
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Variability and Anisotropy of Fracture Toughness of Cortical Bone Tissue

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys.: Conf. Ser. 382 012045

(http://iopscience.iop.org/1742-6596/382/1/012045)

Download details:

IP Address: 131.231.137.147

The article was downloaded on 03/12/2012 at 11:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/382/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


 

 

 

 

 

 

Variability and Anisotropy of Fracture Toughness of Cortical 

Bone Tissue 

Adel Abdel-Wahab
1
, Norhaziqah Nordin

2
 and Vadim Silberschmidt

3
 

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough 

University, Loughborough, Leicestershire, LE11 3TU, UK 

1
 a.a.abdel-wahab@lboro.ac.uk, 

2 
N.Nordin-10@student.lboro.ac.uk, 

3
V.silberschmidt@lboro.ac.uk 

 
Abstract. Bones form protective and load-bearing framework of the body. Therefore, their 

structural integrity is vital for the quality of life. Unfortunately, bones can only sustain a load 

until a certain limit, beyond which they fail. Therefore, it is essential to study their mechanical 

and fracture behaviours in order to get an in-depth understanding of the origins of its fracture 

resistance that, in turn, can assist diagnosis and prevention of bone’s trauma. This can be 

achieved by studying mechanical properties of bone, such as its fracture toughness. Generally, 

most of bone fractures occur for long bones that consist mostly of cortical bone. Therefore, in 

this study, only a cortical bone tissue was studied. Since this tissue has an anisotropic 

behaviour and possesses hierarchical and complex structure, in this paper, an experimental 

analysis for the fracture toughness of cortical bone tissue is presented in terms of J-integral. 

The data was obtained using single-edge-notch bending (SENB) cortical specimens of bone 

tested in a three-point bending setup. Variability of values of fracture toughness was 

investigated by testing specimens cut from different cortex positions of bovine femur called 

anterior, posterior, medial, and lateral. In addition, anisotropy ratios of fracture toughness 

were considered by examining specimens cut from three different orientations: longitudinal, 

transverse and radial. Moreover, in order to link cortical bone fracture mechanisms with its 

underlying microstructure, fracture surfaces of specimens from different cortices and along 

different orientations were studied. Experimental results of this study provide a clear 

understanding of both variability and anisotropy of cortical bone tissue with regard to its 

fracture toughness. 

1.  Introduction 

Bone is a natural composite material with hierarchical organization at different length scales. At the 

nano-scale, it consists of a collagen matrix impregnated with ceramic nano-particles known as 

carbonated hydroxyapatite [1, 2]. At the micro-scale, cortical bone is laid down in lamellar layers of 5 

 m thickness. Similar to plywood composite structure, inside a layer, collagen fibers are parallel; 

however, their orientations are different for different layers. Across a bone section, not all lamellae are 

arranged in the same way, for instance, near the outer and inner surfaces, circumferential lamellae are 

parallel and arranged along the cortical bone’s circumference. On the other hand, the outside and 

inside circumferential lamellae pack a region made of circular structures called osteons, formed from 

concentric lamellae impregnated in old remnants of a bone’s remodeling process called interstitial 

matrix. The interface between osteons and interstitial matrix is called cement line; it is a collagen-free 
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and highly mineralized layer. Cement lines have a paramount effect on bone’s behavior, especially its 

fracture. Osteons are, on average, 200  m in diameter and 1 cm long and parallel to the bone’s 

longitudinal axis [3]. In addition, a network of canals and channels is formed across the bone’s section 

and along its axis; these canals accommodate blood vessels and called Haversian canals. Moreover, 

bone has living cells called osteocytes that live within an interconnected network of microscopic 

channels called canaliculi. The latter are responsible for exchange of nutrients and waste between 

osteocytes [3]. At the millimeter length scale, bone consists of a dense and thick outer layer called 

cortical bone and a sponge-like structure called trabecular bone [4]. All these hierarchical levels work 

together in symphony to enhance macroscopic mechanical properties of bone tissue in the meter range 

[4]. Microarchitecture of the cortical bone tissue is quite complex and has a significant effect on its 

mechanical and fracture properties. Moreover, the preferential alignment of both collagen fibrils and 

nano-scaled mineral crystals causes anisotropy in both mechanical and fracture properties of the tissue 

[4]. From a fracture toughness perspective, the cortical bone tissue has different fracture resistance for 

various crack-propagation directions relative to the long bone axis that is called fracture toughness 

anisotropy. Various toughening mechanisms were reported for the cortical bone tissue including 

microcracks in the vicinity of the main crack due to stress concentrations ahead of the crack tip [5-7], 

and crack deflection and blunting at cement lines that are weak interfaces at the boundaries of 

secondary osteons [8]. Recently, it was reported that ligament bridging of crack in the wake zone is a 

dominant toughening mechanism in cortical bone as it reduces a driving force at the crack tip [9-11]. 

Several authors reported that toughening mechanisms are highly dependent on the crack propagation 

direction; therefore, fracture toughness of long bones is significantly higher in transverse and radial 

directions compared to the longitudinal one [11-13]. Despite interest for many researchers to fracture 

toughness of the cortical bone tissue, understanding of the causes of bone fracture is still not fully 

developed. Therefore, in this paper, fracture toughness of cortical bone tissue was studied as a function 

of both crack propagation direction and cortex position to promote our understanding for the origins of 

its fracture resistance a step further.     

2.  Materials and Method 

2.1.  Specimen preparation 

The specimens in this study were cut from three fresh bovine femora (aged 1.5-2 years). The mid-part 

of three femurs (diaphysis) was extracted using a fine teeth band-saw. Then, the diaphysis part of each 

femur was sliced into four cortices   anterior, posterior, medial and lateral. Twenty-one specimens 

were cut from each cortex to allow crack growth along three different orientations relative to bone 

axis   longitudinal, transverse and radial as shown in Fig. 1. After cutting, specimens were ground 

under tap water using a series of grinding papers Standard ANSI grit: 240, 600, and 1200 to make sure 

that the surface is clean, without any scratches or irregularities. After preparation, the test specimens 

were put in a 0.9% physiological saline solution until tested. All specimens were prepared with the 

same dimensions for comparison according to the British Standard [14]: 25 mm x 5.43 mm x 2.72 mm 

(length   width   thickness). Also, a very fine slit of 2.7 mm x 5.43 mm was produced using a low-

speed diamond saw for all specimens according to British Standard [14]. In this paper, specimens are 

labeled based on the crack propagation direction: longitudinal, transverse, or radial. Hence, specimens 

with crack propagating parallel to the bone axis is called longitudinal, perpendicular to it is called 

transverse and in the radial direction is called radial, see Fig. 1.    
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Figure 1. (a) Schematic illustration of bovine femur; (b) cortex positions in cortical bone; (c) 

specimens with different crack propagation directions. Specimens are labeled based on crack 

propagation directions depicted by arrows. 

2.2.  Fracture toughness measurements 

 

The fracture toughness testing was performed using single-edge-notch bending on an Instron 3345 

machine with a 5 kN load cell. All specimens were loaded to failure with a displacement rate of 1 

mm/min. Specimens were loaded in three-point bending with load measured and recorded using the 

machine’s load cell and the corresponding load-line displacement was simultaneously measured using 

a linear variable differential transducer (LVDT). The obtained load-displacement curves were 

analyzed according to the British Standard [14]. Specimens cut from the diaphysis part of bovine 

femur were tested with pre-notch in transverse, longitudinal and radial orientation for different cortex 

positions called anterior, lateral, posterior and medial. After fracture tests, fracture surfaces of all the 

specimens were investigated using scanning electron microscopy (SEM). Since cortical bone is not a 

conductive material, before investigation specimens were air dried and gold coated. 

     Plane strain fracture toughness, KIc, crack opening tip displacement (CTOD), or J-integral values 

can be determined using the specimen dimensions, depth of notch, 0.2% proof strength (   ) and 

specific data from the force-displacement record of the fracture test. When the fracture follows elastic-

plastic conditions, it is not possible to determine a valid KIc value to represent fracture toughness of a 

material. However, either critical CTOD or critical J-integral values can be calculated. Obtaining a 

valid KIc value depends on the shape of the force versus displacement record, the specimen size and 
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form, and the 0.2% proof strength and toughness of the material at the temperature of interest. For a 

valid KIc measurement, the specimen dimensions (a nominal crack length ( ), thickness ( ) and the 

uncracked ligament (  –   )) each has not to be less than:     (
   

   
)
 
[14]. In this study, the behavior 

of all specimens was predominantly non-elastic and all specimens failed to satisfy the validation 

criterion of KIc. Therefore, elastic plastic fracture mechanics (EPFM) parameter, J-integral, was 

calculated based on British Standard [14].  

3.  Results and Discussion 

This study focuses on evaluating fracture-toughness values for specimens with cracks growing parallel 

to bone axis, perpendicular to it and in the radial orientation. In addition, the anisotropy ratios of the 

fracture toughness values were calculated. Results of this study show that all specimens exhibited a 

non-linear elastic-plastic behavior. Therefore, based on the British Standard [14], the critical stress 

intensity factor KIc was not valid for all specimens, and the J-integral was used to quantify its fracture 

toughness. Table 1 lists the average levels and standard deviation of critical values of J-integral and 

their cortex dependency for all crack growth directions.  

 

Table 1. Critical J-integral values (N/m) for specimens with longitudinal, radial and transverse crack 

growth in bovine femoral cortical bone tissue at different cortex positions.  

 

 

Anterior Medial Posterior Lateral 

mean SD mean SD mean SD mean SD 

Long. 1033.90   254.5 1768.47   98.8 1165.65   340.1 2034.27   509.9 

Radial 1199.09   153.1 1418.22   97.2 982.97   369.5 2664.16   554.4 

Trans. 4509.08   422.1 5925.47   802.9 3876.66   847.3 5661.61   452.7 

 

It can be noticed from Table 1 that significant differences were found among the resistance to fracture 

of specimens cut from different cortices of bovine femur cortical bone. In general, bovine femoral 

cortical bone shows higher resistance to fracture when a crack grows perpendicular to osteons 

direction, see Fig. 1. Resistance to fracture is lower for cracks grow in both radial and longitudinal 

directions for all specimens. For cracks grow in the transverse direction, specimens cut from medial 

cortices showed the highest fracture toughness when those cut from posterior cortex exhibited the 

lowest resistance to fracture. The mean fracture toughness value for specimens cut from medial 

cortices is higher by some 34.58%, 23.9% and 4.45% relative to those cut from posterior, anterior and 

lateral, respectively. On the other hand, among specimens with radially extending cracks, those cut 

from lateral cortices demonstrated the highest resistance to fracture while those cut from posterior 

exhibited the lowest resistance. The former’s mean fracture toughness value is some 54.99%, 46.77% 

and 63.1% higher compared to those of anterior, medial and posterior, respectively. Finally, for 

specimens with cracks extending parallel to osteons, similar to those with radial cracks, the mean 

fracture toughness value was the highest for specimens cut from lateral cortices. Dislike specimens 

with radially extending cracks, the mean fracture resistance value was the lowest for specimens cut 

from anterior cortices. The ratios of average fracture toughness values of specimens cut from anterior, 

medial and posterior cortices relative to that had the highest value were 49.18%, 13.1% and 42.6%, 

respectively. This implies that bovine femur has a non- uniform fracture resistance for cracks extend 

parallel to osteons, perpendicular to it and in the radial direction. Obviously, microstructure of cortical 

bone has a predominant effect on its resistance to fracture, which is the case for other mechanical 

properties, such as elastic modulus, yield stress, and ultimate strength [16]. Due to a natural loading 

regime exerted by animal’s weight and muscle forces, long bones are exposed to combined loading 

conditions that are non-uniform. As it is well known from literature, bone is a dynamic tissue that 
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reacts to mechanical loading by alternating its shape, internal microstructure and properties to meet 

external loading environment [17]. Therefore, the findings of this study demonstrated different crack 

resistance for specimens cut from different cortices with various underlying microstructures. 

Toughening mechanisms depend on crack growth orientation [17] for osteonal cortical bone. For 

cracks emerging in the transverse direction, toughening mechanisms such as crack deflection and twist 

are dominant, whereas for cracks extending in both longitudinal and radial directions, the dominating 

toughening mechanism is uncracked-ligament bridging [17]. In this study, it was found that the 

underlying microstructure of bovine cortical bone changed from one cortex to another and included 

primary, secondary and plexiform bones (see Fig. 2). Thus the interaction between the crack and 

different microstructures triggers even more toughening mechanisms that, in turn, were reflected in the 

form of different values of fracture toughness for specimens from different cortices. Also, this study 

demonstrated fracture toughness anisotropy ratios of specimens with cracks growing longitudinally, 

transversely and radially, see Table 2.  

    Table 2 introduces anisotropy ratios of fracture toughness values for specimens with cracks growing 

in longitudinal, transverse and radial orientations and cut from different cortex positions.     

  

Table 2. Values of anisotropy ratios of fracture toughness values of longitudinal, transverse and radial 

crack growth directions of bovine femoral cortical bone tissue at different cortex positions 

 

 
Anterior Medial Posterior Lateral 

Trans/Long 4.36 3.35 3.33 2.78 

Trans/ Radial 3.76 4.18 3.94 2.13 

 

     It was noticed from table 2 that bovine cortical bone demonstrated high anisotropy ratios of J-

integral values. Anisotropy ratios were calculated by relating fracture toughness values of specimens 

with transverse cracks to those with cracks extending longitudinally and radially. It was also found 

that anisotropy ratios were different for different cortices. Specimens cut from lateral cortices with 

cracks growing radially showed the lowest anisotropy ratio, while those cut from anterior cortices 

exhibited the highest ratio. 

 

     At the microstructure level, specimens cut from lateral and medial cortices revealed secondary 

osteonal bone with cement-line layers that trigger the deflection-of-crack toughening mechanism. This 

is a possible interpretation of the higher J-integral values of lateral and medial cortices specimens. 

Liang et al. [15] suggested that osteons, which were newly formed and had low stiffness, strengthened 

the cortical bone tissue via promoting crack propagation toward osteons, thus causing the crack arrest 

in the cement lines. 

         Fracture surfaces were studied using scanning electron microscopy (SEM) for the crack growth 

regions for all the specimens. Generally, higher energy consumption during crack growth was linked 

with rough and uneven surfaces while flat surfaces were indication of low levels of energy (see Fig. 

2). The most common mode of bone fracture is the transverse fracture where a crack cuts across 

osteon direction [18]. Figure 2 shows the fracture surfaces of specimens from four different cortex 

positions with cracks growing perpendicular to dominant orientation of osteons (bone axis). This study 

demonstrates that different fracture resistances are underpinned by microstructure adaptations of 

cortical bone to applied mechanical loadings.   
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Figure 2. Fracture surfaces of specimens cut from different cortex positions with cracks growing in 

transverse direction (  bone axis). A: anterior, L: lateral, M: medial and P: posterior. 

 

In summary, bone is designed to resist cracks to different extent and by employing diverse 

mechanisms for various crack-growth orientations. In addition, bone’s underlying microstructure plays 

an important role in the fracture process. In the future research, we will try to reveal the fracture 

mechanisms caused by the interaction of cracks with different microstructures of the cortical bone 

tissue. 

4.  Conclusions 

In the present study, the fracture toughness of bovine femoral cortical bone was evaluated, and the 

effect of its microstructure on fracture toughness values was examined. Based on the current study, the 

following conclusions were made:  

 Bovine femoral cortical bone demonstrated non-uniform fracture toughness for specimens cut 

from different cortices and for cracks extending along bone axis, perpendicular to it and in the 

radial direction. Different fracture resistances values are linked to cortical bone’s underlying 

microstructure. 

 Bovine cortical bone demonstrated high anisotropy ratios of J-integral values. It was also 

found that anisotropy ratios were different for different cortices.  
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