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Abstract 

The development of a Microsoft® Excel® spreadsheet is described, for the accurate 

calculation of CIE (Commission Internationale de l’Eclairage) 1931 xy chromaticity coordinates 

and luminance data from visible region absorption spectra recorded in transmission mode.  Using 

firmly established CIE principles, absorbance-wavelength data from visible spectra recorded using a 

Hewlett Packard 8452A diode array spectrophotometer are taken as input, with chromaticity 

coordinates being generated as output. The colorimetric transformations described are well known 

to colour scientists, with the methodology and background now being made accessible to the 

electrochromic materials community.  Colour stimulus measurement example calculation results are 

firstly presented for aqueous solutions of the dyes, Erythrosin B (red), Acid Green 25 and Remaxol 

Brilliant Blue R, and then for tracking electrochromic in situ colour stimulus changes in the methyl 

viologen and n-heptyl viologen systems.  The quantification of colour during each viologen dication 



 

- 2 - 

to cation radical reduction process, and each reverse (oxidation) process, showed that subtle 

changes in both hue and luminance could be detected, with evidence of colour contributions from 

both the cation radical and the cation radical dimer. 
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1. Introduction 

1.1 Background 

In situ visible region spectroelectrochemistry [1-4] has traditionally been used for the 

characterisation of the colour states of electrochromic materials [5-9].  However, although a visible 

region spectrum gives an objective measure of colour absorption, it provides little insight into the 

impact on the human eye of the subjective perception of hue, saturation and relative luminance.  

Colour scientists have developed several methods of quantifying such concepts [10-12], and 

commercial colorimeters are available for the quantification of colour stimulus through the 

measurement of chromaticity coordinates.  Colour appearance will depend on many factors 

including the observer’s state of adaption, the absolute luminance levels involved, and the 

surrounding colours.  The specification of the light source is also essential when quantifying colour, 

as the colour stimulus only exists when a light source is attenuated by transmitting or reflecting 

materials. 

For application in the field of electrochromism, a simple in situ colorimetry method has 

been developed [13] for the precise control and measurement of colour in electrochromic materials 

and display devices.  A major advantage of this method is that colour stimulus changes may be 

tracked during colour switching, with the electrochromic material under electrochemical control.  

Although often used for characterisation in addition to in situ spectroelectrochemistry, colorimetry 

provides a more precise way to define colour than the measurement of visible region absorbance 
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spectra [11].   Rather than record absorption bands, in colorimetry, the human eye’s sensitivity to 

light across the visible region is measured and a numerical description of colour is given.  For 

electrochromic colour changes, unlike with spectroelectrochemistry, colorimetric measurements 

allow spectral changes over the entire visible region to be plotted as a single colour trajectory on a 

single graph.  In situ colorimetry, using a simple portable colorimeter, has been successfully applied 

to the colour measurement of numerous electrochromic conjugated polymer films [13-32], the 

intervalence charge-transfer complex Prussian blue [33], and the n-heptyl viologen system [34]. 

For colour measurements to date, the electrochromic materials community has relied on the 

use of dedicated tristimulus colorimeters [13-34].  We here describe the development of a user-

friendly Microsoft® Excel® spreadsheet, absorbance-wavelength data from visible region spectra 

being taken as input, with chromaticity coordinates generated as output.  For verification, colour 

measurement example calculation results are presented for standard dye solutions, followed by a 

study of the electrochromism of two viologen systems.  For practitioners without colour science 

expertise, a brief introduction to the operating principles of a commercial colorimeter is first 

provided. 

1.2 Operating principle of a commercial colorimeter 

The Minolta CS-100 is “a lightweight, compact meter for taking non-contact measurements 

of light sources or reflective surfaces” [35] and provides a good example of a commercial 

colorimeter.  Fig. 1 shows a schematic diagram of its internal components.  For transmission 

measurements, light having a known spectral power distribution is directed through a sample and 

then enters the colorimeter via the protective filter.  (Although not studied here, reflected light can 

also be measured.)  The light is chopped and then focused by the objective lens onto the optical 

fibres, and then split into three channels by the optical fibre cable.  The intensity of light in each 

channel is then modified by a bandpass filter, which imitates the spectral response of the human 

eye.  The shapes of the filter functions are specified by the CIE (Commission Internationale de 
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l'Eclairage) 1931 2° Standard Observer, where the 2° refers to the size (in degrees of visual angle) 

of the split-colour target used in the experiments that were used to derive the colour matching 

functions, as labelled (a)

 

x , (b)

 

y  and (c)

 

z  in Fig. 2 [12].  The human eye’s cones’ spectral 

responses are known as l, m, s (long, medium and short) and are linear combinations of the colour 

matching functions.  Each channel of filtered light is then integrated by a silicon photocell to give a 

single value current output.  The currents are then converted to proportional voltages by analogue-

to-digital converters.  Finally, the data are transformed by the microcomputer to values of 

luminance Y, and chromaticity coordinates x and y [35].  Roughly speaking x measures the red-to-

blue ratio of the signal, and y measures the green-to-blue ratio. 

It is clear from the above discussion that commercial colorimeters implement the 

measurement of tristimulus values in hardware.  The same result can be obtained in software, the 

output of a visible region spectrophotometer being used as input into a suitable computer 

spreadsheet.  In the present work, such a spreadsheet based on Microsoft® Excel® has been 

developed and applied to colour measurements for commercially available dyes and two viologen 

electrochromic materials.  In situ colorimetry of the methyl viologen system is presented for the 

first time, with study of the n-heptyl viologen system allowing comparison of data with that we 

earlier obtained using a commercial colorimeter [34]. 

2. Theory 

The calculation method and theory below, is a review of firmly established CIE principles, 

and is presented for the benefit of those electrochromic materials scientists who may not have a 

background in colour science.  Emphasis is given to the data input and processing required of the 

computer spreadsheet. 

In order to generate chromaticity coordinates from the output of a visible region 

spectrophotometer, a computer spreadsheet must contain numerical data describing the chromatic 

responses of the three types of cone in the human eye.  These colour matching functions can be 
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thought of as the software equivalents of the detectors that yield the CIE tristimulus values X, Y, and 

Z.  The full set of numerical values of these functions constitutes the CIE Standard Observer.  

The mathematical relationships between the tristimulus values X, Y and Z and the colour 

matching functions

 

x ,  y  and 

 

z  (for a CIE 1931 2° Standard Observer) are given by equations (1) to 

(3). 

 

 

X = I(λ) x 
300

780∫ (λ)dλ  (1) 

 

 

Y = I(λ) y 
300

780∫ (λ)dλ  (2) 

 

 

Z = I(λ) z 
300

780∫ (λ)dλ  (3) 

I(λ) is the normalised spectral power distribution, and λ is the wavelength.  

The CIE recommends (12) that the integration can be carried out by discrete numerical 

summation, and such computation is straightforward when using a computer spreadsheet: 

 

 

X = I
λ
∑ (λ) x (λ) ∆λ  (4) 

 

 

Y = I
λ
∑ (λ) y (λ) ∆λ  (5) 

 

 

Z = I
λ
∑ (λ) z (λ) ∆λ  (6) 

The normalised spectral power distribution of the sample I(λ) is related to the un-normalised 

spectral power distribution of the sample ø(λ) by the equation 

 

 

I(λ) = k φ(λ)  (7) 

where the normalising constant k is 

 

 

k =1/ φ(λ) ∆λ
λ
∑  (8) 

(Note however, it is not essential to normalise the spectrum at this stage through use of equations 

(7) and (8).  Because the computations are linear, the XYZ values could be normalised later.) 
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The definition of the spectral power distribution ø(λ) depends upon whether the analysed light is 

viewed by reflection or transmission.  If viewed by reflection then 

 

 

φR (λ) = ρ(λ)S(λ)  (9) 

and if viewed by transmission then 

 

 

φT (λ) = τ (λ)S(λ) (10) 

In the above equations, ρ(λ) is the ideal spectral reflectance, τ(λ) is the ideal spectral transmittance, 

and S(λ) is the spectral power distribution of the light source, which must be specified  If S(λ) = 1, 

the light source is also ideal i.e., the light source has the same output at all wavelengths.  Although 

chromaticity coordinates can be calculated from reflectance measurements, the dyes in solution and 

electrochromic materials investigated here are measured in transmission, therefore, all following 

calculations will involve and refer to transmission (Equation (10)).   

One can take an experimental transmittance (or reflectance) measurement, and with 

knowledge of the spectral power distribution of the light source, compute the tristimulus values X, Y 

and Z of the colour.  In order for colour representation in 2-D space, the tristimulus values can be 

converted to chromaticity coordinates (x, y, z) by the following equations 

 

 

x =
X

X +Y + Z
 (11) 

 

 

y =
Y

X +Y + Z
 (12) 

 

 

z =
Z

X +Y + Z
=1− x − y  (13) 

Finally, the luminance factor YL is defined as the ratio of the luminance of the transmitter (Y) 

to that of a perfect transmitter (Y0) under the same conditions. 

 

 

YL =
Y
Y0

 (14) 
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A flow chart may be used to describe the processing of data through a particular computer 

program/spreadsheet, showing the exact sequence of operations performed by that program in order 

to process the data.  In the present work the spreadsheet flow chart in Fig. 3 corresponds to the logic 

of the Microsoft® Excel® spreadsheet. 

3. Experimental 

Electrochemical experiments were performed used an ECO Chemie Autolab PGSTAT 20 

potentiostat, with visible region spectra in transmission mode recorded using a Hewlett Packard 

8452A diode array spectrophotometer, with a 1 cm pathlength cuvette.  In the computation of CIE 

1931 chromaticity coordinates, the spectral power distribution of the D55 light source is used for all 

cases except the additional data shown in Fig. 8, where the effect of using other light sources is 

demonstrated.  All chemicals (Sigma-Aldrich) were used without further purification.  Working 

electrodes were either Bio Analytical Systems Inc. glassy carbon disks (A = 0.0707 cm2), or Delta 

Technologies Ltd. tin-doped indium oxide (ITO) on Corning® 1737 aluminosilicate glass (CB-

50IN-CUV, A = 3.5 cm2 (7 × 50 × 0.7 mm), Rs = 5-15 Ω �-1).  The counter electrode was platinum 

gauze and the reference electrode was Ag/AgCl (3.0 mol dm−3 NaCl).  

4. Results and discussion 

4.1. Measurements on standard dye solutions 

4.1.1 Assessment of reproducibility 

To assess the reproducibility of the quantified colour stimulus through the calculation of  

chromaticity coordinates, five samples each of Erythrosin B (a red dye), Acid Green 25, and 

Remazol Brilliant Blue R were dissolved in water (1 mmol dm−3) and tested independently.  The 

dye structures are shown in Fig. 4.  The calculated chromaticity coordinates, shown in Tables 1-3, 
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demonstrate that the data are reproducible to three significant figures.  Repeated spectral 

measurements were likewise reproducible. 

4.1.2 Effects of dilution 

A series of experiments was next performed to determine the effects of dilution on both the 

visible region spectra and chromaticity coordinates of the dyes.  For the results shown in Figs. 5-7, 

in each case the visible region absorption spectrum is shown on the left and the location of the dye 

on the CIE 1931 colour space chromaticity diagram is shown on the right.  As expected, the colour 

trajectory is from near-monochromatic colour at high concentrations to near colourless at low 

concentrations.  The absorbance spectra for the 1.0 mmol dm−3 solutions exceed the limits of the 

spectrophotometer’s accurate detection ability.  However, this does not affect the chromaticity 

coordinate data as absorbance measurements are converted to transmittance before calculation.  

Increasing values in absorbance are decreasing in transmittance, which asymptote towards zero. 

4.1.3 Effect of different light sources 

The effect of a change in the light source on the quantification of the colour stimulus 

through the measurement of chromaticity coordinates can be demonstrated by choice of the 

appropriate spectral power distribution data.  This is shown for 1 mmol dm−3 Erythrosin B in Fig. 8.  

(The cross hair shows the (achromatic) white spot, or point of equal energy, where x = y = z = ⅓, 

which does not change.  Note, however, the chromaticity coordinates for the colour white 

(transparent) do depend on the illuminant source and will vary [36]).  Due to the near-coincidence 

of the data, the plot is shown enlarged on the right hand side, which clearly shows that the dye 

solution will exhibit slight differences in colour stimulus under different light sources.  The effect 

would be greatly magnified in chromaticity if the dye absorbs less, the colour being closer to white. 

4.2. Quantifying electrochromic colour changes 

Calculations using the spreadsheet were next used to quantify the colour changes that occur 

during redox cycling of electrochromic materials, with methyl viologen dichloride (MV), and n-
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heptyl viologen dibromide (HV), as test compounds.  Methyl viologen is a well-known type I 

electrochromic material, soluble in aqueous solution in both redox states (MV2+ dication and MV+● 

cation radical).  By contrast, n-heptyl viologen is a well-known type II electrochromic material, the 

soluble HV2+ dication being deposited as the HV+● cation radical salt, following reduction. 

Absorbance spectra for the methyl viologen system at various different electrode potentials 

are shown in Fig. 9.  The UV-visible region absorbance increases as the methyl viologen dication is 

reduced to the cation radical.  At the relatively fast scan rates (100 mV s−1) used here, re-oxidation, 

with absorbance decrease, then takes place before dications can diffuse away from the electrode 

surface.  The voltammogram of this process is shown in Fig. 10, together with an integration of the 

voltammogram and the calculated relative luminance.  The cation radical, which is blue, is known 

to dimerise to a red form, the generated dark purple colour, a mixture of the two forms, causing the 

luminance to sharply decrease [37].  The hysteresis is related to the solubility of both redox species.  

Colour trajectories of the electrochromic reactions in CIE 1931 colour space are shown in Fig. 11, 

where the parameters x and y represent the red-to-blue ratio, and the green-to-blue ratio, 

respectively.  Although the parameters x and y are nearly state functions of each other (i.e., no 

hysteresis), a small amount of hysteresis is in fact visible when the scales are enlarged.  This 

suggests that more than one colour generating process is taking place during the cyclic voltammetry 

and it seems likely that this relates to the cation radical dimerisation process.  Supporting evidence 

in favour of this hypothesis is provided by Fig. 9, which shows that, during the reduction process, 

the sharp peak at circa 400 nm due to the monomer is smaller than the broad peak at circa 360 nm 

due to the dimer, whereas during the oxidation process the situation is reversed [37]. 

Absorbance spectra for the n-heptyl viologen system at various different electrode potentials 

are shown in Fig. 12.  The UV-visible region absorbance increases as the n-heptyl viologen is 

reduced to the cation radical salt, and then decreases as the cation radical is reoxidised.  The 

voltammogram of this process is shown in Fig. 13, together with an integration of the 

voltammogram and the calculated relative luminance.  As would be expected, the relative 
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luminance decreases sharply as the purple cation radical salt is formed.  Compared with the methyl 

viologen system, the diminished hysteresis is related to the fact that the cation radical of n-heptyl 

viologen is insoluble in aqueous solution.  Once again it was possible to generate colour trajectories 

of the electrochromic reactions in the CIE 1931 colour space, as shown in Fig. 14.  As seen in the 

case of methyl viologen, a small amount of hysteresis is observed between the parameters x and y 

during cyclic voltammetry, possibly related to dimerisation reactions of the cation radical.  The 

trends in the luminance and chromaticity coordinates changes are verified as being comparable to 

our earlier in situ colorimetric studies [34] of the n-heptyl viologen system using the Minolta CS-

100 colorimeter, with the slight differences being attributed to the illuminant source used and the 

method of electrochemical potential control.  Earlier, a D50 standard illuminant constant 

temperature daylight simulating light source was used [34], whereas all the data displayed currently 

were calculated using the spectral power distribution of a D55 illuminant source.  Furthermore, 

rather than use of cyclic voltammetry, measurements had been made at a sequence of applied 

potential steps, with chromaticity coordinates being measured after the current had decayed to 

background levels, following the application of each applied potential [34]. Further verification of 

the accuracy of the spreadsheet calculations was provided by use of spectral data recorded for our 

earlier Prussian blue colorimetry research [33], where for the same sample, we had simultaneously 

recorded spectra with a scanning spectrophotometer and taken measurements with a Minolta CS-

100 colorimeter.  Chromaticity coordinates now calculated from the spectral data (from figure 2 of 

[33]) are in good agreement with those first measured using the colorimeter. 

Conclusion 

The quantification of colour during electrochromic reactions is a very desirable goal.  The 

present work has succeeded in developing, and implementing, a simple spreadsheet for the 

calculation of precise values of luminance and chromaticity coordinates from real-time visible 

region absorption spectra.  The method is based on the integration of experimental spectral power 
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distributions derived from visible region spectra over the CIE 1931 colour-matching functions.  The 

electrochromic materials community will be able to adopt this approach for colour measurement, 

without the need for dedicated tristimulus colorimeters.  Proof-of-concept experiments, using the 

methyl viologen and n-heptyl viologen systems showed that subtle changes in both hue and 

luminance could be detected in an informative and intuitive way, with colour trajectories providing 

clear indications of multiple coloured species in even the simplest systems. 

References 

[1] W.R. Heineman, W.B. Jensen, Spectroelectrochemistry using transparent electrodes – an 

anecdotal history of the early years, in:  J.T. Stock, M.V. Orna (Eds.), Electrochemistry, Past 

and Present, American Chemical Society, Washington, DC, 1989, ACS Symposium Series, 

Volume 390, pp. 442-457. 

[2] J. Niu, S. Dong, Transmission spectroelectrochemistry, Rev. Anal. Chem. 15 (1996) 1-171. 

[3] R.J. Mortimer, Electronic Spectroscopy:  Spectroelectrochemistry, Applications, in: J.C. 

Lindon, G.E. Tranter, J.L. Holmes (Eds.), Encyclopedia of Spectroscopy and Spectrometry, 

Academic Press, London, 2000, Volume 3, pp. 2161-2174. 

[4] R.J. Mortimer, Electronic Spectroscopy:  Spectroelectrochemistry, Methods and 

Instrumentation, in: J.C. Lindon, G.E. Tranter, J.L. Holmes (Eds.), Encyclopedia of 

Spectroscopy and Spectrometry, Academic Press, London, 2000, Volume 3, pp. 2174-2181. 

[5] R.J. Mortimer, D.R. Rosseinsky, Iron hexacyanoferrate films:  Spectroelectrochemical 

distinction and electrodeposition sequence of ‘soluble’ (K+-containing) and ‘insoluble’ (K+-

free) Prussian blue and composition changes in polyelectrochromic switching, J. Chem. Soc. 

Dalton Trans. (1984) 2059-2061. 

[6] R.J. Mortimer, Spectroelectrochemistry of electrochromic poly(o-toluidine) and poly(m-

toluidine) films, J. Mater. Chem. 5 (1995) 969-973. 



 

- 12 - 

[7] R.J. Mortimer, J.L. Dillingham, Electrochromic 1,1′-dialkyl-4,4′-bipyridilium-incorporated 

Nafion® electrodes, J. Electrochem. Soc. 144 (1997) 1549-1553. 

[8] A. Kumar, D.M. Welsh, M.C. Morvant, F. Piroux, K.A Abboud, J.R. Reynolds, Conducting 

poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast 

ratios, Chem. Mater. 10 (1998) 896-902. 

[9] X. Hu, Q. Wang, P. He, Y. Fang, Spectroelectrochemistry study on the electrochemical 

reduction of ethidium bromide, Anal. Sci. 18 (2002) 645-650. 

[10] R.G. Kuehni, Color: An Introduction to Practice and Principles, second ed., John Wiley and 

Sons, Inc., Hoboken, New Jersey, 2005. 

[11] G. Wyszecki, W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and 

Formulae, second ed., John Wiley and Sons, New York, 1982. 

[12] CIE Technical Report:  Colorimetry, third ed.; Commission Internationale De l’Eclairage:  

Vienna, Austria, 2004. 

[13] B.C. Thompson, P. Schottland, K.W. Zong, J.R. Reynolds, In situ colorimetric analysis of 

electrochromic polymers and devices, Chem. Mater. 12 (2000) 1563-1571. 

[14] B.C. Thompson, P. Schottland, G. Sönmez, J.R. Reynolds, In situ colorimetric analysis of 

electrochromic polymer films and devices, Synth. Met. 119 (2001) 333-334. 

[15] I. Schwendeman, R. Hickman, G. Sönmez, P. Schottland, K. Zong, D.M. Welsh, J.R. 

Reynolds, Enhanced contrast dual polymer electrochromic devices, Chem. Mater. 14 (2002) 

3118-3122. 

[16] G. Sönmez, I. Schwendeman, P. Schottland, K. Zong, J.R. Reynolds, N-Substituted 

poly(3,4-propylenedioxypyrrole)s: High gap and low redox potential switching electroactive 

and electrochromic polymers, Macromolecules 36 (2003) 639-647. 

[17] A. Cirpan, A.A. Argun, C.R.G. Grenier, B.D. Reeves, J.R. Reynolds, Electrochromic 

devices based on soluble and processable dioxythiophene polymers, J. Mater. Chem. 13 

(2003) 2422-2428. 



 

- 13 - 

[18] B.D. Reeves, C.R.G. Grenier, A.A. Argun, A. Cirpan, T.D. McCarley, J.R. Reynolds, Spray 

coatable electrochromic dioxythiophene polymers with high coloration efficiencies, 

Macromolecules 37 (2004) 7559-7569. 

[19] G. Sönmez, H. Meng, F Wudl, Organic polymeric electrochromic devices: Polychromism 

with very high coloration efficiency, Chem. Mater. 16 (2004) 574-580. 

[20] G. Sönmez, C.K.F. Shen, Y. Rubin, F. Wudl, A red, green, and blue (RGB) polymeric 

electrochromic device (PECD): The dawning of the PECD era, Angew. Chem., Int. Ed. 43 

(2004) 1498-1502. 

[21] C.A. Thomas, K. Zong, K.A. Abboud, P.J. Steel, J.R. Reynolds, Donor-mediated band gap 

reduction in a homologous series of conjugated polymers, J. Am. Chem. Soc. 126 (2004) 

16440-16450. 

[22] L. Sacan, A. Cirpan, P. Camurlu, L. Toppare, Conducting polymers of succinic acid bis-(2-

thiophen-3-yl-ethyl)ester and their electrochromic properties, Synth. Met. 156 (2006) 190-

195. 

[23] S.C. Nunes, V. de Zea Bermudez, M.M. Silva, M.J. Smith, D. Ostrovskii, R.A. Sá Ferreira, 

L.D. Carlos, J. Rocha, A. Gonçalves, E. Fortunato, Sol-gel-derived potassium-based di-

ureasils for ‘smart windows’, J. Mater. Chem. 17 (2007) 4239-4248. 

[24] E. Unur, J-H. Jung, R.J. Mortimer, J.R. Reynolds, Dual-polymer electrochromic film 

characterization using bipotentiostatic control, Chem. Mater. 20 (2008) 2328-2334. 

[25] P.M. Beaujuge, S. Ellinger, J.R. Reynolds, Spray processable green to highly transmissive 

electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers, Adv. 

Mater. 20 (2008) 2772-2776.  

[26] P.M. Beaujuge, S. Ellinger, J.R. Reynolds, The donor-acceptor approach allows a black-to-

transmissive switching polymeric electrochrome, Nat. Mater. 7 (2008) 795-799. 



 

- 14 - 

[27] S. Tarkuc, Y. Arslan Udum, L. Toppare, Tuning of the neutral state color of the π-

conjugated donor-acceptor-donor type polymer from blue to green via changing the donor 

state of the polymer, Polymer 50 (2009) 3458-3464. 

[28] H. Seol, H. Jeong, S. Jeon, Optoelectrochemical properties of copolymer of terthiophene 

with 3,4-ethlenedioxypyrrole, J. Electroanal. Chem. 636 (2009) 107-112. 

[29] R.J. Mortimer, K.R. Graham, C.R.G. Grenier, J.R. Reynolds, Influence of the film thickness 

and morphology on the colorimetric properties of spray-coated electrochromic disubstituted 

3,4-propylenedioxythiophene polymers, ACS Appl. Mater. Interfaces 1 (2009) 2269-2276. 

[30] S.V. Vasilyeva, E. Unur, R.M. Walczak, E.P. Donoghue, A.G. Rinzler, J.R. Reynolds, Color 

purity in polymer electrochromic window devices on indium-tin oxide and single-walled 

carbon nanotube electrodes, ACS Appl. Mater. Interfaces 1 (2009) 2288-2297. 

[31]  E. Unur, P.M. Beaujuge, S. Ellinger, J-H. Jung, J.R. Reynolds, Black to transmissive 

switching in a pseudo three-electrode electrochromic device, Chem. Mater. 21 (2009) 5145-

5153. 

[32] C.M. Amb, P.M. Beaujuge, J.R. Reynolds, Spray-processable blue-to-highly transmissive 

switching polymer electrochromes via the donor-acceptor approach, Adv. Mater. 22 (2010) 

724-728. 

[33] R.J. Mortimer, J.R. Reynolds, In situ colorimetric and composite coloration efficiency 

measurements for electrochromic Prussian blue, J. Mater. Chem. 15 (2005) 2226-2233. 

[34] R.J. Mortimer, J.R. Reynolds, An in situ colorimetric measurement study of 

electrochromism in the di-n-heptyl viologen system, Displays 29 (2008) 424-431. 

[35]  Chroma-Meter CS-100. Instruction Manual 

(http://www.konicaminolta.com/sensingusa/support/manuals) 1-42. (accessed on 30 March 

2010). 

[36]  M. Shaw, M. Fairchild, Evaluating the 1931 CIE color-matching functions, Color Res. Appl. 

27 (2002) 316-329. 

http://www.konicaminolta.com/sensingusa/support/manuals


 

- 15 - 

[37]  P.M.S. Monk, The Viologens: Physicochemical Properties, Synthesis and Applications of 

the Salts of 4,4′-Bipyridine. John Wiley and Sons, Chichester, 1998, pp. 115-131. 

Acknowledgements 

We thank Loughborough University and the departmental EPSRC Doctoral Training Grant 

for provision of a research studentship to TSV, and Professor Stephen Fletcher and Dr Sandie E 

Dann for their encouragement and helpful discussions.  The detailed constructive comments of a 

reviewer are gratefully acknowledged. 



 

- 16 - 

Figure captions 

Fig. 1 

Schematic diagram of the Minolta XS-100 colorimeter taken from the Chroma-Meter CS-100 

Instruction Manual. 

Fig. 2  

CIE 1931 2° standard observer colour matching functions, where (a) is 

 

x , (b) is 

 

y  and (c) is 

 

z . The 

data used to create this graph was taken from CIE Technical Report:  Colorimetry, third ed.; 

Commission Internationale De l’Eclairage:  Vienna, Austria, 2004. 

Fig. 3 

A flow chart showing the exact sequence of operations performed in the Microsoft® Excel® 

spreadsheet to transform visible region spectral absorbance data into chromaticity coordinates. 

Fig. 4  

Chemical structures of: (1) Erythrosin B; (2) Acid Green 25; and (3) Remazol Brilliant Blue R. 

Fig. 5 

UV-visible region spectra (1) and CIE 1931 chromaticity coordinates (2), for the red dye Erythrosin 

B in (a) 1000 μmol dm−3, (b) 100 μmol dm−3, (c) 10 μmol dm−3 and (d) 1 μmol dm−3 aqueous 

solutions.  For here and all reported spectra, A, the absorbance is equivalent to optical density and is 

defined as log10(I0/I), where I0 is the incident and I the transmitted light intensity. 

Fig. 6  

UV-visible region spectra (1) and CIE 1931 chromaticity coordinates (2), for Acid Green 25 in (a) 

1000 μmol dm−3, (b) 100 μmol dm−3, (c) 10 μmol dm−3 and (d) 1 μmol dm−3 (not viewable on this 

scale) aqueous solutions. 

Fig. 7 

UV-visible spectra (1) and CIE 1931 chromaticity coordinates (2), for Remazol Brilliant Blue R in 

(a) 1000 μmol dm−3, (b) 100 μmol dm−3, (c) 10 μmol dm−3 and (d) 1 μmol dm−3 (not viewable on 

this scale) aqueous solutions. 
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Fig. 8 

CIE 1931 chromaticity coordinates (1) and a zoomed in view (2) for a 1000 μmol dm−3 Erythrosin 

B aqueous solution.  The different spectral power distributions used were for the light sources (a) 

standard illuminant A, (b) standard illuminant D65, (c) illuminant C, (d) illuminant D50, (e) 

illuminant D55, (f) fluorescent lamp 1 (F1) and (g) high pressure discharge lamps (HP1). 

Fig. 9 

UV-visible region absorbance spectra, recorded every 1 s, at an ITO-glass working electrode in a 2 

mmol dm−3 methyl viologen dichloride/1.0 mol dm−3 potassium chloride aqueous solution.  In 

tandem, the electrode potential was cycled from 0.0 V → −0.8 V → 0.0 V, at 100 mV s−1.  The 

arrows indicate the direction of change in absorbance, starting at 0.0 V. 

Fig. 10 

(1) Cyclic voltammogram, (2) integrated voltammogram (with the contribution of O2 omitted) and 

(3) calculated relative luminance vs. potential, for reduction/oxidation of 2 mmol dm−3 methyl 

viologen dichloride in a 1.0 mol dm−3 potassium chloride aqueous solution.  A glassy carbon 

working electrode was used when recording the voltammogram.  Luminance data were calculated 

from data using an ITO-glass working electrode.  The corresponding numerical data are shown in 

Table 4.  The arrows indicate the direction of the potential scan, starting from 0.0 V. 

Fig. 11 

Colour trajectories of electrochromic reactions in the CIE 1931 colour space.  (1) Reduction and re-

oxidation of methyl viologen dication.  (2) Magnified view of the same data.  Note the slight 

hysteresis possibly related to variations in the monomer/dimer ratio of the methyl viologen radical 

cation.  The corresponding numerical data are shown in Table 4. 

Fig. 12 

UV-visible region absorbance spectra, recorded every 1 s, at an ITO-glass working electrode in a 2 

mmol dm−3 n-heptyl viologen dibromide/1.0 mol dm−3 potassium bromide aqueous solution.  In 
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tandem, the electrode potential was cycled from 0.0 V → −0.7 V → 0.0 V, at 100 mV s−1.  The 

arrows indicate the direction of change in absorbance, starting at 0.0 V. 

Fig. 13 

(1) Cyclic voltammogram, (2) integrated voltammogram (with the contribution of O2 omitted) and 

(3) calculated relative luminance vs. potential, for reduction/oxidation of 2 mmol dm−3 n-heptyl 

viologen dibromide in an aqueous solution containing potassium bromide (1.0 mol dm−3).  A glassy 

carbon working electrode was used when recording the voltammogram.  Luminance data were 

calculated from data using an ITO-glass working electrode.  The corresponding numerical data are 

shown in Table 5.  The arrows indicate the direction of the potential scan, starting from 0.0 V. 

Fig. 14 

Colour trajectories of electrochromic reactions in the CIE 1931 colour space.  (1) Reduction and re-

oxidation of n-heptyl viologen dication.  (2) Magnified view of the same data.  Note the small 

hysteresis possibly related to variations in the monomer/dimer ratio of the n-heptyl viologen radical 

cation.  The corresponding numerical data are shown in Table 5. 
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Fig.1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Table 1 

xy chromaticity coordinates for 1 mmol dm−3 aqueous solutions of the red dye Erythrosin B.  UV-

visible region spectra were recorded in absorbance mode for 300-780 nm.  These data were then 

converted into chromaticity coordinates CIE 1931 using the spreadsheet. 

Sample No. x y 

1 0.607 0.365 

2 0.608 0.365 

3 0.608 0.365 

4 0.608 0.365 

5 0.608 0.365 
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Table 2 

xy chromaticity coordinates for 1 mmol dm−3 solutions of Acid Green 25.  UV-visible spectra were 

recorded in absorbance mode for 300-780 nm.  These data were then converted into CIE 1931 

chromaticity coordinates using the spreadsheet. 

Sample No. x y 

1 0.086 0.298 

2 0.086 0.298 

3 0.086 0.298 

4 0.085 0.298 

5 0.086 0.298 
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Table 3 

xy chromaticity coordinates for 1 mmol dm−3 solutions of Remazol Brilliant Blue R.  UV-visible 

region spectra were recorded in absorbance mode for 300-780 nm.  This data were then converted 

into CIE 1931 chromaticity coordinates using the spreadsheet. 

Sample No. x y 

1 0.153 0.045 

2 0.153 0.045 

3 0.153 0.045 

4 0.153 0.045 

5 0.153 0.045 
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Table 4 

Numerical chromaticity coordinates for the electrochemical reduction and re-oxidation of 2 mmol 

dm−3 methyl viologen dication, at an ITO-glass working electrode, in an aqueous solution 

containing 1.0 mol dm−3 potassium chloride.  Data were obtained using the spreadsheet developed 

in the present work using calculated using the spectral power distribution of a D55 illuminant source. 

E (V) vs Ag/AgCl x y %YL 

0.0 0.334 0.348 100.00 

−0.1 0.333 0.347 99.45 

−0.2 0.333 0.347 99.17 

−0.3 0.333 0.347 99.31 

−0.4 0.333 0.347 99.35 

−0.5 0.332 0.347 99.14 

−0.6 0.328 0.340 91.43 

−0.7 0.322 0.326 78.13 

−0.8 0.319 0.318 71.94 

−0.7 0.316 0.313 67.87 

−0.6 0.316 0.317 70.88 

−0.5 0.321 0.332 83.37 

−0.4 0.326 0.340 90.81 

−0.3 0.329 0.344 95.70 

−0.2 0.332 0.348 98.52 

−0.1 0.332 0.348 99.38 

0.0 0.333 0.348 99.45 
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Table 5 

Numerical chromaticity coordinates for the electrochemical reduction and re-oxidation of 2 mmol 

dm−3 n-heptyl viologen dication, at an ITO-glass working electrode, in an aqueous solution 

containing 1.0 mol dm−3 potassium bromide.  Data were obtained using the spreadsheet developed 

in the present work using calculated using the spectral power distribution of a D55 illuminant source. 

E (V) vs Ag/AgCl x y %YL 

0.0 0.346 0.359 100.00 

−0.1 0.332 0.347 99.97 

−0.2 0.332 0.347 99.41 

−0.3 0.332 0.347 99.41 

−0.4 0.332 0.347 99.45 

−0.5 0.332 0.347 99.07 

−0.6 0.332 0.347 83.10 

−0.7 0.333 0.328 64.21 

−0.6 0.331 0.300 57.81 

−0.5 0.330 0.289 75.19 

−0.4 0.330 0.318 99.35 

−0.3 0.332 0.347 99.41 

−0.2 0.332 0.347 99.41 

−0.1 0.332 0.347 99.72 

0.0 0.332 0.347 99.97 
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