

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288382328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Stepwise Evolution of Functions

NOR ZAINAH SIAU, CHRISTOPHER J. HINDE, ROGER G. STONE

Department of Computer Science

Loughborough University

Loughborough

UNITED KINGDOM

{n.z.siau, c.j.hinde, r.g.stone} @lboro.ac.uk

Abstract: - A Genotype-Phenotype mapping in most Genetic Programming (GP) systems uses a predefined and

rigid grammar definition. This method has been successful in producing the required solution. However, it can

only be used to solve a limited set of problems. In this paper, a Teachable GP (TGP) system is proposed. An

external GP system evolves a complete computer program, which acceptable solution is then added

automatically to the existing grammar definition as a function and made available to the TGP system. This

dynamic grammar definition allows for a more complex program to be generated, solving more complex

problems. Experiments are performed to compare performances between GP without the added function, GP

with a user-defined function and GP with the evolved function and results shows that GP with an evolved

function is comparable to the GP with user-defined function and outperformed GP without function.

Key-Words: - Incremental XML Grammar Definition, Teachable Genetic Programming System, Function

Evolution.

1 Introduction
There have been many evolution techniques

introduced since the work of Cramer [3], who

explicitly uses Genetics to generate computer

programs. John Koza [6] later popularised this area

and called it Genetic Programming (GP). The Koza-

styled GP is based on a tree representation of a

computer program in LISP.

In recent years, different variants of GP have

emerged following Koza’s basic idea, especially the

separation of genotype and phenotype, proposed by

Banzhaf [2]. Many new issues have been

encountered since then, such as characteristics

inheritance, generating syntactically correct

program and producing a complete program. We

tackle these issues by applying a full-syntax XML

grammar definition [10]. The grammar definition

provides rules to assist the translation of genetic

codes (genome) into particular computer program

syntax (phenome). As a result, this avoids the need

to implement a repair procedure.

Koza later introduces a modular solution into the

standard GP called Automatically Defined

Functions (ADF) to scale to a larger and more

complex program solution [7].

The main contribution of this paper is the

teaching of a GP system to solve various user-

defined problems by incorporating an evolved

function into its grammar. In particular, we evolve a

‘swap’ program, external to a ‘sorting’ program.

This speeds up the performance of the GP system by

reducing both the number of generations required

and the time taken to achieve a fit solution. It is also

closer to the way in which a human might be taught

to program, by incrementally increasing their library

of program fragments. Our challenge is to get the

right function to be included in the evolutionary

system without introducing unnecessary

mechanisms within the program.

This paper marks our initial work, which is a part

of a larger project to produce a teachable web

information extraction (TWIE) system. Our TWIE

aims to discover specific pieces of information on

the Web by evolving regular expressions

automatically, with some assistance from a human.

The regular expression notations are defined as

productions in XML to match the DOM tree

structure and the data pattern of the information.

The remainder of this paper is arranged as

follows: Section 2 describes the related work before

providing information on our approach in the

following sections. The process of mapping the

genotype to the phenotype is presented in section 5.

This is then followed by details of the experiments

and the results in section 6, and finally conclusions

are drawn, including the future direction of this

work.

2 Modularised solutions techniques
In this section, we briefly review the most relevant

work on function evolution where an improvement

in performance has been observed compared to the

standard GP.

John Koza expanded his earlier work to apply

program decomposition or modularisation. This

allows for automatic creation of parameterized

functions that can be invoked from the main

program while the GP is concurrently being

evolved. GP with ADF automatically breaks down a

program into a set of modularised subprograms

during runtime, with each solving a sub problem

with the capability for reuse and then reassembling

to solve the original overall problem. This approach

allows for generation of a larger and more complex

program and has a benefit of significant reduction in

the computational effort compared to GP without

ADF. However, before an evolution commences,

the number of functions and their parameters need

to be defined, although during runtime, these

parameters are allowed to change with no human

intervention. More details of ADF can be found in

[7].

Angeline and Pollack [1] introduce Genetic

Library Builder where a randomly selected

parameterised subroutine can be compressed by an

operator and placed in this library. How viable a

subroutine is depends on the frequency that it is

called. Before this compressed subroutine can be

called, it will be expanded using another operator to

its original definition. This way, the subroutines are

protected. Any unused subroutines in the library will

be removed.

Another variation of ADF can be seen in the

work of Harper and Blair [4]. Using Dynamically

Defined Functions (DDF), functions are

dynamically created using a core grammar

represented in BNF notation and these functions are

then automatically appended to this grammar.

Contrasting ADF, DDF does not require the user to

specify the number of functions and their

parameters prior to evolution. The functions, which

may have any number of parameters, can be

invoked by the main program, independent of any

special-purpose operators or constraints.

Because there is no specific size of individuals

being set, this method is facing a danger of

insufficient integers to complete a code as well as

program “bloat”. Individual is either discarded or a

specific method is then put in place to overcome

these issues. The functions in DDF are not evaluated

and are not defined to do a specific task.

A more recent work, which introduces Cartesian

GP (CGP), is by Miller and Harding [9]. CGP,

originally developed by Miller and Thomson [8] is

concerned with providing an effective method for

evolving digital electronic circuits. In CGP a

computer program is encoded in the form of a linear

string of integers representing an indexed graph.

Like the standard GP, CGP also applies genotype-

phenotype mapping. The genome represents some

functions and node connections, producing an

executable program. Although the genomes are

fixed length, the phenomes length varies. This is

because the nodes, which are encoded by a number

of integers, are not required to be connected to each

other. Any unconnected nodes will not be processed

and do not have any effect to the program’s

behaviour.

All the above works are based on top-down

approach, where functions are derived from the

main program. In the context of our work, we use

the bottom-up approach where we require useful

function to be evolved separately from the main and

new function definitions are added to the core

grammar for future use.

3 Teachable GP System
In this section, our Teachable Genetic Programming

(TGP) system is described. TGP system aims to

automatically evolve an independent program, build

it as a function so it can be used or reused by the

main program to solve more complex problems.

Our TGP system generates a PERL program and

so do the productions defined in the XML grammar.

The grammar definition is described further in

section 4.

3.1 Basic Structure
Figure 1 shows the basic structure of our TGP

system. TGP system evolves programs that can

reuse previously evolved programs as subroutines.

Once this subroutine is completed, it is

automatically added into the core grammar, ready to

be called by TGP system.

Fig. 1: TGP system structure.

The TGP system uses a fixed block length

genotype and a ‘clean’ grammar definition,

introduced in our previous research [10] that aims to

remove dependency on an error correcting

mechanism to produce an error-free and complete

program. The grammar for the language is defined

in XML format, separate from the system.

3.2 Function Structure
Figure 2 shows the general grammar definition of a

function. The function evolution is triggered if a

gene maps to a <function> and it would lead to

several kinds of function calls including:

swap() - function with no parameter

swap(wvar) - function with a single

parameter.

swap(wvar,

wvar)

- function with 2 parameters.

Parameters are not limited

to 2.

(wvar) =

swap(wvar)

- function with a single

parameter and return a

single value.

(wvar, wvar) =

swap(wvar,

wvar)

- function with multi

parameters and expecting a

return of multi values.

But because of these many possibilities, the

function evolution would require a longer time to

get to the right solution. Therefore, being the

purpose of our initial experiment is to teach the GP

system to evolve a function, we decided to simplify

the function generation (Figure 2) by constraining

the way it is structured as represented in Figure 3.

<function> ::= <fcall> |

 <retf><fcall>

<fcall> ::= <funcID> “(” “)” |

 <funcID>“(”<params>“)”

<funcID> ::= “swap”

<params> ::= <param> |

 <param> “,” <params>

<param> ::= <var>

<retf> ::= <param> “=”

“(” <params> “)” “=”

|

Fig. 2: General function grammar definition in BNF.

<function> ::= <retf><fCall>

<retf> ::= “(” <var> “,” <var> “)” “=”

<fCall> ::= “swap” “(” “N1” “,” “N2”

“)”

Fig.3: Reduced functions grammar definition in

BNF.

Ni as used here is a special notation representing

a pseudo non-terminal that is recognised by the

program. On the right hand side of the production,

all non-terminals are numbered from 1 so that N1

means a repeat of the first non-terminal and N2

repeats the second and so on.

3.3 Fitness Functions
The fitness function determines the direction of the

evolved program and provides a greater impact on

the success of the evolved program. Fitness is

calculated to determine how close the output

produced by a particular phenome is to the expected

output [6]. Because the formal specification of a sort

[5] is time consuming as it tests all possible pairs of

integers, we use a simpler version by Withall [11].

With this fitness function, the evaluation is based on

comparison of adjacent elements in the list rather

than all element pairs and every conjunctive goal

will contribute to the fitness score. It is important to

note that the swap program has a different objective

from the sorting program, therefore a new fitness

function needs to be designed. In contrast to the

traditional fitness function, the fitness evaluation

used here is derived from the formal specification of

the desired function. We have had successful

experiments using the formal specifications to

define complete and concise fitness functions,

outperformed a simple input/output pair. Figure 4

shows both fitness functions used in the experiment

where @L is the original list and @N is the result

list.

Sorting Program:

$fitness++ if(bageq(\@L, \@N));

if($#N > 0){

 for my $x (0..$#N−1){

$fitness++ if($N[$x]<=$N[($x+1)]);

 }

}

Swap Program:

$fitness++ if(bageq(\@L, \@N));

if($#N > 0){

 $fitness++ if($N[$x]==$L[($x+1)]);

 $fitness++ if($N[$x+1] == $L[($x)]);

}

Fig. 4: Fitness functions for sort and swap program.

3.4 Breeding Strategy
The selection strategy used for choosing individuals

for reproduction is the Roulette Wheel Selection.

Individuals are selected proportionate to their fitness

value, leaning towards the fitter one.

Finally, new individuals are created with the aid

of uniform crossover and mutation. 50% crossover

probability is chosen where each gene of the parents

has the potential of being swapped. Mutation is set

to affect 1 in 10 genes and can take place anywhere

in the genome. The point of mutation (gene) will be

replaced with a random integer between 1 and 255.

4 Incremental Grammar
The XML grammar definition specifies the

syntax (presence and order of elements), which

conforms to a certain rule. Our core grammar

definition consists of a list of major generic kinds of

program statements arranged in a hierarchical form,

and may have some sub elements, which define

them. Figure 5 shows the structure of these

components and their subcomponents. This

grammar is designed as a “well formed” and “valid”

XML document, validated against a Document Type

Definition (DTD). The grammar definition could be

represented in another language, with a small

modification in the GP system, specifically, the

command for executing the generated program.

However, further tests need to be carried out to

determine other changes that are possibly required.

Fig. 5: XML grammar definition structure with an

evolved function.

The root is made up of 6 main components. The

primitive-statement, which is broken down to core

statements such as assignment statement, if-

statement and for-loop statement, and support-

statement, such as variable and function, are placed

on this top level. Each component is defined by a

unique rule name with an attribute called ‘type’ to

indicate the conditional status of this rule, i.e., a

sequence or a selection rule. The subcomponents are

made up of symbols; terminals and non-terminals.

The ‘F1’ in figure 5 above refers to the

independently evolved function. Successfully

evolved program will be inserted back in the same

grammar file and can be called by the main

program.

Similar to Withall [11], variables are separated

into read–only variables and write-only variables.

This separation is necessary to constrain the list

indexing. The last component is the FunctionList,

and it is made up of a list of functions required by

this TGP system, as generated by the called external

GP system.

5 Mapping process
This section describes the process of decoding a

genome into a phenome using a full syntax grammar

definition. We need to scan the grammar for the

maximum number of nonterminals on the Right-

hand side of the expression to determine the

maximum length of the blocks of a genome. What

we are looking for is expressed formally as follows:

A grammar G is represented as a 4-tuple:

G = (N , T , P , S),

where :

N is the set of Non-Terminals,

T is the set of Terminals,

P is a numbered set of productions - a set of

pairs (PosInt × Production) and

S is the start symbol, S N.

Unlike normal notation where P is just a set of

productions, but here we refer to the productions

from a particular non-terminal by ordinal number.

The list of all productions defining a particular non-

teminal (n) can be discovered using

P(n)={ (?,p) : (?,p) P p = (n ::= …) }. All the

productions from the same non-terminal are to be

numbered sequentially from 0, so

|P(n)| = m(i,?) P(n) 0<= i< m. If (i,p) P

then p has the form L ::= R and L N and

R (NT)* [using powerset notation R(NT)].

Consider one production p written as L ::= R

R is a string of values of length r, written r=R
Each element of R can be referenced by indexing,

Rj for j=0 to r-1. The set of indexes is then defined

for which Rj is a non-terminal

NTIdx(R)={j : Rj N} and the number of non-

terminals in R is counted NTCount(R)= NTIdx(R).
The set of all counts of non-terminals mentioned

on the right hand side of a production P is

NTCounts(P)={c:c=NTCount(R) (?, ? ::= R)P}.

Thus the maximum number of non-terminals among

all the productions of a grammar can be found using

max(NTCounts(P)), where [m=max(S) m S

and e S, e <= m]. This defines the number of

genes per block (b) in the genotype as

b = max(NTCounts(P)). Because the genes appear

as integer codes, thus if a non-terminal with name n

is expected and an integer code i is given then

production to be used is p = (k, n ::= ?) where

k = i modulo P(n) .

The genotype-phenotype translation algorithm is

expressed as follows:

A genotype (GT) is a sequence of blocks

(B0B1...Bs-1) for some s. Each block (B) is a

sequence of genes (g0g1...gb-1). Each block records

the encoding of one production (p). If p = (i, L::=R)

then integer codes are given for each Rj in turn for

which Rj N. Note that no codes are given, where

Rj T because there is no choice - the terminal must

be included. The integer code for the non-terminal

case chooses which of the relevant productions is to

be expanded.

If the encoding process yields less than

b = max(NTCounts(P)) integers, then extra arbitrary

genes are added by padding on the right in order to

keep all blocks the same length. Genes added in this

way are never used in the decoding process but they

serve a crucial purpose in the generation/mutation

process as explained in Section 3.

6 Experiments and Results
Table 2: Parameter setting for a sort and a swap

program evolution.

Parameter Specification

 Sort Swap

Population size 7 7

Selection Roulette Roulette

Runs 10 10

Maximum

Generations in each

run

50,000 50,000

Fitness score target 41 9

Uniform crossover

probability

50% 50%

Mutation probability 10% 10%

Machine Intel 3.00GHz PC with 4GB of

RAM, running Windows7

Input lists [4 ,3 ,2 ,1], [1,2,55,3],

[1,999,2,3], [71,1,2,3],

[1,2,33],

[100,88,211],[100,1,2],

[13,7], [5,55], [10]

[5, 1] ,

[3, 66]

The initial population is created randomly using

various seeds (here we chose the first 10 prime

numbers), using parameters setting as in the Table 2

above. Both our ‘sorting program’ and ‘swap

program’ evolution share the same parameter

settings except for the fitness calculation and the test

data. Notice that between sort and swap, there is a

difference in the maximum fitness score. This score

is determined by the number of input lists. There are

three experiments carried out as described below.

Experiment 1: The evolution uses a basic grammar

(without a swap function). As can be seen in table 4,

this technique took longer time to find a fit solution.

The best seed value is 2 at 4,407
th
 generation and

the worst case is using seed 5, getting a good

solution at 36,028
th
 generation.

Experiment 2 : In this experiment, a user-defined

swap function is introduced in the grammar. The

swap codes are added manually and presented here

in BNF:

<function> ::= <params> “=” <fcall>

<fcall> ::= <funcID> “(“ “N1” “,” “N2” “)”

<params> ::= “(“ <wvar> “,” <wvar> “)”

<funcID> ::= “swapnum”

<funcdef> ::= “sub” <funcID> “{“ <fCode> “}”

<fCode> ::= “@_[0,1]” “=” “@_[1,0]”

Experiment 3: A pre-processing task is required

where the TGP system is executed to generate a

swap program. Upon getting an acceptable program,

the codes are automatically inserted into the same

grammar file. One limitation with this GP system is

that the swap program evolution must take place

first prior to the sort program evolution. See

Section 3.2 for the function structure.

Results : Table 3 presents the experiment result on

evolving a swap program. Table 4 shows the

comparison of performance between evolution of

sorting program without a ‘swap’ function, with a

‘swap’ function and with an evolved ‘swap’

function. The time indicated in the sort with evolved

‘swap’ function includes the time taken to evolve

the ‘swap’ function, which is independent from the

‘sort’ function. However, they are by far still beat

the ‘sort’ only algorithm.

Table 3: Swap program evolution.

Seed Gen Min

1 1430 00:05

2 10528 00:34

3 11227 00:37

5 5231 00:17

7 2956 00:10

11 47806 02:38

13 2680 00:09

17 20482 01:07

19 918 00:03

23 2331 00:08

The results show a huge improvement in both the

number of generations and the time taken when a

swap function is used. Only a small increase in the

time used by the sort with evolved swap GP

program in comparison to the user defined swap

within the grammar for the sorting program GP. The

time was devoted to the overhead it takes to evolve

the function, adds it to the grammar, executes it and

passes its output back to the calling program

statement.

Table 4: Comparison of sorting with & without

swap.

S

e

e

d

Sort without

swap
Sort with user-

defined swap
Sort with

evolved swap

 Gen Time

(min)

Gen Time Gen Time

1 9114 06:33 52 00:03 52 00:08

2 4407 03:12 875 00:52 875 01:26

3 27830 20:37 473 00:28 473 01:05

5 36028 26:01 668 00:38 668 00:55

7 24400 17:48 135 00:08 135 00:18

11 31384 22:57 1334 01:17 1334 01:55

13 31190 22:56 313 00:18 313 00:27

17 11928 09:00 222 00:13 222 00:20

19 35391 26:25 542 00:33 542 00:36

23 28154 20:44 749 00:47 749 00:55

7 Conclusions and Further work
This paper presents a novel approach to optimise a

GP system by giving it an evolved function that it

can call repetitively to solve a complex problem.

The idea is to provide the GP system with useful

function and make it continuously learn the new

functions, once provided. The results presented in

this paper show a large magnitude of improvement

in the fitness evaluation if a useful evolved function

is called.

However, the current technique does not make

informed choices to which functions may be best to

optimise the solution, if there are more functions in

the grammar. Therefore, future research will

consider determining a mechanism to choose

suitable functions for a particular program. We will

then extend this technique to do multi-level

evolution, for example, swap-sort-reverse evolution

and a study of the effect of this technique will then

be conducted.

Following this study, the research will focus on

application of this technique to evolve the regular

expressions. The generated regular expression is

used to identify and capture some specific pieces of

information, such as, title, location and cost of the

course from a training course domain, presented on

different variants of HTML web pages.

References:

[1] Angeline, P.J., Pollack, J.B., The evolutionary

induction of subroutines. In Proceedings of the

Fourteenth Annual Conference of the Cognitive

Science Society, 1992, pp. 236–241.

[2] Banzhaf, W., Genotype-Phenotype-Mapping

and Neutral Variation: A case study in Genetic

Programming. In Proceedings of the

International Conference on Evolutionary

Computation. The Third Conference on

Parallel Problem Solving from Nature:

Parallel Problem Solving from Nature, 1994,

pp. 322-332.

[3] Cramer, N.L., A representation for the adaptive

generation of simple sequential programs, In

Proceedings of the First International

Conference on Genetic Algorithms, 1985, pp.

183-187.

[4] Harper, R., Blair, A., Dynamically defined

functions in grammatical evolution. In IEEE

congress of Evolutionary Computation, 2006,

pp. 9188–9195.

[5] Cooke, J., Constructing Correct Software,

Springer, 2004.

[6] Koza, J.R., Genetic Programming. Cambridge:

MA: MIT Press, 1992.

[7] Koza, J.R., Genetic programming II: automatic

discovery of reusable programs. Cambridge:

MIT Press, MA, 1994.

[8] Miller, J.F., Harding, S.L., Cartesian Genetic

Programming, In Proceedings of the GECCO

conference companion on Genetic and

evolutionary computation, 2008, pp. 2701-

2726.

[9] J. F. Miller and P. Thomson. Cartesian genetic

programming. In Proceedings of EuroGP’, vol.

1802 of LNCS, 2000, pp 121–132.

[10] Siau, N.Z., Hinde, C.J., Stone, R.G., An

evolution of a complete program using XML-

based Grammar Definition, In Proceedings of

the 4th International Conference on

Evolutionary Computation Theory and

Applications, Barcelona, Spain, 2012.

[11] Withall, M.S., Hinde, C.J., Stone, R.G., An

improved representation for evolving

programs. Genetic Programming and

Evolvable Machines, 10(1), 2009, pp. 37-70.

