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ACOUSTIC PROPAGATION IN DISPERSIONS IN THE LONG
WAVELENGTH LIMIT∗

V. J. PINFIELD† , O. G. HARLEN‡ , M. J. W. POVEY† , AND B. D. SLEEMAN‡

Abstract. The problem of scattering of ultrasound by particles in the long wavelength limit
has a well-established solution in terms of Rayleigh expansions of the scattered fields. However,
this solution is ill-conditioned numerically, and recent work has attempted to identify an alternative
method. The scattered fields have been expressed as a perturbation expansion in the parameter Ka
(the wavenumber multiplied by the particle radius), which is small in the long wavelength region.
In the work reported here the problem has been formulated so as to be valid for all values of the
thermal wavelength, which varies in order of magnitude, from much smaller to much larger than
the particle size in the long wavelength region. Thus the present solution overlaps the limiting
solutions for very small thermal wavelength (geometric theory) and very large thermal wavelength
(low frequency) previously reported. Close agreement is demonstrated with the established Rayleigh
expansion solution.
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1. Introduction. Ultrasound spectroscopy is an increasingly popular technique
for characterizing the physical properties of dispersions, emulsions, gels, and solutions
of biomolecules. It is a noninvasive technique that can address the extensive range of
particle sizes encountered in many particulate systems and can be used with optically
opaque materials. The technique has been adopted in manufacturing processes in
the food and chemical industries. Ultrasonic instruments may be used to determine
particle size distribution and/or concentration of the dispersed particles. In order
to do this, it is necessary to use a strong theoretical basis to relate the ultrasound
properties, i.e., velocity and attenuation, to the particle size and physical properties
of the materials.

The problem of scattering of sound waves by a single spherical object (a fluid
droplet) was solved by Rayleigh [1] and later refined by Epstein and Carhart [2].
A similar problem, with solid particles, was addressed by Allegra and Hawley [3].
Their solution is referred to as ECAH. The scattered fields are expanded as spherical
harmonics in order to allow the application of boundary conditions at the particle
surface. Although the solution is analytically exact, its numerical solution can be
troublesome, because the matrix equation is ill-conditioned, and the series does not
converge uniformly. In addition, calculation of spherical Bessel functions at large
complex arguments is imprecise, and at large distances the Hankel functions oscillate
rapidly. Such numerical limitations cause difficulty in applying the ultrasound method
in practical applications.
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The aim of the present work in this area has been to formulate a numerically stable
solution to the single scatterer problem in such a way as to allow its potential extension
to multiple scatterers and to nonspherical scatterers. The frequency range of interest is
termed the long wavelength limit, in which the wavelength of the propagating acoustic
wave is much larger than the size of the droplet (Ka � 1, where K is the wavenumber
and a the radius of the particles). In this case, Kleinman’s approach can be applied,
in which the problem is reformulated to satisfy the radiation condition and uses a
perturbation series solution in powers of Ka. At the lowest frequencies, at which the
wavelength of the thermal waves produced by scattering is also much larger than the
particle radius (La � 1, where L is the thermal wavenumber), the same technique can
be applied to the thermal wave. The method was applied to single particle scattering
in the low-frequency potential scattering theory (LFPST) previously published (Harlen
et al. [4]). A later paper (Harlen et al. [5]) considered the case La � 1, where
the thermal wavelength is much smaller than the particle size, and the Kleinman
series expansion in La cannot be used. In this case, a geometric theory method
was developed to approximate the solution for the thermal waves while retaining the
Kleinman technique for the propagational waves.

In the work reported here, the Kleinman principles have again been used to
separate the radiative terms of the waves and to define a series expansion which is
convergent for the long wavelength limit (Ka � 1). The significant difference is that
all wave modes are expanded as a series in Ka, leaving dependence on the thermal
wavenumber implicit in the coefficients. This avoids assumptions on the size of La.

In the next section, the propagation of sound in fluids is considered in the context
of a plane wave incident on a isolated spherical particle. The full ECAH method for
the solution of the scattering problem is summarized and the perturbation expan-
sion technique introduced. Sections 3 and 4 define the analytical forms of the wave
potentials outside and inside the particle. Section 5 constructs the solution to the
scattering problem in the perturbation method, showing the general solution and ex-
plicit results for the first few terms. Calculations are presented in section 6 to show
that the method agrees with the full Rayleigh expansion method.

2. Sound fields in a fluid. The principles of sound propagation in homogeneous
fluids are well documented, and only the most important results are given here. The
equations of conservation of mass (continuity equation), momentum (Navier–Stokes
equation), and energy, together with some thermodynamic relations, can be simplified
by use of a velocity potential, φ, such that

u = −∇φ,(1)

where u is the velocity of the fluid. The resulting biharmonic equation is further
separated by defining two potentials, one for each of two types of wave mode (prop-
agational and thermal). Propagational modes are the “usual” mode by which sound
travels in a fluid. The thermal mode represents heat flow and is dissipative and there-
fore highly localized. There is an additional solution to the equations resulting from
use of a vector potential, which corresponds to shear wave modes. Again these are
dissipative with a very short decay length in fluids. In many practical applications
of ultrasound, the shear wave modes resulting from scattering at dispersed particles
are small. Hence for the subsequent analysis and in the previously published work
(Harlen et al. [4], [5]), the vector potential solution is neglected. It was, however,
included in the ECAH solutions.
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Periodic solutions for the wave potentials have a time dependence defined by a
factor e−iωt , where ω is the angular frequency, which results in two separate Helmholtz
equations, one each for the propagational and thermal modes, thus:

(
∇2 + K2

)
ϕ = 0,

(
∇2 + L2

)
ψ = 0.(2)

The overall velocity potential in the fluid is the sum of the propagational (ϕ) and
thermal (ψ) potentials.

The wavenumbers are given to a very good approximation in fluids by

K =
ω

v

(
1 + i

(γ − 1)σω

2v2

)
, L =

( ω

2σ

)1/2

(1 + i) ,(3)

where γ is the ratio of specific heat capacities, v the speed of sound, and σ the thermal
diffusivity, such that σ = τ/ρCp, where τ is the thermal conductivity, ρ is the density,
and Cp is the specific heat capacity at constant pressure.

The common expression for the wavenumber of the propagational mode has the
form

K =
ω

v
+ iα,(4)

where α is the attenuation. There are many absorption effects in fluids which are not
accounted for in the classical thermal and fluid momentum equations used to derive
the wavenumber in (3). Hence the measured attenuation should be used instead, as
in (4).

The pressure and temperature fluctuations which result from the wave motions
are related to the velocity potentials as follows:

P = −iωρ (ϕ + ψ) , T = Γcϕ + Γtψ,(5)

where the thermal factor for each wave mode is

Γc =
−iK2 (γ − 1)

β (ω + iγσK2)
, Γt =

−iL2 (γ − 1)

β (ω + iγσL2)
.(6)

Subscript c is used to denote the compressional (or propagational) mode and t the
thermal mode. Note that these temperature factors were quoted incorrectly in the
previous paper (Harlen et al. [5]).

A useful thermodynamic relation is

γ − 1 =
v2β2T0

Cp
,(7)

where β is the thermal expansivity and T0 is the temperature of the system, not the
small temperature changes caused by the wave motion.

2.1. Scattering of sound waves by particles. In order to calculate the ultra-
sound field produced by a dispersion of particles, it is first necessary to consider the
effect on a sound wave of a single particle immersed in isolation in an infinite uniform
fluid. The most relevant and simple system to study is that of a plane wave of angular
frequency ω incident on a spherical particle of radius a. The fluid inside the particle
has different physical properties and so will respond in a different way from the fluid
surrounding it to the compression and rarefaction of the wave. Scattered waves of
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each mode are produced inside and outside the particle. At the surface of the particle
certain boundary conditions must be met. These include the requirement that the
boundary not be disrupted, i.e., that material immediately inside and outside of the
particle move at the same speed, and that temperature and heat flow be continuous
(the same either side of the interface). In terms of the wave potentials, the boundary
conditions are as follows.

The normal velocity of fluid on both sides of the boundary must be equal to avoid
formation of a void:

∂

∂r
(ϕ0 + ϕ + ψ) =

∂

∂r
(ϕ′ + ψ′) .(8)

The pressure must be equal on each side of the boundary:

ϕ0 + ϕ + ψ = ρ̂ (ϕ′ + ψ′) .(9)

The temperature must be equal on each side of the boundary:

Γcϕ0 + Γcϕ + Γtψ = Γ′
cϕ

′ + Γ′
tψ

′.(10)

The heat flux must be equal on each side of the boundary:

Γc
∂

∂r
(ϕ0 + ϕ) + Γt

∂ψ

∂r
= τ̂

(
Γ′
c

∂ϕ′

∂r
+ Γ′

t

∂ψ′

∂r

)
,(11)

where primed quantities refer to the inside of the particle,

ρ̂ =
ρ′

ρ
, τ̂ =

τ ′

τ
,(12)

and ϕ0 is the potential of the incident wave.
The objective is to determine the amplitude and phase of the scattered propaga-

tional mode, which is the only part which is still nonnegligible at a significant distance
from the particle (the thermal field having decayed to zero). Other published work is
used to determine the wavenumber for a dispersion of particles, by a multiple scat-
tering approach, to obtain the net effect of many particles. For the present work, the
aim is to calculate the scattered wave amplitude.

In order to obtain the solution to the scattering problem, a general form for each
wave mode must be proposed. The potentials of the scattered fields must be solutions
of the appropriate Helmholtz equation (2), whether inside or outside the particle. In
addition, the waves inside the particle must be defined at the origin (the center of the
particle), and those outside the particle must satisfy the radiation condition. Finally,
the boundary conditions at the surface of the particle must be satisfied. In sections
3 and 4 appropriate forms for the solutions are constructed to allow the scattering
problem to be resolved.

2.2. ECAH method. The Epstein and Carhart method [2] for the scattering
problem expanded the solutions of the Helmholtz equation in spherical coordinates.
The solutions are Rayleigh series in the spherical harmonics, that is, a combined series
in the spherical Bessel functions (for the radial dependence) and Legendre polynomials
(for the angular dependence). The Bessel functions are chosen appropriately for the
region in which the wave exists; in the continuous phase the solution must be defined
at large distances, so the Hankel function hn is used, whereas inside the particle the
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solution must be defined at the origin, so the jn function is used. ECAH took the
forms for each wave potential to be as follows:

ϕ =

∞∑
n=0

in (2n + 1)Anhn (Kr)Pn (cos θ) ,

ψ =

∞∑
n=0

in (2n + 1)Bnhn (Lr)Pn (cos θ) ,

ϕ′ =

∞∑
n=0

in (2n + 1)A′
njn (K ′r)Pn (cos θ) ,

ψ′ =

∞∑
n=0

in (2n + 1)B′
njn (L′r)Pn (cos θ) .

(13)

Similarly the incident field (a plane wave) can be expressed as

ϕ0 =

∞∑
n=0

in(2n + 1)jn (Kr)Pn (cos θ) .(14)

In the ECAH method, these functions and the relevant derivatives are directly
evaluated at the surface of the particle and substituted into the set of boundary
conditions. For a spherical particle of radius a the Bessel functions must be determined
at r = a. In the long wavelength limit, |Ka| � 1 and |K ′a| � 1, the Hankel and Bessel
functions can cause difficulties, and the difference in scale of the values appearing in
the boundary equations results in an ill-conditioned matrix equation which must be
solved.

In order to avoid these problems, a solution is sought which uses alternative forms
for the wave potentials, both to avoid the direct use of the Bessel functions and to
produce a direct solution not relying on a matrix inversion for its solution.

2.3. Kleinman method and Poincaré series. In the long wavelength limit,
the condition |Ka| � 1 applies. Kleinman developed a method for solving low-
frequency scattering problems (see Harlen et al. [4]) in which he expressed the poten-
tials as a perturbation expansion, i.e., as a series in powers of iKa:

φ =
∞∑

m=0

(iKa)
m
φm,(15)

where φ is one of the wave potentials. The series is known to converge rapidly,
with an error bounded by O

(
|Ka|m+1)

if the mth order solution is used. Thus the
problem becomes one of finding the solution to a set of potential functions. Although
this may seem to increase the number of equations which must be solved, it avoids
the ill-conditioned numerical calculation suffered by the ECAH approach and allows
the series to be terminated with some confidence that an accurate result has been
obtained. Further details of the method are given in Harlen et al. [4] and [5].

In the present work, all potentials are expanded as a series in iKa. The previous
low-frequency work (Harlen et al. [4]) expanded each wave potential as a series in
its appropriate wavenumber; for example, the thermal wave mode was defined as
a series in powers of L. Later, the work on the short thermal wavelength region
(geometric theory [5]) introduced combined power series, with positive powers of the
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propagational wavenumbers, and inverse powers of the thermal wavenumbers. In the
frequency range considered in that work, the values of |La| and |L′a| were large, hence
an inverse power series was appropriate. For example, for a scattered propagational
mode potential,

φ =

∞∑
n=0

∞∑
m=0

(iKa)
n

(iLa)
m φnm.(16)

In order to achieve a method which is valid across the entire frequency range in the long
wavelength limit, it is appropriate to use only a power series in iKa since this value is
by definition small over the entire range, |Ka| � 1, thus assuring convergence of the
series. Series in positive or inverse powers of La are limited in their scope because of
the variation in magnitude of this parameter within the long wavelength region. Its
value ranges from small at low frequency to very large at the upper frequency limit
of the long wavelength region. Hence in the current work, the power series in iKa
is applied to each wave potential, with any dependence on other wavenumbers being
implicit in the rest of the potential.

3. Solution forms outside the particle. In the continuous phase outside the
particle, the solutions of the Helmholtz equation must also satisfy the radiation con-
dition, which restricts its form at large distances from the particle. The Sommerfield
radiation condition is as follows:

lim
r→∞

[
r

(
∂φ

∂r
− ikφ

)]
= 0.(17)

In physical terms, the condition means that there is no energy radiating inwards from
infinity. Thus the solution appears as an outgoing spherical wave at large distances
from the particle (cf. Colton and Kress [6, p. 21]).

The spherical Hankel function used in the ECAH method is one such solution,
each hn(kr) including a factor eikr

/
r which represents a spherical wave. However,

radiating solutions to the Helmholtz equation are not regular at infinity, and it is the
exponential part of the function which caused numerical difficulties at large arguments
(for the thermal waves).

In general terms, the form of the solution is

φ =
eikr

r
φ̃ =

eikr

r

∞∑
l=0

fl (ϑ,Ω)

rl
,(18)

where fl is the angular dependence (Harlen et al. [4]). The function φ̃ does not suffer
from the mathematical difficulties of the overall potential φ, and is regular at infinity.

Following the previous method (Harlen et al. [4]), it is therefore appropriate to
introduce new potential functions, ϕ̃ and ψ̃, for the propagational and thermal modes,
respectively, outside the particle such that

ϕ = eiK(r−a)ϕ̃,(19)

ψ = eiL(r−a)ψ̃.(20)

The exponential spherical-wave factors have been explicitly taken out, so that the
remaining functions ϕ̃ and ψ̃ are regular and differentiable. In addition when applying
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boundary conditions for a spherical particle at r = a the exponential factors do not
contribute.

Continuing the Kleinman approach, the next step is to express the new potential
functions as a series in iKa (see previous section), thus

(
ϕ̃, ψ̃

)
=

∑
m

(iKa)
m
(
ϕ̃m, ψ̃m

)
.(21)

3.1. Propagational mode. Using the spherical harmonic solutions to the Helm-
holtz equation, the partial fields for the propagational mode can then be written as

ϕ̃m =

∞∑
n=0

∑
j=0

Anmj ·
rj

aj
· a

n+1

rn+1
· Pn (cosϑ) .(22)

This form of the solution is suggested by the results of the LFPST method (Harlen et
al. [4]), although it is expressed here as a general series in r. The full wave potential
can be constructed using (21) and (19). The Helmholtz equation (2) can then be
shown to relate the potentials of consecutive order m by the equation

∇2ϕ̃m = − 2

ar

∂

∂r
(rϕ̃m−1) .(23)

By substituting the general solution (22) into this form of the Helmholtz equation,
and matching powers of (iKa) for each (spherical harmonic) order n, it can be shown
that the coefficients are related by the following recurrence relation:

An,m,j = − 2 (j − 1 − n)

j (j − 1 − 2n)
An,m−1,j−1 for j ≥ 1.(24)

Thus coefficients for the potential of order m are related to those for the previous
order. Only the j = 0 coefficient remains to be solved from the boundary equations.
By definition, all coefficients for orders m < 0 are zero. Note that the coefficients are
zero for j ≥ n + 1, and hence the coefficients may be nonzero up to and including
j = n, i.e., it is a finite series. The solution for the lowest orders (see section 5.6)
demonstrates that, excepting n = 0, the first (in m) nonzero coefficient is for m = n,
which implies that at larger orders m the last nonzero term in the j-series will be for
j = m − n. The result also shows that (22) does give a solution of the Helmholtz
equation. Although the propagational mode solution (22) does not appear to have
the same form as that required for a radiating solution (18), it is clear that since the
coefficients are nonzero only for j ≤ n, each term in l (18) includes contributions from
different m, n, and j combinations, which together give the angular dependence fl.

The ECAH method expresses the propagational scattered wave in terms of the
spherical Hankel functions hn(Kr). Our result is not simply a power series expansion
in Kr of the Hankel function. This is because the wave potential has been written
as a power series in iKa, which removes all the K-dependence, leaving a series in r,
whose coefficients are to be determined. Contributions from different orders m make
up the overall potential series in Kr.

3.2. Thermal mode. In the ECAH method, the thermal wave potential in
the continuous phase was based on the spherical Hankel function hn(Lr). Since the
perturbation series expansion (21) is taken in powers of (iKa), rather than in powers
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of L, the thermal potential can be expressed simply using the series expansion of the
spherical Hankel function. Thus

hn(x) = eix
n+1∑
j=1

hnj

xj
(25)

(see the appendix for the factors hnj), so that the thermal wave potential takes the
form

ψ̃m =

∞∑
n=0

n+1∑
j=1

Bnm · hnj

(Lr)j
· Pn (cosϑ) .(26)

All factors of L are taken implicitly as part of the potential function. The spherical
Hankel function, in fact, results in a finite series in inverse powers of Lr, whose
coefficients are known. These are all included in the appropriate term in the series in
powers of (iKa)m.

3.3. The incident wave. The incident wave is a plane wave and can be ex-
pressed as a series of spherical harmonics, as in the ECAH method (see (14)). In
order to follow the same method as used for the other waves, the spherical Bessel
function can be expanded as a power series in (iKa), using the power series expansion
of the spherical Bessel function

jn (x) = 2nxn
∞∑
s=0

(−1)
s
(s + n)!

s! (2s + 2n + 1)!
x2s(27)

(Arfken [7, p. 625]).
Thus the plane wave can be written

ϕ0 =

∞∑
n=0

∞∑
s=0

(iKa)
n+2s

( r
a

)n+2s

Fn (s)Pn (cosϑ) ,(28)

where

Fn (s) =
2n (2n + 1) (s + n)!

s! (2s + 2n + 1)!
,(29)

where n and s are nonnegative integers (F is zero otherwise). For purposes of numer-
ical calculation, the factorial functions suffer from overflow for all but very low orders
(n, s). The following recurrence relations can be used for accurate calculation:

F0 (0) = 1,(30)

Fn (0)

Fn−1 (0)
=

1

(2n− 1)
for n ≥ 1,(31)

Fn (s)

Fn (s− 1)
=

1

2s (2n + 2s + 1)
for s ≥ 1.(32)

In the low-frequency scattering method (Harlen et al. [4]), the incident field was
included in the form of (14), with the jn(Kr) function retained. Thus the contri-
bution of the incident field was included entirely in the zeroth and first order terms
of the perturbation series in (iKa). The later work for the higher frequency region
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(Harlen et al. [5]) expressed the incident field through the power series expansion of
the exponential form:

eiKz = eiKr cos θ =

∞∑
n=0

(iKa cos θ)
n

n!
.(33)

However, this requires that each of the powers of cos θ be expressed in terms of the
associated Legendre polynomials Pn (cos θ) which appear in the other wave potentials
in order to match the angular dependence in the boundary conditions. Hence the
expansion used here, (28), appears to be most consistent with the method, since the
powers of iKa and the angular dependence Pn (cos θ) can be matched directly in the
boundary equations.

4. Solution forms inside the particle. Within the particle or droplet, the
solutions to the Helmholtz equation need not satisfy the radiation condition, since
the waves are in a bounded region. However, the solutions must be defined at the
origin (r = 0). In spherical coordinates the appropriate solutions for the radial part of
the potential are the spherical Bessel functions, jn, rather than the spherical Hankel
functions, hn, which are not defined at the origin. When the boundary conditions are
applied, the Bessel function for the thermal wave must be evaluated for an argument
L′a which can have a large imaginary component in the frequency range of interest.
Hence, it is again desirable to avoid the use of Bessel functions.

4.1. Propagational mode. There are many different ways of expressing the
spherical Bessel functions jn—for example, as an infinite power series or as a combi-
nation of trigonometric functions sin and cos. For the propagational mode inside the
particle, the power series form can be used, since the value K ′a (which is the argu-
ment of the function used in the boundary equations) is small in the long wavelength
region. First, applying the perturbation series expansion as

ϕ′ =
∑
m

(iKa)
m
ϕ′
m(34)

and then expressing the potential as a series in powers of r gives

ϕ′
m =

∞∑
n=0

∑
j=0

A′
nmj ·

rj

aj
· r

n

an
· Pn (cosϑ) .(35)

The Helmholtz equation (2) can again be used with (34) to relate potentials to those
of a different order, and thus

∇2ϕ′
m =

ĉ

a2
ϕ′
m−2,(36)

where

ĉ =
K ′2

K2
,(37)

which is frequency independent to a very good approximation. Substituting the gen-
eral solution, (35), into (36) and matching powers of iKa as before results in the
following recurrence relation for the coefficients:

A′
n,m,j =

ĉ

j (2n + j + 1)
A′

n,m−2,j−2 for j ≥ 2,(38)

A′
n,m,j = 0 for j = 1 and all odd values of j.(39)
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As in the case of the propagational mode in the continuous phase, the above equations
show that the coefficients A′

n,m,j for order m can be calculated from those of a previous
order, given that all coefficients for m < 0 are zero. Only the j = 0 coefficient remains
to be determined from the boundary conditions. In this case the limit of the series is
determined by the number of nonzero coefficients for the previous order, producing
an expanding triangle of coefficients. The solution of the boundary conditions shows
that the first nonzero coefficient is for n = m, j = 0, so that the limit of the series in
j would be j = m− n, where m > n.

4.2. Thermal mode. For the thermal wave, the argument of the function at
the boundary, L′a, may be small or very large, depending on the frequency. The usual
power series expansion of jn would be inappropriate at large arguments. Similarly an
infinite inverse power series in L′r, as used by Harlen et al. [5], would be unsuitable
at small arguments and is not defined at the origin. Hence, either form is restricted
in its frequency range.

The trigonometric form of the Bessel function jn (e.g., j0 (x) = sinx/x) can
be modified by expressing the trigonometric functions as a sum or difference of two
exponential terms eix and e−ix, and thus

jn(x) = eix
n+1∑
j=1

jnj+
xj

− e−ix
n+1∑
j=1

jnj−
xj

(40)

(see the appendix for the coefficients).
Hence, the wave potential for the thermal wave in the particle could be written

as a sum of modified outward and inward spherical waves. Arfken [7, p. 627] states
that “jn(x) and nn(x) are appropriate for a description of standing spherical waves;
h1
n(x) and h2

n(x) correspond to traveling spherical waves.” A standing wave results
from a superposition of traveling waves in opposite directions.

Hence the thermal wave inside the particle can be written as

ψ′ = eiL
′(r−a)ψ̃′

+ − e−iL′(r−a)ψ̃′
−.(41)

Following the previous perturbation series method with each of the new wave poten-
tials, {

ψ̃′
+, ψ̃

′
−

}
=

∑
m

(iKa)
m
{
ψ̃′

+m, ψ̃′
−m

}
.(42)

And each of the terms has the usual angular dependence; thus

ψ̃′
+m =

∞∑
n=0

n+1∑
j=1

B′
nm · e2iL′a · jnj+

(L′r)j
· Pn (cosϑ) ,(43)

ψ̃′
−m =

∞∑
n=0

n+1∑
j=1

B′
nm · jnj−

(L′r)j
· Pn (cosϑ) .(44)

The factor e2iL′a results from the condition that the potential be defined at the origin.
All inverse powers of r must cancel at the origin, leaving only a single term from n = 0.

The previous work on scattering at the high-frequency end of the long wavelength
limit (Harlen et al. [5]) used only the second of the two terms given in (41). When a
series solution is used in powers of L′a the only solution for the zeroth order term is
a/r (Harlen et al. [5, equation (4.9)]), which results in a function which is not defined
at the origin. The result given above avoids this problem.
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5. Construction of the solution.

5.1. Pressure and temperature factors. When applying the boundary con-
ditions, terms in the same powers of iKa must be matched, as must the angular
dependence Pn (cos θ). For consistency, any other parameters which appear in the
boundary conditions must be expressed as the appropriate power of iKa. The pres-
sure and temperature changes caused by the different waves were defined in (5). The
pressure is related to the wave potential by a factor which includes the frequency and
density. Since the frequency is the same for all wave forms, this factor will cancel
from the relevant boundary equation. However, the thermal factors (equation (6))
have different frequency dependence for the different wave modes, and these need to
be defined in relation to powers of iKa.

For the propagational modes, the thermal factors can be simplified by using the
relation ∣∣∣∣K

2

L2

∣∣∣∣ ≈ ωσ

v2
� 1.(45)

The approximation is not limited in frequency range, but relies on the small value of
ωσ

/
v2 which is of order 10−5 at 100 MHz in water at 30◦ C, so that

Γc =
−iK2 (γ − 1)

β (ω + iγσK2)
≈ K2 (γ − 1)

βσL2
(46)

and

Γ′
c =

−iK ′2 (γ′ − 1)

β′ (ω + iγ′σ′K ′2)
≈ ĉK2 (γ′ − 1)

β′σ′L′2 .(47)

The dependence on L is left implicit, whereas the power series in (iKa) requires
explicit consideration of powers of K. Hence the K-dependence of thermal factors are
expressed by two new parameters, and thus

Γc = (iKa)
2
gc, Γ′

c = (iKa)
2
g′c.(48)

The thermal factors for the thermal wave modes can be simplified,

Γt =
−iL2 (γ − 1)

β (ω + iγσL2)
≈ − 1

βσ
,(49)

and similarly in the dispersed phase. The temperature factors for the thermal waves
can therefore be seen to be approximately independent of frequency, and hence inde-
pendent of K, which is the power series being used.

5.2. Definitions. The application of the boundary conditions leads to some
complicated equations, which can be made easier to read by using some further sym-
bols to define collections of terms. In addition, in numerical calculation, greater accu-
racy is achieved (avoiding subtraction of nearly equal terms) by using the recurrence
relation (24) to write

∑
j=0

An,m−1,j+

m−n∑
j=0

jAnmj =

m−n∑
j=1

− j

(j − 2n)
An,m−1,j + δn0An,m−1,0,(50)



500 PINFIELD, HARLEN, POVEY, AND SLEEMAN

where δn0 is a Kronecker delta. The second term on the right-hand side which affects
only the n = 0 results was omitted in the reported LFPST solution (Harlen et al. [4]).

Other symbols are defined as follows:

Sh =

n+1∑
j=1

hnj

(La)
j
,(51)

Sdh =

n+1∑
j=1

(iLa− j)hnj

(La)
j

,(52)

Sj = e2iL′a
n+1∑
j=1

jnj+

(L′a)
j
−

n+1∑
j=1

jnj−

(L′a)
j
,(53)

Sdj = e2iL′a
n+1∑
j=1

(iL′a− j) jnj+

(L′a)
j

+

n+1∑
j=1

(iL′a + j) jnj−

(L′a)
j

,(54)

SA,m−s =

n∑
j=0

An,m−s,j for s = 1, 2, 3, SA,m =

n∑
j=1

An,m,j ,(55)

SjA,m−s =

n∑
j=1

− j

(j − 2n)
An,m−s,j + δn0An,m−s,0 for s = 0, 1, 2, 3,(56)

SA′,m−s =

m−n∑
j=0

A′
n,m−s,j for s = 1, 2, 3, SA′,m =

m−n∑
j=1

A′
n,m,j ,(57)

SjA′,m−s =

m−n∑
j=1

jA′
n,m−s,j for s = 0, 1, 2.(58)

5.3. Boundary conditions. Having defined the wave potentials in a consistent
form, as perturbation series in powers of iKa, and with the Legendre polynomials
defining the angular dependence, the boundary conditions can now be applied at
the surface of the spherical particle, r = a. Each boundary equation consists of
summations over orders n,m. The spherical harmonic terms which define the angular
dependence are independent and hence must be matched—so all terms in the same n
must be matched. In addition, terms in powers of (iKa)m are matched on each side of
the equation, which may arise from various orders of m. If each order m is determined
in turn, all coefficients for previous orders, e.g., m−1, are already known. In addition,
the propagational mode coefficients for order m for j ≥ 1 can be calculated from the
previous order results (see (24) and (38)). Hence, the boundary equations for the
n,mth order include four unknowns:

Anm0, A′
nm0, Bnm, B′

nm.
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The four boundary conditions (8)–(11) result in the equations below:

mFn

(
m− n

2

)
+

m−1−n∑
j=0

An,m−1,j +

m−n∑
j=1

(j − n− 1)Anmj − (n + 1)Anm0 + SdhBnm

=

m−n∑
j=1

(j + n)A′
nmj + nA′

nm0 + SdjB
′
nm,(59)

Fn

(
m− n

2

)
+

m−n∑
j=1

Anmj + Anm0 + ShBnm

= ρ̂

m−n∑
j=1

A′
nmj + ρ̂A′

nm0 + ρ̂SjB
′
nm,(60)

gcFn

(
m− n− 2

2

)
+ gc

m−2−n∑
j=0

An,m−2,j + ΓtShBnm

= g′c

m−2−n∑
j=0

A′
n,m−2,j + Γ′

tSjB
′
nm,(61)

gc (m− 2)Fn

(
m− n− 2

2

)
+ gc

m−3−n∑
j=0

An,m−3,j

+ gc

m−2−n∑
j=0

(j − n− 1)An,m−2,j + ΓtSdhBnm

= τ̂ g′c

m−2−n∑
j=0

(j + n)A′
n,m−2,j + τ̂Γ′

tSdjB
′
nm.(62)

5.4. Solution. The solution proceeds by stepping through the orders of m start-
ing at m = 0. All coefficients are zero for m < 0. For each m the recurrence relations
are used to derive any nonzero propagational mode coefficients for order m (equations
(24) and (38)). The two thermal boundary conditions, (61) and (62), for the n,mth
order include only the unknown thermal coefficients; other terms, being from previous
orders m−2 and m−3, are already known. Hence (61) and (62) can be solved for the
thermal coefficients Bnmand B′

nm. These can be substituted into the other boundary
equations, (59) and (60), in order to determine the remaining propagational mode
coefficients Anm0, A′

nm0.
The thermal coefficients for n,m are

Bnm =
[
−gc (τ̂Sdj − (m− 2)Sj)Fn ((m− n− 2)/2)

− gc {(τ̂Sdj + (n + 1)Sj)SA,m−2 − SjSjA,m−3}(63)

+ τ̂ g′c {(Sdj − nSj)SA′,m−2 − SjSjA′,m−2}
]
/Γt (τ̂SdjSh − SjSdh) ,
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B′
nm =

[
−gc (Sdh − (m− 2)Sh)Fn ((m− n− 2)/2)

− gc {(Sdh + (n + 1)Sh)SA,m−2 − ShSjA,m−3}(64)

+ g′c {(Sdh − nτ̂Sh)SA′,m−2 − τ̂ShSjA′,m−2}
]
/Γ′

t (τ̂SdjSh − SjSdh) .

Substituting into the boundary conditions, (59) and (60), thus gives

Anm0 =
[
(mρ̂− n)Fn ((m− n)/2)

− (n + (n + 1) ρ̂)SA,m + ρ̂ (SjA,m−1 − SjA′,m)(65)

+ (ρ̂Sdh − nSh)Bnm − ρ̂ (Sdj − nSj)B
′
nm

]
/[n + (n + 1) ρ̂] ,

A′
nm0 =

[
(m + n + 1)Fn ((m− n)/2)

− (n + (n + 1) ρ̂)SA′,m + (SjA,m−1 − SjA′,m)(66)

+ (Sdh + (n + 1)Sh)Bnm − (Sdj + (n + 1) ρ̂Sj)B
′
nm

]
/[n + (n + 1) ρ̂] .

Since the thermal boundary equations (61) and (62) include terms in order m−2
and lower orders, this implies that the first nonzero thermal field contribution is at
second order in iKa.

5.5. Multiple scattering. For practical application of the scattering results, it
is necessary to relate the scattering from a single particle to the wavenumber (and
corresponding velocity and attenuation) of a dispersion of such particles. The com-
monly used formulation for multiple scattering is that of Lloyd and Berry [8], whose
result was derived in a different way by Waterman and Truell and later works [9],
[10]. Taking the limiting form of the solution, (18), in the far field as r approaches
infinity, the scattered field takes the form

ϕ → eiKr

r
f (θ) .(67)

In terms of the Legendre polynomials,

f (θ) =
1

iK

∞∑
n=0

(2n + 1)TnPn (cos θ) .(68)

The scattered propagational field, combining (19), (21), and (22), has the form

ϕ =
∞∑

m=0

∞∑
n=0

∑
j=0

Anmj (iKa)
m
eiK(r−a) · r

j

aj
· a

n+1

rn+1
· Pn (cosϑ) ,(69)

from which the far field coefficient Tn is

Tn =
e−iKa

(2n + 1)

∞∑
m=0

(iKa)
m+1

Anmn,(70)

showing that only the terms j = n contribute in the far field. For each spherical
harmonic n (except for n = 0), the first nonzero term for the j = 0 coefficients (from
the boundary equations) is for m = n (see, for example, the results in Table 1).
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Following the recurrence relation (equation (24)) through the orders m shows that
the first nonzero term appearing in the far field (i.e., for j = n) will be at order
m = 2n. So for the n = 1 far field coefficient, T1, the first contribution results from
A121; for n = 2 the first nonzero term in T2 corresponds to m = 4, i.e., A242. It is
very important to include sufficient orders m ≥ 2n when an accurate solution for the
nth order far field coefficient is required.

The multiple scattering result for the wavenumber of the dispersion, B, is

(
B

K

)2

= 1 +
3φ

K2a3
f (0)

+
9φ2

4K4a6

(
f2 (π) − f2 (0) −

∫ π

0

dθ
1

sin (θ/2)

(
d

dθ
f2 (θ)

))
,(71)

which to second order gives

(
B

K

)2

= 1 − 3iφ

K3a3
(T0 + 3T1 + 5T2)

− 27φ2

K6a6

(
T0T1 +

10

3
T0T2 + 2T 2

1 + 11T1T2 +
230

21
T 2

2

)
.(72)

Note that here the symbol φ refers to the volume fraction of the dispersed particles.

5.6. Explicit solutions for low orders. In order to demonstrate the method
of solution and to derive explicit solutions which may be used instead of the gen-
eral solution, the results are here derived for low orders of n and m. The following
parameters are those which are used to obtain the low order solutions:

For n = 0

h01 = −i,(73)

Sh = −i/(La) , Sdh = −i(iLa− 1)/(La) ,(74)

j01+ = j01− = 1/(2i) ,(75)

Sj =
(
e2iL′a − 1

)/
(2iL′a) ,(76)

Sdj =
{
iL′a

(
e2iL′a + 1

)
−
(
e2iL′a − 1

)}/
(2iL′a) ,(77)

F0(0) = 1, F0(1) = 1/6,(78)

and for n = 1

F1(0) = 1.(79)

All the nonzero coefficients are given in Table 1 for orders n ≤ 2 and m ≤ 2. The
method for obtaining these solutions is summarized below.
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Table 1

Explicit solutions for scattering coefficients at low orders.

n = 0 n = 1 n = 2
m = 0

A′
000 = 1/ρ̂

m = 1

A110 =
(ρ̂− 1)

(2ρ̂ + 1)

A′
110 =

3

(2ρ̂ + 1)

m = 2

A′
022 =

ĉ

6ρ̂

B02 =
τ̂ (g′c − ρ̂gc)Sdj

ρ̂Γt

(
τ̂SdjSh − SjSdh

)

B′
02 =

(g′c − ρ̂gc)Sdh

ρ̂Γ′
t

(
τ̂SdjSh − SjSdh

)

A120 =
(ρ̂− 1)

(2ρ̂ + 1)

A121 = − (ρ̂− 1)

(2ρ̂ + 1)

A220 =
2 (ρ̂− 1)

3 (3ρ̂ + 2)

A′
220 =

5

3 (3ρ̂ + 2)

A020 =
(ρ̂− ĉ)

3ρ̂
+

(g′c − ρ̂gc)
(
τ̂Γ′

t − Γt

)
SdjSdh

ρ̂ΓtΓ′
t

(
τ̂SdjSh − SjSdh

)

A′
020 =

1

2ρ̂
− ĉ (ρ̂ + 2)

6ρ̂2

+
(g′c − ρ̂gc)

[
τ̂Γ′

tSdj (Sdh + Sh) − ΓtSdh

(
Sdj + ρ̂Sj

)]
ρ̂2ΓtΓ′

t

(
τ̂SdjSh − SjSdh

)

By definition, all coefficients for orders m < 0 are zero; hence the recurrence
relations (equations (24) and (38)) show that all propagational mode coefficients are
zero for j > 0. There is no incident field contribution to the thermal boundary
conditions (equations (61) and (62)) (since s = (m− n− 2)/2 = −1), so the thermal
coefficients are zero:

B00 = B′
00 = 0.

The velocity and pressure boundary conditions (equations (59) and (60)) include a
nonzero contribution from the incident field, such that the zeroth order of the incident
field affects the zeroth order propagational mode. The resulting coefficients for the
propagational modes are

A000 = 0, A′
000 = 1/ρ̂.(80)

For m = 1 the incident field makes no contribution at the boundary (since the ar-
guments s = (m− n− 2)/2 or s = (m− n)/2 are noninteger). No nonzero coeffi-
cients are found from the recurrence relations, so again the thermal field is zero. The
propagational coefficients are also zero in this case (by substitution in the boundary
equations):

A010 = A′
010 = 0.(81)
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For m = 2, the recurrence relations now give a nonzero coefficient, A′
022, resulting

from the A′
000 coefficients, as shown in the table.

The summations over coefficients also now have nonzero terms:

SA′,m =
ĉ

6ρ̂
, SjA′,m =

ĉ

3ρ̂
, SA′,m−2 =

1

ρ̂
.(82)

All coefficients (j > 0) of the continuous phase propagational mode are again zero.
The incident field contributes both to the thermal boundary conditions and to

the velocity and pressure conditions producing the first nonzero thermal coefficients,
B02, B

′
02 (Table 1). These results are consistent with the results in the geometric

theory paper (Harlen et al. [5]) for large values of La. The LFPST paper (Harlen et
al. [4]) did not assign the incident field to the different orders of Ka, instead assigning
it all to the zeroth and first order terms, so analytical comparison is not possible. The
propagational coefficients, A020, A

′
020 (Table 1) are found by substituting the thermal

coefficients into the velocity and pressure boundary equations. For higher orders in
n the process is exactly the same, but there are no thermal contributions up to order
m = 2, resulting in coefficients which depend only on density.

To obtain the velocity and attenuation of a dispersion using the coefficients up
to second order, the relevant far field coefficients, Tn, must be determined. Equation
(70) shows that only coefficients for j = n contribute to each Tn. Thus the far field
coefficients to second order in m are

T0 = e−iKa (iKa)
3
A020, T1 =

e−iKa

3
(iKa)

3
A121, T2 = 0.(83)

Substituting these coefficients into the equation for the wavenumber of the dispersion,
B (equation (72)), gives

(
B

K

)2

= 1 − 3φe−iKa (A020 + A121) + 3φ2e−2iKa
(
3A020A121 + 2A2

121

)
.(84)

Since the exponential factors are near unity (Ka being small), and the coefficient A121

depends only on density, the particle size and frequency dependence appear almost
entirely through the A020 coefficient. It is the parameters Sh, Sdh, Sj , Sdj (equations
(74) and (76)) which define the dependence on particle size and frequency through
the relationship between the thermal wavelengths and the particle size, expressed by
the parameters La and L′a. Thus we have an analytical result for the wavenumber
of the dispersion which is valid over the entire long wavelength region, and is simple
enough to be calculated in a standard spreadsheet. It is, of course, an approximate
result, but, as will be demonstrated in the next section, it is a good approximation
unless the parameter Ka > 0.01. Visco-inertial scattering has not been included in
the present theory, so for dispersions with a large density difference between the two
components, the results will not be as accurate.

6. Results. Calculations have been carried out using MATLAB for a model
system of sunflower oil in water at 30◦ C. The calculations are straightforward, and
take only a few seconds to complete a spectrum of 50 frequency values. The physical
properties of the two components are given in Table 2. A particle diameter of 1 μm
was chosen so that a complete range of thermal wavelengths could be covered within
the long wavelength limit. The concentration (by volume) was 20%. The attenuation
of each material was not included in the calculation, so the attenuation determined by
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Table 2

Physical properties of sunflower oil and water at 30◦ C.

Water Sunflower oil

Ultrasound velocity / m s−1 1509.1 1437.9

Density / kg m−3 995.7 912.9

Thermal expansivity / K−1 0.00030 0.00073

Specific heat capacity / J kg−1 K−1 4178.2 1980.0

Thermal conductivity / W m−1 K−1 0.603 0.17
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Fig. 1. Ultrasound velocity as a function of the parameter Ka for 20% sunflower oil in water at
30◦C with a particle diameter of 1 μm. Four different calculation methods are shown: the “general”
method presented in this paper, the LFPST method (Harlen et al. [4]), the geometric theory method
(Harlen et al. [5]), and the ECAH method (Epstein and Carhart [2]). The thermal parameter
|La| is shown above the plot. The parameters for the dispersed phase are |L′a| = 1.24 |La| and
K′a = 1.05Ka.

the scattering calculation is in addition to the nonscattering contribution. Figures 1
and 2 show the velocity and attenuation per wavelength (αλ) as a function of frequency
in the form of the parameters Ka and La. The ultrasound properties have been
calculated by four different methods, including ECAH and the general theory results
presented here.

It was found that the LFPST theory (Harlen et al. [4]) for low frequencies required
orders up to m = 8 in order to obtain even the first part of the change in velocity and
attenuation as the frequency increases. The theory is very much confined to the lowest
frequency range. Similarly the geometric theory (Harlen et al. [5]) (which here was
calculated only to second order in m and n) is valid only for high frequencies within
the long wavelength region and deviates from the ECAH values as the frequency
decreases.

The general theory presented in the current work is valid over the entire frequency
range within the long wavelength region. The results for velocity and attenuation
match closely those determined using the ECAH method. Visco-inertial scattering,
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Fig. 2. Attenuation per wavelength as a function of the parameter |La| for 20% sunflower oil
in water at 30◦C. Four different calculation methods are shown: the “general” method presented in
this paper, the LFPST method (Harlen et al. [4]), the geometric theory method (Harlen et al. [5]),
and the ECAH method (Epstein and Carhart [2]). Corresponding values of Ka are shown above the
plot. The parameters for the dispersed phase are |L′a| = 1.24 |La| and K′a = 1.05Ka.

which relates to a difference in density between the two components and their viscosity,
is not included in the general theory but is included in ECAH. The densities of the
two components are similar, but the additional scattering accounts for the difference
between the general theory and ECAH results. Terms for m ≤ 4 were included for
the general theory, as higher orders did not significantly change the result. At higher
frequencies, the long wavelength criterion (Ka � 1) is no longer valid, and more and
more terms are needed to obtain an accurate result. Figure 3 shows the contribution
of including these terms. The second order solution is very accurate for frequencies
below the point Ka = 0.007. The fourth order solution gives a more accurate result
over a much wider frequency range.

7. Conclusions. A method has been presented for the solution of the ultrasound
scattering problem in the long wavelength region. The work builds on previously
published studies which covered only part of the frequency range, when the thermal
wavelength is either much smaller or much larger than the particle size. The technique
consists of expressing the scattered fields as perturbation series in the parameter Ka,
which is always small in the long wavelength region, and explicitly removing the
radiating field factor eiKr. A result has been obtained which covers the complete long
wavelength region. The calculation is much more straightforward than the widely
used ECAH method, which relies on spherical harmonic expansions and suffers from
numerical instability. A simplified analytical version of the result has been produced
which enables calculation in an ordinary spreadsheet.

8. Appendix. The thermal wave solutions use expansions of the spherical Bessel
functions which are not generally found in mathematical texts. The coefficients can
be calculated in the order n by the formula below.
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Fig. 3. General theory results for 20% sunflower oil in water at 30◦C showing the contributions
of higher order terms in the series expansion, especially at larger values of Ka. The parameters for
the dispersed phase are |L′a| = 1.24 |La| and K′a = 1.05Ka.

For the spherical Hankel function,

h01 = −i for n = 0,

for n > 0 hn,j =

⎧⎪⎨
⎪⎩

−ihn−1,j for j = 1,

−ihn−1,j + (n + j − 2)hn−1,j−1 for 1 < j < n + 1,

(2n− 1)hn−1,j−1 for j = n + 1.

Similarly for the spherical Bessel function, which was defined in two parts, an outgoing
and an ingoing traveling wave:

j0,1+ = 1/2i for n = 0,

for n > 0 jn,j+ =

⎧⎪⎨
⎪⎩

−ijn−1,j+ for j = 1,

−ijn−1,j+ + (n + j − 2)jn−1,j−1+ for 1 < j < n + 1,

(2n− 1)jn−1,j−1+ for j = n + 1,

j0,1− = 1/2i for n = 0,

for n > 0 jn,j− =

⎧⎪⎨
⎪⎩

ijn−1,j− for j = 1,

ijn−1,j− + (n + j − 2)jn−1,j−1− for 1 < j < n + 1,

(2n− 1)jn−1,j−1− for j = n + 1.
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