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Multi-objective Optimization of Cellular Fenestrati on by an 
Evolutionary Algorithm 

Abstract 

This paper describes the multi-objective optimized design of fenestration that is based 
on the façade of the building being divided into a number of small regularly spaced 
cells. The minimization of energy use and capital cost by a multi-objective genetic 
algorithm was investigated for; two alternative problem encodings (bit-string and 
integer); the application of constraint functions to control the aspect ratio of the 
windows; and the seeding of the search with feasible design solutions. It is concluded 
that the optimization approach is able to find near locally Pareto optimal solutions that 
have innovative architectural forms.  Confidence in the optimality of the solutions was 
gained through repeated trail optimizations and a local search and sensitivity analysis. It 
was also concluded that seeding the optimization with feasible solutions was important 
in obtaining the optimum solutions when the window aspect ratio was constrained.  

Keywords: façade optimization; evolutionary algorithms; multi-objective optimization; 
local and global sensitivity analysis. 

1. Introduction 
Fenestration and its design have a significant influence on the energy performance of 
buildings; it impacts on daylight penetration, artificial lighting energy use, and heating 
and cooling energy use. To date, optimization methods have been used to minimize 
building energy use by optimizing the dimensions of the windows and shading 
elements, but with the window shape typically being rectangular and only minor 
movement in the position of the windows on the façade being allowed (among others; 
(Caldas and Norford, 2002). Although this approach can result in reduced building 
energy use (and associated carbon emissions), the extent to which the energy use can be 
minimized is limited by the fact that the shape and position of the windows on the 
façade is fixed. Restricting the shape of the windows to be rectangular also inhibits the 
architectural form of the fenestration.  

The objective of the research presented in this paper is to investigate an 
approach to fenestration optimization in which the shape, number, and position of 
windows can be optimized for the trade-off between minimum building energy use and 
minimum capital cost and in particular to investigate the performance of an 
Evolutionary Algorithm in solving this optimization problem. Flexibility in the shape, 
position, and number of windows is achieved by dividing the building façade into a 
number of small rectangular cells, each cell being defined by the optimization to be 
either a solid construction or glazed. The paper also investigates the use of a window 
aspect ratio constraint that allows the designer to control the general shape of the 
windows. The aspect ratio metric can also be used to indirectly constrain the number of 
windows. 
 Earlier work (Wright and Mourshed, 2009) found that a genetic algorithm was 
able to find near-optimal designs when applied to the minimisation of building energy 
use for both unconstrained and constrained shapes of windows.  Design constraints for 
aspect ratio and number of windows were found to be effective in leading the 
optimization to produce different design solutions. The flexibility to define a range of 
constrained and unconstrained optimization problems, and to be able to solve them 



 

 

using a single genetic algorithm is an important feature of this class of algorithm. 
Optimization for a single objective results in a single optimized design solution. In 
contrast, multi-objective evolutionary algorithms provide designers with a set of equally 
optimal design solutions that lie on the trade-off between two or more conflicting design 
goals. The alternative design solutions not only provide the designer with choice, but 
also information about the relationship between the conflicting design goals, and the 
importance of the design variables (Brownlee and Wright, 2012). This paper extends an 
earlier single-objective optimization study by introducing a shading variable associated 
with each glazed cell and extending the problem to two objectives, minimum energy use 
and minimum capital cost.  

Previous research (Brownlee et al, 2011) established that among several 
evolutionary algorithms evaluated, the NSGA-II algorithm (Deb et al, 2002) had the 
best performance in solving a cellular window optimization problem. This paper 
extends this research by further examining the behaviour of NSGA-II in solving this 
class of problem, particularly the impact of the design constraints on the ability of the 
algorithm to find optimum solutions. Conclusions are drawn about the impact of the 
variable encoding on the ability of the algorithm to find optimized solutions, as well as 
the need to seed the search with feasible solutions when the aspect ratio of the windows 
is constrained.  

2. Related Research 

Genetic and evolutionary algorithms (EA’s) have been proven to work well for a wide 
variety of building optimization problems. Their stochastic, population-driven operation 
allows them to efficiently overcome problems having local optimum solutions and large 
discontinuous search spaces, this having been shown to be important in the solution of 
potentially non-smooth building optimization problems (Wetter and Wright, 2004). 
EA’s have been applied to both single and multi-objective problems including HVAC 
configuration and design (Hanby and Wright, 1989; Wright et al, 2008; Wright and 
Zhang, 2008; Sanaye and Hajabdollahi, 2010); optimal control strategies (Yang and 
Wang, 2011); building form  (Caldas, 2008); structural design (Geyer, 2009); and other 
aspects of construction (Shi, 2011; Sambou et al, 2009).  

EA’s have also been applied to the optimization of glazing area and position for 
improved construction cost, operational energy use and occupant comfort (Evins, 2010; 
Oh et al, 2011; Jin et al, 2011; Caldas and Norford, 2002; Caldas, 2008; Suga et al, 
2010), although typically the optimization focuses on glass type and glazed areas or the 
position of fixed shape windows. 

Two approaches that have a near-freeform approach to glazing optimization are 
(Shea et al, 2006) and (Grierson, 2008). Both divide a façade into cells, with the former 
assigning opaque or clear glass to cells to balance lighting and cost, and the latter 
varying the transparency of the cells to balance light and heat gain and direct sunlight 
penetration. Both are similar in concept to the approach described here with the 
exception of the constraints on overall window shape and the application of shading. 
Unlike previous work, this paper also provides an analysis of the impact of the 
constraints on the ability of a multi-objective EA to find the Pareto optimum solutions. 

3. Formulation of the Optimization Problem 
In Wright and Mourshed (2009), the optimization of building fenestration was 
formulated by the building façade being divided into a number of rectangular cells. 
Each cell had one of two possible states, a window element, or an opaque construction 



 

 

element. The number and location of the cells having a window construction was set by 
the optimization algorithm with the objective of the optimization being to minimize 
building energy use (and in some cases, while satisfying a constraint on the form of 
window geometry). The approach investigated in this paper extends this optimization 
problem to the minimisation of both energy use and capital cost, and the inclusion of 
0.3m deep shading overhangs located above each of the glazed cells (each of which may 
be independently added or removed by the optimization process).  
 

 
Figure 1. Cellular window façade 

 
Figure 1, illustrates the cellular window approach. The individual window cells 

are shaded blue and the overhangs black; the remaining grey cells represent the opaque 
construction.  A “window” is defined by a set of adjoining window cells there being 3 
such “windows” in Figure 1. Note that the thickness of the overhang is exaggerated in 
the diagram and that two adjacent glazed cells are considered to be part of the same 
window whether adjoined by an overhang or not. Note also that as indicated for 
“Window 1”, cells that are adjacent at their corner point are considered to be part of the 
same “window”. 

3.1 Problem variables and encoding 

The optimization problem can be formulated in one of two ways. The first 
approach extends that described by Wright and Mourshed (2009), in which a vector of 
variables was mapped (→), to a nc by nr matrix of binary decision variables jkx , , one 

variable for each potentially glazed cell on the façade. This is extended here to provide 
separate vectors of binary decision variables for the glazed cells ( opaqueglazedX _ ), and for 
the overhang cells ( overhangX ). The extension to include the overhangs doubles the 
number of rows in the window matrix to 2 × �� (Figure 1). The complete set of 
variables X is defined by Equation group (1): 

 



 

 

                                                       (1) 

 

Given that the variables jkx ,  are binary (a value of 0 resulting in an opaque 

construction or absence of an overhang and a value of 1 the presence of a glazed unit or 
overhang), this approach naturally lends itself to a binary chromosome encoding in the 
genetic algorithm.  

A restriction on this particular problem formulation, which results from the 
limitations of the building performance modelling, is that an overhang can only exist 
above a glazed window unit. The impact of this is that the value of overhang variables 
associated with cells that have an opaque construction are redundant and are in effect 
“floating” in that they have no influence over either of the optimization objective 
functions. Although (as is evident from the results presented here), EA are able to cope 
with a degree of redundancy in the problem variables, this paper also investigates an 
approach that removes the variable redundancy. The alternative approach uses a vector 
of variables mapped to an  �� by �� matrix of integer decision variables, each variable 
governing the choice of opaque construction, glazed construction without an overhang, 
or glazed construction with an overhang (the corresponding integer values being, 0, 1, 
and 2): 
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In order to distinguish between the two approaches, the first approach in which 
the overhangs are defined by a separate set of variables is referred to here as the bit-
string encoding, and the second approach in which the use of glazing and the overhang 
is specified through a single variable is referred to as the integer encoding. The reasons 
for pursuing both approaches in this study are that although the integer encoding halves 
the number of variables (and for the example problem investigated here has a 1x1015 
smaller search space), the bit-string encoding is more generic in that it can be applied to 
any variable type, continuous or discrete, which will therefore allow the problem to be 
expanded in the future to include other design features in the optimization. The integer 
encoding also has a property that the choice of glazed area has twice the probability of 
occurring than an unglazed area (since an integer value of both 1 and 2 result in a 
window, a value of 0 being the only unglazed solution); the probability of selecting a 
window is unbiased in the bit-string encoding. 

3.2 Objective functions 

Two objective functions are simultaneously minimized by the optimization, the building 
energy use ( )(Xf energy ), and the capital cost of the façade ( )(Xf tcos ). The energy use 

(kWh), is a function of the simulated annual heating ( heat
lQ ), cooling ( cool

lQ ) and 

electrical energy use (elect
lQ ): 

( )∑
=

++=
nl

l

elect
l

cool
l

heat
l

energy QQQXf
1

)(min                                  (3) 

where; l, is a building load condition, and nl is the number of load conditions; the 
electrical energy use includes the energy used in artificial lighting.  

The capital cost of the façade is a function of the cost of the opaque 
construction, glazed construction, and cost of the shading overhang. Since the size of 
each cell is fixed, the cost can be calculated directly from the number of glazed units 
��, and the number of shading overhangs ��. If ��, is the total number of possible 
window cells (�	 × �
), then the capital cost of the façade is given by: 

( ) sggt
tcos ncnbnnaXf ×+×+−×=)(min                                (4) 

where; a is the cost coefficient for the opaque construction; b the cost coefficient for the 
glazed construction; and c the cost coefficient for the shading overhangs.  



 

 

3.3 Constraint functions 

Wright and Mourshed (2009), investigated the use of constraint functions in restricting 
the optimized form of the windows. Two constraint functions where investigated, one to 
limit the total number of “windows”, and a second to constrain the aspect ratio of the 
“window”. It was concluded that constraining the aspect ratio also restricted the 
maximum number of windows, and so in this paper only aspect ratio is used as a 
constraint function. The research described here differs from previous research in that it 
investigates the impact of the constraints on the solution of the multi-objective problem 
rather than the single-objective optimization problem. 

The aspect ratio of a window is defined here as the height divided by width. The 
height and width of a window are described in terms of the number of cells contained 
within the rectangular box that forms a boundary on all cells of the “window” 
(regardless of whether the cell is glazed or not). The bounding-box of the windows in 
Figure 1 is illustrated with a dashed line. The aspect ratio of a window i, is given by: 
 

cellsWide
i

cellsHigh
i

i N

N
AR =                                                    (5) 

where; iAR is the aspect ratio of window i, cellsHigh
iN  is the number of cells forming the 

height of the bounding-box, and cellsWide
iN is the number of cells forming the width of the 

bounding-box. As such, “Window 1” in Figure 1 has an aspect ratio of 1.0, “Window 
2”, 1.0, and “Window 3”, 1.25. 

In order to relax the optimization task, rather than constrain the solutions to have 
an absolute aspect ratio, a range of possible aspect ratios has been defined. The feasible 
range of aspect ratio is defined through two inequality constraints: 

��
��� − �� ≤ 0

�� − ��
��� ≤ 0
                                                    (6) 

where, �� and �� are lower and upper bounds of the feasible aspect ratio;  ��
��� =

max���� , 	∀�∈ #1, … , �&'� and ��
��� = min����, 	∀�∈ #1, … , �&'�; and �&is the 
number of windows found for a particular optimization solution. 

4. The optimization algorithm 

The multi-objective algorithm selected for use in this study is an implementation of the 
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) first proposed by Deb et al. 
(2002). This is a well-known evolutionary algorithm, which has been successfully 
applied to a number of building optimization problems (Daum and Morel 2010; Sanaye 
and  Hajabdollahi, 2010; Chantrelle et al, 2011; Jin et al, 2011; Evins et al, 2011).   

In common with most evolutionary algorithms, NSGA-II starts with a randomly 
generated population of candidate solutions. The process of generating a new 
population of solutions is based on the selection of promising solutions which are then 
recombined and mutated (these operations being probabilistic). The process is repeated 
until either a predefined maximum number of generations is reached or a predefined 
maximum number of solutions evaluated. 

 The selection of solutions (individuals), for recombination is based on the 
solutions “fitness”. The fitness of an individual is assigned in NSGA-II through the non-
dominated sorting of the individuals in the population. The non-dominated sorting 
ensures that solutions which are better in both objectives, or violate fewer constraints, 
are given a higher rank (fitness) in the population. In order to maintain the diversity of 



 

 

the Pareto front, NSGA-II uses a crowding distance penalty that is applied to 
individuals which have similar objective values to others in the population. The Pareto 
optimum front forming the solution to the optimization problem is simply the set of 
non-dominated individuals in the final population.  

The appropriateness of this algorithm for use in solving this particular 
optimization problem was determined by comparing its performance with that of a 
number of other evolutionary multi-objective optimization algorithms (Brownlee et al, 
2011). The comparison was based on the algorithms performance over 32 repeat 
optimization runs of each algorithm (each run starting with a different randomly 
generated population of solutions). Prior to the comparison of algorithm performance, 
factorial experiments were performed to optimally tune the parameters of each 
algorithm (including population size, mutation and crossover rate).,  

The ideal algorithm resulting from the comparison and which is used in this 
study, can be summarised as having: 

• random initialization of the problem variables, with the option to seed the initial 
population with viable solutions; 

• a binary or integer encoding of the variables; 
• binary tournament selection (De Jong, 2006), in which solutions of a lower rank 

are preferred, and in the case of equal rank, a higher crowding distance); 
• 100% probability of chromosome crossover and a 50% probability of binary 

gene crossover (known as “uniform” crossover; De Jong, 2006); 
• a probability of 1 gene mutation per chromosome; 
• elitism: the top 50% of the combined set of parents and offspring are carried 

from one generation to the next; 
• search completion after 5000 unique solutions have been evaluated; 
• a population size of 30 solutions. 

4.1 Seeding 
Seeding the initial population with viable solutions is an established technique for 
improving the optimization efficiency of EA’s (Julstrom, 1994), and which has also 
been applied to building optimization problems (Evins, 2010; Kayo, 2010). Seeding is 
used in this study to improve the feasibility of the optimized solutions. Experiments 
were performed in which a set of 20 feasible solutions that covered a range of glazing 
areas from the minimum to the maximum area where used as a seed in the initial 
population. The seed solutions were manually generated to produce an arbitrary set of 
solutions that contained a variety of forms and covered a range of glazed areas 
(Appendix A); the only criterion applied to all seeds was that they satisfied the aspect 
ratio constraints. The remaining 10 solutions of the 30 individual population were 
randomly generated.  

5. Example building and performance simulation 
The example optimization is based on an atrium of a three-storey commercial building 
(Wright and Mourshed, 2009). The atrium is 15m wide by 15m long by 8.2m high with 
only the southern façade being exposed to the external environment. The other three 
walls of the atrium are connected to interior spaces that are controlled to have the same 
thermal conditions as the atrium. The internal and external walls, roof, and floor are all 
of a medium to heavy weight construction; the window cells are double-glazed with 
plain glass. 



 

 

The façade is divided into 120 × 1m2 cells, 15 cells wide by 8 cells high (Figure 1). The 
higher the number of cells, the greater the flexibility of the search to optimize the 
number, shape, and position of the windows. This is similar to the impact of the number 
of pixels in a digital image, the higher the number of pixels the greater the clarity and 
resolution of the image. The number of cells has been capped at 120 by both the 
practicable size of the individual glazed units and a desire to limit the size of the search 
space (the search space increases in the order of 3n for the integer encoding, where n is 
the number of cells); a 1 m2 glazed unit has been taken as the practicable lower limit of 
unit size for the example façade.  

5.1 Energy simulation 
The building performance and energy use objective function (Equation 3), has been 
modelled and simulated using the EnergyPlus whole building performance simulation 
program (v 6.0.0.023; Crawley et al. 2001). The atrium has been modelled as an 
independent zone with the internal partition walls being treated as adiabatic heat 
transfer surfaces. The performance of the atrium heating, ventilating, and air-
conditioning (HVAC) system has been modelled using a pseudo-system having an 
idealized 100% efficiency (the EnergyPlus “ideal loads air system”). The system is 
operated 24 hours/day with cooling and heating set-points for the occupied periods 
being set to 25.6 °C and 20 °C respectively; night setback set-point temperatures are 
30.0 oC for cooling operation and 15.0 oC for heating operation. 

Artificial lighting (and its energy use), is used to supplement daylight 
illuminance levels by an amount that maintains the illuminance set-point (500lux), 
calculated at two reference points (both reference points having equal weight in the 
control of the artificial lighting). The two reference points are located along the mid-
point of the façade width, and at a distance of 25% and 75% of the depth of the atrium.  
The building is fully occupied from 09:00 to 17:00; the occupancy is reduced during the 
periods from 07:00 to 09:00, and 17:00 to 22:00. 
 The building is nominally located in Chicago, USA which experiences a  
continental type climate. This ensure that the optimization study relates to a building 
that has both an active heating and cooling demand. 

5.2 Construction cost 
The relative weights of the opaque and glazed constructions as described by Equation 4, 
have been derived from data presented by Spon (2011).The resulting coefficients for 
Equation 4 112£=a , b=£350, and 128£=c . It is evident that the cost of the glazed 
construction is over three times higher than for the opaque construction. 

5.3 Design constraints 
The lower ��, and upper bounds ��, of the constraint functions (Equations 6), have been 
set to 1.5 and 1.75 respectively. This ensures that the windows are taller than they are 
wide and that they give the impression of being vertically orientated. The choice of 
aspect ratio  has been abstracted from the Golden Ratio (Height/Width=1.62), this ratio 
often being used to define the geometric proportions of a building . Given the 15 x 8 
cell structure of the façade, this results in 8 possible window geometries that satisfy the 
constraints (Table 1). 

 
 
 



 

 

  
 
 

 

 

 

 

 

 

 

 

Table 1. Possible range of solutions with aspect ratio constrained 

5.4 Inherent characteristics of the trade-off between energy and cost 
The inherent characteristic of the trade-off between energy use and capital cost has been 
investigated here through an incremental traverse across the façade. The traverse 
incrementally adds window cells starting at the top right-hand corner (top-east corner in 
the example), and ends in the bottom-right corner (bottom-west corner). In relation to 
Figure 1, the traverse starts at position (k=1, j=1), and ends at (k=nc, j=nr), with the 
cells being filled first across the face of the façade before the traverse moves down to 
the next row of cells (in this way, the glazed cells are populated from the top of the 
façade to the bottom of the façade). All windows in the traverse are automatically 
shaded by overhangs. Since the traverse ignores the constraints on the window aspect 
ratio, the results only serve as an indication of the inherent relationship between the 
energy use and capital cost. 

 Figure 2, illustrates the relationship between energy use and capital cost 
resulting from the traverse. The solution with the minimum capital cost and the 
maximum energy use corresponds to a zero glazed area. As the number of glazed cells 
increases, the capital cost increases until a point of inflection is reached beyond which 
the energy use increases with increasing cost (and the number of window cells).  

Height 

(cells) 

Width 

for an 
approximate 

Golden 
Ratio 

(cells) 

Aspect 
Ratio 

(-) 

8 5 1.60 

7 4 1.75 

6 4 1.50 

5 3 1.67 

3 2 1.50 



 

 

 

Figure 2. Relationship between energy use and capital cost 
 

The minimum energy use resulting from the traverse corresponds to 55 glazed 
cells and a glazed area of 45.8%. Given that the energy use increases with cost beyond 
this point, it could be considered that the minimum energy use solution delineates 
between the pseudo optimal, and pseudo sub-optimal region of solutions. Note that the 
solutions illustrated in Figure 2 are not Pareto-optimal, and although it is expected that 
the window cells would be distributed towards the top of the façade (as this maximizes 
daylight penetration and reduces lighting energy use), it is likely that the optimized 
number and distribution of window cells will be different to that found from the simple 
incremental traverse of the solution space (Wright and Mourshed, 2009). This is 
particularly true when the aspect ratio constraint is applied as this forces the windows to 
be tall and thin rather than filling the full width of the façade, as is the case with the 
traverse. 

The traverse also provides the minimum and maximum values for cost and the 
range of energy use. The cost ranges from £13,440 for no glazing and £57,360 for a 
fully glazed façade, and the energy use from 34,180kWh per annum to 36,637kWh per 
annum. 

Figure 3 illustrates the separate energy use for heating, cooling and electrical 
lighting. The energy use is dominated by the heating of the atrium until more than 70% 
of the façade is glazed and beyond which cooling dominates. The pseudo optimum 
window area is dictated by the trade-off between the reduction in heating and lighting 
(electrical) energy and the increase in cooling energy with the number of window cells. 
The greatest rate of reduction in lighting (electrical) energy use occurs between 1 and 
40 window cells, with no significant reduction for a further increase in number of cells. 
The region in which no further reduction in lighting energy use is achieved also marks a 
point at which the total energy use begins to increase with the glazed area (and the 
solutions become pseudo sub-optimal). 



 

 

 
Figure 3. Components of energy use 

(electrical energy includes artificial lighting) 

6. Optimization experiments and methods of analysis 
The optimum solutions to building optimization problems are unknown and are subject 
to uncertainty in the problem boundary conditions (Hopfe and Hensen, 2011). EA are 
also probabilistic optimizers that have uncertain convergence. The uncertainty in the 
problem boundary conditions (such as that due to changing climate and occupant 
behaviour) is not addressed in this paper, and as such the optimization presented here is 
for a single set of uncertain boundary conditions. The true optimum solutions for a 
single set of boundary conditions can only be determined using an evaluation of all 
solutions in the search space (a so called “exhaustive” or “brute-force” search). Given 
that for the integer encoding the search space contains 3120 = 1.797x1057 possible 
solutions, it is impracticable to conduct an exhaustive search and therefore the true 
optima remain unknown. The optimality of the solutions must therefore be examined by 
other means. In this paper, we explore the optimality of the solutions through; the 
comparison of the solutions to those found from the traverse of the search space (section 
5.4); a subjective assessment of whether the solutions appear to concur with building 
physics; and finally, and most important, through a statistically significant number of 
repeat runs of the algorithm for each optimization problem. An analysis based on a 
statistically significant number of repeat runs of the algorithm also addresses the 
uncertainty due to the probabilistic convergence of NSGA-II. For the unconstrained 
optimization problem, further confidence in the extent to which the solutions may be 
optimal has been gained through a local and global sensitivity analysis.  

Eight different sets of experiments have been performed, the different 
experiments resulting from the alternative combinations of problem formulation (Table 
2). Each of the 8 experiments and the associated analysis is based on 32 different runs 
of the algorithm. This results in 128 different optimization results for each of the 
unconstrained and constrained problems. 

The analysis of the characteristics of the optimization problem and the behaviour 
of NSGA-II in solving the problem has been performed using both graphical 
(qualitative) and quantitative methods. The quantitative methods are used to indicate the 
relative optimality of the solutions obtained from a particular algorithm configuration 
(the “optimality” being judged in relation to other solutions found in the experiments), 
whereas the qualitative analysis has been used to gain an understanding of the 
underlying characteristics of solutions. 



 

 

6.1 Quantitative methods of analysis 
The quality of solutions to a multi-objective optimization problem can be judged 

in relation to: the convergence of the solutions onto the true Pareto front; the 
distribution of the solutions along the Pareto front; and the range of objective function 
values found between the extremes of the Pareto front. The convergence to the true 
Pareto front and the spread of the solutions is commonly measured by the hypervolume 
metric (Zitzler, 1999). Although this metric measures both the position of the front and 
the spread of the solutions, it is known to provide a good balance between measuring 
the different traits of the solutions (Knowles and Corne, 2002). Given that for this 
building optimization problem the true Pareto front is unknown, the hypervolume of the 
multi-dimensional space has been measured between the  solutions of a Pareto front and 
a specific reference (nadir) point that  has been taken to be equal to the maximum value 
of each objective function value found in all experiments. This ensures that the nadir 
solution equates to the least optimal solution found in any of the experiments and 
therefore that it is dominated by all solutions. 

Figure 4 illustrates the hypervolume as the shaded area between the points of the 
Pareto set of solutions and the nadir reference point. Note that solutions having a higher 
hypervolume are desirable, as these solutions have Pareto fronts that are either further 
from the nadir point or have more spread and a greater range of objective function 
values, both of which are desirable. Note also that given our definition of the nadir 
point, it can lie beyond the range of objective function values found in the final Pareto 
front. 

 

Figure 4. Attainment curve and hypervolume in a bi-objective space, with both 
objectives being minimized 

 
 Given that the hypervolume is sensitive to the spread of the solutions as well as 
the distance of the solutions from the nadir point, two further metrics have been used in 
this study to examine the spread of the solutions. First, the minimum values for both 
objectives are examined, these lying at opposite ends of the Pareto front (the minimum 
energy use corresponds to the maximum cost, and vice versa).  



 

 

Second, the distribution of the solutions along the Pareto front is evaluated using 
the spread metric (Deb, 2001). The spread of solutions along the Pareto front is 
important in design practice as the higher the spread the greater the choice of design 
solutions. Spread is a measure of the variation in distances between neighbouring 
solutions in the front with values closer to zero being desirable (zero being the condition 
that all distances are equal). In (Deb, 2001), spread, Δ, is formally defined as: 

Δ =
+,-+.-∑ |+12+3|456
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                                                                 (9) 

where, the parameters df  and dl are the Euclidean distances between the solutions at 
each end of the obtained non-dominated set, and the limits for the objective values. The 
parameter :; is the average of all distances di, i=1,2,3…,N-1, assuming that there are N 
solutions on the best non-dominated front. The spread metric also requires the limits for 
the objective values to be supplied and again these were taken as the minimum and 
maximum found over all runs of all the algorithms. 

The hypervolume, spread, and minimum objective values are reported in terms 
of the mean and standard deviations of the results for the 32 repeat optimizations. The 
ability of the algorithm to find a feasible solution is also examined and reported as a 
percentage success rate. 

6.2 Qualitative methods of analysis 
Graphical (qualitative) analysis is used to describe the shape and optimality of the 
Pareto front, and to investigate the difference in distribution of the solutions along the 
Pareto front resulting from the different experiments. 

The trade-off between two objectives and the shape of the Pareto front is 
commonly represented as a continuous line between solution points. However, this can 
be misleading as there is no guarantee that the any solutions exist between the solutions 
found by the search, or that the trade-off is smooth. An attainment surface (Fonseca and 
Fleming, 1996), addresses these difficulties by presenting the trade-off as a surface that 
divides the objective space into the region dominated by a Pareto set, and the region not 
dominated by it. This is easier to interpret than simply plotting the individual points for 
multiple fronts.  For a two-objective space, the attainment surface becomes an 
attainment curve. Figure 4 illustrates an attainment curve as the blue line connecting the 
set of Pareto-optimal points represented by black dots. 
 The hypervolume, spread metric, and the attainment surface are all 
representations of the objective function space. The trend in the distribution of solutions 
along the Pareto front in the variables space has also been analysed by identifying the 
probability that each cell on the façade will be glazed, and presenting these results 
graphically. As well as enabling an analysis of differences in the solution trends 
between the different experiments, these results indicate the general characteristics of 
the solutions in that they illustrate the region of the façade that has highest probability 
of being glazed (regardless of the particular solution adopted along the trade-off 
between energy use and capital cost).  

6.3 Sensitivity analysis 
To enhance the understanding of the problem characteristics and the extent to which the 
solutions may be optimal a local and global sensitivity analysis has been performed for 
the unconstrained optimization problem. The local (differential) sensitivity analysis has 
been performed about three solutions taken from the best of the unconstrained 
optimization results, the highest energy use solution, the median energy use solution, 



 

 

and the lowest energy use solution. Using the given solution as a base-case, the state of 
each cell is changed in turn (from either opaque to glazed, or glazed to opaque), and the 
difference in energy use evaluated; the state of the cell is then reset before the next cell 
on the façade is changed. Since the lowest and median energy use solutions have glazed 
cells that are shaded, a change in the glazed state of the cell also changes the state of the 
overhang (the overhang being present if the cell is glazed). No shading is applied in the 
case of the highest energy use solution as the base-case is un-shaded. Note that since the 
cells have only two states (glazed or opaque), the local sensitivity analysis is also in 
effect a local search, the results from which can be used to confirm the local optimality 
of the solution. 
 The local sensitivity analysis has been supplemented with a global sensitivity 
analysis. 3,000 randomly initialised solutions were evaluated with each cell having a 
50% probability of being glazed in each solution. Each glazed cell was automatically 
shaded. The global sensitivity analysis is based on stepwise linear regression analysis of 
rank transformed variable values. The model was identified using a bi-directional 
selection and the Bayesian information criterion (this criterion reducing the risk of over-
fitting).  

It is not necessary to evaluate the sensitivity of the capital cost objective 
function in the same way as for the energy use since the sensitivity of the capital cost is 
known to be uniform across the façade and linear across the search space (Equation 4). 
That is, it is known that all cells are of equal importance in terms of the capital cost. 

7. Results and analysis 
Table 2 gives the solution metrics for the different optimization experiments. The values 
for the hypervolume, spread, minimum energy use and cost are given as the means of 
the solutions with the standard deviation of the solutions in brackets. For the 
experiments in which the aspect ratio constraints where applied, the means and standard 
deviations are calculated for the feasible solutions only, infeasible solutions being 
excluded. For reference, the maximum values of the objective functions found in all 
experiments which are used to represent the nadir solution are: 36,637kWh and £31,374 
for the unconstrained problem; and 35,787kWh and £29,050  for the constrained 
problem. 

The extent to which the results from the 32 repeat optimization runs for each 
experiment are normally distributed (and therefore the extent to which some confidence 
can be placed in the analysis), was confirmed by applying a Shapiro-Wilk test to each 
data set. In each case, the test resulted in a p-value of > 0.05, confirming that there was 
no significant departure from normality in the results. Similarly, in a two-tailed 
unpaired t-test on the results of the seeded versus the unseeded results all had a p-value 
of < 0.0001 and so the differences in the results can be considered to be statistically 
very significant. 

 

 

 

 



 

 

Experiment Feasibility 
Success 
Rate (%) 

Hyper-
volume (-) 

Spread (-) 
Minimum 

Energy Use 
(kWh) 

Minimum 
Cost (£) 

Constrained? Encoding Seeded? 

no 
 

bit-string 
 

no - 0.754 
(0.022) 

0.700 
(0.047) 

34,262 
(16) 

15,503 
(744) 

yes - 0.798 
(0.005) 

0.663 
(0.005) 

34,286 
(25) 

13,596 
(155) 

integer 
no - 0.281  

(0.063) 
1.032 
(0.026) 

34,265 
(26) 

25,811 
(1162) 

yes - 0.819  
(0.002) 

0.580 
(0.038) 

34,154 
(8) 

13,939 
(130) 

yes 

bit-string 
no 43.8 0.329  

(0.072) 
0.850 
(0.048) 

35,419 
(94) 

22,178 
(1066) 

yes 100 0.681  
(0.021) 

0.668 
(0.040) 

34,450 
(55) 

14,158 
(23) 

integer 
 

no 0 - - - - 

yes 100 0.705  
(0.029) 

0.653 
(0.079) 

34,342 
(109) 

14,154 
(0) 

Table 2. Experiments and solution metrics 
(the values are given as mean with standard deviations in brackets;  

the best solutions in each category are shown in bold) 

7.1 Unconstrained optimization 
It can be observed from Table 2 that for the unconstrained and unseeded optimization, 
the integer encoding of the variables results in a mean hypervolume, spread, and 
minimum capital cost that all have worse values than for the binary encoding. However, 
the use of solution seeding results in the integer coding having the best solutions as 
measured by all metrics except the minimum capital cost. Seeding also resulted in an 
improvement to the results for the bit-string encoding, but to a lesser extent than the 
integer encoding.  In comparison to the solutions found from the traverse of window 
cells (section 5.4), the lowest energy use solution from the seeded integer encoding has 
a marginally (<0.1%) lower energy use, but with this energy use being achieved with a 
14.2% lower capital cost, this suggesting that the optimization has found a significantly 
more optimal solution than that given by the traverse of window cells. Since the highest 
energy use solution from the traverse is unglazed, and the solution obtained from the 
optimization has only one glazed cell (Figure 6), the difference in the optimized 
objective function values and the values from the traverse are small (the optimized 
energy use being 1.1% lower than that from the traverse and the capital cost 1.8% 
higher). 

The improvement in solutions from both the bit-string and integer encodings 
with seeding can be attributed to the seeded initial population having a greater variety of 
solutions than the randomly initialised population. The seeded initial population 
contains solutions ranging from 2.5% glazed to 83% glazed, whereas the randomly 
initialized population has a bias towards solutions that are 50% glazed for the bit-string 
encoding, and 66.7% glazed for the integer encoding. 

The impact of the seeding is also evident from the attainment curves. Figure 5, 
illustrates the attainment curve for the most successful and unsuccessful variable 
encodings for the unconstrained optimization (these being the seeded and unseeded 



 

 

integer encodings). As confirmed by the standard deviation of the hypervolume and 
spread (Table 2), there is very little difference across the solutions found for the seeded 
initial population. However, this is not the case for the unseeded integer encoding, there 
being a range of convergence and hypervolume across the unseeded solutions. 

 

 
Figure 5. Attainment curve for the unconstrained optimization  

(the most and least successful variable encodings) 
 

  
Figure 6, illustrates three solutions taken from the best of the seeded integer 

solutions, the solutions being for the lowest capital cost, lowest energy use, and median 
energy use and cost (Figure 5). It is perhaps unsurprising that the median and lowest 
energy solutions have glazed cells positioned towards the top of the façade as this 
increases daylight penetration onto the artificial lighting control points and therefore 
tends to limit electrical energy use in artificial lighting. The window(s) have a wide but 
short form that tends to cover the width of the façade, with all glazed cells for the 
median and lowest energy solution having overhangs. The solution for the lowest 
capital cost is marginally sub-optimal as it is known that the minimum cost solution 
corresponds to a fully opaque wall construction. 

 

 
Figure 6. Selected solutions from the unconstrained optimization  

(overhangs are illustrated as solid black blocks above the blue window cells) 

The variation of the solutions across the Pareto set is further examined in Figure 
7, which illustrates the probability that a particular cell is glazed for any solution in the 



 

 

Pareto set. Solutions for both of the bit-string encoding and the seeded integer encoding 
have a wide variation in the glazed cells among the Pareto set (ranging from cells that 
are always glazed, through to cells that are never glazed). In all three cases, the most 
frequent placement is towards the centre of the façade but with the some probability that 
the cells towards the top of the façade are also glazed; this is explored further in the 
local sensitivity analysis. The probabilities for the unseeded integer encoding show far 
less variety among the Pareto set. The population has converged on a highly similar set 
of solutions, there being a high probability of  one large tall window and a number of 
single-celled or other small windows being present in all solutions along the trade-off. 
The reason for this is unclear, but is most likely related to the fact that the integer 
encoding results in a 66.7% chance of a cell being glazed, particularly in the initial 
population; the seeded integer encoding results in a  greater variety of solutions due to 
the wider range of solutions in the initial population. 

The analysis in Figure 7 is useful in design as it indicates the general 
characteristics of the optimised solutions, in that a designer seeking more freedom of 
design choice will understand that the central cells should always be glazed, and that in 
order to maintain a degree of optimality, the designer should place the majority of 
glazed cells in the upper half of the façade. 
 

 
Figure 7. Probability of a cell being glazed for any solution in the Pareto set 

(unconstrained optimization) 

7.1.1 Sensitivity Analysis 

Figure’s 8 (a) to (c) illustrate the results of the local sensitivity analysis and Figure 8 (d) 
the global sensitivity analysis. The local sensitivity figures are shaded according to the 
absolute value of the differential sensitivity from the base case. The arrows indicate the 
direction of the change in energy use resulting from the change in state of the cell; a 
downward pointing arrow indicates that the change of state resulted in reduction in 
energy use and an upward pointing arrow an increase in energy use. The base case 
window placements are indicated with a dashed-line, these being the same, low energy, 
median energy, and high energy solutions as illustrated in Figures 6 (a) to (c) 



 

 

 
Figure 8. Energy use local and global sensitivity analysis (unconstrained optimization; 
(a) maximum energy use solution local sensitivity; (b) median energy use solution local 

sensitivity; (c) minimum  energy use solution local sensitivity; (d) global sensitivity 
analysis) 

 

Figure 8 (a) illustrates the differential sensitivity for the highest energy use 
solution. Given that it is known that the lowest energy use requires a higher number of 
windows, adding a window to every opaque cell results in a reduction in energy use, 
while removing the base-case glazed cell increases energy use. This characteristic is 
repeated for the median energy use solution illustrated in Figure 8 (b), as this solution 
also has a glazed area that is lower than that required for minimum energy use. 



 

 

However, since the solution for the minimum energy use (Figure 8 (c) has a glazed area 
that is optimized for minimum energy use, changing the state of an opaque cell to 
glazed in general results in an increase, rather than decrease, in energy use. This is not 
the case for all opaque cells as changing the state of those on the border of the window 
results in a reduction in energy use. For all three solutions, the sensitivity of the capital 
cost is known to be uniform across the façade, with a change of an opaque cell to glazed 
resulting in an increase in cost (and vice versa). 

A comparison of Figures 8 (a) to (c) indicates that as the glazed area increase 
(from Figure 8 (a) to (c)), the sensitivity of the solution to a change in the state of a cell 
is reduced from a maximum of 0.97% to 0.03%. This occurs as the differential 
sensitivity represents the local gradient of the search space, the gradient being reduced 
as the minimum energy use is approached (the change in gradient is evident in Figure 
2). It is also evident that the centre of the sensitivity shifts upwards as the glazed area 
increases (from Figure 8 (a) to (c)). The reason for this requires further investigation, 
but is likely to relate to the fact that single glazed cell positioned at the top of the façade 
is unlikely to provide sufficient daylight penetration onto the artificial lighting control 
sensor that is positioned closest to the façade. 

The absolute sensitivities for the capital cost are 1.74% for the maximum energy 
use solution, 1.90% for the median energy use solution, and 1.27% for the minimum 
energy use solution. In all cases the sensitivity is uniform across the façade with a 
change of a cell from opaque to glazed resulting in an increase in cost; correspondingly, 
replacement of a glazed cell with an opaque construction results in a reduction in cost. 
As well as being uniform across façade for a given solution, the change in cost is known 
to be linear across the entire search space (Equation 4). The change in percentage 
sensitivities between the different solutions given here is a result of the cost of the base 
case solution increasing with the size of the window (the sensitivity being given as a 
percentage change against the base case cost). The magnitude of the energy use for the 
base case solutions also affects the energy use sensitivity, but by a small amount (these 
sensitivities being driven largely by the local gradient for the change in energy use). The 
cost sensitivities also differ between the solutions since the median and minimum 
energy use sensitivities include the effect of the overhangs, whereas the maximum 
energy use solution does not. Finally, note that the magnitude of the sensitivies is small 
due to the fact that each cell occupies only 0.83% of the façade, so it might be expected 
that a change in the state of the cell would have a small effect. 

The procedure for performing the local sensitivity analysis is equivalent to that 
of a local search of the solutions around the base case designs. Each sensitivity analysis 
results in 120 new solutions (the state of all 120 cells being changed in the procedure). 
These results can be used to examine the optimality of the base case solutions by the 
extent to which they dominate, or are dominated by, the 120 new solutions (the 
domination being examined for both the energy use and capital cost objective 
functions). The maximum energy (minimum cost) solution is sub-optimal and 
dominated by just one of the 120 solutions (and therefore by a single glazed cell); the 
new non-dominated solution has a fully opaque façade.  The median energy use solution 
dominates all 120 new solutions and so it can therefore be concluded that this solution is 
locally optimal. Two new non-dominated solutions were found for the minimum energy 
use base case, one for an additional glazed cell, and a second for the removal of a single 
glazed cell from the base-case window; the base case solution was dominated by both of 
the new solutions.  It can therefore be concluded that the optimization results in locally 
near Pareto optimal solutions, with the median energy use solution in this case being 
locally fully optimal.  



 

 

Figure 8 (d), illustrates the global sensitivity analysis, with the shading 
indicating the magnitude of the standard rank regression coefficients (SRRC); no SRRC 
is available for the boxed cell located in the middle of the façade as this cell was 
automatically removed from the regression model. All coefficients have a positive value 
which indicates that the use of a glazed cell rather than an opaque cell results in an 
increase in energy use. The sensitivity as represented by the SRRC’s increases towards 
the bottom of the façade. This is a result of each solution used in the analysis having an 
approximately 50% glazed area (since each cell has a 50% chance of being glazed or 
unglazed). Given that the minimum energy use solution (Figure 8 (c)), has a glazed area 
of 35%, a 50% glazed façade is bound to result in a higher energy use. Although 
unconfirmed, the effect is likely to be greatest when glazed cells are positioned at the 
bottom of the façade, as these are likely to have the lowest impact on energy use due to 
artificial lighting. This effect is also apparent from the local sensitivity analysis for the 
minimum energy use, as in comparison to the median and maximum energy use 
solutions, the bottom row of cells has an increased sensitivity. Given the premise that 
placing cells towards the bottom of the facade results in the highest increase in energy 
use, the global sensitivity analysis confirms that the optimization is placing the windows 
in a generally optimal location of towards the middle to upper region of the façade. 

 

7.2 Constrained optimization 
Table 2, indicates that the seeding of the initial population with a range of feasible 
solutions had a significant impact on the optimization results for the constrained 
optimization (in which the aspect ratio is constrained to be approximately equal to the 
Golden Ratio). In particular, no feasible solutions where found for the integer encoding 
for the randomly initialised population (the unseeded initial population), and without 
seeding, only 43.8% of the solutions for the bit-string encoding where feasible, 
feasibility taking between 20 and 100 generations to be achieved and with no 
improvement in feasibility being found beyond 100 generations. In contrast, all 
solutions for both the bit-string and integer encodings where feasible when the initial 
population was seeded. The success of the seeding is in-part due to the seeded solutions 
of the initial population being feasible (feasible meaning that all seeds satisfy the 
constraints). This eliminates the need for the search to find feasible solutions and allows 
more of the search effort to be focused on minimising the objective function values. The 
seeded integer encoding results in the best performance as measured by all metrics 
(hypervolume, spread, minimum energy use, and minimum cost). However, no 
solutions had an energy use or capital cost lower than that found by the incremental 
traverse. This is unsurprising in that the traverse results in window geometries that 
violate the aspect ratio constraints, these constraints resulting in both a higher minimum 
cost (in this case, a small window rather than no window), and higher energy use (due 
to constraints producing tall-thin windows rather than short-wide windows).  
 Figure 9, illustrates the attainment curves for the most and least successful 
algorithm configurations that resulted in any feasible solutions (these being the seeded 
integer encoding and the unseeded bit-string). The trade-offs found for the seeded 
integer-encoding are more consistent with the median and best fronts these covering a 
similar range in both of the objectives. The worst solution is convergent on the best 
solution, but is restricted to the low cost designs. In contrast, the unseeded and bit-
string-encoded solutions show a greater variation, both in extent and in closeness to the 
origin (this is reflected in Table 2 by a higher standard deviation for the hypervolume). 



 

 

This illustrates the usefulness of the hypervolume metric in selecting a good Pareto 
front from a number alternative optimization runs. 

 

 
Figure 9. Attainment curves for the constrained optimization  

(for the most and least successful variable encodings) 
 
 Figure 10, illustrates three solutions taken from the best Pareto front, the 
minimum cost solution, the minimum energy use solution, and the median cost and 
energy use solution (as indicated in Figure 9). The figure illustrates that as the glazed 
area increases, the aspect ratio constraint results in multiple windows and that the 
window cells also have a greater tendency to be shaded by overhangs (all window cells 
being shaded for the highest cost solution). This is driven by the trade-off in energy use, 
in that as the cost increases with glazed area, the energy use must reduce (the shading 
contributing to the reduction in energy use).  

As is the case for the unconstrained solutions, for the higher glazed solutions, 
the window cells tend to be located towards the top of the façade in order to capitalize 
on daylight penetration. Figure 10, also indicates that for the high cost solution there is a 
slight bias in the cell positions towards the top-right side of the façade (this being the 
top-west side as viewed from inside the building). This is similar to the solutions found 
in a single objective optimization study in which the bias was thought to be a result of 
the distribution of the solar beam radiation onto the internal surfaces of the room 
(Wright and Mourshed, 2009). This has not been investigated further here, as 
conversely, it was also noted that across the different repeat optimization runs, although 
the optimum energy use and cost found were often similar, the distribution of individual 
glazed cells varied across the façade. This implies that position of the cells is of 
secondary importance to the number of glazed cells and the general areas of the façade 
that is glazed. 



 

 

 
Figure 10. Selected solutions from the constrained optimization  

(overhangs are illustrated as solid black blocks above the blue window cells) 
 

Figure 11, illustrates the probability that a cell is glazed for any one solution on 
the best Pareto front found for the alternative variable encodings and use of seeding. 
The solutions for the unseeded integer encoding have been omitted since no feasible 
solutions were found for this configuration.  

The figure for the unseeded bit-string encoding illustrates that there is a poor 
distribution of probabilities, this indicating that regardless of the position of the solution 
on the Pareto front, the same cells tend to be glazed. Further analysis of the individual 
optimization runs indicated that once the algorithm has found one solution that met the 
aspect ratio constraint, that solution dominated the population, and therefore limited 
variation in solutions amongst the Pareto set. In contrast, there is a greater variation in 
probabilities and therefore diversity of solutions for both of the seeded optimization 
results. As for the unconstrained solutions, the probabilities are highest towards the 
centre of the façade. 

 

Figure 11. Probability of a cell being glazed for any solution in the Pareto set 
(constrained optimization) 

7.3 The impact of the aspect ratio constraints 
Figure 12, compares the attainment curves for the best solutions found from the 
unconstrained, and constrained optimization experiments. The difference in the results 
is most noticeable as the glazed area (and capital cost) increases, the solutions being 
convergent for the low glazed areas (and low cost). The reason for the divergence is that 
the constraints have increasing impact on the shape of the windows as the glazed area 
increases. The high cost unconstrained windows have a short-wide aspect ratio (Figure 
6(c)), whereas the high cost constrained windows have a tall-thin aspect ratio (Figure 



 

 

10(c)). The convergence of the solution as the capital cost reduces is due to a reduction 
in the sensitivity of the energy use to the number of glazed cells. An increase from 1 
cell (Figure 6(a)) in the unconstrained case, to three cells in the constrained 
optimization (Figure 10(a)) having a limited impact on capital cost. 

 
 

 
Figure 12. Best attainment surfaces from the unconstrained and constrained 

optimization  

7.4 Seeded Solutions in the Final Population 
Given that for this problem, seeding has such a strong impact on the success of the 
optimization, the extent to which the seeds survived through the search and dominate 
the final population has been investigated by the distance (in the variable space), 
between any solution and the seed solutions. The analysis is based on the bit-string 
encoded solutions, as the distance between solutions can be easily measured using the 
Hamming distance (this being the number of bits that are different in comparing a 
solution from the search, and any one of the seed solutions). The Hamming distance 
was only computed between the bits that represent the glazing, as the shading overhangs 
were all omitted in the seeds. The smallest Hamming distance (that is, the distance from 
a given solution to the most similar seed), was recorded and aggregated over all trial 
runs of the algorithm. 

Table 3, gives: the mean Hamming distance between each member of the Pareto 
set and the seed most similar to it; the number of solutions in the Pareto set in which the 
glazing pattern exactly matched a seed solution (ignoring shading); and the number of 
unique seeds present in each Pareto set.  

Seeded solutions persisted most in the constrained optimization, with a 15% 
mean number of seeds remaining in the Pareto front. However, this equates to a mean of 
only 1.5 seeds. The solutions along the Pareto front only being different to the seeded 
solutions by an average of 8.6 bits (or 7% of the length of the bit-string).  



 

 

Survival of the seeded solutions into the final Pareto front is lower for the 
unconstrained optimization with a mean of less than one seed surviving, and less than 
1% of the final solutions being seeds. The distance between the solutions and the seed 
solution is also higher at 10.3 bit (9%) for the unconstrained solutions. The reason for 
the reduction in the number of surviving seeds is that the seeds have geometries that 
satisfy the constraints on the aspect ratio, whereas the solutions for the unconstrained 
aspect ratio are very different in the position and geometry of the windows (for instance, 
compare the solutions illustrated in Figure 6 and Figure 10). It might therefore be 
concluded that although the final Pareto set of solutions for the constrained optimization 
contained a high number of seeds, the results for the unconstrained problem suggest that 
the search is inherently able to benefit from seeding without being dominated by the 
seeding.  

 

Problem Form 
Hamming 
distance to 

closest seed (-) 

 
Number of seeds in Pareto set 

 

Number of unique 
seeds in Pareto set 

(-) 
 (-) (%) 

Constrained 8.6                     
(1.2) 

7.6             
(2.7) 

 15.0 
1.5                       
(0.5) 

Unconstrained 10.3             
(1.1) 

0.28          
(0.73) 

 0.56 
0.16                  
(0.37) 

Table 3. Influence of seeding on the final Pareto set  
(the values are given as the mean with standard deviations in brackets) 

8.0 Conclusions 

This paper investigates the multi-objective optimized design of fenestration that is based 
on the façade of the building being divided into a number of small regularly spaced 
cells, this formulation providing the search with the flexibility to optimize the glazed 
area, number of windows, and window shape (a window on the façade being defined by 
a set of adjoining glazed cells). Dividing the façade into a number of cells is similar in 
concept to that of a digital image in which the image is constructed from a number of 
different pixels. In the same manner as the resolution of a digital image being dependent 
on the number of pixels, the clarity of the design solutions, particularly the window 
shape, is dependent on the number of cells on the façade. The façade in the example 
optimization presented in the paper is divided into 120 cells, with each cell occupying 
less than 1% of the façade area. It was concluded that this should provide sufficient 
clarity as to the optimized position, number, and shape of the windows, without the 
search space being excessively large (the size of the search space increases in the order 
of 3n, where n is the number of cells). 

The objective functions minimized by the optimization in the paper are; the 
energy use associated with heating, cooling and artificial lighting; and the capital cost of 
the façade construction. The paper also investigates the use of constraints to control the 
aspect ratio of the windows (the use of this constraint also has an indirect impact on the 
number of windows).The optimization algorithm used to solve the optimization problem 
is an implementation of the non-dominated sorting genetic algorithm (NSGA-II). The 
energy performance of a candidate design found during the optimization was evaluated 
using the EnergyPlus performance simulation with the example building being located 
in in Chicago USA. 



 

 

The paper investigates the impact of two alternative forms of variable encoding 
(bit-string and integer) and the use of seeding the initial population of solutions. Given 
the probabilistic behaviour of the genetic algorithm, the impact of a particular variable 
encoding and seeding configuration was evaluated through 32 repeat trial optimizations, 
this enabling the results to be reported using statistical means and standard deviations 
for hypervolume, solution spread, and the minimum energy use and capital cost.  

Both the bit-string and integer encodings were able to find solutions for the 
unconstrained optimization problem, although the results for the integer encoding were 
noticeably worse when the initial population consisted entirely of randomly generated 
solutions. Seeding of the initial population with a range of possible solutions improved 
the optimality of the unconstrained results obtained for both the bit-string and integer 
encodings, this improvement being most significant in the case of the integer encoding. 
The use of constraints to control the aspect ratio of the windows resulted in failure to 
find any feasible solutions for the randomly initialised search and integer encoding. 
However, 43% of the of the randomly initialised optimization trials for the bit-string 
encoding resulted in feasible solutions. Seeding the initial population with feasible 
solutions resulted in all trail constrained optimizations having feasible solutions for both 
the bit-string and integer encodings. The extent to which the final solutions were 
dominated by the seeds was also investigated. The final solutions to the constrained 
optimization contained a small number of seed solutions, even fewer seeds being 
present in the unconstrained  solutions. It was therefore inferred that the search was 
inherently able to find alternatives to the seed solutions and that the seeding enabled the 
search to spend more time in improving the optimality of the energy use and cost 
objective functions, and less time on finding feasible solutions.  

An analysis of solutions obtained from the best of the unconstrained 
optimization confirmed that the search provided a set of alternative design solutions that 
ranged from an almost unglazed façade to a 35% glazed façade. The median and higher 
cost (most glazed), and lower energy use solution had windows positioned towards the 
top of the façade, and all had overhangs for shading. The lower cost (least glazed), 
solutions had no overhangs and were positioned centrally on the façade. 

The optimality of the unconstrained solutions was tested by comparing them to 
the results from a binary traverse of the façade, a local search and sensitivity analysis, a 
global sensitivity analysis, and a subjective assessment of the probable window 
placement informed through building physics. In particular, through the local search and 
sensitivity analysis, it was possible to confirm that a solution taken from the middle of 
the trade-off curve dominated the solutions from the local search (in terms of both 
energy use and capital cost), but that the solutions at either extreme of the trade-off 
where dominated by one or two solutions found from the local search. It was therefore 
concluded that the optimization results were locally near Pareto optimal.  

The range of solutions found for the constrained optimization problem and the 
general position of the windows and the use of shading, were, in general, similar to the 
solution characteristics of the unconstrained optimization problem. However, in 
comparison to the unconstrained solutions, constraining the aspect ratio resulted in an 
increase energy use for the higher glazed solutions, the difference in both cost and 
energy use diminishing for the lower glazed areas. Although the extent to which the 
solutions to the constrained optimization are locally optimal has not been explored 
using a local search and sensitivity analysis, the very low standard deviations for all 
quantitative metrics applied to the statistically significant repeat optimization trails 
suggests that the search consistently converged to at least a local Pareto optimal front. 



 

 

It can be concluded, that a cellular façade, with the state of each cell (glazed or 
solid) being optimized using NSGA-II, is not only effective in the minimization of 
building energy use and capital cost, but that it can also result in design solutions that 
are atypical to common design practice and as such have innovative  architectural 
forms. Using an integer encoding of the variables provided the best solutions, but only 
when the initial population was seeded with feasible solutions. Although in comparison 
to the solutions for the integer encoding the results for the bit-string encoding were sub-
optimal, the bit-string encoding is robust in that it was able to find solutions to the 
constrained problem without seeding.  

The multi-objective approach resulted in at least 30 unique solutions for both of 
the unconstrained and constrained optimizations, with all solutions lying on the trade-
off between energy use and capital cost.  Selection of a particular solution for 
construction can be achieved through inspection of the solutions and for example, the 
manner in which the energy use changes with capital cost.  Given that in this example, 
each cell occupied less than 1% of the façade, the sensitivities of the energy use and 
capital cost to minor changes in the solutions are low. This allows the architect to 
modify the optimized design without there being a significant reduction in optimality of 
the solutions. For instance, say by exaggerating the rectangular form of the window or 
alternatively by giving the window edges a curvilinear rather than rectangular form. 

Further research is required to investigate the application of the approach to 
architectural design, particularly the use of different constraints to control the window 
position and geometry (previous work by Wright and Mourshed  (2009) described 
window density and window count metrics that could be used to produce alternative 
window forms).  Given the success of the seeding approach demonstrated in this paper, 
it is reasonable to suggest that it would be equally successful in solving others 
constrained cellularwindow optimization problems. Further work is also necessary to 
extend the approach to integrated “whole-building” building design in which other 
elements of the building are optimized simultaneously with the fenestration. 
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Appendix A: Feasible Seed Solutions 

 
Figure  A1. Seed Solutions and the Frequency Distribution of the Glazed Area 

among the Seed Solutions 


