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Abstract 

 

This paper (part one of two) investigates the formulation of metrics for the non-

visual effects of daylight, such as entrainment of the circadian system and a 

maintenance of alertness. The body of empirical data from photobiology studies 

is now sufficient to allow us to develop preliminary non-visual lighting 

evaluation methods for lighting design. These effects have the potential to 

become a relevant quantity to consider when assessing the overall daylighting 

performance of a space. This paper (Part I) describes the assumptions and 

general approach that were developed to model occupant exposure to non-

visual effects of light, and presents a novel means of visualizing the ‘circadian 

potential’ of a point in space. The proposed approach uses outcomes of 

photobiology research to define threshold values for illumination in terms of 

spectrum, intensity, and timing of light at the human eye. These values are then 

translated into goals for lighting simulation, based on vertical illuminance at the 

eye, that – ultimately – could become goals for building design. A new climate-

based simulation model was developed to apply these concepts to a residential 

environment, described in Part II (forthcoming). 
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 1. Introduction 

 

The primary concern in the daylighting of buildings has generally been to 

provide illumination for task, for example to ensure that 500 lux falls on the 

horizontal work plane. Although climate-based daylight modeling is over a 

decade old1,2, building guidelines and recommendations worldwide are still 

founded on idealized, static sky conditions such as the CIE standard overcast 

sky (i.e. to predict daylight factors). It is only recently that daylight metrics 

founded on climate-based simulations have begun to be considered as the basis 

for the next generation of building guidelines3, thus enabling a more realistic 

and location-specific evaluation of daylighting potential. In the last decade, 

there has also been a gradual increase in awareness of the non-visual effects of 

daylight (or more generally light) received by the eye4. It is well-known that 

building occupants almost without exception will prefer a workstation with a 

view of the outdoor environment to a windowless office5. A view to the outside 

of course indicates the presence of daylight, although the relation between view 

and daylight provision is not straightforward as it is dependent on many factors. 

In addition to subjective preferences for daylit spaces, it is now also firmly 

established that light has measurable neuroendocrine and neurobehavioral 

effects on the human body, in particular with respect to ensuring a healthy sleep 

- wake cycle and maintaining alertness. Could the quality and nature of the 

internal daylit environment have a significant effect on human health?  

Evidence is indeed suggestive of links between daylight exposure and both 

health and productivity6. 

 

The daily cycle of day and night plays a major role in regulating and 

maintaining 24-hour rhythms in many aspects of our physiology, metabolism 
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and behaviour.. These daily rhythms can be termed  circadian rhythms - the 

term “circadian” is derived from the Latin circa, “around”, and diem or dies, 

“day”, meaning literally “approximately one day” - and the circadian system is  

commonly referred to as the ‘body clock’. Circadian rhythms occur in almost 

all organisms from bacteria to mammals and are endogenous, meaning that they 

are spontaneously generated from within the organism even in the absence of 

external or environmental time cues, These internal rhythms do not usually 

have a period of exactly 24 hours and therefore the cycles need to be adjusted 

or entrained to environment time by external cues, the primary one of which is 

the daily light-dark cycle. 

 

The primary circadian “clock” in mammals is located in the suprachiasmatic 

nuclei (SCN), a pair of hypothalamic nuclei containing about 50,000 cells. The 

SCN receives light information exclusively via the eyes. The retina of the eye 

contains not only the well-known photoreceptors which are used to detect light 

for vision (i.e. rod and cones) but also contain a subset of specialized retinal 

ganglion cells that are intrinsically photosensitive and project directly to the 

SCN and other brain areas mediating ‘non-visual’ responses to light. The SCN 

also conveys signals to other parts of the brain to control the timing of 

numerous circadian rhythms, including the sleep-wake cycle, performance and 

alertness patterns, hormones such as melatonin and cortisol, and the core body 

temperature rhythm. Light also has several acute effects in addition to 

synchronizing the circadian clock. First, pineal melatonin, which is considered 

the biochemical correlate of darkness, is acutely suppressed by light exposure at 

night via the same retina-SCN-pineal pathway that generates melatonin and 

synchronizes its rhythms7,8. Second, light is a stimulant and has direct alerting 
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effects in the brain including measurable effects on subjective sleepiness 

ratings, reaction time and cognitive performance, and brain activity9.  

 

The failure to maintain normal entrainment of the circadian system to the 

natural 24-hour cycle of daylight results in many negative health outcomes for 

humans, though not all are fully understood. Jet Lag and Shift Work Disorders 

are examples of clinical Circadian Rhythm Sleep Disorders in which the 

internal circadian clock is not synchronized to the external light-dark cycle. For 

example, when traveling across a number of time zones, the circadian system 

cannot immediately reset to the new light-dark cycle (it takes about a day per 

time zone to adjust) and consequently will be ‘desynchronized’ from 

environmental time9. Similarly, shiftworkers induce a circadian disorder by 

choosing to work during the night and sleep during the day, in opposition of the 

natural circadian cycle 9-11, inducing both short-term risks for sleepiness related 

accidents and injuries, and longer-term risks to health12-15 and worker 

productivity16-17. 

 

The timing, intensity, spectrum, duration, pattern of light received at the eye, 

and prior light history, are the principal factors determining entrainment of the 

circadian cycle6. Inadequate or mistimed light exposure can disrupt normal 

circadian rhythms and have a negative effect on human performance, alertness, 

health or safety. The type and timing of light exposure is often influenced by 

the built environment, especially in dense urban settings. Daylight usually 

provides illuminances significantly higher than the design level required for 

visual function, though this is only in close proximity to windows and perhaps 

also highly daylit spaces such as atria. If the typical illuminances in these zones 

are high – but not so great that blinds are needed – then those building users 
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that regularly occupy the well-daylit spaces may perhaps experience stronger 

and more regular 24-hour light dark cycles, and consequently more robust 

circadian entrainment, than those users positioned away from windows who are 

habitually exposed to lower illuminance levels at the eye. These considerations 

have resulted in the notion that a space – through its interaction with 

daylighting – may possess a certain ‘circadian potential’18.  

 

Given the emergent nature of these concepts, it should be understood that the 

process of determining this ‘circadian potential’ is more one of carefully 

considered judgment than an as-yet commonly agreed procedure: the right 

balance between optimizing light simultaneously for both visual and non-visual 

functions has not yet been found, nor do we know how to model the light 

responses accurately, especially during the day. The vast majority of circadian 

photoreception studies – mostly using monochromatic light or stationary 

electric lighting – have indeed been conducted at night or in dim-light 

conditions and been focusing on non-visual effects at the onset of light 

exposure19-21; only small pilot studies have started to address longer-term 

daytime exposure22,23. Notwithstanding this caveat, a workable schema was 

devised by Pechacek and ourselves to begin applying this process specifically 

to lighting design18, that included a static ‘circadian efficacy’ concept similar to 

other recently proposed circadian action functions24-27. 

 

As the state of the art in terms of daytime circadian studies is still embryonic, 

we are aiming for a modeling framework – rather than a metric – that will 

evolve as photobiology findings get more refined and applicable. While strict 

recommendations cannot yet be made, the relevance of some critical design 

parameters on the perceived light spectrum, intensity, duration and other 
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parameters is certainly a topic of investigation: we know that we have dual light 

detection systems, whose components have differing spectral sensitivities and 

whose combined effect will vary depending on timing, intensity, wavelength, 

pattern and exposure duration factors. Without yet trying to propose design 

guidelines, we want to move towards lighting models that allow inter-

dependencies of these different parameters to be revealed and that offer enough 

flexibility to incorporate new developments in photobiology.  

 

The goal of this paper is to make a first step in that direction – to begin the 

development of calculation methods and simulation workflows that allow us to 

extract circadian-relevant information from traditional, vision-based building 

simulation results, and to propose data analysis and visualization procedures 

that can meaningfully present and interpret these results. With these in place, 

the daylight exposure and timing influenced by design and environmental 

factors such as opening size and orientation, climate type, or dominant view 

directions can then be evaluated prospectively. 

 

 

2. Relevant findings from the photobiology field 

 

Two action spectra were determined for the melatonin suppression response in 

humans as the first comprehensive efforts to determine the spectral sensitivity 

of ‘non-visual’ responses to light in humans28,29. These action spectra exhibited 

a peak sensitivity in the visible short-wavelength (blue) light range (446-

477nm) that was consistent with the discovery of novel blue-light sensitive 

photopigment called melanopsin located in the specialized intrinsically 

photosensitive retinal ganglion cells30.The sensitivity curve that peaks in the 
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blue region of the spectrum is illustrated in Figure 1: the one shown - for now 

called C(λ) - is based on that derived by Pechacek, Andersen & Lockley18 and 

is represented alongside the well-known human photopic curve V(λ) that has a 

peak value at 555 nm.  

 
Figure 1: Spectral responses of visual system (photopic curve V(λ)) and circadian system (melanopsin 

action spectrum C(λ)). 

 

This analysis used the dose-response curve determined by Cajochen et al in 

2000 for the direct alerting effects of light during a 6.5-hour night-time 

exposure to 4100K polychromatic light31. That study found that a corneal 

illuminance of about 300 lux – based on a visual reading of the plotted dose-

response curve – was required to achieve a maximal stimulant effect on 

subjective alertness under these conditions.  

 

As mentioned earlier, very few alertness studies for daytime exposure to 

polychromatic light are available32, and none provides a dose-response curve. 

One daytime study of note was reported by Phipps-Nelson et al in 200333: it 

compared the effect on alertness of daytime exposure to bright (1000 lux) and 

dim (< 5 lux) light for 5 hours. The latter was assessed through measures of 

subjective and objective sleepiness for slightly sleep-deprived subjects, and – 

again – used fluorescent lighting. Unlike previous related studies34,35 that used 

higher ‘dim’ light levels (50 lux e.g.), this one reported a significant effect of 

bright light exposure during daytime, probably due to the combination of 

having particularly dim comparison levels and having sleep-deprived subjects.  
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Lastly, in relation to timing, early evening and nightime light exposure has been 

found to result in delaying the circadian clock i.e. in extending our biological 

day, while early to mid-morning light will advance the clock (shorten our 

biological day). The direction and magnitude of circadian phase resetting 

effects with respect to time of light exposure are described by a Phase Response 

Curve, one example of which is found in Khalsa et al9,36. While individual 

phase responses to light will depend on individual differences in circadian 

phase, a nominal definition has been used here which assumes that the core 

body temperature minimum (CBTmin) time (an approximation of the point at 

which light switches from causing phase delays to phase advances) is at 6:00 h, 

for an individual typically sleeping from 0::00-8:00 h. Using this definition, 

light exposure before CBTmin (~18:00 – 6:00 h) will induce a phase delay of the 

clock where light exposure after CBTmin (6:00-18:00 h) will cause an advance. 

The effect is not equal at all times, however; the PRC predicts peak delay shifts 

around around 3am and peak advances around 9am. In terms of alerting effects, 

the impact of light exposure or avoidance will also differ with timing. For 

example, while morning light exposure might be effective in accelerating the 

reduction in sleep inertia, or the ‘grogginess’ when one wakes up37, evening 

exposure to light could lead to detrimental effects on subsequent sleep latency 

and quality because of an undesired increase in alertness too late in the day38. 

 

One should note that the history and duration of light exposure also have a 

critical influence on how the circadian system is stimulated39-41. Any light 

exposure threshold will thus be strongly influenced by these parameters, and 

with inter-dependencies that have not yet been fully uncovered. Research in this 

area is, as of yet, not advanced enough to provide more tangible hypotheses 



  

10 

about how these dependencies should be applied in a daylight exposure context, 

and thus were considered beyond the scope of the model presented here.  

 

 

3. Incorporating non-visual effects in lighting simulation models 

 

The above-mentioned action spectrum, illuminance thresholds and time cues 

were used as a basis for setting up a non-visual lighting model with the aim to 

provide insights as to if and when one might expect a non-visual effect (e.g. 

alertness increase) during either nighttime or daytime in a daylit space, and thus 

allow a prospective assessment of the ‘circadian potential’ of a space, which 

will emerge from a complex map of inter-relationships at the human, spatial 

and environmental levels conceptually illustrated in Figure 2.  

 
Figure 2: Uncertainties related to context variability and space properties integrated in a relationship 

map between measurable (scientific) parameters and design elements.    

 

 

3.1 Spectral properties and conversion factors 

 

To determine light levels relevant to our circadian photoreception system (as 

opposed to our visual system)42, what we need to do is to convert predictions 

for vertical illuminance - derived from our visual system’s sensitivity curve 

V(λ) - into equivalent ‘circadian-lux’ based on the C(λ) action spectrum given 

in Figure 1.  
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Given the significant spectral shift from the V(λ) to the C(λ) curve, we can only 

get to comparable ‘circadian-lux’ values if we first identify the spectral 

distribution of the light reaching the eye, and then keep a consistent basis for 

‘circadian-lux’ comparisons. In this case, only daylight will be considered as 

the light source although the method is conceptually equally applicable to 

electric lighting as long as the respective luminaire emission spectra are known.  

 

The climate-based simulation method that was developed for this project is able 

to produce time-series of illuminance values independently for overcast sky 

light, sunlight and clear (blue) sky light (described in Part II). The sky model 

type (e.g. overcast, intermediate, clear) is inferred from diffuse horizontal and 

direct normal illuminance in the climate data43. Vertical daylight illuminance at 

the eye for a person inside a building can thus be considered as a set of 

individual contributions from direct and reflected sunlight, and diffuse daylight 

from either a clear blue sky or a grey overcast sky. Each partial illuminance 

value can then be converted into an equivalent partial ‘circadian illuminance’ 

using the approach described in Pechacek, Andersen & Lockley18. 

 

The respective spectral distributions actually applicable for these three daylight 

components at any given moment over the year will vary with the associated 

sky conditions specific to the considered situation. As the purpose of this study 

is not to provide a precise analysis of daylight penetration in a space but rather 

to define a general methodology for a non-visual lighting model applicable to 

existing building simulation workflows, we will approximate each of these 

three daylight components to a CIE standard illuminant: solar beam radiation 

will be approximated to D55, overcast sky to D65 and light from a clear blue 

sky to D75; all three are given in Figure 3. 
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The conversion then comes down to determining the ‘circadian efficacy’ of the 

daylight component, starting from a known (visual) illuminance and relative 

spectral distribution from which an absolute radiometric spectrum can be 

derived (that will be different for each daylight component). The mathematical 

process used to calculate this ‘circadian efficacy’ can be found in Pechacek, 

Andersen & Lockley18 and can be summarized as follows: by multiplying the 

absolute spectrum by the ‘circadian’ sensitivity curve C(λ) discussed above, 

one can then extract a ‘circadian-lux’ value for each component. The 

normalization factor of 683 lm/W used for photometry is here replaced with an 

arbitrary value of 1 given that we are looking at determining a unit-less 

photometric response from a unit-less radiometric spectrum.  

 

Through this conversion, one can account for the greater ‘circadian efficacy’ of, 

say, 1000 lux of diffuse light from a clear blue sky compared to 1000 lux of 

light from the sun. We can then use these established relationships to derive 

‘circadian-equivalent’ threshold values derived from the photobiology findings 

discussed in section 2, as detailed below in section 3.2. 

 
Figure 3: Spectral power distribution for CIE daylight illuminants associated to the three daylight 

sources alongside normalized photopic and circadian sensitivity curves V(λ) and C(λ). 

 

Of course, the spectrum of light that ultimately reaches the eye will also be 

altered when it is transmitted through glass and when it is reflected off internal 

and external surfaces before reaching the eye. As a first approximation, we will 

consider that all surfaces and glazings that daylight will encounter (e.g. window 

glazing, walls, floor, ceiling, ground, etc.) to be spectrally neutral (achromatic 
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i.e. ‘grey’), and so do not modify the relative spectrum of light by reflection or 

transmission (though of course, they do modify the absolute values through 

absorption). This simplifying assumption will need to be tested, though for 

spaces with clear glazing and neutral décor, a preliminary sensitivity analysis18 

indicated that the effects were usually small except for very deep rooms. Thus, 

the calculated vertical illuminance only has to be split into the different daylight 

sources involved – which have a distinct relative spectra – following the 

procedure explained above.  

 

 

3.2 Intensity of illumination 

 

Based on the C(λ) efficacy curve and the method described above, it becomes 

possible to determine the (visual) illuminance that, for a given source, would 

correspond to the same ‘circadian-equivalent’ illuminance for another source. 

For example, 190 lux of Daylight Illuminant D65 would correspond to 700 lux 

of 555nm monochromatic light in terms of circadian effectiveness. Figure 4 

shows this correspondence for a range of well-known illuminants and source 

types and proposes a correlation to subjective alertness based on the night-time 

study by Cajochen et. al.31. From that reference study, which provides 

illuminance threshold values for 25%, 50%, 75% and 100% subjective alertness 

for a single light source (4100 K fluorescent lighting), one can derive 

prospective thresholds for other sources, for which some examples are shown in 

Figure 4.  

 
Figure 4: Illuminance necessary to achieve a desired relative alerting effect for a selection of well-

known illuminants . 
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While it is too early to derive any reliable illuminance threshold for alertness 

from the night-time and daytime studies published so far, we can anticipate that 

daytime ‘circadian-lux’ thresholds are likely to be determined in the future in 

association with subjective and objective alertness, as well as other 

physiological and health effects. Until these more reliable thresholds are 

determined, and the duration of exposure is more reliably characterized, we can 

prospectively use the dose response curve from the night-time Cajochen study31 

in combination with the daytime Phipps-Nelson results33 as workable basis for 

the development of a non-visual lighting model that will be further refined in 

the future as photobiology research progresses. Consequently, what we propose 

here is to use the Cajochen and Phipps-Nelson studies to, respectively, set a 

tentative lower and and an upper bound for the likelihood that a given light 

exposure will have an effect on alertness.  This proposal is based on the 

following assumptions. On the one hand, we can reasonably assume that the 

illuminance threshold required to have a significant effect on alertness during 

daytime will be at least as high as a threshold applicable to night-time exposure 

because we are more sensitive to lighting during the night. On the other hand, 

we can also reasonably assume that if a significant effect was found during 

daytime with a given illuminance, those effects will probably still be observed 

with an even higher illuminance. We should note that the Phipps-Nelson study 

was run with slightly sleep-deprived subjects and with a dim light background 

(< 5 lux), which could skew the results towards a higher sensitivity to light 

exposure than would have been observed with well-rested subjects or a bright 

background; but the purpose for now is more about defining a methodology 

than finding exact values.  
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In both studies, fluorescent tubes were used as the light source: Philips Color 

840 4100K fluorescent tubes in the (Cajochen) nighttime study and Thorn 2L 

(36 W) tubes in the (Phipps-Nelson) daytime one. From Figure 4 one can read 

that the ‘circadian-equivalent’ lower bound illuminance value of 300 lux for 

4100 K fluorescent light (which gave a 100% alerting in the Cajochen et al 

study) would be 190 lux for the CIE illuminant D65 (overcast sky). Similarly, 

we find that a ‘circadian-equivalent’ lower bound illuminance of 210 is 

determined for CIE illuminant D55 (sunlight), and 180 lux for CIE illuminant 

D75 (clear blue sky light).  The Phipps-Nelson study used a mean eye 

illuminance of 1056 lux as the bright light condition to evaluate daytime 

alerting effects. We do not have spectral data for the particular fluorescent 

tubes that were used but can assume that they approximate the Illuminant F7 

(Daylight Fluorescent) reasonably well. We then have all the data necessary to 

determine the ‘circadian-equivalent’ upper bound illuminance of 1056 lux of 

fluorescent (F7) light for the CIE illuminant D6544, which we find to be 870 

lux. The same process leads to a ‘circadian-equivalent’ upper bound 

illuminance for the CIE illuminant D55 of 960 lux and for the CIE illuminant 

D75 of 830 lux.  As one would expect, the ‘bluer’ spectrum (D75) corresponds 

to the lowest equivalent illuminance threshold in both cases as it provides more 

‘circadian-effective’ light for a given number of visual lux. 

 

Accounting for the noted uncertainties, a simple ramp-function can be proposed 

as a reasonable proxy to represent the likelihood that the vertical illuminance at 

a given point in time and for a given view direction is sufficient to affect the 

circadian system and have either circadian entrainment and/or subjective 

alertness effects: low likelihood (0%) below the lower bound, and high 

likelihood (100%) above upper bound, with a linear interpolation between these 
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values. As with most biological effects, a response curve is more likely to be 

the reality than a linear ramp function. Though the Cajochen et al31 dose 

response itself was fitted with a much more complex, four-parameter logistic 

model, there is a steep linear component over the hundreds of lux range. The 

linear ramp can thus be considered as a first, simplistic step that has some basis 

in biology. It is likely to underestimate the non-visual response associated with 

a particular illuminance level (number of lux) though, and should be refined as 

more experimental data becomes available. 

 

Given that ‘circadian-equivalent’ illuminance values and thresholds represent 

quantities that are – by definition – always relative to two source spectra whose 

respective potential to produce significant ‘circadian’ (non-visual) effects is 

compared, an absolute ‘circadian-equivalent’ illuminance value thus has no 

meaning by itself. When dealing with three light source spectra (overcast sky, 

clear sky and sunlight), it is thus preferable to choose a single and consistent 

daylight source of reference, say Illuminant D55, and gauge results against it. 

Before comparing partial (visual) illuminance values to threshold values, we 

convert the respective components due to overcast sky (D65) and clear blue sky 

(D75) into ‘circadian-equivalent’ illuminances for D55 sunlight. Then, all three 

can be added up and assessed against D55-relevant lower and upper thresholds, 

i.e. 210 lux and 960 lux thresholds respectively, as mentioned above.  

 

The resulting ramp function expressed in terms of D55 equivalent is illustrated 

in Figure 5. As noted, these and other parameters will be refined in due course 

when advances in quantitative photobiology deliver more certain data for model 

calibration. 
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Figure 5: Schematic showing ramp-function for likelihood of non-visual effect. 

 

 

3.3 Timing of exposure 

 

The timing of exposure determines the magnitude and direction of the circadian 

resetting effect for a given light exposure and therefore critical in determining 

the type of effect that can be expected, and whether it will be beneficial or 

detrimental for any given application. Given our incomplete knowledge about 

the interaction of light exposure timing, pattern, wavelength, intensity, duration 

and history, the boundaries are not yet defined, but nevertheless it is possible to 

delineate three distinct times of day from the photobiology findings discussed 

in section 2. These are illustrated in Figure 6 and can be summarized as 

follows:  

- Early to mid-morning (6:00-10:00 h), where sufficient daylight 

illuminance can serve to phase advance the clock in the majority of 

people. (Note, about 75% of the population have an intrinsic circadian 

period > 24 h which requires a daily phase advance to entrain to the 24-

hour light-dark cycle45,46; a quarter however, require a delay shift to 

entrain which would be achieved by evening light exposure). 

- Mid-morning to early evening (10:00 to 18:00 h), where high levels of 

daylight illuminance may lead to increased levels of subjective alertness 

without exerting substantial phase shifting effects on the clock. 

- The rest as notional night-time (18:00 to 6:00 h), where daylight 

exposure that might trigger the non-visual effect is to be avoided so as 

not to disrupt the natural wake-sleep cycle (although see caveat above 

regarding individuals with a circadian period < 24 h).  
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We should note that the categorization of beneficial versus detrimental will 

depend on the type of activity/task that one has to do. For example, the three-

episode schedule described would be applicable to a hospital patient recovering 

from  surgery. It would not necessarily be applicable to the night-shift nurses 

however, who have to work during the hours of darkness: their alertness will be 

increased with an exposure to bright light overnight (18:00 to 6:00 h), and they 

should limit light exposure during the day to facilitate sleep. Similarly, those 

individuals with a circadian period <24 h, who require a daily delay to entrain 

their circadian clocks, would benefit from obtaining evening light exposure and 

minimizing morning exposure. 

 
Figure 6: The day is divided into three episodes according to the type of non-visual effect that applies 

to each one.  

 

These three time episodes over the 24h-day can then be used to categorize time-

varied light exposure over a day or a year according to their expected non-

visual effects by calculating the cumulative occurrence of non-visual effect 

likelihood within each category. This concept is further discussed in the 

following section and was applied for a range of climates, spaces and opening 

configurations in a residential environment for Part II of the study.  

 

As noted, the timing factor should include not only the duration and time of 

occurrence but also the history of recent exposure. We do not know enough yet 

to warrant the additional complexity of including this factor, however, so we 

consider only time of occurrence in isolation of the duration and history of the 

exposure. 
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4.  The ‘circadian potential’ of a space  

 

A daylit space will experience continuously changing natural illumination 

conditions over the day and from season to season. This sequence of conditions 

will be unique to every design and every building, site and location. With 

climate-based modeling methods, we can predict these variations from 

standardised weather data (as described in Part II) and can therefore devise 

ways to provide a more comprehensive understanding of how optimal a space 

might be in terms of its potential in providing ‘circadian-effective’ daylight 

over representative periods of a full year.  

 

 

4.1  Cumulative occurrence of non-visual effects 

 

The ‘circadian potential’ aims to provide the means to know where, when and 

to what extent circadian entrainment and alertness effects are likely to occur in 

a space. More specifically, for a given view direction at a given location in a 

space, it can be understood as how often over the year someone looking in that 

direction from that location would experience light levels that are above the 

required thresholds for inducing non-visual effects (such as entraining his/her 

circadian system or increasing his/her alertness). It therefore expresses the 

cumulative occurrence of experiencing non-visual effects over time, and can be 

compared to an absolute ‘100% potential’ reference that would correspond to a 

situation where at any given moment over the year, the light exposure does 
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surpass the required threshold. The comparison against a given threshold would 

here rely on the process described in sections 3.1 and 3.2.  

 

An essential aspect of this potential relates to how the space is designed – and 

in particular to the position, size, orientation and type of openings it includes. 

Another essential aspect relates to how it is occupied: light will only be 

‘circadian-effective’ if actually detected by an occupant – and occupants are 

known to move and look around in a space in numerous ways. Actual light 

exposure will therefore vary considerably depending on: (a) whether the 

occupant tends to look towards or away from available light sources; and, (b) 

the magnitude of the (diffuse) illumination in the space that results from one or 

more reflections of light once it has entered the space through an aperture (e.g. 

window or rooflight).   

 

While the ‘circadian potential’ concept applies to a given view direction and 

head position, it could just as well be extended to an entire space: in this case, 

one could think of averaging individual ‘circadian potentials’ for a range of 

locations and view directions that would be representative of the full space, or 

of randomizing which location and view direction to pick at each moment (as 

proposed in Gochenour & Andersen 200947 for circadian potential evaluation in 

rowhouse apartments). One could even move to a further degree of subtlety by 

incorporating occupant behavior models and space use patterns, as also 

suggested but not attempted in 47.  

 

As the effect of light exposure can be very different depending on its timing 

over the day (beneficial versus detrimental depending on one’s activity e.g.), 

the ‘circadian potential’ should not simply be the result of a cumulative 
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exposure over time, but should be grouped according to the type of effect, i.e. 

within – in the simplified model proposed here – the three time episodes 

discussed in section 3.3. Ultimately, such a static model will have to be refined 

into a dynamic one, that offers enough flexibility to account for differences in 

duration, intensity, pattern and wavelength and better mimic the dynamic nature 

of circadian photoreception. The proposed model therefore represents an initial 

step in setting an appropriate framework to address this challenge.  

 

In order to visualise the outcomes of such a model on an annual basis (whether 

based on dynamic hypotheses or, as is currently the case, static ones) and in a 

way that can actually be informative if incorporated into the design process, we 

developed a condensed visualisation format for ‘circadian potential’. It 

combines the need to group time-varying data within three daily time episodes 

and to do this according to a finite set of representative view directions. This 

format is described in the next section.  

 

 

4.2  Graphical representation: the sombrero plot 

 

We devised a simple and intuitive graphical schema to express the ‘circadian 

potential’ of a given location and view direction as the cumulative non-visual 

effect occurring in each of the three times of the day identified independently.  

 

We present the cumulative non-visual response occurring in the three defined 

times of day using a graphical device that we have called the ‘sombrero’ plot. 

Illustrated in Figure 7, the ‘sombrero’ plot shows the percentage of the 

cumulative occurrence of non-visual effects across the year for each of the three 
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periods described in the previous section. The boundaries for the periods were 

thus set as follows:  

- The effects of light on circadian resetting from 6:00 to 10:00 h are 

represented by the inner circle of the ‘sombrero’  

- The alerting effects of light from 10:00 to 18:00 h are represented by the 

middle circle of the ‘sombrero’ 

- The light avoidance time from 18:00 to 6:00 h is represented by the  

outer circle of the ‘sombrero’.  

 

The cumulative ‘circadian potential’ of light for these three times of day for a 

fixed location is apportioned to four quarter-segments in three concentric rings, 

shown in the lower panel in Figure 7: 

- Each ring segment gives the cumulated percentage of that time period 

across the year for which the circadian potential (likelihood of having 

an effect) would be achieved for that view direction and at that location 

(i.e. multiple plots are used to characterize the variation in effect across 

a space – paper II).  

- Each quarter circle corresponds to a different view direction (N, E, S 

and W e.g., or more generally ʻbottomʼ, ʻtopʼ, ʻleftʼ and ʻrightʼ) and is 

shaded according to a 0-100% false-colour scale ranging from light 

yellow (100% likelihood of non-visual effect) to dark blue (0% 

likelihood of effect). 

 

In the example given, the ‘sombrero’ plot could be associated to a specific 

location in an interior space that would for instance include a South-West 

window (North is ‘up’), for which we are interested to get an annual overview 

of light exposure for, say, a particular desk layout. The plot would tell us that, 
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at that particular seating position, for someone looking mostly towards the 

South or West over the year from the late morning to the late afternoon (10:00 

to 18:00 h), non-visual effects will likely be significant (close to 100% 

potential) compared to someone looking mostly to the North (80%) or the East 

(70%) during those hours of the day. If we are in a situation where morning 

light exposure (6:00 to 10:00 h) is critical in that space, we would observe that 

East or North view orientations might not be ideal (20% to 40%) whereas if the 

priority is to avoid evening light (18:00 to 6:00 h), we would see that the space 

is likely to be suitable as is. This latter observation might seem obvious under 

latitudes below 60° but is likely to become an influential design factor for 

locations closer to (or beyond) the arctic circles in the summer periods.   

 

Given that the shaded value in the ‘sombrero’ plot is a cumulative measure, a 

value of, say, 40% could either represent a full ‘circadian potential’ (i.e. D55 

circadian-equivalent light exposure above 960 lux in the proposed model) 

occuring for 40% of the time, or a 40% ‘circadian potential’ (D55 circadian-

equivalent light exposure above 210 lux but below 960 lux i.e. close to 510 lux 

with the chosen linear ramp-function) occurring for all of the time, or, as is 

more likely, something in between. The application of this concept in a 

modeling workflow and its ability to reveal critical space properties relevant to 

non-visual effects are discussed in Part II.  

 
Figure 7: Visualization of ‘circadian potential’ as a sombrero plot, which expresses the cumulative 

occurrence of non-visual effects within each time period at a given location and for four viewing 

directions. 

 

This representation actually offers a large degree of flexibility in what type of 

information can be displayed, depending on the designer’s own priorities. If 
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specific periods over the day or the year are more relevant than others (e.g. for 

a classroom space only used during limited daytime hours and the academic 

year), the ‘circadian potential’ could be adjusted to only evaluate light exposure 

within these periods. Or, if what the designer is looking for is to get a general 

idea of the space’s potential to generate non-visual effects, metrics similar to 

the Acceptable Illuminance Extent (AIE) developed within the Lightsolve 

context48 could be used, that look at what proportion of a space achieves a 

certain goal; this would condense the information into a single value per space 

(or per area of interest) for each view direction. To be more realistic, this 

synthesis could ultimately rely, as mentioned earlier, on estimated ‘circadian 

lux’ based on realistic human behaviour or activity patterns derived from a 

combination of established behavioural models in living/working spaces49,50 

and of simultaneously computed glare models51,52 to ensure that the exposure 

patterns are realistic i.e. that they do not conflict with visual comfort 

requirements. This would constitute a challenging but interesting further 

enhancement of the proposed model.  

 

5. Conclusions 

 

A new model of non-visual effects which is an extension of that described by 

Pechacek, Andersen & Lockley18 is presented in this paper. A key enhancement 

compared to the previous implementation resides in the introduction of the 

concept of a linear ramp-function from a lower to an upper vertical illuminance 

threshold that expresses the increasing potential for circadian effects. Another 

enhancement is the ability to treat light from the sun and sky independently, 

thereby accounting for the varying circadian efficiency of the daylight 

according to its spectral type, i.e. D55, D65 or D75. Additionally, in order to 
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simplify data visualisation, we have introduced a novel graphical device to 

display the cumulative non-visual effects of light at a point in space as a 

function of view direction, in an intuitive and highly condensed way: the 

‘sombrero’ plot provides a means of representing cumulative data which has 

properties of position (i.e. multiple plots can be used to show the distribution 

across a space) and view direction, in addition to incorporating changes due to 

the time of day. The simplicity of its graphical concept also allows a lot of 

flexibility in the type of data that are being condensed (over the year vs. periods 

of the year, over the space or areas of interest etc), so as to better respond to a 

designer’s project priorities and to remain applicable as new photobiology 

findings will support the creation of inherently dynamic lighting models for 

non-visual effects.   

 

The field of ‘circadian daylighting’ in architecture is a new one. The proposed 

approach aims to provide the basis to support a better understanding of the 

relative effect of certain design decisions on the overall ‘circadian potential’ of 

a space. As we have noted, the understanding of the dynamic properties of the 

circadian photoreception system continues to advance, and therefore we expect 

to refine and rerun our models as additional experimental data emerge. It is 

certainly too early at this stage to consider definitive guidelines for buildings in 

terms of predicted circadian potential. Notwithstanding this limitation, 

however, the basis is sufficiently robust to start formulating credible 

methodologies for circadian potential simulation and to start building an 

appropriate modeling framework for its investigation in the design context. 

 

Ultimately, the complex inter-dependencies of intensity, duration, pattern, 

timing, light history and wavelength parameters affecting the circadian 
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system’s response during both day and night will have to be incorporated into a 

dynamic and flexible model. Recent photobiology studies have, for example, 

shown that non-visual photoreception is mediated by multiple photoreceptors 

depending on the intensity and duration of light exposure53. Under dim light 

conditions, or at the start of light exposure, the photopic visual system V(λ) was 

shown to contribute at least equally to non-visual responses whereas at higher 

intensities, melanopsin-based blue-light sensitivity was shown to predominate 

for melatonin suppression. Lockley’s group has also shown that the duration-

response function to light is non-linear with the greatest effect at the start of the 

light exposure54 and there seem to be time-of-day differences in the spectral 

circadian response C(λ), which are currently under investigation. Therefore, we 

will need to generate an inter-dependent function that links exposure duration 

with intensity and time of day. While we cannot determine an actual expression 

for it yet, we already know what the main variables are and the simplified and 

static model proposed here is a first step towards establishing its foundations.  

 

Once more refined simulation models emerge that account for these inter-

dependencies, we will then be able to test them against, say, patient data 

recorded in controlled laboratory studies or – ideally – in actual built 

environments (e.g. healthcare), to ensure that the models are applicable in real 

world design applications. New opportunities will then open up for how we 

might formulate future building guidelines that account for what are 

increasingly believed to be significant health, well-being and productivity 

effects related to the exposure of daylight.  
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Figure 1: Spectral responses of visual system (photopic curve V(λ)) and 
circadian system (melanopsin action spectrum C(λ)). 
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Figure 2: Uncertainties related to context variability and space properties 
integrated in a relationship map between measurable (scientific) parameters and 
design elements. 
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Figure 3: Spectral power distribution for CIE daylight illuminants associated to 
the three daylight sources alongside normalized photopic and circadian 
sensitivity curves V(λ) and C(λ). 
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Figure 4: Illuminance necessary to achieve a desired relative alerting effect for 
a selection of well-known illuminants . 
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Figure 5: Schematic showing ramp-function for likelihood of non-visual effect. 
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Figure 6: The day is divided into three episodes according to the type of non-
visual effect that applies to each one.  
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Figure 7: Visualization of ‘circadian potential’ cumulative occurrence as a 
sombrero plot, which expresses the cumulative occurrence of non-visual effects 
within each time period at a given location and for four viewing directions. 
 


