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Abstract

The Stochastic Fields (SF) or Field Monte Carlo method has been used to model

the dispersion of reactive scalars in a street canyon, using a simple chemistry and

the CBM-IV mechanism. SF is a Probability Density Function (PDF) method which

allows both means and variances of the scalars to be calculated as well as considering

the effect of segregation on reaction rates. It was found that the variance of reactive

scalars such as NO2 was very high in the mixing region at roof top level with rms

values of the order of the mean values. The effect of segregation on major species

such as O3 was found to be very small using either mechanism, however some radical

species in CBM-IV showed a significant difference. These were found to be the seven

species with the fastest chemical timescales. The calculated photostationary state

defect was also found to be in error when segregation is neglected.
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1 Introduction

The street canyon has for many years been an active area of study in air

quality modelling, both in terms of predicting actual roadside exposure to

pollution and as a more theoretical test-case for using different numerical

models. Experimental data has been obtained both from field studies (Rotach,

1995; Costabile and Allegrini, 2007) and from wind-tunnel (Pavageau and

Schatzmann, 1999) and water tank models (Caton et al., 2003). Computational

modelling has been carried out in order to investigate the fluid mechanics and

the dispersion of pollutants in and around the canyon (Chan et al., 2001; Baik

and Kim, 2002; Jeong and Andrews, 2002). Work has also been carried out

which attempts to quantify the exchange of mass and momentum at roof-

top level using an exchange velocity in order to provide a model that can

be applied to a real-world situations (Hamlyn and Britter, 2005). Walton and

Cheng (2002) and Lui and Barth (2002) have used a LES calculation to predict

the dispersion and fluctuation of an inert pollutant in a street canyon. Dixon

and Tomlin (2007) have used a Lagrangian stochastic model for the same

purpose.

Recent studies have focused on the turbulent dispersion of reactive pollutants

in the street canyon setting. Baker et al. (2004) have carried out a LES study of

a street canyon using a one-step, reversible NO, NO2 and O3 chemistry using

a constant temperature in the canyon. They found that spatial variation of

species within the canyon was significant. Baik et al. (2007), on the other hand,

have used RANS modelling to predict the flow field in the canyon while using

a similar chemistry to Baker et al. (2004). They performed a budget analysis

of the terms in the advection-diffusion-reaction equation, which showed that
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the chemical reaction term is comparable to the advection and diffusion terms

for O3. Both these studies found that the air composition is close to chemical

equilibrium within the canyon but is far from equilibrium where polluted air

from the canyon is mixed with clean air at the top of the canyon.

Most reactive pollutant dispersion models so far have not included the effect

of turbulence on reaction rates. Due to the non-linearity of the Arrhenius term

and the effect of non-zero covariances between reactants evaluating mean re-

action rates as a function only of mean concentrations and temperature may

not yield a correct value. The fluctuations from the mean (either spatially or

temporally) may need to be considered. The presence of fluctuations from the

mean is known as segregation, while their decay due to molecular diffusion

at the smallest scales of turbulence is often called micromixing. Whether the

segregation has a significant effect on the reaction rate will depend on how

rapidly micromixing destroys the segregation compared to the reaction speed.

This is characterised by the Damköhler number, Da, defined as the ratio of

mixing timescale to chemical timescale Da = Tphys/Tchem. For further discus-

sion of this see Garmory et al. (2006). The above comments apply equally

to RANS and LES calculations, the difference being that in the latter case

the sub-grid segregation is expected to be smaller, but still not negligible in

principle.

In this work we use the Field Monte Carlo method to simulate the dispersion

of reactive pollutants within a street canyon and also to assess what effect

segregation and micromixing have on the reactions. This is done using the

simple NO, NO2 and O3 chemistry used in Baik et al. (2007) and also using the

CBM-IV mechanism, which is a more complex chemistry comprising 28 species

(Gery et al., 1989). The Field Monte Carlo method, also called the Stochastic

Fields method, is a transported PDF method developed independently by
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Valiño (1998) and Sabel’nikov and Soulard (2005b). Rather than using the

motion of notional particles through the flow this method solves stochastic

partial differential equations (spde), derived from the modelled transported

PDF equation (Fox, 2003), for a number of scalar fields extending across the

spatial domain. A spde is solved for each scalar in each field, if the values

for a particular scalar are taken at a point in space across all fields then the

ensemble is statistically equivalent to the flow at that point. By doing this

the effect of fluctuations on the reaction rates are calculated directly with

no need for closure models for the mean reaction rate, which constitutes the

greatest difficulty in turbulent reacting flows. The advantage of the field based

method is that it is easily coupled with existing CFD techniques and is hence

straightforward to implement in practical scenarios. In this work, the reactions

have no effect on the density due to their negligible heat release, which allows

us to pre-calculate the flow and then use a ’frozen’ flow field for the subsequent

reactive scalar calculations.

2 Formulation

2.1 The Stochastic Fields Method

The Stochastic Fields, or Field Monte Carlo, method is a transported joint

composition PDF method developed for the simulation of turbulent reacting

flows (Valiño, 1998; Sabel’nikov and Soulard, 2005b). A number of ‘fields’

extending across the whole spatial domain of the simulation are used which

contain values for each scalar at every node on an Eulerian grid. The evolution

of each field takes place according to a governing spde derived from the scalar

PDF transport equation. The Ito SPDE as derived by Valiño (1998), using
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the Interaction by Exchange with the Mean (IEM) closure for micromixing,

is:

dτ f
i =−Uk

∂τ f
i
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where τ f
i is the value of scalar i in field f (f = 1, . . . , F ) and φi is the lo-

cal mean of scalar i. Uk is the mean velocity, K is the combined molecular

and turbulent diffusivity, Teddy is a characteristic timescale of turbulent scalar

mixing used in the IEM model. As this is an Ito SPDE (2K)1/2 ∂τf
i

∂xk
must be

evaluted only once per timestep to ensure that it is independent of dW f
k (Gar-

diner, 2004). The PDF is then represented by the ensemble of F stochastic

fields τ f which contain values for each scalar at each point throughout the

flow. As this is a joint scalar PDF method and not a joint velocity-scalar PDF

method (Pope, 1994) the velocity, turbulence and timescale must be provided

from an external source, which in this case is a CFD solution. The SPDE

solved here, Eq. (1), is in non-divergent form, Soulard and Sabel’nikov (2006)

derive an SPDE in divergent form which gives results statistically equivalent

to those used here. While not employed here it is thought that this diver-

gent form may offer advantages in implementation using conservative numer-

ical schemes. The Stochastic Fields method has to date been used to model

combustion (Sabel’nikov and Soulard, 2005a; Mustata et al., 2006). We have

previously used the method to simulate a NOx/O3 reacting plume in labo-

ratory conditions (Garmory et al., 2006) and found excellent agreement with

experimental data for mean and rms values. The method was also extended

to the simulation of a jet engine exhaust plume in Garmory et al. (2008). The

reader is referred to these papers for further discussion of the method.
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2.2 Numerical Methods

In this paper we use the same procedure for solving the Stochastic Fields

equation as in our earlier paper Garmory et al. (2008). As a separate CFD

calculation of the flow is required, we coupled our Field Monte Carlo method

with a commercial CFD package, FLUENT. This was used not only to calcu-

late the flow field, but also, by using an operator-splitting method, the spatial

transport terms in Eq. (1) for each time-step. The advantages of coupling with

a commercial CFD package are that there is no difficulty in exporting velocity

field data to the reacting flow code and also that all the grid making and

post-processing tools already available in FLUENT (or any other CFD code)

can be used with this problem.

An operator-splitting procedure is used where in the first fractional step FLU-

ENT’s User Defined Scalars (UDS) option is used to solve for the transport

terms in Eq. (1) for each scalar in each field using an iterative implicit method.

The second step is to perform the random, or Wiener, step for each scalar in

each field using ∆W f
k = ξf

k∆t1/2 where ξf
k is a Gaussian random number with

zero mean and unity variance (Gardiner, 2004). An independent value of ξ

is required for each spatial component in each field. A single-step, explicit

method has been used to to integrate this step so that the integrand of the

random term remains independent of ∆W in order to correctly calculate the

Ito integral (Garmory, 2007). At this stage φi is calculated for each scalar at

each grid node by taking the mean of the values in all fields at that node,

this is then used in the micromixing term which is integrated along with the

chemistry by a stiff ODE solver which enables the use of chemistries with a

wide range of timescales. This operator-splitting procedure used to couple the

SF code with the CFD is the same as that used in Garmory et al. (2008) in
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all respects except, firstly, that here transport is solved in 2D rather than 3D,

and secondly, that the stiff ODE solver VODPK (Byrne, 1992) is used to solve

for the chemistry step.

We assume a turbulent Schmidt number of unity and thereby set the turbu-

lent diffusivity equal to the effective dynamic viscosity divided by the density,

which are calculated by FLUENT in the CFD solution. The turbulent mix-

ing timescale, Teddy, was found by setting it equal to mechanical turbulence

timescale Tvel = k/ǫ. This is valid for homogeneous turbulence with no scalar

gradient and while it is not necessarily valid away from these conditions it

has been found that the ratio stays close to unity in many other situations

(Cassiani et al., 2005). This assumption has previously been used to accu-

rately predict the variance of a passive tracer in a laboratory plume (Garmory

et al., 2006). In order to have full control over the timestep, the simulation is

run as an unsteady case, so advection-diffusion is solved for all scalars for one

timestep before a user defined subroutine is used to perform the remaining

fractional steps and update the scalar values before the next timestep.

2.3 Model Problem

The velocity and turbulence fields were calculated using a 2D RANS method

with the k − ǫ model in FLUENT. The parameters used in the solution are

presented in Table 1. The two-dimensional CFD domain consisted of seven

identical evenly spaced street canyons of width 20m and height 24m. These

are the same dimensions as used in Walton and Cheng (2002). The total height

of the domain was 100m and it extended 50m upstream of the first ‘building.’

This grid contained a total of 79,680 grid cells. An inlet boundary layer profile

for velocity was used at the upstream boundary, which obeys a (1/7)th power-
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law:

u(y) =
8

7
Ubulk

(

y

d

)1/7

(2)

The bulk velocity, Ubulk, was specified as 5m s−1, and d = 50m. A turbu-

lence intensity of 10% and a length scale of 100m are used as the turbulence

boundary conditions. The downstream boundary was set to be an outflow.

The top of the domain was set as a symmetry boundary condition, but this

was sufficiently far above the canyons that its effect is negligible.

Seven adjacent canyons were used in the CFD solution so that within the

sixth canyon a typical, fully-developed single vortex is produced. The velocity

field in this canyon should depend little on the details of the velocity and

turbulence inlet profiles at the entrance to the CFD grid as the boundary

layer is allowed to develop over five canyons prior to reaching the one of

interest. The Stochastic Fields calculations were performed using a domain

that includes only the sixth canyon and extends 20m along the neighbouring

rooftops. The height of this grid was 70m in total and a grid resolution half

of that for the CFD solution was used, giving a total of 14,700 cells in this

grid. A schematic diagram of the canyon, including some salient features of

the problem, is shown in Fig. 1. The velocity and turbulence fields were fixed

as those produced in the larger CFD calculation by turning off the flow and

turbulence solvers in FLUENT for the duration of the SF calculation. This

is possible as the reactions involved do not produce sufficient heat to affect

the density of the flow. The velocity field in the canyon is shown in Fig. 2. A

background concentration for each species was set at the inlet (left hand edge,

above the building level) and initially at all points in the grid. The emission

source was defined by setting a fixed value for each species in a 0.6 x 0.3m

region consisting of 4 grid cells centred on a point on the centre-line of the
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canyon 0.45m above the ground. The time-step used was 0.1s and it was found

that the solution did not change appreciably after 100s. 60 fields were used

with the simple Baik et al chemistry but only 14 for the CBM mechanism

due to constraints of user defined memory in FLUENT. Means, variances and

other statistical data are then found at each grid node by averaging over the

values in each field at a single point in time.

3 Results and Discussion

3.1 Inert Mixing

The inert dispersion of pollutants within the canyon can be characterised by

the mean and variance of mixture fraction. This is simulated by using an

extra scalar with no chemical source term in each field when using the simple

chemistry with 60 fields and setting the source and background values to be

one and zero respectively. The mean and rms calculated in this way are shown

in Fig. 3, rapid mixing around the source and at the top of the canyon leads

to high rms values there. The results here cannot be compared directly with

the wind tunnel results of Pavageau and Schatzmann (1999), which provides

mean and rms data for an inert scalar, as a slightly different canyon aspect

ratio has been used. However the trends seen here follow those seen in their

data which is as would be expected as PDF simulations using k− ǫ modelling

for the flow field has been widely used and validated, including recently by

Dixon and Tomlin (2007).

Further validation of the method used here is provided by Fig. 4 in which

we follow Walton and Cheng (2002) by plotting mean mixture fraction con-

centration on the leeward and windward walls normalised by the value found
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at ground level. This is plotted along with data taken from Hoydysh and

Dabberdt (1988) who collected wind tunnel data for an inert scalar in street

canyons of several different configurations. As can be seen in Fig. 4 we find

excellent agreement between our data and their measurements.

3.2 Simple Chemistry - Statistics

For the simple chemistry (Baik et al., 2007) we used a background O3 concen-

tration of 30 ppb, NO and NO2 were set to 0.05 ppb and 0.2 ppb respectively.

At the emission source the O3 level was set to zero with constant values for

NO of 1000 ppb and 10 ppb for NO2. With the velocity field and source size

used here this corresponds to a NO emission rate of approximately 200 µg

m−1 s−1. This is in the region of medium traffic (Baker et al., 2004). The

NO2 level is low but it allows us to observe more clearly its production by

chemical reaction in the canyon. Figs. 5(a) & (b) show the mean and rms

values for NO2 in and above the canyon as calculated by the SF method. The

relatively long residence time allows the reaction of NO and O3 to build up

the NO2 in the centre of the canyon to a level of approximately 23ppb, which

is more than double the level in our source. The mixing layer at the build-

ing height introduces relatively clean air into the canyon along the windward

(right hand) wall, while polluted air is transported out of the domain in the

downwind direction. As expected, the highest variance is observed where the

scalar gradient is largest hence the variance is particularly large around the

source and in the mixing layer.

In the mixing layer the rms is of the order of the mean concentration in this

region. This high rms in the mixing layer agrees with the results seen in Dixon

and Tomlin (2007). One of the advantages of using a PDF method is that the
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statistical distribution of the scalars can be investigated in greater detail. The

skewness and kurtosis excess of the distribution are defined as:

skew(τi)=

√
F
∑F

f=1
(τ f

i − τ̄i)
3

(

∑F
f=1

(τ f
i − τ̄i)2

)3/2
(3)

kur(τi)=
F
∑F

f=1
(τ f

i − τi)
4

(

∑F
f=1

(τ f
i − τi)2

)2
− 3 (4)

where again τ f
i is the value of species i in field f of a total of F fields. Figs. 5(c)

& (d) show contours of the skewness and kurtosis excess of NO2 in and above

the canyon. It can be seen that there is a region of positive skewness above

the mixing layer, which indicates that the NO2 concentration will usually be

low with occasionally much higher concentration. There is a corresponding

region of negative skewness just below the mixing layer which extends round

the canyon vortex, surrounding the region of high NO2. In these areas the

concentration will generally be high with occasional lower values.

Fig. 5(d) shows contours of kurtosis excess with only negative parts shown

to increase clarity. A strongly negative region is observed at the level of the

roof-tops indicating that the PDF here is not clustered around the mean. For

reference, a two delta-function distribution would have a kurtosis excess of

-2. These results are consistent with the idea that the chemical composition

found in the mixing layer will, at a given instant, be likely to retain much

of the composition of either ‘in canyon’ or ‘out of canyon’ air rather than

a mixture of the two. This is illustrated by Fig. 6 which shows the PDF of

NO2, as calculated from three SF simulations, at a point at roof-top level

in the centre of the canyon. With only 60 samples in total the number of

samples in each bin is relatively small and hence there will be a relatively

large amount of statistical noise. Because of this the PDF’s as calculated from
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three simulations using different random number sequences are used. It can

be seen that while there is some noise the overall shape for the PDF here can

be observed.

Fig. 7 shows mean and rms concentrations for O3 along a vertical line extend-

ing through the centre of the canyon. These results were produced using the

SF method, Eq. (1), and also, by using a single field and dropping the random

and micromixing terms, i.e. a plain advection-diffusion-reaction method. Once

again the high variance at roof-top level is seen. It can be seen that the two

solutions for O3 do not differ by more than the statistical noise seen in the

inert scalar results. Similar results are seen for NO and NO2, indicating that

segregation does not play a significant role in this situation, for these species.

This conclusion is supported by consideration of the Damköhler number. This

is the ratio of physical mixing timescale to chemical timescale. A physical

timescale has already been calculated in the CFD solution and is assumed to

be the same for each species. An approximate method of obtaining a chemical

timescale for each species is to find the rate at which it relaxes back to a local

equilibrium value (Neophytou et al., 2004; Garmory et al., 2008). This rate can

easily be extracted from the VODPK solver at each cell to give the distribution

of timescale and hence Da = Teddy/Tchem can be calculated across the domain

for each species. This is done for each field and the mean taken. It is found that

the highest Da is for O3, which takes a maximum value of approximately three.

This maximum value occurs in the centre of the canyon where the gradients

are small and hence variance is low. In previous work, where timescales and

Da were defined in the same way as here, (Garmory et al., 2008) segregation

effects were seen when Da ≥∼ 5 in regions where scalar gradients were found.

Therefore segregation effects should not be expected in this situation.
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3.3 Simple Chemistry - Photostationary State Defect

The photostationary state defect, δph, is defined in Baik et al. (2007) as:

δph =
(

k1XNOXO3

JNO2
XNO2

− 1
)

× 100 (5)

where k1 is the reaction rate of the forward NO+O3 → NO2+O2 reaction and

JNO2
is the photolysis rate of NO2 → NO+O. As the subsequent combination

of the oxygen radical with an oxygen molecule to form ozone happens very

quickly, a dynamic equilibrium, or photostationary state, will be achieved

between NO, NO2 and O3 if they are left unperturbed. When this occurs

the above expression takes a value of zero. A departure from zero indicates

how far the NOx/O3 system has moved from equilibrium with positive values

indicating an excess of NO and O3. The idea of the photostationary state

defect is also used in air quality measurement as a means of detecting other

pollutants (Carpenter et al., 1998); departures from the photostationary state

value in unperturbed air will reveal the presence of other pollutants. However

in our simple chemistry modelling case, where there are no other species used,

values of δph away from zero indicate only that the reversible system is not in

steady-state.

Values of δph throughout the grid can easily be extracted from the FLU-

ENT/SF code. This was done in three ways: firstly it was calculated from the

plain advection-diffusion-reaction solution. Secondly it was calculated using

the mean species and temperature values from the SF solution at each point,

known here as ‘defect of means.’ Finally δph was calculated for each field at

each grid node and the mean and rms of this taken, known as ‘mean defect’

and ‘rms defect.’ The results here, Fig. 8, agree with those seen in Baker et al.

(2004); Baik et al. (2007) with low positive values found inside the canyon
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and a ridge of high values along the mixing layer at the top of the canyon.

This indicates that the chemistry is close to equilibrium in the canyon but is

far from equilibrium at roof-top level where polluted air from the canyon is

mixed with fresh, O3 rich, air from above. Also, as expected, a departure from

equilibrium is observed around the source where polluted air is mixed into the

canyon.

Fig. 8 shows δph along a vertical line through the canyon. Also shown here is

the defect as calculated using the plain method. We see that the SF defect of

mean values are slightly higher than when fluctuations are ignored, suggest-

ing that there are small differences in calculated values of means that are not

apparent when considered individually. The peak true mean defect is signifi-

cantly smaller and narrower than those using mean quantities, indicating that

the chemistry is closer to equilibrium. The co-variance of O3 and NO caused

by their opposite gradients in the mixing region will have an effect on mean

δph which, unlike reaction rate, will be unaffected by micromixing. This is fur-

ther evidence to suggest that the composition found in the mixing layer at a

given instant will retain some of it’s ‘in canyon’ or ‘out of canyon’ equilibrium

composition rather than being a fully mixed intermediate composition (which

would be further from chemical equilibrium).

3.4 CBM-IV Chemistry

For the simulations with the CBM-IV chemistry NO, NO2 and O3 levels

for both background and source were kept the same as for the simple chem-

istry. Many of the species used in the CBM-IV mechanism are lumped species

representing a number of actual species. A V OC/NOx ratio of 1.0 (by vol-

ume fraction) was used for the source, the V OC’s comprised 70% Paraffin,
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PAR and 5% each of Ethene (ETH), Olefinic carbon bond (OLE), Aldehy-

des (ALD), Formaldehyde (FORM), Xylene (XY L) and Toluene (TOL). In

the background these V OC’s were set to relative low levels compared to those

at the source, 9.0 ppb in total split in the same proportion as for the source.

CO was set to 1000ppb in the background and 40ppb at the source, OH and

HO2 were set to 4×10−6ppb and 4×10−5ppb respectively for both source and

background. All other species were set to small values and allowed to achieve

steady-state levels during the calculation.

Contours for those species which appear in both chemistries used here were

found to be same with the CBM-IV mechanism as with the simple chemistry

within ∼ 1 ppb. This suggests that the use of the simple chemistry in the street

canyon situation is valid for finding NO/NO2/O3 levels. Again the levels of

these species were found to be unaffected by segregation effects. There was

also no significant difference observed for V OC’s or secondary pollutants such

as HNO2 and HNO3.

However significant differences were observed for some species between the

plain advection-diffusion-reaction and Stochastic Fields results. These differ-

ences were observed in the mixing region above the top of the canyon where

strong gradients and mixing occurs, as shown by the high variance in this re-

gion (see Fig. 5). The variation of mean and rms volume fraction with height

along a vertical through the centre of the canyon for OH is shown in Fig. 9 to

illustrate this. It can be seen that when segregation is ignored the peak OH

level observed in the mixing layer is too large and its vertical position is too

high.

The effect of sample size on statistical accuracy can be considered using the

central limit theorem (Tennekes and Lumley, 1972). This states that the stan-

15



dard deviation of the statistical error in calculating mean quantities is given

by:

Es =
σ√
F

(6)

where σ is the standard deviation of the measured quantity and F is the

number of samples (or fields in this case). For the results produced using the

CBM-IV chemistry and 14 fields radicals, such as OH, in the mixing region

at the top of the canyon show the highest rms values relative to the mean.

The peak rms here is approximately 65% of the mean, using the central limit

theorem this gives a relative statistical error of the mean of 17% (with 60 fields

this error would be 8%). This error is substantially smaller than the difference

seen between the ‘plain’ and ‘SF’ results and hence it seems acceptable to

draw conclusions from these results.

We again calculated Da values for each species using the same method as

in Section 3.2. As segregation effects were observed to have an effect in the

mixing region the top of the canyon, a representative value of Da for each

species was obtained by taking an area-weighted average in a region covering

the width of the canyon and extending from a height of 20m to 35m, i.e. from

4m below roof level to 11m above. These values are given in Table 2 for the

twelve ‘fastest’ species as calculated using this method. Vertical profiles of

mean volume fraction though this region, along a line in the centre of the

canyon, are shown in Fig. 10.

We see strong agreement between high Da and a significant segregation effect

on calculated species concentration. Those species for which large differences

were seen between the two methods were the seven fastest species, namely OH ,

NO3, C2O3, HO2, XO2 (Peroxy radical), XO2N (Peroxy radical accounting

for additional nitrate) and PHO (higher molecular weight phenols). These
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species all had Da values greater than approximately ∼ 1 − 20. Those with

lower Da, including those not shown in Fig. 10, did not show a significant segre-

gation effect. This finding agrees with Garmory et al. (2008), where for species

reacting in a jet exhaust plume it was found that those species affected by seg-

regation were those with Da greater than ∼ 5. The Computational Singular

Perturbation (CSP) method has been used to calculate chemical timescales for

the CBM-IV mechanism (Neophytou et al., 2004). The seven fastest species

found using the CSP method for their daytime, urban case were found to be

the same seven species found here to show significant effects due to segre-

gation. These results also agree with those for photostationary state defect

which showed that the chemistry in the mixing layer is closer to equilibrium

locally in the mixing layer than is suggested by use of only mean quantities.

The peak in concentration of radicals such as OH is caused by the departure

from equilibrium at that point, a reduction of this peak indicates that the

chemistry is closer to equilibrium.

3.5 Conditional Statistics

As with any PDF method, the Stochastic Fields method can provide any one-

point composition statistics. This includes conditional concentration statistics.

By plotting a reactive scalar, such as NO2, from each field against an inert

scalar from the same field it is possible to obtain scalar concentration statistics

conditional on the value of a conserved scalar. This is shown for NO2 in Fig.

11. The results were obtained using the CBM-IV chemistry and results for all

spatial nodes in the canyon up to a height of 20m are plotted on the same

figure. The conserved scalar used here is mixture fraction, ξ which takes a

value of zero in the background air and one at the source. This is found by

using a an extra inert scalar in each field in the simulation which takes a
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value of one at the source. Also shown for reference is the inert or ‘frozen’

relationship.

If NO2 did not undergo reaction it would vary linearly with mixture fraction

between its source and background concentrations. We can see that the NO2

varies almost linearly between its background value at ξ = 0 fraction and a

maximum value at approximately ξ = 0.24, and again almost linearly from the

maximum to the source value at ξ = 1. We also see the conditional variance

from the spread of the points about this trend. Experimental data for condi-

tional concentration statistics of NO2 in Brown and Bilger (1998) show trends

with mixture fraction that are more curved than that seen in Fig. 11. This

indicates that there is a lower scalar dissipation rate here; that is the effect

of molecular diffusion is lower here than for Brown and Bilger’s experiment.

Since the scalar dissipation rate is usually modelled as being proportional to

the variance of mixture fraction, the relatively good mixing inside most of

the canyon results in low mixture fraction variance and hence scalar dissipa-

tion, whereas Brown and Bilger’s experiment was conducted using a confined

laboratory plume where the variance was higher.

3.6 Discussion

Using the CBM-IV mechanism it has been found that seven species show sig-

nificant differences in predicted concentration when segregation is considered.

These were found to be those species with Damköhler numbers above a thresh-

old value between approximately 1 and 20, which agrees with simulations of a

jet engine exhaust (Garmory et al., 2008). Values of Da for most of the major

species would be increased if higher concentrations of the species they react

with are used, as this would lead to higher reaction rates. In addition to this,
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changes in the configuration of the street canyon or the flow inside it would

cause the turbulent timescale to change; leading to a different timescale for

molecular mixing. Hence while for the conditions modelled here there are no

segregation effects for the major species, it cannot be said that this will be

the case in all conditions.

Calculations of the photostationary state defect using the simple chemistry

have shown that air in the mixing layer above the canyon is closer to chemical

equilibrium when the value in the individual fields are considered rather than

only mean species concentrations. This is supported by the observation that

the peak in OH concentration is also reduced when fluctuating values are

considered. Together with the results seen for the higher moments of the PDF

of the scalars seen in this region this seems to suggest that the composition

of the air in this region if sampled instantaneously would tend to be largely

either polluted air from inside the canyon or clean air from outside, rather

than a well-mixed combination of the two.

The ability to easily extract one-point composition statistics such as variance

or conditional statistics is one of the advantages of using a PDF method. The

Stochastic Fields method allows PDF simulations of practical simulations such

as street canyons to be easily set up using existing Eulerian CFD techniques.

While to get a high level of statistical accuracy will necessarily be computa-

tionally expensive, the results obtained can be used to compare against other,

less computationally expensive, methods.

As discussed by Baker et al. (2004) and Baik et al. (2007) there is currently

no experimental data for reactive pollutant concentration in a street canyon

with which to validate predictions such as contained in this paper. Finding

such data from field trials is not practicable due to the uncontrollable nature
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of the flow field in a real world setting. Wind tunnel experiments would need

to made using a different source and background composition to that of the

real flow such that the Damköhler number of the reactions in the model are

the same as for the real flow. This may preclude more complex chemistries.

4 Conclusions

The Stochastic Fields method has been used to investigate the effect of segre-

gation on the chemistry in a street canyon using a simple reversible NOx/O3

chemistry and also the CBM-IV mechanism. It has been found that both

mechanisms used give very similar predictions for NO2 and O3 concentra-

tions. For most of the species segregation does not have a significant effect

using either the simple or more complex chemical mechanisms. However for

seven species (NO3, OH , HO2, C2O3, XO2, XO2N and PHO) a difference

was seen in the predicted concentration in the mixing region above the top of

the canyon. These were the seven species with the fastest chemistry, as found

by the method described in Section 3.2 and by a more sophisticated method

Neophytou et al. (2004). All other species were found to have Damköhler

numbers of less than ∼ 5.

The rms of concentration was found to be very high in the mixing layer at

the top of the canyon, with fluctuations of the order of the mean values. In-

vestigation of the higher moments of the PDF revealed that there is very low

value of kurtosis in this region, indicating that a sample of air taken instan-

taneously at this point has a high likelihood of having a composition close to

that ‘in canyon’ or ‘out of canyon’ rather than a well mixed combination of

the two. This is supported by predictions for the photostationary state defect.

Predictions found using the Stochastic Fields method gave lower values in the
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mixing region than those from a simulation using only mean concentrations,

indicating that the chemistry is closer to equilibrium, as found above or below

the mixing region, than a fully mixed mean concentration would suggest.
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Fig. 1. Schematic diagram of 2D street canyon.

Fig. 2. Mean velocity vectors from CFD solution.

Fig. 3. Contours of Mixture Fraction in and above canyon. (a) Mean values; (b)

rms.

Fig. 4. Profiles of concentration of inert scalar on leeward and windward faces,

normalised by concentration at ground level on leeward wall. Experimental data

from Hoydysh and Dabberdt (1988).

Fig. 5. Contours (in ppb) of NO2 distribution in and above canyon. (a) Mean values;

(b) rms; (c) skewness (Eq. (3)) and (d) kurtosis excess (Eq. (4)) with positive values

omitted.

Fig. 6. Probability Density Function of NO2 volume fraction at roof-top height

(24m) in the centre of the canyon. Also indicated are the background concentration,

0.2 ppb, and the source concentration, 10 ppb.

Fig. 7. Profiles of mean and rms O3 concentrations, using both SF and plain ad-

vection-diffusion-reaction model, taken along a vertical line extending through the

centre of the canyon passing through the source
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Fig. 8. Vertical profiles of photostationary state defect through the centre of the

street

Fig. 9. Vertical profiles of OH 2.5m through the centre of the street, using CBM-IV

chemistry.

Fig. 10. Vertical profiles, between a height of 20m and 35m on the canyon centre-line,

of volume fraction for the twelve species with the highest Da at the centre of the

canyon, using CBM-IV chemistry. Key to labels given in Table 2.

Fig. 11. Conditional dependence of NO2 volume fraction with mixture fraction

as produced by the SF method using the CBM-IV chemistry. Also shown is the

dependence if no reaction were to take place.
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Table 1

Solution parameters used in FLUENT CFD solution

Solver 2D, segregated, implicit

k − ǫ model constants Cµ = 0.09, C1ǫ = 1.44, C2ǫ = 1.92

Pressure-velocity coupling SIMPLE

Density Constant

Discretisation - pressure Standard

Discretisation - momentum 1st-order upwind

Discretisation - k 1st-order upwind

Discretisation - ǫ 1st-order upwind

1

Table 1
Click here to download Table: table1.tex

http://ees.elsevier.com/atmenv/download.aspx?id=127095&guid=7b6d3cb0-4f54-470e-8eb2-c08c34f81d2e&scheme=1


Table 1

Area-weighted averages of Damköhler numbers in the mixing region for the twelve

fastest species using the CBM-IV mechanism. Also shown is the key to the corre-

sponding figure in Fig. 8

Species Da Position in Fig. 8

OH 389 (a)

NO3 387 (b)

C2O3 199 (c)

HO2 120 (d)

XO2N 111 (e)

XO2 111 (f)

PHO 20.0 (g)

N2O5 0.469 (h)

NO 0.288 (i)

O3 0.210 (j)

PAN 0.00265 (k)

PHEN 0.00158 (l)

1

Table 2
Click here to download Table: table2.tex

http://ees.elsevier.com/atmenv/download.aspx?id=127096&guid=de63737a-ced1-47a5-bd0f-cdcc26839b1e&scheme=1
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