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Abstract: - A Genotype-Phenotype mapping in most Genetic Programming (GP) systems uses a predefined and 

rigid grammar definition. This method has been successful in producing the required solution. However, it can 

only be used to solve a limited set of problems. In this paper, a Teachable GP (TGP) system is proposed. An 

external GP system evolves a complete computer program, which acceptable solution is then added 

automatically to the existing grammar definition as a function and made available to the TGP system. This 

dynamic grammar definition allows for a more complex program to be generated, solving more complex 

problems. Experiments are performed to compare performances between GP without the added function, GP 

with a user-defined function and GP with the evolved function and results shows that GP with an evolved 

function is comparable to the GP with user-defined function and outperformed GP without function. 
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1 Introduction 
There have been many evolution techniques 

introduced since the work of Cramer [3], who 

explicitly uses Genetics to generate computer 

programs. John Koza [6] later popularised this area 

and called it Genetic Programming (GP). The Koza-

styled GP is based on a tree representation of a 

computer program in LISP.  

In recent years, different variants of GP have 

emerged following Koza’s basic idea, especially the 

separation of genotype and phenotype, proposed by 

Banzhaf [2]. Many new issues have been 

encountered since then, such as characteristics 

inheritance, generating syntactically correct 

program and producing a complete program. We 

tackle these issues by applying a full-syntax XML 

grammar definition [10]. The grammar definition 

provides rules to assist the translation of genetic 

codes (genome) into particular computer program 

syntax (phenome). As a result, this avoids the need 

to implement a repair procedure.  

Koza later introduces a modular solution into the 

standard GP called Automatically Defined 

Functions (ADF) to scale to a larger and more 

complex program solution [7].  

The main contribution of this paper is the 

teaching of a GP system to solve various user-

defined problems by incorporating an evolved 

function into its grammar. In particular, we evolve a 

‘swap’ program, external to a ‘sorting’ program. 

This speeds up the performance of the GP system by 

reducing both the number of generations required 

and the time taken to achieve a fit solution. It is also 

closer to the way in which a human might be taught 

to program, by incrementally increasing their library 

of program fragments. Our challenge is to get the 

right function to be included in the evolutionary 

system without introducing unnecessary 

mechanisms within the program. 

This paper marks our initial work, which is a part 

of a larger project to produce a teachable web 

information extraction (TWIE) system. Our TWIE 

aims to discover specific pieces of information on 

the Web by evolving regular expressions 

automatically, with some assistance from a human. 

The regular expression notations are defined as 

productions in XML to match the DOM tree 

structure and the data pattern of the information.  

The remainder of this paper is arranged as 

follows: Section 2 describes the related work before 

providing information on our approach in the 

following sections. The process of mapping the 

genotype to the phenotype is presented in section 5. 

This is then followed by details of the experiments 

and the results in section 6, and finally conclusions 

are drawn, including the future direction of this 

work. 



2 Modularised solutions techniques 
In this section, we briefly review the most relevant 

work on function evolution where an improvement 

in performance has been observed compared to the 

standard GP. 

John Koza expanded his earlier work to apply 

program decomposition or modularisation. This 

allows for automatic creation of parameterized 

functions that can be invoked from the main 

program while the GP is concurrently being 

evolved. GP with ADF automatically breaks down a 

program into a set of modularised subprograms 

during runtime, with each solving a sub problem 

with the capability for reuse and then reassembling 

to solve the original overall problem. This approach 

allows for generation of a larger and more complex 

program and has a benefit of significant reduction in 

the computational effort compared to GP without 

ADF. However, before an evolution commences, 

the number of functions and their parameters need 

to be defined, although during runtime, these 

parameters are allowed to change with no human 

intervention. More details of ADF can be found in 

[7].  

Angeline and Pollack [1] introduce Genetic 

Library Builder where a randomly selected 

parameterised subroutine can be compressed by an 

operator and placed in this library. How viable a 

subroutine is depends on the frequency that it is 

called. Before this compressed subroutine can be 

called, it will be expanded using another operator to 

its original definition. This way, the subroutines are 

protected. Any unused subroutines in the library will 

be removed.    

Another variation of ADF can be seen in the 

work of Harper and Blair [4]. Using Dynamically 

Defined Functions (DDF), functions are 

dynamically created using a core grammar 

represented in BNF notation and these functions are 

then automatically appended to this grammar. 

Contrasting ADF, DDF does not require the user to 

specify the number of functions and their 

parameters prior to evolution. The functions, which 

may have any number of parameters, can be 

invoked by the main program, independent of any 

special-purpose operators or constraints.  

Because there is no specific size of individuals 

being set, this method is facing a danger of 

insufficient integers to complete a code as well as 

program “bloat”.  Individual is either discarded or a 

specific method is then put in place to overcome 

these issues. The functions in DDF are not evaluated 

and are not defined to do a specific task. 

A more recent work, which introduces Cartesian 

GP (CGP), is by Miller and Harding [9]. CGP, 

originally developed by Miller and Thomson [8] is 

concerned with providing an effective method for 

evolving digital electronic circuits. In CGP a 

computer program is encoded in the form of a linear 

string of integers representing an indexed graph. 

Like the standard GP, CGP also applies genotype-

phenotype mapping. The genome represents some 

functions and node connections, producing an 

executable program. Although the genomes are 

fixed length, the phenomes length varies. This is 

because the nodes, which are encoded by a number 

of integers, are not required to be connected to each 

other. Any unconnected nodes will not be processed 

and do not have any effect to the program’s 

behaviour. 

All the above works are based on top-down 

approach, where functions are derived from the 

main program. In the context of our work, we use 

the bottom-up approach where we require useful 

function to be evolved separately from the main and 

new function definitions are added to the core 

grammar for future use.  

 

 

3 Teachable GP System 
In this section, our Teachable Genetic Programming 

(TGP) system is described. TGP system aims to 

automatically evolve an independent program, build 

it as a function so it can be used or reused by the 

main program to solve more complex problems.  

Our TGP system generates a PERL program and 

so do the productions defined in the XML grammar. 

The grammar definition is described further in 

section 4.  

 

 

3.1 Basic Structure 
Figure 1 shows the basic structure of our TGP 

system. TGP system evolves programs that can 

reuse previously evolved programs as subroutines. 

Once this subroutine is completed, it is 

automatically added into the core grammar, ready to 

be called by TGP system.  

 

 
 

Fig. 1: TGP system structure. 



The TGP system uses a fixed block length 

genotype and a ‘clean’ grammar definition, 

introduced in our previous research [10] that aims to 

remove dependency on an error correcting 

mechanism to produce an error-free and complete 

program. The grammar for the language is defined 

in XML format, separate from the system. 

 

 

3.2 Function Structure 
Figure 2 shows the general grammar definition of a 

function. The function evolution is triggered if a 

gene maps to a <function> and it would lead to 

several kinds of function calls including: 

 
swap() - function with no parameter 

swap(wvar) - function with a single 

parameter. 

swap(wvar, 

wvar) 

- function with 2 parameters. 

Parameters are not limited 

to 2. 

(wvar) = 

swap(wvar) 

- function with a single 

parameter and return a 

single value. 

(wvar, wvar) = 

swap(wvar, 

wvar) 

- function with multi 

parameters and expecting a 

return of multi values. 

 

But because of these many possibilities, the 

function evolution would require a longer time to 

get to the right solution. Therefore, being the 

purpose of our initial experiment is to teach the GP 

system to evolve a function, we decided to simplify 

the function generation (Figure 2) by constraining 

the way it is structured as represented in Figure 3. 

 
<function> ::= <fcall>  | 

  <retf><fcall>  

<fcall> ::= <funcID> “(” “)” | 

  <funcID>“(”<params>“)”  

<funcID> ::= “swap”  

<params> ::= <param> | 

  <param> “,” <params>  

<param> ::= <var>  

<retf> ::= <param> “=”    

“(” <params> “)” “=” 

| 

Fig. 2: General function grammar definition in BNF. 

 
<function> ::= <retf><fCall> 

<retf> ::= “(” <var> “,” <var> “)” “=”  

<fCall> ::= “swap” “(” “N1” “,” “N2” 

“)” 

Fig.3: Reduced functions grammar definition in 

BNF. 

 

Ni as used here is a special notation representing 

a pseudo non-terminal that is recognised by the 

program. On the right hand side of the production, 

all non-terminals are numbered from 1 so that N1 

means a repeat of the first non-terminal and N2 

repeats the second and so on. 

 

 

3.3 Fitness Functions 
The fitness function determines the direction of the 

evolved program and provides a greater impact on 

the success of the evolved program.  Fitness is 

calculated to determine how close the output 

produced by a particular phenome is to the expected 

output [6]. Because the formal specification of a sort 

[5] is time consuming as it tests all possible pairs of 

integers, we use a simpler version by Withall [11]. 

With this fitness function, the evaluation is based on 

comparison of adjacent elements in the list rather 

than all element pairs and every conjunctive goal 

will contribute to the fitness score. It is important to 

note that the swap program has a different objective 

from the sorting program, therefore a new fitness 

function needs to be designed. In contrast to the 

traditional fitness function, the fitness evaluation 

used here is derived from the formal specification of 

the desired function. We have had successful 

experiments using the formal specifications to 

define complete and concise fitness functions, 

outperformed a simple input/output pair. Figure 4 

shows both fitness functions used in the experiment 

where @L is the original list and @N is the result 

list. 

 
Sorting Program: 

$fitness++ if(bageq(\@L, \@N));  

if($#N > 0){ 

 for my $x (0..$#N−1){  

$fitness++ if($N[$x]<=$N[($x+1)]); 

 } 

} 

 

Swap Program: 

$fitness++ if(bageq(\@L, \@N));  

if($#N > 0){ 

 $fitness++ if($N[$x]==$L[($x+1)]); 

 $fitness++ if($N[$x+1] == $L[($x)]); 

} 

Fig. 4: Fitness functions for sort and swap program. 

 

 

3.4 Breeding Strategy 
The selection strategy used for choosing individuals 

for reproduction is the Roulette Wheel Selection. 

Individuals are selected proportionate to their fitness 

value, leaning towards the fitter one.  

Finally, new individuals are created with the aid 

of uniform crossover and mutation. 50% crossover 

probability is chosen where each gene of the parents 

has the potential of being swapped. Mutation is set 

to affect 1 in 10 genes and can take place anywhere 

in the genome. The point of mutation (gene) will be 

replaced with a random integer between 1 and 255. 



4 Incremental Grammar 
The XML grammar definition specifies the 

syntax (presence and order of elements), which 

conforms to a certain rule. Our core grammar 

definition consists of a list of major generic kinds of 

program statements arranged in a hierarchical form, 

and may have some sub elements, which define 

them. Figure 5 shows the structure of these 

components and their subcomponents. This 

grammar is designed as a “well formed” and “valid” 

XML document, validated against a Document Type 

Definition (DTD). The grammar definition could be 

represented in another language, with a small 

modification in the GP system, specifically, the 

command for executing the generated program. 

However, further tests need to be carried out to 

determine other changes that are possibly required.  

 

 

 
 

Fig. 5: XML grammar definition structure with an 

evolved function. 

 

The root is made up of 6 main components. The 

primitive-statement, which is broken down to core 

statements such as assignment statement, if-

statement and for-loop statement, and support-

statement, such as variable and function, are placed 

on this top level. Each component is defined by a 

unique rule name with an attribute called ‘type’ to 

indicate the conditional status of this rule, i.e., a 

sequence or a selection rule. The subcomponents are 

made up of symbols; terminals and non-terminals. 

The ‘F1’ in figure 5 above refers to the 

independently evolved function. Successfully 

evolved program will be inserted back in the same 

grammar file and can be called by the main 

program. 

Similar to Withall [11], variables are separated 

into read–only variables and write-only variables. 

This separation is necessary to constrain the list 

indexing. The last component is the FunctionList, 

and it is made up of a list of functions required by 

this TGP system, as generated by the called external 

GP system.  

 

 

5 Mapping process 
This section describes the process of decoding a 

genome into a phenome using a full syntax grammar 

definition. We need to scan the grammar for the 

maximum number of nonterminals on the Right-

hand side of the expression to determine the 

maximum length of the blocks of a genome.  What 

we are looking for is expressed formally as follows:  

 

A grammar G is represented as a 4-tuple:  

G = ( N , T , P , S ),  

where :  

N is the set of Non-Terminals,  

T is the set of Terminals,  

P is a numbered set of productions - a set of 

pairs (PosInt × Production) and  

S is the start symbol, S  N. 

Unlike normal notation where P is just a set of 

productions, but here we refer to the productions 

from a particular non-terminal by ordinal number. 

The list of all productions defining a particular non-

teminal (n) can be discovered using      

P(n)={ (?,p) : (?,p)  P  p = (n ::= …) }. All the 

productions from the same non-terminal are to be 

numbered sequentially from 0, so    

|P(n)| = m(i,?)  P(n)  0<= i< m. If (i,p)  P 

then p has the form L ::= R and L  N and  

R (NT)* [using powerset notation R(NT)]. 

Consider one production p written as L ::= R 

R is a string of values of length r, written r=R 
Each element of R can be referenced by indexing, 

Rj for j=0 to r-1. The set of indexes is then defined 

for which Rj is a non-terminal  

NTIdx(R)={j : Rj  N} and the number of non-

terminals in R is counted NTCount(R)= NTIdx(R). 
The set of all counts of non-terminals mentioned 

on the right hand side of a production P is 

NTCounts(P)={c:c=NTCount(R)  (?, ? ::= R)P}. 

Thus the maximum number of non-terminals among 

all the productions of a grammar can be found using 

max(NTCounts(P)), where [m=max(S)  m  S 

and  e  S, e <= m]. This defines the number of 

genes per block (b) in the genotype as  

b = max(NTCounts(P)). Because the genes appear 

as integer codes, thus if a non-terminal with name n 

is expected and an integer code i is given then 

production to be used is  p = (k, n ::= ? ) where  

k = i  modulo  P(n) . 
 



The genotype-phenotype translation algorithm is 

expressed as follows: 

A genotype (GT) is a sequence of blocks 

(B0B1...Bs-1) for some s. Each block (B) is a 

sequence of genes (g0g1...gb-1). Each block records 

the encoding of one production (p). If p = (i, L::=R) 

then integer codes are given for each Rj in turn for 

which Rj  N. Note that no codes are given, where  

Rj  T because there is no choice - the terminal must 

be included. The integer code for the non-terminal 

case chooses which of the relevant productions is to 

be expanded. 

If the encoding process yields less than  

b = max(NTCounts(P)) integers, then extra arbitrary 

genes are added by padding on the right in order to 

keep all blocks the same length. Genes added in this 

way are never used in the decoding process but they 

serve a crucial purpose in the generation/mutation 

process as explained in Section 3. 

 

 

6 Experiments and Results 
Table 2: Parameter setting for a sort and a swap 

program evolution. 

Parameter Specification 

 Sort Swap 

Population size 7 7 

Selection Roulette Roulette 

Runs 10 10 

Maximum 

Generations in each 

run 

50,000 50,000 

Fitness score target 41 9 

Uniform crossover 

probability 

50% 50% 

Mutation probability 10% 10% 

Machine Intel 3.00GHz PC with 4GB of 

RAM, running Windows7 

Input lists [ 4 ,3 ,2 ,1 ], [1,2,55,3], 

[1,999,2,3], [71,1,2,3], 

[1,2,33], 

[100,88,211],[100,1,2], 

[13,7], [5,55], [10] 

[ 5, 1] ,  

[3, 66] 

 

The initial population is created randomly using 

various seeds (here we chose the first 10 prime 

numbers), using parameters setting as in the Table 2 

above. Both our ‘sorting program’ and ‘swap 

program’ evolution share the same parameter 

settings except for the fitness calculation and the test 

data. Notice that between sort and swap, there is a 

difference in the maximum fitness score. This score 

is determined by the number of input lists. There are 

three experiments carried out as described below. 

 
 

Experiment 1: The evolution uses a basic grammar 

(without a swap function). As can be seen in table 4, 

this technique took longer time to find a fit solution. 

The best seed value is 2 at 4,407
th
 generation and 

the worst case is using seed 5, getting a good 

solution at 36,028
th
 generation. 

 

Experiment 2 : In this experiment, a user-defined 

swap function is introduced in the grammar. The 

swap codes are added manually and presented here 

in BNF: 

 
<function> ::= <params> “=” <fcall> 

<fcall>  ::= <funcID> “(“ “N1” “,” “N2” “)” 

<params>  ::= “(“ <wvar> “,” <wvar> “)”  

<funcID> ::= “swapnum” 

<funcdef>  ::= “sub” <funcID> “{“ <fCode> “}” 

<fCode> ::= “@_[0,1]” “=” “@_[1,0]” 

 

 

Experiment 3: A pre-processing task is required 

where the TGP system is executed to generate a 

swap program. Upon getting an acceptable program, 

the codes are automatically inserted into the same 

grammar file. One limitation with this GP system is 

that the swap program evolution must take place 

first prior to the sort program evolution.  See 

Section 3.2 for the function structure. 

 

Results : Table 3 presents the experiment result on 

evolving a swap program. Table 4 shows the 

comparison of performance between evolution of 

sorting program without a ‘swap’ function, with a 

‘swap’ function and with an evolved ‘swap’ 

function. The time indicated in the sort with evolved 

‘swap’ function includes the time taken to evolve 

the ‘swap’ function, which is independent from the 

‘sort’ function. However, they are by far still beat 

the ‘sort’ only algorithm. 

 

Table 3: Swap program evolution. 

Seed Gen Min 

1 1430 00:05 

2 10528 00:34 

3 11227 00:37 

5 5231 00:17 

7 2956 00:10 

11 47806 02:38 

13 2680 00:09 

17 20482 01:07 

19 918 00:03 

23 2331 00:08 

 

The results show a huge improvement in both the 

number of generations and the time taken when a 

swap function is used. Only a small increase in the 

time used by the sort with evolved swap GP 

program in comparison to the user defined swap 



within the grammar for the sorting program GP. The 

time was devoted to the overhead it takes to evolve 

the function, adds it to the grammar, executes it and 

passes its output back to the calling program 

statement. 

Table 4: Comparison of sorting with & without 

swap. 

S 

e 

e 

d 

Sort without 

swap 
Sort with user-

defined swap 
Sort with 

evolved swap 

 Gen Time 

(min) 

Gen Time Gen Time 

1 9114 06:33 52 00:03 52 00:08 

2 4407 03:12 875 00:52 875 01:26 

3 27830 20:37 473 00:28 473 01:05 

5 36028 26:01 668 00:38 668 00:55 

7 24400 17:48 135 00:08 135 00:18 

11 31384 22:57 1334 01:17 1334 01:55 

13 31190 22:56 313 00:18 313 00:27 

17 11928 09:00 222 00:13 222 00:20 

19 35391 26:25 542 00:33 542 00:36 

23 28154 20:44 749 00:47 749 00:55 

 
 

7 Conclusions and Further work 
This paper presents a novel approach to optimise a 

GP system by giving it an evolved function that it 

can call repetitively to solve a complex problem. 

The idea is to provide the GP system with useful 

function and make it continuously learn the new 

functions, once provided. The results presented in 

this paper show a large magnitude of improvement 

in the fitness evaluation if a useful evolved function 

is called.  

However, the current technique does not make 

informed choices to which functions may be best to 

optimise the solution, if there are more functions in 

the grammar. Therefore, future research will 

consider determining a mechanism to choose 

suitable functions for a particular program. We will 

then extend this technique to do multi-level 

evolution, for example, swap-sort-reverse evolution 

and a study of the effect of this technique will then 

be conducted.  

Following this study, the research will focus on 

application of this technique to evolve the regular 

expressions. The generated regular expression is 

used to identify and capture some specific pieces of 

information, such as, title, location and cost of the 

course from a training course domain, presented on 

 

 

 

 

different variants of HTML web pages. 

 

 

References: 

 

[1] Angeline, P.J., Pollack, J.B., The evolutionary 

induction of subroutines. In Proceedings of the 

Fourteenth Annual Conference of the Cognitive 

Science Society, 1992, pp. 236–241.  

[2] Banzhaf, W., Genotype-Phenotype-Mapping 

and Neutral Variation: A case study in Genetic 

Programming. In Proceedings of the 

International Conference on Evolutionary 

Computation. The Third Conference on 

Parallel Problem Solving from Nature: 

Parallel Problem Solving from Nature, 1994, 

pp. 322-332. 

[3] Cramer, N.L., A representation for the adaptive 

generation of simple sequential programs, In 

Proceedings of the First International 

Conference on Genetic Algorithms, 1985,  pp. 

183-187. 

[4] Harper, R., Blair, A., Dynamically defined 

functions in grammatical evolution. In IEEE 

congress of Evolutionary Computation, 2006, 

pp. 9188–9195. 

[5] Cooke, J., Constructing Correct Software, 

Springer, 2004. 

[6] Koza, J.R., Genetic Programming. Cambridge: 

MA: MIT Press, 1992. 

[7] Koza, J.R., Genetic programming II: automatic 

discovery of reusable programs. Cambridge: 

MIT Press, MA, 1994. 

[8] Miller, J.F., Harding, S.L., Cartesian Genetic 

Programming, In Proceedings of the GECCO 

conference companion on Genetic and 

evolutionary computation, 2008, pp. 2701-

2726. 

[9] J. F. Miller and P. Thomson. Cartesian genetic 

programming. In Proceedings of EuroGP’, vol. 

1802 of LNCS, 2000, pp 121–132. 

[10] Siau, N.Z., Hinde, C.J., Stone, R.G., An 

evolution of a complete program using XML-

based Grammar Definition,  In Proceedings of 

the 4th International Conference on 

Evolutionary Computation Theory and 

Applications, Barcelona, Spain, 2012. 

[11] Withall, M.S., Hinde, C.J., Stone, R.G., An 

improved representation for evolving 

programs. Genetic Programming and 

Evolvable Machines, 10(1), 2009, pp. 37-70. 


