, a hot side heat exchanger and efficient heat 

dissipation on the cold side of the TE generator are needed. A good thermal conductor 

material such as metal is considered as an ideal heat exchanger for heat transfer. On 

the hot side of the module, a piece of aluminum plate has been chosen as the hot side 

heat exchanger. On the cooling side, because heat transfer is limited by air-cooling, a 

high efficiency heat sink is needed. A schematic diagram (Figure 10.5) shows the 

layout of the thermal energy harvesting subsystem. 
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Figure 10.5 Thermal Energy Harvesting Subsystem 

In order to choose a highly efficient heat sink as the cold side heat dissipation 

device, three types of heat sinks: a copper heat sink, an aluminum heat sink and a heat 

pipe type heat sink are compared in this chapter.  To test the heat transfer efficiency, 

the same TE module is attached to three different types of heat sinks and tested in a 

similar environment where the room temperature is    .  The results of the 

experiments are summarized in Figure 10.6. From the graph it can be seen that the 

generated voltage of the TE module for the three different heat sinks varies, because 

the heat sink’s ability to remove heat from the cold side varies. The heat pipe type heat 

sink is the most efficient one. Therefore, an Auras’s 3 Heat pipes (Aura 3U heat sink, 

2007) heat sink has been employed as the cold side heat sink. 

 

Figure 10.6 The comparison result of three Heat sinks 

Furthermore, as shown in Chapter 4, the ambient air temperature around the heat 

sink is a crucial factor affecting the heat conductivity of the heat sink. There are three 

ways to reduce the temperature of the air surrounding the heat sink, which are 

considered in this chapter. When the heat sink is close to the heat source, the 

temperature of the air around the heat sink is higher.  This reduces the heat transfer 

capability of the heat sink. Thus, the first way to enhance the efficiency of the heat 

sink is to increase the distance between the heat source and the heat sink. For this 

reason, in this design, a number of TE modules are attached together in a single stack 

and this has been used to increase this distance. To determine the capability, five 
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different TE module configurations have been tested and the experimental result 

output for each configuration is shown in Table 10.7. The temperature gradient 

between the heat source and heat sink is divided over each TE module. If too many TE 

modules are stacked, the temperature difference between each module is too small, 

and this small temperature gradient cannot generate enough electrical energy to 

overcome the energy consumed by the module itself. This is why the five-layer 

construction generates less power than the four-layer one. The experimental results 

show the most efficient stack is when four TE modules are attached together. Thus, a 

four layer design is employed in this work.  

Table 10.7 Five  different configurations of the  TE generator (radiator 

temperature 323K and air temperature 294K) 

Number of modules in 

stack 
Voltage (V) Current (mA) Power (mW) 

1 0.287 97 27.839 

2 0.361 82.3 29.7103 

3 0.482 78 37.596 

4 0.547 72 39.384 

5 0.586 `58 33.988 

Similar to the solar energy harvesting system, positioning the thermal energy 

generator also affects the harvesting efficiency. Empirically, the temperature of the air 

surrounding the radiator is not constant over the whole radiator surface area but varies 

at different positions on the surface. If the TE generator is located at the lowest 

temperature positions, the efficiency of the system can be significantly improved. In 

order to locate the lowest air temperature position, the ambient temperature 

distributions of the air surrounding the radiator have been tested. The result is shown 

in Figure 10.7. From the figure, the lowest air temperature position is at the bottom of 

the radiator, which is considered as the best position to place the TE generator. 
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Figure 10.7 Temperature distribution of the radiator 

In order to prove the concept, a four-layer TE generator with the heat sink was 

placed at five different positions, circled in Figure 10.7, and tested in a similar 

environment.  The comparison results are shown in Table 10.8. By examining the 

results, when the system is placed at the bottom position of the radiator, it can harvest 

almost twice as much power as it being placed on the top of the radiator.   

Table 10.8 Five  different positions to locate TE generator       (radiator 

temperature 323K and air temperature 294K) 

Positions Voltage (V) Current (mA) Power (mW) 

1 0.475 65 30.875 

2 0.547 70 38.29 

3 0.503 68 34.204 

4 0.487 67 32.629 

5 0.715 89 63.635 

Based on the same principle, if the heat from the radiator can be isolated from the 

air surrounding the heat sink, a larger thermal flow can pass through the modules. 

Some pieces of sponge or cotton material can be used to efficiently block heat flowing 

from a hot place to a cold place. Consequently some pieces of sponge were employed 

to surround the TE modules on the hot side heat exchanger to block heat from the 

radiator. The setup is illustrated in Figure 10.8.  
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Figure 10.8 Hot Side heat exchanger with sponges 

In order to evaluate the improved efficiency, a hot side heat exchanger without the 

sponge was compared with this design and the result is depicted in Table 10.9. From 

these results, the thermal conversion efficiency of the TE generator was increased by 

50% or more by placing some pieces of sponges on the hot side heat exchanger to 

block the heat.  

Table 10.9 Harvested power for different hot side heat exchangers 

Radiator 323K & Air 294K Voltage (V) Current (mA) Power (mW) 

Heat exchanger without sponge 0.547 72 41.328 

Heat exchanger with sponger 0.835 114 95.19 

10.4.2 MPPT based Power conversion subsystem 

The system efficiency can be enhanced by using a proper circuit to couple the 

harvested energy from the energy harvester. As mentioned in Chapters 5 and 6, the 

energy harvesting system performance is substantially increased if the maximum 

electrical power is available from the TE generator at all times given the available 

radiator temperatures. This is particularly critical if only minor temperature differences 

could be obtained by the TE generator. In the large temperature difference condition, 

any significant fraction of the available thermal electrical energy will recharge the 

system quickly; the MPPT circuit only affects how quickly the energy storage is 

replenished. However, the system performance can be substantially altered by 

maximizing the available thermal electric energy during short temperature gradient 

periods. The system volume and the energy overhead are two critical factors in 

determining which MPPT approach and circuitry should be used in the micro-scale 

energy harvesting system.  

Due to the proliferation of low-power MCU, digital MPPT approaches are strongly 

preferred in order to deal with the system complexity and the power consumption of 
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the circuitry. Unlike the solar energy, which may change rapidly in an outdoor 

environment, the temperature gradient between the radiator and ambient varies 

steadily or keeps at a constant value. As illustrated in Chapter 6, the P&O MPPT 

method has higher efficiency than the enhanced P&O MPPT approach when the 

energy harvesting system is placed in a slowly changed environment. Hence, the P&O 

MPPT approach is adopted in this chapter to track MPP of the thermal energy 

harvesting system. The hardware circuit, proposed in Chapter 7, has been employed.  

By comparing the power generation and the power consumption of the system, the 

output power of the TE generator is insufficient to directly power the sensor node. 

Hence a power converter interface circuit with a high power transfer efficiency needs 

to be developed in order to change the input power conditions into a suitable form for 

the target system. The same DC-DC boost circuit from Chapter 9 is used to boost the 

low input voltage from the thermal energy harvesting subsystem into a high output 

voltage. Because of the low harvested voltage, the DC-DC converter circuit might not 

work when it lower than the start-up voltage of the DC-DC converter circuit. In recent 

times, the start-up voltages of DC-DC converters have been scaled down more and 

more due to semiconductor technology development. Since almost all the step-up 

converters require input voltage of at least 0.7V to start up, there is a gap between the 

output of the thermal energy harvesting system and the minimum required input 

voltage of the DC-DC converter. Meeting this higher input voltage requires an 

additional circuit between the TE generator and the DC-DC converter. Conventional 

charge pumps are considered as an ideal component to increase the voltage in the 

circuit. The S-882Z charge pump IC from SEIKO (S-882Z charge pump, 2010) can 

work as the start-up circuit to deliver the required voltages for a boost converter. It is 

capable of stepping-up the input voltage from aslow as 0.3V and outputs a boosted 

voltage of around 2.2V, sufficient to start-up a booster converter. Moreover, a built-in 

shutdown function can achieve significant power saving when the output voltage of 

the connected step up DC-DC converter rises above a threshold voltage. A schematic 

diagram of the DC-DC converter subsystem is shown in Figure 10.9. It consists of an 

S-882Z charge pump, which has a 2.5V discharge voltage, in conjunction with the 

TPS61222 boost converter. The charge pump starts to work when the input voltage is 

as low as 250mV. Once the output capacitor CPOUT of the charge pump has reached 
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2.5V, an internal transistor turns on and a 2.5V charge is delivered as an input source 

to the TPS61222 boost converter.  

Subsequently, the booster converter starts to work and its output voltage rises. As 

soon as the output voltage rises beyond 0.7V, the booster converter supplies its own 

triggering power by feeding the output voltage to the input. Once the booster converter 

drives itself, the charge pump does not need to be considered in the design. According 

to Mateu et al (2006), a trade-off must be made when determining the value of the 

charge-pump capacitor, CPOUT. In order to provide the necessary start-up power for 

the booster converter, a high value capacity is required, but this extends the start-up 

time. In order to reduce the start-up capacitor to the minimum value at which it is still 

functional, two 50   tantalum capacitors have been employed in parallel in this 

design.  As the voltage of the thermal energy harvesting is very restricted and the 

generated current is quite high, a high value inductor may be used by the booster 

converter. It has the capability to reduce the minimal start-up voltage and provide high 

efficiency. Thus a high value inductor, 220  , was used in this design.    

 

Figure 10.9 Schematic diagram of MPPT based DC-DC converter subsystem 

10.4.3 Power management subsystem 

For the power management part, the same hardware design, developed in Chapter 7 

has been adopted. The following three main functions are achieved by the power 

management subsystem.  

 It uses an intelligent control algorithm to distribute the harvested energy to each 

part of the system and store the available energy in the storage elements. In order 
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to prolong the system lifetime as long as possible, a hybrid dual energy buffers 

design has been used.  

 The energy status of the rechargeable batteries and the super-capacitors are 

monitored by the PIC MCU. This indicates the energy relationship between the 

energy generation and the energy dissipation 

 Based on the energy relationship, a power management algorithm is able to 

achieve the energy neutral operation in relation to maximize the system 

performance.  

Following the same design procedure of the power management algorithm, 

described in Chapter 7, an adaptive power management algorithm for the thermal 

energy harvesting system has been developed.  Based on the specification of the 

ZBARV sensor node, shown in Table 10.2, the window size and the time slot size are 

set for 24 hours and 30 minutes duration, respectively.  In order to maintain the 

super-capacitor in only  one state at each adjusting cycle, the size of the 

super-capacitor should be determined. Since the sensor node has two different 

functions, adjusting room temperature and measuring the room temperature, the power 

consumptions for these two functions are different. But the super-capacitor size 

calculation is only dependent on the maximum power consumption mode, which is the 

sensor node adjusting room temperature with the maximum duty cycle 20%. The 

maximum average power consumption of the sensor node is calculated as: 

                                                

By assuming the power consumption of the thermal energy harvesting circuit is 1mW, 

the maximum energy dissipation by the system during a time slot is:   

                                          

By assuming two voltage thresholds for the super-capacitor are set as            

and            , and then the minimum capacitance of the super-capacitor can be 

calculated as  
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Considering the energy leakage and charging/discharging efficiency of the system, 

the two 50F super-capacitors connected in series has been adopted in this work. As 

two separate functions have been achieved by the sensor node for different situations, 

the power management algorithm should have the ability to distinguish these two 

functions and adapt these two functions to the current energy budget. For the 

temperature measurement function, it happens when the sensor node detects the 

radiator being turned off or the room temperature is equal to the setting temperature, it 

only measures the room temperature in every 30 minutes. On the other hand, if the 

sensor node detects the room temperature being higher/lower than the setting 

temperature threshold, it adjusts the motorized radiator valve for 15 seconds in every 

30 minutes.  

The pseudo code of the proposed algorithm is shown in Table 10.10. Initially, the 

system sets basic parameters of the algorithm and measures the current energy buffers 

statuses. During the first time slot, the sensor node records the current battery voltage 

           and the status of the super-capacitor in        or        . By comparing 

the current battery voltage with a 2.2V voltage threshold to determine the battery 

status, if the battery voltage is equal to or less than 2.2V, it indicates the battery is 

almost depleted and the system reports the error signal to the local server and then 

goes to sleep to protect the battery. On the other hand, if the battery voltage is higher 

than 2.2V that means the battery has stayed at the healthy status and thus the system 

goes to the next stage.   

In the next stage, the sensor node checks the radiator status and if the radiator is 

totally turned off which indicates that no thermal energy can be harvested by the 

system, the system turns off the thermal energy harvesting system part to reduce 

system overhead. In this situation, the sensor node only measures the room 

temperature in every 30 minutes. If the sensor detects the radiator is in the turn on 

status, it compares the present room temperature to the user setting room temperature. 

If these two parameters are equal, the sensor node measures the room temperature 

without driving the step motor. Otherwise the sensor node adjusts the radiator to make 

the room temperature approach the setting one. The power consumption of the sensor 

node is adapted with the energy budget of the system by following the energy neutral 

operation and the maximum system performance rules. The detail of the algorithm is 

shown in Table 10.10 with a simple else-if statement.  
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Table 10.10 Power management algorithm pseudo code 

 Driver 

1 

Initial system 

 Masuring initial battery level             and set initial duty cycle         for sensor 

node  

 Setting       ,       ,      ,     ,          ,    , and     

          and            

2 During time slot T, the system recorded            ,        amd        , respectively 

3 
If                 

Go to step 4  

Else go to step 8 

4 

Detecting the radiator status 

If radiator is turn off 

Turn off the thermal energy harvesting system 

Measure the room temperature in every 30 minutes 

Else  

Turn on the thermal energy harvesting system 

Comparing the current temperature with the setting room temperature 

If                                           

Go to step 5 

Else go to step 6 

 

5 

This step for the sensor node operates measuring room temperature function 

 

Comparing the final reading of the battery level            to previous battery level 

             

Case 1: If                         

{ If                  , D=    ; 

Else If                         ,               ; 

Else If                         ,               ; 

Else If                  ,                      ; 

} 

 

Case 2: If                         

 { If                  , D=    ; 

  Else If                         ,               ; 

 Else If                         ,               ; 

Else If                  ,                  

} 

 

Case 3: If                         

{If                  , D=    ; 

  Else If                          

{If             , D=        ; 

Else If           ,                  ; 

Else if           ,           ,           -   ; 

 } 

  Else If                          

{If             ,               ; 

Else if           ,               ; 

Else if           ,           ,           ; 

} 

 

Else If                  ,          

     } 

Go to step 7 

6 

This step is for the sensor node achieve adjusting room temperature function 

 

Comparing the final reading of the battery level            to previous battery level 

             

Case 1: If                         

{If                  , D=    ; 

   Else If                         ,               ; 

  Else If                         ,               ; 

Else If                  ,                 

} 
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 Driver 

Case 2: If                         

{If                  , D=    ; 

 Else If                         ,               ; 

Else If                         ,              ; 

Else If                  ,                 

} 

 

Case 3: If                         

{If                    D=    ; 

  Else If                         , 

{If             , D=        ; 

Else If           ,              ; 

Else if           ,           ,           -     

} 

 

If                          

{If             ,               ; 

Else if           ,               ; 

Else if           ,           ,             

} 

 

If                  ,                 

} 

Go to step 7 

7 
            and                          

          and           

Return to step 2 

8 
Else If                   

Report error to coordinator and enter sleep mode 

10.4.4 Integrated thermal energy harvesting system 

   After designing each subsystem of the thermal energy harvesting system, the 

integrated system is depicted in the Figure 10.10. As the same PIC MCUs are used in 

the power conversion circuit and the power management circuit, the circuit can be 

simplified and the power overhead can be reduced by using the one PIC MCU to 

integrate all the control functions.    
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Figure 10.10 Schematic diagram of the proposed system 

10.5 Evaluation 

The use of the thermal energy harvesting system has been evaluated in terms of the 

four performance metrics of the system. A prototype of the TE generator has been 

developed and tested experimentally to identify its ability to capture thermal energy 

and convert it into electrical power. The MPPT based power conversion system has 

been evaluated and compared with a system without the MPPT scheme. The third 

approach is to verify the power management unit in order to see whether the system’s 

performance and lifetime could be significantly improved or not. Lastly, after 

evaluating each subsystem of the prototype, the entire system has been integrated and 

tested in the real house to examine the performance of the system. The overhead 

caused by the thermal energy harvesting system’s analog circuitry has been tested to 

identify the system efficiency. 

10.5.1 Individual component evaluation 

a) TEG operation 

As stated in the previous sections, the harvesting efficiency of the TE generator is 

the critical factor in determining the entire system efficiency. Hence, the first 

evaluation procedure is to verify how much energy could harvest from the radiator by 

the developed TE generator. Since the temperature of the hot water radiator is hard to 

adjust, a 1.5KW electrical radiator, which can vary the heat output by adjusting an on 

board regulator, was employed to emulate the normal domestic radiator in the 
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laboratory. Figure 10.11 shows the experimental setup which was used to evaluate the 

proposed platform. In order to harvest enough thermal gradient energy from the 

radiator, two heat sinks and eight TE modules were used to fabricate the thermal 

energy harvester. In this design, four of eight modules were attached together in a 

stack by using high efficient thermal grease and then located between the heat sink and 

a thin copper plate. Additionally, some pieces of sponge were used to isolate heat from 

the radiator. For easy installation, the copper plate was formed to a U type and 

clamped on the bottom of the radiator. In order to monitor the temperature of the hot 

and cold sides of the TE Modules, an Omega CO-1 thermocouple (Omega CO-I 

thermocouples, 2010) with a Temperature meter was used.  

 

Figure 10.11  Experimental setup for thermal energy harvesting system 

In order to evaluate the thermal energy harvesting efficiency of the TE generator, 

the system was tested in the laboratory at different radiator temperatures with a fixed 

room temperate of 21 . The experimental result is shown in Figure 10.12. The larger 

temperature difference the TE generator has, the greater the power that can be 

generated. It can be observed that the maximum harvested power is around 82mW 

when the hot side temperate is 55 . 
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Figure 10.12  Output voltage of the TE generator as a function of the hot side 

temperatures 

b) Efficiency of the MPPT based power conversion circuit  

As indicated in Chapters 5 and 6, the efficiency of the MPPT based power 

conversion circuit is essential in determining the whole system efficiency, especially 

for micro-scale energy harvesting system. In this section, the efficiency of the MPPT 

based power conversion circuit can be divided into two parts: the efficiency of the 

boost converter circuit and the MPPT efficiency of the MPPT scheme. Firstly, a 

practical implementation of the DC-DC converter system without an MPPT circuit 

was tested with different input powers to evaluated efficiency and the result obtained 

is shown in Table 10.11. A DC power source was used to emulate different input 

power level and the output voltage of the booster converter was set to a constant 

voltage of 5V. The experimental results show that the efficiency of the booster DC-DC 

converter is related to input power and the converter system works even when the 

input voltage is as low as 0.32V and the average efficiency of the system is around 

30%. 
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Table 10.11 Measurement Results of the DC-DC CONVERTER 

Input Voltage (V) 
Input Current 

(mA) 

Output Current 

(mA) 
Efficiency 

0.32 59 1.1 29% 

0.43 62 2.0 37.5% 

0.47 65 2.4 39% 

0.51 70 3.5 46% 

0.63 89 5.5 49% 

0.7 90 7.56 60% 

0.75 110 10.8 65.4% 

0.8 120 12.8 66.7% 

Next the MPPT circuit was integrated with the boost DC-DC converter circuit to 

test MPPT efficiency. In order to evaluate the MPPT circuit enhancing the system 

efficiency, the same DC-DC converter circuit without MPPT circuit was compared 

with the system. The TE generator was connected with these two designs and the 

power outputs of the integrated systems were used to charge two 50F super-capacitors 

from 2V to 4V. The integrated system was tested in the laboratory with the electrical 

radiator where the room temperature was maintained at    . Normally, the charging 

time provides a simple way to interpret efficiency. The experimental result is shown in 

Table 10.12. It can be observed that the charging time is around twice as fast as the 

system without MPPT circuit. For the MPPT based power conversion circuit, the 

maximum power conversion efficiency is 63.7% when the radiator is setting at 

   .The conversion efficiency drops with the decreasing of the harvested power. The 

conversion efficiency is decreased more quickly when the radiator temperature is less 

than    . This is because the efficiency of the boost converter drops rapidly when 

the input voltage is less than 0.7V. The system only can store 35.1% of the harvested 

energy into the energy buffer. But the conversion efficiency drop to 11.7% when the 

system without MPPT circuit is deployed in the same environment. Based on this 
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experiment, it can be observed that the MPPT circuit and the temperature difference 

are two critical factors in determining the system efficiency.  

Table 10.12 Charging time and conversion efficiency of the two power conversion 

system 

 Harvested power (mW) 

MPPT based power conversion 

subsystem (S) 

Power conversion system 

without MPPT (S) 

 

Charging time (S) Efficiency  Charging time(S) Efficiency  

83mW (radiator 

temperature=   ) 
1456 63.7% 2610 35.5% 

72.1mW(radiator 

temperature=   ) 
1612 62.1% 3101 34.4% 

63.1 mW (radiator 

temperature=   ) 
1994 61.2% 3890 31.4% 

58.4mW (radiator 

temperature=   ) 
2633 54% 5551 23.8% 

48.7mW (radiator 

temperature=   ) 
3585 44.1% 8604 18.4% 

35.1mW (radiator 

temperature=   ) 
6250 35.1% 18749 11.7% 

C) Evaluation of the power management subsystem 

In order to achieve longer life or even perpetual lifetime, a power management unit 

is a core component. The proposed power management subsystem with ZBARV was 

verified by simply connecting it to a DC power supply. Based on the functions of the 

power management unit, the system was divided into two parts. The first part was to 

verify the power distribution capability of the power conversion system. Initially, the 

ZigBee node was powered by the secondary buffer (two rechargeable batteries) while 

the DC power supplier charged the primary buffer. When the first threshold of 3.4V 

was met, the power management unit triggered the P-MOSFET to switch from the 
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rechargeable batteries to the super-capacitors. Subsequently the entire system was 

powered by the super-capacitors. While the input power was increasing, the power 

accumulated on the super-capacitors was rising. Once the capacitor’s voltage reaches 

4.1V, the PIC16F688 MCU switches on the adjustable current limit switch and 

transfers the capacitor’s energy to the rechargeable batteries. Next, the DC power 

supply is turned off and the voltage of the capacitors drops. When the voltage drops to 

less than 3.9V, the capacitors stop charging the rechargeable batteries. Furthermore, 

once the voltage is less than 2.7V, the rechargeable batteries again start to power the 

ZigBee chip. These phenomena correctly fit the design principle, which was 

mentioned in the power management subsystem. For the dynamic power management 

test, the power management algorithm was loaded into the sensor node.  

The second stage involved the evaluation of the power management algorithm 

which can adapt the sensor node’s power consumption to the energy generation. The 

system was powered by the DC power supply, which varies the output power level, for 

four days. The input voltage is maintained at 5V and the input powers are varied at 

10mW, 5mW and 0mW, respectively. In the first day, the DC power supply was set 

10mW constant output to charge the super-capacitor for 24 hours. Then the DC power 

supply adjusted its output power to 5mW and lasted for 48 hours. In the remaining 24 

hours, the DC power supply was turned off. In order to make the experiment 

reproducible, the rechargeable batteries were initially charged to 2.7V and the 

super-capacitor was charged from a depleted condition. The initial duty cycle of the 

sensor node was set to 1%. Because the sensor node has two different functions based 

on different conditions, the experiment was tested with these two functions for two 

days, respectively. In the first two days, the sensor node was used to measure room 

temperature and adjust the step motor in each cycle. Next, the sensor node was 

operated in the simple mode, in which the sensor just measures the room temperature 

in each cycle, for another two days. Based on the specification of the sensor node, the 

parameters of the power management algorithm are shown in Table 10.13.  
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Table 10.13  The parameters of the power management algorithm 

                                            Algorithm parameters 

            

            

            

             

       

          

      

   

       

The experimental results of the terminal battery voltage and duty cycle are depicted 

in Figure 10.13 (a) and (b), respectively. By examining these two curves, the duty 

cycle of the sensor node is increased with the increasing of the battery voltage, and 

vice versa. Moreover, because the battery has a very large capacity, the battery voltage 

cannot indicate the instantaneous energy relationship in each time slot. The status of 

the super-capacitor is introduced in order to indicate the instantaneous energy 

relationship. The duty cycle of the sensor node is dropped or increased when 

       or         has been detected.  

 

Figure 10.13 The experimental result of the power management system 

10.5.2 Integrated system evaluation  

The integrated system, as shown in Figure 10.14, has been evaluated after each 

subsystem was evaluated. In order to measure the current consumption of the whole 

thermal energy harvesting analog circuit, the PCB board without the TE generator was 

tested. When a 3V battery is used to power the circuit, the current consumed by the 

analog circuit is around 700uA. This shows the importance of the power management 
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algorithm to switch off the energy harvesting circuit when there is no or insufficient 

power produced by the TE generator.  

 

Figure 10.14 Integrated thermal energy powered ZBARV 

Before the system was implemented in a real environment, the proposed system was 

evaluated with the electrical radiator in a house for seven days. The test setup is shown 

in Figure 10.15. 

 

Figure 10.15 The thermal energy harvesting system with ZigBee Based 

Automatic Radiator   

The terminal voltage of the rechargeable batteries and the duty cycle of the sensor 

node were recorded every 30 minutes over a period of seven days. The curves of the 

battery voltage and the duty cycle are shown in Figure 10.16 (a) and (b), respectively. 

The results show that the system worked autonomously as expected without any 
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additional power requirements. When the radiator was turned on, the thermal energy 

harvesting system harvested thermal gradient energy from the radiator and stored the 

excess energy into the rechargeable batteries. By examining two curves, the duty cycle 

of the sensor node is automatically adapted with the energy generation to perform 

energy neutral operation. The thermal energy powered ZBARV sensor node is 

considered to have a perpetual lifespan, which is limited only by the hardware lifetime.  

 

Figure 10.16 The proposed system test in a real house for 7 days 

10.6 Summary 

In this chapter, a highly efficient thermal energy harvesting system powered 

wireless sensor node, based on the proposed architecture and the design procedure, has 

been developed. The system is sizing optimally based on the theoretical model. 

Similar to the proposed solar energy harvesting system, the MPPT based power 

conversion circuit and the power management subsystem have been employed in the 

system to improve system performance both on the efficiency and lifetime sides. The 

experimental results show the system can harvest as low as 0.3V thermal energy from 

the environment, and that the lifetime of the sensor node is dramatically improved by 

using the thermal energy harvesting system. The system also shows that the proposed 

system architecture can be used for both solar and thermal energy harvesting systems. 

The system can be easily expanded to other types of applications by knowing the 

relationship between the energy generation and the energy consumption.  
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Chapter 11. Conclusion and Future 

work 

11.1 Summary 

Recently, new micro-systems like WSNs, which normally use ad-hoc wireless 

transceivers and micro-smart sensors, continue to integrate more and more 

functionalities in a smaller package size with lower power consumption. The compact 

size has many benefits and opens new application areas for WSNs but this deeply 

constrains the amount of power embedded on the system. The recent explosion in 

WSNs has not been matched by battery technology, which the slow growth of battery 

energy density has limited the lifetime of the wireless sensor nodes and added weight 

and volume to the system. Moreover, the lifetime and the energy consumption of the 

sensor nodes continue to remain a key challenge in the design process of battery 

powered sensor networks. Hence, energy is a limited resource in wireless electronics 

and power supplies and making sufficient energy available is perhaps the most 

challenging technological hurdle to be overcome in the widespread development of 

WSNs. Energy harvesting from environmental sources offers a promising alternative, 

which can reduce system weight and volume, and increase operating lifetime, and 

decrease maintenance cost, and hopefully solve the limitations arising from battery 

size constraints in sensor networks. In recent decades, a number of micro-scale energy 

transducers have been fabricated in order to convert energy from other modalities, 

such as solar radiation, thermal gradient energy, mechanical motions or vibrations, and 

radio frequency energy, etc. into electrical energy. By using energy harvesting 

techniques, the lifetime of the system is significantly prolonged and the energy 

limitation problem is mitigated in certain levels in some cases.  
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Despite the fact that significant research efforts have been put into this area, there 

are still a lot of problems when an energy harvesting system is deployed in the real 

environment, especially for a micro-scale energy harvesting system application. The 

traditional energy harvesting system design approach follows a developing manner of 

trial-and-error in which the proposed system performance heavily depends on the 

designer’s experience. Unlike designing a battery powered embedded system, the 

energy harvesting system imposes a limit on the instantaneous power available based 

on the dynamic environmental energy level. Many designers use a worst case scenario 

to design the system, which means the system is typically oversized. Since the volume 

and price are two system restrictions for a micro-scale energy harvesting system, the 

oversized system results in inefficiency. Furthermore, since the amount of energy 

harvested from environments is typically small and highly variable, it requires system 

circuits and architectures with a low power consumption and sufficient stability for 

available energy generation. This means that the designers are faced with a great 

number of design parameter choices. They need to spend much time and effort in order 

to optimize system performance. In addition, quickly assessing and evaluating the 

entire system performance at the early stages is impossible. If the system evaluation 

shows that the system has a functional failure or poor efficiency, a new design cycle 

has to occur. Finally, different sensor nodes in a sensor network may also have 

different energy harvesting opportunities. A proposed energy harvesting system 

focusing on harvesting a typical energy source cannot be easily expanded to harvest 

another type of energy from the environment.  

11.2 Contributions and future work 

The research objective of this thesis is to investigate and design high efficiency 

micro-scale energy harvesting systems in order to power the wireless sensor nodes and 

give the system a perpetual lifetime. The main contributions and findings from the 

research are listed below: 
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1. A generic system architecture has been developed to fit various applications 

and requirements. 

As stated in the literature review, different energy harvesting platforms have their 

own system architectures for harvesting a typical energy source. This is difficult in 

terms of placing an energy harvesting system powered sensor node in the environment 

where there are two or more energy sources available. Hence, a generic system 

architecture, which can be easily expanded for harvesting other types of energy 

sources and powering other types of sensor nodes, has been designed, implemented 

and evaluated. All the possible components to build up an efficient energy harvesting 

system have been taken into consideration. By employing the dual energy buffer 

design in the architecture, the performance and lifetime of the system is theoretically 

enhanced. Moreover, according to the different harvested energy types, the generic 

system architecture should have different components in the power conversion part. 

As solar and thermal are selected as the target energy sources, the generic system 

architecture for these two kinds of energy harvesting systems has been developed. 

2. A simplified and optimized system design procedure has been developed for 

guiding the design of a cost-size effective and system efficient energy harvesting 

system. 

As there is no clear design guideline in the existing literature to guide the complex 

system design procedure of a micro energy harvesting system, a clearly and simplified 

system design procedure, which is based on the generic system architecture, has been 

proposed. According this design procedure, the parameters of the system can be 

properly determined by knowing three factors of the system: the energy generation, the 

energy consumption and the power management strategy. By applying these factors in 

the simulation model, the energy harvesting system can be designed in the optimal 

way.  

3. A general systematic model of micro-energy harvesting systems has been 

developed to bridge the gap between physical electrical level and simulation level 

to avoid a blindness design of energy harvesting system. 
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The traditional energy harvesting system design procedure is essentially the 

trial-and-error approach. A theoretical analysis is very important before designing and 

implementing an energy harvesting system in the real environment. A theoretical 

energy harvesting system model, based on the general systematic architecture, is 

proposed in this thesis to predict the system performances of solar and thermal energy 

harvestings. The model can be easily expanded to other types of energy harvesting 

resources by replacing modelling of an energy harvester. The models of each 

components of the system and the entire integrated system model are designed, 

respectively. In order to examine the model’s accuracy, the corresponding test setup 

has been built in the laboratory for both solar and thermal energy harvesting systems. 

Based on the experimental results, the proposed model has around 80% accuracy in 

the worst case, which is considered. Moreover, the research findings also show that the 

system efficiency can be greatly improved by either improving efficiency of the 

energy harvester or using the MPPT based power conversion circuit.  

4. Two ways of improving the system efficiency and performance have been 

developed in this thesis by following to improve the energy transfer efficiency, the 

energy buffering efficiency and the power consumption efficiency.   

As the system efficiency is a critical factor in determining system performance, 

especially in designing a micro energy harvesting system, the research work here 

focuses on carrying out some possible ways to improve system efficiency by 

improving the energy transfer efficiency, the energy buffering efficiency and the 

power consumption efficiency. More in detail, the improvement actions are divided 

into two aspects: designing an MPPT based power conversion circuit to improve the 

energy transfer efficiency and developing an efficient power management subsystem 

to enhance the energy buffering efficiency and the power consumption efficiency. For 

the MPPT based power conversion circuit part, there are a lot a lot of MPPT 

approaches in the literature but the comparative results of which one has the most 

efficiency is not given. In order to show differences, three types of MPPT based power 

conversion circuit have been designed and evaluated. The experimental results show 

that the digital MPPT technologies are more suitable for the small scale system design. 

Furthermore, the enhanced P&O approach is suitable for rapidly changed 

environments and the classical P&O method is preferred for a constant or slowly 
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changed environment. According to this finding, the system designers can select a 

proper MPPT technology by knowing the characteristics of the environment source. 

For the power management subsystem part, this is designed to improve the lifetime 

and performance of the energy harvesting system. This subsystem is designed by 

following the rule of adjusting the system performance with the energy budget of the 

system. By using this type of subsystem, the lifetime of the energy harvesting system 

can be seemed as perpetual.  

5. Design and implementation of three kinds of systems in the real 

environments to prove the proposed works 

The thesis developed three case studies by using the proposed theoretical analysis 

and the proposed subsystems.  The efficient design of any micro-energy harvesting 

system can only be achieved through fully understanding the electrical characteristics 

of the target sensor node. This is because the sensor node is the main energy consumer 

in the system. Any successful energy harvesting platform should fully satisfy the basic 

specification of the sensor node. Hence, several wireless sensor nodes, based on the 

JN5139 wireless platform, have been designed. The design procedure, which is based 

on the generic sensor node architecture, has been used. By using a theoretical lifetime 

calculation, the lifetime of the sensor nodes are not satisfying user requirements.  

Then two energy harvesting systems (solar and thermal) have been developed to 

power two types of sensor nodes, which were designed previously. The system has 

been designed by using the proposed model and following the proposed design 

procedure. In the first case, a solar powered door security sensor node is developed. 

The parameters of the system are determined by knowing the characteristics of the 

energy generation and the energy dissipation of the system. By integrating the 

enhanced P&O MPPT based power conversion circuit in relation with the adaptive 

power management unit, a high efficiency solar energy harvesting system has been 

developed. The proposed system has been evaluated in the darkest month in 

Loughborough for 30 days and the experimental results show that the system can not 

only survive in these 30 days, but also adapt its energy consumption to the energy 

generation.  
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Based on the same design procedure and system architecture, a high efficiency 

thermal energy harvesting system has been designed to power a wirelessly controlled 

radiator valve. This is the second case study to show that the proposed system can be 

easily expanded to harvest other types of energy source such as thermal energy. Unlike 

the solar energy harvesting system, the harvest efficiency was initially quite low. 

Based on the TE generator model, a lot of efforts have been carried out to improve 

system efficiency. By integrating the classical P&O MPP approach based power 

conversion subsystem with the power management unit together, the entire thermal 

energy harvesting system has been developed. The evaluation results show that the 

system can efficiently harvest thermal energy from the radiator and the system has a 

perpetual lifetime by using a power management unit.  

In summary, this thesis has achieved all of the proposed objectives described in 

Chapter 1. Future work in enhancing the lifetime of WSN based on energy harvesting 

systems should focus on the following parts.  

Firstly, in this thesis, based on the proposed energy harvesting model and the 

design procedure, only solar energy and thermal energy have been considered. In 

future work, other common environmental energy sources such as vibration and radio 

frequency energy should be considered. The proposed design procedure for designing 

energy harvesting systems can be followed. 

Secondly, the proposed energy harvesting system model only can predict the system 

performance of solar and thermal sources. In future work, the system model needs to 

expand in order to accept other kinds of energy harvesting technologies, such as RF 

energy harvesting, vibration and so on.   

   Thirdly, the circuitry efficiency is critical in deciding the entire system efficiency. 

Since the efficiency is the core part of any micro energy harvesting system, further 

research could be focused on how to improve the efficiency and reduce the size of the 

MPPT circuit and the power management circuit. Moreover, several commercially 

available DC-DC boost converters with built-in MPPT algorithm have been step into 

the market. In this thesis, the proposed MPPT based power conversion circuits have 

not been compared with these devices. In the future work, the commercial power 

conversion circuits and the proposed MPPT based power conversion circuits should be 

compared in order to examine the energy efficiency, power overhead, cost and size of 

these systems.  
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   Finally, in this thesis, the author only considered how to use energy harvesting 

technologies to improve the lifetime of the individual sensor node in a WSN. As the 

network lifetime is more important and more realistic for a WSN, future study can 

focus on how to use energy harvesting technologies to extend the whole network 

lifetime.  
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