
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288382698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

Numerical investigation into the loading behaviour of filters operating in the 

diffusional and interception deposition regimes. 

 

 

Dr S.J. Dunnett1, Dr C.F. Clement2 
1Department of Aeronautical and Automotive Engineering, Loughborough University, 

Loughborough, Leics. LE11 3TU, UK 
215 Witan Way, Wantage, Oxon, OX12 9EU, U.K. 

Abstract  

Using a previously developed theory, which allows for changes in gas flow from 

deposit growth, calculations are performed for deposition on an initially cylindrical 

fibre. The deposit is given a specified porosity through which the flow is calculated 

from Darcy’s equation using the Beavers and Joseph (1967) boundary condition at the 

outer boundary. Results are obtained for different porosities ϕ, the volume fraction of 

space in the deposit, for flow conditions such that deposition occurs by the 

mechanisms of diffusion and interception, but not impaction (Stk < 1). Dependencies 

given in the literature of the deposit permeability on ϕ  are examined. The dominant 

mechanism is determined by the value of the parameter, s = R / δ, where R is particle 

to fibre radius ratio and δ is the non-dimensional thickness of the flow diffusion layer. 

Where diffusion dominates, s < 1, increase in porosity does not significantly increase 

deposition, apart from the effect of its lower density. Where s > 1 and interception 

dominates, deposition increases with increase in ϕ and is significant for ϕ ≥ 0.9 where 

more streamlines pass through the deposit. The shape of the deposit remains peaked at 

the front of the fibre, at the forward stagnation point, but, if a deposit has an initial flat 

front, it grows into a shape peaked away from the stagnation point, as observed by 

Kanaoka et al (1986). Possible reasons for this behaviour are discussed. 

 

Keywords: Fibrous filter, numerical model, deposit, diffusion, interception. 
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Nomenclature 

 
C Cunningham correction factor 

D Diffusion Coefficient 

d Fibre width 

dp Particle diameter 

F,G,H,M  Functions of β used in the numerical flow model.   

g Function of β describing the new surface of the fibre containing deposit. 

k Permeability 

k’ Non-dimensional value of k 





= 2d

k4  

kh Hydrodynamic factor used in the flow model of Stechkina and Fuchs (1966) 

N Normal to the fibre surface 

n Particle concentration 

Pe Peclet number 

Re Reynolds number of the flow 

R Ratio of particle and fibre radii 

r Polar coordinate 

rp Particle radius 

s Deposit mechanism parameter 





=

δ
R  

Stk Stokes number 

U0 Freestream velocity 

U Fluid velocity  

Ur Fluid velocity component in the r direction 

Uθ Fluid velocity component in the θ direction 

x,y Cartesian components 

α Packing fraction 

αBJ Coefficient in Beavers and Josephs (1967) boundary condition 

β  Angle from incident direction 

δ Non-dimensional thickness of the diffusion layer 

ϕ Volume fraction of space in the deposit 

λ Constant related to the rate at which particles deposit upon the fibre surface  
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η Particle collection efficiency 

µ Air viscosity  

θ Polar coordinate 

ρ Density of air 

ρp Density of particle 

ω Fluid vorticity 

ψ Stream function 
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1. INTRODUCTION.  

The separation of particles from a flow by the use of fibrous filters is common 

practice. Examples are in the protection of individuals from harmful airborne 

particulate by the use of face masks, in air pollution control and many other 

applications. Such filters generally consist of numerous fibres, of varying sizes, which 

are positioned more or less normal to the flow. The flow passes through the regions 

between the fibres and particles are removed by attaching to the fibre surface. The 

mechanisms by which the particles are removed depend on various particle and flow 

properties, such as flow velocity, particle size, etc. As the deposit accumulates inside 

the filter the flow through it, and hence the efficiency with which further particles is 

collected, is altered. 

In order to fully understand the behaviour of fibrous filters it is necessary to obtain a 

detailed description of the flow in the filter. As the structure of filters is very complex 

with the random orientation of the fibrous filters and the interference of the 

neighbouring fibres this is a difficult task and hence simplifications have been made. 

One approach which is widely adopted is the cell model initially developed 

independently by Kuwabara (1959) and Happel (1959). This approach although 

primarily considering a single fibre, takes into account the effects of the neighbouring 

fibres and is described in more detail in the following section. Many different 

numerical approaches have been adopted to solve the flow equations  including the 

Boundary Element Method (BEM), see for example Hildyard et al (1985) and 

Konstandopoulos (2000), the control volume method, see for example Li and 

Marshall (2007) and Qian et al (2009) and the lattice-Boltzmann approach, Filippova 

and Hanel (1997) and Przekop et al (2003). Once the flow field is determined the 

movement of particles within the filter and their possible removal by the fibres can be 

investigated. Over the years, due to its importance, much work has been performed in 

this area. A lot of this work has considered the case of a clean filter, much of which is 

reviewed in Brown (1993), and this situation is now well understood. The feedback 

effects of the deposit formed and its dependence upon filter parameters are however 

less well understood and this is the area considered in this paper. As particles collect 

on the fibre surface, due to their finite size they also become part of the filter structure 

and hence affect its efficiency. Numerical simulations of such deposit are limited due 

to their considerable use of computing time and resources, see Jung and Tien (1993) , 

Biggs et al (2003) , Karadimos and Ocone (2003) and Przekop et al (2003).  
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As deposit builds up on the fibres, dendrites, branch like structures made up of 

deposited particles, are formed. Models of such structures have been developed by 

Payatakes and colleagues, e.g.  Payatakes et al (1977), Payatakes and Gradon (1980). 

These models are however limited to the early stages of deposition due to the 

assumptions made in neglecting the effects of the structures formed upon the flow 

field. 

The area on the fibres at which deposition takes place, and the shape of the deposit 

formed, will depend upon the dominant particle capture mechanism. A diagram 

outlining the relationship between the operating parameters and the deposit formed 

was given in Kanaoka et al (1986) and reproduced in Kasper et al (2010), see figure 1. 

In this figure Pe is the Peclet number, which is a measure of the relative magnitude of 

the diffusional motion of the particles and the convective motion of the air past the 

fibre and is given by: 

D
dU

Pe 0=         (1) 

where D is the coefficient of diffusion of the particles, d the fibre diameter and U0 the 

freestream velocity. R is the interception parameter, R=dp/d where dp is the particle 

diameter and Stk is the Stokes number, which is the ratio of the particle stop distance 

to fibre diameter. 

As can be seen in figure 1, when diffusional deposition is the dominant mechanism, 

small Pe and R, the particles are evenly distributed around the fibre with a relatively 

open pore structure. As the interception parameter increases for the same flow 

parameters Pe and Stk, the basic distribution of the deposit remains the same but the 

structure is more open. For large Stk, when inertial impaction is dominant the 

deposition is purely on the front of the fibre with the majority close to the stagnation 

point.  

Recently a detailed study has been undertaken into the deposit onto, and subsequent 

performance of a single fibre, by Kasper and colleagues, Lehmann and Kasper (2002), 

Kasper et al (2009) and Kasper et al (2010). The studies were undertaken for 

situations where deposition is dominated by inertial impaction and interception (to the 

right on figure 1). The CFD simulations by Lehmann and Kasper (2002) demonstrated 

the importance of particle rebound upon deposit structure in the inertial regime and 

also found that simulations need to be three dimensional to accurately predict the 

deposit packing fraction.  The experimental process undertaken by Kasper et al (2009) 
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and Kasper et al (2010) generated much useful structural information about the 

deposit for particles where inertia, interception and bounce are important. It was 

found that the transition from compact deposits to the more dendritic structures as 

shown in the figure from Kanaoka et al, Figure 1 as R increases, is driven not by 

interception but by particle bounce. 

The aims of this present study are to consider the loading behaviour of filters 

operating in the diffusional, and interception, deposition regimes (to the left and 

centre of Figure 1). A numerical model for loaded fibres developed in previous papers 

Dunnett and Clement (2006, 2009), subsequently referred to as I and II in this paper, 

is applied to consider the effects of deposit upon performance for various operating 

parameters. In the paper initially a brief description is given of cell models in general 

and the particular model of Dunnett and Clement outlined. This model assumes the 

deposit to form a smooth porous layer on the fibre surface, (similar to the shapes 

shown at the top of figure 1) the shape of this layer is dependent upon the deposition 

mechanism. Hence the model clearly only applies when R (referred to as κ in I and II) 

<< 1, the complex structure of the dendrites is not modelled and therefore the results 

obtained give a qualitative description of the effect of deposition.  This model is then 

applied to consider the effects of the porous deposit upon the flowfield, and hence 

filter performance, for situations when diffusion, and then interception, are the main 

mechanisms of deposition. The deposition patterns are compared with those described 

previously by Kanaoka et al and hence the range of validity of the numerical model 

investigated.  

In order to describe the growing deposit, we need to calculate the gas flow and then 

particle motion and resulting deposition in the flow. Starting with a clean fibre this 

leads to an initial deposit layer, and the whole process is then iterated but with a new 

surface for deposition and a possibly porous layer through which gas can flow. 

Formulation for the flow calculations, summarising work performed in I and II, is 

described in section 2, first for a clean fibre, then with the addition of a solid deposit, 

and finally in 2.3 including flow through a porous layer. In particular, the complex 

formulas derived in II required to implement the Beavers and Joseph boundary 

condition on the changing layer surface are included in 2.3. Particle motion and 

deposition from the flow by the two mechanisms of diffusion and interception is 

described in section 3, giving in 3.1 the key parameter determining which mechanism 
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dominates. In section 3.2 we study various relations given in the literature between 

the gas permeability and the porosity of the deposit. In section 4, we describe the 

results of iterated deposition calculations, first for the diffusive regime in 4.1 and then 

for the interception regime in 4.2. Conclusions from the results in relation to the 

importance of deposit porosity and to the experiments of Kanaoka et al (1986) are 

given in section 5. 

2. FLUID FLOW FORMULATION 

As mentioned in the previous section many of the earlier flow models have been 

based on the cell method. As the current model developed here is also based on this 

approach a description of the method is given below 

2.1 CELL MODEL 

In these models the assumption is made that the Reynolds number of the flow, Re, is 

small and hence creeping flow is assumed, where 
µ

ρ
= 0Ud

Re  ρ is the density of the 

fluid and µ the fluid viscosity. The equations of motion for the flow are then: 

 

0U.

Up 2

=∇

∇µ=∇
        (2) 

 
In these equations p is the fluid pressure. Assuming two dimensional flow, in terms of 

the streamfunction, ψ, equations (2) are written as: 

 
04 =ψ∇         (3) 

 
which can be written in coupled form as: 

 

02

2

=ω∇
ω=ψ∇         (4) 

 
where ω is the fluid vorticity which is a measure of the tendency of the fluid to rotate 

or to cause rotation of suspended bodies during flow. 

Equations (4) are then solved in the region around a single fibre, with the flow 

interference effect of the neighbouring fibres taken into account by the application of 

boundary conditions on the outer boundary of the region. This outer boundary is 

defined by a surface concentric with the fibre and at such a distance from the fibre 
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that the packing fraction of the fibre within this surface is identical to that of the fibres 

within the filter, α. This results in the diameter of the outer boundary, a, being defined 

by
α

=
da .  

As the flow is determined in a limited region, assumed to be representative of the 

filter, it is known as a cell model. In the model of Kuwabara the boundary conditions 

applied were the no slip condition on the fibre surface and u=U0cosθ and zero 

vorticity on the cell boundary. The model of Happel only differed in that the shear 

stress was assumed zero on the cell boundary and not the vorticity. 

In this present study cell models have also been adopted. In previous papers I and II, 

numerical models of the flow field and particle motion for the cases of a clean fibre 

and a fibre containing some deposit have been developed and validated.  The model to 

determine the flow characteristics used the Boundary Element Method (BEM) and a 

brief summary of the main points is given here. More detail can be found in the 

original papers.  

The fibres are modelled as infinitely long cylinders with their axis perpendicular to 

the flow. Hence the flow is two dimensional and the motion takes place in the plane 

perpendicular to the cylinder axis. A single fibre is considered and a cell model 

adopted. The Reynolds number of the flow is assumed to be small so that equations 

(2)-(4) are applicable. Before making any calculations all quantities were non-

dimensionalised, distances with respect to the fibre radius d/2 and velocities with 

respect to the mean flow velocity U0. The form of equation (4) is unchanged.  

  

2.2 CLEAN FIBRE + FIBRE CONTAINING A SOLID DEPOSIT. 

In the case of a clean fibre the solution domain is shown in Figure 2a where symmetry 

is taken into account. Equations (4) are solved, subject to the following boundary 

conditions: 

 
(a) ψ=0, ω=0 on AB and CD 

(b) ψ=0, 0' =ψ  on BC     (5) 

(c) ψ=h1sinθ, ω=0 on DA 

 
In condition (b) prime denotes differentiation with respect to the outward normal to 

the surface BC and in condition (c) h1 is the non-dimensional radius of the cell and is 
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given by
α

= 1h1  and θ is the standard polar coordinate. Details of the method of 

solution for the clean fibre are given in I.  

Initially, for ease of calculation, the surface formed by depositing particles was 

assumed to be solid and hence the same method as for a clean fibre could be used to 

determine the flowfield for a fibre with deposit. The only difference being the shape 

of the boundary BC in figure 2a. This is also described in more detail in I. In order to 

more realistically model the deposit this was later extended and the deposited particles 

assumed to form a porous layer on the fibre.  

2.3 FIBRE CONTAINING POROUS DEPOSIT. 

Full details of the model developed for this case are given in paper II but the main 

points will be summarised here. The domain considered was that shown in Figure 2b, 

once again use was made of symmetry and AF is the symmetry boundary. The 

boundary of the porous layer formed by the deposited material, BE, is described, in 

non-dimensional terms, by the equation r=1+λg(β) where g(β) is a numerical function 

of the angle β=π−θ that r makes with the negative x axis and λ is the non-dimensional 

thickness of the deposit at the front of the fibre.  

There are two regions to the flow field, the region outside the deposit where the flow 

satisfies equations (2) as in section (2.2), this is labelled region I in Figure 2b. The 

other region in which the flow is determined is inside the porous layer, denoted region 

II in Figure 2b. Also shown in the figure is a limiting particle trajectory for a particle 

of diameter dp which just touches the deposition surface. In the model described in II 

the flow inside the porous layer is assumed to be modelled by Darcy’s law; 

 

U
k

p µ
−=∇           (6) 

 
where k is the permeability of the porous media. This permeability is independent of 

the nature of the fluid but it does depend on the geometry of the porous medium. In 

the model developed the expression for k obtained from the Carman-Kozeny formula, 

equation (7), was adopted. 

 

( )2

2
p

3

1180

d
k

ϕ−

ϕ
=        (7) 
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Where ϕ is the porosity, which is the fraction of the porous media that is occupied by 

void space. Subscripts F and P were used to denote the flow variables in the regions I 

and II respectively. In region I Fψ  satisfies equations (4) and in region II equation (6) 

can be written as; 

 
0p

2 =ψ∇         (8) 

 
 Equations (4) and (8) were solved, using the BEM, for the streamfunction in the two 

regions subject to the following boundary conditions; 

 
(a) ψF=0, ωF=0 on AB and EF 

(b) ψF=h1sinθ, ωF=0 on AF     (9) 

(c) ψP=0 on BC, CD and DE 

 

and on the common boundary BE: 
T
p

∂
∂  and the normal velocity UN are continuous and 

the generalised Beavers and Joseph (1967) condition: 

 

( ) ( )( )PTFT
BJ

F

N'
T UU

kT
U

U −
α

=







∂
∂

+     (10) 

 
 is satisfied, where T is the tangent to the boundary BE and αBJ is a dimensionless slip 

parameter which depends on the material parameters that characterize the structure of 

the permeable material. This results in the following conditions on BE, see paper II 

for more detail: 

 

(d) 
PF TT ∂

ψ∂
=

∂
ψ∂  

(e) '
F

'
P

k
ω=

ψ        (11) 

(f) 












∂
ψ∂

ββ
β

+ψ
ββ

β
+

∂
ψ∂

+ω
β

β
−

α
+ψ−=ψ

T)(M)(rF
)(H

)(M)(rF
)(G

T
2

)(M
)(Fk F'

F2
F

2

F2
BJ

'
F

'
P

 

In condition (f) the functions F(β), G(β),  H(β) and M(β) are given by: 
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( )2
2

2 g1
d
dg)(F λ++








β

λ=β , 

( ) ( ) ( )

( )

( )
2

1
2

22

2

2

2
2

2
2

2
3

2
2

2

22
3

g2
d
dgg1M

d
dgg1 

d
gd 

d
dg2)(H

g1
d

gdg1g1
d
dg3

d
gd

d
dg)(G














λ+






















β

+λ+=β






















β

λ−λ+








β







β

λ=β

λ+








β
λ−λ++λ+








β

λ+
β








β

λ=β

(12) 

 
Once the streamfunction has been determined for either a clean fibre or one 

containing deposit, the velocities of the flow can be determined using: 

r
u and    

r
1u r ∂

ψ∂
−=

θ∂
ψ∂

= θ         (13) 

 

3. PARTICLE MODELLING 

3.1 PARTICLE DEPOSITION. 

The basic quantities which determine whether incident aerosol particles are deposited 

on a fibre are their incident velocity, U0, diameter, dp, of the assumed spherical 

particle, the nature of the gas (density, ρ, temperature, T, and viscosity, µ) and 

characteristics of the fibres. These characteristics are initially specified by the fibre 

diameter, d, and the geometric arrangement of the fibres which includes their packing 

fraction, α, which we take to be uniform. We also assume that, following deposition, 

the porosity of the deposit is also uniform and is specified by a single value for the 

volume fraction of space, ϕ, in the deposit. The viscous gas flow through the deposit 

depends on both ϕ and the particle diameter, a dependence we examine later. Neither 

uniformity assumption is entirely justified, and initial structure variability has been 

investigated experimentally (Lehmann et al 2003) and its effects by Schweers and 

Löffler (1994). 

Furthermore, the porosity can depend on the deposition mechanism, which can vary 

with angle round a fibre, and also depth in the deposit ( Rodríguez-Pérez et al 2005).  



 12 

In the numerical model developed in I and II once the flow characteristics were 

determined, the motion of the particles in the flow and their deposition onto the fibre 

was considered. In filtration, neglecting electrical effects, the main mechanisms by 

which particles are deposited on the fibres are: 

i) diffusional deposition, when the combined action of the fluid flow and the 

Brownian motion of the particle brings it into contact with a fibre. 

 ii) direct interception, when a particle following a streamline of the flow comes into 

contact with a fibre. 

iii) inertial impaction, when a particle deviates from a streamline because of its own 

inertia and hence come into contact with a fibre. 

iv) gravitational settling, when particles settle out of the air moving through the filter 

due to the influence of gravity. 

The dominant mechanism that influences the deposition is dependent upon the size of 

the particles.  In the earlier work presented in I and II small particles were considered 

where the main mechanism of deposition is diffusional deposition. In this case the 

equation to be solved for the non-dimensional particle concentration, n, is: 

 









∂
∂

+
∂
∂

=
θ∂

∂
+

∂
∂ θ

r
n

r
1

r
n

Pe
2n

r
u

r
nu 2

2

r      (14) 

 
where particle concentration has been non-dimensionalised with respect to the particle 

concentration in the undisturbed flow.  

Details of the method adopted to solve equation (14) and the boundary conditions 

imposed are given in I. The boundary conditions account for the effects of particle 

interception with the surface which introduces the dimensionless particle diameter R.  

Intermediate size particles have negligible inertia, gravitational settling or Brownian 

motion and hence follow the flow streamlines. In this case the dominant deposition 

mechanism is direct interception and hence the limiting streamlines, those that come 

within a particle radius of the surface, need to be determined. This mechanism will be 

considered in this work. 

Once the particle motion is modelled, the rate at which the particles deposit can be 

determined and hence the numerical function g(β), which defines the surface formed 

by the deposit, determined.  
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In I we found that the analytic behaviour of the solution of the transport equation (14) 

changes across the line where the value of the ratio of δ to R is 1. Where the quantity, 

δ, represents the thickness of the diffusion layer round the fibre, given by: 

δ = (4kh / Pe)1/3 ,       (15) 

where the hydrodynamic factor, kh, for an isolated cylinder is given by 

kh = 2 – lnRe,        (16) 

and for a system of parallel cylinders by 

kh = - ½ ln α - ¾ + α - ¼ α2.      (17) 

Previously, Stechkina and Fuchs (1966) characterised this ratio by a parameter 

s = R / δ.        (18) 

and found that diffusion dominates deposition for s < 1, and interception dominates 

deposition for s > 1.  

Considering the values of s for various physical conditions Figure 3 shows s as a 

function of particle size for various fibre sizes and freestream velocities. In the figure 

the packing fraction, α, is taken to be 0.05 unless otherwise stated. Also shown on the 

figure is the line s=1. Hence the conditions for which the curves lie below the s=1 line 

correspond to situations when deposition is dominated by diffusion and those above 

by interception. 

We find here that the value of s is also the most important parameter in determining 

whether or not porosity in the deposit subsequently increases the deposition rate.  

In the work presented here the numerical models developed earlier, and described 

briefly here, will be used to investigate the different deposition mechanisms of 

diffusional deposition and interception.  The range of conditions and parameters 

which determine which of these mechanisms is dominant will be discussed. The shape 

of the deposit formed on the fibre for the different deposition mechanisms is 

investigated and the validity of assumptions made in the numerical models 

investigated. 

 

3.2. PERMEABILITY. 

The flow through the porous layer formed by the deposited particles is characterised 

by the permeability of the layer, k, see equation (6). This permeability depends on the 

porosity and the structure of the deposit.  In the model developed in I and II the 

permeability of the deposited material was given by the Carman-Kozeny formula, 
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equation (7). This expression does not exhibit the correct limiting behaviour as 1→ϕ , 

when the structure is very porous, see Vanni (2000) and Vainshtein et al (2004). In 

this case the permeability can be written as: 

( )
( ) 4

dfk
2
p

ϕς
ϕ

=         (19) 

 
where f(ϕ) has the limiting behaviour, 

 

( ) ( )ϕ−
→ϕ

19
2f       as  1→ϕ       (20) 

 
which corresponds to the physical situation where each of the particles experiences 

drag as an isolated sphere, and ζ(ϕ) is a shielding coefficient to account for the fact 

that particles within the deposit will be in contact. Following the work of Vanni 

(2000) the shielding coefficient has been taken to be an exponential function given 

by: 

 
( ) ( )ϕ−−−=ϕζ 110e6.01 ,       (21) 

 
and the permeability models of Happel (1958): 

 

( ) ( )
( )

( )5

65

23
35.45.43

19
2f

γ+
γ−γ+γ−

ϕ−
=ϕ     (22) 

 
and Kim and Russel (1985) 

 

( ) ( ) 







γ+γγ+γ+

ϕ−
=ϕ 332

3
456.16ln

64
405

2
31

19
2f    (23) 

 
have been considered, where ( ) 3

1
1 ϕ−=γ  

The different values for k obtained by the different models is shown in Figure 4 where 

4k/dp
2 is shown as a function of ϕ using the Carman-Kozeny model, equation (7), the 

Happel model, equations (19), (21) and (22) and the Kim and Russel model, equations 

(19), (21) and (23). The range of ϕ shown is 99.06.0 ≤ϕ≤ . As can be seen, for the 

larger values of ϕ the models of Happel and Kim and Russel agree well, and they 
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exhibit the correct limiting behaviour as 1→ϕ , however they do differ significantly 

from the model of Carman-Kozeny. For the smaller values of ϕ the model of Happel 

agrees well with the Carman-Kozeny model.  

An example of the effect upon the flow field of the different models for k is shown in 

Figure 5 where the streamlines of the flow are shown near a fibre which has a porous 

layer on it for 2 different situations. In the figures, due to symmetry, only half of the 

fibre is shown and the porous region is enclosed within the dotted curve. Only the 

flow in the region close to the fibre + deposit is shown. In both figures shown, the 

porosity of the deposit is high, ϕ=0.95, and hence the Carman-Kozeny model is 

unlikely to be accurate.  

In figure 5a d=40µm, U0=0.1m/s and dp=1 µm which results in s=0.875 and hence 

particles would be predominantly deposited by the mechanism of diffusion. The 

streamlines for the two models of Happel, and Kim and Russel were indistinguishable 

and hence only those for the Kim and Russel model are shown in the figure. As can be 

seen there is a small difference between this model and the Carman-Kozeny model. 

 In figure 5b d=20µm, U0=0.5m/s and dp=1 µm which results in s=2.374 and hence 

particles would be predominantly deposited by the mechanism of interception. In this 

case there is a small difference in the streamlines obtained using the Happel model 

and those obtained using the Kim and Russel model for the flow that travels through 

the deposit. However the difference is small. The results obtained using the Carman-

Kozeny model in this case, are significantly different from those using the other 

models.  

As the models of Happel and Kim and Russel for permeability give similar flow 

patterns for the larger porosities and differ from those obtained using the Carman-

Kozeny model, the model of Happel will be adopted for the larger porosities in this 

work. This has a slightly simpler form than that of Kim and Russel, see equations (22) 

and (23), and has the correct limiting behaviour as 1→ϕ .   

 

4. RESULTS 

A summary of the steps taken to numerically obtain the flowfield as the particle 

deposit increases are shown in a flowchart in Figure 6. The figure includes the 
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relevant section numbers and equations. The deposit is build up in layers each of 

which has a non-dimensional width λ at β=0.   

4.1. DIFFUSION REGIME 

In this section the situations when diffusion is the main mechanism of deposition are 

considered. In this case the particles are small and the parameter s is less than unity. 

Considering the physical conditions which satisfy s<1 Figure 3 shows the parameter s 

as a function of particle size for various fibre sizes and freestream velocities.  The 

region of interest in this section is that below the line s=1. It has been found in this 

work that for the conditions that satisfy s<1 the porosity of the deposit has a 

negligible effect upon the subsequent flow field and hence further deposition. An 

example of this is shown in Figure 7, where the streamlines of the flow are shown 

near a fibre that contains a layer of deposit of different porosities for conditions such 

that s=0.875.  The streamlines obtained by assuming the deposit to be solid are also 

shown in the figures. In Figure 7a the porosity of the deposit, ϕ, is 0.9, i.e. 90% of the 

deposit is occupied by void space, and in Figure 7b ϕ=0.95. 

As can be seen in Figure 7, the effect on the fluid motion due to the porosity of the 

deposit is very small for deposit made up of particles in the diffusion regime. This can 

be seen even when the porosity is 95% as shown in Figure 7b.  

This can also be seen in Figure 8 where deposit build up on the filter is shown for the 

same conditions. This has been modelled using the steps outlined in Figure 6. In 

Figure 8 the deposit build up is shown for two layers assuming the porosity of the 

initial layer to be given by ϕ=0.9 and 0.95 and also assuming the deposit to be solid. 

As can be seen the effect of the deposit porosity is negligible particularly at the front 

of the fibre. Further layers of deposit have been determined using the numerical 

model and the same negligible effects of the porosity seen. 

As the solution of the flow field for a fibre containing porous deposit is significantly 

more complex than for a solid deposit, it is computationally advantageous to assume 

that the deposit is solid. As the results show here, such an assumption is reasonable 

when considering particles in the diffusion regime, i.e. when the parameter s is less 

than 1. 

4.2. INTERCEPTION REGIME 
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Considering situations for which the parameter s>1, in this case the particles are 

larger than for the diffusion case and the main mechanism of deposition is 

interception. Also in these situations the permeability of the deposit is higher than for 

the diffusion case, as k is proportional to dp
2, equation (19), and more flow is seen to 

pass through it. This is seen in Figure 9 where the streamlines of the flow are shown 

near a fibre with a layer of deposit when s=2.374, ϕ=0.95. The streamlines obtained 

assuming that the layer is solid are also shown. As can be seen in this case the layer 

formed by the deposit only covers the front part of the fibre and the porosity is having 

a significant effect upon the flow. This can also be seen in Figure 10 where the 

growth of deposit is shown for the same case considered in Figure 9 for different 

deposit porosities. The effect of the porosity is to reduce the size of the region of the 

front of the fibre covered by deposit. It can be seen that the shape of the deposit 

predicted by the numerical model for all porosities is similar to that shown by 

Kanaoka et al (1986) (Figure 1) for the situation when inertial impaction is the main 

mechanism for deposition and not interception, the case considered here.  

The case of pure interception in Figure 1 is at Stk=0, Pe=∞ where the deposit width 

has a minimum at the front of the fibre. The numerical model developed here is not 

predicting this behaviour. An investigation into the modelled flow, and hence particle, 

behaviour in the vicinity of the fibre has been made. Streamlines of the flow given by 

values of the streamfunction with a constant difference dψ, ( ψi=idψ) so that an 

equivalent volume of flow is moving between the lines, have been considered. 

Assuming monodisperse particles with constant concentration the number of particles 

carried between any two streamlines ψi and ψi+1 will be the same. Hence the width of 

the deposit layer will be proportional to the distance dsi, where dsi is the distance 

along the surface between the points where the particles travelling along the 

streamlines ψi and ψi+1 impact the surface, see Figure 11a. It has been found in this 

work that for the particles in the interception region, s>1, the numerical model 

predicts that dsi increases with distance from the front of the fibre, i.e. with increasing 

ψ. This is seen in Figure 11b where dsi is plotted as a function of ψi for s=2.374, 

results have been shown for a clean fibre and also when a layer of deposit has already 

collected. As can be seen in both cases dsi stays more or less constant until ψi gets 

close to the maximum value at which particles impact and then dsi increases rapidly. 

This corresponds to the deposit layer following the fibre shape until near the top 
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where its width reduces, as seen in Figure 10. Once the initial deposit forms this shape 

on the front of the fibre, further deposition is found to follow the same pattern. 

 Various situations corresponding to s>1 have been considered, with various values 

for the deposits porosity, and the same behaviour is found to be predicted. This is 

different to the deposition patterns predicted by Kanaoka et al (1986) based on 

experimental work where it was found that the main areas of deposition were not 

around the front stagnation point but on the front face close to the 45o point. A 

possible cause for this difference is the assumptions made in our model about the flow 

in the porous deposit. We have assumed that it can be modelled by Darcy’s law and 

hence it is not possible to model the thin boundary layer in the porous deposit at the 

interface with the free flow. As the deposit starts to grow on the fibre the effects of 

this boundary layer may be significant. In order to investigate whether this could be 

the problem with the numerical model we have considered the deposit growth once a 

layer has already formed. The initial deposit has been assumed to form a shape similar 

to that shown by Kanaoka et al (1986), Figure 1 in the region Stk=0, Pe=∞, with a flat 

surface facing the flow. An example of the flow around, and through such a layer is 

shown in Figure 12 for two different porosities, ϕ=0.9, 0.95. Two streamlines for both 

porosities are shown for the case when κ=0.05, which corresponds to the parameters 

taken in the flow shown in Figure 9. Comparing the streamlines shown in Figures 12 

and 9 it can be seen that the more streamlined shape formed by the deposit in Figure 9 

enables the flow to adapt and hence less passes through the deposit. A plot of the 

length dsi as a function of ψI is shown in figure 13 for the case when an initial layer of 

deposit is assumed in the model (Figure 12) and also when the deposit is build up 

from a clean fibre (Figure 9). As can be seen when an initial layer of deposit is 

assumed then dsi initially decreases to a minimum and then increases again near the 

top range of ψi. This results in deposit collecting on this layer in the shape shown in 

Figure 14. This is closer to the deposit growth identified by Kanaoka et al (1986) and 

demonstrates the sensitivity of the numerical model to the initial shape of the porous 

surface. 

  

5.  CONCLUSIONS 

In this paper the numerical model developed earlier by the authors has been used to 

investigate the loading behaviour of filters for conditions such that diffusion, and also, 
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interception, are the main deposition mechanisms. In the case of the smallest particles 

when diffusion is the dominant mechanism the model has shown to predict the pattern 

of deposition as that shown by Kanaoka et al (1986). Also the numerical model has 

shown that, in this case, the porosity of the deposit has an insignificant effect upon 

subsequent deposition. Hence, when modelling such situations it is reasonable to 

assume that the deposit collected forms a solid boundary to the flow, thus simplifying 

the model. 

For larger particles when interception dominates as a mechanism of deposition, the 

model has shown that the porosity of the deposit has a more significant effect upon 

the flow and particle motion. However is has been found that the numerical model is 

not predicting the deposition patterns found previously by Kanaoka et al (1986) if the 

deposit is build up from a clean fibre. If however an initial deposit is assumed that has 

the same form as that found in the earlier work then subsequent build up predicted by 

the numerical model is found to follow the same pattern as found by others. It appears 

therefore that accurate description of the initial deposit is crucial in obtaining the 

correct morphology of the particulate deposit.  

There are several possible reasons why the numerical model developed is not 

accurately modelling the flow in the initial stages of loading for particles in the 

interception region. As mentioned, one reason for this may be the assumptions made 

in the model. The situation modelled consists of two distinct flow regimes, porous and 

free flow, with the interface of the two regions occurring at the surface where particle 

deposition takes place. The modelling of such coupled free/porous flows is an 

important topic in engineering and has been the subject of many studies. The two 

distinct flow regimes are modelled by differential equations and the main problem is 

an accurate description of the flow at the interface. The flow in the porous region is 

governed by Darcy law, equation (6) and the flow in the free flow by Stokes flow, 

equation (2). There is a thin layer, of thickness of the order k1/2, within the porous 

media where the flow velocity evolves from its Darcy value to the interface value, 

similar to a boundary layer. The Darcy equation is not compatible with such a region 

as it has no shear stress associated with it. The approach adopted here to deal with this 

has been to adopt a modification of the Beavers and Joseph condition, equation (10). 

This introduces the slip coefficient αBJ which is dependent upon the structure of the 

porous region. As the thickness of this boundary layer is small its effect upon the flow 
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field is generally insignificant. However in the initial stages of loading, when the 

deposit collected is small so that the size of the porous layer is small, the effect of this 

boundary layer may need to be considered and modelled more accurately. From 

Figure 4 it can be seen that k1/2>dp only for ϕ>0.9 and hence the thickness of the 

boundary layer is of the same size, or greater, than the size of the particles for these 

large porosities.  

An alternative model of flow in the porous medium is provided by the Brinkman 

equation which takes into account this boundary layer. However it has been shown 

that the Brinkman equation accurately describes the flow only for high porosity 

media, ϕ>0.95, see Durlofsky and Brady (1987). 

There are several other possibilities leading to a change of shape in the initial deposit. 

The porosity of the deposit has been shown to vary with depth, Rodríguez-Pérez et al 

(2005), and also with deposition mechanism, which leads to a dependence on angle.  

A second possibility is that slight deviations of particle trajectories from the flow, 

which can arise when Stk is small, will mainly affect trajectories near the front of the 

fibre and lead to more deposition away from β=0, see figure 2b.  

Also the model assumes that a smooth porous layer is formed and hence the structure 

of the dendrites is not modelled. This is a possible source of error in the results.  

A final possible inaccuracy is the assumption of 2D fluid and particle motion. The 

work of Lehmann and Kasper (2002) demonstrated the importance of 3D simulations 

in the inertial regime region to obtain realistic particulate deposits. It is also possible 

that this may be the case in the interception region. All these possibilities are areas of 

possible further investigation. 
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