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Abstract: This paper considers magnetic attitude control of a satellite with one axis of 

inertia significantly lower than that of the other two. With onboard resources often 

limited, this paper considers the development of an effective control strategy that remains 

easy to implement. Often used in this type of application, the classical ‘torque-projection’ 

approach is shown to be unsuitable for satellites with an uneven inertia distribution. To 

tackle the weaknesses in this approach a new ‘weighted’ PD approach is proposed, with 

the control torque determined through minimisation of a simple cost function. Through a 

similar philosophy, a feed-forward compensator is designed to supplement the feedback 

control and improve the disturbance rejection characteristics of the controller. Simulations 

carried out on a high fidelity model demonstrate the effectiveness of the proposed control 

law and the significant performance benefits offered over existing approaches. 

 

Keywords: Magnetic Attitude Control; Satellite; PID Control; Feed-forward; 

Underactuated  Control 
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1 INTRODUCTION 

The area of spacecraft magnetic attitude control is one that has attracted much recent 

attention in research literature. Use of magnetic dipoles to control the attitude of a 

spacecraft offers a lightweight, smooth, and cost-effective method of control. Although 

this is the case, the torque generated through use of magnetic dipoles is constrained to lie 

in the plane orthogonal to the local magnetic field vector, with one axis being 

instantaneously under-actuated. If the satellite is on an inclined orbit, suitable variation of 

the magnetic field allows controllability in the long term, but presents a significant 

challenge from a control perspective. 

 

Within the research literature a whole array of differing control strategies are proposed to 

deal with the magnetic attitude control problem. One of the simplest and most common 

control strategies is the ‘torque projection’ PD controller. An ideal control torque is 

calculated using a PD controller, with the assumption that full controllability is available. 

This ideal torque cannot be directly applied and as a design choice is projected onto the 

plane orthogonal to the Earth’s magnetic field where the resulting torque can be realized. 

Firstly proposed in reference [1] and more recently in reference [2], the simplicity and 

ease of implementation of this controller has seen widespread industrial application. 

 

Although easy to implement, the use of PD control cannot always provide the required 

performance and as a result several authors investigate more advanced control strategies. 

The pseudo-periodic nature of the Earth’s magnetic field has led to a number of studies 

into the use of optimal periodic control theory. Once of the earliest studies into infinite 
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horizon periodic control for the satellite attitude control problem is presented in reference 

[3]. The optimal controller gains are obtained offline through solution of the periodic 

Riccati equation and then stored in onboard memory for implementation. Reference [4] 

applies a similar optimal periodic control approach to the problem while providing an 

interesting extension to include optimal disturbance rejection. This approach proposes 

online solution to the Riccati equation rather than onboard storage of controller gains. 

Reference [5] presents the most significant work in this area, as the issue of onboard 

computation and storage requirements is avoided. Under certain assumptions the solution 

of the periodic Riccati equation is shown to tend to a constant value. This assumption 

allows the periodic gain to be calculated online with minimal computation. This approach 

is only slightly limited by the fact that it only remains valid for satellites with an open-

loop stable configuration. 

 

The interest in infinite horizon control laws has naturally led to investigations into finite 

horizon applications. Model predictive control (MPC) has been identified as a suitable 

candidate for dealing with the magnetic attitude problem in several recent papers. 

Reference [6] presents the first notable contribution in this area, with the constraint 

handling of MPC exploited in a novel way. The control problem is formed in a time 

invariant manner with the time varying nature of the actuation introduced through an 

appropriate set of equality constraints. This helps to reduce the computational burden of 

the strategy as calculations of prediction matrices can be carried out offline. Reference [7] 

applies a similar control approach, while extending the controller to consider disturbance 

rejection. The disturbance rejection properties of the MPC strategy are noticeably 
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improved without increasing the complexity of the controller. Most recently reference [8] 

considers a different approach to the problem to address the problem of stability. A 

stability enforced predictive controller is shown to guarantee asymptotic stability of the 

closed-loop even for satellite with unstable open-loop pitch dynamics. 

 

Although more advanced control techniques such as optimal control and MPC 

undoubtedly provide improved performance over classic PD approaches, many 

magnetically actuated satellites do not have the onboard resources to implement the 

complex algorithms often associated with these designs. Magnetic actuation is often used 

on small, low-cost satellites where the onboard hardware is extremely limited. For many 

of these cases the pointing accuracy is also relaxed making the torque projection approach 

very attractive. 

 

Although the torque projection approach is suitable for satellites for which the principal 

axes of inertia are of the same order of magnitude, the success of the control strategy is 

significantly degraded if one axis of inertia is significantly lower than that of the other 

two. Reference [9] reports difficulties when applying the torque projection approach to 

such a configuration and presents a modified, albeit fairly ad-hoc approach to adjust the 

pitch gain as a function of the local magnetic field vector. The act of projecting the torque 

onto the Earth’s magnetic field orthogonal places a low priority on the low inertia axis (a 

point first identified in this paper), with performance about this axis significantly 

degraded. 
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The aim of this paper is to provide a systematic approach to the design of magnetic 

attitude control systems of satellites with an uneven inertia distribution. This is done while 

maintaining simplicity of the control law, presenting an effective and feasible control 

approach. This paper is structured as follows. Section 2 introduces the benchmark satellite 

and dynamic equations. With the attitude regulation problem being considered, a linear 

model is sufficient to fully describe the attitude dynamics. Section 3 identifies the 

weaknesses in the torque projection PD approach when applied to a satellite with an 

uneven inertia distribution. A new control approach is then proposed to address these 

weaknesses. Section 4 augments the newly proposed feedback control with a feed-forward 

compensator. In a similar way the feed-forward control is carefully designed to correctly 

tackle the uneven inertia distribution. Section 5 presents a simulation study to demonstrate 

the effectiveness of the proposed control approach using a high fidelity simulation model. 

2 SPACECRAFT DYNAMICS UNDER MAGNETIC CONTROL 

Set for launch in 2009, the GOCE satellite is part of the European Space Agency’s (ESA) 

living planet program. The main aim of the satellite is to measure the Earth’s gravity field 

gradient and hence the control aim is to cancel all non-gravitational angular accelerations 

acting upon GOCE. The selected orbit is a sun-synchronous, near-polar orbit of 96.5° 

inclination, at an altitude of 250km, with an orbital period of approximately 5400s. The 

inertia distribution is summarized in Table 1, leading to an unstable pitch and neutrally 

stable lateral configuration. For attitude regulation GOCE is equipped with three mutually 

perpendicular magnetic dipole rods each with 400Am
2
 saturation limit. The GOCE 

satellite has fairly relaxed pointing requirements of 8° about the roll and yaw axes and 3° 
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about the pitch axis. The interested reader may consult reference [9] for further 

information on the GOCE mission. 

 

Although the true spacecraft dynamics are fully described by a series of non-linear 

differential equations, under certain assumptions these equations can be linearized with 

minimal loss of accuracy. If linearization is carried out about the equilibrium nadir-

pointing attitude, assuming a circular orbit, small Euler angles and deviation of body rates 

from nominal values, the following linearized model can be produced [5]. Once a satellite 

has acquired an Earth pointing attitude on orbit (i.e. once the initial high pointing angle 

and angular rates have been removed through non-linear control), the satellite dynamics 

are approximated well by such a linear model. 

 

 ( ) ( ) ( )tTtxtx cc BA +=&  (1) 
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 ( ) [ ]Tzyxtx ωωωψθφ= ,  

ψθφ ,,  are the spacecraft pointing angles about roll, pitch and yaw axes respectively, 

zyx ωωω ,,  are the spacecraft angular rates about roll, pitch and yaw axes respectively, 
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0ω  is the orbital rate, J is the inertia matrix, T  is the control torque (with components 

zyx TTT ,,  ), and ( ) ikji JJJ −=σ  for the index sets (1,2,3), (2,3,1) and (3,1,2). 

 

Note that the co-ordinate system used throughout this paper defines the spacecraft 

orientation relative to a local-level co-ordinate system. The local-level system has the +z 

axis pointing towards the nadir, the y axis perpendicular to the orbital plane (defined by 

position and velocity vector), and the x axis defined by the right hand rule. 

 

When considering magnetically controlled spacecraft, torque-rods generate control torques 

through interaction with the Earth’s own magnetic field. This torque is perpendicular to 

the Earth’s magnetic field vector and is described below in equation (2). 

 

 agmBMT ×=  (2) 

where M is the vector of magnetic dipole moments (with components zyx MMM ,, ) and 

magB  is the Earth’s magnetic field vector (with components 
zyx magmagmag BBB ,,  ). 

 

 

 

 



 8 

3 PD ATTITUDE CONTROL 

3.1. Torque Projection PD Control 

A simple but effective technique of implementing magnetic control is through the so-

called “torque-projection” approach. Originally proposed in reference [1] a PD controller 

is used to calculate a required control torque through equation (3) 

 

 xTideal K−=  (3) 

where K  is a 3x6 gain matrix. 

 

Due to the magnetic field constraints the torque in equation (3) cannot be implemented 

directly and as a design choice this torque is projected onto the plane orthogonal to the 

Earth’s magnetic field. The resulting magnetic dipole and torque vectors are described 

below in equations (4) and (5). 
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where 3I  is the 3x3 identity matrix. 

 

Although usually considered as a geometric approximation, derivation of the control 

signal in this manner is in fact an implementation of a simple optimisation problem.  
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Consider minimising the following quadratic performance index 

 

 
2

trueideal TTmin −  (6) 

 

subject to the constraint 

 

0=⋅ truemag TB  (7) 

 

The solution of equation (6) subject to the constraint in equation (7) leads to the same 

torque as calculated in equation (5) and effectively minimises the Euclidean norm of the 

error between the ideal and true control torques. For many satellite configurations this 

approach is sensible and leads to acceptable results. For satellites with an uneven inertia 

distribution the success of this approach diminishes. The reasons for the degradation of 

this approach are best illustrated with a numerical example. 

 

Consider the design of a torque projection PD controller for the GOCE satellite. The ideal 

feedback gain is chosen through a pole placement technique, with the ideal closed-loop 

poles placed with damping ratio of 0.7 and natural frequencies of 053 ω. , 050 ω.  and 

0250 ω. . The resulting feedback gain matrix is shown in equation (8). 
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For illustrative purposes assume the Earth’s magnetic field can be represented using the 

dipole model shown below. 

 

 

















−=

m

m

m

f

it

i

it

a
sinsin

cos

sincos

Bmag

0

0

3

2 ω

ω
µ

 (9) 

where 151097 ×= .fµ Wb.m is the dipole field strength, a is the orbit height and mi  is the 

orbital inclination. 

 

For simplicity assume an orbital inclination of 2π=mi  and time of 032 ωπ=t . The 

resulting magnetic field vector is calculated as [ ]T
ee 570405361 −−−= ..Bmag . Also 

assume a typical state vector of [ ]T
eeex 31413110101

180
−−−= .

π
. Applying 

the control law in equations (3) and (5) the commanded and implemented torque are 

summarised in Table 2. 

 

The first point to note from Table 2 is that the pitch torque is fully implemented. As the 

pitch axis is always controllable through one of the lateral dipole moments, this 

demonstrates the torque projection approach to be suitable for regulation of the pitch axis. 

Focussing now on the roll and yaw performance it is clear that the commanded and 

implemented torque are now quite different. This is not a surprising result as the 

restrictions due to the magnetic field will obviously restrict the authority of the controller. 

The main concern comes when analysing the numerical values of these torques and the 

resulting angular accelerations. 
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A torque of 36µNm is commanded about the yaw axis which, when normalising with 

respect to the yaw inertia gives a commanded acceleration of 81031 −×.  rad/s
2
. Once the 

torque projection has been carried out the implemented torque is reduced to just 2µNm 

with a corresponding angular acceleration of 101057 −×.  rad/s
2
. For the roll axis a torque of 

-1.5µNm is commanded which, when normalised with respect to the roll inertia gives a 

commanded acceleration of 81001 −×− .  rad/s
2
. Note that this acceleration is similar in 

magnitude to that commanded about the yaw axis even though the commanded control 

torque is much smaller. Once the torque projection has been carried out the torque 

implemented is +8µNm. This corresponds to an angular acceleration of 81025 −×.  rad/s
2
, a 

value five times larger and in the opposite direction to that commanded. Although the 

controller is minimising the overall torque error, no consideration is placed on the fact that 

torque errors in the roll axis induce much larger acceleration errors due to the lower 

satellite inertia. This numerical problem leads to poor performance about the low inertia 

axis and needs to be addressed when considering control of satellites with uneven inertia 

distribution. 

3.2. Weighted PD Control 

The numerical example in the previous section shows that when minimising the Euclidean 

norm of the error between the true and ideal control torques, the low inertia axis is given 

low priority within this minimisation process. Although the overall torque error is 

minimised the effect about the roll axis can be significant due to the lower inertia about 

this axis. To tackle this weakness in the torque projection approach a modification to the 

controller is proposed. 
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3.2.1. Derivation of Weighted PD Controller 

Instead of minimising the Euclidean norm of the torque error, consider minimisation of 

the following weighted performance index 

 

 ( ) ( )
trueideal

T

trueideal TTTTmin −− Q
2
1  (10) 

 

subject to the constraint 

 

 0=⋅ truemag TB  (11) 

where 0>Q  is a diagonal weighting matrix 

 

As the term ideal

T

ideal TT Q
2
1  is a constant, the optimisation problem in (10) and (11) can be 

simplified to the following form. 
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subject to the constraint 

 

 0=⋅ truemag TB  (13) 

 

As equations (12) and (13) are now in the form of a general quadratic programming 

problem subject to an equality constraint, a closed-form solution can be derived through 



 13 

use of Lagrange multipliers (see reference [10]). The necessary Lagrange conditions for 

this problem are described in equations (14) and (15). 

 

 0=−+ idealmagtrue TBT QQ λ  (14) 

 0=trueTBT

mag  (15) 

where λ  is the Lagrange multiplier. 

 

From equation (14) 

 

 idealmagtrue TBT +−= − λ1Q  (16) 

 

Substituting equation (16) into equation (15) leads to 
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Solving for the Lagrange multiplier gives 
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Finally substitution of equation (18) into equation (16) yields the final solution 
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For many optimisation problems the matrix inverse in equation (19) makes the problem 

not numerically attractive as the matrix ( )mag

T

mag BB 1Q−  is often ill-conditioned. For this 

specific optimisation problem this issue is removed as the aforementioned matrix is a 

scalar value such that 
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As the Earth’s magnetic field vector will never equal zero in all directions 
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compact form 
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The dipole moment required to implement this torque is determined by taking the cross 

product of the magnetic field vector and the Earth’s magnetic field vector according to 

equation (22). 
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The tuning process itself can be simplified by considering the case of a satellite with one 

axis of inertia considerably lower than that of the other two. For the case of GOCE it is the 

weighting of the roll axis relative to the pitch and yaw axes that is of importance and the 

Q  matrix can therefore be specified as  
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where 0>q  is the roll weighting factor. 

3.2.2. Numerical Example 

To illustrate the benefits of the newly proposed weighted PD control, the numerical 

example from the previous section is revisited. The same magnetic field, state vector and 

ideal feedback gain are chosen, but the control signal is now implemented using equation 

(21). The roll weighting factor is chosen as 8=q  and the results are shown in Table 3.  

 

This control approach does not miraculously allow control of both axes, but does provide 

a more intelligent method of implementing the control signal. Consider once again the 

torque about the yaw and roll axes; the implemented torque about the yaw axis is now 

slightly degraded from the torque projection approach, but this degradation is relatively 

insignificant when considering the large inertia of this axis. The control input applied 

about the roll axis is now much more sensible. The commanded value of -1.64µNm cannot 

be achieved due to the magnetic field constraints however, due to the increased weighting 

within the optimisation process, the controller avoids applying a large acceleration in the 
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opposite direction to that commanded. At this particular orbit location and state vector, 

implementation of the desired control signal is not possible regardless of how the torque is 

selected. Use of the weighted PD approach avoids inducing large unwanted accelerations 

about the low inertia axis and is done at relatively small penalty to the yaw axis. 

 

The numerical example in Table 3 illustrates the motivation for the weighted PD 

approach. The true benefits of adopting a weighted PD controller are best demonstrated 

through a simulation study. The GOCE satellite is initialised at 1° pointing about each 

satellite axis and is considered under both torque projection PD control and the newly 

proposed weighted PD control. The ideal feedback gain is as defined in equation (8) and 

the roll weighting factor is chosen to be 8. 

 

The results shown in Figure 1 support the numerical example detailed in Table 3. When 

both the roll and yaw errors are large, the torque projection controller places more 

emphasis on removal of the yaw error. This is at significant detriment to the roll axis, 

which at worst reaches 9° pointing error from an initial value of just 1°. As the yaw error 

reduces, the controller is able to restore the roll attitude, but this is clearly unacceptable 

performance. When the newly proposed weighted PD controller is used, the performance 

about the two axes is more comparable. The yaw performance is degraded (as would be 

expected), but this is far outweighed by the significant improvement in performance about 

the roll axis. 
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3.2.3. Roll Weighting Factor 

The introduction of the weighted PD controller provides an additional tuning parameter to 

the control engineer. Selection of an appropriate weighting value is dependent on several 

factors. 

 

� The ideal feedback gain: Selection of the ideal feedback gain determines the 

magnitude of the commanded control torques. As already discussed, it is the 

difference in the magnitude of the commanded torques that causes the numerical 

problems that bias the controller in favour of the higher inertia axes. The manner in 

which this feedback gain is chosen affects the control torques, and hence the 

weighting required to obtain acceptable performance about the low inertia axis. 

 

� The level of performance required about the low inertia axis: If the pointing 

accuracy about the low inertia axis is of low importance, a low q value may be 

suitable to place more emphasis on performance about the other axes. If more accurate 

pointing is required about the low inertia axis the q value may need to be much higher 

for optimal performance. 

 

� External disturbances:  The level of external disturbance is very much dependent on 

the satellite configuration and orbit height. As well as providing suitable nominal 

response the feedback control must provide sufficient disturbance rejection. If too 

much weighting is placed on a given axis this will reduce the disturbance rejection 

capabilities of the other axes and can degrade performance of the overall system. 
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The selection of the roll weighting factor is application specific and should be determined 

through a short trial and error process. The effect of varying the weighting is demonstrated 

in Figure 2 .The satellite is initially at pointing angles of 1° about each axis and is 

controlled using a weighted PD strategy with varying q value. 

 

Selection of a low weighting factor ( )1=q  places more significance on the higher inertia 

axes within the optimisation. As already discussed this can lead to poor performance about 

the low inertia axis. Increasing the weighting factor ( )8=q  significantly improves 

performance about the low inertia axis at a cost of slight degradation to the yaw axis. 

Increasing the roll weighting further ( )50=q   places further emphasis on the low inertia 

axis and degrades the performance about the yaw axis. 

 

The most important point here is that each response shown in Figure 2 is achieved at the 

same ideal feedback gain. Once the ideal feedback gain has been selected, addition of the 

roll feedback weighting introduces a very intuitive tuning parameter that can be used to 

improve performance about the low inertia axis. 
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4 FEEDFORWARD DISTURBANCE COMPENSATION 

For satellites operating on a low Earth orbit, disturbances due to the external environment 

have a significant effect on the time response of the attitude dynamics. The feedback 

control in the previous section can be augmented with a feed-forward element to improve 

the disturbance rejection properties of the overall attitude controller. Clearly these 

environmental torques cannot be measured directly and must be estimated using a Kalman 

filter. As GOCE is also without rate gyros this state estimator must also provide angular 

rate information. 

4.1. Kalman Filter 

To provide estimates of the external disturbances a mathematical model of these torques is 

required. A precise model of these torques is fully obtained using a high order Fourier 

decomposition, however from the perspective of an observer design this is obviously 

restrictive. Fortunately analysis of the external environment shows that the most 

significant harmonics occur at frequencies 0, ω0 and 2ω0
[11]

. Furthermore, reference [7] 

notes that suitable estimates of the external disturbances can be achieved by assuming the 

disturbances remain constant with time. This assumption is therefore used here to 

maintain simplicity of the state observer design and to minimise onboard computation of 

the state estimates. Consider the discrete-time constant disturbance model 

 

 ( ) ( ) ( )kkk vdd +=+1  (24) 

 

where d  is the external disturbance and v  is white noise. 



 20 

The continuous-time dynamics in equation (1) can also be discretised to provide the 

following model 

 

 ( ) ( ) ( ) ( )kkkk dTxx ++=+ BA1  (25) 
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The relationships in equations (24) and (25) can be formed into an augmented plant model 

to provide the basis of the state observer. 
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An estimate of the augmented state can then be provided through equation (28) 

 

 ( ) ( ) ( ) ( ) ( ) ( )( )[ ]kkkkkk eeeee ux̂yux̂x̂ eee DCLBA +−++=+1  (28) 
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where eL  is the Kalman filter gain matrix and ( )ky  is the measured position and 

acceleration taken directly from star sensor and accelerometer measurements. 

4.2. Weighted Feed Forward Compensation 

The methodology in Section 3 can now be naturally extended when considering the design 

of an appropriate feed-forward strategy. The ideal feed-forward control will take the 

estimate of the external disturbance provided by the Kalman filter and implement an equal 

and opposite torque to cancel this unwanted disturbing moment. As magnetic torquers are 

used as actuators this is not possible and the effect of the external disturbances must be 

minimised as much as possible. 

 

The ideal control torque to apply is described in equation (29). 

 

 ( ) [ ] ( )kk
ideal eFF x̂T 33,6 I0−=  (29)  

 

Based on current design methods, an intuitive approach is to project this ideal torque onto 

the controllable plane in a manner analogous to the torque projection PD controller. Once 

again for satellites with a similar inertia about each axis this is a suitable approach, but 

when considering satellites with an uneven inertia distribution this approach can actually 

degrade performance. As a result the feed-forward input is determined though 

minimisation of the following performance index. 

 

 ( ) ( )
trueidealtrueideal FFFFFF
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FFFF TTTTmin −− Q
2
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As the aim of the feed-forward controller is to minimise the effects of the external 

disturbances, more analytical guidance can be given to choose the FFQ  matrix. As a 

design choice the effect of the external disturbance is quantified in terms of the angular 

accelerations imparted on the spacecraft. After the disturbance compensation has been 

applied the acceleration torque seen by the spacecraft is 

 

 ( )
trueideal FFFF TTa −= −1J  (31) 

 

The cost function to be minimised is therefore 

 

 aamin
T

2
1  (32) 

 

If zy JJ ≈  this is equivalent to choosing the FFQ  matrix as follows 
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where ( )2

xzff JJq =  

 

This approach to selection of the weighting matrix cannot be successfully applied to the 

feedback portion of the control due to the differing aims of the two control components. 

As the aim of the feedback control is to provide suitable closed-loop dynamics, 

minimisation of acceleration errors between the true and ideal case is not a meaningful 
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design approach (minimising the acceleration error does not guarantee any particular 

expected closed-loop behaviour). For the feed-forward case, minimisation of accelerations 

is a sensible measure and hence the proposed method of selecting the  FFQ  matrix. 

4.2.1. Numerical Example 

Once again the motivation for the weighted feed-forward compensator can be illustrated 

with a simple numerical example. Consider the satellite at the same orbital location used 

in the previous examples, subject to a disturbance of 5101 −× Nm about the pitch and yaw 

axes and 6101 −× Nm about the roll axis.  

 

Table 4 illustrates the problems associated when the feed-forward compensation is not 

correctly designed. In attempting to minimise the disturbance torque about the yaw axis 

the torque-projection control increases the disturbance acting on the low inertia axis. This 

imparts large accelerations about the low inertia axis and can actually degrade the 

performance of the controller. The weighted feed-forward controller penalises the 

accelerations on each axis rather than the control torque, so ensures the low inertia axis is 

more appropriately dealt with. The disturbance about this axis is almost completely 

removed, while still removing the pitch disturbance and part of the yaw disturbance. 

 

The numerical example in Table 4 can also be reinforced with a simple simulation study. 

The GOCE satellite is initially at 1° pointing about each axis and is regulated using the 

weighted PD feedback control proposed in the previous section. The satellite is subject to 

a constant disturbance of 5101 −× Nm about the pitch and yaw axes and 6101 −× Nm about 
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the roll axis. In order to improve the disturbance rejection properties the feedback control 

is augmented with a torque-projection feed-forward controller and the newly proposed 

weighted feed-forward controller. 

 

If the state estimator in equation (28) is used the final control law combining the weighted 

feedback and feed-forward schemes simplifies to the following. 

 

 ex̂T K−=  (34) 

where 
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Figure 3 shows the response under the control law in equation (34). With feedback only 

control the external disturbance causes a large steady state error about the roll axis, while 

performance about the yaw axis is much better due to its higher inertia. The addition of the 

torque-projection feed-forward controller improves performance about the yaw axis 

however this is at the expense of the low inertia roll axis. Use of the weighted feed-

forward control allows for slight improvement about the yaw axis but significantly 

improves the roll performance. The steady state error is removed and the nadir pointing 

attitude is regulated more successfully. When adopting torque projection feed-forward 

control, the (already well regulated) yaw axis is given high priority. The addition of the 

weighted feed-forward control penalises the accelerations due to the external disturbances 

and thus allows fairer consideration of the low inertia roll axis. 
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5 SIMULATION 

5.1. Simulation Environment 

To fully validate the proposed control approach, the GOCE satellite is simulated using a 

high fidelity simulation model. Although the linear model in equation (1) has been used 

for controller design, a full non-linear description of the satellites dynamics is used for 

numerical simulation. The Earth’s magnetic field is modelled using an 8
th

 order IGRF 

model to achieve suitably high accuracy. 

 

Due to its low Earth orbit GOCE is subject to aerodynamic drag from the upper 

atmosphere. This causes a perturbing torque within the attitude dynamics as the drag line 

is offset from the spacecraft centre of mass. This also leads to the need for an ion thruster 

assembly (ITA) to counteract this drag force and maintain orbital speed. This in turn 

further disturbs the attitude dynamics. Ideal measurements of acceleration and pointing 

angle are corrupted with sensor noise, while the lack of rate gyros is represented and any 

rate information used within the control law is obtained from the Kalman filter in equation 

(28). 

5.2. Simulation 

The effectiveness of the proposed control strategy can now be assessed on the high fidelity 

GOCE simulator. Firstly the weighted PD controller is implemented without the feed-

forward compensation. This allows a fair comparison to be made between the torque 

projection PD controller and the weighted PD controller while also demonstrating the 

contribution made by the feed-forward term once included. The roll weighting factor for 
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the weighted PD approach is chosen as 8=q  with the ideal feedback gain matrix for both 

approaches chosen as 
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 (35) 

 

The satellite is initialised with 1° pointing about each axis. Figure 4 shows that, as 

demonstrated by earlier examples, the torque projection control places little emphasis on 

the low inertia roll axis and leads to large pointing errors. The significant external 

disturbances acting on the GOCE satellite highlight this point with the maximum roll error 

reaching up to 30°. Use of the weighted PD controller provides a more suitable approach 

to the control problem, with the pointing accuracy about the roll axis improved to with 8° 

of the nadir. This time response clearly demonstrates the significant benefits of 

considering the inertia distribution when deriving the control law. Simply applying the 

torque-projection control without considering the inertia distribution is wholly 

unacceptable. 

 

Figure 5 now illustrates the performance achievable when the weighted PD controller is 

augmented with the weighted feed-forward compensator. Pointing accuracy about the roll 

axis is improved by a further 3° allowing regulation within 5° of the nadir pointing 

attitude, well within the required specification. Figure 6 also shows the magnetic dipole 

time history, with the control inputs remaining comfortably within the saturation limits. 
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Extensive simulation studies on the GOCE simulator has been carried on different initial 

conditions, different disturbance profiles and  the variations of inertia up to 10% []. It 

shows consistent performance has been achieved for the proposed scheme with good 

stability and robustness.       

 

6 CONCLUSIONS 

This paper has presented a systematic approach to the design of a magnetic attitude 

control system for a satellite with an uneven inertia distribution. The traditional torque-

projection PD control approach has been investigated and shown to be inadequate for the 

regulation of satellites with an uneven inertia distribution. To tackle the weaknesses in the 

torque-projection approach, the problem of deriving the control torque is considered as a 

simple optimisation problem rather than a geometric one. The control torque is derived by 

solving a simple quadratic programming problem for which a closed-form solution is 

shown to exist.  

 

The basic philosophy of the weighted feedback controller is then extended to derive a 

feed-forward controller to improve the disturbance rejection characteristics of the control 

law. A simple Kalman filter provides estimates of the external disturbance, with the feed-

forward controller then designed to minimise the overall accelerations due to these 

disturbances. 
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Simulations on the high fidelity GOCE simulator demonstrate the effectiveness of the 

proposed controller. The attitude of the GOCE satellite is regulated within 5° of the nadir 

when subject to significant disturbance torques due to the external environment. 

Furthermore this is carried out using a controller that is easy to implement. The proposed 

approach is expected to have a direct impact on industrial applications of magnetic attitude 

control systems of satellites with an uneven inertia distribution.  
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Table 1 – Satellite inertia distribution 

Satellite Principal Axis Inertia kgm
2
 

Roll (Ix) 152.2 

Pitch (Iy) 2690.8 

Yaw (Iz) 2652.6 

 

 

Table 2 – Torque projection PD controller 

 Commanded Torque 

(µNm) 

Implemented Torque 

(µNm) 

Roll axis -1.64 8.16 

Pitch axis -36.83 -36.83 

Yaw axis 36.30 2.36 
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Table 3 - Comparison of torque projection and weighted PD controller 

 Commanded Torque 

(µNm) 

Torque Projection 

(µNm) 
Weighted PD 

(µNm) 

Roll axis -1.64 8.16 -0.33 

Pitch axis -36.83 -36.83 -36.83 

Yaw axis 36.30 2.36 -0.09 

 

 

Table 4 – Effect of feed-forward compensation 

 Disturbance torque after feed-forward compensation (Nm) 

Strategy Uncompensated Torque Projection Weighted 

Roll axis  1e-6  -2.6e-6  -1e-8 

Pitch axis  1e-5  0  0 

Yaw axis  1e-5  9e-6  9.7e-6 

 

Fig. 1 – Response under torque projection and weighted PD controllers 
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Fig. 2 – Effect of varying roll weighting factor 

 

Fig. 3 – Comparison of feed-forward strategies 
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Fig.4 – Comparison of weighted and torque projection PD with external disturbance 

 

Fig. 5 – Performance under weighted PD with weighted feed-forward control 
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Fig. 6 – Magnetic dipole history 

 

APPENDIX 

Notation 

A   Discrete-time system matrix for satellite attitude dynamics 

cA   Continuous-time system matrix for satellite attitude dynamics 

eA   Discrete-time system matrix of augmented plant model 

a   Orbit height 

B   Discrete-time control matrix for satellite attitude dynamics 

cB   Continuous-time control matrix for satellite attitude dynamics 

eB   Discrete-time control matrix of augmented plant model 

magB   Earth’s magnetic field vector in spacecraft coordinates 



 35 

mi   Orbital inclination 

J   Satellite inertia matrix 

K   Ideal feedback gain matrix 

eL   Kalman filter gain matrix 

M   Magnetic dipole vector 

Q   Weighting matrix for determination of optimal feedback control 

FFQ   Weighting matrix for determination of optimal feed-forward control 

trueideal T,T  Ideal and true feedback control torque 

trueideal FFFF T,T  Ideal and true feed-forward control torque 

x   State vector 

ex   Augmented state vector 

321 σ,σ,σ  Inertia ratios 

ψ,θ,φ   Pointing angle of spacecraft about local-level coordinate frame 

zyx ω,ω,ω  Angular rate of spacecraft about local-level coordinate frame 

0ω   Orbital rate 

fµ   Magnetic field dipole strength 

λ   Lagrange multiplier 


