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ABSTRACT 
The use of Failure Modes and Effects Analysis (FMEA) as the basis for a 

Diagnostic Service Tool (DST) is discussed in the context of Design for Service. 
Designers are assisted in developing diagnostic service tools early in the design 
process rather than this being a post-production activity. A system for computerised 
interactive FMEA generation from FMEA elements has been created by enhancing an 
existing object-oriented FMEA model to generate the FMEA elements and Diagnostic 
FMEA. The use of an object-oriented FMEA environment and FMEA object libraries 
promotes the reuse of information and increases data availability for diagnostic tool 
development. The Diagnostic Service Tool (DST) uses existing failure mode data to 
determine further characteristics of the failure of parts. The prototype software has 
been evaluated in a field service application using four automatic transmission 
problem cases. There was significant difference in repair times between the use of 
conventional repair manuals and DST. The research has demonstrated that the 
prototype software is successful in providing effective field service tools and suggests 
a method of providing feedback to the designer. In this way knowledge sharing 
between engineering and field service can be continuous and provide a significant 
improvement in product development. The approach has validity across many 
domains but has so far only been evaluated in the context of  automotive systems and 
in particular automatic transmissions. Application in other areas would require 
substantial efforts in knowledge acquisition but the same general methods would be 
used. 
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1. Introduction 
A fundamental shift is occurring in manufacturing companies away from selling 

products to providing services, so that for example Rolls-Royce are selling power 

over a period of years to the airline rather than selling an engine (Harrison, 2006). 

This introduces a Design for Service (DFS) concept that considers product 



serviceability issues at the very early stages of product design. The ability to isolate 

difficulties in maintenance, diagnosis and to recommend areas of improvement during 

the conceptual stages will lead to a more efficient failure isolation process. The 

integration of design and maintenance will encourage sharing of knowledge from the 

latter stages of the product life-cycle with those involved in the earlier phases. The 

product support and maintenance needs of systems are more or less decided during 

the design phase and designers are required to consult existing maintenance 

information from similar products (Blanchard, 2001). The collected maintenance 

records can be effectively re-used for the development of a new generation of 

products and reduce demands on service and maintenance (Markeset and Kumar, 

2003). 

Diagnostics systems have the goal of determining the causes of observed 

malfunction symptoms through reasoning and observation. One area of significant 

opportunity is to integrate design and service information and re-use Failure Modes 

and Effects Analysis (FMEA) information in the construction of diagnostic systems 

(Barkai, 2001). The model-theoretic approaches by Price et al (1995) and more 

general approaches (Barkai, 1998) have reported success in re-directing FMEA 

information at diagnostic tool applications. Several prototype systems have 

demonstrated that there are principled solutions to the diagnostic problems in certain 

application areas (e.g. Chen and Patton, 1999). However, most systems remain 

isolated programs that are not integrated with the work processes and many have been 

developed from a maintenance rather than a design perspective. 

Price and Taylor (1997) describe the advantages that automated FMEA 

provides for diagnosis and describe its use for generating failure trees from FMEA 

reports. Similarly the value of re-using FMEA information in diagnostic systems to 

integrate design and service information across supply chains has been demonstrated 

(Barkai, 2001). Price (1997, 2000) in his AutoSteve system has shown that automated 

generation of FMEA is applicable in analysing automobile electrical circuits for 



diagnostic purposes. Barkai (1998) also showed that FMEA information is able to 

generate an expert system for diagnosis. The work by Teoh (2003) shifted the FMEA 

generation into the conceptual design stage. The method of deploying structural 

modelling, functional modelling and reasoning techniques was able to generate 

process and design FMEA based on limited information (Hunt at al, 1995, 

Russomanno et al, 1993). Exploiting these methods and the use of  FMEA generation 

for developing diagnostic models encourages knowledge reuse and sharing. Hence 

this will provide a method of addressing serviceability issues at the very early stages 

of product design.  

The main aim of this research was to show the potential for improving product 

maintainability and serviceability by integrating the design and diagnostic tasks. The 

method of achieving this was to (i) establish an FMEA model based on previous 

research in functional and structural modelling for diagnostic failure data generation, 

(ii) generate diagnostic failure data from automated FMEA software, (iii) build a 

prototype Diagnostic Service Tool based on the generated diagnostic data and field 

service information and (iv) evaluate the proposed Diagnostic Service Tool in 

troubleshooting actual failures.  

2. Failure Modes and Effects Analysis 
Failure Modes and Effects Analysis (FMEA) is widely used for the early stages of 

system development. FMEA has been widely standardised, (e.g. as BS 5760, 1991, 

MIL-STD-1629, 1980), and has been extensively used for safety and reliability 

analysis of products and processes particularly in aerospace, nuclear and automotive 

industries (Ebeling, 2000). FMEA is a methodology to determine all potential failure 

modes,  the effects these failures and how to deal with the failures based on severity 



and probability of occurrence. FMEA has frequently been reviewed (e.g. Bouti and 

Ait Kadi, 1994).  

Several researchers have used FMEA in design and production process 

applications. Hsiao (2002) applied both Quality Function Deployment (QFD) and 

FMEA in a new product development process. Linton (2003) showed the use of 

process mapping and FMEA for the design of services and process in e-commerce. 

Davidson and Labib (2003) integrated a modified FMEA into an analytic hierarchical 

process for design improvement. Parkinson and Thompson (2004) presented the use 

of FMEA in the planning and execution of product remanufacture. 

In automotive industries FMEA is specified as a part of the quality system in 

QS-9000 which is an automotive version of ISO-9000 (QSA, 1998; AIAG, 1998). 

Automotive original equipment manufacturers (OEMs) use FMEA and require their 

suppliers to submit FMEA as part of product approval documentation (Dale and 

Shaw, 1990; Ford Motor Company, 1989; AIAG, 1995; SAE, 2002). Commercial 

FMEA software provides clerical tools for developing and maintaining FMEA 

documents but this can still be tedious. Automation of the process should help, but 

automation of the reasoning is not simple. 

3. Diagnosis 
Diagnosis may be considered as the process of Failure Detection, Isolation and 

Recovery (Frank 1993). Failure detection and isolation techniques are normally model 

or knowledge techniques (Patton, Frank and Clark, 2000). A common way to 

represent diagnostic tasks is to divide them into two tasks (Krysander, 2003). The first 

is to detect the symptoms and the second is to determine which failure has occurred. 

Price (2000) describes troubleshooting procedures that are already in a format 



understandable to engineers, but in field service the diagnostic logic tree, commonly 

known as the diagnostic tree, is much preferred.  

A study conducted by the Service Technician Society of SAE reports that 53% 

of the surveyed technicians indicated that they do not have sufficient resources to 

maintain vehicles (Barkai, 2001). Of those, 50% indicated that the most critical 

resource is information, whereas only 14% required additional tools. 

Early efforts were made by Price et al (1995) in the Flame system to link 

FMEA and diagnostics. Despite this effort, one of the challenges in utilising FMEA 

for field diagnosis is that it deals primarily with design documents, conceptual 

models, early prototypes and focuses on design artifacts (Price, 2000). FMEA 

assumes that, under ideal circumstances, all failure modes are addressed and fully 

rectified during the design and engineering phases. Field diagnosis deals not only with 

design inadequacies, but also with physical variations and natural mortality (a product 

reaching the end of its design life). However, the work by Barkai (1998) has shown 

that the results of the FMEA can be used to develop and produce an efficient 

diagnostic system. Proton Car Service Centres use diagnostic tools that are typical of 

the industry and they are focussed mainly on failure diagnosis or detection and not 

effectively on failure isolation. This is because the diagnostic tools do not provide the 

actual repair procedures for the detected failure. The current tools available to car 

manufacturers are unable to isolate most of the detected failures. In 2005 one 

manufacturer ceased production of a car model due to numerous customer complaints, 

especially concerning the automatic transmission system. Hence, a supportive 

diagnostic service tool is urgently needed and it should be able to support the service 

technician in diagnosing, isolating and repairing the failure.  



4. Modelling 
A model-based approach to diagnosis has advantages including the synthesis of 

unforeseen failures, re-use through modularity, use of system specifications and 

design as input knowledge for the diagnostic engine and explanations of the failures 

(Chittarro and Ranon, 2004). 

A functional model can be used to verify the performance of the design and 

since it describes the intended function of a system, it enables engineers to evaluate 

designs early in the development process. The functional model consists of two main 

components: function and behaviour. The function of a system provides the design 

intent, whereas the behaviour describes how the structure of an artifact achieves its 

function (Gero et al, 1991 and Russomanno et al, 1993).  

A structural model is defined as “the components that make up an artifact and 

their relationships” (Gero et al, 1991) and contains information on all the components, 

entities, sub-processes or sub-systems, and the interactions among them. Generic 

functions originated from engineering design methodologies (Pahl and Beitz, 1996) 

and Hirtz et al (2001) developed a comprehensive list covering a wide range of 

applications in design and manufacturing. Teoh (2003) in his work adapted the Hirtz 

functional basis in order to develop the generic functions required in his case studies 

as shown in table 1.  

 

5. The FMEA Model 
The FMEA Generation (FMAG) software created by Teoh (2003) has been 

selected to generate the required FMEA information, but an FMEA model for a 

specific product design has to be built.  

An object-oriented approach, causal reasoning and Unified Modelling 

Language (UML) diagrams have been used for the FMEA modelling. The FMEA 

Model is adopted from a technique known as the transformation system as proposed 



by Hubka and Eder (1988) which basically transforms an operand at the input to a 

desired state at output. Then component libraries, function units, functional diagrams 

and cause and effect propagation are created. A causal reasoning technique adapted 

from the “knowledge fragment” reasoning approach of Kato et al (2002) is used. The 

knowledge is divided into precondition and postcondition in the form of “operator 

failure state” and “operand failure state”. The FMEA model forms the framework for 

knowledge collection and organization in order for FMEA generation to take place. 

The modelling is illustrated using an automatic transmission powertrain with 

the objective of developing a Diagnostic Service Tool application for the motor 

industry. In order to function as a complete transmission system, the power train is 

connected to other mechanical systems, hydraulic systems and electrical systems 

which control and provide the input and output. Briefly, engine torque is transferred 

to the torque converter through the drive plate, which is attached to the engine 

crankshaft. Torque, which has been transferred to turbine vanes in the torque 

converter through the medium of Automatic Transmission Fluid is then transferred 

through the input shaft to the rear clutch retainer or the multi-plate clutch. It is then 

carried through the sun gear (forward and reverse sun gear) and the annulus gear in 

the planetary gear set to the transfer shaft. It is delivered through the transfer shaft and 

the differential drive gear to drive the CV-joint by the differential assembly and 

finally the wheels. Figure 1 shows a sectional view of an automatic transmission 

system and the power train components.  

 
A transformation system consists of technical system, technical process, 

human system and active environment. The effects are produced by the acting 

operators, by means of action processes and action chains within the operators that 

transform the inputs of the operators into their outputs (Hubka and Eder (1988)). In 



this case, the power train system is represented by the important components: torque 

converter, input shaft, sun gear, planetary gear set and transfer shaft. The engine 

torque is the operand of the process. The technical process consists of the process 

steps the engine torque has to go through in order to achieve the required gear ratio. 

(figure 2).  

 
In order to achieve different gear positions, the input torque has to undergo 

different technical processes. For example, in first gear the rear clutch is actuated and 

the input shaft is connected to the forward sun gear. The torque is conveyed to the 

forward sun gear which rotates in the clockwise direction. The torque is then 

conveyed from the forward sun gear through the short pinion (counterclockwise) and 

the long pinion (clockwise) to the annulus gear (clockwise) to achieve the reduction 

ratio of the forward 1st gear. The one-way clutch locks the annulus gear from rotating 

anti-clockwise. The operating elements are the rear clutch and one-way clutch.  

The component library is created using the class hierarchy structure (Figure 3) 

and an assembly tree hierarchical structure.  

In FMAG, the transformation system is used to organise the entities in the 

component library. The entities are organised into five classes of technical system, 

technical process, human system, active environment and the operand to define the 

transformation system.   

The technical system in a transmission system is represented by a machine and 

its components that are involved to run the process. The technical process is 

represented by its process and process steps in order to achieve its output. An object 

diagram is created by incorporating the class diagram for the power train system into 

the transformation system as shown in figure 4.  

 



The interactions among the entities in the transformation system are used to 

achieve the design objectives and are represented in a conceptual model. The 

interaction is illustrated by a functional unit in the transformation diagram. In the 

power train system example, the input shaft interacts with the sun gear through the 

function “convey”. The input shaft is the entity known as the operator which in turns 

acts on another entity, the sun gear. The word ‘conveys’ in this case is a generic 

function term to represent the move action. The sun gear which is the receiver of the 

action ‘conveys’ is known as the operand of the relationship. This relationship among 

the operator, an operand and a generic function is known as a function unit.  

Since operator and operand are sub-classes of entity, an operator in one 

situation can become an operand in another. The sun gear is an operand in the 

function unit, “input shaft conveys sun gear” but it can be an operator for a new 

function unit “sun gear conveys torque”. The remainder of the functional units for the 

power train system can be derived to form a functional diagram from the 

transformation system.  

The FMEA Model proposed by Teoh (2003), utilizes a cause and effect 

propagation method to simulate the actual behaviour of a design in the real world. A 

state change in one entity of a functional model will affect the status of the inter-

related entities. In the power train system, the engine torque that has been conveyed 

by the torque converter will be conveyed to the sun gear through the input shaft by the 

action of the clutches and brakes. The clutches and brakes will have a state change 

from “not activating” to “activating”. This state of change will trigger a change to the 

input shaft from “not conveying” to “conveying” and in turn trigger a change to the 

sun gear from “not conveying” to “conveying” and so forth until the final gear ratio 

output. The action to convey the torque is the cause that triggers the changes across 



the components in the model. Hence, the model is said to use a cause and effect 

propagation. 

Similar to FMAG, in DIFMAG (Diagnostic FMEA Generation) the failure 

causes that create the failure modes of a model are the particularly interesting 

information used to generate the DIAgnostic FMEA (DIFMEA). This propagation is 

carried out through the behaviour of a generic function. The relation between an entity 

state and a function behaviour is then characterized into precondition and 

postcondition. The state of the operator will determine the behaviour of the generic 

function within a function unit. The behaviour will in turn decide the state of the 

operand within the function unit. These differentiate between the precondition and 

post condition. Based on this approach, the relationship is as shown in figure 5. 

 
In most cases, the operand of the function unit is an operator of the next 

function unit. Any state changes will propagate until the last boundary of the system. 

The series of preconditions and postconditions creates a causal change for a particular 

state change event. The preconditions and postconditions gain knowledge fragments 

through historical data extracted from failure reports and the FMEA. For a particular 

function unit, the operator state and the behaviour of a failure event form a set of 

preconditions. The behaviour and the state of the operand form the postcondition of 

the same event. The failure cause and effect is defined by the operator and operand 

states of a function unit, while the failure mode is defined by failure behaviour of the 

generic function. The knowledge fragment captured in precondition and post 

condition can be arranged as shown in tables 2 and 3. 

The precondition defines the behaviour of the torque converter when it is not 

transferring torque and the behaviour of the clutches and brakes when not conveying. 

The postcondition provides the knowledge about the response of the input shaft and 



torque when it receives the behaviour “not transferring” and “not conveying” from the 

operator that should make the input shaft and the clutches and brakes move. 

This discussion has been concerned with the development of an FMEA model 

for a power train system based on the FMAG requirements, an approach to enable 

automated FMEA generation. The use of the “knowledge fragment” reasoning 

approach has two advantages. First the proposed reasoning technique forms a 

framework for knowledge collection, organisation and reuse. Second, by using this 

approach, the static knowledge is confined to the entities and their functions, but not 

to the function units. During the reasoning process, it is possible to create new 

knowledge by matching the precondition and postcondition knowledge with similar 

failure behaviour.  Hence this approach has led to the idea of new knowledge 

generation based on minimum information. 

6. Diagnostic FMEA Generation 
Diagnostic FMEA Generation (DIFMAG) is an elaboration of FMAG in order to 

generate Diagnostic FMEA (DIFMEA) information that is further used to generate the 

Diagnostic Service Tools (DST) (Nor, 2006). FMAG allows users to perform several 

tasks using the FMEA Model including the creation and storage of object, function 

and model data in a permanent library for future reuse and the formation of a cause 

and effect chain (Teoh, 2003). The additional requirements for DIFMAG include 

DIFMEA generation by the creation of diagnostic trees using the information in the 

FMEA model with the corresponding symptoms and effects from cause and effect 

chains. 

The three tier design of the FMAG software has been adapted and expanded to 

form the basic structure of DIFMAG. The inner tier is the FMEA and diagnostic 

database. The FMEA database consists of relational tables that are constructed based 



on the FMEA model. The diagnostic database consists of a relational database for the 

construction of a diagnostic tree and a diagnostic service tool. The middle tier deals 

with modules responsible for calling data from the database which mainly uses 

Structured Query Language (SQL) and logic. The outer tier consists of Visual Basic 

form objects which cater for the user interfaces.  

7. DIFMEA Generation Process 
The DIFMEA generation process is based on FMAG. A functional diagram is used to 

represent the product based on conceptual modelling through (a) functional analysis, 

(b)  controls and mechanism, (c)  component selection, (d)  mapping of components to 

controls and (e) combining function units into a functional diagram. 

The functional analysis starts with function or process decomposition from a 

high-level function statement. For the power train system, the working elements are 

“to transfer the engine torque from the input shaft to different sets of gears to achieve 

the various final gear ratio outputs”. The design also requires the gears to lock and 

unlock to achieve different gear positions. In order to achieve the “lock and unlock 

different gears” there is a need to introduce another sub-function concerned with 

brakes and clutches. The resulting possible functions are, input torque, activate 

clutches and brakes, generate motion, lock and unlock gears, transfer torque and 

output torque.  

The controls and mechanism are determined by the enabling transferring 

process. In this case the planetary gear sets, annulus gear and the transfer gear will 

provide controls to the torque transferring process. These controls and mechanism are 

represented in an IDEF3 diagram (Mayer et al., 1995). 

Identification of the basic components is done with reference to the processes 

going on within the torque transferring process. Structural decomposition is used 



where the total system is decomposed into smaller sub-systems or components until a 

level where some of the components can be mapped onto the decomposed functions. 

The mechanism and controls will provide a guide to the level of structural 

decomposition. A decision can be made on whether to consider all components or just 

those which are more likely to be involved in the FMEA. As an example for an 

automatic transmission torque transferring process only certain components were 

selected for simplicity (principally those annotated in Figure 1).  

The next step is to verify whether the selected components can be established 

in an object class. For example, the entities “front clutch”, “end clutch” and “one-way 

clutch” may be generalized into a “clutch” entity. The objective is to specify the 

component as specifically as possible while considering the value the component may 

have in the object library for reuse. Figure 6 shows the structural decomposition 

chosen for the power train system. 

This next step is the mapping of the selected components to the mechanism 

and controls. This is to establish the interactions for components corresponding to the 

functions. For example, to realise the function activate clutch, the function units 

piston – actuates – clutch plates and clutch plate - activates clutch are created. Thus 

by mapping onto the structural components, the IDEF3 preliminary functional 

diagram is created as shown in figure 7. 

 
The next step is the combination of the function units into a functional 

diagram. For example, in the case of the automatic transmission, the various gear 

ratios are represented by six different scenarios. As an example, in order to achieve 

the gear ratio in 1st gear, the rear clutch and one-way clutch are actuated. The one-

way clutch locks the annulus gear preventing anticlockwise rotation. The driving 

force is transmitted to the forward sun gear which rotates in the clockwise direction. 



Hence, torque is conveyed from the forward sun gear through the short pinion 

(counterclockwise) and the long pinion (clockwise) to the annulus gear (clockwise) to 

achieve the reduction ratio of the 1st gear (Figure 8). 

 
The functional basis developed for the DIFMAG application is based on the 

original work of Hirtz et al (2001) and Teoh (2003), and the function selection is 

carried out in parallel with object formation which is based on the created conceptual 

model. According to Teoh (2003), it is important that standard terms are used within a 

design group or organization because the functions will be used as a key to retrieve 

FMEA data at a later stage. A list of the functional basis for function selection that is 

developed for DIFMEA generation process is as shown in figure 9. 

In the DIFMAG application, the cause and effect building is based on the field 

failure report which is channeled into the FMEA database. The typical attributes 

captured in a failure report are the failures, the causes of failure and the solutions to 

the failures. The generated FMEA acts as a guide to the actual product failures and is 

the basis for DST development. Subsequently, this information will provide designers 

with information to decide on the alternatives in design and components. 

This is the final process that will produce the DIFMEA information for the 

development of the DST. DIFMEA generation can be made from any components in 

the object library and be saved as a separate report.  

8. Diagnostic Service Tool 
The DIFMAG software was used as the basis of a Diagnostic Service Tool (DST) 

prototype model. The identification of users’ needs and the establishment of 

requirements were addressed using the lifecycle interaction design model by Preece et 

al. (2002). The aim was to understand as much as possible about the users and 

produce a stable set of requirements from the needs identified. A structured interview 



was carried out with a small group of automatic transmission technicians and the 

users of diagnostic tools on the subject of how they retrieve and perform repair 

procedures.  

Eight automatic transmission technicians from the Transmission Expert 

Centre, Malaysia were selected for the study. All participants regularly used 

diagnostic tools and repair manuals for problems related to engine and transmission 

systems. In the interview sessions, each was asked about their current practice and 

problems and they gave their opinions on how they solve the transmission problems 

which are not detected by the existing diagnostic tools. The structured interview 

schedule was divided into three sections. The first elicited the respondent’s 

background knowledge on using diagnostic tools and computers. The second focused 

on automatic transmission repair experiences and the third focused on their current 

practice in solving the transmission problems. 

A low fidelity prototype, which was based on task descriptions elicited by the 

interviews, was used for the initial design and requirements for interaction, diagnostic 

tree development, problem cases and repair procedures design. Three automatic 

transmission experts and trainers participated in the low fidelity prototype informal 

evaluation. Each of them went through all the tasks for the troubleshooting system 

cases, diagnostic tree, transmission information and repair procedure in detail. After 

completing the tasks, they were asked to give feedback related to the content, 

structure and screen design of the system through a structured interview. 

The main purpose of the evaluation was to verify the DST methodology and 

prototype implementation. Three different levels of automatic transmission technician 

were identified from the recruitment questionnaire, none of whom had taken part in 

any previous related test. Three subjects participated in a pilot study. All were 



diagnostic tools users and had experience in automatic transmission repairs and 

evaluating a variety of diagnostic tools software related services. Several changes 

were made to screen design, evaluation and procedures based on observation and 

feedback.  

The DST has general limited information on part failures, but the user can 

specify extended symptoms in the form of Yes/No Questions to further pin-point a 

specific part failure. As a result, a tool is created in the form of a practical diagnostic 

service tool.  

DST acquires information from the FMEA database for part failure 

information. This is used by both the “Diagnostic Tree Tool” and the “Diagnostic 

Tree Wizard” module (figure 10).  

Before DST can be utilised, information on parts failure has to be built. This 

can be done by using the Diagnostic Tree Tool (DTT) which collects information 

from the DIFMEA database. The user can select any related object to specify the 

detailed problem. DTT will create additional characteristics of the part failure with 

Yes/No questions, specify the recommended action, and create a link to the repair 

procedure information.  

There are two database tables created for the DTT process. The Diagnostic 

Tree holds information on questions, their answers, linkages, corresponding procedure 

and question reference, while the Tree Reference keeps references to created parts 

including Model, Part Names and Symptoms. The repair information module enables 

the creation of repair procedures for specific items having corresponding problems to 

assist DST users in selecting the proper action on the specified failure. The repair 

information contains a list of repair procedures that can be linked with the DST. The 

components in the repair procedure include the symptoms, causes of failure and repair 



procedures. The repair procedure displayed for “No Forward Gear” is shown in figure 

11. The repair actions suggested come directly from real field service information 

gathered for this research. 

All the data on repair information is stored in the Repair Procedure table, and 

can be retrieved and modified by users.  

To assist the user in specifying parts failure with corresponding symptoms, 

DST gives options for users to select either from the pre-set symptoms available in the 

symptom list or to manually specify their parts and symptoms using the Problem 

specifying form. Once the Parts failure information has been built using DTT and 

linked to Repair information if available, the DST can be used.  

If the user chooses to specify combinations of parts and symptoms manually, 

the system will search for the availability of corresponding information in the 

database. DST will prompt the user if the information is not available. Otherwise, it 

will start the question and answer process. The purpose of having yes/no questions is 

to determine the exact problems related to the specified symptoms. The information in 

the FMEA database for the part failure (e.g. cause, symptoms) are limited and often 

rather general. Some symptoms shown may have been caused by several different 

types of parts/ component failure. In this case, DST will help to determine the 

corresponding cause by further elaborating failure symptoms in the form of questions 

and answers. 

9. Evaluation 
Following the initial pilot studies, a main evaluation was conducted to verify the DST 

methodology and validate the prototype application. The evaluations were based on 

real automatic transmission problems that arose at the Proton service and repair centre 

in Malaysia and were carried out in two stages. The first stage was carried out 



theoretically to determine that the DST methodology and framework in solving the 

transmission problems was comparable to the available manuals. Four major problem 

cases were selected for the evaluations, as this was considered sufficient to represent 

the problems with the KM series automatic transmissions. The second stage 

evaluation was carried out practically by technicians involved in servicing and 

repairing transmissions so as to validate the prototype DST in solving real practical 

situations.  

The first evaluation is to determine whether technicians with various skills can 

diagnose and repair correctly either by using the manuals or DST. The evaluation was 

based on  determining the Hit Rate of the two methods (hit rate as defined as the 

percentage of problem cases correctly diagnosed and repaired (Barkai, 1998)). The 

second stage evaluation compared the times taken to complete the given tasks for both 

methods.  

In total 69 students undertaking the Diploma in Automotive Maintenance from 

the University of Kuala Lumpur participated in the evaluation.  These students were 

given one year’s exemption from a three year course due to their working experience 

and had already passed at least Malaysian Skills Certificate Level 2 and Institute of 

Motor Industry United Kingdom (IMI) Certificate Level 1. The four major KM series 

transmission problems earlier identified were used for the evaluation and were (1) No 

Forward and Reverse Gear, (2) No Forward Gear, (3) No Reverse Gear and (4) No 

Fourth Gear. 

A double-blind method was used to determine the Hit Rate or the percentage 

of problem cases correctly diagnosed and repaired by the technicians from diagnostic 

sessions, and two sessions were carried out for each technician level.  



In general the technicians were required to determine the possible causes of 

each of the transmission failures, extract the troubleshooting procedure process to 

examine the problem and explain briefly the required action to rectify, repair or 

replace any faulty parts and components. 

In the first session they were asked to diagnose and suggest repair action using 

repair manuals and documentation. For the following session they performed the same 

task by utilizing the DST only. They were given a short briefing regarding the DST 

and ample time to complete the tasks. Initially, they were also given time to read the 

DST user manual and allowed to browse through the system. 

In order to meet the objective the test was conducted to determine the ability 

of each level to diagnose and suggest repair actions correctly for all the four 

transmission problems cases by using the repair manuals. Each level was given sets of 

questions to answer. The possible causes of the problems could be initially 

determined by referring to functional data of a power train system and information on 

the usage of transmission element for each gear position. In this way a simple 

diagnostic tree could be drawn. 

9.1. Stage 1 Evaluation: Hit Rate using DST 
The aim of this evaluation was to test the ability of the technicians to diagnose and 

suggest repair actions by using the DST prototype. The technicians of the three levels 

were given the second task after all had completed the first task. They were given the 

user guide and DST software window readily available on the computer screen 

workstation. By browsing the DST, a list of existing symptoms can be selected from 

the database. The related problem is then selected and the causes analysed in detail 

according to the instructions as shown in figure 12 until the recommended actions are 



presented. The repair procedure and action can be selected for each of the possible 

causes from the list of repair information. 

9.2 Stage 2 Evaluation: Repair Cycle Time 

The evaluation was conducted in an actual automatic transmission training and repair 

shop. A total of 18 selected technicians with working experience in automatic 

transmission service and repair comprising 6 from each skill level participated in this 

evaluation. The main aim was to determine the total repair time taken by each level 

for both repair approaches.  

Two sessions were carried out for this stage for each problem case with a total 

of 8 sessions. For the first session the subjects were required to diagnose and repair 

using the manuals and for the second session the DST prototype was used. The 

transmissions were prepared by creating different causes contributing to each of the 

problems. Each technician was given a complete transmission on a working bench, a 

repair toolbox. and a set of instructions for each problem case. The main task was 

divided into five smaller tasks in order to complete each problem case. The times for 

each smaller task were recorded in order to determine the time breakdown for the 

whole task. The task breakdown for all the case studies includes the diagnosis of the 

causes of the problem, dismantling the transmission and analysis of the symptoms, 

replacement of the affected parts and the re-assembly of the transmission. 

The evaluation was conducted to determine the total repair time taken to 

complete all the repair work by referring to the repair manuals. Each subject was 

involved in a total of 4 sessions to complete the evaluations. In order to initiate the 

repair, the participants were expected to refer to the repair manuals to determine the 

specification of the transmission.  



By looking at the working elements and the power flow system the possible 

components causing the related problems can be detected. Analysis of each of the 

causes is carried out and a trouble shooting guide or diagnostic tree is drawn to 

determine the causes and possible repair actions.  

Verbal explanation of the possible causes was given to the examiner before 

proceeding to the next task. The transmission was then disassembled and the possible 

problem component inspected to determine the actual causes. The required repair 

action or parts replacement was then carried out and the transmission reassembled. 

Special attention was given to the use of special tools and the tightening torque. The 

total time to perform each task was recorded. 

9.2.1 Repair Time using DST 
These tasks are similar to the first task but are carried out by referring to the DST 

prototype software. The causes of problems are directly referred to the existing 

symptoms available in the software. Analysis could be done for every cause by 

following the instructions. The recommended action and repair procedure could then 

be identified.  The transmission was disassembled and inspected according to the 

diagnostic tree instructions. The main causes identified were repaired and the 

transmission reassembled. The time for each of the tasks breakdown was recorded. 

9.3 Evaluation Results 
The results of all four evaluations of stage 1 and 2 answer sheets were collected and 

the repair time compiled. The final results were then evaluated and approved by two 

transmission experts from Proton and Hyundai Motors Malaysia. 

9.3.1 Stage 1 Evaluation Result 
There were 51 student technicians in 3 groups participating in the first stage. The first 

group consisted of 21 students at level 1 who achieved an average hit rate of 29.8% 



using manual methods and 81.0% using the DST. The second group consisted 19 

level 2 students and the respective hit rates were 60.5% and 93.4%. The third group 

consisted of 11 part-time students who are full-time working technicians in service 

and repair centres and their hit rates were 84.1% and 97.7% respectively. Average hit 

rate using the DST was significantly better than using just the technical repair 

manuals. DST presented the technician with a focused and precise course of action 

and also resulted in a reduction in false part replacements. On the other hand, the 

technicians had to devise a troubleshooting strategy independently by using the repair 

manuals. 

9.3.2 Stage 2 Evaluation Result 
There were 18 selected technicians from 3 groups participating in this stage. Each 

group consisted of 6 technicians participating in each case study. In all the 

evaluations, the time taken to complete the task decreases as the technician level 

increases. However, in all cases the overall repair time improved by utilising DST 

when compared with the repair manuals. Average time improvement was 17.9% for 

level 1, 10.7% for level 2 and 5.0% for level 3. 

10. Conclusions 
The evaluations have demonstrated the DST’s capability of assisting in the repair of 

four major problems of KM series automatic transmission. They have also shown that 

the repair time has improved by utilising the prototype DST as compared to the repair 

manuals. The most noticeable time improvement is the diagnosis time which has 

shortened by 60.5%. on average for all cases. 

The parts repair procedure and reported transmission problems database will 

grow with time. Hence experience from the technician knowledge will be gathered 

and documented. This precious knowledge can then be used by junior technicians as a 



reference and for training purposes. Thus it will allow immediate reuse of information 

not only by the repair technicians but by the designer as well.  Designers can directly 

reuse this actual failure knowledge to improve existing product design or for a new 

design. 

Another significant advantage is that this field failure information can be re-

used to improve the accuracy of the FMEA and lower the costs of keeping the data 

updated, thus allowing knowledge sharing between the two activities. Hence the 

objectives of bridging the gap between the engineering and field service can be met. 
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Figure 1. Sectional View of KM series Automatic Transmission 
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Figure 2. Transformation System for Power Train System 
 

 



 

 
 
 
Figure 3. Class Hierarchy for Component Library 
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Figure 4. Object Diagram for the Transformation System 



 

 

 
Figure 5. Precondition and Postcondition Relationship (based on Teoh, 2003) 
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Figure 6. Structural Decomposition of Power Train System 
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Figure 7. Function and Structure Mapping (Based on FMAG Approach, Teoh 2003) 
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Figure 8. Functional Diagrams for 1st Gear (D, 2, L range) 



 

 
 
 
 
Figure 9. Function Library 
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Figure 10. DST Application Structure 



 

 
 

 
 
Figure 11. Repair Procedure for Sun Gear 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 12. Transmission Problem Causes Analysis and Recommended Action 
 

  

Table 1. Generic Functions (Teoh, 2003) 
 
 

 

 
 

 

 

 



Class Active Passive Description
Branch separates separated from to separate an operand into components in the forms which 

are distinct from the original
divides divided from to separate an operand into components in the same form 

as the original operand
extracts extracted from to forcefully pull out
removes removed from to take away a part of operand from the original
distributes distributed to to cause operand to break up

Channel inputs input to to bring an operand from outside into the system
outputs output from to send an operand from the system out
carries carried to to carry and move together with an operand from one place 

to another
transports transported to to move a material from one place to another (no fixed path)
transmits transmitted to to move energy or signal from one place to another (no 

fixed path)
guides guided to to direct a material with specific path
conducts conducted to to direct signal or energy with specific path
conveys conveyed to to fix the movement in linear direction
rotates rotated to to fix the movement around an axis
constrains constraint to to constrain the movement into a few DOF

Connect joins joint to to bring together two or more operands, but they can still be 
distinguished from each other

assembles assembled to to join with a predetermined manner
links linked to to couple two or more operands with an intermediate 

operand
mixes mixed with to combine two operands into a single homogeneous mass

Control 
Magnitude

actuates to enable an operand to commence an action based on a 
control signal

regulates to adjust the operand based on a control signal
increases to enlarge an operand in response to a control signal
decreases to reduce an operand in response to a control signal
changes to adjust the operand in a predetermined manner
amplifies to enlarge an operand in a predetermined manner
reduces to reduce an operand in a predetermined manner
shapes to mould or form an operand
conditions to render an operand appropriate for the desired use
stops to cease an action of an operand
prevents prevented from to keep the operand from happening
shields shielded from to restrain an operand, a portion of operand is till continue 

to transfer
protects protected from to protect the operand from something

Convert generates generated to to change from one form to another
Provision stores stored to to accumulate an operand

contains contained in to keep an operand within limits
collects collected to to bring operands together
supplies supplied to to provide an operand from storage

Signal senses sensed by to become aware of an operand
recognise recognised by to identify an operand
measures to determine the magnitude of an operand
indicates indicated to to make known about an operand
tracks to observe and record data from an operand
displays to reveal something about the operand
processes to submit information for a process

Support stabilizes to prevent an operand from changing course or location
secures secured to to firmly fix an operand
positions positioned to to hold an operand in a specified location

Non Standard interacts with to provide an effect through an interaction with the operand
Function forms to contribute to the formation of a new operand  
 

 



Table 2. Precondition 
 
 
Operator  Generic Function Precondition 
Torque converter transfers  converter failure – not transferring 
Clutches & brakes conveys  clutches not moving – not conveying 
 
 
 
Table 3. Postcondition 
 
 
Generic Function Operand Postcondition 
Transfers  Input shaft not transferring – input shaft not delivering 
Conveys  Torque  not conveying - torque not conveying 
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