

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288382691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 228

High Performance Reliability Analysis of Phased Mission Systems

S. Reed, S. J. Dunnett and J. D. Andrews
Department of Aeronautical and Automotive Engineering, Loughborough

University, Loughborough, Leics, UK

Abstract

Systems often operate over a set of time periods, known as phases, in which
their reliability structure varies and many include both repairable and non-
repairable components. Success for such systems is defined as the
completion of all phases, known as a phased mission, without failure. An
example of such a system is an aircraft landing gear system during a flight.
The Binary Decision Diagram (BDD) method provides the most efficient
solution to the unreliability of non-repairable systems whilst for repairable
systems Markov or other state-space based methods have been most widely
applied. For systems containing both repairable and non-repairable
components the repairable modelling methods are normally used, despite
having far higher computational expense than the non-repairable methods,
since only they are able to handle the dependencies involved. This paper
introduces improvements to the BDD method for analysing non-repairable
systems as well as an entirely new method that utilises a new modelling
technique involving both BDD and Markov techniques.

Introduction

Many real world systems operate in phased missions where the reliability
structure varies over consecutive time periods, known as phases, which must
be completed without failure. Typical examples include aircraft flights and
nuclear power station safety systems. Calculating the reliability of a mission is
computationally expensive particularly if the system has components that are
repairable and/or have multiple failure modes. Increased solution efficiency is
an important goal as it increases the size of problem that can be analysed and
increases the possibilities for performing importance measure and real time
analysis.

Reliability engineering research has developed methods that allow the
mission reliability to be found from the set of fault trees describing the system
reliability in terms of component level failures for each phase, along with the
component level failure probabilities (or failure probability time distributions).
Two key areas in which progress has focused is in widening the scope of the
techniques so that they are applicable to a larger range of system types and
improving the efficiency of analysis to increase the size of system that can be
analysed and reduce computational effort. The earliest phased mission
analysis methods involved the direct manipulation of the fault trees. In the first
known work, Esary and Zhiehms [1] introduced a fault tree based method to
transform a phased mission into an equivalent single phased mission. Each
component basic event in the phase fault trees is replaced by an OR gate with
the performance of the component up to and including that phase as inputs.
The transformed phase fault trees are then combined into a single fault tree

 229

and standard fault tree methods used to derive the system’s reliability. This
method is unsuitable for solving larger systems since the basic event
transformation leads to significant complexity.

To reduce the computational burden several researchers such as Dazhi and
Xue [2], Kohda, Wada and Inoue [3], Somani and Trivedi [4] and La Band and
Andrews [5] developed phased algebra rules that deal with the dependencies
between events belonging to the same component in different phases. Not
only did the use of the phased algebra reduce the computational burden but it
also allowed individual phase reliabilities to be obtained. Even with the use of
phased algebra rules, the fault tree based methods remain unsuitable for
analysing large systems within reasonable time frames, particularly those with
non-coherent fault trees, and this led to the adoption of the more efficient and
powerful Binary Decision Diagram (BDD) technique. Bryant [6] demonstrated
the power of the technique in manipulating Boolean functions. To enable the
application of the technique to reliability analysis Rauzy [7] introduced
algorithms to analyse fault trees through the BDD method. Zang, Wang, Sun
and Trivedi [8] then extended the BDD algorithms to the analysis of systems
containing components with multiple competing failure modes. A component
has multiple competing failure modes if it can fail in distinct and mutually
exclusive ways, e.g. a valve failing stuck closed or stuck open.

Zang, Sun and Trivedi [9] were the first to use the BDD method to analyse the
reliability of phased mission systems. They made changes to the BDD build
and evaluation procedures to encode the phase algebra and deal with the
phase dependencies. This work marked a significant step forward by enabling
large phased mission systems to be analysed that were beyond the scope of
the earlier fault tree methods. Tang and Dugan [10] made the obvious
improvement of combining this with the multiple competing failure mode BDD
extension [8], resulting in a BDD method that can be used to analyse phased
mission systems containing multiple competing failure modes.

For systems containing repairable components the combinatorial techniques
cannot be used to quantify reliability without the use of another method, due
to the additional dependencies involved. State-space models such as Markov
[11, 12, 13] and Petri Nets [14] or simulation techniques such as Monte Carlo
are normally used. The downside to these methods is that they suffer from
increased computational requirements and decreased accuracy compared to
the exact BDD method for non-repairable systems – particularly when
modelling large systems or those with many phases.

To reduce the computational burden, Wang and Trivedi [15] developed an
approach that utilises the BDD method for analysing systems that operate in
phased missions and contain repairable components. The method relies on
an assumption that repaired components are only integrated back into the
system at the start of the next phase. This allows the BDD to be built
assuming independence between events in different phases, using the
algorithm from [7], before resolving the phase dependencies between the
basic events on each path through the BDD with a Markov chain. Although
the method modelled multiple failure modes at the component level it did not

 230

do so at the structural level. Unfortunately, due to the assumption of event
independence during BDD construction, the method does not benefit from
increased performance if the system analysed contains some non-repairable
components.

Currently obtaining the mission reliability of a phased mission system that
contains both non-repairable and repairable components requires the use of
one of the repairable methods discussed above. Since these methods have
far greater computational complexity than the non-repairable methods, the
ideal method would obtain the best of both worlds – the ability to analyse the
non-repairable parts of a system with great efficiency whilst retaining the
power to correctly resolve the dependencies involved in the repairable parts.
This paper helps move closer to this goal by introducing new techniques to
boost solution efficiency of the BDD based non-repairable analysis
techniques. A new method is also introduced that integrates BDD and Markov
techniques to enable the reliability of systems containing both non-repairable
and repairable multiple failure mode components to be obtained with greater
efficiency than any existing methods.

This paper begins with a definition of a phased mission and an example
system, an explanation of the BDD method and the introduction of several
new improvements to the analysis of non-repairable phased missions. The
Markov model used in the analysis of repairable systems is then explained,
followed by the description of an entirely new method for efficient analysis of
systems with non-repairable and repairable components. The paper
concludes with a demonstrative application of a code that has been
developed based on these new methods to the example system.

Phased Mission Definition and Example Mission

The methods and models discussed in this paper make the following
assumptions for a phased mission:

• The mission consists of a set of consecutive phases.

• The time duration for each phase is known and fixed.

• For mission success all phases must be completed.

• All components work at the start of the mission.

A phased mission can be represented through a fault tree as an OR top gate
with inputs being individual fault trees for each phase, since mission failure
occurs if the system fails in any phase. The fault tree shown in Figure 1,
representing a system operating in a three phased mission, will be used to
demonstrate the methods expressed in this paper.

 231

Figure 1 - Mission Fault Tree for example mission

The example system has 6 components: A, B and C which are non-repairable
and D, E and F which are repairable. Each component has 2 mutually
exclusive failure modes, named 1 and 2. Basic events are labelled in the form
Ij(p1,p2) where I is the component name, j is the failure mode name and p1 and
p2 indicate the end of the phase which failure occurs after and before,
respectively. The start of the mission is defined as the end of phase 0.
Components A, B and C have failure modes with a constant failure rate of
0.001 failures per hour, whilst the repairable components have failure modes
with constant failure rates of 0.001 failure per hour when in the working state
and repair rates of 0.01 repairs per hour when failed. Each phase in the
example mission lasts 100 hours.

Boolean Variables

Boolean variables are used to represent a basic event associated with a
particular component in a particular failure mode over some subset of phases
of a mission, through their mapping to a value of 0 or 1. These event
definitions are defined below:

1),(
21

=ppI j is defined as the failure event of component I in failure mode j

between the end of phase p1 and end of phase p2.

0),(
21

=ppI j is defined as the success event of component I in failure mode j

between the end of phase p1 and end of phase p2; the component is either
operational or in any other failure mode of component I.

Mission Failure

Phase One Phase Three

A1

(0,1)

B1

(0,1)
D2

(2,3)
E2

(2,3)

C1

(0,1)

C2

(0,1)

C1

(0,3)

C2

(0,3)

Phase Two

A2

(0,2)

D1

(1,2)
F1

(1,2)
B2

(0,2)

 232

The BDD method

The BDD forms the basis of the modelling methods used in this paper and a
brief description of the method and terminology used are explained here. A
BDD is a compact data structure, in the form of a rooted, directed, acyclic
graph, and is used here to model the Boolean function representing a
system’s reliability over a phased mission. They were introduced by Bryant [6]
and are based upon Shannon decomposition theory [16].

A BDD consists of decision nodes and two types of terminal node named
terminal 0 and terminal 1. Each decision node is labelled with a Boolean
variable and has two edges, a 0 edge and 1 edge, each connecting to a
different child node. The 0 edge represents an assignment of 0 to the node’s
Boolean variable, whilst the 1 edge represents an assignment of 1. The
Boolean variables are ordered such that if an edge from a node labelled with
variable x connects to a node labelled with variable y then index(x) < index(y).
A BDD starts at a single node known as its top or root node. The compact
nature results from two important reduction features:

• The merging of isomorphic subgraphs, thus removing repetition.

• The elimination of any node whose children are isomorphic by
replacing it with its child.

The value of the Boolean function represented by the BDD, corresponding to
the mapping of Boolean values to variables on any route from the root node to
a terminal node is given by the terminal nodes value. A value of 1 represents
mission value whilst a value of 0 represents mission success. These routes
are known as the paths of the BDD and represent mutually exclusive Boolean
value to variable assignments. Often not all variables in a BDD will appear on
a path and these are variables for which their value assignment has no
bearing on the value of the path. Such variables are sometimes known as
‘doesn’t matter variables’. The probability of the Boolean function modelled by
the BDD evaluating to 1 or 0 is the sum of all paths through it that end at a
terminal one or terminal zero node respectively. Since the sum of the
probabilities of the Boolean function evaluating to either 1 or 0 is always 1, it
is only necessary to find the first and the other follows immediately. For this
reason only the probability of the function evaluating to 1 is normally found
directly and from now on the term “path” will refer to a path that ends in a
terminal one node.

An example of a BDD is shown in Figure 2. In this example the BDD nodes
are labelled with Boolean variables A, B and C and the routes through the
BDD to the terminal 1 node encode Boolean value mappings {A=1,B=x,C=1},
{A=1,C=0,B=1} and {A=0,B=1,C=x} where an assignment of x indicates that
assigning 1 or 0 to that Boolean variable on the path has no effect on the
value of the Boolean function the BDD represents. These paths therefore form
a set of mutually exclusive Boolean value variable assignments resulting in a
1 value for the Boolean function represented by the BDD.

 233

Figure 2 - Example of a BDD

The BDD structure can be presented in terms of a series of nested if-then-
else structures, each representing a decision node in the BDD. The if-then-
else structure represents the decomposition of a Boolean function f, of

random variables ()nxxx ,,,
21
K , around ix as given by Equation 1.

01
)1(== •−+•=

ii xixi fxfxf
(1)

Where, ()niix xxxxff
i

,,,1,,,
1111
KK +−= = and ()niix xxxxff

i
,,,0,,,

1110
KK +−= = .

Using the if-then-else (ite) format this becomes Equation 2.

),,(
01 ===

ii xxi ffxitef (2)

Equation 2 describes the following situation, if variable ix occurs (fails) then

1=ixf is considered, else
0=ixf is considered. To form the BDD from a fault tree,

the first step is to convert each of the basic events in the fault tree into their if-
then-else structure representations.

The BDD for a component, A, is represented as shown in Figure 3.

1 Branch = Occurrence of basic event
A.

0 Branch = Non-Occurrence of basic
event A.

Figure 3- Binary decision diagram vertex for component A failure

Using the if-then-else notation the BDD in Figure 3 can be represented in the
form shown by Equation 3. In this notation the first variable inside the
brackets, for example A in Equation 3, represents a Boolean variable, whilst
the second and third variables represent the edges connected to assignments

A

1 0

1 0

A

B

0 1

C

1

1
1

0
0

0

Root node

Node labelled with
Boolean variable C

1 edge out of
node C

0 edge
out of
node A

Terminal nodes

 234

of 1 and 0 to the Boolean variable respectively. The second and third
variables can be 1 or 0 representing the equivalent terminal node, or
alternatively further if-then-else structures representing decision nodes.

)0,1,(AiteA =
(3)

The if-then-else structure representation of a gate in the fault tree is formed by
performing the appropriate logical operation on the if-then-else structures
representing the gate inputs. If the gate has more than two inputs, then the
Boolean logical operation is first performed on the initial two inputs and the
resultant if-then-else obtained. The logical operation is the performed on this
structure and the next gate input. This process of combining the resultant if-
then-else structure from previous gate inputs and the next gate input’s if-then-
else structure is continued until all gate inputs have been processed and the
final if-then-else structure obtained.

The output of a logical operation such as AND or OR between nodes F and G
presented in if-then-else form in Equation 4, is given by Equation 5. Equation
5 assumes independence between the events represented by the node
variables and is extended to phased missions and multiple failure modes in [8,
9, 10] and later in this paper.

)0,1,(),,(

)0,1,(),,(

01

01

GGyiteGGyiteG

FFxiteFFxiteF

yy

xx

==

==

==

==
 (4)

Where
tsR = represents node R with all instances of variable s (including its

children) mapped to value t and }.0,1{∈t

>⊕⊕

<⊕⊕

=⊕⊕

=⊕

)()()0,1,(

)()()0,1,(

)()()00,11,(

)0,1,()0,1,(

yindexxindexGFGFyite

yindexxindexGFGFxite

yindexxindexGFGFxite

GGyiteFFxite
(5)

Where ⊕ represents a logical operation (AND or OR) and index(x) is the order
of the Boolean variable x.

Figure 4 shows a fault tree and its equivalent BDD representation.

Figure 4 – An example of fault tree to BDD conversion

T

A B C

A

B

C

0 1

0

0

becomes

Where BDD node
ordering is index(A) <
index(B) < index(C).

 235

The fault tree to BDD conversion can be carried out by an algorithm that
performs a depth-first left-to-right traversal of the fault tree, converting each
fault tree node encountered into its equivalent BDD representation. To
demonstrate this process, the step by step conversion of the fault tree shown
in Figure 4 will now be explained. The fault tree consists of four nodes,
namely the top AND gate node, which we shall denote as node T, and its
three basic events which we shall denote as nodes A, B, and C following their
labelling in the figure. According to the traversal strategy the leftmost node,
node A, is visited first and converted into its BDD representation. Next, node
B is visited and converted into its BDD representation. Since nodes A and B
are siblings of an AND gate, the next step is to perform the Boolean AND
operation between their BDD representations, resulting in a new BDD node,
which can be denoted as node z (denoted in lower case here to avoid
confusion with the capitalised fault tree node labels). Although z does not
represent any of the fault tree nodes (A, B, C or T) its creation is a necessary
intermediate step in the representation of T. The next node to be visited is
node C and, again, this is converted into its BDD representation. Since node
C is another child of the AND gate, the final step is to perform the Boolean
AND operation between C’s BDD representation and z. The result of this
operation is the BDD representation of the top gate of the fault tree, since all
the fault tree nodes have been processed. Alternatively, the conversion in
terms of the if-the-else notation is shown below:

)0),0),0,1,(,(,(

)0,1,()0),0,1,(,()0,1,()0,1,()0,1,(

CiteBiteAite

CiteBiteAiteCiteBiteAiteEventTop

=

∩=∩∩=

The chosen variable ordering can have a significant impact on the size of the
resultant BDD although this particular problem is not considered in this paper,
instead see Bartlett and Andrews [17].

Improved BDD Methods for phased mission analysis

This section introduces several new improvements to the BDD method for the
analysis of phased missions. Different forms of the BDD method are
developed for analysing systems with only non-repairable components, only
repairable components and those consisting of a combination of both. Each of
these methods is described in turn in the following sections.

For non-repairable component systems

Non-repairable components are defined as components that remain failed for
the duration of the mission upon initial failure. Much research has been
carried out to maximise the efficiency of the BDD method with application to
non-repairable systems in phased missions. In this section further new
improved techniques are introduced.

 236

BDD Construction

In this work the methodology for encoding the system reliability structure from
phase fault trees containing only non-repairable components into a BDD is
similar to the approach taken by Tang and Dugan [10] but with some
important changes that increase solution efficiency.

The algorithms presented by Tang and Duggan order variables first by
component, then phase and then failure mode. Instead the methods and
algorithms in this paper assume variables are ordered first by component,
then by failure mode and finally by phase, such that earlier phases have a
lower index (forward phase ordering). For non-repairable components the end
of the phase which failure occurs after will be 0, the start of the mission, and
hence the labelling of the basic events will be in the form Ij(0, p). The phase
ordering will therefore only involve comparing the failure before end phases.
This ordering when used in conjunction with the BDD construction algorithm
described later ensures the BDD does not contain paths with mutually
exclusive events. In turn, this allows the efficient creation of the path data
structures, developed later in this paper, to be used. For example, a system
consisting of two components, A and B, each with two failure modes, 1 and 2,
when operating in a two phased mission would have its Boolean variables
ordered A1(0,1)< A1(0,2)< A2(0,1)< A2(0,2)< B1(0,1)< B1(0,2)< B2(0,1)<
B2(0,2). Modifications to convert the methods and algorithms for use with a
backward phase ordering are simple but have been left out due to space
restrictions. Unlike the Tang and Duggan method the choice of forward or
backward phase ordering makes no difference to the performance of the
method.

The BDD is constructed from the mission fault tree, as before, by converting
the fault tree basic events into BDD nodes and then applying Boolean logical
operations between BDD nodes, including the nodes resulting from previous
computations, according to the logical gates in the fault tree.

A non-repairable component remains in a failure mode for the remainder of
the mission upon entry and therefore a basic event for component I and
failure mode j appearing in the phase p fault tree is converted into if-then-else

format as:)0,1),,0((pIiteA j= .

The two nodes F and G, shown in if-then-else format in Equation 4, will be
used to explain the application of logical operations between BDD nodes in
the BDD construction. If F and G have variables that are of equal index in the
ordering scheme then the rule from Equation 5 still applies, otherwise, the
following rules assume that node F is the node with the lower index.

Applying a logical operation ⊕ (e.g. AND or OR) between these two nodes
will output a node representing the result. As with any other BDD node, this
node is defined in terms of its variable and its failure and success child nodes.
Since x and y are the variables of nodes F and G respectively, then since
index(x) < index(y) due to F’s definition above, the resultant node’s variable
will be x. We will now denote the failure child and success child of the

 237

resultant node as U and V respectively, leading to the if-then-else
representation of the output from the Boolean operation shown in Equation 6.

),,(ite VUxGF =⊕ (6)

where ()
111 === ⊕=⊕= xxx GFGFU and ()

00 === ⊕=⊕= xxox GFGFV .

All that remains is to compute nodes U and V. V is calculated from Equation 5
as before, i.e. GFV ⊕= 0 . The method to compute node U depends on the
Boolean variables from nodes F and G and a set of rules are shown in Table
1, replacing those from Equation 5 (which assume variable independence).
The relationship between the variables of nodes F and G, namely x and y,
determine which of the exhaustive set of rule conditions is met and
accordingly, which of the rules to apply in the computation of node U.

Rule U and V computation Condition

1 11 GFU ⊕= If x and y are variables
belonging to the same
failure mode of the same
component.

2
1

01 =⊕= xGFU

where
1

0 =xG is equal to G0 if G0’s

variable belongs to a different
component to x, otherwise it is the
first node with a variable belonging
to a different component
encountered during a traversal down
the success children of the BDD
starting from G0.

If x and y are variables
belonging to different
failure modes of the same
component.

3 GFU ⊕= 1 Otherwise.

Table 1 - Rules for computing nodes U and V

The reasoning behind each rule from Table 1 is now explained:

Rule 1: If x and y are variables of the same failure mode of the same
component, then the phase of x must be earlier than or equal to the phase of
y (due to the variable ordering) and x=1 implies y=1 since the failure mode is
non-repairable. This implies that the resultant node’s failure child, node U,
should be formed from the computation of the failure children of node U and V
as shown in rule 1 of Table 1.

Rule 2: If x and y are variables belonging to the same component but different
failure modes then x=1 implies that y, and any other variable belonging to a
different failure mode of the same component as x, equals 0. This is true
since a component’s failure modes are mutually exclusive. The failure child of
the resultant node, U, is therefore computed from the failure child of node F,

 238

F1, and the first success child of node G which has a variable not belonging to

the same component as x,
1

0 =xG . The recursive nature of finding
1

0 =xG

through the success child traversal is shown by Equation 7 where H x=1 is
determined until its variable belongs to a different component to x at which

point it becomes equal to
1

0 =xG .

1x1x)0Hw1Hw(H == ⋅+⋅= if the variable of H belongs to the

same component as x
Where H=ite(w, H1, H0), initially H=G

1x1x 0GH == = when the variable of H belongs to a different

component to x.

(7)

Where w is the complement of w.

In order to illustrate the procedure to determine G0x=1 an example is
considered below.

Figure 5 - Example application of Equation 7

In the example shown in figure 5

()
() () ()()()()()0 1, ,2,0Dite 1, ,2,0Aite 1, ,2,0A(iteG

)0 ,1 ,2,0A(iteF

232

1

=

=

To determine G0x=1 equation (7) is applied. As x=1, i.e. A1(0,2)=1, then
Aj(0,p)=0 for all 1j ≠ . Initially H=G hence w=A2(0,2), H1=1,

() ()()()()0 1, ,2,0Dite 1, ,2,0Aite0H 23= . Applying equation (7) gives:

()
() ()()()()

1x23

1x1x

0 1, ,2,0Dite 1, ,2,0A(ite

0HH

=

==

=

=

The variable of H, A3(0,2), belongs to the same component as x, hence
equation (7) must be applied again with w= A3(0,2), H1=1, H0=ite(D2(0,2),1,0)

()
()()()

1x2

1x1x

0 1, ,2,0Dite

0HH

=

==

=

=

In this case the variable of H, D2(0,2), belongs to a different component to x
and hence G0x=1=ite(D2(0,2), 1,0)
If G0 in the Figure 5 example had a variable from a different component to x,
such as C1(0,1), then G0x=1 would instead be G0.

A2

(0,2)

A3

(0,1)

D2

(0,2)

1 0

1

1

1

0

0

0

Node G0 with a variable from
the same component as x.

= Hx=1 = G0x=1 since it’s the
first node encountered in the
success child traversal from
G with a variable from a
different component to x., i.e.
component D not A

Node G with y=A2(0,2).

A1

(0,2)

1 0

1 0

Node F with
x=A1(0,2).

 239

Rule 3: In all other cases, x and y belong to different components and are
independent, therefore U is calculated according to Equation 5.

Unlike the method and ordering scheme presented in [10], the BDD produced
by this method and ordering scheme avoids encoding paths containing
mutually exclusive events which allows faster evaluation algorithms to be
implemented.

A new reduction rule introduced in this paper, is for the case where x belongs
to the same failure mode as node V’s variable, defined here as variable z,
such that x=1 implies that z=1, and Vz=1 and U are the same node. In this case
this node can be replaced by its success child, node V. Figure 6 shows an
example of the application of this reduction rule. The top node in Figure 6a is
an example of a BDD that was output from an OR operation between two

nodes F and G,)V,U),1,0(A(iteGORF 2= , where the reduction rule was not

used. The reduction rule can be applied to this BDD since the top node and its
success son, node V, both have variables from failure mode A2 and both have
node U as their failure child. Applying the reduction rule replaces the top node
in Figure 6a with its success child, node V, resulting in the smaller BDD
shown in Figure 6b.

Figure 6 – BDD computation result reduces from a) to b) due to
reduction rule

A2

(0,1)

B3

(0,1)

A2

(0,2)

1
1

1
0

0 A2

(0,2)

B3

(0,1)

1

0

0

U

U
V

V

1

1 0
1 0

A2

(0,1)

B3

(0,1)

1 0

0

1

1

0

0

A2

(0,2)

B3

(0,1)

1 0

0

1

1

0

0

F G

a) Without reduction b) With Reduction

F and G node definitions

Results of combining F and G through logical OR operation

 240

This reduction rule often significantly reduces the number of nodes and paths
in the BDD, increasing evaluation speed and reducing the amount of memory
required.

If, as is often the case, a BDD path contains multiple basic events associated
with the same component then there will exist dependencies between them.
These dependencies are caused by the phased and multiple failure mode
nature of the basic events. In order to evaluate path probabilities these
dependencies must be resolved by transforming the basic event combinations
into a set of independent events such that the path probability can be found
by summing and multiplying the probabilities of the individual events in the
set.

Existing methods such as those presented in [9, 10] use algorithms that
traverse the BDD to resolve dependencies with variables in lower nodes
during the probability evaluation. These algorithms involve comparisons
between node Boolean variables in order to identify the potential
dependencies as well as potentially long traversals to distant dependant
nodes. Due to the inherent coupling between the probability evaluation and
dependency resolution, the dependencies must be resolved each time the
BDD probability is evaluated (for example, when re-evaluating the BDD due to
a change in failure mode failure rates). In this paper a new method is
introduced where a new dependency free data structure, named the implicant
tree, is formed prior to evaluation. The absence of dependencies during
probability evaluation permits a substantial increase in speed – particularly
during repeat evaluations such as when calculating importance measures or
when performing real time analysis.

During the construction of the implicant tree a set of rules are used to resolve
dependencies between events associated with the same component. The four
rules were derived by modifying a subset from a larger set of rules originally
designed for accident sequence analysis developed by Kohda, Wada and
Inoue [3]. They are all that is necessary to reduce a BDD path into a set of
independent events.

The first two reduction rules, given by Equation 8 and Equation 9, are used to
resolve phase dependencies between events from the same failure mode.

)1),(()1),0(0),0((2121 ===∩= ppIPpIpIP jjj (8)

)0),0(()0),0(0),0((
221

===∩= pIPpIpIP jjj (9)

where
21 pp < .

The third and fourth rules, given by Equation 10 and Equation 11, are used to
resolve dependencies between events associated with different failure modes
from the same component:

 241

)1),(()1),(0),0((
32321 221

===∩= ppIPppIpIP jjj (10)

)0),0(...0),0(0),0((321 21
=∩=∩= pIpIpIP

njjj

)1),0(()...1),0(()1),0((1
21 21

=+=+=−= njjj pIPpIPpIP
n

(11)

where
njjj ≠≠ K

21
.

Equation 8 states that the probability of a component not failing in a certain
failure mode before the end of a phase, but failing in that failure mode before
the end of some later phase is equal to the probability of failure between the
two phases. Equation 9 states that the probability that a component does not
fail in a certain failure mode before the end of two different phases is equal to
the probability that it does not fail prior to the end of the later phase. Equation
10 states that the probability a component does not fail in a failure mode
before the end of a certain phase but fails in a different failure mode belonging
to the same component at some point between the end of two phases is equal
to the probability of this latter event alone. Equation 11 states that the
probability of a component not failing in a set of its failure modes before
specific phases is equal to 1 minus the sum of the probabilities of each of the
failure modes occurring before the end of the phase that they are successful
until.

The only other combinations that can occur on a BDD path are between
events belonging to different components and since these are already
independent no reduction rules are necessary.

The data structure encoding the dependency resolved set of events on a BDD
failure path is now described. A linked list type structure is used where each
node of the list represents an event belonging to a different component. Due
to this structure, the last event of the list, like the last event of the represented
failure path, is a terminal one node. Multiple failure mode success events from
the same component, despite involving multiple basic events in resolved form
(see Equation 11), are stored on a single node of the list structure. The
structure uses shared tail nodes so that common tail sections of a path are
not repeated. Since all paths, by definition of a path, terminate at a terminal
node, they will all share a common terminal one node. An example of this
structure is shown in Figure 7.

 242

Figure 7 - The path data structure

The event stored in the head node of each path data structure in the set of
paths for a particular BDD node will be an event belonging to the node’s
Boolean variable component. The set of paths for a BDD node can therefore
be stored as a list of path structures with head node events belonging to the
same component. An example of this data structure is shown in Figure 8.

Figure 8 - The path set data structure

The path data structure described above and shown in Figure 7 is now
extended such that a node can represent a path set data structure as well as
an individual event. Since the path set data structure itself consists of a set of
paths, it can therefore contain further path set data structures. This data
structure is the implicant tree that encodes the implicants for any node in the

A E F Terminal One

Event or path set
belonging to

component F, e.g.
 1)4,2(

2
=F

Paths always terminate
at terminal one node

C

Path
head
nodes

Sub-path common
to both paths

Data structure represents a path as a series of events belonging to
different components in the form of a shared tail node linked list.

Reference (link) to
next event in path

B

B

B

Terminal One

Head nodes of paths
contained within a path set
are always events
belonging to the same
component.

Head Nodes Last node
Other
nodes

Intermediate nodes
for each path
consist of events
belonging to other
components.

Data structure for a path set is a list of paths (see Figure 7) with head
nodes representing events belonging to the same component.

 243

BDD. The implicant tree representing the paths for a particular BDD node is
obtained by following the procedure outlined below:

If the node is a terminal one node, then return an implicant tree containing a
single path that has only one node and with the node representing the
terminal one event. If it is a terminal zero node then an empty implicant tree,
containing no paths, is returned. Otherwise the BDD node must be an
intermediate node and steps A, B, C and D outlined below should be followed.

Step A – get the path sets from each of the child nodes. In turn each child
node will build a path set from its children - this is therefore a recursive
process that ends at the terminal nodes.

This step is shown in Figure 9

Figure 9 - Step A of data structure derivation

Step B – create the events to combine with the path sets from each child
node.

1. The event to combine for the failure (1) child is 1),0(=qI j

2. The event to combine for the success (0) child is 0),0(=qI j .

 where I is the node variable’s component, j its failure mode and q its phase.

An example of this step is shown in Figure 10.

Figure 10 - Step B of data structure derivation

Step C – derive a new set of paths by combining each path in a child’s paths
set with the appropriate event generated in step B.

B1

(0,3)

 1 0

Paths from
failure child

Paths from
success child

Node success event

B1(0,3) = 1

B1(0,3) = 0

Node failure event

A

Binary Decision Diagram continues to terminal nodes.

A’s Success child

A’s Failure child Paths from success child

Paths from
failure child

 244

1. If the node’s variable belongs to the same component as the child’s
variable, then a dependency exists between each head event in the

path set,
nXX ...

1
, where n is the number of head events, and event

generated for this node, Y. In this case, use 2a to generate the new
path set. Otherwise use 2b (this is always the case for the paths from
the failure child, due to the BDD construction rules discussed earlier).

2.

a. For i = 1 to n, combine Y and iX according to the rules for combining

dependant events given by Equation 8 to 11.
b. Create new path with Y as the head event, linking to the path set as the

subsequent event.

Step D – combine the paths derived in step C into a single path set. This is
the path set belonging to this node and returned to any parent node in the
BDD.

Since the top node of a BDD represents the BDD itself, the full set of mutually
exclusive implicants for a BDD is found by using the above procedure on its
top node.

An implicant tree data structure requiring less memory and offering even
faster repeat evaluation, at the expense of increased computational effort
during construction, can be formed but is omitted from this paper due to space
restrictions.

BDD Evaluation

Once the implicant tree representing the paths through the BDD has been
constructed the evaluation of mission probability is simple and fast. To carry
out the system failure probability evaluation the following 2 rules are followed:

For a path set – sum the probabilities of each path in the set.
For a path – multiply the probability of each event on the path. Note that an
event on the path can be a path set (which is evaluated through the path set
evaluation rule).

Each node in a path data structure from the implicant tree, which represents
either a subsection of a path or set of paths, may be linked to, and thus
shared, by nodes from multiple path data structures. Its value is therefore
cached in the node upon first evaluation so that repeat computations are
avoided. If the BDD is re-evaluated, these cached values may no longer be
correct (e.g. phase durations may have been altered) and so they are cleared.

The evaluation stage has been greatly simplified by the resolution of
dependencies during the construction of the data structure.

 245

For repairable component systems

The BDD for repairable systems is constructed in a different manner to the
non-repairable BDD described in the preceding section. The repairable BDD
is used to solely represent the systems reliability structure, or specifically, its
Boolean reliability structure function. Evaluation of probabilities is not carried
out through BDD paths but instead through the Markov method.

BDD Construction

A separate BDD is built from each of the phase fault trees. The BDD is built
using the standard algorithm and the rules given in Equation 5 except when
computing the result of a logical operation between nodes with Boolean
variables from different failure modes belonging to the same component. In
that case rule 2 from Table 1 is used instead. A phased mission for a
repairable system is therefore represented by a set of BDDs - one for each
phase in the mission.

Evaluation

Distinct from the non-repairable BDD case, direct evaluation from the BDDs is
not possible. Instead the BDDs have an auxiliary role during evaluation; they
are used as a tool to determine which states in a Markov model represent a
system failed state during a particular phase.

The Markov method

A continuous time, discrete space, Markov chain is used to determine the
probability of component states at each time point in a phased mission. The
method used is based upon that of Kim and Park [13] and extended to
multiple failure modes.

Forming and Evaluating Markov models from a repairable BDD

The set of components from the BDD are used to determine the exhaustive
set of Markov states such that a state exists for every possible combination of
component states. Since failure modes are mutually exclusive, no state can
have multiple failure modes from the same component present. The total
number of states can be determined from Equation 12.

∏ +=
CN

i

ims fmN)1((12)

Where msN is the number of Markov states, NC is the number of components

represented in the BDD and ifm is the number of failure modes for

component i.

A msN by msN matrix is now formed, known as the transition matrix, containing

the transition rates between the Markov states. The element located at row i

 246

and column j (element (i,j)), where ji ≠ , of the transition matrix represents

the transition rate from Markov state j to Markov state i. Element (i,i) is the
negation of the sum of the other elements from column i and represents the
transition rate out of state i.

From the full set of Markov states a reduced set can be formed for each
phase of the mission by removing all states that represent system failure in
that phase. The reduction is possible because the system failure states are
absorbing, since the mission ends upon failure, and therefore transition out of
these states is impossible whilst transitions into them are contained within the
diagonal elements of the transition matrix.

The Markov states representing system failure in each phase are determined
from the phase’s repairable BDD. Checking the system state for each of the
Markov states is straightforward. The top node for the phase BDD is entered
and the failure mode of its Boolean variable is checked against the set of
present component failure modes defining the Markov state. If the failure
mode exists in the Markov state then the BDD node’s failure (1) child is next
to be evaluated against the Markov state, otherwise the success (0) child is
checked next. This continues down the BDD until a terminal node is reached,
the value of which indicates the state of the system in that phase for the
Markov state. Specifically, reaching the BDDs terminal 1 node indicates that
the Markov state represents a system failure state whilst reaching the terminal
0 node indicates that the Markov state represents a system success state.

A
iumsN by

iumsN transition matrix for phase i is formed, where
iumsN is the

number of states in the reduced set for phase i, known as the reduced
transition rate matrix. This contains the transition rates between the reduced
set of Markov states. The reduced transition rate matrix is formed by deleting
the rows and columns from the transition rate matrix corresponding to the
system failed states for the phase. Using the reduced state transition matrix
benefits the computation of the model in terms of both memory usage and
speed.

An initial conditions vector is formed containing the probability of being in
each of the Markov states from the first phase transition matrix. Element i of
the initial conditions vector is the probability of the system being in state i at
the start of the mission. Due to the assumption that all components are in the
working state at the start of the mission, the element corresponding to the
Markov state of all components working will be 1 and all other entries will be
0.

The method proceeds by finding the initial conditions for each subsequent
phase until the end of the mission is reached, at which point the reliability of
the mission is found from the probability that the system resides in any of non-
absorbing states from the final phase (i.e. those represented in its reduced
transition matrix). Equation 13 is used to calculate the probability vector at the
end of a phase. Many methods exist for solving the matrix exponential in
Equation 13 and the choice can affect the numerical error introduced by
computation, for more detail see Moler and Loan [18]. The software

 247

implementation in this work uses scaling and a Padé approximation which
gives accurate results.

)0()(
)(

i

t

ii
iiet ρρ β= (13)

where)(tiρ is the probability vector at time t from the start of phase i,
it is the

duration of phase i and
iβ is the transition rate matrix for phase i.

Due to the removal of absorbing states in each phase, the reduced transition
rate matrix for each phase of the mission will contain a distinct set of Markov
states. This means that the elements in the end of phase probability vector
will not correspond to the elements of the initial probability vector of the
following phase; in fact the vectors could even be of different size. The initial
probability vector for the following phase is therefore formed by copying
across the value from the end of phase vector to the element corresponding
to the same Markov state. Elements in the initial probability vector
corresponding to a system failed Markov state in the previous phase, and
therefore not present in the previous phase’s end of phase probability vector,
are initialised to a value of 0. Another possibility is that an element in an end
of phase probability vector does not represent a system failed state in that
phase but does represent a system failed state in the next phase, and is
therefore not represented in its initial probability vector. Summing these
elements gives the probability of transitional failure between the phases.

Analysing Systems containing both repairable and non-repairable
components

A commonly encountered class of phased missions involve systems
containing a mixture of repairable and non-repairable components.
Determining the reliability of such systems traditionally requires using a
method optimised for repairable systems, such as the Markov technique
discussed in the preceding section. However these methods could be
considered unnecessarily expensive both in terms of resources and time due
to the high computational resources used even for the non-repairable parts of
the system that, in isolation, could be solved through methods optimised for
non-repairable systems with far greater efficiency. To remedy this situation, a
new method is introduced here that allows the reliability of systems containing
both repairable and non-repairable components, including those operating in
phased missions, to be analysed in an efficient manner.

This new technique is derived from the methods for the analysis of non-
repairable and repairable systems that were introduced earlier. Fundamental
to its power are the use of the BDD technique to prudently separate the
repairable from the non-repairable elements of the system and an evaluation
scheme that combines the direct, combinatorial, path based and Markov chain
procedures.

Implicit to the method is an approximation of the situations in which failure of
repairable components causes system failure, and as such the method gives
approximate reliability results.

 248

Fault tree to BDD conversion

A BDD formed from a system’s mission fault tree is used to represent its
mission reliability structure, isolate the repairable from the non-repairable
elements of the system and directly evaluate the reliability of the non-
repairable parts.

The first step is to set the ordering scheme so that variables belonging to the
system’s repairable components, components with one or more repairable
failure modes, are indexed higher than its non-repairable components (and
thus appear as lower nodes in the BDD).

The BDD is then built using the non-repairable method described earlier for
Boolean operations between two nodes, using the rules from Table 1, except
when both nodes have Boolean variables from repairable components. In the
case of a Boolean operation between two nodes with Boolean variables from
repairable components then the same method as when building a repairable
BDD methods applies – i.e. Equation 5 and rule 2 from Table 1.

For systems containing both repairable and non-repairable components this
will result in a BDD where the higher nodes are composed like a non-
repairable BDD and then may make the transition into repairable BDDs before
the terminal nodes are reached. Full repairable BDDs have a root node for
each of the phases in the mission as explained earlier, but repairable BDDs
appearing in a hybrid BDD may not have root nodes for certain phases. If the
repairable BDD is reached through paths consisting of events from non-
repairable components such that failure in certain phases is not possible then
these phases will not be represented in the repairable BDD. It does not matter
where the repairable basic events appear in the fault trees; the technique
ensures that the non-repairable and repairable sections are grouped together
in the BDD in a correct and efficient manner. Due to the property of BDDs that
ensures variables that do not matter are omitted, the sizes of the repairable
BDDs are minimised. The hybrid BDD for the example mission from Figure 1
is shown and annotated in Figure 12. The BDD in Figure 12 was formed using
an ordering scheme that ordered components as B < A < C < D < E < F and
ordered failure modes as 2 < 1.

Evaluation

The evaluation procedure for the model gives approximate results for the
reliability of a phased mission. The paths through the BDD are represented by
an implicant tree, as they were in the non-repairable model introduced earlier,
but now paths may include nodes representing repairable BDDs. The
evaluation of a path in the implicant tree is then calculated as before, i.e. as
the product of the path node probabilities. A node representing a repairable
BDD is evaluated through the method discussed in the repairable BDD
section. Where the repairable BDD contains non-consecutive phases, for
example phase BDDs for phases 1 and 3 but not for 2, then the time between
present phases is bridged using the full transition matrix (i.e. the transition
matrix without states removed) and the absent phase duration.

 249

Since in this procedure the unreliability evaluation of Boolean variables
belonging to non-repairable components considers only the phase but not the
time of failure, the evaluation of paths with Boolean variables from both
repairable and non-repairable components is not exact.

Software implementation and a worked example

A software tool has been developed that implements the techniques
discussed in this paper. The inputs to the tool are the phase fault trees and
component failure mode failure and repair models. This tool was used to
analyse the example system’s mission, as represented by the fault tree in
Figure 1.

The BDD generated by the software is shown in Figure 12. The BDD shown in
Figure 12 contains a total of 3 repairable BDDs and evaluation therefore
requires the solution of 3 Markov models. Each of these Markov models is
small, the largest consisting of three components (D, F and E) over two
phases (2 and 3).

A worked example of the evaluation of the BDD paths that include the
repairable BDD on the right in Figure 12, is given here:

As shown in Figure 12 the repairable BDD on the right contains a single
phase, phase 2, and two failure modes, D1 and F1. The first step is to
determine the full set of states for the Markov model of the components D and
F, which are shown in Table 2. The Markov model showing the possible
transitions between the states in Table 2 is shown in Figure 11.

 Failure Modes (1=Present, 0=Absent)
State IDs D1 D2 F1 F2
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

5 0 0 0 1
6 1 0 1 0
7 1 0 0 1
8 0 1 1 0
9 0 1 0 1

Table 2 - Markov States

 250

State Label Present Failure Modes

1 None

2 D1

3 D2

4 F1

5 F2

6 D1, F1

7 D1, F2

8 D2, F1

9 D2, F2

Figure 11 - Markov model for the repairable BDD on the right in Figure
12

1

2 6

5

3

4

9

7

8

A B
= transition from
state A to state B

where

 251

Figure 12 - A hybrid BDD representing mission failure of the example
phased mission

BDD node from a
non-repairable
component

Transition to
repairable BDD

BDD node from a
repairable
component

Root node of BDD

Terminal node

Part of a failure path
consisting entirely of
non-repairable
components

1 and 0 indicate a
path to the parent
node’s failure and
success child
respectively.

Here the number labelling the
path out of the repairable
transition point represents the
BDD’s phase (not failure or
success child paths as
elsewhere)

 252

State IDs Phase 1 State Index Phase 2 State Index
1 1 1
2 2 System Failed State
3 3 2
4 4 System Failed State

5 5 3
6 6 System Failed State
7 7 System Failed State
8 8 System Failed State
9 9 4

Table 3 - Markov state to state transition rate and state probability vector
index for each phase

At the start of the mission it is assumed that all components are in the working
state, thus the probability of the system residing in state 1 from Table 2 at
time 0 is 1 and the probability of the system residing in any other state is 0.
This results in the state probability vector for the start of phase 1 as given by
Equation 14.

[]T
P 000000001)0(1 = (14)

Element i in Equation 14 represents the probability of being in the state
indexed i.

The BDD contains no nodes for phase 1 and therefore the full transition matrix
is used to find the state probability vector at the end of phase 1, as shown in
Equation 15.

−

−

−

−

−

−

−

−

=

02.0000001.00001.000

002.0000001.0001.000

0002.00001.000001.00

00002.00001.00001.00

01.0001.00012.0000001.0

001.0001.00012.000001.0

01.001.00000012.00001.0

0001.001.0000012.0001.0

000001.001.001.001.0004.0

1
β

(15)

Element (i,j), ji ≠ , in Equation 15 represents the transition rate from the state

indexed j to the state indexed i and element (i,i) represents the transition rate
out of the state indexed i, using the Markov state index for phase 1 shown in
Table 3.

Substituting the initial state probability vector and state transition rate matrix
for phase 1 into Equation 13, along with the phase duration of 100 hours,
gives the end of phase 1 state probability vector shown in Equation 16.

 253

05145.005145.005145.07806.0[)100(1 =P

]003391.0003391.0003391.0003391.005145.0

(16)

Element i in Equation 16 represents the probability of being in the state
indexed i in the Markov state index for phase 1 shown in Table 3.

For phase 2, the BDD shows that the system fails if component D is failed in
failure mode 1 or component F is failed in failure mode 1. Thus, only states 1,
3, 5 and 9 from Table 2 represent working states in phase 2 and hence only
the elements representing these states from the end of the phase 1 state
probability vector, are used to form the initial state probability vector for phase
2 shown in Equation 17.

[]T
P 003391.005145.005145.07806.0)0(2 = (17)

Element i in Equation 17 represents the probability of being in the state
indexed I in the Markov state index for phase 2 shown in Table 3.

The elements from the end of phase 1 state probability vector that represent
system failure states in phase 2, i.e. states 2, 4, 6, 7 and 8, are summed to
give the probability of failure on transition to phase 2 of 0.1131. The phase 2
state transition rate matrix is formed by removing from the full state transition
rate matrix, Equation 15, all elements that represent transitions from, and to,
phase 2 system failure states. The resultant reduced state transition rate
matrix is shown in Equation 18.

−

−

−

−

=

02.0001.0001.00

01.0012.00001.0

01.00012.0001.0

0.001.001.0004.0

2β

(18)

The index for the states in phase 2, used in Equation 18, is given in Table 3.

Substituting the initial state probability vector and state transition rate matrix
for phase 2 into Equation 13, along with the phase duration of 100 hours,
gives the end of phase 2 state probability vector shown in Equation 19. The
four states in this equation are those given in Table 3.

[]T
P 005399.005769.005769.06164.0)100(2 = (19)

Since no further phases are represented in the repairable BDD, deducting the
sum of the elements in this state probability vector from 1 gives the
unreliability for the Markov model of 0.2628.

 254

Figure 13 - Part of implicant tree data structure from example mission

The BDD in Figure 12 shows that there are two possible paths from the top
node to the repairable BDD on the right of Figure 12. These are shown in the
form of an implicant tree in Figure 13. The unreliability of these paths up to the
repairable BDD, found using the non-repairable path evaluation procedure, is
0.0807. Multiplying this with the unreliability from the Markov model calculated
earlier gives the total contribution to system unreliability from those paths
including the rightmost repairable BDD of 0.02121.

Conclusions

An improved BDD build algorithm has been presented that produces a smaller
BDD and therefore results in faster evaluation and reduced memory use. This
is applicable to all phased mission BDD evaluation algorithms such as those
in [10]. A new pre-evaluation data structure, the implicant tree, and techniques
for its creation have been introduced that offer faster BDD evaluation –
particularly when repeated evaluation is required. This offers great benefits in
applications such as importance measure analysis and real time analysis.
Finally, a new technique for analysing the reliability of systems operating in
phased missions that contain both repairable and non-repairable components
has been introduced. This technique uses a novel combination of the BDD
and Markov methods to offer efficient analysis of such systems.

The techniques presented in this paper have been integrated into a software
tool and successfully used to analyse an example system operating in a
phased mission.

References

1. J. D. Esary and H. Ziehms, "Reliability of Phased Missions," Reliability

and Fault Tree Analysis, Society for Industrial Applied Mathematics,
pp. 213-236, 1975.

2. X. Dazhi and W. Xiaozhong, "A practical approach for phased mission
analysis," Reliability Engineering & System Safety, vol. 25, pp. 333-
347, 1989.

 C2(0,3) =0 A2(0,2) =1 C1(0,3)=0

B1(0,1) =0 B2(0,2) =0

A1(0,1) =0 B1(0,1) =1 B2(0,2) =0

Repairable BDD
on the right of

Figure 12 –

solved through
Markov method.

 255

3. T. Kohda, M. Wada and K. Inoue, "A simple method for phased mission
analysis," Reliability Engineering & System Safety, vol. 45, pp. 299-
309, 1994.

4. A. K. Somani and K. S. Trivedi, "Boolean Algebraic Methods for
Phased-Mission System Analysis," Proceedings of Sigmetrics, pp. 98-
107, 1994.

5. R. La Band and J. D. Andrews, "Phased Mission Modelling using Fault
Tree Analysis," Reliability Engineering and System Safety, vol. 78, pp.
45-56, 2002.

6. R. Bryant, "Graph based algorithms for Boolean function manipulation,"
IEEE Trans. Computers, vol. 35, pp. 677-691, 1977.

7. A. Rauzy, "New algorithms for fault trees analysis," Reliability
Engineering & System Safety, vol. 40, pp. 203-211, 1993.

8. Z. Zang, D. Wang, H. Sun and K. S. Trivedi, "A BDD-Based Algorithm
for Analysis of Multistate Systems with Multistate Components," IEEE
Trans. Computers, vol. 52, pp. 1608, December 2003. 2003.

9. Z. Zang, H. Sun and K. S. Trivedi, "A BDD-Based Algorithm for
Reliability Analysis of Phased-Mission Systems," IEEE Transactions
on Reliability, vol. 48, pp. 50, March 1999. 1999.

10. Zhihua Tang and J. B. Dugan, "BDD-based reliability analysis of
phased-mission systems with multimode failures," Reliability, IEEE
Transactions on, vol. 55, pp. 350-360, 2006.

11. M. Alam and U. M. Al-Saggaf, "Quantitative Reliability Evaluation of
Repairable Phased-Mission Systems Using Markov Approach," IEEE
Transactions on Reliability, vol. 35, pp. 498, 1986.

12. M. K. Smotherman and K. Zemoudeh, "A Non-homogeneous Markov
Model for Phased-Mission Reliability Analysis," IEEE Transactions on
Reliability, vol. 38, pp. 585, 1989.

13. K. Kim and K. S. Park, "Phased-Mission System Reliability under
Markov Environment," IEEE Transactions on Reliability, vol. 43, pp.
301, 1994 June. 1994.

14. I. Mura, A. Bondavalli, X. Zang and K. S. Trivedi, "Dependability
Modeling and Evaluation of Phased Mission Systems: a DSPN
Approach," Dependable Computing for Critical Applications, vol. 7, pp.
319, 1999.

15. D. Wang and K. S. Trivedi, "Reliability Analysis of Phased-Mission
System With Independent Component Repairs," IEEE Transactions on
Reliability, vol. 56, pp. 540, September 2007. 2007.

16. C. E. Shannon, "A symbolic Analysis of relay and switching circuits,"
Transactions of the AIEE, vol. 57, pp. 713, 1938.

17. L. M. Bartlett and J. D. Andrews, "Efficient basic event ordering
schemes for fault tree analysis," Quality and Reliability Engineering
International, vol. 15, pp. 95, 1999.

18. C. Moler and C. Van Loan, "Nineteen Dubious Ways to Compute the
Exponential of a Matrix, Twenty-Five Years Later," SIAM Rev, vol. 45,
pp. 3, 03. 2003.

