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Abstract 

 

Purpose: The aim of the present study was to quantify changes in brain volume 

following exercise/heat-induced hypohydration in man. Methods: Eight active men 

completed intermittent exercise in a warm environment, until 2.9 ± 0.1 % of body 

mass was lost. Subjects remained hypohydrated for two hours following the end of 

exercise. Brain volume was measured before, immediately following, and 1h and 2h 

after exercise using MRI (Philips 3T Achieva). Measures of  subjective feelings and 

core body temperature were also monitored. Blood samples were drawn to determine 

serum electrolyte concentrations and osmolality and to allow calculation of changes in 

blood and plasma volumes. Results: Brain volume was not influenced by 

hypohydration (0.2 ± 0.4 %; ES 0.2; P = 0.310). Reductions in ventricular (4.0 ± 1.8 

%; ES 4.6; P < 0.001) and CSF (3.1 ± 1.9%; ES 3.3; P = 0.003) volumes were 

observed following exercise. Compared with pre-exercise levels, serum osmolality 

was elevated throughout the 2h post-exercise period (+10 ± 2 mosmol/kg; P < 0.001). 

Core temperature increased from 37.1 ± 0.3oC at rest to 39.3 ± 0.5oC at the end of 

exercise (P = 0.001). Conclusions: These data demonstrate that brain volume remains 

unchanged in response to moderate hypohydration and the presence of serum 

hyperosmolality, suggesting that mechanisms are in place to defend brain volume.  
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Introduction 

 

Paragraph 1 A common practice used by participants in weight-category sports is to 

achieve an acute loss of  body mass prior to competition. This might be to compete at 

a lower weight category (boxing, martial arts), or to comply with weight penalties 

employed in some sports (e.g. horse racing). Athletes in weight-category sports tend 

to display higher morning urine osmolality values than those observed in the general 

population, perhaps reflecting their attempts to maintain a low body mass through 

dehydration (17). A survey of Australian jockeys found that 81% restricted food and 

fluid intake in the 24 h prior to competition, with exercise/sauna-induced sweating 

and diuretic use also regularly employed to reduce body mass (12). These practices all 

result in a progressive loss of body water, causing an increase in plasma osmolality. 

This in turn produces a movement of water from interstitial and intracellular spaces to 

defend blood volume, thus helping to maintain blood flow to the exercising muscles 

and to the skin (13). While this response is well defined in the periphery, it is also 

clear that an increase in extracellular osmolality can exert an influence on total brain 

(3) and brain cell (1) volumes, potentially also influencing the permeability of the 

blood-brain barrier (BBB) (25).  

 

Paragraph 2 At present there are limited data on the effect of dehydration on the 

central nervous system (CNS) in humans. Recent work has employed Magnetic 

Resonance Imaging (MRI) to determine the effects on brain volume of dehydration 

induced by exercise under conditions of restricted heat loss (5,10) and during a 16 

hour period of fluid restriction (7). Interestingly, while changes in brain volume were 

reported following fluid-restriction protocols, no change was observed following 
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exercise-induced dehydration. The two previous reports investigating the response to 

exercise have reported marked changes in ventricular volume, with the magnitude of 

change loosely related to the degree of hypohydration induced (5,10). The reasons for 

the apparent discrepancy between these passive and active forms of dehydration are 

unclear, particularly as the magnitude of total body water loss, expressed as a 

percentage reduction in body mass, was greater in the exercise studies (Passive 1.6 ± 

1.0 %; Active 2.3 ± 0.2 % and 2.2 ± 0.5 %). It is possible that the gradual loss of fluid 

over a prolonged timescale with fluid restriction produces a different response from 

that which occurs with rapid loss of fluid caused by exercise in the heat, but this can 

only be speculated. Animal data suggest that any loss of fluid from the brain results in 

the rapid movement of osmolytes from the cerebrospinal fluid (CSF) and serum into 

the brain to defend brain volume and limit further fluid losses (8). Water loss and 

electrolyte uptake are likely to occur almost simultaneously, with the magnitude of 

brain water losses demonstrated to be only 35% of that anticipated in the 30 min 

following osmotic opening of the blood-brain barrier (3). It is possible that 

redistribution of fluids to restore brain volume might have confounded the results of 

some studies investigating the effect of exercise and thermally-induced fluid losses 

(5,10,14).  

 

Paragraph 3 In some sports there can be a long interval between the weigh-in and the 

start of competition (e.g. professional boxing). This movement of fluids might protect 

against potential changes in brain volume resulting from the dehydration practices 

employed by competitors in these sports. There are situations, however, where 

competition begins only a few minutes following a weigh-in (horse racing, amateur 

boxing/martial arts): this, coupled with any hypohydration accrued during the activity 
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itself, might place these individuals at an increased risk of traumatic brain injury. A 

marked reduction in the size of the brain has the potential to increase trauma 

experienced during falls and collisions because of greater movement of the brain in 

the skull after impact. Apart from the risk of intracranial bleeding, collisions between 

the surface of the brain and the walls of the interior skull might cause the cortical 

tissue to be deformed, compressed or stretched and this has been implicated in the 

aetiology of concussion (18). Clearly the high risk of falls or blows to the head in 

some sports can place competitors at risk of traumatic brain injury. Whether practices 

routinely employed to achieve a desired competition weight can affect brain volume is 

therefore an interesting question. This is true from a purely mechanistic standpoint, 

but might also have implications for sports medicine, as the number of concussions 

and other head injuries sustained by competitors in weight-category sports appears to 

be greater than reported in other sports (2,23). 

 

Paragraph 4 The aim of the present study was to examine the effect of exercise-

induced hypohydration on brain, ventricular and CSF volumes. Previous studies 

examining changes in brain volume with dehydration have reported inconsistent 

results, particularly in the changes observed in ventricular volume. These 

investigations have employed varying levels of dehydration, which could explain 

some of the inconsistency in this response. In addition, there has yet to be any 

examination of the potential cell-volume regulation response in humans that has been 

reported in animals to defend brain volume in the presence of an osmotic challenge. 

To achieve this, every effort was made to complete the first measurements as soon as 

possible after the cessation of exercise. In addition, responses were observed over a 
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two-hour period after exercise where no fluid was provided to examine a time course 

of change. 

 

 

Materials and Methods 

 

Paragraph 5 Subjects. Eight physically active men (Mean ± SD age 26 ± 4 y; height 

1.79 ± 0.09 m; body mass 79.7 ± 11.2 kg, VO2 peak 4.1 ± 0.3 L/min, % body fat 12.2 

± 1.6%) were recruited to take part in this investigation. All subjects were physically 

active and habituated to the sensation of strenuous exercise, but none was accustomed 

to exercise in a warm environment at the time of the study. Prior to volunteering, all 

subjects received written details outlining the nature and purpose of the study. 

Following any questions regarding the protocol, a written statement of consent was 

signed. The protocol was approved by the Ethical Advisory Committees of 

Loughborough University and the University of Nottingham.  

 

Paragraph 6 Experimental Protocol. All subjects completed a preliminary test to 

measure peak oxygen uptake (VO2 peak), a familiarisation trial and a single 

experimental trial. VO2 peak was determined using a discontinuous, incremental 

exercise test to volitional exhaustion on a cycle ergometer (Monark Ergomedic 824E). 

The familiarisation trial involved the completion of the same exercise protocol as the 

experimental trial. The familiarisation and experimental trials were separated by at 

least 7 days to limit the development of heat acclimation. Subjects were instructed to 

record dietary intake and physical activity during the day prior to the familiarisation 

trial, and to replicate this before the subsequent experimental trial. No strenuous 
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exercise or alcohol consumption was permitted for 24 hours before each visit to the 

laboratory.   

 

Paragraph 7 Dehydration Protocol. The trials took place in the morning following an 

overnight fast, other than the ingestion of 500 ml of plain water 90 min before 

commencing exercise. On arrival at the laboratory, subjects first emptied their 

bladder, and a sample of urine was retained for measurement of osmolality (Gonotec 

Osmomat 030, YSI, Farnborough, UK). Subjects then sat in a comfortable 

environment (22 – 24 oC) for 20 min before entering a climatic chamber maintained at 

a temperature of 35.1 ± 0.4 oC  and relative humidity of 57 ± 3 % where nude body 

mass was measured to the nearest 10 g (Adam CFW150 digital scale, Milton Keynes, 

UK). The subject then began a series of 10 min periods of cycle exercise at an 

intensity corresponding to 60 % of VO2 peak. A 5 min rest period separated 

successive blocks of exercise, during which the subject towelled dry and nude body 

mass was recorded. Sweat losses were determined for each period of exercise through 

changes in body mass, and this pattern of activity and rest continued until the subject 

had lost approximately 3% of their initial body mass. Subjects then returned to a 

comfortable environment, and were not permitted to ingest any fluid for two hours 

following the end of exercise.  

 

Paragraph 8 Measures: Because of limitations associated with the monitoring of 

core temperature when exposed to MRI, this was measured during the familiarisation 

trial. A radio-telemetry pill (HQ Inc, Palmetto, Florida) was ingested 10 hours prior to 

this trial, before an overnight fast, to enable intestinal temperature to be determined. 

The subjective feelings of thirst, alertness and fatigue were assessed using a series of 
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100 mm visual analogue scales before exercise, immediately following exercise and 

during the 2 hour recovery period.  

 

Paragraph 9 To determine the normal variation and/or test-retest error in measured 

brain and CSF volumes over the same timeframe as the experimental trials, two 

subjects, who did not participate in the subsequent trials, remained at rest in a 

comfortable environment over a three hour period. During the experimental trial 

measurements of brain, ventricular and CSF volume were undertaken prior to 

exercise, upon attainment of 3 % body mass loss, and one and two hours after the end 

of exercise. Anatomical MPRAGE and Vista scans were performed at each time point 

using a 3 Tesla magnetic resonance scanner (Philips Achieva, AE Eindhoven, The 

Netherlands). Imaging parameters were as follows: MPRAGE: TE 2.3 ms, TR 7.7 ms, 

voxel size 0.8 x 0.8 x 0.8 mm, 256x256 matrix, 205x205x147mm field of view; Vista 

(this scan specifically highlights the CSF and was used in volumetric method 2 

described below): TE 380 ms, TR 2500 ms, voxel size 0.8 x 0.8 x 0.8 mm, 312x312 

matrix, 250x250x180 field of view.  

 

Paragraph 10 The brain in all scans was first extracted using the BET skull stripping 

tool (19). Brain-extracted images were then inspected, to ensure any residual non-

brain tissue (neck tissue, nasal sinus, skull etc) had been removed. All input scans 

were transformed to the centre position of the set, to ensure a homogeneous amount of 

blurring related to interpolation, using robust linear registration (15). Percentage 

changes in brain, ventricular and CSF volumes were then estimated using two 

methods. Volumetric Method 1: changes in brain volume were determined from the 

MPRAGE scans using SIENA (version 2.6, FMRIB Software Library, Oxford 
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University, UK), a fully automated analysis tool designed for the longitudinal 

assessment of brain atrophy (20, 21). SIENA segments the brain images to determine 

the brain/CSF edge points, with the perpendicular displacement of these edge points 

used to estimate percentage brain volume change between scans. Regional brain 

volume changes were determined using the voxelwise extension of SIENA: the edge 

displacement images generated for each subject were spatially dilated, transformed to 

a standard space, masked with a standard brain edge image (MNI152) and smoothed 

by a Gaussian kernel of 5mm. Changes in ventricular volume were determined by 

manually removing the non-ventricular CSF prior to tissue-type segmentation 

undertaken using FAST (FMRIB Software Library, Oxford University, UK) to 

determine the brain/non-brain boundaries (27).   

 

Paragraph 11 Volumetric Method 2: We first thresholded the pre-exercise Vista scan 

at an intensity level commensurate with that of CSF (8e+5 in this case). This 

reference scan was then precisely non-linearly registered to the subsequent scans with 

sub-voxel precision. The resulting images were thresholded at the same level and the 

sum of the voxel intensity values above the threshold was computed. This integral 

measure can then be used to compute differences across subject or before and after 

exercise. This approach was intended to alleviate the influence of changes in contrast, 

brightness and homogeneity across scans and the artefacts of partial voluming. A 

proxy for brain size was also obtained by linearly registering the reference scan to the 

ICBM standard atlas, with the product of the scaling factors along each axis used as a 

covariate in the statistical analysis. 
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Paragraph 12 Blood handling and analysis. Blood samples (5 ml) were drawn by 

venous puncture from a superficial antecubital vein prior to the start of exercise, at the 

end of the dehydration protocol, and after 1 and 2 h of recovery. Subjects were seated 

for at least 15 min prior to each collection. Blood samples were drawn directly into 

dry syringes: a 1ml aliquot was dispensed into tubes containing K2EDTA, with the 

remaining 4 ml placed into a plain tube. Hemoglobin (in duplicate by the 

cyanmethaemoglobin method) and hematocrit (in triplicate by microcentrifugation) 

values were used to estimate percentage changes in blood, plasma and red cell 

volumes relative to the resting sample (6). The portion of the sample added to a plain 

tube was left to clot at room temperature for 60 min before being centrifuged to yield 

serum. This was kept at 4 oC for the analysis in duplicate of serum sodium, potassium 

(Corning 410C, New York, USA) and chloride (Jenway PCLM 3, Essex, UK) 

concentrations and serum osmolality (Gonotec Osmomat 030, YSI, Farnborough, 

UK).  

 

Paragraph 13 Statistical Analysis Data are presented as means ± standard deviation 

(SD) unless otherwise stated. To identify differences in normally distributed results, 

one-way repeated measures analysis of variance (ANOVA) was employed. Pair-wise 

differences were evaluated using paired t-tests with Holm-Bonferroni adjustment for 

multiple comparisons. Statistical significance was accepted at P < 0.05. Cohen’s d 

effect sizes (ES) for the changes in brain, CSF and ventricular volumes were also 

determined [(Volpre± - Volpost)/SD]. Regional changes in brain volume were 

determined by permutation-based, voxelwise non-parametric testing using Randomise 

(FMRIB Software Library, Oxford University, UK). Statistical inference was based 
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on voxel-level thresholding at corrected P-values of 0.05, adjusted for multiple 

comparisons. 

 

 

Results 

 

Paragraph 14 Dehydration data Pre-exercise urine osmolality was 495 ± 116 

mosmol/kg and  449 ± 145 mosmol/kg during the familiarisation and experimental 

trials respectively (P = 0.438). Total body mass loss was 2.31 ± 0.29 kg during the 

familiarisation trial and 2.30 ± 0.27 kg in the experimental trial, representing a 2.9 ± 

0.1% reduction in body mass. Subjects took 67.4 ± 10.2 min of exercise to reach this 

level of hypohydration, with a total of 107 ± 15 min spent inside the climatic 

chamber. 

 

Paragraph 15 Volumetric analysis While a full control trial was not included in the 

present investigation, normal variation in measured brain and CSF volumes were 

monitored over the same timeframe as the experimental trials in two subjects who did 

not participate in the main study. There was no change in brain (difference from scan 

1: Scan2 0.0 ± 0.0 %, Scan3 0.0 ± 0.0 %) or CSF (difference from Scan 1: Scan 2 1.0 

± 0.3 %, Scan 3 0.2 ± 0.0 %) volumes over the three hour rest period. Because of the 

limited sample size, it is difficult to draw definitive conclusions regarding the normal 

variation and/or measurement error at rest, but these values fall within the reported 

test/retest error of SIENA (0.2% brain volume change; 20).  
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Paragraph 16 The change in brain and CSF volumes resulting from exercise/heat-

induced hypohydration determined using SIENA are presented in Figure 1. Brain 

volume changes were unaffected by hypohydration (0.2 ± 0.4 %; ES 0.2; P = 0.310). 

A modest reduction in ventricular volume was observed following exercise (4.0 ± 1.8 

%; ES 4.6; P < 0.001), with evidence of a gradual restoration over the 2 h recovery 

period. This response is highlighted in Figure 2, with significant morphometric edge 

flow of the brain/CSF boundary surrounding the ventricles indicating some degree of 

shrinkage between the pre-exercise and post-exercise scans and the pre-exercise and 2 

h recovery scans (P < 0.05). Employing analysis method 2 (vista scan), percent 

changes in brain and CSF volumes were also estimated (Figure 3). Again, brain 

volume was not influenced by hypohydration (0.0 ± 0.4 %; P = 0.805), but in a 

similar manner to the ventricular volume data presented above, a small reduction in 

CSF volume was apparent following exercise (3.1 ± 1.9 %; P = 0.003). This response 

was maintained throughout the 2 h rest period. There was a moderate relationship 

between the change in brain volume calculated using analysis methods 1 and 2 (r2 = 

0.611, P = 0.022), with SIENA estimating a slightly greater change in brain volume 

following exercise in 7 of the 8 subjects.  

 

Paragraph 17 Blood data Blood and plasma volumes were 9.0 ± 2.5 % and 13.7 ± 

3.9 % lower respectively immediately after exercise, with some recovery of both 

volumes apparent during the recovery period (P < 0.001; Figure 4). Serum sodium 

concentration increased from 144 ± 1 mmol/L to 148 ± 1 mmol/L during exercise (P = 

0.003), but there was no change in serum potassium (P = 0.062) or chloride (P = 

0.210) concentrations (Table 1). Compared with pre-exercise levels, serum osmolality 
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was increased at the end of exercise (+10 ± 2 mosmol/kg; P < 0.001) and remained 

elevated throughout the 2 h post-exercise period (Table 1).  

 

Paragraph 18 Supplemental data Core temperature data obtained using a radio-

telemetry pill are presented in Figure 5. Pre-exercise core temperature was 37.1 ± 0.3 

oC, with exercise resulting in a 2.2 ± 0.4 oC increase. Core temperature at the end of 

exercise was 39.3 ± 0.5 oC, but returned to pre-exercise levels after 1 h of recovery. 

Subjective feelings related to thirst and hunger, tiredness and the ability to 

concentrate, and headache are presented in Table 2. There was a marked increase in 

perceived thirst reported immediately following exercise, with this maintained 

throughout the two-hour post-exercise period (P < 0.001). There was no change in 

perceived feelings of tiredness (P=0.201) or the ability to concentrate (P = 0.378), but 

the subjects reported a drop in alertness (P = 0.037) and perceived energy (P = 0.021) 

following exercise. Subjects reported no symptoms of headache before exercise, but 

feelings of head soreness were apparent following exercise and during recovery (P = 

0.011). 

 

 

Discussion 

 

Paragraph 19 The results of the present study demonstrate that brain volume remains 

unchanged in response to moderate levels of acute hypohydration induced by exercise 

in a warm environment, but there do appear to be small reductions in ventricular and 

CSF volumes. Osmotically-driven movement of fluid from the CNS to the circulation 

appears to be minimal following exercise/heat-induced hypohydration, perhaps 
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suggesting that mechanisms are in place to defend brain and CSF volumes in spite of 

a substantial increase in extracellular osmolality. The protocol employed in the 

present investigation resulted in the loss of 2.9 ± 0.1 % of the subjects’ initial body 

mass: this level of hypohydration would be sufficient to reduce exercise capacity, 

particularly when exercise is performed in a warm environment (11).  

 

Paragraph 20 The white and grey matter of the brain consist of approximately 70 % 

and 82 % water respectively (22) and brain volume is therefore susceptible to changes 

induced by fluctuations in water content. The water content of the brain is dictated 

largely by the solute content of the brain tissue relative to that of the extra-cerebral 

space, and a change in plasma osmolality can result in a net flux of water into the 

circulation. Several animal studies have reported marked changes in brain volume in 

response to peripheral infusions of hypertonic NaCl and mannitol that resulted in a 

state of hypernatremia (1,3,4,9). Similarly, in the presence of hyponatremia, water can 

move from the circulation into the brain (along an osmotic gradient) resulting in 

cerebral edema (8). In the rat, acute hypernatremia results in a 7 % reduction in total 

brain volume within 30-90 min, with the fluid being drawn primarily from the 

extracellular water compartments (4). These authors also reported that the degree of 

water loss from the brain in response to the osmotic challenge was not as great as 

predicted on the basis of ideal osmotic behaviour, and they attributed this to a net 

influx of electrolytes from the cerebrospinal fluid and plasma (1,3). This volume 

regulation acts as a defense mechanism that limits the degree of brain shrinkage (1,8). 

It should be noted, however, that the hypernatremia induced in the nephrectomised 

rats studied by Cserr et al. (4) was particularly severe, with plasma sodium 

concentrations increasing by 30 mmol/L. This is far beyond the extent of change that 
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would occur in healthy humans during prolonged exercise, when sodium 

concentration seldom increases by more than about 5-6 mmol/L. In a group of 90 

marathon runners, for example, the mean increase in plasma sodium concentration 

over the course of the race was 6 mmol/l (26). 

 

Paragraph 21 At present there are limited data on the effects of changes in fluid 

balance on the CNS in humans but three recent studies employing scanning 

techniques have examined changes in brain and ventricular volumes with 

hypohydration (5,7,10). A 16 hour period of fluid restriction, resulting in a body mass 

loss of 1.6 ± 1.0 %, produced a significant reduction in total brain volume. Brain 

volume was subsequently restored by rehydration with plain water (7). Employing 

various degrees of exercise and heat exposure, Dickson and colleagues (5) and 

Kempton et al. (10) reported no reduction in total brain volume, but they found 

marked changes in ventricular volume with levels of hypohydration between 1.7 and 

2.9 %. The striking outcome of both these exercise studies was the marked variation 

in ventricular volume change observed following exercise (changes from -15% to +42 

%), with the magnitude and direction of change related to the degree of hypohydration 

induced. It should be noted that the extent of fluid loss induced in these studies was 

highly variable, with the subjects who attained body mass losses of more than 2.5% 

displaying ventricular expansion, a response which is difficult to explain. Subjects in 

the present study all lost between 2.8 % and 3.1 % of body mass, but none of these 

subjects showed an increase in ventricular volume. The present data suggest that brain 

volume is tightly maintained in the presence of marked reductions in total body water, 

and these distinct and variable changes in ventricular or CSF volumes were not 

apparent.  
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Paragraph 22 The present study found a 3.1 ± 1.9 % reduction in CSF volume in the 

presence of moderate levels of hypohydration. Ventricular volume was also reduced 

immediately following exercise-induced hypohydration, with a gradual restoration of 

this loss apparent over the 2 hour recovery period. While these differences were 

statistically significant, it is unlikely that a change of this magnitude is 

physiologically relevant, with the change in CSF volume representing a fluid loss of 

only 4-5 mL from this compartment, compared with the larger changes in blood (9 ± 

3%) and plasma (14 ± 4%) volumes. This represents a loss of about 410 to 600 ml of 

water from the vascular space, based on the assumption that blood volume was 5582 

± 786 ml in these subjects (blood volume estimates based on 70 ml/kg body mass; 

24). Regional changes in brain and ventricular volumes were highlighted using the 

voxelwise extension of SIENA. Both methods employed to estimate differences in 

brain volume reported no global volume change, but there was a suggestion of some 

regional redistribution of fluid within the brain following exercise and heat-induced 

hypohydration (Figure 2). The physiological importance of these changes are 

unknown at present, but this may be implicated in the decrements in several aspects of 

cognitive function reported following strenuous exercise in warm conditions.  

 

Paragraph 23 The technical challenges associated with the measurement of changes 

in brain, ventricular and CSF volumes using MRI techniques should be recognised. 

The cerebrospinal fluid is produced by the ependymal cells of the choroid plexus 

found throughout the ventricular system and provides basic mechanical and 

immunological protection to the brain inside the skull, as well as a transport medium 

for nutrients and neurotransmitters. CSF flows from the lateral ventricles into the third 

ventricle and then the fourth ventricle via the cerebral aqueduct in the brainstem. The 
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aqueduct between ventricles is small and presents a common source of error when 

determining ventricular and CSF volumes. The application of two separate volumetric 

analysis techniques, with both producing similar outcomes, should provide additional 

confidence in the data presented. It is difficult to explain the marked discrepancy in 

changes in ventricular volume reported between the present study and those published 

previously (5,10), but it is possible that the variable levels of hypohydration attained 

in the earlier studies might be a factor, along with differences in the timeframe 

between the end of exercise and the completion of the MRI scan.  

 

Paragraph 24 In the present study, serum osmolality increased by 10 ± 2 mosmol/kg 

(P < 0.001) during exercise, with mean values of 294 ± 2 mosmol/kg observed at the 

end of exercise. This is similar to the response observed in a previous study 

investigating changes in serum S100 concentrations during intermittent exercise in 

the heat, where serum osmolality increased by 12 ± 3 mosmol/kg (25). While this 

change is small relative to that produced by mannitol or glycerol infusion (which can 

result in serum osmolality values in excess of 310 mosmol/kg), the resulting osmotic 

gradient between the periphery and CNS should have been sufficient to produce a net 

movement of fluid from the brain to the circulation. As highlighted previously, the 

degree of brain water loss observed in animals exposed to acute hyperosmotic states 

was not as great as predicted on  the basis of ideal osmotic behaviour (3). The 

accumulation of solutes in the brain, including electrolytes drawn from the CSF and 

plasma, occurs during acute hyperosmotic states to limit fluid losses. This volume 

regulation occurs rapidly and acts to restrict brain shrinkage (1,8). It appears that this 

mechanism is in operation when individuals are exposed to moderate hypohydration 

resulting from exercise in warm/humid conditions.  
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Paragraph 25 This movement of fluids might protect against potential changes in 

brain volume resulting from the dehydration practices used by competitors in some 

sports where a significant time interval exists between the weigh-in and the start of 

competition (e.g. professional boxing). There are cases, however, where competition 

begins shortly following a weigh in (horse racing, amateur boxing/martial arts): this, 

coupled with any hypohydration accrued during the activity itself, could place these 

individuals at an increased risk of traumatic brain injury. The convulsive theory of 

concussion suggests that an abrupt increase or sudden arrest of head movement, 

results in an angular acceleration of the head that causes turbulent rotation of  the 

mass of brain within the cranium (18). Sudden mechanical loading of the head might 

increase the chances of a tissue-deforming collision between the brain cortex and the 

walls of the skull. Any reduction in the volume of the brain, or in the volume of CSF 

surrounding the brain, might increase trauma experienced during falls and collisions 

because of a greater degree of brain movement within the skull.  

 

Paragraph 26 It is important to recognise the limitations of this study and of other 

MRI-based studies that have examined changes in brain volume. It is clear that 

mechanisms operate to limit fluid losses from the brain, and the magnitude of brain 

water losses has been demonstrated to be only about 35 % of that expected 30 min 

following infusion of hyperosmotic solutions (3). Subjects were positioned in the 

MRI magnet within 5 min after the end of exercise, and the scanning procedure took 

around 10 min to complete. Despite efforts to ensure a rapid turnaround, water loss 

and electrolyte uptake are likely to occur simultaneously, potentially causing part of 

any response to be missed. Animal studies investigating the effect of dehydration by 

10 % of initial body mass also report no change in brain volume, but these 
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measurements were taken once core temperature had returned to basal levels (14). 

Again, it is probable that there was a redistribution of fluids during this time to restore 

brain volume. It is also important to acknowledge the likely influence of posture 

change on the results presented. Moving from a standing to supine position results in 

a marked redistribution of fluid within the body, with blood and plasma volumes 

increasing by 8 and 17 % respectively following 60 min in the supine position (16). It 

is possible that moving from a seated position whilst at rest and during exercise to a 

supine position in the scanner could have distorted the results, but this same artefact 

should be present in all scans of this nature unless the posture of the subjects is first 

stabilised and then maintained throughout the entire study period. 

 

Paragraph 27 In conclusion, these data demonstrate that brain volume remains 

unchanged in response to moderate levels of hypohydration, but there does appear to 

be a small transient reduction in CSF volume. Osmotically-driven movement of fluid 

from the CNS to the circulation appears to be minimal following exercise/heat-

induced hypohydration, perhaps suggesting that mechanisms are in place to defend 

brain volume.  

 

 

Acknowledgements 

 

The authors would like to acknowledge the Gatorade Sport Science Institute (GSSI), 

Barrington, Illinois, USA for providing financial support for this study. The results of 

the present study do not constitute endorsement by ACSM. 

 



 

 20

 

References 

 

1 Ayus JC, Armstrong DL, Arieff AI. Effects of hypernatraemia in the central 

nervous system and its therapy in rats and rabbits. J Physiol. 1996;492:243-55. 

 

2 Bledsoe GH, Li G, Levy F. Injury risk in professional boxing. South Med J. 

2005;98:994-998. 

 

3 Cserr HF, DePasquale M, Patlak CS. Regulation of brain water and 

electrolytes during acute hyperosmolality in rats. Am J Physiol. 

1987;253:F522-529. 

 

4 Cserr HF, DePasquale M, Nicholson C, Patlak CS, Pettigrew KD. 

Extracellular volume decreases while cell volume is maintained by ion uptake 

in rat brain during acute hypernatremia. J Physiol. 1991;442:277-295. 

 

5 Dickson JM, Weavers HM, Mitchell N, Winter EM, Wilkinson ID, Van Beek 

EJ, Wild JM, Griffiths PD. The effects of dehydration on brain volume - 

preliminary results. Int J Sports Med. 2005;26:481-485. 

 

6 Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, 

plasma, and red cells in dehydration. J Appl Physiol. 1974;37:247-248. 

 



 

 21

 

7 Duning T, Kloska S, Steinstrater O, Kugel H, Heindel W, Knecht S. 

Dehydration confounds the assessment of brain atrophy. Neurology 

2005;64:548-550. 

 

8 Gullans SR, Verbalis JG. Control of brain volume during hyperosmolar and 

hypoosmolar conditions. Ann Rev Med. 1993;44:289-301. 

 

9 Holliday MA, Kalayci MN, Harrah J. Factors that limit brain volume changes 

in responses to acute and sustained hyper- and hyponatremia. J Clin Invest. 

1968;47:1916-1928. 

 

10 Kempton MJ, Ettinger U, Schmechtig A, Winter EM, Smith L, McMorris T, 

Wilkinson ID, Williams SC, Smith MS. Effects of acute dehydration on brain 

morphology in healthy humans. Hum Brain Mapp. 2009;30:291-298. 

 

11 Maughan RJ, Shirreffs SM. Development of individual hydration strategies for 

athletes. Int J Sport Nutr Exerc Metab. 2008;18:457-72. 

 

12 Moore JM, Timperio AF, Crawford DA, Burns CM, Cameron-Smith D. 

Weight management and weight loss strategies of professional jockeys. Int J 

Sport Nutr Exerc Metab. 2002;12:1-13. 

 

13 Nose H, Mack GW, Shi X, Nadel ER. Shift in body fluid compartments after 

dehydration in humans. J Appl Physiol. 1988;65:318-324. 

 



 

 22

 

14 Nose H, Morimoto T, Ogura K. Distribution of water losses among fluid 

compartments of tissues under thermal dehydration in the rat. Jpn J Physiol. 

1983;33:1019-1029. 

 

15 Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Non-

rigid registration using free-form deformations: Application to breast MR 

images. IEEE Transactions on Medical Imaging. 1999;18:712-721. 

 

16 Shirreffs SM, Maughan RJ. The effect of posture change on blood volume, 

serum potassium and whole body electrical impedance. Eur J Appl Physiol. 

1994;69:461-3. 

 

17 Shirreffs SM, Maughan RJ. Urine osmolality and conductivity as indices of 

hydration status in athletes in the heat. Med Sci Sports Exerc. 1998;30:1598-

602. 

 

18 Shaw NA. The neurophysiology of concussion. Prog Neurobiol. 2002;67:281–

344. 

 

19 Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 

2002;17:143-155. 

 

20 Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De 

Stefano N. Accurate, robust and automated longitudinal and cross-sectional 

brain change analysis. NeuroImage 2002;17:479-489. 



 

 23

 

 21 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, 

Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy 

R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. 

Advances in functional and structural MR image analysis and implementation 

as FSL. NeuroImage 2004;23:208-219.  

 

22 Toffs PS. PD: Proton density of tissue water. In: Toffs PS, editor. Quantitative 

MRI of the Brain: Measuring Changes Caused by Disease. Malden MA, USA: 

Wiley; 2000. p. 85-110. 

 

23 Turner M, McCrory P, Halley W. Injuries in professional horse racing in Great 

Britain and the Republic of Ireland during 1992-2000. Br J Sports Med. 

2002;36:403-409. 

 

24 Wasserman LR, Yoh T, Rashkoff IA. Blood volume determination: 

comparison of T-1824 and P32 labelled red cell methods. J Lab Clin Med. 

1951;37:342-52. 

 

25 Watson P, Black KE, Clark SC, Maughan RJ. Exercise in the heat: effect of 

fluid ingestion on blood-brain barrier permeability. Med Sci Sports Exerc. 

2006;38:2118-2124. 

 

26 Whiting PH, Maughan RJ, Miller JDB. Dehydration and serum biochemical 

changes in marathon runners. Eur J Appl Physiol. 1984;52:183-187. 

 



 

 24

 

27 Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a 

hidden Markov random field model and the expectation maximization 

algorithm. IEEE Trans Med Imag. 2001;20:45-57. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 25

 

Figure Legends 

 

Figure 1: The percentage change in brain (top) and ventricular (bottom) volumes 

following exercise/heat-induced hypohydration calculated using analysis method 1 

(SIENA). ** (P < 0.01) denotes a significant difference from the Pre-Ex value. 

 

Figure 2: Voxelwise statistical analysis highlighting significant perpendicular 

displacement of the brain/CSF boundary between the pre-exercise and post-exercise 

scans (A) and the pre-exercise and 2 h recovery scans (B). Red colored regions 

indicate volume loss at a P = 0.05 level, with regions where the color graduates to 

white indicating brain volume shrinkage at a P < 0.01 level. 

 

Figure 3: The percentage change in brain (top) and CSF (bottom) volumes following 

exercise/heat-induced hypohydration calculated using analysis method 2. ** (P < 

0.01) denotes a significant difference from the Pre-Ex value. 

 

Figure 4: Change in plasma volume following exercise/heat-induced hypohydration. 

* (P < 0.05) and ** (P < 0.01) denote a significant difference from the Pre-Ex value. 

 

Figure 5: Core temperature during exercise and recovery. * (P < 0.05) and ** (P < 

0.01) denote a significant difference from the Pre-Ex value. 
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Table 1: Serum electrolyte concentrations and osmolality. ** (P < 0.01) denotes a 

significant difference from the Pre-Ex value. 

 Pre-Ex Post-Ex 1h rec 2h rec 

     

Sodium (mmol/L) 144 ± 1 148 ± 1** 147 ± 1 146 ± 1 

Potassium (mmol/L) 4.6 ± 0.2 5.2 ± 0.5 4.7 ± 0.4 4.6 ± 0.3 

Chloride (mmol/L) 98 ± 2 100 ± 3 99 ± 3 98 ± 3 

Osmolality (mosmol/kg) 284 ± 2 294 ± 2** 290 ± 3** 290 ± 4 

 

 

 

 

Table 2: Subjective feelings related to thirst, tiredness, the ability to concentrate, and 

headache (scored on a 100mm scale). * (P < 0.05) and ** (P < 0.01) denote a 

significant difference from the Pre-Ex value. 

 Pre-Ex Post-Ex 1h rec 2h rec 

Thirst 39 ± 19 78 ± 22** 85 ± 14** 88 ± 14** 

Tiredness 57 ± 9 69 ± 14 54 ± 32 68 ± 22 

Alertness 46 ± 23 35 ± 12* 39 ± 26 33 ± 26 

Concentration 39 ± 14 31 ± 19 32 ± 20 34 ± 27 

Energy 55 ± 13 29 ± 7** 36 ± 18* 35 ± 21* 

Headache 4 ± 3 56 ± 29** 53 ± 30** 57 ± 31** 

 


