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Abstract 
 
Systems often operate over a set of time periods, known as phases, in which 
their reliability structure varies and many include both repairable and non-
repairable components. Success for such systems is defined as the 
completion of all phases, known as a phased mission, without failure. An 
example of such a system is an aircraft landing gear system during a flight. 
The Binary Decision Diagram (BDD) method provides the most efficient 
solution to the unreliability of non-repairable systems whilst for repairable 
systems Markov or other state-space based methods have been most widely 
applied. For systems containing both repairable and non-repairable 
components the repairable modelling methods are normally used, despite 
having far higher computational expense than the non-repairable methods, 
since only they are able to handle the dependencies involved. This paper 
introduces improvements to the BDD method for analysing non-repairable 
systems as well as an entirely new method that utilises a new modelling 
technique involving both BDD and Markov techniques.  

Introduction 

 
Many real world systems operate in phased missions where the reliability 
structure varies over consecutive time periods, known as phases, which must 
be completed without failure. Typical examples include aircraft flights and 
nuclear power station safety systems. Calculating the reliability of a mission is 
computationally expensive particularly if the system has components that are 
repairable and/or have multiple failure modes. Increased solution efficiency is 
an important goal as it increases the size of problem that can be analysed and 
increases the possibilities for performing importance measure and real time 
analysis. 
 
Reliability engineering research has developed methods that allow the 
mission reliability to be found from the set of fault trees describing the system 
reliability in terms of component level failures for each phase, along with the 
component level failure probabilities (or failure probability time distributions). 
Two key areas in which progress has focused is in widening the scope of the 
techniques so that they are applicable to a larger range of system types and 
improving the efficiency of analysis to increase the size of system that can be 
analysed and reduce computational effort. The earliest phased mission 
analysis methods involved the direct manipulation of the fault trees. In the first 
known work, Esary and Zhiehms [1] introduced a fault tree based method to 
transform a phased mission into an equivalent single phased mission. Each 
component basic event in the phase fault trees is replaced by an OR gate with 
the performance of the component up to and including that phase as inputs. 
The transformed phase fault trees are then combined into a single fault tree 
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and standard fault tree methods used to derive the system’s reliability. This 
method is unsuitable for solving larger systems since the basic event 
transformation leads to significant complexity. 
 
To reduce the computational burden several researchers such as Dazhi and 
Xue [2], Kohda, Wada and Inoue [3], Somani and Trivedi [4] and La Band and 
Andrews [5] developed phased algebra rules that deal with the dependencies 
between events belonging to the same component in different phases. Not 
only did the use of the phased algebra reduce the computational burden but it 
also allowed individual phase reliabilities to be obtained. Even with the use of 
phased algebra rules, the fault tree based methods remain unsuitable for 
analysing large systems within reasonable time frames, particularly those with 
non-coherent fault trees, and this led to the adoption of the more efficient and 
powerful Binary Decision Diagram (BDD) technique. Bryant [6] demonstrated 
the power of the technique in manipulating Boolean functions. To enable the 
application of the technique to reliability analysis Rauzy [7] introduced 
algorithms to analyse fault trees through the BDD method. Zang, Wang, Sun 
and Trivedi [8] then extended the BDD algorithms to the analysis of systems 
containing components with multiple competing failure modes. A component 
has multiple competing failure modes if it can fail in distinct and mutually 
exclusive ways, e.g. a valve failing stuck closed or stuck open. 
 
Zang, Sun and Trivedi [9] were the first to use the BDD method to analyse the 
reliability of phased mission systems. They made changes to the BDD build 
and evaluation procedures to encode the phase algebra and deal with the 
phase dependencies. This work marked a significant step forward by enabling 
large phased mission systems to be analysed that were beyond the scope of 
the earlier fault tree methods. Tang and Dugan [10] made the obvious 
improvement of combining this with the multiple competing failure mode BDD 
extension [8], resulting in a BDD method that can be used to analyse phased 
mission systems containing multiple competing failure modes.  
 
For systems containing repairable components the combinatorial techniques 
cannot be used to quantify reliability without the use of another method, due 
to the additional dependencies involved. State-space models such as Markov 
[11, 12, 13] and Petri Nets [14] or simulation techniques such as Monte Carlo 
are normally used. The downside to these methods is that they suffer from 
increased computational requirements and decreased accuracy compared to 
the exact BDD method for non-repairable systems – particularly when 
modelling large systems or those with many phases. 
 
To reduce the computational burden, Wang and Trivedi [15] developed an 
approach that utilises the BDD method for analysing systems that operate in 
phased missions and contain repairable components. The method relies on 
an assumption that repaired components are only integrated back into the 
system at the start of the next phase. This allows the BDD to be built 
assuming independence between events in different phases, using the 
algorithm from [7], before resolving the phase dependencies between the 
basic events on each path through the BDD with a Markov chain. Although 
the method modelled multiple failure modes at the component level it did not 
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do so at the structural level. Unfortunately, due to the assumption of event 
independence during BDD construction, the method does not benefit from 
increased performance if the system analysed contains some non-repairable 
components.   
 
Currently obtaining the mission reliability of a phased mission system that 
contains both non-repairable and repairable components requires the use of 
one of the repairable methods discussed above. Since these methods have 
far greater computational complexity than the non-repairable methods, the 
ideal method would obtain the best of both worlds – the ability to analyse the 
non-repairable parts of a system with great efficiency whilst retaining the 
power to correctly resolve the dependencies involved in the repairable parts. 
This paper helps move closer to this goal by introducing new techniques to 
boost solution efficiency of the BDD based non-repairable analysis 
techniques. A new method is also introduced that integrates BDD and Markov 
techniques to enable the reliability of systems containing both non-repairable 
and repairable multiple failure mode components to be obtained with greater 
efficiency than any existing methods. 
 
This paper begins with a definition of a phased mission and an example 
system, an explanation of the BDD method and the introduction of several 
new improvements to the analysis of non-repairable phased missions. The 
Markov model used in the analysis of repairable systems is then explained, 
followed by the description of an entirely new method for efficient analysis of 
systems with non-repairable and repairable components. The paper 
concludes with a demonstrative application of a code that has been 
developed based on these new methods to the example system.  

Phased Mission Definition and Example Mission 

 
The methods and models discussed in this paper make the following 
assumptions for a phased mission: 
 

• The mission consists of a set of consecutive phases. 

• The time duration for each phase is known and fixed. 

• For mission success all phases must be completed. 

• All components work at the start of the mission. 
 
A phased mission can be represented through a fault tree as an OR top gate 
with inputs being individual fault trees for each phase, since mission failure 
occurs if the system fails in any phase. The fault tree shown in Figure 1, 
representing a system operating in a three phased mission, will be used to 
demonstrate the methods expressed in this paper. 
 
 
 
 
 
 



 231 

 

Figure 1 - Mission Fault Tree for example mission 

The example system has 6 components: A, B and C which are non-repairable 
and D, E and F which are repairable. Each component has 2 mutually 
exclusive failure modes, named 1 and 2. Basic events are labelled in the form 
Ij(p1,p2) where I is the component name, j is the failure mode name and p1 and 
p2 indicate the end of the phase which failure occurs after and before, 
respectively. The start of the mission is defined as the end of phase 0. 
Components A, B and C have failure modes with a constant failure rate of 
0.001 failures per hour, whilst the repairable components have failure modes 
with constant failure rates of 0.001 failure per hour when in the working state 
and repair rates of 0.01 repairs per hour when failed. Each phase in the 
example mission lasts 100 hours. 

Boolean Variables 

 
Boolean variables are used to represent a basic event associated with a 
particular component in a particular failure mode over some subset of phases 
of a mission, through their mapping to a value of 0 or 1. These event 
definitions are defined below:  
 

1),(
21

=ppI j  is defined as the failure event of component I in failure mode j 

between the end of phase p1 and end of phase p2.  
 

0),(
21

=ppI j  is defined as the success event of component I in failure mode j 

between the end of phase p1 and end of phase p2; the component is either 
operational or in any other failure mode of component I. 
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The BDD method 

 
The BDD forms the basis of the modelling methods used in this paper and a 
brief description of the method and terminology used are explained here. A 
BDD is a compact data structure, in the form of a rooted, directed, acyclic 
graph, and is used here to model the Boolean function representing a 
system’s reliability over a phased mission. They were introduced by Bryant [6] 
and are based upon Shannon decomposition theory [16].   
 
A BDD consists of decision nodes and two types of terminal node named 
terminal 0 and terminal 1. Each decision node is labelled with a Boolean 
variable and has two edges, a 0 edge and 1 edge, each connecting to a 
different child node. The 0 edge represents an assignment of 0 to the node’s 
Boolean variable, whilst the 1 edge represents an assignment of 1. The 
Boolean variables are ordered such that if an edge from a node labelled with 
variable x connects to a node labelled with variable y then index(x) < index(y). 
A BDD starts at a single node known as its top or root node.  The compact 
nature results from two important reduction features: 
 

• The merging of isomorphic subgraphs, thus removing repetition.  

• The elimination of any node whose children are isomorphic by 
replacing it with its child. 

 
The value of the Boolean function represented by the BDD, corresponding to 
the mapping of Boolean values to variables on any route from the root node to 
a terminal node is given by the terminal nodes value. A value of 1 represents 
mission value whilst a value of 0 represents mission success. These routes 
are known as the paths of the BDD and represent mutually exclusive Boolean 
value to variable assignments. Often not all variables in a BDD will appear on 
a path and these are variables for which their value assignment has no 
bearing on the value of the path. Such variables are sometimes known as 
‘doesn’t matter variables’. The probability of the Boolean function modelled by 
the BDD evaluating to 1 or 0 is the sum of all paths through it that end at a 
terminal one or terminal zero node respectively. Since the sum of the 
probabilities of the Boolean function evaluating to either 1 or 0 is always 1, it 
is only necessary to find the first and the other follows immediately. For this 
reason only the probability of the function evaluating to 1 is normally found 
directly and from now on the term “path” will refer to a path that ends in a 
terminal one node. 
 
An example of a BDD is shown in Figure 2. In this example the BDD nodes 
are labelled with Boolean variables A, B and C and the routes through the 
BDD to the terminal 1 node encode Boolean value mappings {A=1,B=x,C=1}, 
{A=1,C=0,B=1} and {A=0,B=1,C=x} where an assignment of x indicates that 
assigning 1 or 0 to that Boolean variable on the path has no effect on the 
value of the Boolean function the BDD represents. These paths therefore form 
a set of mutually exclusive Boolean value variable assignments resulting in a 
1 value for the Boolean function represented by the BDD.  
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Figure 2 - Example of a BDD 
 
The BDD structure can be presented in terms of a series of nested if-then-
else structures, each representing a decision node in the BDD. The if-then-
else structure represents the decomposition of a Boolean function f, of 

random variables ( )nxxx ,,,
21
K , around ix  as given by Equation 1. 
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Using the if-then-else (ite) format this becomes Equation 2. 
 

),,(
01 ===

ii xxi ffxitef  (2) 

 

Equation 2 describes the following situation, if variable ix occurs (fails) then 

1=ixf  is considered, else 
0=ixf  is considered. To form the BDD from a fault tree, 

the first step is to convert each of the basic events in the fault tree into their if-
then-else structure representations. 
 
The BDD for a component, A, is represented as shown in Figure 3. 
 

 

1 Branch = Occurrence of basic event 
A. 
 
0 Branch = Non-Occurrence of basic 
event A. 

Figure 3- Binary decision diagram vertex for component A failure 

Using the if-then-else notation the BDD in Figure 3 can be represented in the 
form shown by Equation 3. In this notation the first variable inside the 
brackets, for example A in Equation 3, represents a Boolean variable, whilst 
the second and third variables represent the edges connected to assignments 
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of 1 and 0 to the Boolean variable respectively. The second and third 
variables can be 1 or 0 representing the equivalent terminal node, or 
alternatively further if-then-else structures representing decision nodes. 
 

)0,1,(AiteA =  
(3) 

 
The if-then-else structure representation of a gate in the fault tree is formed by 
performing the appropriate logical operation on the if-then-else structures 
representing the gate inputs. If the gate has more than two inputs, then the 
Boolean logical operation is first performed on the initial two inputs and the 
resultant if-then-else obtained. The logical operation is the performed on this 
structure and the next gate input. This process of combining the resultant if-
then-else structure from previous gate inputs and the next gate input’s if-then-
else structure is continued until all gate inputs have been processed and the 
final if-then-else structure obtained. 
 
The output of a logical operation such as AND or OR between nodes F and G 
presented in if-then-else form in Equation 4, is given by Equation 5.  Equation 
5 assumes independence between the events represented by the node 
variables and is extended to phased missions and multiple failure modes in [8, 
9, 10] and later in this paper. 
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Where 
tsR =  represents node R with all instances of variable s (including its 

children) mapped to value t and }.0,1{∈t  
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Where ⊕ represents a logical operation (AND or OR) and index(x) is the order 
of the Boolean variable x.  
 
Figure 4 shows a fault tree and its equivalent BDD representation. 

 

Figure 4 – An example of fault tree to BDD conversion 
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The fault tree to BDD conversion can be carried out by an algorithm that 
performs a depth-first left-to-right traversal of the fault tree, converting each 
fault tree node encountered into its equivalent BDD representation. To 
demonstrate this process, the step by step conversion of the fault tree shown 
in Figure 4 will now be explained. The fault tree consists of four nodes, 
namely the top AND gate node, which we shall denote as node T, and its 
three basic events which we shall denote as nodes A, B, and C following their 
labelling in the figure. According to the traversal strategy the leftmost node, 
node A, is visited first and converted into its BDD representation. Next, node 
B is visited and converted into its BDD representation. Since nodes A and B 
are siblings of an AND gate, the next step is to perform the Boolean AND 
operation between their BDD representations, resulting in a new BDD node, 
which can be denoted as node z (denoted in lower case here to avoid 
confusion with the capitalised fault tree node labels). Although z does not 
represent any of the fault tree nodes (A, B, C or T) its creation is a necessary 
intermediate step in the representation of T. The next node to be visited is 
node C and, again, this is converted into its BDD representation. Since node 
C is another child of the AND gate, the final step is to perform the Boolean 
AND operation between C’s BDD representation and z. The result of this 
operation is the BDD representation of the top gate of the fault tree, since all 
the fault tree nodes have been processed. Alternatively, the conversion in 
terms of the if-the-else notation is shown below: 
 

)0),0),0,1,(,(,(

)0,1,()0),0,1,(,()0,1,()0,1,()0,1,(

CiteBiteAite

CiteBiteAiteCiteBiteAiteEventTop

=

∩=∩∩=
 

 
The chosen variable ordering can have a significant impact on the size of the 
resultant BDD although this particular problem is not considered in this paper, 
instead see Bartlett and Andrews [17]. 

Improved BDD Methods for phased mission analysis 

 
This section introduces several new improvements to the BDD method for the 
analysis of phased missions. Different forms of the BDD method are 
developed for analysing systems with only non-repairable components, only 
repairable components and those consisting of a combination of both. Each of 
these methods is described in turn in the following sections. 

For non-repairable component systems 

 
Non-repairable components are defined as components that remain failed for 
the duration of the mission upon initial failure. Much research has been 
carried out to maximise the efficiency of the BDD method with application to 
non-repairable systems in phased missions. In this section further new 
improved techniques are introduced.  
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BDD Construction 
 
In this work the methodology for encoding the system reliability structure from 
phase fault trees containing only non-repairable components into a BDD is 
similar to the approach taken by Tang and Dugan [10] but with some 
important changes that increase solution efficiency. 
 
The algorithms presented by Tang and Duggan order variables first by 
component, then phase and then failure mode. Instead the methods and 
algorithms in this paper assume variables are ordered first by component, 
then by failure mode and finally by phase, such that earlier phases have a 
lower index (forward phase ordering). For non-repairable components the end 
of the phase which failure occurs after will be 0, the start of the mission, and 
hence the labelling of the basic events will be in the form Ij(0, p). The phase 
ordering will therefore only involve comparing the failure before end phases. 
This ordering when used in conjunction with the BDD construction algorithm 
described later ensures the BDD does not contain paths with mutually 
exclusive events. In turn, this allows the efficient creation of the path data 
structures, developed later in this paper, to be used. For example, a system 
consisting of two components, A and B, each with two failure modes, 1 and 2, 
when operating in a two phased mission would have its Boolean variables 
ordered A1(0,1)< A1(0,2)< A2(0,1)< A2(0,2)< B1(0,1)< B1(0,2)< B2(0,1)< 
B2(0,2). Modifications to convert the methods and algorithms for use with a 
backward phase ordering are simple but have been left out due to space 
restrictions. Unlike the Tang and Duggan method the choice of forward or 
backward phase ordering makes no difference to the performance of the 
method.  
 
The BDD is constructed from the mission fault tree, as before, by converting 
the fault tree basic events into BDD nodes and then applying Boolean logical 
operations between BDD nodes, including the nodes resulting from previous 
computations, according to the logical gates in the fault tree.  
 
A non-repairable component remains in a failure mode for the remainder of 
the mission upon entry and therefore a basic event for component I and 
failure mode j appearing in the phase p fault tree is converted into if-then-else 

format as: )0,1),,0(( pIiteA j= . 

 
The two nodes F and G, shown in if-then-else format in Equation 4, will be 
used to explain the application of logical operations between BDD nodes in 
the BDD construction. If F and G have variables that are of equal index in the 
ordering scheme then the rule from Equation 5 still applies, otherwise, the 
following rules assume that node F is the node with the lower index. 
 
Applying a logical operation ⊕  (e.g. AND or OR) between these two nodes 
will output a node representing the result. As with any other BDD node, this 
node is defined in terms of its variable and its failure and success child nodes. 
Since x and y are the variables of nodes F and G respectively, then since 
index(x) < index(y) due to F’s definition above, the resultant node’s variable 
will be x. We will now denote the failure child and success child of the 
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resultant node as U and V respectively, leading to the if-then-else 
representation of the output from the Boolean operation shown in Equation 6. 
 

),,(ite VUxGF =⊕  (6) 

where ( )
111 === ⊕=⊕= xxx GFGFU  and ( )

00 === ⊕=⊕= xxox GFGFV . 

 

All that remains is to compute nodes U and V. V is calculated from Equation 5 
as before, i.e. GFV ⊕= 0 . The method to compute node U depends on the 
Boolean variables from nodes F and G and a set of rules are shown in Table 
1, replacing those from Equation 5 (which assume variable independence). 
The relationship between the variables of nodes F and G, namely x and y, 
determine which of the exhaustive set of rule conditions is met and 
accordingly, which of the rules to apply in the computation of node U. 
 

Rule U and V computation Condition 

1 11 GFU ⊕=  If x and y are variables 
belonging to the same 
failure mode of the same 
component. 

2 
1

01 =⊕= xGFU   

 

where 
1

0 =xG  is equal to G0 if G0’s 

variable belongs to a different 
component to x, otherwise it is the 
first node with a variable belonging 
to a different component 
encountered during a traversal down 
the success children of the BDD 
starting from G0. 
 
 

If x and y are variables 
belonging to different 
failure modes of the same 
component.  

3 GFU ⊕= 1  Otherwise. 

Table 1 - Rules for computing nodes U and V 
 
The reasoning behind each rule from Table 1 is now explained: 
 
Rule 1: If x and y are variables of the same failure mode of the same 
component, then the phase of x must be earlier than or equal to the phase of 
y (due to the variable ordering) and x=1 implies y=1 since the failure mode is 
non-repairable. This implies that the resultant node’s failure child, node U, 
should be formed from the computation of the failure children of node U and V 
as shown in rule 1 of Table 1.  
 
Rule 2: If x and y are variables belonging to the same component but different 
failure modes then x=1 implies that y, and any other variable belonging to a 
different failure mode of the same component as x, equals 0. This is true 
since a component’s failure modes are mutually exclusive. The failure child of 
the resultant node, U, is therefore computed from the failure child of node F, 
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F1, and the first success child of node G which has a variable not belonging to 

the same component as x, 
1

0 =xG . The recursive nature of finding 
1

0 =xG  

through the success child traversal is shown by Equation 7 where H x=1 is 
determined until its variable belongs to a different component to x at which 

point it becomes equal to
1

0 =xG  . 

1x1x )0Hw1Hw(H == ⋅+⋅=  if the variable of H belongs to the 

same component as x 
Where H=ite(w, H1, H0), initially H=G 

1x1x 0GH == =  when the variable of H belongs to a different 

component to x. 

(7) 

Where w  is the complement of w. 

In order to illustrate the procedure to determine G0x=1 an example is 
considered below. 

 

Figure 5 - Example application of Equation 7 

In the example shown in figure 5  
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To determine G0x=1 equation (7) is applied. As x=1, i.e. A1(0,2)=1, then 
Aj(0,p)=0 for all 1j ≠ . Initially H=G hence w=A2(0,2), H1=1, 

( ) ( )( )( )( )0 1, ,2,0Dite 1, ,2,0Aite0H 23= . Applying equation (7) gives: 
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The variable of H, A3(0,2), belongs to the same component as x, hence 
equation (7) must be applied again with w= A3(0,2), H1=1, H0=ite(D2(0,2),1,0) 

( )
( )( )( )

1x2

1x1x

0 1, ,2,0Dite        

0HH

=

==

=

=
 

In this case the variable of H, D2(0,2), belongs to a different component to x 
and hence G0x=1=ite(D2(0,2), 1,0) 
If G0 in the Figure 5 example had a variable from a different component to x, 
such as C1(0,1), then G0x=1 would instead be G0. 
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Rule 3: In all other cases, x and y belong to different components and are 
independent, therefore U is calculated according to Equation 5. 
 
Unlike the method and ordering scheme presented in [10], the BDD produced 
by this method and ordering scheme avoids encoding paths containing 
mutually exclusive events which allows faster evaluation algorithms to be 
implemented. 
 
A new reduction rule introduced in this paper, is for the case where x belongs 
to the same failure mode as node V’s variable, defined here as variable z, 
such that x=1 implies that z=1, and Vz=1 and U are the same node. In this case 
this node can be replaced by its success child, node V.  Figure 6 shows an 
example of the application of this reduction rule. The top node in Figure 6a is 
an example of a BDD that was output from an OR operation between two 

nodes F and G, )V,U),1,0(A(iteGORF 2= , where the reduction rule was not 

used. The reduction rule can be applied to this BDD since the top node and its 
success son, node V, both have variables from failure mode A2 and both have 
node U as their failure child. Applying the reduction rule replaces the top node 
in Figure 6a with its success child, node V, resulting in the smaller BDD 
shown in Figure 6b. 
 

 

Figure 6 – BDD computation result reduces from a) to b) due to 
reduction rule 

 

A2 

(0,1) 

B3 

(0,1) 

 

A2 

(0,2) 

 

1 
1 

1 
0 

0 A2 

(0,2) 

 

B3 

(0,1) 

 

1 

0 

0 

U 

U 
V 

V 

1 

1 0 
1 0 

A2 

(0,1) 

B3 

(0,1) 

 

1 0 

0 

1 

1 

0 

0 

A2 

(0,2) 

B3 

(0,1) 

 

1 0 

0 

1 

1 

0 

0 

F G 

a) Without reduction b) With Reduction 

F and G node definitions 

Results of combining F and G through logical OR operation 



 240 

This reduction rule often significantly reduces the number of nodes and paths 
in the BDD, increasing evaluation speed and reducing the amount of memory 
required. 
 
If, as is often the case, a BDD path contains multiple basic events associated 
with the same component then there will exist dependencies between them. 
These dependencies are caused by the phased and multiple failure mode 
nature of the basic events.  In order to evaluate path probabilities these 
dependencies must be resolved by transforming the basic event combinations 
into a set of independent events such that the path probability can be found 
by summing and multiplying the probabilities of the individual events in the 
set.  
 
Existing methods such as those presented in [9, 10] use algorithms that 
traverse the BDD to resolve dependencies with variables in lower nodes 
during the probability evaluation. These algorithms involve comparisons 
between node Boolean variables in order to identify the potential 
dependencies as well as potentially long traversals to distant dependant 
nodes. Due to the inherent coupling between the probability evaluation and 
dependency resolution, the dependencies must be resolved each time the 
BDD probability is evaluated (for example, when re-evaluating the BDD due to 
a change in failure mode failure rates). In this paper a new method is 
introduced where a new dependency free data structure, named the implicant 
tree, is formed prior to evaluation. The absence of dependencies during 
probability evaluation permits a substantial increase in speed – particularly 
during repeat evaluations such as when calculating importance measures or 
when performing real time analysis.  
 
During the construction of the implicant tree a set of rules are used to resolve 
dependencies between events associated with the same component. The four 
rules were derived by modifying a subset from a larger set of rules originally 
designed for accident sequence analysis developed by Kohda, Wada and 
Inoue [3]. They are all that is necessary to reduce a BDD path into a set of 
independent events. 
 
The first two reduction rules, given by Equation 8 and Equation 9, are used to 
resolve phase dependencies between events from the same failure mode. 
 

)1),(()1),0(0),0(( 2121 ===∩= ppIPpIpIP jjj   (8) 

 

)0),0(()0),0(0),0((
221

===∩= pIPpIpIP jjj   (9) 

where 
21 pp < . 

 
The third and fourth rules, given by Equation 10 and Equation 11, are used to 
resolve dependencies between events associated with different failure modes 
from the same component: 
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where 
njjj ≠≠ K

21
. 

 
Equation 8 states that the probability of a component not failing in a certain 
failure mode before the end of a phase, but failing in that failure mode before 
the end of some later phase is equal to the probability of failure between the 
two phases. Equation 9 states that the probability that a component does not 
fail in a certain failure mode before the end of two different phases is equal to 
the probability that it does not fail prior to the end of the later phase. Equation 
10 states that the probability a component does not fail in a failure mode 
before the end of a certain phase but fails in a different failure mode belonging 
to the same component at some point between the end of two phases is equal 
to the probability of this latter event alone. Equation 11 states that the 
probability of a component not failing in a set of its failure modes before 
specific phases is equal to 1 minus the sum of the probabilities of each of the 
failure modes occurring before the end of the phase that they are successful 
until.  
 
The only other combinations that can occur on a BDD path are between 
events belonging to different components and since these are already 
independent no reduction rules are necessary. 
 
The data structure encoding the dependency resolved set of events on a BDD 
failure path is now described.  A linked list type structure is used where each 
node of the list represents an event belonging to a different component. Due 
to this structure, the last event of the list, like the last event of the represented 
failure path, is a terminal one node. Multiple failure mode success events from 
the same component, despite involving multiple basic events in resolved form 
(see Equation 11), are stored on a single node of the list structure. The 
structure uses shared tail nodes so that common tail sections of a path are 
not repeated. Since all paths, by definition of a path, terminate at a terminal 
node, they will all share a common terminal one node. An example of this 
structure is shown in Figure 7. 
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Figure 7 - The path data structure 

 

The event stored in the head node of each path data structure in the set of 
paths for a particular BDD node will be an event belonging to the node’s 
Boolean variable component. The set of paths for a BDD node can therefore 
be stored as a list of path structures with head node events belonging to the 
same component. An example of this data structure is shown in Figure 8.  

 
Figure 8 - The path set data structure 

 
The path data structure described above and shown in Figure 7 is now 
extended such that a node can represent a path set data structure as well as 
an individual event. Since the path set data structure itself consists of a set of 
paths, it can therefore contain further path set data structures. This data 
structure is the implicant tree that encodes the implicants for any node in the 
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BDD. The implicant tree representing the paths for a particular BDD node is 
obtained by following the procedure outlined below:   
 
If the node is a terminal one node, then return an implicant tree containing a 
single path that has only one node and with the node representing the 
terminal one event. If it is a terminal zero node then an empty implicant tree, 
containing no paths, is returned. Otherwise the BDD node must be an 
intermediate node and steps A, B, C and D outlined below should be followed. 
 
Step A – get the path sets from each of the child nodes. In turn each child 
node will build a path set from its children - this is therefore a recursive 
process that ends at the terminal nodes. 
 
This step is shown in Figure 9 
 

 
Figure 9 - Step A of data structure derivation 

 
Step B – create the events to combine with the path sets from each child 
node. 

1. The event to combine for the failure (1) child is 1),0( =qI j   

2. The event to combine for the success (0) child is 0),0( =qI j . 

 where I is the node variable’s component, j its failure mode and q its phase. 
 
An example of this step is shown in Figure 10.  
 

 

Figure 10 - Step B of data structure derivation 

 
Step C – derive a new set of paths by combining each path in a child’s paths 
set with the appropriate event generated in step B. 
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1. If the node’s variable belongs to the same component as the child’s 
variable, then a dependency exists between each head event in the 

path set, 
nXX ...

1
, where n is the number of head events, and event 

generated for this node, Y. In this case, use 2a to generate the new 
path set. Otherwise use 2b (this is always the case for the paths from 
the failure child, due to the BDD construction rules discussed earlier). 

2.  

a. For i = 1 to n, combine Y and iX  according to the rules for combining 

dependant events given by Equation 8 to 11. 
b. Create new path with Y as the head event, linking to the path set as the 

subsequent event. 
 
Step D – combine the paths derived in step C into a single path set. This is 
the path set belonging to this node and returned to any parent node in the 
BDD. 
 
Since the top node of a BDD represents the BDD itself, the full set of mutually 
exclusive implicants for a BDD is found by using the above procedure on its 
top node. 
 
An implicant tree data structure requiring less memory and offering even 
faster repeat evaluation, at the expense of increased computational effort 
during construction, can be formed but is omitted from this paper due to space 
restrictions. 
 

BDD Evaluation 
 
Once the implicant tree representing the paths through the BDD has been 
constructed the evaluation of mission probability is simple and fast. To carry 
out the system failure probability evaluation the following 2 rules are followed: 
 
For a path set – sum the probabilities of each path in the set.  
For a path – multiply the probability of each event on the path. Note that an 
event on the path can be a path set (which is evaluated through the path set 
evaluation rule). 
 
Each node in a path data structure from the implicant tree, which represents 
either a subsection of a path or set of paths, may be linked to, and thus 
shared, by nodes from multiple path data structures. Its value is therefore 
cached in the node upon first evaluation so that repeat computations are 
avoided. If the BDD is re-evaluated, these cached values may no longer be 
correct (e.g. phase durations may have been altered) and so they are cleared. 
 
The evaluation stage has been greatly simplified by the resolution of 
dependencies during the construction of the data structure. 
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For repairable component systems 
 
The BDD for repairable systems is constructed in a different manner to the 
non-repairable BDD described in the preceding section. The repairable BDD 
is used to solely represent the systems reliability structure, or specifically, its 
Boolean reliability structure function. Evaluation of probabilities is not carried 
out through BDD paths but instead through the Markov method. 
 

BDD Construction 
 
A separate BDD is built from each of the phase fault trees. The BDD is built 
using the standard algorithm and the rules given in Equation 5 except when 
computing the result of a logical operation between nodes with Boolean 
variables from different failure modes belonging to the same component. In 
that case rule 2 from Table 1 is used instead. A phased mission for a 
repairable system is therefore represented by a set of BDDs - one for each 
phase in the mission. 
 

Evaluation 
 
Distinct from the non-repairable BDD case, direct evaluation from the BDDs is 
not possible. Instead the BDDs have an auxiliary role during evaluation; they 
are used as a tool to determine which states in a Markov model represent a 
system failed state during a particular phase.  

The Markov method 

 
A continuous time, discrete space, Markov chain is used to determine the 
probability of component states at each time point in a phased mission. The 
method used is based upon that of Kim and Park [13] and extended to 
multiple failure modes. 

Forming and Evaluating Markov models from a repairable BDD 

 
The set of components from the BDD are used to determine the exhaustive 
set of Markov states such that a state exists for every possible combination of 
component states. Since failure modes are mutually exclusive, no state can 
have multiple failure modes from the same component present. The total 
number of states can be determined from Equation 12. 
 

∏ +=
CN

i

ims fmN )1(  (12) 

 

Where msN  is the number of Markov states, NC is the number of components 

represented in the BDD and ifm  is the number of failure modes for 

component i. 
 

A msN  by msN  matrix is now formed, known as the transition matrix, containing 

the transition rates between the Markov states. The element located at row i 
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and column j (element (i,j)), where ji ≠ , of the transition matrix represents 

the transition rate from Markov state j to Markov state i. Element (i,i) is the 
negation of the sum of the other elements from column i and represents the 
transition rate out of state i.   
 
From the full set of Markov states a reduced set can be formed for each 
phase of the mission by removing all states that represent system failure in 
that phase. The reduction is possible because the system failure states are 
absorbing, since the mission ends upon failure, and therefore transition out of 
these states is impossible whilst transitions into them are contained within the 
diagonal elements of the transition matrix.  
 
The Markov states representing system failure in each phase are determined 
from the phase’s repairable BDD. Checking the system state for each of the 
Markov states is straightforward. The top node for the phase BDD is entered 
and the failure mode of its Boolean variable is checked against the set of 
present component failure modes defining the Markov state. If the failure 
mode exists in the Markov state then the BDD node’s failure (1) child is next 
to be evaluated against the Markov state, otherwise the success (0) child is 
checked next. This continues down the BDD until a terminal node is reached, 
the value of which indicates the state of the system in that phase for the 
Markov state. Specifically, reaching the BDDs terminal 1 node indicates that 
the Markov state represents a system failure state whilst reaching the terminal 
0 node indicates that the Markov state represents a system success state.  
 

A 
iumsN  by 

iumsN  transition matrix for phase i is formed, where 
iumsN  is the 

number of states in the reduced set for phase i, known as the reduced 
transition rate matrix. This contains the transition rates between the reduced 
set of Markov states. The reduced transition rate matrix is formed by deleting 
the rows and columns from the transition rate matrix corresponding to the 
system failed states for the phase.  Using the reduced state transition matrix 
benefits the computation of the model in terms of both memory usage and 
speed. 
 
An initial conditions vector is formed containing the probability of being in 
each of the Markov states from the first phase transition matrix. Element i of 
the initial conditions vector is the probability of the system being in state i at 
the start of the mission. Due to the assumption that all components are in the 
working state at the start of the mission, the element corresponding to the 
Markov state of all components working will be 1 and all other entries will be 
0.  
 
The method proceeds by finding the initial conditions for each subsequent 
phase until the end of the mission is reached, at which point the reliability of 
the mission is found from the probability that the system resides in any of non-
absorbing states from the final phase (i.e. those represented in its reduced 
transition matrix). Equation 13 is used to calculate the probability vector at the 
end of a phase. Many methods exist for solving the matrix exponential in 
Equation 13 and the choice can affect the numerical error introduced by 
computation, for more detail see Moler and Loan [18]. The software 
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implementation in this work uses scaling and a Padé approximation which 
gives accurate results. 
 

)0()(
)(

i

t

ii
iiet ρρ β=  (13) 

where )(tiρ  is the probability vector at time t from the start of phase i, 
it  is the 

duration of phase i and 
iβ  is the transition rate matrix for phase i. 

 
Due to the removal of absorbing states in each phase, the reduced transition 
rate matrix for each phase of the mission will contain a distinct set of Markov 
states. This means that the elements in the end of phase probability vector 
will not correspond to the elements of the initial probability vector of the 
following phase; in fact the vectors could even be of different size. The initial 
probability vector for the following phase is therefore formed by copying 
across the value from the end of phase vector to the element corresponding 
to the same Markov state. Elements in the initial probability vector 
corresponding to a system failed Markov state in the previous phase, and 
therefore not present in the previous phase’s end of phase probability vector, 
are initialised to a value of 0. Another possibility is that an element in an end 
of phase probability vector does not represent a system failed state in that 
phase but does represent a system failed state in the next phase, and is 
therefore not represented in its initial probability vector. Summing these 
elements gives the probability of transitional failure between the phases.  

Analysing Systems containing both repairable and non-repairable 
components 

 
A commonly encountered class of phased missions involve systems 
containing a mixture of repairable and non-repairable components. 
Determining the reliability of such systems traditionally requires using a 
method optimised for repairable systems, such as the Markov technique 
discussed in the preceding section. However these methods could be 
considered unnecessarily expensive both in terms of resources and time due 
to the high computational resources used even for the non-repairable parts of 
the system that, in isolation, could be solved through methods optimised for 
non-repairable systems with far greater efficiency. To remedy this situation, a 
new method is introduced here that allows the reliability of systems containing 
both repairable and non-repairable components, including those operating in 
phased missions, to be analysed in an efficient manner.  
 
This new technique is derived from the methods for the analysis of non-
repairable and repairable systems that were introduced earlier. Fundamental 
to its power are the use of the BDD technique to prudently separate the 
repairable from the non-repairable elements of the system and an evaluation 
scheme that combines the direct, combinatorial, path based and Markov chain 
procedures. 
 
Implicit to the method is an approximation of the situations in which failure of 
repairable components causes system failure, and as such the method gives 
approximate reliability results.  
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Fault tree to BDD conversion 
 
A BDD formed from a system’s mission fault tree is used to represent its 
mission reliability structure, isolate the repairable from the non-repairable 
elements of the system and directly evaluate the reliability of the non-
repairable parts. 
 
The first step is to set the ordering scheme so that variables belonging to the 
system’s repairable components, components with one or more repairable 
failure modes, are indexed higher than its non-repairable components (and 
thus appear as lower nodes in the BDD).  
 
The BDD is then built using the non-repairable method described earlier for 
Boolean operations between two nodes, using the rules from Table 1, except 
when both nodes have Boolean variables from repairable components. In the 
case of a Boolean operation between two nodes with Boolean variables from 
repairable components then the same method as when building a repairable 
BDD methods applies – i.e. Equation 5 and rule 2 from Table 1.  
 
For systems containing both repairable and non-repairable components this 
will result in a BDD where the higher nodes are composed like a non-
repairable BDD and then may make the transition into repairable BDDs before 
the terminal nodes are reached. Full repairable BDDs have a root node for 
each of the phases in the mission as explained earlier, but repairable BDDs 
appearing in a hybrid BDD may not have root nodes for certain phases. If the 
repairable BDD is reached through paths consisting of events from non-
repairable components such that failure in certain phases is not possible then 
these phases will not be represented in the repairable BDD. It does not matter 
where the repairable basic events appear in the fault trees; the technique 
ensures that the non-repairable and repairable sections are grouped together 
in the BDD in a correct and efficient manner. Due to the property of BDDs that 
ensures variables that do not matter are omitted, the sizes of the repairable 
BDDs are minimised. The hybrid BDD for the example mission from Figure 1 
is shown and annotated in Figure 12. The BDD in Figure 12 was formed using 
an ordering scheme that ordered components as B < A < C < D < E < F and 
ordered failure modes as 2 < 1. 
 

Evaluation 
 
The evaluation procedure for the model gives approximate results for the 
reliability of a phased mission. The paths through the BDD are represented by 
an implicant tree, as they were in the non-repairable model introduced earlier, 
but now paths may include nodes representing repairable BDDs. The 
evaluation of a path in the implicant tree is then calculated as before, i.e. as 
the product of the path node probabilities. A node representing a repairable 
BDD is evaluated through the method discussed in the repairable BDD 
section. Where the repairable BDD contains non-consecutive phases, for 
example phase BDDs for phases 1 and 3 but not for 2, then the time between 
present phases is bridged using the full transition matrix (i.e. the transition 
matrix without states removed) and the absent phase duration. 
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Since in this procedure the unreliability evaluation of Boolean variables 
belonging to non-repairable components considers only the phase but not the 
time of failure, the evaluation of paths with Boolean variables from both 
repairable and non-repairable components is not exact. 

Software implementation and a worked example 

 
A software tool has been developed that implements the techniques 
discussed in this paper. The inputs to the tool are the phase fault trees and 
component failure mode failure and repair models. This tool was used to 
analyse the example system’s mission, as represented by the fault tree in 
Figure 1.  
 
The BDD generated by the software is shown in Figure 12. The BDD shown in 
Figure 12  contains a total of 3 repairable BDDs and evaluation therefore 
requires the solution of 3 Markov models. Each of these Markov models is 
small, the largest consisting of three components (D, F and E) over two 
phases (2 and 3).  
 
A worked example of the evaluation of the BDD paths that include the 
repairable BDD on the right in Figure 12, is given here: 
 
As shown in Figure 12 the repairable BDD on the right contains a single 
phase, phase 2, and two failure modes, D1 and F1. The first step is to 
determine the full set of states for the Markov model of the components D and 
F, which are shown in Table 2. The Markov model showing the possible 
transitions between the states in Table 2 is shown in Figure 11. 

 

 Failure Modes (1=Present, 0=Absent) 
State IDs D1 D2 F1 F2 
1 0 0 0 0 
2 1 0 0 0 
3 0 1 0 0 
4 0 0 1 0 

5 0 0 0 1 
6 1 0 1 0 
7 1 0 0 1 
8 0 1 1 0 
9 0 1 0 1 

Table 2 - Markov States 
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State Label Present Failure Modes 

1 None 

2 D1 

3 D2 

4 F1 

5 F2 

6 D1, F1 

7 D1, F2 

8 D2, F1 

9 D2, F2 
  

Figure 11 - Markov model for the repairable BDD on the right in Figure 
12 
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Figure 12 - A hybrid BDD representing mission failure of the example 
phased mission 

BDD node from a 
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component 
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Terminal node 

Part of a failure path 
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components 

1 and 0 indicate a  
path to the parent 
node’s failure and 
success child 
respectively. 

Here the number labelling the 
path out of the repairable 
transition point represents the 
BDD’s phase (not failure or 
success child paths as 
elsewhere) 
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State IDs Phase 1 State Index Phase 2 State Index 
1 1 1 
2 2 System Failed State 
3 3 2 
4 4 System Failed State 

5 5 3 
6 6 System Failed State 
7 7 System Failed State 
8 8 System Failed State 
9 9 4 

Table 3 - Markov state to state transition rate and state probability vector 
index for each phase 

At the start of the mission it is assumed that all components are in the working 
state, thus the probability of the system residing in state 1 from Table 2 at 
time 0 is 1 and the probability of the system residing in any other state is 0. 
This results in the state probability vector for the start of phase 1 as given by 
Equation 14.  
 

[ ]T
P 000000001)0(1 =  (14) 

Element i in Equation 14 represents the probability of being in the state 
indexed i. 
 
The BDD contains no nodes for phase 1 and therefore the full transition matrix 
is used to find the state probability vector at the end of phase 1, as shown in 
Equation 15.  
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Element (i,j), ji ≠ , in Equation 15 represents the transition rate from the state 

indexed j to the state indexed i and element (i,i) represents the transition rate 
out of the state indexed i, using the Markov state index for phase 1 shown in 
Table 3. 
 
Substituting the initial state probability vector and state transition rate matrix 
for phase 1 into Equation 13, along with the phase duration of 100 hours, 
gives the end of phase 1 state probability vector shown in Equation 16. 
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05145.005145.005145.07806.0[)100(1 =P  

]003391.0003391.0003391.0003391.005145.0  

(16) 

Element i in Equation 16 represents the probability of being in the state 
indexed i in the Markov state index for phase 1 shown in Table 3. 
 
For phase 2, the BDD shows that the system fails if component D is failed in 
failure mode 1 or component F is failed in failure mode 1. Thus, only states 1, 
3, 5 and 9 from Table 2 represent working states in phase 2 and hence only 
the elements representing these states from the end of the phase 1 state 
probability vector, are used to form the initial state probability vector for phase 
2 shown in Equation 17.  
 

[ ]T
P 003391.005145.005145.07806.0)0(2 =  (17) 

Element i in Equation 17 represents the probability of being in the state 
indexed I in the Markov state index for phase 2 shown in Table 3. 
 
The elements from the end of phase 1 state probability vector that represent 
system failure states in phase 2, i.e. states 2, 4, 6, 7 and 8, are summed to 
give the probability of failure on transition to phase 2 of 0.1131. The phase 2 
state transition rate matrix is formed by removing from the full state transition 
rate matrix, Equation 15, all elements that represent transitions from, and to, 
phase 2 system failure states. The resultant reduced state transition rate 
matrix is shown in Equation 18. 
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The index for the states in phase 2, used in Equation 18, is given in Table 3. 
 
Substituting the initial state probability vector and state transition rate matrix 
for phase 2 into Equation 13, along with the phase duration of 100 hours, 
gives the end of phase 2 state probability vector shown in Equation 19. The 
four states in this equation are those given in Table 3. 
 

[ ]T
P 005399.005769.005769.06164.0)100(2 =  (19) 

 
Since no further phases are represented in the repairable BDD, deducting the 
sum of the elements in this state probability vector from 1 gives the 
unreliability for the Markov model of 0.2628. 
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Figure 13 - Part of implicant tree data structure from example mission 

 
The BDD in Figure 12 shows that there are two possible paths from the top 
node to the repairable BDD on the right of Figure 12. These are shown in the 
form of an implicant tree in Figure 13. The unreliability of these paths up to the 
repairable BDD, found using the non-repairable path evaluation procedure, is 
0.0807. Multiplying this with the unreliability from the Markov model calculated 
earlier gives the total contribution to system unreliability from those paths 
including the rightmost repairable BDD of 0.02121. 

Conclusions 

 
An improved BDD build algorithm has been presented that produces a smaller 
BDD and therefore results in faster evaluation and reduced memory use. This 
is applicable to all phased mission BDD evaluation algorithms such as those 
in [10]. A new pre-evaluation data structure, the implicant tree, and techniques 
for its creation have been introduced that offer faster BDD evaluation – 
particularly when repeated evaluation is required. This offers great benefits in 
applications such as importance measure analysis and real time analysis. 
Finally, a new technique for analysing the reliability of systems operating in 
phased missions that contain both repairable and non-repairable components 
has been introduced. This technique uses a novel combination of the BDD 
and Markov methods to offer efficient analysis of such systems. 
 
The techniques presented in this paper have been integrated into a software 
tool and successfully used to analyse an example system operating in a 
phased mission. 
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