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1. INTRODUCTION 

Flooding is the most common cause of loss of life, 
human suffering and widespread damage to build-
ings, crops and infrastructure. However, flooding is 
a natural and necessary process for the maintenance 
of the ecology of a river, promoting the exchange of 
material and organisms amongst a mosaic of habi-
tats. The influence of riparian vegetation on both 
ecological and hydraulic processes has therefore 
become increasingly recognized as an integral com-
ponent of river management. Vegetation such as 
trees and bushes commonly occurs along the banks 
of rivers and the edges of floodplains (see Fig.1), 
both naturally and by design for erosion prevention, 
habitat creation and landscape.  Despite this, there 
is little known of the effect of such marginal vegeta-
tion on flood hydraulic processes, mass exchanges, 
sediment transport, and pollutant dispersion during 
river flood.  This is thus a key weakness in the ap-
plication of numerical models in flood risk man-
agement and river rehabilitation studies. This paper 
therefore particularly focuses on the impact of trees 
and bushes on the key topics of velocity and bound-
ary shear stress. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1 One line trees at the edge of Floodplain  

       of flooding river. 
 
Most rivers and man-made channels have flood-
plains that extend laterally away from the river, 
forming so-called “compound channels”. Funda-
mental research on compound channel hydrody-
namics was carried out in 1990

th
 and revealed the 

presence of high levels of turbulence, secondary 
flows and large horizontal eddies at the junction be-
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tween the floodplain and the main channel. The re-
sults of this work led to the creation of the Shiono 
and Knight Method (SKM) for analysis of overbank 
flows (Shiono & Knight, 1988, 1991). This SKM 
cannot separate the influence of the drag friction of 
riparian vegetation from the boundary friction, and 
Rameshwaran & Shiono, (2007) demonstrated sig-
nificant over-prediction of boundary shear stress for 
an emergent vegetation case and then introduced the 
drag force term in SKM. As a result, the prediction 
of boundary shear stress was great improvement. In 
experimental studies, Sun and Shiono, (2009) 
demonstrated that flow resistance caused by drag 
force due to such vegetation in a small aspect ratio 
of open channel is significant. The vegetal drag 
force thus affects flood water levels and conse-
quently flood hazard maps in a relative small aspect 
ratio of rivers.  
 
The exchange of momentum is the key to control 
flow resistance in the vicinity of vegetated areas. 
Most popular expression of momentum exchange is 
velocity gradient with eddy viscosity. For SKM, the 
eddy viscosity is expressed with the bed and rod 
generated turbulence (Shiono et al 2009), and non 
dimensional eddy viscosity within the analytical so-
lutions of SKM is assumed to be constant, however 
the measured non dimensional eddy viscosity 
(White and Nepf, 2008) in open channel flow with 
the vegetation tends to show different behaviour to 
that assumed in the analytical solutions for SKM. 
The friction factor for SKM is also the key factor 
and is assumed to be constant. The friction factor 
however appears to be also not constant in the shear 
layer region occurred by vegetal drag as shown in 
Xin and Shiono (2009). Therefore the eddy viscosi-
ty and friction factor need to be refined in such re-
gion in SKM. In this paper, a new analytical solu-
tion is derived based on having a variation of 
friction factor and non dimensional eddy viscosity. 
This analytical solution is validated with the meas-
ured velocity and boundary shear stress in an open 
channel with one line vegetation.   
 
 
2. EXPERIMENT SETUP 

 
Experiments were conducted in a 9m long and 

0.915m wide rectangular channel in Loughborough 

University (LU). A honeycomb was placed at the in-

let of the channel to remove large undulations of wa-

ter surface. A single line of vegetation was made 

from a series of 9mm diameter wooden rods. These 

were held in place at y=0.455m (centre of the chan-

nel) with a series of wooden cross members span-

ning the width of the channel. The centre to centre 

spacing between the rods was taken as 160mm, 

which therefore implies a rod spacing ratio L/D of 

17.8, (L=rod spacing and D=rod diameter).  This is 

based on the averaged tree spacing along a reach of 

the River Thames, Terrier, et al (2010). The bed 

slope, S0 was set to 0.001, and the water depth was 

at 0.3m in the measurement area between 4.7m and 

5.3m downstream. Because the channel was not long 

enough for uniform flow to be established, the ener-

gy slope was therefore estimated by balancing the 

forces such as the Reynolds shear force at the rod 

and boundary shear force and the weight component 

and was 0.00016. This value is used as the energy 

slope in this paper. 

 

Data collections were performed using ADV for ve-

locity and a Preston tube for boundary shear stress. 

For ADV, measurements were carried out at 9 half 

cross sections over 0.7m length along the channel as 

shown in Fig. 2. The measurements were taken place 

at 4 vertical distances with 6 traverse locations for 

each the half cross section.  

 

 

 

Fig. 2 Measurement locations in the channel                                            

 

The data recording each point was 3 minutes and the 

sample data rate was 100Hz. For the Preston tube, 

the measurements were carried out at the same 

transverse and longitudinal locations as with the 

ADV measurements. The data recording length for 

each location was also 3 minutes. 

 

 

3. EXPERIMENTAL RESULTS 

 

A typical velocity distribution in the half cross sec-

tion between rods at 5.2m downstream from the inlet 

is shown in Fig. 3 , (U=longitudinal velocity, z= ver-

tical distance and y=lateral distance). There is a ten-

dency to have slower velocity near the rod and the 

maximum velocity around the half water depth, 

which demonstrates a distinct velocity dip as hap-

pened in a narrow channel. It can be seen from the 

figure that there has a tendency of bulging flow in 

the shear layer near water surface even the velocity 
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was measured below 0.24m from the water surface. 

This suggests that the drag force caused by the rods 

is significant in the water surface area. The trans-

verse component of the Reynolds stress caused by 

the vertical plane shearing is also shown in Fig. 3, 

( uv =Reynolds stress). A large Reynolds stress oc-

curs near the rod area around y=0.45~0.55m due to 

the drag force of the rods. It was noticed that the 

magnitude of the vertical component of the Reyn-

olds stress caused by the horizontal plan shearing in 

most area was considerably smaller than transverse 

component one. There was a tendency of the vertical 

component to have its largest near bed, which indi-

cates the dominance of bed generated turbulence, 

however the transverse component is dominated 

over the water depth near the rod area. 

 

 

 

Fig. 3 Velocity and Reynolds stress distributions 

 

Depth averaged velocities in the measurement sec-

tions were estimated using available data and are 

shown in Fig. 4 including the transverse component 

of the depth averaged Reynolds stress and the 

boundary shear stress. The transverse component of 

the depth averaged Reynolds stress in the measure-

ment sections included in Fig. 4 was calculated us-

ing those values of 9 cross sections along the chan-

nel. It can be seen from the figure that there is a 

maximum velocity at a distance of 1/3 width from 

the channel wall (y=0.9m) and the Reynolds stress 

apparently varies linearly within the half cross sec-

tion in the channel. This suggests that the drag force 

caused by the rods is almost 2 times the wall shear 

force. 

 

It is noticed that the location of zero of the Reynolds 

stress is not corresponding to the location of the 

maximum velocity. They should be coincided but 

not in this experiment. This may be due to a lack of 

measurement points. 

 

 
 

Fig. 4 Depth averaged velocity and Reynolds stress 

and Boundary shear stress, and  

 
 

Fig. 5 Friction factor and eddy viscosity/(UH). 

 

The distribution of boundary shear stress (Tb) has a 

trend similar to that of the depth averaged velocity 

as shown in Fig. 4. The boundary shear stress is pro-

portional to velocity squared near the bed, and as 

can be seen in Fig. 3, there is a tendency of the dis-

tribution of velocity near the bed similar to the 

boundary shear stress distribution. The Darcy and 

Weisbach friction factor (f) that is one of key pa-

rameters in SKM was worked out using the depth 

averaged velocity and boundary shear stress, and are 

plotted on Fig. 5. The friction factor appears to be 

constant from the wall (y=0.9m) to y=0.7m and then 

linearly increases to the rod. It seems to have the lin-

ear variation of the friction factor in the shear layer 

generated by the rods (y=0.45m). This identification 

of the linear and constant variations is important 

when we revisit SKM considering friction factor. 

The analytical solution of SKM currently assumes a 

constant friction factor, which means that the linear 

variation of the friction factor in the shear layer in-

duced by the rods does not support the analytical so-
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lution. Thus the assumption of friction factor for the 

analytical solution of SKM needs to be reconsidered.  

 

The depth averaged eddy viscosity which is also one 

of the key parameters in SKM was calculated using 

the depth averaged Reynolds stress and the depth 

averaged velocity gradient. The depth averaged ve-

locity gradient was obtained by fitting the third order 

polynomial on the depth averaged velocity. As men-

tioned in the previous section that the Reynolds 

stress is not zero at the velocity gradient equal to ze-

ro (i.e. at the maximum velocity around 0.77), the 

eddy viscosity becomes infinity at the maximum ve-

locity. We avoided at around y=0.77m to work out 

the eddy viscosity and only calculated it in the shear 

layer from the rod to near the maximum velocity. 

The eddy viscosity was divided by UH (U=depth 

averaged velocity and H=water depth) and then was 

plotted in Fig. 5. The division of UH is directly re-

lated to the SKM analogy, which will be described 

in next section. The maximum value of non-

dimensional eddy viscosity, eddy/ u*H, was 0.164 

which is much larger than that of bed generated tur-

bulence, a typical value of eddy/ u*H is 0.07. u* is 

the friction velocity. The eddy viscosity increases 

from y=0.6m towards the rod in the shear layer, 

which means that it does not support the constant as-

sumption of the eddy viscosity in SKM. This param-

eter in SKM needs to be also reconsidered.   
 
 
4. DERIVATION OF ANALYTICAL SOLU-

TIONS  

 

Lateral distribution methods to predict depth aver-

aged velocity and boundary shear stress in open 

channel flow have been proposed, for example, by 

Shiono and Knight (1988, 1991), van Prooijen et al, 

(2005). The model considered in this paper is the 

Shiono and Knight Method (SKM) developed by 

Shiono and Knight (1991). SKM including drag 

force induced by vegetation is given by 

Rameshwaran and Shiono (2007) and Shiono et. al. 

(2009). This solves the second order differential 

equation for uniform flow: 

 
 
              
 
 
 

where x, y are the longitudinal, and lateral directions 
respectively, dU and dV is the depth-averaged veloc-
ities in the x and y directions respectively,    is the 
density of water, g is the gravitational acceleration, 

Sf is the energy slope and DF  is the source term; b  
is the bed shear stress, H  is the local water depth.  
 
The bed shear stress b  and the depth-averaged 
Reynolds shear stress  yx  can be determined from 
the following Equation 2: 

 
 
 

 
 
 
 

where f is the local friction factor, t  is the depth-
averaged eddy viscosity, and tb  is the depth-
averaged dimensionless eddy viscosity.  
 
For no rod area, the source term DF  is zero. For the 
rod area as vegetation, the source term DF  is drag 
force per unit area and given by: 

 
       (3) 
 

N = the total rod number/unit area, D=rod diameter, 
SF=shading factor and Cd =drag coefficient.  

 
Substituting equation (2) in equation (1) gives 

 

 
         (4) 

 
 

Assuming that f ,  and advection term are constant 
in a constant water depth domain, Shiono et.al 
(2009) derived an analytical solution to equation (4) 
as  

 

 
 

(5) 
where  
 

     
 
 

 
 
 

(6) 
 

Rameshwaran and Shiono (2007) solved equation 

(4) numerically, rather than analytically.  

 



0ff 


























 


0

max0 11
f

f

l

yy


HU
f

t

30

8
 

)1(

8

1

0

0
43

2
21  





 

D
f

gHS
AAUd

D

f

8
11 0

2 
D

f

8
11 0

1 

28

22

0 HJf
D  



















0

max1
1

f

f

l
J

As can be seen in Fig. 5 that the friction factor and 

the eddy viscosity are not constant in the shear layer, 

the above analytical solution cannot be used to solve 

depth averaged velocity and boundary shear stress in 

the shear layer region for this experiment case. Be-

cause the friction factor appears to vary linearly, it is 

therefore proposed that the friction factor within the 

shear layer varies linearly as a first approximation in 

order to obtain an analytical solution of SKM. 

 

 
Fig. 6 Sketch of shear layer with rod 

  

The friction factor is now set in the form: (notations 

are shown in Fig.6) 
 

           (7) 
 

where  
 

,  
 
 l is shear layer width, y0, is at the outside of the 
shear layer, f0, is at y=y0,  fmax.is at the rod, yR=y0+l.  

 
This gives a maximum value, fmax at the rod and de-
creases linearly toward the friction factor f0 at the 
outside of the shear layer.  

 
Now let us consider the eddy viscosity term in equa-
tion (4) with the linear variation of the friction fac-
tor. In order to have an analytical solution of equa-
tion (4) the eddy viscosity term should have U times 
the cubic   defined as  

 
       (8) 

 
 
One can then obtain the following analytical solution 
for constant water depth. 
 

 
 (9) 
 

 

where 
 
 
 
 
 
 
The coefficients of A3 and A4 can be solved with 
boundary conditions 
 
 
5. SOLVING MODEL SOLUTIONS 
 

Equations (5) and (9) give the lateral distributions of 
depth averaged velocity and boundary shear stress 
(via equation (2)) in no shear layer region and shear 
layer region respectively. In this experimental open 
channel case, the half channel cross section was di-
vided into two subsections consisting of the shear 
layer induced by the rods and the outside of this 
shear layer. This leads 4 unknown coefficients, A1, 
A2, A3 and A4 in equations 5 and 9. In order to 
solve these coefficients, a system of equation is first 
made by the boundary conditions assuming the con-
tinuity of dU and d dU /dy at the joint of the subsec-
tions, and it becomes a 4 x 4 system of equation.  
Microsoft Excel can be used to solve a 4 x 4 system 
of equation from which all the coefficients A’s are 
calculated, hence the velocity and boundary shear 
stress distributions can be worked out by equations 
(5) and (9).  
 
Let’s now consider the friction factor that is required 
to solve SKM as one of input parameters. Fig. 5 
shows that the friction factor in the outside shear 
layer tends to be constant. In an area of a constant 
friction factor, Rameshwaran and Shiono (2007) 
suggested to use the modified Colebrook – White 
equation as given by Equation 10.  

 
 
                   (10) 
 
 
where   is the kinematic viscosity of water.  
 
This equation was used to estimate a constant fric-
tion factor in the outside of the shear layer in this 
case. The measured data were used to calibrate the 
roughness height ks which was found to be 0.01m. 
This gives f0. In the shear layer, the friction factor is 
set to a linear variation as with the experimental data 
as shown in Fig. 5 and is matching the constant fric-
tion factor f0 at the joint between the shear layer and 
its outside. The maximum friction factor was esti-
mated from the experimental data. The distribution 
of friction factor using equation (7) and the data are 
shown in Fig. 7 and both agree reasonably well. 
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Let’s consider another parameter, the eddy viscosity, 
required in SKM.  The eddy viscosity is expressed 
with equation (8) in the shear layer. Through the cal-
ibration of   undertaken using the data,   was 
found to be 0.1 in the shear layer and 0.03 in the 
outside of shear layer.   The distribution of the eddy 
viscosity of equation (8) divided by UH, is shown in 
Fig. 8. The data and equation (8) are reasonably in 
agreement in the shear layer region.  
 

Fig. 7 Distribution of friction factor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Distribution of eddy viscosity/UH  
 
 
6. BOUNDARY CONDITIONS 

 
To solve the analytical solutions in two regions, 
namely shear layer region and the outside region of 
the shear layer, the boundary conditions are required 
at the wall of the channel, the joint of two regions 
and the rod. At the joint between two regions, con-
ventional the boundary conditions, the continuity 
and gradient of velocity were used as mentioned in 
the previous section. 
 
For the boundary condition at the wall, the velocity 
is usually set to zero. However, this does not give an 
accurate velocity distribution near the wall, especial-
ly in narrow channels. This channel is classified as a 
narrow channel, and the velocity distribution near 
the wall using the velocity being set to zero is shown 
in Fig. 9 as demonstration. To avoid a sharp change 

of velocity distribution near the wall and to accurate-
ly predict velocity near the wall, the velocity at near 
the wall for the boundary condition can be assumed 
to be an appropriate value using either the log-law or 
the 7

th
 power law. In this case, the velocity at the 

wall was estimated using the mean boundary shear 
stress proportion to the wall shear stress with the 
Darcy friction equation U

2
=0.75RgS0 /(f/8). For the 

other boundary condition at the rod, the velocity was 
similarly estimated using the mean boundary shear 
stress proportional to the drag force/unit area, in this 
case, U

2
=RgS0/(0.5CdNHD) was used, where Cd=1.2 

for the rod. It is noted that these boundary conditions 
at the wall and rod were only calibrated by the ex-
perimental data and an appropriate method is there-
fore required for establishing boundary conditions at 
the wall and rod with a variety of data. 
 
With using above the input parameters, namely fric-
tion factor and eddy viscosity, and the boundary 
conditions the predictions of velocity and boundary 
shear stress were performed with the mathematical 
solutions (5) and (9) and are shown in Figs. 9 and 10 
together with the measured data and the SKM with 
constant the friction factor and eddy viscosity. It is 
noted that the secondary flow term was set to zero. 

Fig. 9 Predicted and measured velocity.  
 

Fig. 10 Predicted and measured boundary shear 
stress. 
 
The original and new solutions for velocity agree 
well with the measured data whereas the solutions 
for the boundary shear stress are quite different in 
the shear layer. The original SKM solution is under 



predicted and this is caused by using the constant 
friction factor and eddy viscosity in the shear layer 
albeit both increases towards the rod. It is noticed 
that there is a slightly dip at the joint between two 
subsections for the new solution. This is caused by 
different rates of change of friction factor and veloc-
ity as well eddy viscosity. The new solution is now 
validated with the data.  
 
 
7. COMPOUND CHANNEL 

 
The new solution was also applied to the compound 
channel data (Shiono et. al. 2009) and the results are 
shown in Figs. 11 and 12.  
 

 
Fig. 11 Measured and Predicted Velocity  
 

 
Fig. 12 Measured and predicted boundary shear 
stress  
 
The compound channel has a series of square rods 
along the edge of the floodplain and the details of 
the experimental set up can be found in Shiono et. 
al. (2009). The SKM in the figures included the sec-
ondary flow term =0.56, similar to values for cy-
lindrical rods on the floodplain (Rameshwaran and 
Shiono, 2007, and Xin and Shiono 2008). This is 
significant high compared with other  values 
(0.15~0.25) for no rod case (Shiono and Knight 
(1991). Again the new solution gives a better predic-
tion for the boundary shear stress without the sec-
ondary flow term. It should be noted that since the 

depth averaged velocity is mathematically discon-
tinuous at the interface between the main channel 
and floodplain, the prediction was separately under-
taken in the main channel and floodplain. The 
boundary conditions at the main channel and flood-
plain walls were used as with the simple open chan-
nel flow case mentioned above. For floodplain the 
boundary conditions are U

2
=0.75RgS0/(f/8) at the 

floodplain wall and U
2
=RgS0/(0.5CdNHD) at the 

square blocks. R=hydraulic radius of floodplain. For 
the main channel, the boundary conditions are 
U

2
=0.75RgS0/(f/8) at the main channel wall and 

U
2
=R’gS0/(0.5CdNHD)+0.5R’gS0/(f/8)(h/H) which 

includes the effects of the rod drag force/unit area 
and the wall shear stress, R’=hydraulic radius of the 
main channel. It is noted that the constant 0.5 of the 
wall friction is smaller than a regular value of 0.75 
used for the other walls. The shear layer width was 
estimated from the data in this prediction since there 
have been no method which determines width of 
shear layer in the literature except van Prooijen et al, 
(2005) who introduced shear layer width determined 
by the concept of percentile of the maximum veloci-
ty. In order to establish the method how to determine 
shear layer width, more data from different channel 
configurations with different vegetation cases are 
required.  
 
 
8. CONCLUSIONS 

 
The experiment was conducted in a single open 
channel with a series of cylindrical rods, as vegeta-
tion, along the centre of the channel. Velocity and 
Reynolds stress were measured with ADV and 
boundary shear stress was measured with a Preston 
tube. The measured velocity, Reynolds stress and 
boundary shear stress were used to estimate friction 
factor and eddy viscosity and both were found to be 
not constant in the shear layer induced by the rods. 
Based on the experimental data, the variations of 
friction factor and eddy viscosity in SKM were in-
troduced and a new analytical solution was derived. 
These variations were a linear function for friction 
factor and a cubic function for the eddy viscosity in 
the shear layer. The validation of the new analytical 
solution was undertaken using two experimental da-
ta of the single and two stage channels. With the 
new analytical solution the predictions of velocity 
and boundary shear stress are better than those giv-
en by the original solution of SKM, and in particu-
lar, the prediction of boundary shear stress is much 
better. The original solution of SKM requires a 
large value of the secondary flow coefficient, but 
the new solution does not need to have the second-
ary flow coefficient because the variation of friction 
accounts for the secondary flow term. The new so-
lution of SKM can be therefore used to estimate 



stage-discharge rating curve and to investigate spac-
ing of trees and bushes for river management. 
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