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Abstract

The problem of two-dimensional acoustic scattering of an incident plane wave

by a semi-infinite lattice is solved. The problem is first considered for sound-

soft cylinders whose size is small compared to the wavelength of the incident

field. In this case the formulation leads to a scalar Wiener–Hopf equation, and

this in turn is solved via the discrete Wiener–Hopf technique. We then deal

with a more complex case which arises either by imposing Neumann boundary

condition on the cylinders’ surface or by increasing their radii. This gives rise to

a matrix Wiener–Hopf equation, and we present a method of solution that does

not require the explicit factorisation of the kernel. In both situations, a complete

description of the far field is given and a conservation of energy condition is

obtained. For certain sets of parameters (‘pass bands’), a portion of the incident

energy propagates through the lattice in the form of a Bloch wave. For other

parameters (‘stop bands’ or ‘band gaps’), no such transmission is possible, and

all of the incident field energy is reflected away from the lattice.
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Introduction

When a propagating wave encounters an obstacle in its path a scattered field is

produced. The problem of determining the scattered field, given the parameters

that describe the obstacle(s) and the incident field, is known as a ‘direct scattering

problem’. Research on this subject is of considerable interest in many physical

contexts, including acoustics, electromagnetism and hydrodynamics. Cases

where a periodic array of bodies plays the role of the scattering structure are

of particular interest in developing the theoretical framework needed to model

metamaterials [18], large offshore structures [28], and antenna arrays [9, 51].

In mathematical terms, the problem of two-dimensional acoustic wave scat-

tering by arrays of cylinders, using linear theory under time-harmonic con-

ditions, is reduced to a boundary value problem governed by the Helmholtz

equation. A variety of techniques have been developed over the years for its

solution [34, 37], with the multipole expansion method being the most suitable

mainly due to the ease of applying the boundary condition on the surface of

the cylinders. It was devised by Záviška [66] in 1913 and has been used widely

ever since in different physical and geometrical settings (see [37, §4.2.1]). A

multipole expansion is essentially a linear combination of separable solutions

of the Helmholtz equation. The field scattered by each cylinder is expressed in

terms of a multipole expansion, and an appropriate addition theorem is used

to reduce the initial boundary value problem into a rapidly convergent infinite

system of algebraic equations. This is an effective approach to tackle a scatter-

ing problem by an array with a small number of cylinders, but as this number

increases so does the computational cost, thus making the solution impractical.
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2

Wave scattering by a long one-dimensional array of cylinders can be studied

by decomposing it into a set of canonical problems formulated on infinite and

semi-infinite arrays [53]. An infinite row of cylinders, or a grating, presents

a geometrical periodicity that can be exploited to simplify the analysis. In

scattering theory this is a subject of considerable importance that has resulted in

a large number of scientific publications [62]. On the other hand the semi-infinite

grating problem presents a more challenging proposition. On this subject, the

pioneering work by Hills & Karp [16] and the modern approach by Linton &

Martin [33] are of most relevance here. The Wiener–Hopf technique is used

in these articles, and the advantages of employing this analytical approach are

highlighted.

The scattering effect of two-dimensional arrays and in particular those con-

sisting of multiple parallel rows, has been consider in several articles, notably

[4], [28], and [33]. In contrast, the case of the semi-infinite lattice has received far

less attention. A brief consideration in the water-wave context is given in [27].

Also, the overall structure of the field generated when a plane electromagnetic

wave strikes the edge of a photonic crystal discussed in [18, pp. 221–225], but no

actual calculations are given. The purpose of this thesis is to begin filling in this

gap by studying acoustic wave scattering by a semi-infinite lattice of cylinders.

The structure of the thesis is as follows. In the first chapter we introduce the

mathematical framework that will be required in subsequent chapters. Chapter

2 contains a review of the discrete Wiener–Hopf technique, which is the ana-

lytical tool employed to solve the problem under consideration. The last two

chapters present the solution of the problem, first for small sound-soft cylinders

(chapter 3) and then for the general case (chapter 4). A detailed analysis of

the scattered field is given, and a conservation of energy condition is obtained.

Some concluding remarks follow in the last chapter. Finally, two appendices

are included, containing various definitions and formulae that will be useful

throughout.



Chapter 1

Acoustic scattering by cylinders

In this chapter, we present the mathematical theory that underlies acoustic

scattering by cylinders in two dimensions, and a method of solution based on

separation of variables.

1.1 The Helmholtz equation

In physics, the wave equation governs the propagation of acoustic waves

through a homogeneous, compressible fluid. The form of the equation is:

∇2U(r, t) =
1

c2

∂2U(r, t)

∂t2
, (1.1.1)

where ∇2 is the Laplacian, c is the speed of sound and U is the acoustic pressure

(or the velocity potential), which depends on the spatial position r and the time

t. We shall limit ourselves to time harmonic motion with angular frequency ω,

in which case the acoustic pressure is given by

U(r, t) = Re[u(r)e−iωt]. (1.1.2)

In view of (1.1.1) and (1.1.2), the complex-valued function u must satisfy the

Helmholtz equation

(∇2 + k2)u(r) = 0, (1.1.3)

where k = ω/c is the wavenumber.

3
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Figure 1.1: Schematic diagram showing the cylinder and the notation in use

To illustrate the mathematical framework used in describing these physi-

cal phenomena, we begin by considering a relatively simple case, namely the

scattering of a plane wave by a single cylinder.

1.2 Scattering by a single cylinder

Consider a cylinder of radius ℓ. We choose a two dimensional Cartesian coor-

dinate system (x, y), the origin of which coincides with the cylinder’s centre. In

polar coordinates the position vector is given by r = (r cosθ, r sinθ). Here we

have introduced the convention that |v| = v for any vector v, which will be used

throughout. Let the plane wave

uinc(r) = eik·r, (1.2.1)

be incident upon the cylinder at an angle ψ0 with respect to the x-axis, so that

the wavenumber vector k is given by

k = (k cosψ0, k sinψ0). (1.2.2)

Note that the incident field (1.2.1) satisfies the Helmholtz equation (1.1.3) and it

is the only field that would exist if there was no cylinder present.

The interaction of the incident wave with the cylinder, will produce a scat-

tered response usc(r) and it is this field that we seek to determine. We can then
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construct the total field u(r), by linear superposition; that is

u(r) = uinc(r) + usc(r). (1.2.3)

1.2.1 Boundary conditions

We will express the boundary condition in terms of polar coordinates, because

the cylinder’s boundary coincides with the circle r = ℓ. The three most common

conditions are

• Dirichlet condition (sound-soft cylinder),

u(ℓ, θ) = 0, 0 6 θ < 2π. (1.2.4)

• Neumann condition (sound-hard cylinder),

∂u(r, θ)

∂r

∣∣∣∣∣
r=ℓ

= 0, 0 6 θ < 2π. (1.2.5)

• Robin condition,

f (θ)u(ℓ, θ) +
∂u(r, θ)

∂r

∣∣∣∣∣
r=ℓ

= 0, 0 6 θ < 2π. (1.2.6)

Note that f (θ) may be a constant.

1.2.2 The radiation condition

In order to completely state a scattering problem in an unbounded domain, we

must impose a constraint on the behaviour of the field as r→∞. This is known

as the Sommerfeld radiation condition, and in two dimensions it is given by

lim
r→∞

r1/2
(
∂usc(r, θ)

∂r
− ikusc(r, θ)

)
= 0, (1.2.7)

converging uniformly in θ. The physical interpretation of (1.2.7) is that the

scattered field behaves like an outgoing wave in the far field. In other words,

the radiation condition in scattering problems ensures that the scattered wave

propagates away from the obstacle (in our case the cylinder).
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The Helmholtz equation, subject to appropriate boundary and radiation con-

ditions defines a well-posed boundary value problem, and therefore uniqueness

theorems can be proved in some cases. For the case of scattering by one cylinder,

a proof can be found in [10]. In the trivial situation where we have no incident

wave propagating, the unique solution is u(r) = 0.

1.2.3 Solution based on separation of variables

The method of separation of variables is one of the oldest [11] and most impor-

tant for finding explicit solutions of the Helmholtz and related partial differential

equations. It is widely used because of its simplicity and numerical effective-

ness. The Helmholtz equation (1.1.3) separates in polar coordinates, which is

ideal in our case, since the boundary of the cylinder coincides with a coordinate

line. It is an easy mater to check that the separated solutions are

u(r, θ) = Jq(kr)eiqθ and u(r, θ) = Yq(kr)eiqθ, q ∈ Z, (1.2.8)

where Jq(·), Yq(·) are Bessel functions of the first and second kind, respectively

(see appendix A.2). Alternatively, we can write the solutions in terms of the

cylindrical wavefunctions

Jq(r) = Jq(kr)eiqθ and Hq(r) = Hq(kr)eiqθ, q ∈ Z, (1.2.9)

where Hq(·) ≡ H(1)
q (·) = Jq(·) + iYq(·) is the Hankel function of the first kind. We

callJq(r) a regular wavefunction, since it is free of singularities and we callHq(r)

an outgoing wavefunction because it behaves like an outgoing wave at infinity,

i.e. it satisfies the radiation condition (1.2.7) (see (A.2.11)). The functions Hq(r)

are also known as multipoles and all of them have a singularity at r = 0.

With the above notation, the boundary value problem in hand can be tackled

by expressing the scattered field in terms of a multipole expansion series

usc(r) =

∞∑

q=−∞
AqHq(r). (1.2.10)
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This series satisfies the Helmholtz equation (1.1.3) and the radiation condition

(1.2.7), as long as it converges. The unknown amplitude coefficients Aq can be

determined by applying the boundary condition on the cylinder’s surface. To

proceed in this direction, we use the generating function of the Bessel functions

(see [60, §2.1] or [26, §5.2-5.3])

exp
[

z

2

(
t − 1

t

)]
=

∞∑

n=−∞
Jn(z)tn, (1.2.11)

with the substitution z = kr and t = iei(θ−ψ0) to obtain the Jacobi expansion

eikr cos(θ−ψ0) =

∞∑

n=−∞
ein(π/2+θ−ψ0)Jn(kr). (1.2.12)

Equation (1.2.12) shows that any plane wave can be expanded in terms of regular

wavefunctions. Thus, the total field in polar coordinates can be written

u(r) =

∞∑

q=−∞

(
AqHq(kr) + eiq(π/2−ψ0)Jq(kr)

)
eiqθ. (1.2.13)

Now, we can apply the boundary condition on the cylinder’s surface and make

use of the orthogonality of the trigonometric functions eiqθ, to obtain

Aq = −eiq(π/2−ψ0)Zq, q ∈ Z, (1.2.14)

where

Zq =



Jq(kℓ)/Hq(kℓ), for Dirichlet boundary conditions,

J′q(kℓ)/H
′
q(kℓ), for Neumann boundary conditions.

(1.2.15)

Hence, the scattered field is given by

usc(r) = −
∞∑

q=−∞
eiq(π/2−ψ0)ZqHq(r). (1.2.16)

We see that the method of multipole expansion, based on separation of variables,

leads to an exact solution (1.2.16). Our ultimate goal is to extend this method

to account for more complicated cases where the incident wave interacts with

semi-infinite lattices of cylinders.
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1.2.4 Low frequency approximations

Consider a sound-soft cylinder, the radius of which is small compared to the

wavelength of the incident field, that is

0 < kℓ ≪ 1. (1.2.17)

In this case the leading order contribution to the scattered field comes from the

term with q = 0 in (1.2.10) 1; that is

usc(r) ∼ A0H0(kr), as kℓ→ 0. (1.2.18)

Note that there is no dependence on θ here, meaning that sound-soft cylinders

scatter waves isotropically in the low frequency limit. Also note that (1.2.18) is

a constant multiple of the free-space Green’s function for the two dimensional

Helmholtz equation. See [37, §8.3]

For sound-hard cylinders, at low frequency additional terms are required;

it turns out that the scattered field can be approximated by (see [37, §8.2.6 and

8.3.3])

usc(r) ∼
1∑

q=−1

AqHq(r), as kℓ→ 0. (1.2.19)

These approximations are justified rigorously by the work of Kleinmann and

Vainberg [21]. In their paper, one can find low-frequency asymptotic expansions

of solutions of a large class of boundary value problems involving second-order

elliptic equations in two dimensions. For the special case of scattering by a small

sound-soft cylinder, Kleinmann–Vainberg theory gives (see [37, §8.2.3-8.2.5])

usc(r) ≈ f0uinc(0)H0(kr), (1.2.20)

where

f0 = −
(
1 +

2i

π

(
c + ln(kℓ) − ln 2

))−1

, (1.2.21)

in which c = 0.55721... is Euler’s constant (see [2, eq. 6.1.3]). Note that f0 is an

approximation of −Z0 = −J0(kℓ)/H0(kℓ), with an error of order (kℓ)2; see (A.2.9).

1Note that for q , 0, Zq → 0 as kℓ → 0; see (A.2.10). Hence, for q , 0, Aq → 0 as kℓ→ 0.
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Figure 1.2: Geometry for Graf’s addition theorem

1.3 Multiple Scattering

We can extend the mathematical theory described so far to account for multiple

scattering, where the incident wave interacts with two or more cylinders. The

method we use to solve these problems is based on multipole expansions and

Graf’s addition theorem.

1.3.1 Graf’s addition theorem

Consider two origins O j, j = 1, 2, and let rj be the position vector of a given point

P with respect to O j. If b is the position vector of O1 with respect to O2, then

Hq(kr2)eiqθ2 =

∞∑

n=−∞
Hq−n(kb)ei(q−n)β Jn(kr1)einθ1 for r1 < b, (1.3.1)

and

Hq(kr2)eiqθ2 =

∞∑

n=−∞
Jq−n(kb)ei(q−n)βHn(kr1)einθ1 for r1 > b, (1.3.2)

where θ1, θ2 and β are the angles of r1, r2 and b with the x-axis respectively;

see figure 1.2. The formulae (1.3.1) and (1.3.2) are due to Graf and they are

used to transform an outgoing wavefunction about a point O2 in space in terms

of an expansion of wavefunctions about a different point O1. These types of

expansion are commonly described as addition theorems and they are of crucial
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importance in multiple scattering problems. Further discussion on addition

theorems and their proofs can be found in [37, Ch. 2] and [60, Ch. 11].

1.3.2 Scattering by multiple cylinders

We are now ready to tackle the problem of acoustic scattering by N (> 1) cylinders

of radius ℓ. First we introduce a two dimensional Cartesian system (x, y), whose

origin is O and as before the position vector in polar coordinates is given by

r = (r cosθ, r sinθ). Let On, n = 1, 2, . . .N denote the cylinders’ centres and let Pn

be the position vector of the point On; see figure 1.3. A plane wave is incident

upon the structure at an angle ψ0; that is

uinc(r) = eik·r, where k = (k cosψ0, k sinψ0) (1.3.3)

and we seek to determine the scattered field. A good description of the interac-

tion effect is given in [31, p. 551]

‘The effect of a given cylinder on the incident wave will be to produce a

scattered wave which will in turn be scattered by adjacent cylinders and so

on. A description of all the possible interactions that take place is provided

by associating with each cylinder a general wave potential describing waves

radiating away from that cylinder, which, together with the incident wave

potential, describes the total wave field.’

Thus, setting un
sc(r) to be the radiating wave emanating from the nth cylinder, the

total potential can be written

u(r) = uinc(r) +

N∑

n=1

un
sc(r), (1.3.4)

where the sum represents the total scattered field.

In §1.2.3 where we had only one cylinder, the scattered field was written as

a linear combination of multipoles (1.2.10) centred at the origin (the cylinder’s
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Figure 1.3: Schematic diagram showing the nth and mth cylinder and the notation in use.

centre). Similar representations for the fields un
sc can be given, with the expan-

sions centred at On. For this reason we introduce N polar coordinates systems

(rn, θn), n = 1, 2, . . . ,N , each one centred on On. The position vector with respect

to On is rn = r − Pn, and in the associated polar coordinate system, it is given by

rn = (rn cosθn, rn sinθn); see figure 1.3. With this notation we write

un
sc(rn) =

∞∑

q=−∞
A

q
nHq(rn), n = 1, . . . ,N, (1.3.5)

so that these fields satisfy the Helmholtz equation and the radiation condition

(1.2.7).

The unknown amplitude coefficients A
q
n can be determined by applying the

boundary conditions. This can be accomplished by writing the total potential

(1.3.4) solely in terms of the coordinates (rm, θm), for an arbitrary natural number

m 6 N. For the incident wave, we write

uinc(r) = eik·r = eik·(Pm+rm),

and use Jacobi’s expansion (1.2.12) to obtain

uinc(rm) = eik·Pm

∞∑

j=−∞
ei j(π/2−ψ0)J j(rm). (1.3.6)
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For the fields un
sc, n , m, we introduce the vector Rnm = Pm − Pn, which in polar

coordinates with respect to On is given by Rnm = Rnm(cosφnm, sinφnm) (see figure

1.3). Assuming that rm < Rnm, Graf’s addition theorem (1.3.1) can be applied,

and the outcome is

un
sc(rn) =

∞∑

q=−∞
A

q
n

∞∑

j=−∞
Hq− j(kRnm)ei(q− j)φnmJ j(rm), n , m. (1.3.7)

Substitution of (1.3.6), (1.3.7) for n , m, and (1.3.5) for n = m, in (1.3.4) yields

u(rm) =

∞∑

j=−∞

(
eik·Pmei j(π/2−ψ0)J j(rm) + Am

j H j(rm)
)

+

N∑

n=1
n,m

∞∑

q=−∞
A

q
n

∞∑

j=−∞
Hq− j(kRnm)ei(q− j)φnmJ j(rm). (1.3.8)

Now we can apply the boundary conditions (Dirichlet or Neumann) on the

surface of the mth cylinder by writing the wavefunctions in full form and taking

into account the orthogonality of the trigonometric functions ei jθm . This yields

A
p
m + Zp

N∑

n=1
n,m

∞∑

q=−∞
A

q
nHq−p(kRnm)ei(q−p)φnm = −Zpeik·Pmeip(π/2−ψ0),

m = 1, . . . ,N, p = 0,±1, . . .

(1.3.9)

where Zp is defined in (1.2.15).

The infinite system of algebraic equations for the unknown amplitudes A
p
m

(1.3.9), can be solved numerically by truncating the inner sum at |q| = Q for

some nonnegative integer Q. That is, the solution of (1.3.9) is approximated as

the solution of the finite system

A
p
m + Zp

N∑

n=1
n,m

Q∑

q=−Q

A
q
nHq−p(kRnm)ei(q−p)φnm = −Zpeik·Pmeip(π/2−ψ0),

m = 1, . . . ,N, p = 0,±1, . . . ,±Q,

(1.3.10)

and experience shows that this is effective because |Ap
m| → 0 very rapidly as

|p| → ∞ (see figure 1.4).
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Figure 1.4: Plot displaying the decay rate of the amplitudes. The results have been obtained by

solving the system (1.3.10) for Q = 6 and N = 2. For q = −4, . . . , 4, the value |Aq
m| is marked

with a disc for m = 1 and a square for m = 2. The other parameters in use are ℓ = 1, ψ0 = π/4,

and R12 = 4 (spacing).

Systems of the form (1.3.9) arise also in other physical contexts and a solution

based on truncation again leads to accurate results. Row [49] considered elec-

tromagnetic scattering by two identical conducting cylinders. The incident field

was generated by a line source, and the formulation (using integral equations

methods) led to a system of equations similar to (1.3.9). Truncating this system

at Q = 6 gave results that were in excellent agreement with experiments. Linton

& Evans [31] considered the scattering of water waves by N bottom-mounted

vertical cylinders. Similarly, truncation at order Q = 6 gave results to four sig-

nificant figures as long as the cylinders are not very close together. Note that

[31, fig. 2] is incorrect; a corrected version is given in [34, fig. 6.2].

To illustrate the effectiveness of the method we solved the truncated system

(1.3.10) for two sound-soft cylinders and Q = 6. Figure 1.5 shows the total field

Re[u(r)] on the boundary of each cylinder. It is clear that the accuracy of the

method deteriorates as we increase the frequency, and the same phenomenon

is observed when the spacing is decreased. The accuracy can be improved by
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Figure 1.5: Plots of the total field on the boundary of the two cylinders, illustrating the

accuracy of the multipole method. The parameters in use are ℓ = 1, ψ0 = π/4, and R12 = 4

(spacing). In particular, the plots are for the functions (a) Re[u(ℓeit)] and (b) Re[u(R12 + ℓe
it)].

increasing the order of truncation Q.

1.3.3 Literature

The literature on multiple scattering is vast. For the most comprehensive review

see the book by Martin [37] and in particular for references regarding scatter-

ing by cylinders see §4.5.1. There is also the book by Linton & McIver [34],

which draws together a number of mathematical techniques for wave/structure

interactions within the water wave context, which is closely related to acoustics.

The multipole expansion method employed to solve the problem of acous-

tic scattering by multiple cylinders was devised by Záviška [66]. This method

will be used throughout the thesis. There are other ways to approach multiple

scattering problems. For example, a solution based on integral equation meth-

ods for acoustic scattering by two cylinders can be found in [36]. In this paper

one can find a brief survey regarding the methods mentioned above as well as

Twersky’s pioneering work on the subject [55] (see also [37, §6.13]).
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Figure 1.6: Schematic diagram showing a section of the grating and the notation in use.

1.4 Scattering by an infinite grating of small cylinders

Having developed the multipole expansion method for more than one cylinder,

we can proceed and apply the technique to study acoustic scattering by an

infinite row of equally-spaced cylinders. Such a structure is often referred to

as a diffraction grating (or simply a grating). Useful discussions on the subject,

as well as an extensive bibliography, can be found in the book by Wilcox [62].

Multipole expansions have been used in the study of diffraction gratings by

numerous authors; for example see [32], [33, §3], [51], and [57] and references

therein.

Here, we solve the problem of acoustic scattering by an infinite grating

consisting of small sound-soft cylinders. The periodicity of the geometry plays

a crucial role in this kind of problem, as it leads to considerable simplifications.

In addition, it enables us to determine the behaviour of the scattered field far

away from the grating in a straightforward manner.

1.4.1 Formulation

Consider an infinite grating of cylinders, in which the position vector of the nth

cylinder is na1, where n ∈ Z . We choose a coordinate system (x, y) so that its

origin coincides with the centre of one of the cylinders and the x-axis is parallel

to the vector a1, i.e. a1 = (a1, 0) (see figure 1.5). Let the plane wave

uinc(r) = eik·r, where k = (k cosψ0, k sinψ0)
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be incident upon the grating at an angle ψ0, with 0 < ψ0 < π. Let us assume

that the cylinders are sound-soft and their radius ℓ is small compared to the

wavelength of the incident field. This means that (see §1.2.4) the radiating field

un
sc emanating from the nth cylinder will behave like

un
sc(r) = AnH0(k|r − na1|), (1.4.1)

where An is an unknown amplitude, and by linear superposition the total field

is given by

u(r) = uinc(r) +

∞∑

j=−∞
A jH0(k|r − ja1|). (1.4.2)

To apply the boundary conditions we will work in the vicinity of the nth

cylinder, wherein an observer can distinguish an incoming and an outgoing

wave. The former consists of the incident plane wave plus the contributions

radiating from all the other scatterers, i.e.

un
inc(r) = uinc(r) +

∞∑

j=−∞
j,n

A jH0(k|r − ja1|), (1.4.3)

and the latter is the scattered response

un
sc(r) = AnH0(k|r − na1|). (1.4.4)

Now, bearing in mind that un
inc

is the field incident upon the nth cylinder, we can

use the the asymptotic approximation (1.2.20) to obtain

un
sc(r) ≈ f0un

inc(na1)H0(k|r − na1|), (1.4.5)

where f0 is given by (1.2.21). Hence,

An = f0un
inc(na1), (1.4.6)

which upon substitution of (1.4.3) for r = na1, yields the infinite system of

algebraic equations

An − f0

∞∑

j=−∞
j,n

A jH0(ka1|n − j|) = f0eink·a1 , n ∈ Z. (1.4.7)
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1.4.2 The solution

Gratings are structures that are repetitive in one direction. This means

that they have a discrete translational symmetry dependent on the step vec-

tor a1, or in other words their geometry is invariant under the translation

T : v 7→ v + ma1. Also it is evident that the incident field is quasi-periodic

(see Definition 2, in Appendix B) since

uinc(r +ma1) = eimk·a1uinc(r), ∀m ∈ Z. (1.4.8)

Since the problem is linear we expect the total field to exhibit the same behaviour,

that is

u(r +ma1) = eimk·a1u(r), ∀m ∈ Z. (1.4.9)

Hence, we seek for a solution with the property that

Am = eimk·a1A0. (1.4.10)

Using this in the system (1.4.7), yields

A0 − f0A0

∞∑

j=−∞
j,n

ei( j−n)k·a1H0(ka1|n − j|) = f0, (1.4.11)

and therefore

A0 =
f0

1 − f0S0

, (1.4.12)

where

S0 =

∞∑

j=−∞
j,0

ei jka1 cosψ0H0(ka1| j|). (1.4.13)

The last series converges slowly, but we can use the alternative representation

(B.2.5) in order to evaluate it efficiently. Further discussion of sums of this

type, which are called Schlömilch series, or one-dimensional lattice sums, can

be found in Appendix B.2.

To summarise, since A0 can be calculated from (1.4.12) and all the other

amplitudes are given in terms of A0 from (1.4.10), we have an explicit formula
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for the total field

u(r) = uinc(r) + A0

∞∑

j=−∞
ei jk·a1H0(k|r − ja1|). (1.4.14)

1.4.3 The far field pattern

We will now examine the behavior of the scattered field far away from the

grating. To do this we first note that

usc(r) = A0G(1)

0
(r, k cosψ0), (1.4.15)

where G(1)

0
denotes the 1D quasi-periodic Green’s function given in (B.1.19).

Substituting the spectral form of this function (B.1.23) in (1.4.15), yields

usc(x, y) =
2A0

ka1

∞∑

j=−∞

eik(cosψ jx+sinψ j |y|)

sinψ j
. (1.4.16)

where the quantities ψ j are the so-called scattering angles and they are defined

in (B.1.12). Observe that (see §B.1.1) cosψ j is always real, whereas sinψ j is real

for j ∈ M and positive imaginary for j ∈ N , whereM andN are sets of indexes

defined in (B.1.13) and (B.1.14), respectively.

Returning to the representation (1.4.16), we can derive two important con-

clusions. The first one is that the scattered field is symmetric about the x-axis,

which is clearly necessary because the scatterers are isotropic. The second is that

all but a finite number of the terms decay exponentially as |y| is increased. Thus,

only the terms for which sinψ j is real (i.e. j ∈ M) contribute to the far-field and

so

usc(x, y) ∼ 2A0

ka1

∑

j∈M

eik(cosψ jx+sinψ j|y|)

sinψ j
, as |y| → ∞, (1.4.17)

which means that the scattered field far away from the grating consists of a finite

number of plane waves which make angles ψ j with the positive x-axis for y > 0

(and −ψ j for y < 0). For ka1 < π, the far field expansion consists of a single plane

wave, corresponding to the term with j = 0 in (1.4.17).
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1.4.4 Resonance

In the analysis we used so far we implicitly excluded the case in which

cosψ0 +
2πn

ka1
= ±1, for some n ∈ Z. (1.4.18)

The reason was that if for example

ka1 + ka1 cosψ0 = −2πn, for some n ∈N, (1.4.19)

then, using the asymptotic formula (A.2.11) for H0(kja1) we have

ei jka1 cosψ0H0(kja1) ∼ e−iπ/4

√
2

πkja1
, as j→∞, (1.4.20)

which means that the seriesS0 in (1.4.13) fails to converge. In addition, equation

(1.4.18) means that the scattering angles are not well-defined (see §B.1.1), and

therefore, the representation (1.4.16) is not valid.

In order to study the case (1.4.19) we will examine what happens as cosψ0 +

2πn/ka1 approaches −1, for some n ∈ Z, or equivalently what happens as ψn

approaches π. The alternative representation for S0 given in (B.2.5), shows that

as ψn approaches π,

S0 =
2

ka1 sinψn
+ Ŝ0, (1.4.21)

where Ŝ0 remains bounded as ψn → π. From (1.4.12) and (1.4.10) we see that all

the coefficients An tend to zero in this limit. Nevertheless, the scattered field is

not zero, since
A0

sinψn
= −ka1

2
as ψn → π, (1.4.22)

and therefore from (1.4.16) we have

usc = −e−ikx as ψn → π. (1.4.23)

Thus, the scattered field reduces to a wave propagating parallel to the grating,

towards x = −∞, and this phenomenon is called resonance. Similar conclusions

can be drawn for the case where cosψ0 + 2πn/ka1 approaches 1 (ψn approaches

0), only this time the wave will propagate towards x = +∞.
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a1
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Figure 1.7: A lattice of cylinders defined by two linear independent vectors a1 and a2.

1.5 Bloch waves

A homogeneous medium is characterised by a continuous translational sym-

metry, i.e. its geometry is invariant under any translation. As pointed out in

§1.2 a plane wave propagating through free-space is a solution of the Helmholtz

equation (1.1.3) in a homogeneous medium. Here, we discuss wave propagation

through a medium with discrete translational symmetry. Consider the lattice of

points

Λ = {R jm = ja1 +ma2, j,m ∈ Z} (1.5.1)

defined by the two linearly independent vectors a1 and a2, and suppose that

cylinders of radius ℓ are centred at R jm ; see figure (1.7). This doubly periodic

structure has a discrete translational symmetry since its geometry is invariant

under the translation

T : v 7→ v +R jm. (1.5.2)

A wave ub propagating through the lattice is called a Bloch wave, after the

German physicist Felix Bloch (1905–1983). This field must satisfy the Helmholtz

equation, and as Bloch’s theorem [6] (see also [18, pp. 32–35]) dictates, the quasi-
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periodicity condition

ub(r + R jm) = eiβ·R jmub(r), (1.5.3)

where β is called the Bloch wave vector.

The problem of wave propagation through a periodic medium can be formu-

lated as an eigenvalue problem. The procedure originates from the classic paper

of Lord Rayleigh [47], and since then it has been refined and generalised (see

for example [43]). A comprehensive review on the subject can be found in the

book by A. B. Movhan et al. [41, Ch. 3]. Here, a slightly different approach will

be used to formulate the problem, but the main principle, which is to express

the field ub around the central cylinder into regular and singular parts, remains

the same. We begin by expressing the Bloch wave in terms of the functions

G(2)
q (r,β), defined in (B.1.5). These are singular at the centre of each cylinder, and

they satisfy the Helmholtz equation and the quasi-periodicity condition (1.5.3).

Hence, the expansion

ub(r) =

∞∑

q=−∞
BqG(2)

q (r,β), (1.5.4)

has all the characteristics of a Bloch wave. In order to apply the boundary

condition, we need to restrict ourselves to the vicinity of a particular cylinder.

Without loss of generality, we can work on a disc D, centred at the origin, and

with its radius chosen so that it does not includes any other lattice points. In

this region, G(2)
q (r,β) can be split into a singular and a regular part; that is

G(2)
q (r,β) =Hq(r) +

∞∑

m=−∞

∞∑′

j=−∞
eiR jm·βHq(r − R jm), (1.5.5)

where the prime on the summation symbol indicates that term ( j,m) = (0, 0) is

to be omitted from the series. Each term in the double sum is regular in D, and

hence we can use Graf’s addition theorem (1.3.1), to write

G(2)
q (r,β) =Hq(r) +

∞∑

n=−∞
(−1)q−nσ(2)

q−n(β)Jn(r), r ∈ D, (1.5.6)

where the two-dimensional lattice sum σ(2)
q (β) is defined in (B.2.9). Now we can

substitute (1.5.6) into (1.5.4) and then apply the boundary condition to obtain
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the so-called Rayleigh idenity

BnZ−1
n +

∞∑

q=−∞
(−1)q−nσ(2)

q−n(β)Bq = 0, n ∈ Z, (1.5.7)

where Zn is defined in (1.2.15). The homogeneous system (1.5.7) can be truncated

and solved for the coefficients Bn. A nontrivial solution exists in cases where

the determinant of the truncated system is zero, and this implicitly defines a

dispersion relation, which is a relation between the Bloch wave vector β and the

wavenumber k of the propagating wave.

At this point it is convenient to introduce the reciprocal lattice

Λ∗ = {K jm = 2π jb1 + 2πmb2, j,m ∈ Z}, (1.5.8)

where the vectors b1 and b2, are chosen so that

ai · b j = δi j, i, j = 1, 2. (1.5.9)

The significance of the reciprocal lattice vectors is encapsulated in the identity

eiRnm·K jp = 1, (1.5.10)

which implies that

G(2)
q (r,β) = G(2)

q (r,β +K jm), ∀ j,m ∈ Z. (1.5.11)

From the last equation it appears that different values of β do not necessarily

lead to different Bloch waves, and in order to ensure unique correspondence

between Bloch vectors and modes, we restrict our attention to an area of the

reciprocal space called the ‘Brillouin zone’. Around a point of the reciprocal

lattice, say the point Γ0 with position vector K00, the Brillouin zone is defined

as the locus of points in the reciprocal space that are closer to Γ0 than to any

of the other lattice points. Geometrically, the zone is constructed by drawing

perpendicular bisectors between the point Γ0 and each neighbouring lattice

point (see figure 1.8). In addition, if we take into account symmetries of the

lattice like rotations and reflections, the area of interest for the vector β reduces
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(b)

Γ0 Γ1

Γ2

Figure 1.8: The Brillouin zone (shaded region) for a square (a) and a hexagonal lattice (b).

The irreducible Brillouin zone is the triangle Γ0Γ1Γ2.

further to the ‘irreducible Brillouin zone’ (the triangle Γ0Γ1Γ2 in figure 1.8). A

detailed discussion on the Brillouin zone can be found in [18, Appendix B].

Another important feature of the reciprocal lattice is that we can express

the lattice sums σ(2)
q (β) in terms of the reciprocal vectors. Such representations

are suitable for calculations since the convergence rate is fast. Details on the

derivations can be found [30, §3.2]. Here, we use [30, eq. 3.15] and [30, eq 3.18]

to express the lattice sums in the form

σ(2)
n (β) =

4in+1

A

∞∑

j=−∞

∞∑

m=−∞

(
k

B jm

)L Jn+L(B jmξ)

Jn+L(kξ)(k2 − B2
jm

)
einφ jm

− δ0n


1 +

i

JL(kξ)


YL(kξ) +

1

π

L∑

l=1

(
kξ

2

)L−2l
(l − 1)!

(L − l)!





 n ≥ 0. (1.5.12)

where A = |a1 × a2|,

B jm = β +K jm = B jm(cosφ jm, sinφ jm),

and

ξ ≤ min
( j,m)∈Z2

( j,m),(0.0)

R jm.

The free parameter L is associated with the convergence rate of the double sum

in (1.5.12). Note that each term in this sum decays like m−L−5/2, and for numerical

calculations it is recommended [41, p. 147] that L should be set in the range

5 − 7. Finally, if we insert the full form of the wavefunctions in the definition of
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Figure 1.9: The band structure of a square lattice (a1 = a2 = 1) for sound-soft cylinders of

radius ℓ = 0.187 (a), and for sound-hard cylinders of radius ℓ = 0.375 (b).

the lattice sums (B.2.9), then it is trivial to check that

σ(2)
−q(β) = −

(
σ(2)

q (β)
)∗
, q , 0, (1.5.13)

where the asterisk denotes complex conjugation. From the identity (1.5.13) and

the representation (1.5.12) we can calculate lattice sums of negative order.

The band structure of a lattice with a specific geometry is usually obtained

by letting β vary on the edge of the irreducible Brillouin zone and searching for

values of k for which the determinant in (1.5.7) vanishes. The curves formed by

this procedure are called dispersion curves (or band diagrams), and the slope at

any point on these defines the group velocity of the wave. In figure 1.9 we plot

the band diagrams for a square lattice of sound-soft cylinders of radius ℓ = 0.187

(a) and sound-hard cylinders of radius ℓ = 0.375 (b). We can see that the lattice

can prohibit wave propagation for certain domains of frequency. The shaded

regions in figure 1.9 indicate such domains which are known as band-gaps. It is

worth remarking that for the case of sound-soft cylinders, the minimum value

of k in the first dispersion curve is always positive, and tends slowly to zero as

ℓ→ 0 (see [43, fig. 9]). In other words if kmin > 0 denotes that value, then a first
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band gap always exists in the region 0 < k < kmin. In contrast, for the case of

sound-hard cylinders we have that kmin = 0.

The phenomenon of Bloch wave propagation through a periodic medium has

been studied extensively in a number of physical contexts, including composite

materials [65], perforated thin elastic plates [40] and photonic crystals [18, 43].

In almost all these texts band diagrams are generated by essentially the same

procedure presented in this section. The problem is first formulated in terms of

a homogeneous system of equations of the form (1.5.7), and values for β and k

such that the determinant of the truncated system is zero are sought numerically.

However for certain limiting cases, an approximation of the dispersion relation

can be obtain analytically. For small scatterers, such approximation has been

obtained in [45] by analysing the effect of perturbation to plane wave solutions.

In a similar fashion, coupled with a scheme of matched asymptotic expansion,

analytical results are given in [38] and [22].



Chapter 2

The Wiener–Hopf technique

In 1931 the mathematicians Norbert Wiener (1894–1964) and Eberhard Hopf

(1902–1983) published a paper [61], wherein a novel analytical procedure is

presented for the solution of an integral equation. Their method, now called

the Wiener–Hopf technique, has been used widely ever since to solve problems

arising in physics, engineering and applied mathematics [24]. An abstract

framework of the method will be given in §2.1.

In wave diffraction theory, the Wiener–Hopf technique was adopted to solve

problems involving scattering by semi-infinite structures. Initially, these prob-

lems were formulated in terms of a semi-infinite integral equation, but later

on, Jones [19] demonstrated that one can bypass this formulation by applying

Laplace (or other) transforms directly to the boundary-value problem. In this

way, the technique was simplified considerably and this led to further acknowl-

edgement of its utility. The book by Noble [44] contains a number of examples

of the refined method.

Less well-known is the fact that the Wiener–Hopf technique can also be

used to solve problems involving scattering by semi-infinite arrays of discrete

bodies. The formulation of this type of problem leads to an infinite system of

algebraic equations, and its solution requires the use of theZ-transform (§2.2).

An outline sketch of this ‘discrete Wiener–Hopf method’ is given in §2.3 and in

26
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C

Figure 2.1: The closed curve C, where the Wiener–Hopf equation holds and C+ (C−) is the

(un)shaded region.

§2.4 we present a concrete example.

2.1 The Wiener–Hopf equation and its solution

In this section we shall be concerned with the solution of the Wiener–Hopf

equation, expressed in the following form

K(z)A+(z) = T+(z) + T−(z), (2.1.1)

and defined on a closed curve C of the complex plane 1. In essence, the Wiener–

Hopf equation defines a relation between two known functions K(z) and T+(z)

and two functions A+(z) and T−(z) which we seek to determine, along with

significant information about the domains of analyticity of all its terms. To

denote these domains, we introduce the set C+ consisting of all the points that

lie inside or on C and the set C− consisting of all the points that lie outside or

on C; see figure 2.1 and note that ∞ ∈ C−. The common characteristic of all the

functions in (2.1.1) is that they are analytic on C and the superscript plus and

minus indicate functions that are analytic on C+ and C−, respectively.

1In general, C is a closed curve on the Riemann sphere, which means that it could also be a

line or a curve passing through infinity. The exact form of C depends on the transform we use

to obtain the Wiener–Hopf equation, and since in this text we will use the Z-transform, C will

always be a closed curve of the complex plane.
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The Wiener–Hopf technique is essentially a three-step procedure to solve

equation (2.1.1). The first step is to factorise the function K(z) known as the

kernel, into a product of two functions

K(z) = K+(z)K−(z), (2.1.2)

where K+(z) and K−(z) are analytic and zero-free on C+ and C−, respectively. On

implementing this factorisation in (2.1.1), yields

A+(z)K+(z) =
T+(z)

K−(z)
+

T−(z)

K−(z)
. (2.1.3)

The next step is to construct two functions D+(z) and D−(z), which are analytic

on C+ and C−, respectively, and satisfy the relation

T+(z)

K−(z)
= D+(z) +D−(z). (2.1.4)

Substituting (2.1.4) into (2.1.3) we obtain

A+(z)K+(z) −D+(z) = D−(z) +
T−(z)

K−(z)
, (2.1.5)

where the left hand side of the equation represents a function analytic on C+

and the right hand side represents a function analytic on C−. Since C = C+ ∩C−,

there exists an entire function J(z), which is the analytic continuation of both

sides into the entire complex plane. The last step is to prove that the right hand

side of (2.1.5) tends to zero as z → ∞. This will mean that J(z) is a bounded

entire function and Liouville’s theorem dictates that it must be a constant. In

fact J(z) = 0, for all z, in order to have the correct behaviour at infinity, and

therefore the solution of the Wiener–Hopf equation is given by

A+(z) =
D+(z)

K+(z)
and T−(z) = −D−(z)K−(z). (2.1.6)

It is clear that a successful execution of the Wiener–Hopf technique depends

on our ability to decompose complex functions into either a sum or a product

of two functions one of which is analytic in C+ and the other in C−. In the case

of a product factorisation, the factors must also be zero-free in their domain

of analyticity. We shall use the term ‘plus-minus’ factorisation or sum-split
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C
Ω−

Ω+

Dǫ

Figure 2.2: Schematic diagram for Cauchy’s integral formula.

accordingly, to name such decompositions and we note that in general these can

be constructed by inspection in an ad hoc manner. However, in some cases, it

may be possible to apply standard methods to derive them.

2.1.1 Cauchy’s integral formula

The most common way to construct Wiener–Hopf decompositions is by using

Cauchy’s integral formula . LetΩ : [a, b]→ C be a piecewise smooth curve, and

let f (z) be analytic on Ω. The Cauchy integral of f (z) overΩ is the function g(z)

defined by

g(z) =

∫

Ω

f (ζ)

ζ − z
dζ, z ∈ C −Ω. (2.1.7)

Note that g(z) is analytic in C −Ω (see [54, 2.83]).

Consider a function f (z) which is analytic on a closed curve C. Analyticity

is a property defined over open sets and this means that there exists ǫ > 0 such

that the function f (z) is analytic in

Dǫ =
⋃

w∈C
{z : |z − w| < ǫ}. (2.1.8)

Now we setΩ− andΩ+ to be the inner and outer boundary ofDǫ/2, respectively

(see figure 2.2), and define the Cauchy integrals of f (z) overΩ+ andΩ− by

f±(z) = ± 1

2πi

�
Ω±

f (ζ)

ζ − z
dζ, z ∈ C −Ω±. (2.1.9)
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It is not difficult to see that

f (z) = f+(z) + f−(z), z ∈ C, (2.1.10)

and since f±(z) is analytic in C± , we can conclude that the equation (2.1.10)

defines the sum-split required in applications of the Wiener–Hopf technique.

We can construct a product decomposition in a similar manner. Suppose that

the singularity structure of f (z) is such that a continuous branch of the logarithm

exists on the closed curve C. Then, we can use the Cauchy integral of log f (z)

over Ω± to obtain the factorisation

f (z) = f+(z) f−(z), z ∈ C, (2.1.11)

where f±(z) is analytic in C±, and given by

f±(z) = exp

(
± 1

2πi

�
Ω±

log f (ζ)

ζ − z
dζ

)
. (2.1.12)

2.1.2 Decompositions of meromorphic functions

We say that a function is meromorphic in a region D if it is analytic in D
except possibly at isolated singularities, each of which is a pole. Consider

a meromorphic function f (z) which has a finite number of poles in C and is

analytic on the closed curve C. If f (z) is also zero free on C, then the ‘plus-

minus’ product decomposition of this function is trivial. On the other hand a

sum decomposition can be constructed easily if the poles are simple. Let

f+(z) =

n∑

j=1

a j

z − p j

, (2.1.13)

and

f−(z) = f (z) − f+(z), (2.1.14)

where p j, j = 1, . . . , n, are all the poles of f (z) which are situated in C−, and

a j, j = 1, . . . , n, denote the residues of f (z) at p j. It is evident that f±(z) is analytic

in C±, with

f (z) = f+(z) + f−(z). (2.1.15)
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In cases where f (z) has infinitely many poles, product and sum decomposi-

tions can be constructed with the aid of the Weierstrass product theorem and

the Mittag-Leffler theorem, respectively (see [13, Ch. 13]). The former can be

applied to express f (z) in terms of an infinite product of linear factors, whereas

the latter provides the means to decompose f (z) into an infinite sum of partial

fractions. The required ‘plus-minus’ decompositions follow, and details can be

found in [48, §3.1 and §3.3] and [54, §3.2].

2.2 The bilateralZ-transform

The bilateral Z-transform is generally used to convert a two-sided sequence

Xn : Z→ C, into an analytic function X(z). We shall use the definition

X(z) = Z(Xn) =

∞∑

n=−∞
Xnzn, (2.2.1)

and focus our interest on sequences whose Z-transform is analytic on an open

set D. In addition, we assume that there exists a closed curve C ⊂ D that

encircles the origin, so that the inverseZ-transform is well-defined by

Xn = Z−1
C

(
X(z)

)
=

1

2πi

�
C

X(z)z−n−1dz, (2.2.2)

where the integration is performed counterclockwise.

In some cases the region of analyticity D of the forward transform and the

contour of integrationC of its inverse can be determined explicitly. For example,

consider a sequence Xn : Z→ C, which has the property

∞∑

n=−∞
|Xn| < ∞. (2.2.3)

Then, it is evident that the series in (2.2.1) converges on the unit circle. In fact

there exists R+ > 1 and R− < 1, such that the tail of the series with positive powers

of z
∞∑

n=1

Xnzn, (2.2.4)
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(a)

0

Re[z]

Im[z]
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(b)

0

Re[z]

Im[z]

Figure 2.3: The region of analyticity D of the forward Z-transform and the contour of

integration C of its inverse for two cases: (a) The Z-transform is analytic on the unit circle.

(b) The Z-transform is analytic almost everywhere on the unit circle except of finite isolated

singularities.

converges and is analytic on the open discD+ = {z : z < R+}, while the tail with

negative powers of z
∞∑

n=1

X−nz−n, (2.2.5)

converges and is analytic on D− = {z : z > R−}. Hence, it is clear that the

X(z) = Z(Xn) is analytic on the annulusD = {z : R− < |z| < R+}, and the inverse

Xn = Z−1
C

(
X(z)

)
is well-defined on the contour C = {z : |z| = 1}. See figure 2.3

(a). In other words the property (2.2.3) suggests that Xn are the coefficients of

the Laurent expansion of a function X(z) which is analytic on an annulus.

In practice, more often than not we need toZ-transform a bounded sequence

Xn : Z → C, which does not necessarily satisfy the condition (2.2.3). In such

cases the series (2.2.4) and (2.2.5) converge and are analytic on {z : |z| < 1} and

{z : |z| > 1} respectively, but their behaviour on the unit circle is unknown. Note

that in order for the forward Z-transform to be meaningful, the series (2.2.4)

and (2.2.5) must have common points of convergence. In addition, the inverse

Z-transform is well-defined if a subset of these points forms a closed curve in

the complex plane that encircles the origin. In this respect consider the finite
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sets M+ and M−, containing points of the unit circle, so that

M+ ∩M− = ∅. (2.2.6)

Also let D+ (D−) be an open set that contains {z : |z| 6 1}
(
{z : |z| > 1}

)
, except

the points M+ (M−); see figure 2.3 (b). If we can find functions X+(z) and X−(z)

analytic inD+ andD−, respectively, so that

X+(z) =

∞∑

n=1

Xnzn, for |z| < 1, (2.2.7)

and

X−(z) =

∞∑

n=1

X−nz−n, for |z| > 1, (2.2.8)

then, the forwardZ-transform of Xn : Z→ C, can be defined by

X(z) = Z(Xn) = X0 + X+(z) +X−(z), (2.2.9)

and it is obvious that it is analytic onD = D+ ∩D−. In addition, (2.2.6) ensures

the existence of a closed curve C ⊂ D on which the inverse Z-transform is

well-defined; see figure 2.3 (b).

The analysis presented above in an abstract manner, will be used throughout

the thesis in specific situations, where the definition of the forwardZ-transform

(2.2.1) of a bounded sequence Xn : Z→ C is ambiguous. In such cases, analytic

continuation arguments are required in order to express Z(Xn) in the form

(2.2.9). To see a simple example, we consider the sequence

Xn = p|n|, n ∈ Z, (2.2.10)

with |p| = 1. It is evident that

zp

1 − zp
=

∞∑

n=1

pnzn, for |z| < 1, (2.2.11)

and

p

z − p
=

∞∑

n=1

pnz−n, for |z| > 1. (2.2.12)
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The functions on the left hand side of (2.2.11) and (2.2.12) represent the analytic

continuation of the right hand side into D+ = C − {p−1} and D− = C − {p},
respectively. Thus, theZ-transform is given by

X(z) = Z(Xn) =
1

1 − zp
+

p

z − p
, (2.2.13)

and it is analytic onD = C − {p−1, p}. Also, its inverse (2.2.2) can be defined on

any contour that encircles the origin and p, and excludes p−1.

2.2.1 The class Z (C)

It is worth remarking that we cannot explicitly define the largest class of double-

sided sequences, on which both the forward and the inverse Z-transform are

well-defined. Nevertheless , we can implicitly form this class:

Definition 1. Let Xn : Z→ C be a two-sided sequence and C be a closed curve in the

complex plane that encircles the origin. We will say that Xn is a member of the class

Z (C) if and only if there exists a function X(z) analytic on C such that

Xn =
1

2πi

�
C

X(z)z−n−1dz, n ∈ Z. (2.2.14)

2.3 The discrete Wiener–Hopf method

Consider the infinite system of algebraic equations

∞∑

j=0

Kn− jA j = Tn, n = 0, 1, . . . , (2.3.1)

where A j are the unknowns. Here we shall show how this system can be

Z-transformed into a Wiener–Hopf equation of the form (2.1.1). Note that
[
Kn− j

]
n, j=0,1...

defines a Toeplitz matrix, and this is a necessary requirement for

a successful transformation. First we need to extend the validity of (2.3.1) to

negative indices n. This can be accomplished by rewriting it in the equivalent

form
∞∑

j=−∞
Kn− jA

+
j = T+n + T−n , n ∈ Z, (2.3.2)
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where A+n , T+n are the two-sided extensions of An and Tn respectively with

A+n = T+n = 0, for n = −1,−2, . . . , (2.3.3)

T−n is an unknown, with

T−n =

∞∑

j=0

Kn− jA j, for n = −1,−2, . . . , (2.3.4)

and

T−n = 0, for n = 0, 1, . . . . (2.3.5)

Next, we assume that all the terms in (2.3.2) are members of the class Z (C), i.e.

they have a representation of the form (2.2.14). Using this integral representation

for A+
j
, T+n and T−n in the system (2.3.2) yields

∞∑

j=−∞
Kn− j

�
C

A+(z)z− j−1dz =

�
C

(
T+(z) + T−(z)

)
z−n−1dz. (2.3.6)

Now, if we re-index the sum by replacing j with n − j, and interchange the

order of integration and summation in the left hand side of (2.3.6) we obtain the

functional equation

K(z)A+(z) = T+(z) + T−(z), (2.3.7)

where the functions K(z) and T+(z) are known and given by theZ-transformation

of Kn and T+n , respectively, and we seek to obtain the two unknown functions

A+(z) and T−(z). It is not difficult to see that (2.3.7) has all the characteristics of

a Wiener–Hopf equation. By assumption, all of its terms are functions analytic

on C, and subsequently on this curve the equation holds. In particular, the

superscript ‘+’ indicates functions that are analytic in C+, so that the condition

(2.3.3) is satisfied. Likewise, the condition (2.3.5) dictates that the function T−(z)

is analytic in C−, with

T−(z)→ 0 as z→∞. 2 (2.3.8)

2We will see in later sections that this is a necessary condition for carrying out the third step

of the Wiener–Hopf technique. One must keep in mind that this is an immediate consequence

of the fact that T−(z) = Z(T−n ) and (2.3.5).
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The system (2.3.1) may be regarded as the discrete analogue of the Wiener–

Hopf equation (2.3.7) and therefore an analytical solution is feasible. First we

need to specify the closed curve C on which both the forward transforms K(z) =

Z(Kn) and T+(z) = Z(T+n ) converge and are analytic, and also to substantiate

the assumption (2.2.14) regarding their inverse. Second, we need to solve the

corresponding Wiener–Hopf equation by following the procedure described in

§2.1. Once we have determine A+(z) then the solution of the system (2.3.1) is

given by

An = A+n =
1

2πi

�
C

A+(z)z−n−1dz, n = 0, 1, . . . . (2.3.9)

This method of solution is often referred as the discrete Wiener–Hopf technique

and sufficient conditions for a successful execution can be found in [8] (wherein

the authors used the Fourier-transform).

2.4 Scattering by a semi-infinite grating of small cylinders

As an example on the application of the discrete Wiener–Hopf technique, we

consider the problem of acoustic scattering by a semi-infinite grating of cylin-

ders. The position vector of the jth cylinder is ja1, j = 0, 1, . . . , where without

loss of generality we can assume that a1 = (a1, 0). Let the plane wave

uinc(r) = eik·r, where k = (k cosψ0, k sinψ0),

be incident upon the grating at an angleψ0, with 0 < ψ0 < π. We will assume that

the cylinders are sound-soft and their radius ℓ is small compared to wavelength

of the incident field. Hence, the total is given by

u(r) = uinc(r) +

∞∑

j=0

A jH0(k|r − ja1|), (2.4.1)

where A j are the unknown amplitudes.
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Figure 2.4: Schematic diagram showing a section of the grating and the notation in use.

2.4.1 Wiener–Hopf formulation

If we apply the boundary condition on the nth cylinder by following the same

formulation as for the infinite grating considered in §1.4.1, then the unknowns

An are found to satisfy

An − f0

∞∑

j=0
j,n

A jH0(ka1|n − j|) = f0eink·a1 , n = 0, 1, . . . . (2.4.2)

This time there is no simple relation between the amplitudes An, and therefore

a solution of the system (2.4.2) is required. This can be accomplished via the

discrete Wiener–Hopf method. Note that (2.4.2) is of the form

∞∑

j=0

Kn− jA j = Tn, n = 0, 1, . . . , (2.4.3)

where Tn = f0eink·a1 , and

K j =



1, j = 0,

− f0H0(ka1| j|), j , 0.

Next, we rewrite (2.4.3) as

∞∑

j=−∞
Kn− jA

+
j = T+n + T−n , n ∈ Z, (2.4.4)

where A+n , T+n are the two-sided extensions of An and Tn respectively with A+n =

T+n = 0, for n = −1,−2, . . . , and T−n is equal to the left hand side of (2.4.3) for

negative integers and zero otherwise. Now assuming that all the terms of the
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system (2.4.4) are members of the class Z (C), we can transform it into the

Wiener–Hopf equation

K(z)A+(z) = T+(z) + T−(z), z ∈ C, (2.4.5)

where

K(z) = 1 − f0

∞∑

j=−∞
j,0

H0(ka1| j|)z j, (2.4.6)

and

T+(z) = − f0p0

z − p0
, with p0 = e−ika1 cosψ0 , (2.4.7)

The ‘+’ and ‘−’ signs in (2.4.5) indicate analyticity inC+ andC−, respectively and

this information will be used to obtain A+(z) and subsequently the unknown

amplitudes from the integral

An =
1

2πi

�
C

A+(z)z−n−1dz, n = 0, 1, . . . . (2.4.8)

At this stage the only information we have about the closed curve C, where

all the functions in (2.4.5) are assumed to be analytic, is that

0 ∈ C+ − C, and p0 ∈ C− − C, (2.4.9)

where the second condition is immediate consequence of the fact that T+(z) is

analytic in C+. In order to get a clearer picture of C we must examine where

the sum in (2.4.6) converges. To simplify the procedure we let the wavenumber

have a positive imaginary part k = Re[k] + iǫ, which is equivalent to allowing

the medium surrounding the grating to have small loses. It is not difficult to see

using (A.2.11), that this assumption ensures the convergence and analyticity of

the kernel in the annulus

D = {z : e−ǫa1 < |z| < eǫa1}. (2.4.10)

Therefore, if we choose C to be a circle of radius r with e−ǫa1 < r < eǫa1 cosψ0 ,

then both K(z) and T+(z) are analytic on C and in addition the condition (2.4.9)

is satisfied. We can also determine a neighbourhood of the origin in which
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Re[z]
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Figure 2.5: The singularities of the kernel and T+(z) and the common curve of analyticity

C for the case (a) where k = Re[k] + iǫ, and (b) taking the limit ǫ → 0. The shaded region

represents C+.

A+(z) is analytic, by considering the behaviour of An as n → ∞ using (2.4.8). If

0 < ψ0 6 π/2, then the amplitude of the incident wave does not grow as the

observer moves from left to right, and there must be no contributions to An

from singularities of A+(z) in the region |z| 6 1, because the magnitude of such

contributions would grow as n → ∞. On the other hand, if ψ0 > π/2 then the

incident field propagates to the left, and the overall field strength grows as the

observer moves from left to right. Consequently, |An| → ∞ as n → ∞, but the

growth rate can be no faster than that of the incident wave. In general,

∣∣∣Ane−inka1 cosψ0

∣∣∣ =
∣∣∣Anenǫa1 cosψ0

∣∣∣ , (2.4.11)

must remain bounded as n → ∞, meaning that A+(z) is analytic in the region

where |z| < eǫa1 cosψ0 .

Allowing the wavenumber to have a small imaginary part is a standard

mechanism that is used in scattering problems in order to ensure the absolute

convergence of series of the form (2.4.6). At the end of the calculations we must

take the limit ǫ→ 0. To see how the kernel behaves in this limit note that

K(eia1x) = 1 − f0 σ
(1)

0
(x), (2.4.12)
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where σ(1)

0
(x) represents the 1D lattice sum given in (B.2.2). More generally, for

x = −i log z/a1 we have

K(z) = 1 − f0σ
(1)
0 (−i log z/a1). (2.4.13)

The alternative representation (B.2.4) of σ(1)

0
(·) reveals that the kernel has branch

points at e±ika1 , 0 and∞, and if we take branch cuts along (0, eika1) and (e−ika1 ,∞),

as illustrated in figure 2.5 (a), then we can extend the analyticity of the kernel

fromD to the cut plane. We are now in the position to take the limit ǫ→ 0, and

to identify how C is deformed in this limit; see figure 2.5 (b).

2.4.2 The solution

The first fundamental step in order to apply the Wiener–Hopf technique is to

find a factorisation

K(z) = K+(z)K−(z), (2.4.14)

where K+(z) and K−(z) are analytic and zero free in C+ and C−, respectively.

Assuming that it is possible to choose a branch of log K(z) that is continuous

on C (see [7, §3.2]), the required factors can be obtained from Cauchy’s integral

formula (2.1.12)

K±(z) = exp
(
± 1

2πi

�
C

log K(ζ)

ζ − z
dζ

)
, z ∈ C± − C. (2.4.15)

Although these representations are not valid on C, we can deform the con-

tour of integration slightly (outwards or inwards) to make them analytic in the

corresponding sets C+ and C−; see §2.2.1.

With this factorisation and in view of (2.4.7), the Wiener–Hopf equation

(2.4.5) becomes

A+(z)K+(z) = − f0p0

K−(z)(z − p0)
+

T−(z)

K−(z)
. (2.4.16)

It clear that the right-hand side of (2.4.16), is analytic in C−, except at the point

p0, corresponding to a simple pole. We can move this pole to the other side by
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adding the term f0p0/K−(p0)(z − p0) to both sides, and this yields

A+(z)K+(z) +
f0p0

K−(p0)(z − p0)
= − f0p0

z − p0

(
1

K−(z)
− 1

K−(p0)

)
+

T−(z)

K−(z)
. (2.4.17)

Now the left-hand side of (2.4.17) is a function analytic in C+, whereas the

right-hand side is a function analytic in C−. Using the customary Wiener–

Hopf argument that there exists an entire function J(z), which is the analytic

continuation of both sides into the entire complex plane, and the fact that J(z)→
0, as z→∞ (since from (2.3.8), the right-hand side of (2.4.17) tends to zero in this

limit), we can conclude by Liouville’s theorem that J(z) = 0, and consequently

A+(z) =
− f0p0

K+(z)K−(p0)(z − p0)
. (2.4.18)

Hence,

An = −
f0p0

2πiK−(p0)

�
C

z−n−1

K+(z)(z − p0)
dz, n = 0, 1, 2, . . . . (2.4.19)

Now, to calculate the amplitudes An, we expand the function 1/K+(z) as a

Taylor series

1

K+(z)
=

∞∑

m=0

λmzm, z ∈ C+. (2.4.20)

The coefficients λm can be found with the aid of the integral representation

(2.4.15). For example

λ0 = exp
(
− 1

2πi

�
C

log K(z)

z
dz

)
, (2.4.21)

where, in order to compute K(z) on the unit circle we use (2.4.12) and (B.2.4).

For the others coefficients λm, m = 1, 2, . . . , we set

νm = −
m!

2πi

�
C

log K(z)

zm+1
dz, for m = 1, 2, . . . , (2.4.22)

and note that

λ1 = λ0ν1

λ2 =
λ0

2!
(ν2

1 + ν2)

λ3 =
λ0

3!
(ν3

1 + 3ν1ν2 + ν3)

λ4 =
λ0

4!
(ν4

1 + 6ν2
1ν2 + 3ν2

2 + 4ν1ν3 + ν4)

. . .
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Inserting the Taylor expansion (2.4.20) in (2.4.19), we obtain

An = −
f0p0

K−(p0)

∞∑

m=0

λm
1

2πi

�
C

zm−n−1

z − p0
dz, n = 0, 1, 2, . . . . (2.4.23)

The last integral is zero for m > n, whereas

1

2πi

�
C

zm−n−1

z − p0

dz = −pm−n−1
0 , for m 6 n. (2.4.24)

Hence,

An =
f0

K−(p0)

n∑

m=0

λmpm−n
0 , n = 0, 1, 2, . . . . (2.4.25)

2.5 Literature

The problem of acoustic scattering by a semi-infinite grating of ‘small’ cylinders

considered in the previous section was solved by Hills & Karp [16]. A more

modern approach that can also be used to treat the semi-infinite strip grating is

presented in [33], and much of the preceding analysis has been based on this text.

In these papers one can find details regarding the analysis of the far field pattern

and the resonance case. The ability to obtain the unknowns of an infinite system

of equations in closed-form (see (2.4.25)), is crucial for studying the underlying

physical problem in its entirety, and this highlights the advantages of employing

the discrete Wiener–Hopf technique, against a numerical solution by truncation.

The technique has been also used to study diffraction of electromagnetic waves

by semi-infinite gratings; see for example [9], which contains a short review on

the literature.

A number of boundary value problems involving structures with semi-

infinite geometry have been solved via the Wiener–Hopf technique; see ref-

erences in [24]. The classic example in the context of acoustic scattering theory

is Sommerfeld’s half-plane problem which can be found in several texts, notably

[19, §1], [34, §5.1.1], [44, Ch. 2] and [63, Ch. 5]. In particular, the book by Noble

[44] contains further examples (Ch. 3) and also a discussion regarding technical

issues that might arise in applications of the Wiener–Hopf technique (Ch. 4, see
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also [48, Ch. 3 & 4]). It is worth remarking that it is not always possible to find

exact factorisations, which is a necessary step for the successful execution of the

method. To overcome such difficulties approximation techniques are required.

A discussion on this topic and examples of the use of Padé approximants for

Wiener–Hopf factorisations is given in [1].

2.5.1 Matrix Wiener–Hopf equation

So far we have discussed about the solution of a single Wiener–Hopf equation

(2.1.1). However, in some cases we need to deal with n functional equations with

2n unknown functions which can be written in terms of a matrix Wiener–Hopf

equation

K(z)A+(z) = T+(z) + T−(z). (2.5.1)

Assuming that this equation holds on a closed curve C, the kernel K(z) is an

n× n matrix containing functions analytic on C. The other terms represent n× 1

matrices and as before the ‘+’ and ‘−’ signs indicate that they contain functions

analytic in C+ and C−, respectively.

The procedure for the solution of (2.5.1) is as described in §2.1, but this time

the factorisation of the kernel

K(z) = K−(z)K+(z), (2.5.2)

is performed so that the determinant of each matrix K±(z), must be zero free in the

respective region of analyticity C±. Gohberg & Krein [14] proved the existence

of the factorisation (2.5.2) for an arbitary matrix K(z), but no general method

has yet been developed for constructing such decompositions Nevertheless,

for certain classes of matrices standard procedures have been devised, see for

example [3] (for rational matrices), [20], and [59]. The latter also contains a

discussion on the strengths and weaknesses of various methods that have been

used so far.

We also remark that one of the main advantages of the Wiener–Hopf tech-
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nique is its flexibility. The systematic procedure described in §2.1 may be sub-

jected to modifications so that it can been adjusted to solve a variety of different

problems. For example, in Chapter 4 where we need to deal with a matrix

Wiener–Hopf equation we will present a solution which does not require the

explicit factorisation of the kernel.



Chapter 3

Scattering by a semi-infinite lattice

of small cylinders

In this chapter we consider the problem of acoustic scattering by a semi-infinite

lattice of sound-soft cylinders 1. We restrict ourselves to cases where the radius

of the cylinders is small compared to the wavelength of the incident field. This

assumption simplifies the representation of the scattered field, and in §3.1 we

present the details of how the formulation leads to an infinite system of algebraic

equations. The system is then transformed into a Wiener–Hopf equation and an

outlined sketch of its solution is given in §3.2.

In §3.3 we examine the physical and mathematical nature of the kernel. It

turns out that it can be written as an infinite sum of partial fractions and it has

an infinite number of poles, with associated nonisolated essential singularities

at the origin and at infinity. One way to factorise such a function is to represent

it as an infinite product; see e.g. [25]. A different approach will be considered

here which relies on the truncation of the infinite sum. In physical terms, such

an approximation can be justified on the grounds of disregarding interaction

effects due to strongly damped modes. The kernel is thereby replaced by a ra-

1The material of this chapter has been published in the Quarterly Journal of Mechanics and

Applied Mathematics; see [58].
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tional function, which is easily factorised. The explicit solution to the scattering

problem is then given in §3.4.

The structure of the scattered field is examined in §3.5. Initially we consider

the situation in which the problem parameters reside in a band gap so that no

waves can propagate through the lattice. We then consider the more physically

interesting case in which some of the incident field energy propagates through

the lattice in the form of a Bloch wave. Plots of the reflected coefficient are

presented which implicitly illustrate pass band and band gap phenomena.

Finally, a useful check on our numerical results is provided by the principle

of conservation of energy, and this is considered in §3.6. For cases where no

Bloch waves are excited, we obtain a simple identity, and show that this is

always satisfied. The presence of Bloch waves in the solution leads to a more

complicated identity, which involves terms that must be computed numerically.

Our calculations indicate that this is always satisfied to a high degree of accuracy.

3.1 Formulation

Let a1 and a2 be a linearly independent pair of vectors in the (x, y) plane. Suppose

that sound-soft cylinders of radius ℓ are centred at the points with position

vectors

R jp = ja1 + pa2, (3.1.1)

where j ∈ Z and p = 0, 1, . . . , thus forming a semi-infinite lattice (see figure 3.1).

Without loss of generality, we can assume that

a1 = (a1, 0) and a2 = (η1, η2), (3.1.2)

where η2 > 0. Let the plane wave

uinc(r) = eik·r (3.1.3)

be incident upon the lattice, where the wavenumber vector is given by

k = (k cosψ0, k sinψ0), ψ0 ∈ (0, π). (3.1.4)
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ψ0

k

0 x

y
a1

a2

R jp

r
r jp

Figure 3.1: Schematic diagram showing a section of the lattice, and illustrating the notation

in use.

We consider the case where the wavelength of the incident field is assumed to

be greater than the cylinders’ radii; in particular

kℓ ≪ 1. (3.1.5)

In this regime, the elements of the lattice may be considered to be isotropic

point scatterers (see §1.2.4), and so the total field can be represented in the form

u(r) = uinc(r) +

∞∑

p=0

∞∑

j=−∞
A jpH0(k|r jp|), (3.1.6)

where r jp is a position vector relative to the centre of scatterer ( j, p), i.e.

r jp = r − R jp. (3.1.7)

Our ultimate goal is to obtain the scattered field by determining the unknown

amplitude coefficients A jp. To begin this process, we must apply the boundary

condition on the scatterers’ surfaces. Now the field that is incident on a par-

ticular cylinder, centred at r = Rmn, say, consists of the incident wave, plus the

contributions radiating from all of the other scatterers. That is

umn
inc (r) = uinc(r) +

∞∑

p=0

∞∑

j=−∞
(1 − δ jmδpn)A jpH0(kr jp), (3.1.8)
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where δ jp represents Kronecker’s delta, i.e. 1 when j = p and 0 otherwise. On

the other hand, the scattered response from this cylinder is simply given by

umn
sc (r) = AmnH0 (krmn) . (3.1.9)

Now, bearing in mind that umn
inc

is the field incident upon the cylinder (m, n) we

can use the the asymptotic approximation (1.2.20) to obtain

umn
sc (r) ≃ f0umn

inc (Rmn) H0(k|rmn|), (3.1.10)

where f0 is given in (1.2.21). Hence,

Amn = f0umn
inc (Rmn) , (3.1.11)

and by using (3.1.8) for r = Rmn, we obtain the infinite system of algebraic

equations

Amn − f0

∞∑

p=0

∞∑′

j=−∞
A jpH0(kR j−m,p−n) = f0eik·Rmn, m ∈ Z, n = 0, 1, . . . . (3.1.12)

Here, and henceforth, the prime on the summation symbol is used to indicate

that the term in which the argument of the Hankel function vanishes (in this

case ( j, p) = (m, n)) is to be omitted from the series.

Due to the periodicity of the geometry, the only difference between the total

field at the point r and that at r +ma1 for integer m is the phase shift due to the

incident wave, i.e.

u(r +ma1) = eimk·a1u(r) = eimka1 cosψ0u(r). (3.1.13)

Hence, we seek a solution with the property that

Amn = eimka1 cosψ0A0n, m ∈ Z. (3.1.14)

Using this in (3.1.12), and then replacing j with j + m, we obtain the reduced

system

A0n − f0

∞∑

p=0

∞∑′

j=−∞
A0pei jka1 cosψ0H0(kR j,p−n) = f0eink·a2 , n = 0, 1, . . . (3.1.15)
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Note that it may turn out that the double series in (3.1.15) does not converge

absolutely and therefore we need to specify how this sum should be interpreted.

This is addressed in appendix B.1.3. For later convenience we multiply the

system (3.1.15) with i f−1
0

and rewrite it in the form

−i f−1
0 A0n + i

∞∑

p=0

A0pSn−p = −ieink·a2, n = 0, 1, . . . . (3.1.16)

where

S0 =

∞∑

j=−∞
j,0

ei jka1 cosψ0H0(kR j,0), (3.1.17)

and

Sn =

∞∑

j=−∞
ei jka1 cosψ0H0(kR j,−n), n ∈ Z − {0}. (3.1.18)

The series Sn can be converted into a more practically useful form in terms

of the scattering angles ψ j, which are defined in (B.1.12). First note that (see

appendix B.2.1)

S0 = σ
(1)

0
(k cosψ0), (3.1.19)

where σ(1)

0
is a 1D lattice sum, and its spectral representation is given in (B.2.5).

On the other hand,

Sn = G(1)
0

(na2, k cosψ0), for n , 0, (3.1.20)

where G(1)

0
is the 1D quasi-periodic Green’s function defined in (B.1.19). An

alternative representation for this function is given in (B.1.23), which yields

Sn =
2

ka1

∞∑

j=−∞

1

sinψ j

eik(nη1 cosψ j+|n|η2 sinψ j), n , 0. (3.1.21)

Equivalently,

Sn =
2

ka1

∞∑

j=−∞

p−n
j

sinψ j
, for n > 0, (3.1.22)

and

Sn =
2

ka1

∞∑

j=−∞

τn
j

sinψ j
, for n < 0. (3.1.23)
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where the points p j and τ j are defined in (B.1.16). For future convenience we

assume that

ka1 < π, (3.1.24)

in order to have that (see (B.1.17), and (B.1.18)),

|p0| = |τ0| = 1, (3.1.25)

and

p∗j = τ j, for j , 0. (3.1.26)

3.2 The discrete Wiener-Hopf method

We now look to solve the system (3.1.16) analytically, via the discrete Wiener–

Hopf technique as in §2.3. We begin by setting

A0n = 0, for n < 0 (3.2.1)

so that the system of equations can be written in the form

∞∑

p=−∞
Kn−pA0p = T+n + T−n , n ∈ Z, (3.2.2)

where

T+n =



−ip−n
0
, n > 0,

0, n < 0,
T−n =



0, n > 0,

∑∞
p=0 Kn−pA0p, n < 0,

(3.2.3)

and

Kn =



−i f−1
0 + iS0, n = 0,

iSn, n , 0.
(3.2.4)

Assuming that all the double-sided sequences in (3.2.2) are members of the class

Z (C), we can transform (3.2.2) into the Wiener–Hopf equation

K(z)A+(z) = T+(z) + T−(z), z ∈ C, (3.2.5)

where C is a closed curve that encircles the origin. In this equation the kernel

and the function T+(z) are given byZ(Kn) andZ(T+n ), respectively and we seek
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to determine the functions A+(z) and T−(z). As is customary in this text, the ‘+’

and ‘−’ signs indicate analyticity in the corresponding sets C+ and C−, where

C+ consists of all the points that lie inside and on C, and C− consists of all the

points that lie outside and on C.

Before we set out to solve the Wiener–Hopf equation, a few remarks are in

order regarding the shape of the closed curveC. We could proceed by letting the

wave number have a small imaginary part as in §2.4, and then look for a circle

of radius r where all the terms in (3.2.5) are analytic. However, this method

is not well suited to this problem, because it turns out that r is dependent on

the angle of incidence ψ0 and the geometry of the lattice, and this makes the

argumentation more complex. In addition the important symmetry relation

(3.3.7) breaks down if k is not real. For these reasons, we will instead specify

C by determining the positions of singularities of the functions K(z) and T+(z)

relative to C. For the function T+(z), it is an easy matter to check that for |z| < 1

T+(z) =
ip0

z − p0
, (3.2.6)

where the expression on the right-hand side has been obtained by summing a

geometric series. In other words the function T+(z) can be analytically continued

into the entire complex plane except for the point p0, where it has a simple pole.

Now, since this function is analytic in C+, we must have

p0 ∈ C− − C. (3.2.7)

A similar analysis for the kernel will give all the information required for C, and

it is deferred until the next section.

Now, in order to solve (3.2.5), we need to factorize the kernel into a product

of the form

K(z) = K+(z)K−(z), (3.2.8)

where K+(z) and K−(z) have no zeros in their respective regions of analyticity C+

and C−. With this factorisation and in view of (3.2.6), equation (3.2.5) becomes

K+(z)A+(z) =
ip0

(z − p0)K−(z)
+

T−(z)

K−(z)
. (3.2.9)
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The right hand side of this equation is analytic in C−, except at the point p0,

where it has a simple pole. This pole can be moved to other side with a simple

subtraction, that is

K+(z)A+(z) − ip0

(z − p0)K−(p0)
=

ip0

z − p0

(
1

K−(z)
− 1

K−(p0)

)
+

T−(z)

K−(z)
. (3.2.10)

We have now reached an equation whose left hand side is analytic in C+ and the

right hand side is analytic inC−. Since the equation holds onC, we can conclude

that there exists an entire function J(z) which is the analytic continuation of each

side into the entire complex plane. It is clear that this function vanishes in the

limit z→∞ (see (2.3.8) and note that K−(z) is analytic at infinity), and therefore

from Liouville’s theorem we have J(z) = 0. Thus,

A+(z) =
ip0

K−(p0)(z − p0)K+(z)
, (3.2.11)

and

T−(z) =
−ip0

z − p0

(
1 − K−(z)

K−(p0)

)
. (3.2.12)

3.3 The kernel and its approximate factorisation

In this section we examine the physical and mathematical nature of the kernel

with the aim to obtain an approximate factorisation. First we need to specify

the form of the kernel in theZ-transformed domain. This can be accomplished

through the process of analytic continuation if we separate negative and positive

powers of z, i.e. we write

K(z) = −i f−1
0 + iS0 + i

∞∑

n=1

Snzn + i

∞∑

n=1

S−nz−n, (3.3.1)

which in view of (3.1.22), and (3.1.23) becomes

K(z) = −i f−1
0 + iS0 +

2i

ka1

∞∑

n=1

∞∑

j=−∞

(p−1
j

z)n

sinψ j

+
2i

ka1

∞∑

n=1

∞∑

j=−∞

(τ jz
−1)n

sinψ j

. (3.3.2)

Now, we sum the two infinite series in (3.3.2) in their respective region of

convergence and obtain

K(z) = −i f−1
0 + iS0 −

2i

ka1

∞∑

j=−∞

1

sinψ j

(
z

z − p j
− 1

τ jz − 1

)
. (3.3.3)
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It is clear from the last formula that the kernel has infinitely many poles located

at the points at p j and τ−1
j

, and two nonisolated essential singularities at zero

and infinity.

The representation (3.3.3) can also help us to specify the position of the

singularities of the kernel relative to C. Note that in order to formulate the

problem in theZ–transformed domain we assumed that Kn ∈ Z (C), i.e.

Kn =
1

2πi

�
C

K(z)z−n−1dz, n ∈ Z. (3.3.4)

and in view of (3.2.4), (3.1.22), and (3.1.23) this is a valid representation if and

only if

p j ∈ C− − C, and τ−1
j ∈ C+ − C, ∀ j ∈ Z, (3.3.5)

which is in agreement with the condition (3.2.7).

3.3.1 Symmetry

The kernel has important symmetry properties that are not immediately appar-

ent. In the case of a rectangular lattice, where η1 = 0, we have τ j = p j, meaning

that K(1/z) = K(z). More generally, if we write f0 and S0 explicitly using (1.2.21)

and (B.2.5), then, after some algebra, we find that

K(z) =
2

π
ln

(
a1

2πℓ

)
+

∞∑

j=−∞
j,0

(
2i

ka1 sinψ j

− 1

| j|π

)
− (2i/ka1)(τ0p0 − 1)z

sinψ0(z − p0)(τ0z − 1)

−
∞∑

j=−∞
j,0

2i

ka1 sinψ j

(
z

z − p j
− 1

τ jz − 1

)
. (3.3.6)

From this expression and the conditions (3.1.25), and (3.1.26) we can conclude

that

K∗(1/z∗) = K(z). (3.3.7)
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3.3.2 Approximate factorisation

We now introduce an approximate kernel by truncating the second sum over j

in (3.3.6). The physical meaning of this approximation is important, and can be

understood as follows. We begin by noting that if we define

β(z) = (k cosψ0, λ(z)) with λ(z) =
i log z − η1k cosψ0

η2
. (3.3.8)

then

eiR jn·β(z) = ei jka1 cosψ0 z−n. (3.3.9)

Hence, using the definition of Sn (3.1.17) and (3.1.18) in (3.3.1), we obtain

K(z) = −i f−1
0 + i

∞∑

n=−∞

∞∑′

j=−∞
eiR jn·β(z)H0(kR jn), (3.3.10)

i.e. the kernel can be expressed in the form of a two-dimensional lattice sum,

representing the effect at the origin of sources at all other lattice points, the

complex amplitude of the source located at r = R jn being eiR jn·β(z). Using the

alternative representation (B.2.11) in (3.3.10) we can retrieve (3.3.3) and subse-

quently (3.3.6). Note that (B.2.11) originates from the the spectral representa-

tions of the quasi-periodic functions G+0 and G−0 (see appendix B.1.3) and this

observation can clarify the physical meaning of the infinite sum in (3.3.3). It

describes the interactions between distinct rows of scatterers, and the repre-

sentations (B.1.32) and (B.1.33) show that these interactions are caused by an

infinite sum of modes (exponential solutions to the Helmholtz equation) prop-

agating between the rows. However, all but one of these modes is evanescent,

and the rate of decay increases rapidly with the modulus of the summation

index j. Thus, in truncating this sum, we are discarding interaction effects due

to strongly damped modes, and in fact this amounts to a standard method for

treating scattering by multiple linear arrays [4, 42]. On the other hand, the

first sum over j in (3.3.6) originates from the one-dimensional lattice sum σ(1)
0

,

and describes the interactions between the scatterers within each row. Now the
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approximate kernel

Kν(z) =
2

π
ln

(
a1

2πℓ

)
+

∞∑

j=−∞
j,0

(
2i

ka1 sinψ j

− 1

| j|π

)
− (2i/ka1)(τ0p0 − 1)z

sinψ0(z − p0)(τ0z − 1)

−
ν∑

j=−ν
j,0

2i

ka1 sinψ j

(
z

z − p j
− 1

τ jz − 1

)
, (3.3.11)

is a rational function with simple poles at the points z = p0, z = 1/τ0, z = p j and

z = 1/τ j, j = ±1,±2, . . . ,±ν, which also satisfies the symmetry relation (3.3.7).

Taking the limit z→∞, we find that

Kν(z)→ Cν, (3.3.12)

where

Cν =
2

π

(
ln

(
a1

2πℓ

)
−

ν∑

j=1

1

j

)
+

∑

| j|>ν

(
2i

ka1 sinψ j
− 1

| j|π

)
. (3.3.13)

Note that Cν is real, and by choosing ν to be sufficiently large, we can always

ensure that it is nonzero. This being the case, if we write

Kν(z) = Pν(z)

ν∏

j=−ν

1

(z − p j)(z − 1/τ j)
, (3.3.14)

where Pν(z) is a polynomial, then Cν represents its leading coefficient. Hence we

can conclude that Kν(z) has exactly 4ν + 2 zeros. Initially, we will assume that

there are no zeros that lie on the unit circle; later we will show how the theory

can be adjusted to account for this case.

Now the symmetry relation (3.3.7) shows that there are 2ν + 1 zeros outside

the unit circle located at the points z = z j, j = −ν, . . . , ν, say, and an equal

number of zeros inside the unit circle, located at the points z = 1/z∗
j
. The actual

values of z j must be determined numerically from (3.3.11). However, we can

determine the locations of the zeros of Kν(z) relative to the inversion contour C
by considering their implications for the behaviour of A0n as n → ∞. Equation

(3.2.11) shows that a zero of K+ν (z) corresponds to a pole of A+(z). Moreover, all of

the poles of A+(z) must lie in the region where |z| ≥ 1, or else the coefficients A0n
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grow exponentially as n→ ∞, which is unphysical. Hence, the points z = 1/z∗
j
,

j = −ν, . . . , νmust be zeros of K−ν (z). Now, the condition (3.3.5) implies that K−ν (z)

has 2ν + 1 poles at the points τ−1
j

, and since this function must also be analytic

and zero free at infinity, we can conclude that it can not possess any other zeros

besides z = 1/z∗
j
. Therefore, the remaining points z = z j must be zeros of K+ν (z) .

To summarise we have the following condition

z j ∈ C− − C, and 1/z∗j ∈ C+ − C, for j = −ν, . . . , ν (3.3.15)

and the factorisation of the approximate kernel may now be expressed as

K+ν (z) = Cν

ν∏

j=−ν

z − z j

z − p j
, (3.3.16)

and

K−ν (z) =

ν∏

j=−ν

z − 1/z∗
j

z − 1/τ j
. (3.3.17)

Note that the factors are related via
[
K+ν (1/z∗)

K+ν (0)

]∗
=

z − 1/τ0

z − p0
K−ν (z), (3.3.18)

which means that

(z − p0)(z − 1/τ0)Kν(z) =
(z − p0)2

[K+ν (0)]∗

∣∣∣K+ν (z)
∣∣∣2, |z| = 1, (3.3.19)

because in this case 1/z∗ = z.

Next consider the case in which the approximate kernel Kν(z) has N zeros on

the unit circle. The symmetry relation dictates that N is an even number. Thus,

suppose that N = 2, for example

Kν(z0) = Kν(z
′
0) = 0, with |z0| = |z′0| = 1. (3.3.20)

As before, the zeros 1/z∗
j
, j = −ν, . . . ,−1, 1, . . . , ν located inside the unit circle are

zeros of K−ν (z), and since this function must be analytic and zero free at infinity, it

should posses only one additional zero. For rectangular or hexagonal (a1 = 2η1)

lattices we can prove that this zero should be located on the unit circle. If we

suppose on the contrary that it lies outside the unit circle, then K+(z) must have
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two zeros on the unit circle, which in turn implies that A+(z) must have two

poles on the unit circle. These points are z0 and z′0 = 1/z0, and we will see in

§3.5.2 that they correspond to the existence of two Bloch waves propagating

through the lattice. It is not difficult to see that the y-component of the group

velocity [18, eq. 23] of these two waves differs only by sign, meaning that one

of them is incoming and the other is outgoing. Clearly the first one violates the

radiation condition at infinity and therefore we can conclude that the function

A+(z) should have only one pole on the unit circle. In other words, the zeros of

the kernel that are on the unit circle should be shared between the approximate

factors. The last statement is assumed to be valid for skewed lattices as well,

since we have not encountered situations in which the numerical calculations

have suggested otherwise. Now, we may assume without loss of generality that

K+ν (z0) = 0, K−ν (z′0) = 0, and K+ν (z′0)K−ν (z0) , 0. (3.3.21)

Given a pair of zeros on the unit circle, determining which to treat as z0 and

which to treat as z′0 is not straight forward; we will return to this matter in §3.5.2

and §3.6. Note that the locations of z0 and z′0 are not necessarily related to each

other, but (3.3.7) still holds because on the unit circle we have z = 1/z∗. Therefore

the form of K−ν (z) must be changed slightly; in fact

K−ν (z) =
z − z′0

z − 1/τ0

ν∏

j=−ν
j,0

z − 1/z∗
j

z − 1/τ j
, (3.3.22)

whereas K+ν is still given by (3.3.16). The relationship between the two factors

(3.3.18) must be also be adjusted (a multiplicative factor (z− z0)/(z− z′0) must be

introduced to the right-hand side), and so in place of (3.3.19), we now have

(z − p0)(z − 1/τ0)Kν(z) =
(z − p0)2(z − z′0)

[K+ν (0)]∗(z − z0)

∣∣∣K+ν (z)
∣∣∣2, |z| = 1. (3.3.23)

Finally, note that z0 and z′0 may actually coincide with each other, in which case

K+ν and K−ν share a common zero. However, this situation is not problematic,

because the expressions obtained for A+(z) (3.2.11) and T−(z) (3.2.12) remain

valid. In particular, such a point is a pole of A+(z), but is neither a pole nor a

zero of T−(z), and must therefore lie outside the contour C.
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Figure 3.2: Schematic diagram illustrating the possible situations in the z plane. The black

disks are poles of K(z), and the white disks represent zeros; (a) shows the case where there K(z) has

no zeros on the unit circle, whereas there is one pair of these in (b). Functions with a superscript

‘+’ (‘−’) are analytic in the (un)shaded region.

3.4 Explicit solution

Having determined the factorization of the kernel, we can substitute (3.3.16) in

(3.2.11) and obtain

A+(z) =
ip0

CνK−ν (p0)(z − z0)

ν∏

j=−ν
j,0

z − p j

z − z j

, (3.4.1)

and the amplitudes can now be calculated from the integral

A0n =
1

2πi

�
C

A+(z) z−n−1 dz. (3.4.2)

The contour of integration may be chosen to be the unit circle indented so as to

include the pole at z = 1/τ0 and exclude the pole at z = p0 (see figure 3.2(a)), and

further indentations are required in the case where the kernel has zeros on the

unit circle (see figure 3.2(b)). Clearly (3.4.2) evaluates to zero for n < 0; otherwise

A0n can be calculated by collecting the residues from the poles2 outside C (see

2for simplicity we assume that zm are distinct, so that the poles are simple.
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[64, p. 380]), that is

A0n = −
ν∑

m=−ν
z−n−1

m ρm, n = 0, 1, . . . . (3.4.3)

with

ρm = Res
z=zm

A+(z) =
ip0

CνK
−
ν (p0)

ν∏

j=−ν

(zm − p j)
(1−δ j0)

(zm − z j) + δ jm

. (3.4.4)

3.4.1 Remarks

An important question regarding our method of solution is what value should

be assigned to the approximation parameter ν in order to obtain results of high

accuracy. From (3.4.3) it is evident that the amplitudes depend on the zeros of

the approximate kernel that lie outside the closed curveC, and the leading order

behaviour comes from the zero that is either on, or closest to the unit circle. Let

wν be that zero for a given parameter ν. If

wν → w as ν→∞, (3.4.5)

for some point w, then K(w) = 0. In table 3.1, we give results that confirm

(3.4.5), and it appears that a small value of ν is sufficient to provide a good

approximation of w by wν.

The rate of convergence of the infinite sum in (3.3.6) depends on the exponen-

tial growth rate of the poles p j and τ j which in turn depends on the parameters

ka1 and kη2 (see (B.1.16) and (B.1.12)). In particular, the rate of convergence of

the kernel is increased in cases where either ka1 is fixed and kη2 is increased, or

kη2 is fixed and ka1 is decreased. In physical terms, as we pointed out in the

beginning of §3.3.2, the effect of approximating the kernel is to take into account

some (2ν) evanescent modes who play significant role in the interaction effects

between distinct rows, and discard the rest as strongly damped modes. A large

value of kη2 in effect means that the distance (in wavelengths) the evanescent

modes have to travel before they interact with the next row is large and conse-

quently when they do reach the next row they are considerably weakened. The



3.4 Explicit solution 60

Table 3.1: The value of the zero of the approximate kernel wν, which is either on, or closest

to the unit circle, for different values of ν, ka1 and kη2. The parameters in use are ψ0 = π/6,

ℓ = 0.05, and η1 = 0.

a1 k η2 w1 w2 w3

0.5 1 1 27.1117 27.1117 27.1117

1 1 1 6.53812 6.53805 6.53805

1 2 0.5 2.99878 2.99470 2.99459

1.5 2 0.5 1.33153 1.32897 1.32880

3 1 1 1.27714 1.27445 1.27427

3 1 2 0.975676− 0.219216i 0.975573− 0.219677i 0.975572− 0.219680i

3 1 3 0.686014+ 0.727588i 0.686009+ 0.727593i 0.686009+ 0.727593i

1 3 3 −1.87542 −1.87542 −1.87542

second block of table 3.1 presents data for the case where ka1 is fixed and kη2 is

increased. The last two rows indicate that for large values of kη2 the interaction

effect of two evanescent modes (ν = 1) is sufficient to obtain accurate results. On

the other hand, keeping kη2 fixed and increasing ka1 has the opposite effect and

this is shown on the first block of table 3.1. In this case, as ka1 increases the decay

rate of the evanescent modes slows down, and consequently more than two of

these modes (ν > 1) are required in order to capture the significant interaction

effects. To summarise, in view of the data of table 3.1 we can estimate that for

a1 ≤ η2, the choice ν = 1 is adequate for our method to produce accurate results,

whereas for a1 > η2, we need to increase ν in order to achieve high accuracy.

The last statement can be also confirmed alternatively as follows. From

equation (3.4.3), it is clear that A0n → 0 as n → ∞, if and only if the kernel

has no zeros on the unit circle. In this case there is an alternative way to

calculate the amplitudes which is to truncate the system (3.1.16) and then invert

it numerically. Results that have been obtained using the two methods for

different sets of parameters, are consistent with each other. In table 3.2 and 3.3,

we display the first ten amplitudes obtained by each method for the case a1 = η2

( ν = 1) and a1 > η2 (ν = 2), respectively. Note that if the kernel possesses a
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Table 3.2: The first ten amplitudes calculated by numerical truncation and via the Wiener-Hopf

technique. The parameters in use are kℓ = 0.01, ψ0 = π/4, a1 = η2 = 1, and η1 = 0. For the

numerical method the order of truncation in the system (3.1.16) is 200, and the Wiener–Hopf

technique has been carried out with ν = 1.

Amplitudes Numerical truncation Wiener–Hopf technique

A00 −271593× 10−1 − 701286× 10−2i −271593× 10−1 − 701286× 10−2i

A01 −827986× 10−2 − 213795× 10−2i −827987× 10−2 − 213795× 10−2i

A02 −253255× 10−2 − 653934× 10−3i −253254× 10−2 − 653932× 10−3i

A03 −774649× 10−3 − 200023× 10−3i −774646× 10−3 − 200022× 10−3i

A04 −236947× 10−3 − 611826× 10−4i −236946× 10−3 − 611822× 10−4i

A05 −724769× 10−4 − 187143× 10−4i −724763× 10−4 − 187142× 10−4i

A06 −221690× 10−4 − 572430× 10−5i −221688× 10−4 − 572424× 10−5i

A07 −678101× 10−5 − 175093× 10−5i −678092× 10−5 − 175091× 10−5i

A08 −207415× 10−5 − 535571× 10−6i −207412× 10−5 − 535563× 10−6i

A09 −634437× 10−6 − 163819× 10−6i −634427× 10−6 − 163816× 10−6i

Table 3.3: The first ten amplitudes calculated by numerical truncation and via the Wiener-Hopf

technique. The parameters in use are kℓ = 0.1, ψ0 = π/6, a1 = 1, η2 = 0.8, and η1 = 0. For the

numerical method the order of truncation in the system (3.1.16) is 200, and the Wiener–Hopf

technique has been carried out with ν = 2.

Amplitudes Numerical truncation Wiener–Hopf technique

A00 −230216× 10−1 − 854630× 10−3i −230216× 10−1 − 854630× 10−3i

A01 −194845× 10−2 − 723323× 10−4i −194845× 10−2 − 723323× 10−4i

A02 −203636× 10−3 − 755958× 10−5i −203636× 10−3 − 755957× 10−5i

A03 −209931× 10−4 − 779327× 10−6i −209930× 10−4 − 779325× 10−6i

A04 −216656× 10−5 − 804292× 10−7i −216655× 10−5 − 804288× 10−7i

A05 −223581× 10−6 − 830000× 10−8i −223580× 10−6 − 829995× 10−8i

A06 −230729× 10−7 − 856535× 10−9i −230727× 10−7 − 856528× 10−9i

A07 −238105× 10−8 − 883917× 10−10i −238103× 10−8 − 883910× 10−10i

A08 −245717× 10−9 − 912175× 10−11i −245715× 10−9 − 912166× 10−11i

A09 −253573× 10−10 − 941335× 10−12i −253570× 10−10 − 941326× 10−12i
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zero on the unit circle, then A0n does not tend to zero as n→∞, and therefore a

comparison between the two methods is not possible.

It is important to underline that the parameter kℓ has not been considered in

the data of table 3.1 because it doesn’t play any role in the approximation of the

kernel. In fact, we consider cases where kℓ > 1 and the results we obtained from

the Wiener-Hopf technique and the numerical truncation are consistent with

each other. However, the parameter kℓ plays crucial role in the small scatterer

approximation and it must be kept low in order to have a good accuracy on the

boundary condition (see for example figure 5.1 (a)).

3.5 The far field pattern

The far field pattern depends on whether or not the kernel has zeros on the unit

circle, or in other words, whether or not one of the poles of A+(z) located at the

points z = z j lies on the unit circle. We shall examine these two cases separately.

3.5.1 A+(z) is analytic on the unit circle

In the case where the kernel has no zeros on the unit circle, the function A+(z)

is analytic inside and on the unit circle, which means that it has the following

Taylor expansion

A+(z) =

∞∑

n=0

A0nzn, for |z| 6 1. (3.5.1)

Recall that the scattered field is given by

usc(r) =

∞∑

n=0

∞∑

j=−∞
A0nei jka1 cosψ0H0(k|r − R jn|), (3.5.2)

which alternatively, can be expressed in the form

usc(r) =

∞∑

n=0

A0nG(1)
0

(r − na2, k cosψ0), (3.5.3)
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where G1
0 is the 1D quasi-periodic function defined in (B.1.19). Using the spectral

representation (B.1.23), yields

usc(r) =
2

ka1

∞∑

n=0

∞∑

j=−∞

A0n

sinψ j
eik((x−nη1) cosψ j+|y−nη2 | sinψ j). (3.5.4)

From the last expression and the Taylor expansion (3.5.1) we can determine the

behaviour of usc in the limit y→ ±∞.

In the upper half plane, and in particular for Nη2 < y < (N+1)η2, from (3.5.4)

we have that

usc(r) =
2

ka1

∞∑

j=−∞

eikx cosψ j

sinψ j


eiky sinψ j

N∑

n=0

(
A0npn

j

)
+ e−iky sinψ j

∞∑

n=N+1

(
A0n τ

−n
j

)

 . (3.5.5)

Taking the limit N → ∞, which in turn implies that y → ∞, causes the second

sum over n to disappear, and since sinψ j is positive imaginary for j , 0, only

the term with j = 0 contributes to the final result. That is,

usc(r) ∼ c+0 eik(x cosψ0+y sinψ0) as y→∞, (3.5.6)

with

c+0 =
2A+(p0)

ka1 sinψ0
. (3.5.7)

Moreover, from (3.4.1) we have that

A+(p0) =
ip0

K−ν (p0) Resz=p0
K+ν (z)

, (3.5.8)

or equivalently

A+(p0) =
ip0

Resz=p0
Kν(z)

= −ka1

2
sinψ0, (3.5.9)

and therefore

c+0 = −1. (3.5.10)

Thus, in the far field limit y→∞, the scattered field exactly cancels the incident

wave, regardless of the value chosen for ν in performing the approximate kernel

factorisation.

The field in the lower half plane is easier to determine, because in this case

there is no need to split the sum over n in (3.5.4). For y < 0, we have that

usc(r) =

∞∑

j=−∞
c−j eik(x cosψ j−y sinψ j), (3.5.11)
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with

c−j =
2A+(τ−1

j
)

ka1 sinψ j
, (3.5.12)

and since ψ j is positive imaginary for j , 0, the far field form of usc consists of a

single term, corresponding to a reflected plane wave, that is

usc(r) ∼ c−0 eik(x cosψ0−y sinψ0) as y→ −∞. (3.5.13)

In this case, the exact value of the coefficient c−0 depends on the choice of param-

eters, nevertheless, we can prove that

|c−0 | = 1, (3.5.14)

which is a necessary condition for energy to be conserved (see §3.6). For the

proof, note that

A+(τ−1
0 ) =

ip0

K−ν (p0)(τ−1
0
− p0)K+ν (τ−1

0
)
. (3.5.15)

Evaluating the left-hand side of (3.3.19) at z = p0 and z = τ−1
0

shows that

∣∣∣(τ−1
0 − p0)K+ν (τ−1

0 )
∣∣∣ =

∣∣∣∣ Resz=p0
K+ν (z)

∣∣∣∣, (3.5.16)

which in view of (3.5.8), yields

∣∣∣A+(τ−1
0 )

∣∣∣ =
∣∣∣A+(p0)

∣∣∣ = ka1

2
sinψ0, (3.5.17)

and the condition (3.5.14) follows immediately; again this is independent of the

value taken for ν.

Figure 3.3 shows how arg[c−0 ] (the only far field parameter for which we do

not have a simple expression) varies with ψ0, for three different wavenumbers

and two different lattices. Data for these plots and also for subsequent figures

were computed with ν = 1, which means that the interactions between each

pair of consecutive rows are modelled using two plane waves (one propagating

upwards and one propagating downwards) and four evanescent modes. In-

creasing the value of ν was found to lead to negligible changes in the results.

The behaviour exhibited in figure 3.3 is typical of the cases in which there is

no propagation through the lattice. When arg[c−0 ] = π, the far field behaviour
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Figure 3.3: Plots showing how the argument of the reflection coefficient c−
0

varies with the

angle of incidence ψ0. No Bloch waves are present, and so |c−
0
| = 1 in all cases shown. The

parameters in use are a1 = 1, η1 = 0, η2 = 1 and (a) ℓ = 0.01, (b) ℓ = 0.05.

is identical to that which would occur if the lattice were to be replaced with

a continuous sound-soft barrier on the line y = 0. Here, this occurs in the

grazing limits ψ0 → 0 and ψ0 → π, which is to be expected, because τ−1
0
→ p0

as sinψ0 → 0, and (3.5.10) holds in all cases. The greatest deviation from this

occurs at head-on incidence (i.e. ψ0 = π/2), and the height of the peak increases

with frequency.

3.5.2 A+(z) has a pole on the unit circle

We now consider the case where the function A+(z) has a simple pole on the unit

circle, at z = z0, say. To account for this, we use (3.4.4) to split the amplitudes

into two terms

A0n = Â0n − ρ0z−n−1
0 , (3.5.18)

where

Â0n = −
ν∑

m=−ν
m,0

ρmz−n−1
m . (3.5.19)

Accordingly, we split the scattered field into two parts

usc(r) = ua(r) + ub(r) (3.5.20)
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where

ua(r) =

∞∑

n=0

∞∑

j=−∞
Â0nei jka1 cosψ0H0(k|r − R jn|), (3.5.21)

and

ub(r) = −
ρ0

z0

∞∑

n=0

∞∑

j=−∞
eiR jn·β(z0)H0(k|r − R jn|), (3.5.22)

with β(z) defined in (3.3.8) (we also used (3.3.9)). Since
∑∞

n=0

∣∣∣Â0n

∣∣∣ < ∞, the far

field analysis for ua can be carried out in the same manner as in §3.5.1. We first

set

Â(z) =

∞∑

n=0

Â0nzn, for |z| 6 1, (3.5.23)

and then substitute Â0n = A0n + ρ0z−n−1
0

and use analytical continuation argu-

ments to obtain

Â(z) = A+(z) −
ρ0

z − z0
. (3.5.24)

From the last two equations and the representation (see (3.5.2)-(3.5.4))

ua(r) =
2

ka1

∞∑

n=0

∞∑

j=−∞

Â0n

sinψ j
eik((x−nη1) cosψ j+|y−nη2 | sinψ j), (3.5.25)

we find that

ua(r) ∼ ĉ±0 eik(x cosψ0±y sinψ0), as y→ ±∞, (3.5.26)

where

ĉ+0 =
2

ka1 sinψ0

(
A+(p0) −

ρ0

p0 − z0

)
, (3.5.27)

and

ĉ−0 =
2

ka1 sinψ0

(
A+(τ−1

0 ) −
ρ0

τ−1
0
− z0

)
. (3.5.28)

The far field pattern of ub can be determined by expressing it in terms of the

function G± defined in (B.1.24), and then make use the spectral form (B.1.32)

and (B.1.33). Note that these representations are valid in the upper and lower

half plane respectively. With this in mind, for y > 0, we write

ub(r) = −ρ0

z0

(
G(2)

0
(r,β(z0)) − G+0 (r,β(z0))

)
, (3.5.29)
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where G(2)

0
represents the two dimensional quasi-periodic Green’s function de-

fined in (B.1.5). We can now use (B.1.32) and obtain

ub(r) ∼ −
ρ0

z0
G(2)

0
(r,β(z0))

−
2ρ0

ka1 sinψ0(z0 − p0)
eik(x cosψ0+y sinψ0) as y→∞. (3.5.30)

On the other hand, for y < 0, we write

ub(r) = −
ρ0

z0

(
G(1)

0
(r, k cosψ0) + G−0 (r,β(z0))

)
, (3.5.31)

where G(1)

0
is the one dimensional quasi-periodic Green’s function, defined in

(B.1.3). Substituting the spectral representations (B.1.23) and (B.1.33) in (3.5.31),

yields

ub(r) ∼
2ρ0

ka1 sinψ0(τ−1
0
− z0)

eik(x cosψ0−y sinψ0) as y→ −∞. (3.5.32)

To summarise, in the upper half plane in view of (3.5.9), (3.5.26), (3.5.27) and

(3.5.30) we have that

usc(r) ∼ −
ρ0

z0
G(2)

0
(r,β(z0)) − eik(x cosψ0+y sinψ0) as y→∞, (3.5.33)

and so the far field pattern takes the form of a Bloch wave, with complex

amplitude −ρ0z−1
0 , plus a plane wave which cancels the incident wave. In the

lower half plane (3.5.26), (3.5.28) and (3.5.32) reveal that the scattered field is

again given by (3.5.13), only this time the reflected coefficient c−0 does not satisfy

the condition (3.5.14). To determine |c−0 |, evaluate the left-hand side of (3.3.23)

at the points z = p0 and z = τ−1
0

, which yields

∣∣∣(τ−1
0 − p0)K+ν (τ−1

0 )
∣∣∣ = f (z0, z

′
0)
∣∣∣ Resz=p0

K+ν (z)
∣∣∣, (3.5.34)

where

f (z0, z
′
0) =

√∣∣∣∣∣∣
(τ−1

0
− z0)(p0 − z′

0
)

(τ−1
0
− z′

0
)(p0 − z0)

∣∣∣∣∣∣. (3.5.35)

Hence, from (3.5.8) and (3.5.15),

∣∣∣A+(τ−1
0 )

∣∣∣ =
∣∣∣A+(p0)

∣∣∣
f (z0, z′0)

=
ka1 sinψ0

2 f (z0, z′0)
, (3.5.36)
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Figure 3.4: Contour plots showing the (a) modulus and (b) phase of the reflection coefficient

c−
0

for the case where l = 0.001, a1 = 2, η1 = 0 and η2 = 2.

and therefore the modulus of the reflection coefficient is given by

|c−0 | =
1

f (z0, z′0)
. (3.5.37)

We now return to the matter of classifying zeros of Kν(z) that occur on the

unit circle as zeros of K+ν or of K−ν . Clearly, any Bloch wave that is excited must

be outgoing as y → ∞, but there is no meaningful way to define the phase

velocity of such phenomena; for example we can add 2qπ/η2, q ∈ Z to λ(z0)

without affecting the value of R jp ·β(z0) (see [18, pp. 40–43] for full details). One

possibility is to calculate the direction of energy propagation (group velocity)

of the Bloch waves; another is to consider the rate of energy flux parallel to the

y-axis (see §3.6, below). Provided that Kν(z) has a single pair of zeros on the unit

circle, so that only one Bloch wave is excited, a simple alternative is to use the

value f (z0, z′0) given in (3.5.35). Since f (z′0, z0) = 1/ f (z0, z′0), this provides a simple

means of distinguishing z0 from z′0 —the wrong choice leads to a reflected wave

whose amplitude is greater than one, which is clearly unphysical. Also, note

that |c−0 | = 1 can only occur when z0 = z′0.
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Figure 3.5: Contour plots showing the (a) modulus and (b) phase of the reflection coefficient

c−
0

for the case where l = 0.001, a1 = 1, η1 = 0, and η2 = 3.

Figures 3.4 and 3.5 show contour plots of the modulus and phase of the

reflection coefficient, for all possible values of ψ0, and k ∈ [0.5, 1.2], with the

lattice parameters fixed. Since the scattered field includes only two terms that

propagate energy into the far field (the reflected field and the Bloch wave), these

figures give a fairly comprehensive picture of the behaviour of the solution

for the lattices in question. In particular, the proportion of incident field energy

reflected back into the region y < 0 is |c−0 |2 (see §3.6, below). At grazing incidence

(i.e. when sinψ0 ≈ 0), and also for very small k, we have |c−0 | = 1, meaning that

the parameters are in a band gap, and there is no propagation through the

lattice. In the former case, we also have arg[c−0 ] ≈ π (see §3.5.1, above). On the

other hand, when π/4 . ψ0 . π/2, there are values of k in both cases for which

|c−0 | < 1, meaning that a Bloch wave has been excited. In figure 3.4, the range

of angles for which this wave exists widens as k is increased, and it persists up

to the maximum value of k shown. In figure 3.5, a second band gap appears

at k & 1.05 and ψ0 ≈ π/2, and widens as k is increased. The modulus of the

reflection coefficient decreases significantly as the parameters are moved away
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Figure 3.6: Contour plot showing Re[ut(r)], for k = 1, l = 0.1, a1 = 1, η1 = 0, η2 = 3 and

ψ0 = 0.41π.

from the band edges and into the interior; in figure 3.4(a), the minimum value of

|c−0 | is approximately 0.1, meaning that around 99% of the incident field energy

is transmitted into the lattice. There is also significant variation in the argument

of the reflection coefficient in these regimes; interestingly the largest deviation

from the grazing incidence behaviour (arg[c−0 ] = −π) occurs at the lower edge

of the pass-band in both cases.

Figure 3.6 shows the value of Re[u(r)] in the region−20 ≤ x ≤ 20,−10 ≤ y ≤ 15

for the case where a1 = 1, η1 = 0, η2 = 3, l = 0.1, k = 1 and ψ0 = 0.41π. These

parameters were chosen because the value ofβ(z0) (3.3.8) is significantly different

from that of k (3.1.4); in fact we have that the y-component of k is k sinψ0 ≈ 0.225,

whereas of β(z0) is λ(z0) ≈ 0.960 (the x-components are of course equal). The

different nature of the field in the regions y < 0 and y > 0 is clearly evident.

Note that the transition from plane waves in the lower half plane to a Bloch

wave in the upper half plane is extremely rapid. It is also interesting to note that

|c−0 | ≈ 0.912 in this case, which means that approximately 83% of the incident

field energy is reflected back into the region y < 0. Nevertheless, the amplitude
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S4

Figure 3.7: The contour S, consisting of the four elements S1, . . . , S4.

range inside the lattice is very similar to that outside.

3.6 Conservation of energy

To establish that the energy is conserved, we begin by noting that the acoustic

intensity I, that is the rate of working of the pressure fluctuation, is given by [5,

pp. 40–44]

I = −P0
∂U

∂t
∇U, (3.6.1)

where P0 is the quiescent pressure, and U(r, t) = Re[u(r)e−iωt] is the total acoustic

potential (with ω representing the angular frequency see §1.1). The problem

that we are considering is uniform in the z-direction, and so we can calculate

the flux across a contour S in the (x, y) plane, by which we strictly mean the flux

across S per unit length in z. Following the procedure in [34, pp. 19–20], it is not

difficult to show that the average energy flux over one time period is given by

the line integral

〈ES〉 = −
P0ω

2
Im

∫

S

u(r)

(
∂u(r)

∂n

)∗
ds, (3.6.2)

where the derivative is taken in the direction of the outgoing normal to S. Clearly,

conservation of energy requires that this integral must vanish for any closed
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contour, a result that can be obtained directly by applying Green’s theorem [34,

p. 85] to u and its complex conjugate. We take S to be the parallelogram with

vertices at the points

r = ± 1
2
a1 ±

(
N + 1

2

)
a2, (3.6.3)

so that we have

I1 + I2 + I3 + I4 = 0, (3.6.4)

where

I j = −
P0ω

2
Im

∫

S j

u(r)

(
∂u(r)

∂n

)∗
ds, (3.6.5)

and S1, . . . , S4 represent the four sides of S; see figure 3.7. In view of the quasi-

periodicity relation (3.1.13), it is clear that the only difference between the in-

tegrals along S1 and S3 is caused by the fact that the derivatives are taken in

opposite directions; hence

I1 + I3 = 0, (3.6.6)

for all N. For the horizontal portions of S, we take the limit N → ∞ so that we

can discard contributions that decay as y→ ±∞. Thus, on S4, we have

u ∼ eikx cosψ0

(
eiky sinψ0 + c−0 e−iky sinψ0

)
, (3.6.7)

and so the integral trivially evaluates to yield

I4 = −
P0ω2

2c
a1 sinψ0

(
1 − |c−0 |2

)
, (3.6.8)

where c represents the speed of sound. If there are no Bloch waves, the total

field decays exponentially as y → ∞ (see §3.5.1), and so the integral along S2

evaluates to zero. We also have |c−0 | = 1 in this case, and so I4 = 0 as well. On

the other hand, if a Bloch wave is present, then |c−0 | < 1 (see §3.5.2, above) and

so I4 is negative, corresponding to the fact that energy is propagating across S4

in the direction opposite to the outgoing normal, i.e. from the exterior of S to

the interior. Also, from (3.5.33), we have

I2 = −
P0ω|ρ|2

2
Im

∫

S2

G(2)
0

(r,β(z0))
∂

∂y

[
G(2)

0
(r,β(z0))

]∗
ds, (3.6.9)
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where the path of integration has the following parametrisation

S2 : r(t) = (t +Nη1/2, Nη2/2), −a1/2 ≤ t ≤ a1/2. (3.6.10)

From (B.1.6), it is clear that the integrand is independent of N, and so we choose

the value N = 1 so as to enable the use of (B.1.36). Hence, on this particular path

we have that

G(2)
0

(r(t),β(z0)) = − 2

ka1

∞∑

j=−∞

eikt cosψ j

sinψ j

( p1/2
j

z0 − p j

−
τ1/2

j

τ jz0 − 1

)
, (3.6.11)

∂

∂y

[
G(2)

0
(r(t),β(z0))

]∗
=

2i

a1

∞∑

j=−∞
e−ikt cosψ j

( p1/2
j

z0 − p j
+

τ1/2
j

τ jz0 − 1

)∗
, (3.6.12)

and

G(2)
0

(r(t),β(z0))
∂

∂y

[
G(2)

0
(r(t),β(z0))

]∗
= − 4i

ka2
1

∞∑

j=−∞

∞∑

n=−∞

e2it( j−n)π/a1

sinψ j

×
( p1/2

j

z0 − p j
−

τ1/2
j

τ jz0 − 1

)(
p1/2

n

z0 − pn
+

τ1/2
n

τnz0 − 1

)∗
. (3.6.13)

Now, if we substitute the last equation in (3.6.9) and perform the integration

over t, then only the terms in which j = n are non zero. In fact

I2 = Re

∞∑

j=−∞

2P0c|ρ0|2
a1 sinψ j

( |p j|
|z0 − p j|2

−
|τ j|

|τ jz0 − 1|2
)

+
4iP0c|ρ0|2
a1 sinψ j

Im




(
p jτ∗j

)1/2

(z0 − p j)(τ jz0 − 1)∗


 . (3.6.14)

Finally, we take into account the fact that τ∗
j
= p j for j , 0, and that sinψ j is real

when j = 0 and positive imaginary otherwise, to obtain

I2 =
2P0c|ρ0|2
a1 sinψ0

(
1

|z0 − p0|2
− 1

|τ jz0 − 1|2
)
−

∞∑

j=−∞
j,0

4P0c|ρ0|2
a1| sinψ j|

Im

[
p jz0

(p j − z0)2

]
. (3.6.15)

Since I4 ≤ 0, we must have I2 ≥ 0, with equality holding in both cases if and only

if |c−0 | = 1, i.e. z0 = z′0. In this case, the y-component of the Bloch wave group

velocity is zero, and so no energy is transported into the lattice. Otherwise, we
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must have I2 > 0, which corresponds to the fact that any Bloch wave excited in

the far field can only transport energy across S2 in the direction of the outgoing

normal (i.e. increasing y). The fact that I2+ I4 = 0 serves as a useful check on our

numerical results; in fact our calculations indicate that this is always satisfied to

a high degree of accuracy, regardless of the value chosen for the parameter ν in

approximating the kernel.

Equation (3.6.15) can also be used to distinguish between zeros of K+ν and

those of K−ν when these occur on the unit circle. Thus, zeros of K−ν (z) on the

unit circle correspond to Bloch waves that can propagate through an infinite

lattice, but that cannot be excited here, because they are incoming from infinity,

that is the y component of their group velocity is oriented in the direction of

decreasing y. Therefore replacing z0 with a zero of K−ν (z) in (3.6.15) leads to a

negative result, in contrast to zeros of K+ν , which yield positive results. This

method is more general than using (3.5.35), in that it applies regardless of the

number of zeros that occur on the unit circle.



Chapter 4

The general case

The method used in the previous chapter needs to be generalised to account

for cases where Neumann boundary conditions are imposed on the cylinders

surfaces, or where the assumption (3.1.5) is dropped, so that the cylinders are no

longer treated as point scatterers. In the first case, in order to correctly capture

the behaviour of the field, both monopole and dipole terms are required in the

expansion of the field radiating from each scatterer (see §1.2). Consequently,

there are three amplitude coefficients associated with each scatterer, and this

leads to a system of three coupled Wiener–Hopf equations, or equivalently a

matrix Wiener–Hopf equation of order three. For the general case, more terms

are required in the expansion of the field, and the dimension of the matrix grows

larger.

In the first two sections we present the details regarding the formulation

which leads to the matrix Wiener–Hopf equation, and in §4.3 we prove an

important symmetry property of the matrix kernel. Each one of the elements of

the kernel is expressed as an infinite sum of partial fractions, and it has an infinite

number of poles, plus two nonisolated essential singularities at the origin and

at infinity. As in the previous chapter, these sums are truncated and thereby a

rational matrix kernel is obtained. In contrast to the scalar case a factorisation

of a rational matrix is not trivial. However, a new method which essentially

75
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solves a rational matrix Wiener–Hopf problem without the need of a product

factorisation is presented in §4.4.

In the same fashion seen in chapter 3, we present the far field analysis in §4.5,

and useful identities provided by the principle of the conservation of energy are

given in §4.6. Finally, in the last section we examine the band structure of the

lattice by presenting some numerical results.

4.1 Formulation

In general, the field radiating from each cylinder of the semi-infinite lattice can

be expressed in terms of a multipole expansion series (1.2.10). Therefore, using

the same notation as in §3.1, the total field is represented by the expansion

u(r) = uinc(r) +

Q∑

q=−Q

∞∑

p=0

∞∑

j=−∞
A

q

jp
Hq(r jp). (4.1.1)

Here we have introduced the parameter Q which denotes the order of truncation

of the multipole expansion. Recall that for ‘small-sized’ sound-soft cylinders

we can take Q = 0, whereas, for sound-hard cylinders we can take Q = 1 (see

1.2.4). However, as the size of the cylinder or the frequency increases, the value

of Q needs to be significantly higher (some representative values are given in

[35]).

In order to find the amplitudes A
q

jp
we will apply the boundary condition

on the surface of an arbitrary chosen cylinder, at r = Rmn, say. To do this, we

need to express the total field in terms of the polar coordinates rmn = (rmn, θmn).

For the incident wave, we note that uinc(r) = eik·(Rmn+rmn), and use Jacobi’s formula

(1.2.12), to obtain

uinc(rmn) = eik·Rmn

∞∑

µ=−∞
eiµ(π/2−ψ0)Jµ(rmn). (4.1.2)

For the wavefunctions Hq(r jp) in (4.1.1), we can use Graf’s addition theorem.

Thus, assuming that rmn < Rm− j,n−p, for every j and p with ( j, p) , (m, n), Graf’s
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formula (1.3.1) yields

Hq(r jp) =

∞∑

µ=−∞
Hq−µ(Rm− j,n−p)Jµ(rmn). (4.1.3)

Hence, in the vicinity of the chosen cylinder, and with the aid of (4.1.2) and

(4.1.3), the total field can be written solely in terms of the coordinates rmn; that is

u(rmn) = eik·Rmn

∞∑

µ=−∞
eiµ(π/2−ψ0)Jµ(rmn) +

Q∑

q=−Q

A
q
mnHq(rmn)

+

Q∑

q=−Q

∞∑

p=0

∞∑′

j=−∞
A

q

jp

∞∑

µ=−∞
Hq−µ(Rm− j,n−p)Jµ(rmn). (4.1.4)

Recall that the prime on the summation symbol is used to indicate that the term

in which the argument of the Hankel function vanishes (in this case ( j, p) = (m, n))

is to be omitted from the series. We can now apply the boundary condition on

the surface of the cylinder, and use the orthogonality of the functions eiqθmn, to

obtain the system of algebraic equations

A
µ
mn + Zµ

Q∑

q=−Q

∞∑

p=0

∞∑′

j=−∞
A

q

jp
Hq−µ(Rm− j,n−p) = −Zµeik·Rmneiµ(π/2−ψ0),

µ = −Q, . . .Q, n = 0, 1, . . . , m ∈ Z,

(4.1.5)

where Zµ is defined in (1.2.15). Note that the periodicity condition (3.1.13) still

holds, and so we seek a solution with the property

A
q

jp
= A

q

0p
ei jk·a1 . (4.1.6)

Now, multiply the system (4.1.5) by iZ−1
µ e−imk·a1 , and use (4.1.6) to obtain the

reduced system

iZ−1
µ A

µ

0n
+ i

Q∑

q=−Q

∞∑

p=0

A
q

0p
Sq−µ

n−p = −ieink·a2eiµ(π/2−ψ0),

µ = −Q, . . .Q, n = 0, 1, . . . ,

(4.1.7)

where

Sq

0
=

∞∑

j=−∞
j,0

ei jk·a1Hq(− ja1), (4.1.8)



4.2 The matrix Wiener–Hopf equation 78

and

Sq
n =

∞∑

j=−∞
ei jk·a1Hq(na2 − ja1), n ∈ Z − {0}. (4.1.9)

Note that

Sq
n =



(−1)qσ(1)
q (k cosψ0), n = 0,

G(1)
q (na2, k cosψ0), n , 0,

(4.1.10)

where σ(1)
q is the 1D lattice sum of order q, and G(1)

q is the 1D quasi-periodic array

of singularities of order q, the definition of which can be found in the appendix

B. In particular, for n , 0, we can use the scattering angles (B.1.12), the points

p j, τ j defined in (B.1.16), and the representation (B.1.23) to obtain

Sq
n =

2(−i)q

ka1

∞∑

j=−∞

eiqψ jp−n
j

sinψ j
, for n > 0, (4.1.11)

and

Sq
n =

2(−i)q

ka1

∞∑

j=−∞

e−iqψ jτn
j

sinψ j
, for n < 0. (4.1.12)

4.2 The matrix Wiener–Hopf equation

So far we have dealt with the Z-transformation of a single infinite system of

algebraic equations into a scalar Wiener–Hopf equation. Now, since (4.1.7)

defines 2Q + 1 coupled infinite systems of equations we expect that a similar

transformation will yield a system of 2Q + 1 coupled Wiener–Hopf equations,

which essentially defines a matrix Wiener–Hopf equation. The transformation

process remains the same (see §2.3); first we extend the validity of (4.1.7) by

setting

Am
0n = 0, for n < 0, (4.2.1)

and write it in the equivalent form

Q∑

q=−Q

∞∑

p=−∞
K
µq
n−pA

q

0p
= T

µ+

n + T
µ−

n , µ = −Q, . . .Q, n ∈ Z, (4.2.2)
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where

T
µ+

n =



−ip−n
0

eiµ(π/2−ψ0), n > 0,

0, n < 0,
T
µ−

n =



0, n > 0,

∑Q

q=−Q

∑∞
p=0 K

µq
n−pA

q

0p
, n < 0,

(4.2.3)

and

K
µq
n =



iZ−1
q δµq + iSq−µ

0
, n = 0,

iSq−µ
n , n , 0.

(4.2.4)

Next, we assume that all the terms in the system (4.2.2) are members of the class

Z (C) for all µ, q = −Q, . . .Q, so as to transform it into the system of functional

equations

Q∑

q=−Q

Kµq(z)A+q (z) = T+µ (z) + T−µ(z), µ = −Q . . .Q, z ∈ C. (4.2.5)

The known functions in this system are Kµq(z) and T+µ (z), and these are given by

Z(K
µq
n ) and Z(T

µ+

n ), respectively. We seek to determine A+q (z) and T−µ (z). Note

that the following condition must hold (see (2.3.8))

T−µ (z)→ 0 as z→∞. (4.2.6)

The ‘+’ and ‘−’ signs indicate analyticity in the setsC+ andC−, whereC+ consists

of all the points that lie inside and on C, and C− consists of all the points that lie

outside and onC. We also know that C is a closed curve that encircles the origin,

and its exact form will be determined once we specify the singularity structure

of the functions Kµq(z) and T+µ (z). Finally, we write the system (4.2.5) in the form

of a matrix Wiener–Hopf equation; that is

K(z)A+(z) = T+(z) + T−(z), (4.2.7)

where the kernel is the (2Q + 1) × (2Q + 1) matrix

K(z) =
[
Kµq(z)

]
µ=−Q,...Q;q=−Q...Q

, (4.2.8)

and the other terms are the column vectors

A+(z) =
[
A+q (z)

]
q=−Q,...,Q

, (4.2.9)

T+(z) =
[
T+q (z)

]
q=−Q,...,Q

, (4.2.10)

and T−(z) =
[
T−q (z)

]
q=−Q,...,Q

. (4.2.11)
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We now examine the form of the functions T+q (z) and Kµq(z) in the Z-

transformed domain, with the aim of revealing their singularities, and also

to determine which of these lies inside and which outside the contour C. For

the first set of functions, we simply sum a geometric series to obtain

T+µ (z) = eiµ(π/2−ψ0)
ip0

z − p0
, µ = −Q, . . . ,Q, (4.2.12)

and since these functions are analytic in C+ we must have

p0 ∈ C− − C. (4.2.13)

For the elements of the kernel, we have that

Kµq(z) = iZ−1
q δµq + i

∞∑

j=−∞
Sq−µ

j
z j, µ, q = −Q, . . . ,Q, (4.2.14)

and with the aid of (4.1.11) and (4.1.12), the last equation becomes

Kµq(z) = iZ−1
q δµq + iSq−µ

0
+

2iµ−q+1

ka1

∞∑

n=1

∞∑

j=−∞

ei(q−µ)ψ j

sinψ j

(
p−1

j z
)n

+
2iµ−q+1

ka1

∞∑

n=1

∞∑

j=−∞

ei(µ−q)ψ j

sinψ j

(
τ−1

j z−1
)n
. (4.2.15)

We can now evaluate the two sums over n in their respective region of conver-

gence to obtain

Kµq(z) = i
(
Z−1

q δµq + Sq−µ
0

)
− 2iµ−q+1

ka1

∞∑

j=−∞

1

sinψ j

(
ei(q−µ)ψ jz

z − p j

− ei(µ−q)ψ j

zτ j − 1

)
. (4.2.16)

Note that we assumed that Kn ∈ Z (C) (see definition 1 in §2.2.1), i.e.

K
µq
n =

1

2πi

�
C

Kµq(z)z−n−1dz, n ∈ Z. (4.2.17)

and in view of (4.2.16), (4.1.11), (4.1.12) and (4.2.4) this is a valid representation

if and only if

p j ∈ C− − C, and τ−1
j ∈ C+ − C, ∀ j ∈ Z, (4.2.18)

which is in agreement with the condition (4.2.13).
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4.3 Symmetry

In this section we will prove an important symmetry property of the matrix

kernel. In order to achieve this we will do some calculations similar to those

given in §3.3.1. We begin by splitting each element of the kernel Kµq(z) into three

parts as follows:

Kµq(z) = cµq + K1
µq(z) + K2

µq(z), (4.3.1)

where

cµq = i(Z−1
q δµq + Sq−µ

0
) − 2iµ−q+1

ka1

∑

j∈M

e−i|µ−q| sgn( j)ψ j

sinψ j
, (4.3.2)

is a constant

K1
µq(z) =

2iµ−q+1

ka1

∑

j∈M

e−i|µ−q| sgn( j)ψ j

sinψ j
− 2iµ−q+1

ka1

∑

j∈M

1

sinψ j

(
ei(q−µ)ψ jz

z − p j
− ei(µ−q)ψ j

zτ j − 1

)
, (4.3.3)

is a function, which has singularities only on the unit circle, and finally

K2
µq(z) = −2iµ−q+1

ka1

∑

j∈N

1

sinψ j

(
ei(q−µ)ψ jz

z − p j
− ei(µ−q)ψ j

zτ j − 1

)
. (4.3.4)

is a function that is analytic on the unit circle. The setsM andN are defined in

(B.1.13) and (B.1.14), respectively, and

sgn( j) =



+1, j > 0,

−1, j < 0.
(4.3.5)

We first examine the diagonal elements of the matrix, each one of which may

be written as a sum of the constant

cqq = iZ−1
q + iS0

0 −
2i

ka1

∑

j∈M

1

sinψ j
, (4.3.6)

and the term

K1
qq(z) + K2

qq(z) = − 2i

ka1

∑

j∈M

(τ jp j − 1)z

sinψ j(z − p j)(τ jz − 1)

− 2i

ka1

∑

j∈N

1

sinψ j

(
z

z − p j

− 1

zτ j − 1

)
. (4.3.7)
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In the last equation, if we replace z with 1/z∗ and take the complex conjugate of

the whole expression, then with the aid of (B.1.17), and (B.1.18), we find that

(
K1

qq(1/z
∗) + K2

qq(1/z
∗)
)∗
= K1

qq(z) + K2
qq(z), q = −Q . . .Q. (4.3.8)

Returning to (4.3.6), if we write S0
0

explicitly using (B.2.5), we obtain

cqq = i(Z−1
q − 1) +

2

π

(
c + ln

ka1

4π

)
− 1

π

∑

j∈M
j,0

1

| j| +
∑

j∈N

(
2i

ka1 sinψ j
− 1

π| j|

)
. (4.3.9)

Observe that i(Z−1
q − 1) is real for all q ∈ Z, and also that sinψ j is positive

imaginary for all j ∈ N . Thus, cqq is real for all q ∈ Z, which in view of (4.3.8),

reveals the symmetry property

(
Kqq(1/z

∗)
)∗
= Kqq(z), q = −Q . . .Q. (4.3.10)

We now turn our attention to the non-diagonal elements with the aim to

generalise (4.3.10). In what follows, we may assume without loss that

µ < q. (4.3.11)

We begin by proving that

(
Ki
µq(1/z

∗)
)∗
= Ki

qµ(z) for i = 1, 2. (4.3.12)

For i = 2, this can be verified easily from (4.3.4) by taking into acount (B.1.18)

and the fact that i/ sinψ j and eiψ j are both real for all j ∈ N . On the other hand,

for i = 1 we have that

K1
µq(z) =

2iµ−q+1

ka1




∑

j∈M
j>0

ei(µ−q)ψ jzτ j(z − p j) − ei(q−µ)ψ jz(zτ j − 1)

sinψ j(z − p j)(zτ j − 1)

+
∑

j∈M
j<0

ei(µ−q)ψ j(z − p j) − ei(q−µ)ψ jp j(zτ j − 1)

sinψ j(z − p j)(zτ j − 1)



, (4.3.13)
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and

K1
qµ(z) =

2iq−µ+1

ka1




∑

j∈M
j>0

ei(q−µ)ψ j(z − p j) − ei(µ−q)ψ jp j(zτ j − 1)

sinψ j(z − p j)(zτ j − 1)

+
∑

j∈M
j<0

ei(q−µ)ψ jzτ j(z − p j) − ei(µ−q)ψ jz(zτ j − 1)

sinψ j(z − p j)(zτ j − 1)



. (4.3.14)

Using (B.1.17), and the fact that ψ j is real for j ∈ M, we can substitute 1/z∗

in (4.3.13) and then take the conjugate of the whole expression to arrive at

(4.3.14). We now move on to examine how the constant parts of the non-diagonal

elements are related. In view of (4.1.10) and (B.2.6) , we have that

cµq = (−1)q−µiq−µ+1




2

ka1

∞∑

j=−∞

ei(q−µ) sgn( j)ψ j

sinψ j
+ iBq−µ




− 2iµ−q+1

ka1

∑

j∈M

ei(µ−q) sgn( j)ψ j

sinψ j
, (4.3.15)

whereas (see also (B.2.8)),

cqµ = iq−µ+1




2

ka1

∞∑

j=−∞

ei(q−µ) sgn( j)ψ j

sinψ j
+ iBq−µ


 −

2iq−µ+1

ka1

∑

j∈M

ei(µ−q) sgn( j)ψ j

sinψ j
. (4.3.16)

where Bq, is real for q = 1, 2, . . . , and its definition is given in (B.2.7). From the

last two equations we can derive some useful conclusions. If q − µ is an odd

number, then observe that cµq = −cqµ, and also after some algebra we can show

that cµq is pure imaginary. On the other hand, if q − µ is an even number then

cµq = cqµ, and cµq ∈ R. Thus, in any case we have that

c∗µq = cqµ. (4.3.17)

To sumarise, in view of (4.3.10), (4.3.12), and (4.3.17), we can conclude that

the elements of the kernel are related via

(
Kµq(1/z

∗)
)∗
= Kqµ(z), q = −Q, . . . ,Q, µ = −Q, . . . ,Q, (4.3.18)
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or equivalently, the kernel has the symmetry property

(
K(1/z∗)

)∗
= K(z). (4.3.19)

Note that the asterisk is used to denote the conjugate of a function, whereas

when it is applied to a matrix it denotes the conjugate transpose.

4.4 The method of solution

The standard method to solve the matrix Wiener–Hopf equation (4.2.7), is to

decompose the matrix kernel into the product

K(z) = K−(z)K+(z), (4.4.1)

where K±(z) denotes a matrix whose elements are functions analytic in C± and

also that its determinant is zero free in C±. Substituting this factorisation in

(4.2.7) we have that

K+(z)A+(z) =
(
K−(z)

)−1
T+(z) +

(
K−(z)

)−1
T−(z). (4.4.2)

We now move the pole that the elements of T+(z) have at the point z = p0 to the

left hand side by subtracting from both sides the column vector
(
K−(p0)

)−1
T+(z),

that is

K+(z)A+(z) −
(
K−(p0)

)−1
T+(z)

=

((
K−(z)

)−1
−

(
K−(p0)

)−1
)

T+(z) +
(
K−(z)

)−1
T−(z). (4.4.3)

The left-hand side of the last equation is a column vector whose elements are

analytic inC+, whereas the elements of the vector in right-hand side are analytic

in C−. Therefore, there exists a column vector V(z) whose elements are entire

functions and which represents the analytic continuation of both sides of (4.4.3).

Note that from the condition (4.2.6) we must have V(z) → 0 as z → ∞. Thus,

Liouville’s theorem dictates that V(z) = 0, and consequently

A+(z) =
(
K+(z)

)−1(
K−(p0)

)−1
T+(z). (4.4.4)
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As we pointed out in §2.5.1 the factorisation (4.4.1) always exists, but in

practice it is extremely difficult to find it. However, in this particular problem, an

alternative approach to solve (4.2.7) is possible. To proceed we first approximate

the functions Kµq(z) given in (4.2.16) by truncating the sum over j. We introduce

the parameter ν which denotes the order of truncation and write

Kµq(z) = i
(
Z−1

q δµq + Sq−µ
0

)
− 2iµ−q+1

ka1

ν∑

j=−ν

1

sinψ j

(
ei(q−µ)ψ jz

z − p j
− ei(µ−q)ψ j

zτ j − 1

)
. (4.4.5)

The physical meaning of this approximation is explained in §3.3.2.

4.4.1 The form of the unknown functions

The method that will be used to solve (4.2.7) is quite similar to the Wiener–Hopf

procedure. The major difference is that we will sum-split the kernel instead of

decomposing it into a product. The idea is to determine the column vector T−(z),

and then use this result to obtain A+(z). We begin with the sum decomposition

K(z) = K+(z) +K−(z), (4.4.6)

where

K±(z) =
[
K±µq(z)

]
µ=−Q,...,Q; q=−Q,...,Q

, (4.4.7)

with

K+µq(z) = i
(
Zqδµq + Sq−µ

0

)
− 2iµ−q+1

ka1

ν∑

j=−ν

ei(q−µ)ψ jz

sinψ j(z − p j)
, (4.4.8)

and

K−µq(z) =
2iµ−q+1

ka1

ν∑

j=−ν

ei(µ−q)ψ j

sinψ j(zτ j − 1)
. (4.4.9)

Substituting (4.4.6) into (4.2.7), yields

K+(z)A+(z) +K−(z)A+(z) − T+(z) = T−(z). (4.4.10)

The right-hand side of this equation is analytic inC− , whereas the left-hand side

is analytic in C+ except at the points z = τ−1
j

, where the matrix K−(z) has simple
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poles. To move these poles to the right-hand side we introduce the column

vector

M−(z) =

[
2i

ka1

ν∑

j=−ν

eiµ(ψ j+π/2)

sinψ j(zτ j − 1)

Q∑

q=−Q

e−iq(ψ j+π/2)A+q (τ−1
j )

]

µ=−Q,...,Q

(4.4.11)

which we subtract from both sides to obtain

K+(z)A+(z) +K−(z)A+(z) −M−(z) − T+(z) = T−(z) −M−(z). (4.4.12)

In this way we have reached an equation in which the left-hand side is analytic

inC+ and the right-hand side is analyticC−. Hence, we can conclude that the two

sides represent the analytic continuation of each other, and moreover that both

actually represent the same entire function. Since the right-hand side tends to

zero as z→ ∞ (see (4.2.6)), Liouville’s theorem dictates that the entire function

must be zero, and therefore

T−(z) =M−(z). (4.4.13)

From the last equation, and (4.4.11) we can conclude that the entries of the

column vector T−(z), are meromorphic functions with simple poles at the points

z = 1/τ j, for j = −ν, . . . , ν. Moreover, the exact form of these functions depends

on the (2Q+1)(2ν+1) unknowns A+q (1/τ j). The crucial observation here is that in

order to determine T−µ (z), we do not need to explicitly specify all the unknowns.

Instead, since they appear in combinations, we can write

T−µ (z) =
2i

ka1

ν∑

j=−ν

eiµ(ψ j+π/2)

sinψ j(zτ j − 1)
X j, µ = −Q, . . . ,Q, (4.4.14)

where

X j =

Q∑

q=−Q

e−iq(ψ j+π/2)A+q (τ−1
j ), j = −ν, . . . ν, (4.4.15)

and then determine the 2ν + 1 unknown parameters X j. This will be addressed

in §4.4.3, where we will construct a system of 2ν+1 system of algebraic equation

for X j.

So far, we have relied on an implicit description of the closed curve C, which

was given by the condition (4.2.18), and as it turns out the fact that

τ−1
j ∈ C+ − C, for j = −ν, . . . , ν, (4.4.16)
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τ−1
0

p0 p1

1/p∗
1

0

(a)

Re[z]

Im[z]

C
τ−1

0

τ−1
1

p0

p1 p2

1/p∗2
0

(b)

Re[z]

Im[z]

C

Figure 4.1: The closed curve Cwhere the Wiener–Hopf equation holds in the case where A+q (z)

is free of singularities on the unit circle, and also in the case of (a)M = {0} and (b)M = {0, 1}.
Functions with a superscript ‘+’ (‘−’) are analytic in the (un)shaded region.

is a necessary and sufficient condition to establish the analyticity of the functions

T−µ (z) in C−. The shape of C can become more specific, if we examine the form

of the functions A+q (z). It is clear these functions must be meromorphic, and

in addition, all of their poles must lie in the region where |z| > 1, or else the

coefficients A
q

0n
grow exponentially as n → ∞, which is unphysical. Using this

information we can conclude that in the case where all of these poles lie in the

region |z| > 1, the closed curve Cmay chosen to be the unit circle indented so as

to include the points τ−1
j

and to exclude the points p j, for all j ∈ M; see figure

4.1. On the other hand, if it turns out that A+q (z) has a pole on the unit circle then

an extra indentation will be required in order for C to exclude this pole.

4.4.2 The kernel in terms of a polynomial matrix

The zeros of the determinant of the kernel play crucial role in the solution of the

problem, and to simplify the linear algebra required for our method, we will

write the matrix kernel in polynomial form by pulling out its poles. To begin,
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we introduce the polynomials

P(z) =

ν∏

n=−ν
(z − pn), T (z) =

ν∏

n=−ν
(z − τ−1

n ), (4.4.17)

P j(z) =

ν∏

n=−ν
n, j

(z − pn), T j(z) =

ν∏

n=−ν
n, j

(z − τ−1
n ), j = −ν, . . . ν, (4.4.18)

and

Pµq(z) = i
(
Z−1

q δµq + Sq−µ
0

)
P(z)T (z)

− 2iµ−q+1

ka1

ν∑

j=−ν

1

sinψ j

(
zei(q−µ)ψ jP j(z)T (z) − τ−1

j ei(µ−q)ψ jP(z)T j(z)
)
. (4.4.19)

With this notation, the matrix kernel can be written

K(z) =
1

P(z)T (z)
P(z), (4.4.20)

where

P(z) =
[
Pµq(z)

]
µ=−Q,...,Q; q=−Q,...,Q

. (4.4.21)

Suppose that D(z) denotes the determinant of P(z), then the symmetry prop-

erty (4.3.19) dictates that

D(z) = 0⇔ D(1/z∗) = 0. (4.4.22)

It is evident that the degree of D(z) is at most d, where d = 2(2Q+ 1)(2ν+ 1), and

therefore we can write

D(z) =

d∑

j=0

a jz
j. (4.4.23)

In fact, it turns out that that there are only two possibilities: either the degree

is precisely d, or D(z) is the zero function. To see this, we begin by noting that

(4.4.22) yields

det
(
K(0)

)
=

a0

P2Q+1(0)T 2Q+1(0)
. (4.4.24)

Since P(z) and T (z) are monic polynomials of degree 2ν + 1, we also have

lim
z→∞

det
(
K(z)

)
= ad. (4.4.25)
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In view of the symmetry relation (4.3.19), we may conclude that

a∗d =
a0

P2Q+1(0)T 2Q+1(0)
. (4.4.26)

Thus, if ad = 0, then a0 = D(0) = 0. However, equation (4.4.24) now shows

that D(z) → 0 as z → ∞, meaning that D(z) is the zero function. We have not

encountered any parameters for which this pathological case actually occurs,

and in any case we are free to increase ν, thereby altering the approximate kernel

matrix. Consequently, in what follows, we will assume that D(z) is not the zero

function, and therefore that its degree is precisely d. Clearly, this means that

no two rows of P(z) are linearly dependent for arbitrary z. That is, no linear

combination of rows yields the zero function, and so the rank of the polynomial

matrix P(z) is 2Q+1. However, if we fix a particular value of z, we may find that

the resulting constant matrix has a lower rank. Such values are called latent roots

of P(z). Crucially, these latent roots are precisely the zeros of the determinant

D(z) (see appendix A.4 for details).

Now P(p j) = 0 and Pn(p j) = 0 if n , j, so (4.4.19) yields

Pµq(p j) = −
2ip j

ka1 sinψ j
P j(p j)T (p j)i

µ−qei(q−µ)ψ j , (4.4.27)

and similarly

Pµq(τ
−1
j ) =

2iτ−1
j

ka1 sinψ j
P(τ−1

j )T j(τ
−1
j )iµ−qei(µ−q)ψ j . (4.4.28)

Thus, each successive row of P(p j) is obtained by multiplying the previous row

by ie−iψ j , meaning no two are linearly independent, and so p j is a latent root of

rank 2Q. The same reasoning applies to the matrix P(τ−1
j

), and so property (i) in

appendix A.4 now shows that

D(z) = P2Q(z)T 2Q(z)D1(z), (4.4.29)

where D1(z) is a polynomial of degree 4ν+ 2. Furthermore, it now follows from

property (ii) in appendix A.4 that

adj
(
P(z)

)
= P2Q−1(z)T 2Q−1(z)F(z), (4.4.30)

for some polynomial matrix F(z).



4.4 The method of solution 90

4.4.3 The solution

We are now in the position to determine the elements of the column vector

T−(z) by forming a system of 2ν + 1 equations for the unknown parameters X j,

j = −ν, . . . ν. We begin by substituting (4.4.20) into the Wiener–Hopf equation

(4.2.7), to obtain
1

P(z)T (z)
P(z)A+(z) = T+(z) + T−(z). (4.4.31)

Next, we multiply (4.4.31) by the adjugate of P(z), which in view of (4.4.30), and

(4.4.29), yields

D1(z)A+(z) = F(z)
(
T+(z) + T−(z)

)
. (4.4.32)

Initially, we assume that none of the zeros of D1(z) lies on the unit circle. From

the symmetry relation (4.4.22) we can conclude that there are 2ν+1 zeros outside

the unit circle at the points z = z j, j = −ν, . . . , ν, say and an equal number of

zeros inside the unit circle, located at the points z = 1/z∗
j
. Since A+(z) is analytic

inside the unit circle, equation (4.4.32) yields

F(1/z∗j)
(
T+(1/z∗j) + T−(1/z∗j)

)
= 0. (4.4.33)

Now consider the case where the points 1/z∗
j

are distinct. Then property (iii) in

appendix A.4 shows that F(z j) has rank 1, which means that (4.4.33) yields one

linear equation for the 2ν+1 unknowns in the vector T−(z). Since there are 2ν+1

zeros, the required system of equations is formed. The situation that arises if

two (or more) zeros coincide is slightly more complicated. Suppose that 1/z∗
j
is

a double zero of D1(z). Then there are two possibilities. If this is a latent zero of

rank two, then properties (ii) and (iii) in appendix A.4 show that the matrix

F̂(z) = lim
z→1/z∗

j

F(z)

z − 1/z∗
j

(4.4.34)

exists and has rank two. Therefore we may divide (4.4.32) by (z − 1/z∗
j
) and set

z = 1/z∗
j

to obtain two equations for the unknowns on the right-hand side. On

the other hand, if 1/z∗
j

is a latent zero of rank one, then not all entries of the

matrix F(z) have z−1/z∗
j
as a factor. In this case, setting z = 1/z∗

j
in (4.4.32) yields

one equation, and differentiating before setting z = 1/z∗
j
yields another, because
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D′
1
(1/z∗

j
) = 0. Zeros of multiplicity greater than two can be dealt with in much

the same way. It is worth remarking that we have not observed any parameters

for which the multiplicity of a zero of D1(z) is greater than one. Therefore, for

simplicity from this point onwards we assume that all the zeros of D1(z) are

distinct.

Once we determine X j, then A+(z) is known and given by

A+(z) =
1

D1(z)
F(z)

(
T+(z) + T−(z)

)
. (4.4.35)

and the amplitudes can be calculated from the integral

A
µ

0n
=

1

2πi

�
C

A+µ(z) z−n−1 dz, µ = −Q, . . . ,Q, n = 0, 1, . . . . (4.4.36)

where the contour of integration is shown in figure 4.1. Equivalently, we can

collect the residues from the poles outside the unit circle, that is

A
µ

0n
= −

ν∑

m=−ν
z−n−1

m ρ
µ
m, µ = −Q, . . . ,Q, n = 0, 1, . . . , (4.4.37)

with

ρ
µ
m = Res

z=zm

A+µ(z), µ = −Q, . . . ,Q. (4.4.38)

In case where the determinant of the kernel has N zeros on the unit circle

we can use the symmetry property (4.3.19) to deduce that N is an even number.

First we consider the case N = 2. The question arises as to how many of these

zeros correspond to a pole of the function A+µ(z). To answer this question we

need to look at the form of the solution that we would have obtained if had

we followed the standard Wiener–Hopf procedure (see the beginning of §4.4).

Although we do not know the exact form of the factors K±(z) in (4.4.1), we do

know (from (4.2.18)) that the points p j should be poles of det
(
K+(z)

)
and the

points τ−1
j

should be poles of det
(
K−(z)

)
. Moreover, from (4.4.20) and (4.4.29),

we have that

det
(
K(z)

)
=

D1(z)

P(z)T (z)
. (4.4.39)

Hence, we can write

det
(
K+(z)

)
=

D+
1
(z)

P(z)
, and det

(
K−(z)

)
=

D−
1
(z)

T (z)
, (4.4.40)
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where D±
1
(z) is a polynomial that is zero free in C±, such that

D1(z) = D+1 (z)D−1 (z). (4.4.41)

Now, since
(
K+(z)

)−1
=
P(z)

D+
1
(z)

adj
(
K+(z)

)
, (4.4.42)

a zero of D+
1
(z) corresponds to a pole for the column vector A+(z) (see (4.4.4)),

and this means that all the zeros of D1(z) which lie inside the unit circle (in total

2ν) should be zeros of D−
1
(z). Also, since the matrix

(
K−(z)

)−1
=
T (z)

D−
1
(z)

adj
(
K−(z)

)
, (4.4.43)

must be analytic at infinity, D−
1
(z) must possess one additional zero. This zero

should be located on the unit circle because otherwise A+(z) has two poles on the

unit circle, and as we will see in the coming sections one of these corresponds

to the existence of a Bloch wave propagating energy towards y = 0, which is

unphysical (see also pp 50–51). To summarise, if z0 and z′0 are the zeros of

det
(
K(z)

)
that are on the unit circle, then the solution via the standard Wiener–

Hopf procedure suggests that precisely one of these is a zero of K+(z); that

is

z0 ∈ C− − C and z′0 ∈ C+ − C. (4.4.44)

Given a pair of zeros on the unit circle, we will use (4.6.6) and (4.6.12) in order

to determine which one to treat as z0, and which to treat as z′0. If z0 is used in

this calculation, then the result is positive, corresponding to a pole of A+(z), and

energy propagating into the lattice. On the other hand, if z′0 is used then the

result is negative, and cannot correspond to a pole of A+(z). Situations in which

N > 2 are much the same; the zeros appear on the unit circle in pairs, and in

each pair precisely one corresponds to a pole of A+(z).

4.5 The far field pattern

The far field analysis is quite similar to the case presented in §3.5, and for this

reason we will not elaborate on the details. We shall examine the case where
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A+(z) is analytic on the unit circle and the case where A+(z) has a simple pole

on the unit circle.

4.5.1 A+(z) is analytic on the unit circle

We first consider the case where the determinant of the kernel is zero free on the

unit circle. This means that the functions A+q (z) are analytic inside and on the

unit circle, and therefore

A+q (z) =

∞∑

n=0

A
q

0n
zn, |z| 6 1. (4.5.1)

The scattered field can be expressed in the form

usc(r) =

Q∑

q=−Q

∞∑

n=0

A
q

0n
G(1)

q (r − na2, k cosψ0), (4.5.2)

where G1
q is the 1D quasi-periodic function defined in (B.1.19). Using the spectral

representation (B.1.23), we have that

usc(r) =
2

ka1

Q∑

q=−Q

∞∑

n=0

∞∑

j=−∞
A

q

0n

eiq(ψ j sgn(y−nη2)−π/2)

sinψ j

eik((x−nη1) cosψ j+|y−nη2 | sinψ j). (4.5.3)

From the last expression, the Taylor expansion (4.5.1) and the fact that sinψ j is

positive imaginary for j ∈ N , we can determine the behaviour of the scattered

field in the limit y→ ±∞; thus

usc(r) ∼
∑

j∈M
c±j eik(x cosψ j±y sinψ j) as y→ ±∞, (4.5.4)

where

c−j =
2

ka1 sinψ j

Q∑

q=−Q

A+q (τ−1
j )e−iq(ψ j+π/2), (4.5.5)

and

c+j =
2

ka1 sinψ j

Q∑

q=−Q

A+q (p j)e
iq(ψ j−π/2). (4.5.6)

Note that from (4.4.15)

c−j =
2X j

ka1 sinψ j
. (4.5.7)
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A further simplification of (4.5.6) occurs if we multiply both sides of (4.4.31) by

(z − p j), take the limit z→ p j, and use (4.4.27). In this way we find that

c+j =



−1, j = 0,

0, j , 0,
(4.5.8)

and hence,

usc(r) ∼ −eik(x cosψ0+y sinψ0) as y→ +∞, (4.5.9)

which means that the scattered field cancels out the incident wave in this limit.

4.5.2 A+(z) has a pole on the unit circle

We now consider the case where A+(z) is analytic inside and on the unit circle

except at the point z = z0, where it has a simple pole. We first use (4.4.37) to split

the amplitudes into two terms

A
q

0n
= Â

q

0n
− ρq

0
z−n−1

0 , (4.5.10)

where

Â
q

0n
= −

ν∑

m=−ν
m,0

ρ
q
mz−n−1

m , (4.5.11)

and ρ
q
m is given by (4.4.38). Accordingly, we split the scattered field into two

parts

usc(r) = ua(r) + ub(r), (4.5.12)

where

ua(r) =

Q∑

q=−Q

∞∑

n=0

∞∑

j=−∞
Â

q

0n
ei jka1 cosψ0Hq(r − R jn), (4.5.13)

and

ub(r) = − 1

z0

Q∑

q=−Q

ρ
q

0

∞∑

n=0

∞∑

j=−∞
eiR jn·β(z0)Hq(r − R jn), (4.5.14)

with β(z) defined in (3.3.8) (we also used (3.3.9)). For the first field, since
∑∞

n=0 |Â
q

0n
| < ∞, we can use the method of §3.5.2 to obtain

ua(r) ∼
∑

j∈M
ĉ±j eik(x cosψ j±y sinψ j) as y→ ±∞, (4.5.15)
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where now

ĉ−j =
2

ka1 sinψ j

Q∑

q=−Q

(
A+q (τ−1

j ) −
ρ

q

0

τ−1
j
− z0

)
e−iq(ψ j+π/2), (4.5.16)

and

ĉ+j =
2

ka1 sinψ j

Q∑

q=−Q

(
A+q (p j) −

ρ
q

0

p j − z0

)
eiq(ψ j−π/2). (4.5.17)

The last coefficient can be simplified (see previous section) to

ĉ+j = −δ j0 −
2

ka1 sinψ j

Q∑

q=−Q

ρ
q

0

eiq(ψ j−π/2)

p j − z0

. (4.5.18)

The behaviour of the field ub in the limit y→ ±∞ can be determined by first ex-

pressing it in terms of quasi-periodic arrays of singularities defined in appendix

B. For y > 0, we have

ub(r) = − 1

z0

Q∑

q=−Q

ρ
q

0

(
G(2)

q (r,β(z0)) − G+q (r,β(z0))
)
, (4.5.19)

where G(2)
q is defined in (B.1.5) and G+q is given by (B.1.24). Using (B.1.32) and

the fact that i sinψ j < 0 for j ∈ N yields

ub(r) ∼ − 1

z0

Q∑

q=−Q

ρ
q

0
G(2)

q (r,β(z0))

+
2

ka1

Q∑

q=−Q

ρ
q

0

∑

j∈M

eiq(ψ j−π/2)

sinψ j(p j − z0)
eik(x cosψ j+y sinψ j) as y→ +∞. (4.5.20)

On the other hand, for y < 0, we write

ub(r) = − 1

z0

Q∑

q=−Q

ρ
q

0

(
G(1)

q (r, k cosψ0) + G−q (r,β(z0))
)
, (4.5.21)

where G(1)
q is given in (B.1.3). Substituting the spectral representations (B.1.23)

and (B.1.33) in (4.5.21), yields

ub(r) ∼ 2

ka1

Q∑

q=−Q

ρ
q

0

∑

j∈M

e−iq(ψ j+π/2)

sinψ j(τ−1
j
− z0)

eik(x cosψ j−y sinψ j) as y→ −∞. (4.5.22)
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To summarise, in the upper half plane in view of (4.5.15), (4.5.18), and (4.5.20),

we have that

usc(r) ∼ − 1

z0

Q∑

q=−Q

ρ
q

0
G(2)

q (r,β(z0)) − eik(x cosψ0+y sinψ0) as y→ +∞, (4.5.23)

and so the far field pattern of takes the form of a Bloch waves with a Bloch wave

vector β(z0), plus a plane wave which cancels the incident wave. In the lower

half plane (4.5.15), (4.5.16) and (4.5.22) reveal that the behaviour of the scattered

field in the limit y→ −∞ is again given by (4.5.4) and (4.5.7).

4.6 Conservation of energy

As we have seen in §3.6, the principle of conversation of energy dictates that

− P0ω

2
Im

∫

S

u(r)

(
∂u(r)

∂n

)∗
ds = 0, (4.6.1)

where S is chosen to be the parallelogram whose vertices are given in (3.6.3) (see

figure 3.7). Using the same notation we denote the integrals along the side of

this parallelogram by I1, . . . , I4, and equation (3.1.13) shows that

I1 + I3 = 0. (4.6.2)

Therefore, in order to show that energy is conserved we need only to evaluate

the integrals I2 and I4. Following the same procedure as in §3.6, we take the

limit N → ∞ (where N is associated with the vertices of S; see (3.6.3)), in order

to discard contributions that decay as y→ ±∞. In the lower half plane we use

the asymptotic formula

u(r) ∼ eik(x cosψ0+y sinψ0) +
∑

j∈M
c−j eik(x cosψ j−y sinψ j) as y→ −∞, (4.6.3)

to obtain

I4 = −
P0ω2

2c
a1

(
sinψ0 −

∑

j∈M
|c−j |2 sinψ j

)
. (4.6.4)

In the upper half plane the integral I2 depends on whether or not A+(z) has

a pole on the unit circle. If A+(z) is analytic on the unit circle then we have
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that u(r) → 0, as y → ∞, which means that I2 = 0. On the other hand, if A+(z)

possesses a pole that lies on the unit circle, then a Bloch wave is presented in

the far field, and from (4.5.23) we have

u(r) ∼ − 1

z0

Q∑

q=−Q

ρ
q

0
G(2)

q (r,β(z0)), as y→ +∞. (4.6.5)

In this situation the integral I2 can be decomposed as follows

I2 = −
P0ω

2

Q∑

q=−Q

Q∑

m=−Q

Im
[
ρ

q

0
(ρm

0 )∗Iqm

]
, (4.6.6)

where

Iqm =

∫

S2

G(2)
q (r,β(z0))

∂

∂y

[
G(2)

m (r,β(z0))
]∗

ds. (4.6.7)

To evaluate the integrals Iqm we introduce the parametrisation

S2 : r(t) = (t +Nη1/2, Nη2/2), −a1/2 ≤ t ≤ a1/2. (4.6.8)

From (B.1.6), it is evident that the integrand in (4.6.7) is independent of N, and

so we choose the value N = 1 so as to enable the use of (B.1.36). Hence, on this

particular path we have

G(2)
q (r(t),β(z0)) = −2(−i)q

ka1

∞∑

j=−∞

eikt cosψ j

sinψ j

(p1/2
j

eiqψ j

z0 − p j
−
τ1/2

j
e−iqψ j

τ jz0 − 1

)
, (4.6.9)

∂

∂y

[
G(2)

m (r(t),β(z0))
]∗
=

2im+1

a1

∞∑

j=−∞
e−ikt cosψ j

(p1/2
j

eimψ j

z0 − p j
+
τ1/2

j
e−imψ j

τ jz0 − 1

)∗
, (4.6.10)

and

G(2)
q (r(t),β(z0))

∂

∂y

[
G(2)

m (r(t),β(z0))
]∗
= − 4im−q+1

ka2
1

∞∑

j=−∞

∞∑

n=−∞

e2it( j−n)π/a1

sinψ j

×
(p1/2

j
eiqψ j

z0 − p j
−
τ1/2

j
e−iqψ j

τ jz0 − 1

)(
p1/2

n eimψn

z0 − pn
+
τ1/2

n e−imψn

τnz0 − 1

)∗
. (4.6.11)

Now, if we substitute the last equation in (4.6.7), and perform the integration

over t, then only the terms in which j = n are non zero, and therefore

Iqm = −
4im−q+1

ka1

∞∑

j=−∞

1

sinψ j

(p1/2
j

eiqψ j

z0 − p j
−
τ1/2

j
e−iqψ j

τ jz0 − 1

)(p1/2
j

eimψ j

z0 − p j
+
τ1/2

j
e−imψ j

τ jz0 − 1

)∗
, (4.6.12)
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where in the numerator of the fractions inside the sum, the exponent of the

poles is divided by two (see (B.1.16)). In the last series, since the points p j and τ j

grow exponentially (see (B.1.16)), only a few terms are required for numerical

calculations. In fact taking the truncation point to be ν is sufficient to verify that

the equation I2 + I4 = 0 is satisfied to a high degree of accuracy.

4.7 Numerical Results

In this section we present numerical results that illustrate the band structure of

the semi-infinite lattice. Most of the selected parameters for our calculations

have been chosen so that an easy comparison can be made with the results

given by Nicorovici et al. [43]. In particular, we aim to show that the band gaps

predicted by our method are consistent with those appearing in [43, fig. 5, 6,

and 7] and in addition, to reproduce the plot seen in [43, fig. 9] for Dirichlet

boundary conditions, which illustrates the effect the radius of the cylinders has

on the size of the first band gap. These issues are addressed in the plots seen in

figure 4.2 and 4.3, and a satisfying agreement is evident in all cases.

First, we consider sound-hard cylinders, and we will restrict ourselves to

cases where

ka1 < π. (4.7.1)

The purpose of this restriction is to ensure that M = {0} (see (B.1.13)), which

in turn implies that the scattered field in the limit y → −∞ takes the form of a

single plane wave of amplitude c−0 (see (4.5.4)). Furthermore, the formula (4.6.4),

which measures the difference of the energy reflected from the lattice and the

energy of the incident field, reduces to

I4 = −
P0ω2

2c
a1 sinψ0

(
1 − |c−0 |2

)
. (4.7.2)

From the last formula we can identify that 100 ×
(
1 − |c−0 |2

)
is the percentage of

the energy transmitted into lattice and 100× |c−0 |2 is the percentage of the energy

reflected from the lattice. Hence, contour plots of the reflection coefficient |c−0 |
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Table 4.1: The zero of the approximate kernel which is either on, or closest to the unit circle, for

different set of parameters, withψ0 = π/6 and η1 = 0 fixed, and Neumann boundary conditions

are imposed on the cylinders’ surface.

Q a1 η2 ℓ k ν = 1 ν = 2 ν = 3

1 1 1 0.02 3 0.066906 − 0.997759i 0.066906 − 0.997759i 0.066906 − 0.997759i

2 1 1 0.02 3 0.066902 − 0.997760i 0.066902 − 0.997760i 0.066902 − 0.997760i

1 0.1 1 0.03 2 0.498740 − 0.866752i 0.498740 − 0.866752i 0.498740 − 0.866752i

2 0.1 1 0.03 2 0.498635 − 0.866812i 0.498635 − 0.866812i 0.498635 − 0.866812i

1 1 1 0.25 1 0.786230 − 0.617933i 0.786232 − 0.617931i 0.786232 − 0.617931i

2 1 1 0.25 1 0.782988 − 0.622037i 0.782986 − 0.622039i 0.782986 − 0.622039i

3 1 1 0.25 1 0.782938 − 0.622100i 0.782936 − 0.622103i 0.782936 − 0.622103i

1 1 3 0.25 1 −0.098504 − 0.995137i −0.098504 − 0.995137i −0.098504 − 0.995137i

2 1 3 0.25 1 −0.103428 − 0.994637i −0.103428 − 0.994637i −0.103428 − 0.994637i

3 1 3 0.25 1 −0.103456 − 0.994634i −0.103456 − 0.994634i −0.103456 − 0.994634i

1 0.6 1 0.25 1 0.731016 − 0.682360i 0.731016 − 0.682360i 0.731016 − 0.682360i

2 0.6 1 0.25 1 0.713723 − 0.700428i 0.713723 − 0.700428i 0.713723 − 0.700428i

3 0.6 1 0.25 1 0.706679 − 0.707535i 0.706679 − 0.707535i 0.706679 − 0.707535i

2 1 1 0.472 2 −1.18553 −1.24711 −1.24756

3 1 1 0.472 2 −1.60763 −1.68123 −1.68205

4 1 1 0.472 2 −1.61840 −1.68335 −1.68406

will give a comprehensive picture of the scattering effect. We stress that (4.7.1)

is simply a convenient regime in which to display results, and that the methods

we have presented are not limited to this case.

From (4.4.37) we can see that the leading order behaviour of the amplitudes

A
q

0n
comes from the zero of the determinant of the kernel that is located outside

C and which is either on, or closest to the unit circle. In table 4.1, we investigate

how fast this zero converges to a specific value as the approximation parameters

Q and ν increase. It appears that the convergence rate with respect to Q is fast

for small cylinders, and it slows down when either the nondimensional size kℓ

of the cylinders increases, or the nondimensional distance ka1 between them in

each row decreases. On the other hand for fixed Q, the convergence rate with

respect to ν accelerates when either ka1 is decreased or kη2 is increased. For

a normalised square lattice (η1 = 0 and a1 = η2 = 1) and k < π, the data in

table 4.1 suggest that our method of solution can be carried out effectively with
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Q = ν = 1 for the case of small cylinders, and Q = ν = 3 for large cylinders close

to touching.

A table of plots is given in figure 4.2, which illustrate how the energy is

distributed between transmitted and reflected waves. The case under consid-

eration is a square lattice for three different sizes of cylinders. The value of |c−0 |
as ψ0 varies, for all the other parameters fixed, follows a general pattern. At

grazing incidence (sinψ0 = 0), we have |c−0 | = 1, and as the angle of incidence

increases the value |c−0 | decreases rapidly. There is a critical angle in the interval

(0, π/2), at ψ0 = ψ̃0 say, where |c−0 | takes its minimum value. Note that all the

plots are symmetric with respect to ψ0 = π/2, and therefore π− ψ̃0 is also a crit-

ical angle. More specificly, for ℓ = 0.25, the argument of the reflected coefficient

at the critical angle ψ̃0, appears to have a discontinuity. This means that in the

complex plane the point c−0 passes through (or very close to) the origin as ψ0

varies in the vicinity of ψ̃0, and therefore, we can conclude that (almost) full

transmission occurs for ψ0 = ψ̃0. In this respect, the contour plot of |c−0 | displays

information of full transmission in black, total reflection in white, and partial

transmission and reflection in shades of gray.

As the size of the cylinders increases, the amount of the energy reflected from

the lattice increases as well. This is illustrated in the contour plots generated for

ℓ = 0.42 and ℓ = 0.472. For the first case, we see that a local band gap is opening

up at k ≈ 1.8 and ψ0 = π/2, and widens as k increases to take the form of a full

band gap for k & 2.95. Note that the plot of the phase of the reflected coefficient

is continuous for k = 3, which is expected for the parameters being in a total

band gap.

For cylinders of radius ℓ = 0.472, we can see a total band gap extending from

k ≈ 2.05 up to k = 3.1. Interestingly, the argument of c−0 is continuous even

for parameters in a pass band, which means that in this case c−0 does not pass

through (or very close to) the origin as ψ0 varies in the vicinity of ψ̃0. In fact,

the minimum value of |c0| is approximately 0.1, meaning that around 99% of

the incident field energy is transmitted into the lattice. This suggests that cases
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Figure 4.2: Plots of the reflected coefficient for three different sizes (ℓ = 0.25, 0.42 and 0.472)

of cylinders. Column (a) consists of contour plots of the modulus of the reflected coefficient, and

plots of its argument are shown in column (b) for three different wavenumbers (k = 1, 2 and 3).

The parameter of the lattice are a1 = 1, η1 = 0, and η2 = 1.
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Figure 4.3: The plot of kmin against the radius of the cylinders for a square lattice (a1 = η2 = 1

and η1 = 0) of sound-soft cylinders is given in (a). For the same lattice of cylinders with specific

radius ℓ = 0.187 we plotted the points (k, ψ0) which indicate pass bands in (b).

where cylinders are close to touching prohibit full transmission phenomena to

occur. In contrast, dilute lattices allow almost full transmission even between the

critical angles ψ̃0 and π− ψ̃0. For example, we found that for cylinders of radius

ℓ = 0.02, the maximum value of |c−0 | in the region k ∈ [1, 3] and ψ0 ∈ [ψ̃0, π − ψ̃0]

is 0.018. Hence, for any parameters in this region it is guaranteed that at least

99.97% of the incident field energy would be transmitted into the lattice.

We now turn our attention to the case where Dirichlet boundary condition is

imposed on the cylinders’ surface. For the figures we will use a simple method to

extract information about the band structure of a lattice, which does not require

the restriction (4.7.1). A total band gap appears whenever the determinant of

the kernel is zero free on the unit circle for all ψ0 ∈ [0, π]. On the contrary,

if for a given set of parameters the determinant has a zero on the unit circle,

then this leads to an excitation of a Bloch wave propagating through the lattice.

Therefore, we can easily identify band gaps and pass bands by plotting the

points (k, ψ0) which correspond to the presence of zeros on the unit circle. This

approach is illustrated in figure 4.3 (b) where we examine the band structure of
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a square lattice of sound-soft cylinders with radius ℓ = 0.187. Two band gaps

appear in this case, with the upper bound of the first one being k = 3.25, whereas

the second one extends from k = 4.4 to k = 5.25. Note that band diagrams for a

lattice with the same parameters have been previously calculated and displayed

in figure 1.9 (a). The two figures are in agreement with respect to the region of

the two band gaps.

In figure 4.3 (b) it is evident that there exists a minimum value of k and in

particular kmin = 3.25, for which a Bloch wave can be excited. This has been

observed also in figure 3.4 (a) and 3.5 (a). It appears also that this minimum

occurs at head-on incidence, in which case the Bloch vector (see (3.3.8)) takes

the form

β(z0) =
(
0, i log z0/η2

)
, (4.7.3)

where z0 is a zero of the determinant of the kernel which is on the unit circle.

Note that the case where z0 = 1 indicates the threshold between band gaps and

pass bands, and also the presence of a Bloch wave with β(z0) = 0. Also as we

have seen in figure 1.9 (a) (see also the relative figures in [43] and [46]), kmin is

obtained when the Bloch wave vector passes from the centre of the Brillouin

zone (i.e. when it is the zero vector). Therefore, in order to determine kmin for

a given lattice we do not need to consider all the possible values of ψ0. Instead

we can set the angle of incidence at ψ0 = π/2 and then a simple bisection and

iteration is sufficient for our task. This approach has been used to show the

dependence of kmin (and consequently the size of the first band gap), on the

radius ℓ of the cylinders, see figure 4.3 (a). It is worth remarking that kmin tends

very slowly to zero as ℓ→ 0.



Chapter 5

Conclusions

The solution of the problem of acoustic wave scattering by a semi-infinite lattice

of cylinders has been obtained by means of the Wiener–Hopf technique. In

the case where the cylinders are small relative to the wavelength and Dirichlet

boundary condition is imposed on their surface, the procedure simply requires

a scalar kernel factorisation. On the other hand, the general case presents a

much more challenging proposition, since it gives rise to a matrix Wiener–Hopf

equation. This has been dealt with a method that does not require the explicit

factorisation of the kernel.

The accuracy of the method depends crucially on the approximation pa-

rameter Q, since the field radiating from each cylinder can be modelled more

accurately by including higher-order multipoles in its expansion. This is evident

in figure 5.1 which shows the real part of the total field on the boundary of the

cylinder centred at the origin. The plots were produced by first expressing the

field radiating from each cylinder solely in monopole terms (plot (a)), and then

by including both monopole and dipole terms in its expansion (plot (b)). The

scattered field was calculated using its spectral form (3.5.4), and (4.5.3), respec-

tively. Note that these expressions originate from the spectral representation

(B.1.22) of the 1D quasi-periodic Green’s function G(1)
q , and hence (4.5.3) is not

valid on the line y = 0 (see appendix B.1.2). This explains the high peak at 0 and
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(a)
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−0.0025

Figure 5.1: Plots illustrating the accuracy on the boundary of the cylinder centred on the

origin for Dirichlet boundary conditions. The function Re[u(ℓeit)] is plotted against t for the

approximation parameters (a) Q = 0 and ν = 1 and (b) Q = 1 and ν = 1. The other parameters

in use are a1 = 1, η1 = 0, η2 = 1, k = 1 and we considered three different values for the radii

of the cylinders: ℓ = 0.01 (solid line), ℓ = 0.05 (dashed line) and ℓ = 0.1 (dotted line). The

scattered field was calculated form the spectral representation (3.5.4), and (4.5.3), respectively.

Note that the latter is not valid on the line y = 0, hence the anomalies around 0, π, and 2π in

plot (b).

2π (i.e. the point (ℓ, 0) on the (x,y) plane) and the low trough at π (i.e. the point

(−ℓ, 0)), of plot (b). It is clear that by increasing the size of the cylinders had a

negative effect on the accuracy. However, the cost in accuracy remains low if

we include dipole terms in the expansion of field radiating from each cylinder.

The problem under consideration can be solved regardless of the size of

the cylinder and the boundary condition that is imposed on its surface, as

long as the approximation parameters Q and ν are sufficiently large. However,

there are limitations, since increasing Q causes the dimension of the matrix

kernel to increase, and increasing νmakes its elements more complex. Intensive

computation are then required in order to calculate the solution. Another issue

to be considered is that if we increase the wavenumber or the horizontal distance

a1, then the set of indicesM will grow larger (see (B.1.13)). Recall that this set

implicitly defines how many of the poles of the matrix kernel are on the unit

circle, (see (B.1.17)). We observed (numerically) that more than one pair of zeros

appear on the unit circle in situations where there are more than one pair of

poles on the unit circle. Therefore, in such case extra effort is required in order
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to determine which of these zeros correspond to a pole of A+(z). In addition the

conservation of energy principle leads to more complicated identities.

To summarise, we were able to devise a method to solve the problem of

plane wave scattering by a semi-infinite lattice of cylinders. The objective was

to tackle the problem at low frequencies, but this restriction can be relaxed.

An analytical approach based on the Wiener–Hopf technique in combination

with a valid approximation of the kernel that essentially disregards interaction

effects of strongly evanescent modes proved to be sufficient for dealing with

a variety of boundary conditions. The far field analysis for the scattered field

has been carried out in a straightforward manner, and useful identities that

serve as a check on our results have been obtained by applying the principle of

conservation of energy.

5.1 Future work

In chapter 4 we have presented a general method of solution which in theory can

be applied to any given set of parameters. However, in practice the numerical

calculations are effective only at low-frequencies because in this case the approx-

imation parameters Q and ν may be chosen to be sufficiently small. Therefore,

the first objective for future work is to write a more powerful numerical code

which can handle large values of Q and ν, and subsequently produce results of

higher frequencies.

As we pointed out in the introduction, the scattering effect of a large finite

array of cylinders can be modelled by its infinite counterpart. In this respect,

the study of the semi-infinite lattice provides significant information regarding

scattering by a large finite rectangular array. However, this information is

valid only in the interior of the finite array, where the edge effects may be

considered to be negligible. Thus, in order to correctly capture the behaviour

of the scattered field by a large finite array of cylinders we need to take into

account the scattering effect of both its edges and corners. This is an interesting
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research topic for future work. Another possible research avenue is the study of

scattering by defects in the semi-infinite lattice following the work of Thompson

& Linton [52].

More generally, since many scattering problems can be reduced to a ma-

trix Wiener–Hopf equation, it would be interesting to investigate whether our

method of solution described in §4.4 could be applied in different physical

and geometrical settings. Recall that our effort was successful due to an ap-

proximation of the kernel by a rational matrix. For arbitrary matrices, such

approximations can be achieved by means of Padé approximants. It has been

shown that this approach is effective for scalar Wiener–Hopf kernels [1], but the

case of matrix kernels requires further investigation.



Appendix A

Miscellaneous functions

A.1 Multiple valued functions

A multiple valued function, as the name suggests, has more than one possible

value at a particular point in the complex plane. The square root is a typical

example. Roughly speaking, a branch of a multiple valued function is a single

valued function, which at every point of its domain assumes exactly one of

the various possible values that the multiple valued function can assume. The

notion of the branch and the related branch points and branch cuts of multiple

valued functions are explained in detail by several complex analysis texts, in-

cluding Gamelin [13], Sarason [50], and Wunsch [64]. Here, we shall define the

branches of two frequently used multiple valued functions.

The first function is

γ(z) = (z2 − 1)1/2, (A.1.1)

which posses two branch points, located at z = ±1. The branch cuts are taken

along the line sections (1, 1 + i∞) and (−1,−1 − i∞) (see fig. A.1), and a branch

is chosen so that for real argument we have

γ(t) =



−i
√

1 − t2, |t| 6 1,
√

t2 − 1, |t| > 1.
(A.1.2)
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1

−1 Re[z]

Im[z]

Figure A.1: Branch cuts for the functions γ and arccos.

The other function we are interested in is the inverse cosine function, which

has three branch points, located at z = ±1, and the point at infinity. Again, the

branch cuts are taken along (1, 1 + i∞) and (−1,−1 − i∞) (see fig. A.1) and we

can write

arccos(z) = i log
(
z + γ(z)

)
, (A.1.3)

and choose the branch of the logarithm so that arccos(z) ∈ (0, π) for z ∈ (−1, 1). It

is worth remarking that on the real line outside the interval (−1, 1) the selected

branch of the inverse cosine function is given by

arccos t =



i arccosh t, t > 1,

π − i arccosh(−t), t < −1,
(A.1.4)

with arccosh t = ln(t +
√

t2 − 1) for t > 1.

A.2 Bessel functions

Bessel’s equation is the linear second-order ordinary differential equation

z2
d2 f

dz2
+ z

d f

dz
+ (z2 − q2) f = 0. (A.2.1)

This has two linearly independent solutions Jq(z) and Yq(z), known as Bessel

functions of the first and second kind respectively. For nonnegative integers q,
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Jq(z) has the series expansion

Jq(z) =

∞∑

m=0

(−1)mz2m+q

22m+qm!(q +m)!
, (A.2.2)

and it is not difficult to see that this defines an entire function. For the Bessel

function of the second kind we have the expansion

Yq(z) =
2

π
Jq(z) log

z

2
− 1

π

q−1∑

m=0

(q −m − 1)!z2m−q

22m−qm!

− 1

π

∞∑

m=0

(−1)mz2m+q

22m+qm!(q +m)!
[h(m + 1) + h(m + q + 1)],

(A.2.3)

where

h(m + 1) = −c + 1 +
1

2
+ · · · + 1

m
,

and c = 0.57721... is Euler’s constant. In the case q = 0, the first sum in (A.2.3)

should be set equal to zero. Clearly the functions Yq(z) are singular at z = 0,

since we have

Y0(z) =
2

π

(
log

z

2
+ c

)
+O(z2), as z→ 0, (A.2.4)

and for q , 0,

Yq(z) = O(z−q), as z→ 0. (A.2.5)

Note that for q = 1, 2, . . . ,

J−q(z) = (−1)qJq(z), (A.2.6)

and

Y−q(z) = (−1)qYq(z). (A.2.7)

The Hankel function of the first kind of order q is defined by the linear combi-

nation

Hq(z) = Jq(z) + iYq(z), (A.2.8)

and it is regular in the complex plane except at the point z = 0. The asymptotic

behaviour of the Hankel function for small arguments are

H0(z) = 1 +
2i

π

(
log

z

2
+ c

)
+O(z2), as z→ 0, (A.2.9)



A.3 Integral representations of multipoles 111

and for q , 0,

Hq(z) = O(z−q), as z→ 0. (A.2.10)

On the other hand for large arguments we have (see [2, eq. 9.2.3 ])

Hq(z) ∼
√

2

πz
ei(z−qπ/2−π/4), as |z| → ∞. (A.2.11)

Bessel function are amongst the most important special functions, with ap-

plications to different branches of mathematics, physics, and engineering. They

have been studied in detail and numerous properties, relations and representa-

tions can be found in [2, Ch. 9] and [15, Ch. 8–9]. The treatise by Watson [60] is

the classic reference on the theory of Bessel functions.

A.3 Integral representations of multipoles

Multipoles can be written in terms of the integral (see [30, B.10])

Hq(r) = Hq(kr)eiqθ =
(−i)q+1

π

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eikxt(t − γ(t))q sgn(y)dt, (A.3.1)

in which γ(t) is as defined in (A.1.2) and the path of integration is indented so

as to pass above the branch point at t = −1 and below that at t = 1. For q , 0

the integral in (A.3.1) converges for all values of y except for y = 0, whereas for

q = 0, we have

H0(r) = H0(kr) = − i

π

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eikxtdt, (A.3.2)

and in this case the integral converges everywhere except the point where

x = y = 0.

A.4 Polynomial matrices

Here we will prove some crucial results concerning latent roots of polynomial

matrices. Further information on this subject is contained in [23, §7].
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Let P(z) be an n×n polynomial matrix, whose rows are linearly independent,

and let D(z) represent the determinant of P(z). Note that a polynomial matrix

with some linearly dependent rows has the zero function as its determinant,

and is of no interest here. Suppose that P(z) has a latent root of rank r at z = λ,

which means that the constant matrix P(λ) has rank n − r. Then

(i) D(z) has a root at z = λ, whose multiplicity is at least r.

(ii) All entries of adj
(
P(z)

)
are divisible by (z − λ)r−1.

(iii) The constant matrix

F(λ) = lim
z→λ

(z − λ)1−r adj
(
P(z)) (A.4.1)

has rank r.

Proof. By a sequence of elementary row operations, the matrix P(λ) can be re-

duced to a matrix in which there are r rows whose entries are all zero. Apply this

sequence of operations to the polynomial matrix P(z) to obtain the polynomial

matrix P′(z). Then P′(z) has r rows in which each entry has a root at z = λ.

Hence, the determinant of P′(z) has (z − λ)r as a factor. Since determinants are

unaffected by row operations, this establishes property (i).

The adjugate of P′(z) is formed from minors of size (n−1)× (n−1). In r rows,

a factor (z − λ) is suppressed, and so all elements in the resulting minors have

(z − λ)r−1 as a factor. In the remaining n − r rows, each element has (z − λ)r as a

factor. Moreover, the adjugate of P(z) can be obtained by applying a sequence

of column operations to the adjugate of P′(z),1 and so this establishes (ii).

Finally, we observe from equation (A.4.1) that the constant matrix F(λ) has

n − r rows in which all entries are zero. The remaining r rows must be linearly

1To see this, consider the equation P′(z) adj
(
P′(z)

)
= det

(
P′(z)

)
I, where I is the identity

matrix, and observe that performing a row operation on the matrix P′(z) creates one additional

nonzero entry on the right-hand side. This unwanted entry can be eliminated by performing an

appropriate column operation on adj
(
P′(z)

)
.
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independent, or else the rank of the latent root at z = λ is greater than r. This

establishes property (iii). �

Note that the converse of property (i) is not true; for example the determinant

of the matrix

P(z) =



z2 0

0 1




has a double root at z = 0, but this a latent root of rank one. In general, if D(z)

has a root of multiplicity r > 1 at z = λ, then the rank of P(z) is strictly less than

n, but may exceed n − r.



Appendix B

Arrays of singularities

Here, we consider some geometrical arrangements of singularities (multipoles)

which are of crucial importance in the theory of scattering by periodic structures.

For future convenience, we introduce two arrays of points, in the (x, y) plane in

terms of the linearly independent vectors

a1 = (a1, 0), and a2 = (η1, η2), (B.0.1)

with η1 > 0 and η2 , 0. With this notation, we define

A1 = { ja1, j ∈ Z}, (B.0.2)

and

A2 = {R jm = ja1 +ma2, j,m ∈ Z}, (B.0.3)

representing a grating and a lattice, respectively.

Definition 2. A function f : R2 → C2 will be called quasi-periodic if there exist vectors

α and β such that

f (r + nα) = einα·β f (r), ∀n ∈ Z. (B.0.4)
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B.1 Quasi-periodic arrays of singularities

In this section we consider functions of the form

G(d)
q (r,β) =

∑

v∈Ad

eiv·βHq(r − v), q ∈ Z, d = 1, 2 (B.1.1)

which represent periodic arrays of singularities centred at the points of the array

Ad and modulated by a phase factor governed by the vector

β = (βx, βy). (B.1.2)

For the case in which d = 1 we can write

G(1)
q (r,β) =

∞∑

j=−∞
ei ja1 ·βHq(r − ja1), q ∈ Z, (B.1.3)

and we call this the 1D (one-dimensional) quasi-periodic array of singularities,

since it is quasi-periodic in one direction (parallel to a1), i.e.

G(1)
q (r + na1,β) = eina1 ·βG(1)

q (r,β), ∀n ∈ Z. (B.1.4)

On the other hand for the case where d = 2 we have

G(2)
q (r,β) =

∞∑

m=−∞

∞∑

j=−∞
eiR jm·βHq(r −R jm), q ∈ Z, (B.1.5)

and it is evident that this function is quasi-periodic in two directions (parallel

to a1 and a2), since

G(2)
q (r + Rnp,β) = eiRnp·βG(2)

q (r,β), ∀n ∈ Z, ∀p ∈ Z. (B.1.6)

Accordingly, we call G(2)
q (r,β) the 2D quasi-periodic array of singularities. Note

that for q = 0 (B.1.3) and (B.1.5) represent the 1D and 2D quasi-periodic Green’s

function, respectively (see [29]).

B.1.1 The scattering angles

Quasi-periodic arrays of singularities can be written more conveniently as an

infinite sum of modes (exponential solutions to the Helmholtz equation), and
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in order to do this we introduce the so-called scattering angles, defined by

ψ j = arccos βxj, j ∈ Z, (B.1.7)

where

βxj =
βx

k
+

2π j

ka1

. (B.1.8)

The branch of arccos is defined in (A.1.3), and for real values we can use (A.1.4).

Note that in order to ensure that the scattering angles are well-defined, we must

assume that

|βxj| , 1, j ∈ Z. (B.1.9)

This being the case, it is clear that

cosψ j = βxj, and sinψ j = iγ(cosψ j). (B.1.10)

In the main body of the thesis, the x-component of the vector βwill be given

in terms of the wavenumber, and in particular

βx = k cosψ0, with 0 < ψ0 < π, (B.1.11)

in which case we have that

cosψ j = cosψ0 +
2π j

ka1

, and sinψ j = iγ(cosψ j). (B.1.12)

It is evident that cosψ j is real for all j ∈ Z. On the other hand, if we define the

sets

M =
{
m ∈ Z :

∣∣∣cosψ0 + 2πm/ka1

∣∣∣ < 1
}
, (B.1.13)

and

N =
{
n ∈ Z :

∣∣∣cosψ0 + 2πn/ka1

∣∣∣ > 1
}
, (B.1.14)

then it follows from (A.1.2), that sinψ j is real for j ∈ M and positive imaginary

for j ∈ N . Moreover, in view of (A.1.4) we can conclude that there exists a

sequence α j : Z→ R, such that

ψ j =



π − iα j, j ∈ N and j < 0,

α j, j ∈ M,

iα j, j ∈ N and j > 0.

(B.1.15)
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Finally, we introduce the points

p j = e−ik(η1 cosψ j+η2 sinψ j), and τ j = eik(η1 cosψ j−η2 sinψ j), (B.1.16)

which will appear throughout the thesis in several formulae. These points have

the properties

|p j| = |τ j| = 1, for j ∈ M, (B.1.17)

p∗j = τ j, for j ∈ N , (B.1.18)

and note that they grow exponentially as | j| → ∞.

B.1.2 1D Spectral representation

To derive an alternative representations for the 1D quasi periodic array (B.1.3)

in cartesian coordinates, we first note that the phase shift ei ja1 ·β = ei ja1βx is inde-

pendent of βy. Therefore, we can formally write

G(1)
q (r, βx) =

∞∑

j=−∞
ei ja1βxHq(r − ja1), (B.1.19)

and by inserting the integral representation (A.3.1), this becomes

G(1)
q (r, βx) =

(−i)q+1

π

∞∑

j=−∞

∫ ∞

−∞
ei j(a1βx−ka1t) e−kγ(t)|y|

γ(t)
eikxt(t − γ(t))q sgn(y)dt, (B.1.20)

where γ(·) is defined in (A.1.2). Now, if we change the integration variable to

ka1t, and apply Poisson’s summation formula (see [12, eq. 5.8.3])

1

2π

∞∑

j=−∞

∫ ∞

−∞
ei j(x−t) f (t) dt =

∞∑

j=−∞
f (x + 2π j), (B.1.21)

then we obtain the spectral representation

G(1)
q (r, βx) =

2(−i)q+1

ka1

∞∑

j=−∞

e−kγ(βxj)|y|

γ(βxj)
eikxβxj

(
βxj − γ(βxj)

)q sgn(y)
, (B.1.22)

where βxj is defined in (B.1.8). For q , 0 the representation (B.1.22) is valid for

all values of y except y = 0, whereas for q = 0, it is valid everywhere except the



B.1 Quasi-periodic arrays of singularities 118

point where x = y = 0. Using (B.1.10), we can rewrite (B.1.22) in terms of the

scattering angles

G(1)
q (r, βx) =

2(−i)q

ka1

∞∑

j=−∞

eiq sgn(y)ψ j

sinψ j

eik(x cosψ j+|y| sinψ j). (B.1.23)

B.1.3 Spectral representation for a semi-infinite lattice

Now we turn our attentions to the functions

G±q (r,β) =

∞∑

m=1

∞∑

j=−∞
eiR j,∓m ·βHq(r − R j,∓m), q ∈ Z, (B.1.24)

representing a semi-infinite lattice of singularities modulated by a phase factor,

and located either in the upper or the lower half plane. Note that the functions

G+q (r,β) and G−q (r,β) are free from singularities in the regions

D+ = {(x, y)/ y > −η2}, and D− = {(x, y)/ y < η2}, (B.1.25)

respectively. For fixed β = (βx, βy), with βx, βy ∈ R the double sum in (B.1.24)

does not converge absolutely (see (A.2.11)) and therefore considerable care is

needed regarding the order of summation. Our aim is to transform (B.1.24)

into a form more suitable for calculations. To do this we will assume that

the wavenumber k has a positive imaginary part, i.e. k = Re[k] + iǫ, which

ensures the absolute convergence of the sum. Therefore, with this assumption

we are at liberty to manipulate the series without the need to specify the order

of summation. Once we have obtained an alternative representation, we can

take the limit ǫ → 0. This is a standard mechanism to treat multi-dimensional

conditional convergent series in scattering problems. Further discussion on this

subject can be found in [30, §1.5]. Thus provided that β is independent of k, we

can write

G±q (r,β) =

∞∑

m=1

e∓ima2·βG(1)
q (r ±ma2, βx), (B.1.26)

and inserting the spectral form (B.1.22), we obtain

G±q (r,β) =
2(−i)q+1

ka1

∞∑

m=1

∞∑

j=−∞

e∓kγ(βxj)y+ikxβxj

γ(βxj)
e

mw±
j

(
βxj−γ(βxj)

)q sgn(y)
,

for r ∈ D±,

(B.1.27)
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where

w±j = −kγ(βxj)η2 ± i(2π jη1/a1 − η2βy), (B.1.28)

and βxj is given by (B.1.8). Assuming that βx, βy ∈ R, it is not difficult to prove

that the real part of w±
j

is negative for all j ∈ Z. This means that we can sum

with respect to m in (B.1.27) and obtain

G±q (r,β) =
2(−i)q+1

ka1

∞∑

j=−∞

e∓kγ(βxj)y+ikxβxj

γ(βxj)

e
w±

j

1 − e
w±

j

(
βxj−γ(βxj)

)q sgn(y)
,

for r ∈ D±.

(B.1.29)

We can now take the limit ǫ → 0, and write (B.1.29) in terms of the scattering

angles (B.1.10), i.e.

G±q (r,β) =
2(−i)q

ka1

∞∑

j=−∞

e±iqψ j

sinψ j
eik(x cosψ j±y sinψ j)

e
w±

j

1 − e
w±

j

, for r ∈ D±. (B.1.30)

Having obtained the alternative representation (B.1.30) we can consider sit-

uations in which β depends on k and (or) βx, βy ∈ C. For example, we will need

to use the spectral representation of G±q (r,β(z)) for

β(z) = (k cosψ0, λ(z)) with λ(z) =
i log z − η1k cosψ0

η2
, (B.1.31)

in which case we have that

G+q (r,β(z)) = −2(−i)q

ka1

∞∑

j=−∞

eiqψ j

sinψ j

eik(x cosψ j+y sinψ j)
z

z − p j

, for r ∈ D+, (B.1.32)

and

G−q (r,β(z)) =
2(−i)q

ka1

∞∑

j=−∞

e−iqψ j

sinψ j
eik(x cosψ j−y sinψ j)

1

τ jz − 1
, for r ∈ D−. (B.1.33)

where the points p j and τ j are given by (B.1.16).

B.1.4 2D Spectral representation

To derive a spectral representation for the 2D quasi-periodic array of singulari-

ties (B.1.5) we note first that

G(2)
q (r,β) = G+q (r,β) + G(1)

q (r, βx) + G−q (r,β). (B.1.34)
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Now if we restrict ourselves to the strip 0 < y < η2, then we can use (B.1.30) and

(B.1.23) to obtain

G(2)
q (r,β) =

2(−i)q

ka1

∞∑

j=−∞

eikx cosψ j

sinψ j

(
ei(ky sinψ j+qψ j)

1 − e
w+

j

+
e
−i(ky sinψ j+qψ j+iw−

j
)

1 − e
w−

j

)
, (B.1.35)

where w±
j

is defined in (B.1.28). From the quasi-periodicity relation (B.1.6) we

can conclude that G(2)
q (r,β) can be evaluated using (B.1.35) even at points outside

the strip 0 < y < η2. Note that G(2)
0

(r,β) can be calculated at all regular points.

However, for q , 0 we cannot calculate G(2)
q (r,β) in this way on the lines y = nη2,

where n ∈ Z.

For the particular case where β(z) is given by (B.1.31) we have that

G(2)
q (r,β(z)) = −2(−i)q

ka1

∞∑

j=−∞

eikx cosψ j

sinψ j

(
p je

i(ky sinψ j+qψ j)

z − p j
− e−i(ky sinψ j+qψ j)

τ jz − 1

)
, (B.1.36)

where p j and τ j are defined in (B.1.16).

B.2 Lattice sums

The lattice sums are defined by

σ(d)
q (β) =

∑

R j∈A⋆
d

eiR j·βHq(R j), q ∈ Z, d = 1, 2, (B.2.1)

and they describe the effect at the origin of multipoles located at the points of

the array A⋆
d
= Ad − {0}, d = 1, 2, and modulated by a phase factor governed

by the vector β. The sum in (B.2.1) converges slowly and in this section we will

present alternative formulae suitable for calculations. A comprehensive review

on lattice sums is given by Linton [30].

B.2.1 1D spectral representation

The phase shift in the 1D lattice sum is dependent only on βx, thus we can

formally write

σ(1)
q (βx) =

∞∑

j=−∞
j,0

ei ja1βxHq( ja1). (B.2.2)
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It is worth remarking that the sum in the right hand side of (B.2.2) is also referred

in the literature as Schlömilch series; see [60, Ch. 19]. Note that

σ(1)
q (βx) = lim

r→0

(
G(1)

q (r,−βx) −Hq(r)
)
, (B.2.3)

and from this limit spectral representations can be derived. For q = 0, we can

use (B.1.22) to obtain (see details in [30, §3.3]),

σ(1)
0

(βx) = −1 − 2i

π

(
c + ln

ka1

4π

)
− 2i

ka1γ(βx/k)

−
∞∑

j=−∞
j,0

(
2i

ka1γ(βx/k + 2π j/ka1)
− i

π| j|

)
, (B.2.4)

where c is Euler’s constant and γ is defined in (A.1.2). More conveniently, we

can write (B.2.4) in terms of the scattering angles defined in (B.1.10), that is

σ(1)

0
(βx) = −1 − 2i

π

(
c + ln

ka1

4π

)
+

2

ka1 sinψ0
+

∞∑

j=−∞
j,0

(
2

ka1 sinψ j
+

i

π| j|

)
. (B.2.5)

The spectral representations for the lattice sums for q > 0, are much harder to

obtain. An outline of the method is given in [30, §3.3] and a more detailed

description can be found in [56]. Here, we will use the formula [30, eq. 3.38]

expressed as follows

σ(1)
q (βx) = iq




2

ka1

∞∑

j=−∞

eiq sgn( j)ψ j

sinψ j

+ iBq


 , q > 0, (B.2.6)

where

Bq =
2

qπ
cos

qπ

2
+

1

π

[(q−1)/2]∑

m=0

(−1)m (q −m − 1)!

m!(q − 2m)!

(
4π

ka1

)q−2m

Bq−2m

(ka1 cosψ0

2π

)
. (B.2.7)

In the last expression Bm(·) represents a Bernoulli polynomial, and [x] denotes

the largest integer not greater than x. Note that σ(1)
q (βx) can be calculated for

negative values of q from the relation

σ(1)
−q(βx) = (−1)qσ(1)

q (βx). (B.2.8)
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B.2.2 2D spectral representation

The 2D lattice sum is given by

σ(2)
q (β) =

∞∑

m=−∞

∞∑′

j=−∞
eiR jm·βHq(R jm), (B.2.9)

where the prime on the summation symbol indicates that the term ( j,m) = (0, 0)

is to be omitted. An alternative representation can be obtained by first noting

that

σ(2)
q (β) = G+q (0,β) + σ(1)

q (βx) + G−q (0,β), (B.2.10)

and then use the spectral form of the terms in the right hand side. For example,

in the case where β(z) is given by (B.1.31), we can use (B.1.32) and (B.1.33) to

obtain

σ(2)
q

(
β(z)

)
= σ(1)

q (k cosψ0) − 2(−i)q

ka1

∞∑

j=−∞

1

sinψ j

(
zeiqψ j

z − p j

− e−iqψ j

τ jz − 1

)
, (B.2.11)

where the points p j and τ j are given in (B.1.16).
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