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Multi-objective Optimization of Cellular Fenestration by an
Evolutionary Algorithm

Abstract

This paper describes the multi-objective optimidedign of fenestration that is based
on the facade of the building being divided intauenber of small regularly spaced
cells. The minimization of energy use and capiteitdy a multi-objective genetic
algorithm was investigated for; two alternativelgem encodings (bit-string and
integer); the application of constraint functionontrol the aspect ratio of the
windows; and the seeding of the search with feasibbkign solutions. It is concluded
that the optimization approach is able to find Heaally Pareto optimal solutions that
have innovative architectural forms. Confidencéhim optimality of the solutions was
gained through repeated trail optimizations anakcallsearch and sensitivity analysis. It
was also concluded that seeding the optimizatidh feasible solutions was important
in obtaining the optimum solutions when the windaspect ratio was constrained.

Keywords: facade optimization; evolutionary algorithms; nuakjective optimization;
local and global sensitivity analysis.

1. Introduction

Fenestration and its design have a significanuarfte on the energy performance of
buildings; it impacts on daylight penetration, factal lighting energy use, and heating
and cooling energy use. To date, optimization naghlbave been used to minimize
building energy use by optimizing the dimensions tbé windows and shading
elements, but with the window shape typically bemgtangular and only minor
movement in the position of the windows on the dicheing allowed (among others;
(Caldas and Norford, 2002). Although this approae result in reduced building
energy use (and associated carbon emissions)xtéet@o which the energy use can be
minimized is limited by the fact that the shape gusition of the windows on the
facade is fixed. Restricting the shape of the wimslto be rectangular also inhibits the
architectural form of the fenestration.

The objective of the research presented in thigippto investigate an
approach to fenestration optimization in which shape, number, and position of
windows can be optimized for the trade-off betweenimum building energy use and
minimum capital cost and in particular to investagthe performance of an
Evolutionary Algorithm in solving this optimizatiqoroblem. Flexibility in the shape,
position, and number of windows is achieved bydiing the building facade into a
number of small rectangular cells, each cell belefined by the optimization to be
either a solid construction or glazed. The papsv alvestigates the use of a window
aspect ratio constraint that allows the designeotdrol the general shape of the
windows. The aspect ratio metric can also be uséadirectly constrain the number of
windows.

Earlier work (Wright and Mourshed, 2009) foundttaayenetic algorithm was
able to find near-optimal designs when appliech®orhinimisation of building energy
use for both unconstrained and constrained shdpesdows. Design constraints for
aspect ratio and number of windows were found teftextive in leading the
optimization to produce different design solutionke flexibility to define a range of
constrained and unconstrained optimization problemd to be able to solve them



using a single genetic algorithm is an importaatudee of this class of algorithm.
Optimization for a single objective results in agle optimized design solution. In
contrast, multi-objective evolutionary algorithm®yide designers with a set of equally
optimal design solutions that lie on the tradebstween two or more conflicting design
goals. The alternative design solutions not onbvjate the designer with choice, but
also information about the relationship betweencibr&licting design goals, and the
importance of the design variables (Brownlee andgkiéy 2012). This paper extends an
earlier single-objective optimization study by oducing a shading variable associated
with each glazed cell and extending the problemwtoobjectives, minimum energy use
and minimum capital cost.

Previous research (Brownlee et al, 2011) estaligiat among several
evolutionary algorithms evaluated, the NSGA-II aitfon (Deb et al, 2002) had the
best performance in solving a cellular window ojitistion problem. This paper
extends this research by further examining the Wiehaof NSGA-II in solving this
class of problem, particularly the impact of theida constraints on the ability of the
algorithm to find optimum solutions. Conclusions drawn about the impact of the
variable encoding on the ability of the algorithorfind optimized solutions, as well as
the need to seed the search with feasible solutubies the aspect ratio of the windows
is constrained.

2. Related Research

Genetic and evolutionary algorithms (EA’s) haverbpeoven to work well for a wide
variety of building optimization problems. Theipshastic, population-driven operation
allows them to efficiently overcome problems haviocal optimum solutions and large
discontinuous search spaces, this having been stolaimportant in the solution of
potentially non-smooth building optimization proig (Wetter and Wright, 2004).
EA’s have been applied to both single and multeobye problems including HVAC
configuration and design (Hanby and Wright, 1989igi et al, 2008; Wright and
Zhang, 2008; Sanaye and Hajabdollahi, 2010); optimatrol strategies (Yang and
Wang, 2011); building form (Caldas, 2008); struatulesign (Geyer, 2009); and other
aspects of construction (Shi, 2011; Sambou etCaI9R

EA’s have also been applied to the optimizatioglazing area and position for
improved construction cost, operational energyamkoccupant comfort (Evins, 2010;
Oh et al, 2011; Jin et al, 2011; Caldas and Norf2@®2; Caldas, 2008; Suga et al,
2010), although typically the optimization focusesglass type and glazed areas or the
position of fixed shape windows.

Two approaches that have a near-freeform appraeglating optimization are
(Shea et al, 2006) and (Grierson, 2008). Both diadacade into cells, with the former
assigning opaque or clear glass to cells to balbgicéng and cost, and the latter
varying the transparency of the cells to balangietland heat gain and direct sunlight
penetration. Both are similar in concept to therapph described here with the
exception of the constraints on overall window €hapd the application of shading.
Unlike previous work, this paper also provides aalgsis of the impact of the
constraints on the ability of a multi-objective E&\find the Pareto optimum solutions.

3. Formulation of the Optimization Problem

In Wright and Mourshed (2009), the optimizatiorbaflding fenestration was
formulated by the building facade being dividediatnumber of rectangular cells.
Each cell had one of two possible states, a winel@ment, or an opaque construction



element. The number and location of the cells lgpainvindow construction was set by
the optimization algorithm with the objective o&tbptimization being to minimize
building energy use (and in some cases, whilefgaigsa constraint on the form of
window geometry). The approach investigated in plaiger extends this optimization
problem to the minimisation of both energy use eayital cost, and the inclusion of
0.3m deep shading overhangs located above eabke gfdzed cells (each of which may
be independently added or removed by the optinumgirocess).
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Figure 1, illustrates the cellular window approathe individual window cells
are shaded blue and the overhangs black; the remgainey cells represent the opaque
construction. A “window” is defined by a set ofj@iding window cells there being 3
such “windows” in Figure 1. Note that the thickne$gthe overhang is exaggerated in
the diagram and that two adjacent glazed cellscarsidered to be part of the same
window whether adjoined by an overhang or not. Nalso that as indicated for
“Window 17, cells that are adjacent at their corpent are considered to be part of the
same “window”.

3.1 Problem variables and encoding

The optimization problem can be formulated in ohevo ways. The first
approach extends that described by Wright and Mhaat$2009), in which a vector of
variables was mapped-(), to anc by nr matrix of binary decision variables;, one
variable for each potentially glazed cell on theafde. This is extended here to provide
separate vectors of binary decision variablesterglazed cells X 922%-°P2349) ‘and for

the overhang cellsX ®*"™"9). The extension to include the overhangs doubies t
number of rows in the window matrix Box nr (Figure 1). The complete set of
variables X is defined by Equation group (1):



— lazed _opaque overhangy .
X = (X diazed-opaque x overhang),

where,
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Given that the variableg, ; are binary (a value of O resulting in an opaque

construction or absence of an overhang and a dllighe presence of a glazed unit or
overhang), this approach naturally lends itseH tmnary chromosome encoding in the
genetic algorithm.

A restriction on this particular problem formulatiovhich results from the
limitations of the building performance modelling that an overhang can only exist
above a glazed window unit. The impact of thihat the value of overhang variables
associated with cells that have an opaque congiruate redundant and are in effect
“floating” in that they have no influence over @itlof the optimization objective
functions. Although (as is evident from the respltssented here), EA are able to cope
with a degree of redundancy in the problem varmllds paper also investigates an
approach that removes the variable redundancyalfbmative approach uses a vector
of variables mapped to anc by nr matrix of integer decision variables, each vagabl
governing the choice of opaque construction, glazetstruction without an overhang,
or glazed construction with an overhang (the cgoading integer values being, 0, 1,
and 2):

Xigs Xpqomoooee 1 Xne1

. .Xl,zl X2,2! ...... , ch,2 ' (2)
X],nr ’ X2,nr ytrr ) ch,nr

., 0{0L.2};

OkO{L---,nc};

Ojyo{y---,nr}



In order to distinguish between the two approactiesfirst approach in which
the overhangs are defined by a separate set @blasiis referred to here as the
string encodingand the second approach in which the use ofrglaemd the overhang
Is specified through a single variable is refet@ds thenteger encodingThe reasons
for pursuing both approaches in this study arealthbugh thenteger encodindpalves
the number of variables (and for the example protiferestigated here has a 1x10
smaller search space), thie-string encodings more generic in that it can be applied to
any variable type, continuous or discrete, which threrefore allow the problem to be
expanded in the future to include other desigrufeatin the optimization. Thateger
encodingalso has a property that the choice of glazedlzedwice the probability of
occurring than an unglazed area (since an integjee\of both 1 and 2 result in a
window, a value of 0 being the only unglazed sohiij the probability of selecting a
window is unbiased in thait-string encoding

3.2 Objective functions

Two objective functions are simultaneously minindizgy the optimization, the building
energy use { °"'(X)), and the capital cost of the facade’{ (X)). The energy use
(kwh), is a function of the simulated annual heati@"*), cooling Q) and
electrical energy useQ™*):

min f energy(x) - nzl(theat + Q|COOI + Qlelect) (3)

where; |, is a building load condition, anal is the number of load conditions; the
electrical energy use includes the energy usediiicel lighting.

The capital cost of the fagcade is a function of dwst of the opaque
construction, glazed construction, and cost ofghading overhang. Since the size of
each cell is fixed, the cost can be calculatedctliydrom the number of glazed units
ng, and the number of shading overhamgs If n;, is the total number of possible
window cells f1. X n,.), then the capital cost of the fagade is given by:

minfcos‘(X):aX(nt—ng)+b><ng+c><nS (4)

where; ais the cost coefficient for the opaque constructiothe cost coefficient for the
glazed construction; andthe cost coefficient for the shading overhangs.



3.3 Constraint functions

Wright and Mourshed (2009), investigated the useooktraint functions in restricting
the optimized form of the windows. Two constraumdtions where investigated, one to
limit the total number of “windows”, and a secondcbnstrain the aspect ratio of the
“window”. It was concluded that constraining th@est ratio also restricted the
maximum number of windows, and so in this papey aspect ratio is used as a
constraint function. The research described hdferdifrom previous research in that it
investigates the impact of the constraints on dhati®n of the multi-objective problem
rather than the single-objective optimization peoibl

The aspect ratio of a window is defined here ashthght divided by width. The
height and width of a window are described in teaihe number of cells contained
within the rectangular box that forms a boundarabmeells of the “window”
(regardless of whether the cell is glazed or nidie bounding-box of the windows in
Figure 1 is illustrated with a dashed line. Theeas$patio of a window, is given by:

N‘ceIIsHigh
i

AR = N (%)

where; AR is the aspect ratio of windoiy N*"*"9" is the number of cells forming the

height of the bounding-box, and*"*"“is the number of cells forming the width of the

bounding-box. As such, “Window 1” in Figure 1 has aspect ratio of 1.0, “Window
27, 1.0, and “Window 3", 1.25.

In order to relax the optimization task, rathemtlsanstrain the solutions to have
an absolute aspect ratio, a range of possible tisgtexs has been defined. The feasible
range of aspect ratio is defined through two inétyueonstraints:

g(X)mx —ub<0 6

lb = g(X) iy < 0 ©)
where,lb andub are lower and upper bounds of the feasible aspgot g(X),,, =
max(AR;, V;€ {1, ...,n,}) andg (X)), = min(4R;, V;€ {1, ...,n,}); andn,is the
number of windows found for a particular optimipatisolution.

4. The optimization algorithm

The multi-objective algorithm selected for usehiststudy is an implementation of the
Non-Dominated Sorting Genetic Algorithm 1l (NSGA-flrst proposed by Deb et al.
(2002). This is a well-known evolutionary algorithwhich has been successfully
applied to a number of building optimization probhke(Daum and Morel 2010; Sanaye
and Hajabdollahi, 2010; Chantrelle et al, 2014d;etial, 2011; Evins et al, 2011).

In common with most evolutionary algorithms, NSGAstiarts with a randomly
generated population of candidate solutions. Thegss of generating a new
population of solutions is based on the selectigoremising solutions which are then
recombined and mutated (these operations beingpiliiic). The process is repeated
until either a predefined maximum number of genenatis reached or a predefined
maximum number of solutions evaluated.

The selection of solutions (individuals), for redmnation is based on the
solutions “fitness”. The fitness of an individualassigned in NSGA-II through the non-
dominated sorting of the individuals in the popiagiat The non-dominated sorting
ensures that solutions which are better in botkeailjes, or violate fewer constraints,
are given a higher rank (fitness) in the populatlarorder to maintain the diversity of



the Pareto front, NSGA-Il uses a crowding distgpeealty that is applied to
individuals which have similar objective valuesotbers in the population. The Pareto
optimum front forming the solution to the optimizet problem is simply the set of
non-dominated individuals in the final population.

The appropriateness of this algorithm for use imisg this particular
optimization problem was determined by compariag#rformance with that of a
number of other evolutionary multi-objective optaaiion algorithms (Brownlee et al,
2011). The comparison was based on the algoritlarfenmance over 32 repeat
optimization runs of each algorithm (each run stgrivith a different randomly
generated population of solutions). Prior to theparison of algorithm performance,
factorial experiments were performed to optimaligd the parameters of each
algorithm (including population size, mutation amdssover rate).,

The ideal algorithm resulting from the comparisod avhich is used in this
study, can be summarised as having:

» random initialization of the problem variablesthwthe option to seed the initial
population with viable solutions;

* abinary or integer encoding of the variables;

« binary tournament selection (De Jong, 2006), lmctv solutions of a lower rank
are preferred, and in the case of equal rank, leehigrowding distance);

* 100% probability of chromosome crossover and% poobability of binary
gene crossover (known as “uniform” crossover; DegJ@006);

e a probability of 1 gene mutation per chromosome,;

 elitism: the top 50% of the combined set of ptsemd offspring are carried
from one generation to the next;

» search completion after 5000 unique solutionshsen evaluated;

e a population size of 30 solutions.

4.1 Seeding

Seeding the initial population with viable solutsais an established technique for
improving the optimization efficiency of EA’s (Jilem, 1994), and which has also
been applied to building optimization problems (vi2010; Kayo, 2010). Seeding is
used in this study to improve the feasibility o thptimized solutions. Experiments
were performed in which a set of 20 feasible sohdithat covered a range of glazing
areas from the minimum to the maximum area wheed as a seed in the initial
population. The seed solutions were manually geeera produce an arbitrary set of
solutions that contained a variety of forms andeted a range of glazed areas
(Appendix A); the only criterion applied to all sisewas that they satisfied the aspect
ratio constraints. The remaining 10 solutions ef30 individual population were
randomly generated.

5. Example building and performance simulation

The example optimization is based on an atriumtbfe@e-storey commercial building
(Wright and Mourshed, 2009). The atrium is 15m whgel5m long by 8.2m high with
only the southern facade being exposed to theredtenvironment. The other three
walls of the atrium are connected to interior sgabat are controlled to have the same
thermal conditions as the atrium. The internal exigrnal walls, roof, and floor are all
of a medium to heavy weight construction; the wind®lls are double-glazed with
plain glass.



The facade is divided into 1201n¥ cells, 15 cells wide by 8 cells high (Figure 1peT
higher the number of cells, the greater the fldybof the search to optimize the
number, shape, and position of the windows. Thssnslar to the impact of the number
of pixels in a digital image, the higher the numbgpixels the greater the clarity and
resolution of the image. The number of cells hantmpped at 120 by both the
practicable size of the individual glazed units araksire to limit the size of the search
space (the search space increases in the ordéfaftBe integer encoding, whends

the number of cells); a 13glazed unit has been taken as the practicabler Itwit of
unit size for the example facade.

5.1 Energy smulation

The building performance and energy use objectinetion (Equation 3), has been
modelled and simulated using the EnergyPlus whoileling performance simulation
program (v 6.0.0.023; Crawley et al. 2001). Theuatrhas been modelled as an
independent zone with the internal partition whklsng treated as adiabatic heat
transfer surfaces. The performance of the atriuatihg, ventilating, and air-
conditioning (HVAC) system has been modelled usiqggeudo-system having an
idealized 100% efficiency (the EnergyPlus “ideads air system”). The system is
operated 24 hours/day with cooling and heatingpsetts for the occupied periods
being set to 25.6 °C and 20 °C respectively; ngghback set-point temperatures are
30.0°C for cooling operation and 15°Q for heating operation.

Artificial lighting (and its energy use), is usexdupplement daylight
illuminance levels by an amount that maintainsillbeninance set-point (500lux),
calculated at two reference points (both referguuets having equal weight in the
control of the artificial lighting). The two refaree points are located along the mid-
point of the facade width, and at a distance of 28fth 75% of the depth of the atrium.
The building is fully occupied from 09:00 to 17:QBg occupancy is reduced during the
periods from 07:00 to 09:00, and 17:00 to 22:00.

The building is nominally located in Chicago, USMich experiences a
continental type climate. This ensure that therogtation study relates to a building
that has both an active heating and cooling demand.

5.2 Construction cost

The relative weights of the opaque and glazed coctsdns as described by Equation 4,
have been derived from data presented by Spon Y20l resulting coefficients for
Equation 4a=£112, b=£350, andc=£128. It is evident that the cost of the glazed
construction is over three times higher than ferapaque construction.

5.3 Design constraints

The lowerlb, and upper boundsb, of the constraint functions (Equations 6), hagerb
set to 1.5 and 1.75 respectively. This ensureshieatvindows are taller than they are
wide and that they give the impression of beingioaity orientated. The choice of
aspect ratio has been abstracted from the Goldéon BHeight/Width=1.62), this ratio
often being used to define the geometric propostimina building . Given the 15 x 8
cell structure of the fagade, this results in 8sgade window geometries that satisfy the
constraints (Table 1).



Width
Heioht | qoproximatd Tt
cels) | Tt 0
(cells)
8 5 1.60
7 4 1.75
5 4 1.50
5 3 1.67
3 2 1.50

Table 1. Possible range of solutions with aspeai nstrained

5.4 Inherent characteristics of the trade-off between energy and cost

The inherent characteristic of the trade-off betwerergy use and capital cost has been
investigated here through an incremental traversesa the facade. The traverse
incrementally adds window cells starting at theright-hand corner (top-east corner in
the example), and ends in the bottom-right corbett¢m-west corner). In relation to
Figure 1, the traverse starts at positiknl( j=1), and ends ak€nc, j=nr), with the

cells being filled first across the face of thedde before the traverse moves down to
the next row of cells (in this way, the glazed s@lte populated from the top of the
facade to the bottom of the fagade). All windowshe traverse are automatically
shaded by overhangs. Since the traverse ignoretistraints on the window aspect
ratio, the results only serve as an indicatiorhefinherent relationship between the
energy use and capital cost.

Figure 2, illustrates the relationship betweerrgyese and capital cost
resulting from the traverse. The solution with th@imum capital cost and the
maximum energy use corresponds to a zero glazed Asshe number of glazed cells
increases, the capital cost increases until a dimflection is reached beyond which
the energy use increases with increasing costtt@dumber of window cells).
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Figure 2. Relationship between energy use andatajust

The minimum energy use resulting from the travemseesponds to 55 glazed
cells and a glazed area of 45.8%. Given that tleeggruse increases with cost beyond
this point, it could be considered that the minimemergy use solution delineates
between the pseudo optimal, and pseudo sub-optegain of solutions. Note that the
solutions illustrated in Figure 2 are not Parettiropl, and although it is expected that
the window cells would be distributed towards thie of the facade (as this maximizes
daylight penetration and reduces lighting energg),usis likely that the optimized
number and distribution of window cells will be féifent to that found from the simple
incremental traverse of the solution space (Wragttt Mourshed, 2009). This is
particularly true when the aspect ratio constrar@pplied as this forces the windows to
be tall and thin rather than filling the full widdf the facade, as is the case with the
traverse.

The traverse also provides the minimum and maximalwes for cost and the
range of energy use. The cost ranges from £13@of glazing and £57,360 for a
fully glazed facade, and the energy use from 34&WMd0Oper annum to 36,637kWh per
annum.

Figure 3 illustrates the separate energy use fatifige cooling and electrical
lighting. The energy use is dominated by the hgatirthe atrium until more than 70%
of the facade is glazed and beyond which coolingidates. The pseudo optimum
window area is dictated by the trade-off betweenrdduction in heating and lighting
(electrical) energy and the increase in coolinggyith the number of window cells.
The greatest rate of reduction in lighting (elext) energy use occurs between 1 and
40 window cells, with no significant reduction farfurther increase in number of cells.
The region in which no further reduction in liglgienergy use is achieved also marks a
point at which the total energy use begins to iaseewith the glazed area (and the
solutions become pseudo sub-optimal).
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6. Optimization experiments and methods of analysis

The optimum solutions to building optimization piets are unknown and are subject
to uncertainty in the problem boundary conditiadsiffe and Hensen, 2011). EA are
also probabilistic optimizers that have uncertanwergence. The uncertainty in the
problem boundary conditions (such as that due &amgimg climate and occupant
behaviour) is not addressed in this paper, and@sthe optimization presented here is
for a single set of uncertain boundary conditidriee true optimum solutions for a
single set of boundary conditions can only be deiteed using an evaluation of all
solutions in the search space (a so called “exhvaigir “brute-force” search). Given
that for the integer encoding the search spaceren8?° = 1.797x16" possible
solutions, it is impracticable to conduct an exhiaessearch and therefore the true
optima remain unknown. The optimality of the salas must therefore be examined by
other means. In this paper, we explore the optignafithe solutions through; the
comparison of the solutions to those found fromttheerse of the search space (section
5.4); a subjective assessment of whether the sakiappear to concur with building
physics; and finally, and most important, througstatistically significant number of
repeat runs of the algorithm for each optimizapooblem. An analysis based on a
statistically significant number of repeat runghaf algorithm also addresses the
uncertainty due to the probabilistic convergencBI8GA-II. For the unconstrained
optimization problem, further confidence in theesttto which the solutions may be
optimal has been gained through a local and gledagitivity analysis.

Eight different sets of experiments have been peréa, the different
experiments resulting from the alternative combaret of problem formulation (Table
2). Each of the 8 experiments and the associatélgsas is based on 32 different runs
of the algorithm. This results in 128 differentiogization results for each of the
unconstrained and constrained problems.

The analysis of the characteristics of the optitnreproblem and the behaviour
of NSGA-II in solving the problem has been perfodsing both graphical
(qualitative) and quantitative methods. The quatitie methods are used to indicate the
relative optimality of the solutions obtained fraparticular algorithm configuration
(the “optimality” being judged in relation to othgolutions found in the experiments),
whereas the qualitative analysis has been usedgincag understanding of the
underlying characteristics of solutions.



6.1 Quantitative methods of analysis

The quality of solutions to a multi-objective opiration problem can be judged
in relation to: the convergence of the solutionsdhe true Pareto front; the
distribution of the solutions along the Pareto framd the range of objective function
values found between the extremes of the Paretd. fithe convergence to the true
Pareto front and the spread of the solutions isncomy measured by the hypervolume
metric (Zitzler, 1999). Although this metric meassiboth the position of the front and
the spread of the solutions, it is known to provadgood balance between measuring
the different traits of the solutions (Knowles @arne, 2002). Given that for this
building optimization problem the true Pareto fratnknown, the hypervolume of the
multi-dimensional space has been measured betweenrdlutions of a Pareto front and
a specific referencen@dir) point that has been taken to be equal to themmar value
of each objective function value found in all expemts. This ensures that the nadir
solution equates to the least optimal solution ébumany of the experiments and
therefore that it is dominated by all solutions.

Figure 4 illustrates the hypervolume as the shaded between the points of the
Pareto set of solutions and the nadir referencet pidbte that solutions having a higher
hypervolume are desirable, as these solutions Raxeto fronts that are either further
from the nadir point or have more spread and atgreange of objective function
values, both of which are desirable. Note also d¢hatn our definition of the nadir
point, it can lie beyond the range of objectivedtion values found in the final Pareto

front.
Nadir point
A \.

J2(x)

The hypervolume

Attainment

_—
surface

A solution

fio)

Figure 4. Attainment curve and hypervolume in aljective space, with both
objectives being minimized

Given that the hypervolume is sensitive to theagrof the solutions as well as
the distance of the solutions from the nadir pding further metrics have been used in
this study to examine the spread of the solutibirst, the minimum values for both
objectives are examined, these lying at oppositis ef the Pareto front (the minimum
energy use corresponds to the maximum cost, aedveisa).



Second, the distribution of the solutions alongRlaeeto front is evaluated using
the spread metric (Deb, 2001). The spread of swiatalong the Pareto front is
important in design practice as the higher theapthe greater the choice of design
solutions. Spread is a measure of the variatiatistances between neighbouring
solutions in the front with values closer to zeeiny desirable (zero being the condition
that all distances are equal). In (Deb, 2001),ahi, is formally defined as:

_dp+d+Xi Y d—d|

T dptdi+H(N-1)d ©)
where, the parameteds andd, are the Euclidean distances between the soluéibns
each end of the obtained non-dominated set, anlihtite for the objective values. The
parameted is the average of all distano#si=1,2,3..,N<1, assuming that there dxe
solutions on the best non-dominated front. Theagbreetric also requires the limits for
the objective values to be supplied and again thvese taken as the minimum and
maximum found over all runs of all the algorithms.

The hypervolume, spread, and minimum objectiveeskre reported in terms
of the mean and standard deviations of the reBulthe 32 repeat optimizations. The
ability of the algorithm to find a feasible solutits also examined and reported as a
percentage success rate.

6.2 Qualitative methods of analysis

Graphical (qualitative) analysis is used to degctite shape and optimality of the
Pareto front, and to investigate the differencdigtribution of the solutions along the
Pareto front resulting from the different experingen

The trade-off between two objectives and the sludpiee Pareto front is
commonly represented as a continuous line betwaetian points. However, this can
be misleading as there is no guarantee that the@uations exist between the solutions
found by the search, or that the trade-off is simoAnh attainment surface (Fonseca and
Fleming, 1996), addresses these difficulties bggméng the trade-off as a surface that
divides the objective space into the region doneiddty a Pareto set, and the region not
dominated by it. This is easier to interpret thampsy plotting the individual points for
multiple fronts. For a two-objective space, thaiament surface becomes an
attainment curve. Figure 4 illustrates an attainnecenve as the blue line connecting the
set of Pareto-optimal points represented by blaxt&.d

The hypervolume, spread metric, and the attainmeriace are all
representations of the objective function space. ffénd in the distribution of solutions
along the Pareto front in the variables space lsaskeen analysed by identifying the
probability that each cell on the fagade will bazgld, and presenting these results
graphically. As well as enabling an analysis ofad#nces in the solution trends
between the different experiments, these resulisate the general characteristics of
the solutions in that they illustrate the regionhad facade that has highest probability
of being glazed (regardless of the particular souadopted along the trade-off
between energy use and capital cost).

6.3 Senditivity analysis

To enhance the understanding of the problem chersiots and the extent to which the
solutions may be optimal a local and global sevigitanalysis has been performed for
the unconstrained optimization problem. The lod#férential) sensitivity analysis has
been performed about three solutions taken frontbése of the unconstrained
optimization results, the highest energy use smhtihe median energy use solution,



and the lowest energy use solution. Using the gsadation as a base-case, the state of
each cell is changed in turn (from either opaqugldaed, or glazed to opaque), and the
difference in energy use evaluated; the stateeotéll is then reset before the next cell
on the fagade is changed. Since the lowest andamedtiergy use solutions have glazed
cells that are shaded, a change in the glazedddtttie cell also changes the state of the
overhang (the overhang being present if the cgjlagzed). No shading is applied in the
case of the highest energy use solution as thedasseis un-shaded. Note that since the
cells have only two states (glazed or opaque)ldte sensitivity analysis is also in
effect a local search, the results from which cam$ed to confirm the local optimality

of the solution.

The local sensitivity analysis has been suppleetewith a global sensitivity
analysis. 3,000 randomly initialised solutions wevaluated with each cell having a
50% probability of being glazed in each solutioack glazed cell was automatically
shaded. The global sensitivity analysis is basestepwise linear regression analysis of
rank transformed variable values. The model wastified using a bi-directional
selection and the Bayesian information criteridms(triterion reducing the risk of over-
fitting).

It is not necessary to evaluate the sensitivitihefcapital cost objective
function in the same way as for the energy useedine sensitivity of the capital cost is
known to be uniform across the facade and linearsaahe search space (Equation 4).
That is, it is known that all cells are of equapimntance in terms of the capital cost.

7. Results and analysis

Table 2 gives the solution metrics for the diffdreptimization experiments. The values
for the hypervolume, spread, minimum energy usecastiare given as the means of
the solutions with the standard deviation of thieitsans in brackets. For the
experiments in which the aspect ratio constrairitere applied, the means and standard
deviations are calculated for the feasible solionly, infeasible solutions being
excluded. For reference, the maximum values obtjective functions found in all
experiments which are used to represent the nalditien are: 36,637kWh and £31,374
for the unconstrained problem; and 35,787kWh argj@3D for the constrained
problem.

The extent to which the results from the 32 rep@éimization runs for each
experiment are normally distributed (and theretbeeextent to which some confidence
can be placed in the analysis), was confirmed Ipyyapy a Shapiro-Wilk test to each
data set. In each case, the test resultegimaue of > 0.05, confirming that there was
no significant departure from normality in the résuSimilarly, in a two-tailed
unpaired t-test on the results of the seeded véngugnseeded results all had a p-value
of < 0.0001 and so the differences in the resatshe considered to be statistically
very significant.



P Success voﬁgreg ) Spread (-) | Energy Use N(l:lglsr?l(,lg
. - Rate (%) (kKWh)
Constrained? Encoding Seeddqd?
- o ] 0.754 0.700 34,262 | 15,503
bit-string (0.022) (0.047) (16) (744)
es ) 0.798 0.663 34,286 13,596
no Y (0.005) (0.005) (25) (155)
no } 0.281 1.032 34,265 25,811
inteqer (0.063) (0.026) (26) (1162)
9 es ) 0.819 0.580 34,154 13,939
y (0.002) (0.038) ) (130)
0.329 0.850 35,419 22,178
bit-string no 43.8 (0.072) (0.048) (94) (1066)
es 100 0.681 0.668 34,450 14,158
y (0.021) (0.040) (55) 23)
yes
integer no 0 ) i ) i
0.705 0.653 34,342 14,154
yes 100 (0.029) (0.079) (109) ©)

Table 2. Experiments and solution metrics
(the values are given as mean with standard demmtn brackets;
the best solutions in each category are shownla) bo

7.1 Unconstrained optimization

It can be observed from Table 2 that for the untamsed and unseeded optimization,
the integer encoding of the variables resultsnimean hypervolume, spread, and
minimum capital cost that all have worse values tloa the binary encoding. However,
the use of solution seeding results in the integeing having the best solutions as
measured by all metrics except the minimum capdat. Seeding also resulted in an
improvement to the results for the bit-string ennggdbut to a lesser extent than the
integer encoding. In comparison to the solutianstl from the traverse of window
cells (section 5.4), the lowest energy use solutiom the seeded integer encoding has
a marginally (<0.1%) lower energy use, but witlstbnergy use being achieved with a
14.2% lower capital cost, this suggesting thatdjpigmization has found a significantly
more optimal solution than that given by the traeesf window cells. Since the highest
energy use solution from the traverse is unglaaed,the solution obtained from the
optimization has only one glazed cell (Figure B§ difference in the optimized
objective function values and the values from thedrse are small (the optimized
energy use being 1.1% lower than that from thestisevand the capital cost 1.8%
higher).

The improvement in solutions from both the bitrsgjrand integer encodings
with seeding can be attributed to the seeded ippulation having a greater variety of
solutions than the randomly initialised populatidbhe seeded initial population
contains solutions ranging from 2.5% glazed to &8&aed, whereas the randomly
initialized population has a bias towards solutitreg are 50% glazed for the bit-string
encoding, and 66.7% glazed for the integer encoding

The impact of the seeding is also evident fromati@nment curves. Figure 5,
illustrates the attainment curve for the most sssftg and unsuccessful variable
encodings for the unconstrained optimization (tHesag the seeded and unseeded




integer encodings). As confirmed by the standaxdatien of the hypervolume and
spread (Table 2), there is very little differenceoas the solutions found for the seeded
initial population. However, this is not the casethe unseeded integer encoding, there
being a range of convergence and hypervolume atineasnseeded solutions.
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Seeded integer (best)
Figure 5. Attainment curve for the unconstrainetimgzation

(the most and least successful variable encodings)

Figure 6, illustrates three solutions taken from ltlest of the seeded integer
solutions, the solutions being for the lowest cpibst, lowest energy use, and median
energy use and cost (Figure 5). It is perhaps pnisimg that the median and lowest
energy solutions have glazed cells positioned tdsvéire top of the fagade as this
increases daylight penetration onto the artifitgditing control points and therefore
tends to limit electrical energy use in artifidighting. The window(s) have a wide but
short form that tends to cover the width of theafde; with all glazed cells for the
median and lowest energy solution having overhahigs.solution for the lowest
capital cost is marginally sub-optimal as it is Wmothat the minimum cost solution
corresponds to a fully opaque wall construction.

(a) (b) (c)
Lowest capital cost; Median capital cost Highest capital cost
highest energy use and energy use and lowest energy use

Figure 6. Selected solutions from the unconstraopamization
(overhangs are illustrated as solid black blocl®svalihe blue window cells)

The variation of the solutions across the Paretgsdarther examined in Figure
7, which illustrates the probability that a partaoucell is glazed for any solution in the



Pareto set. Solutions for both of the bit-stringading and the seeded integer encoding
have a wide variation in the glazed cells amondgPaeeto set (ranging from cells that
are always glazed, through to cells that are nghaaed). In all three cases, the most
frequent placement is towards the centre of thadagut with the some probability that
the cells towards the top of the facade are alapegl; this is explored further in the
local sensitivity analysis. The probabilities foetunseeded integer encoding show far
less variety among the Pareto set. The populatsrchnverged on a highly similar set
of solutions, there being a high probability ofedarge tall window and a number of
single-celled or other small windows being preserll solutions along the trade-off.
The reason for this is unclear, but is most likelated to the fact that the integer
encoding results in a 66.7% chance of a cell bglaged, particularly in the initial
population; the seeded integer encoding resuls greater variety of solutions due to
the wider range of solutions in the initial popidat

The analysis in Figure 7 is useful in design asdicates the general
characteristics of the optimised solutions, in thdesigner seeking more freedom of
design choice will understand that the centrakcgliould always be glazed, and that in
order to maintain a degree of optimality, the desrgshould place the majority of
glazed cells in the upper half of the facade.

I

a (b) (c) (d)
Unseeded bit-string Seeded bit-string Unseeded integer Seeded integer

Never glazed _ Always glazed
Figure 7. Probability of a cell being glazed foyaolution in the Pareto set

(unconstrained optimization)

7.1.1 Sensitivity Analysis

Figure’s 8 (a) to (c) illustrate the results of theal sensitivity analysis and Figure 8 (d)
the global sensitivity analysis. The local sengitifigures are shaded according to the
absolute value of the differential sensitivity frahe base case. The arrows indicate the
direction of the change in energy use resultingiftbe change in state of the cell; a
downward pointing arrow indicates that the chaniggate resulted in reduction in
energy use and an upward pointing arrow an incrisaseergy use. The base case
window placements are indicated with a dashed-these being the same, low energy,
median energy, and high energy solutions as idiestkin Figures 6 (a) to (c)
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Figure 8. Energy use local and global sensitivitglgsis (unconstrained optimization;
(a) maximum energy use solution local sensitiiy;median energy use solution local
sensitivity; () minimum energy use solution losahsitivity; (d) global sensitivity
analysis)

Figure 8 (a) illustrates the differential senstinior the highest energy use
solution. Given that it is known that the lowesergy use requires a higher number of
windows, adding a window to every opaque cell rissal a reduction in energy use,
while removing the base-case glazed cell increaseryy use. This characteristic is
repeated for the median energy use solution ittty in Figure 8 (b), as this solution
also has a glazed area that is lower than thatreztjfor minimum energy use.



However, since the solution for the minimum eneargg (Figure 8 (c) has a glazed area
that is optimized for minimum energy use, chandhegstate of an opaque cell to
glazed in general results in an increase, ratlar tlecrease, in energy use. This is not
the case for all opaque cells as changing the stdatese on the border of the window
results in a reduction in energy use. For all tle@ations, the sensitivity of the capital
cost is known to be uniform across the facade, withange of an opaque cell to glazed
resulting in an increase in cost (and vice versa).

A comparison of Figures 8 (a) to (c) indicates @mathe glazed area increase
(from Figure 8 (a) to (c)), the sensitivity of thelution to a change in the state of a cell
is reduced from a maximum of 0.97% to 0.03%. Tleisuos as the differential
sensitivity represents the local gradient of trerde space, the gradient being reduced
as the minimum energy use is approached (the charggadient is evident in Figure
2). Itis also evident that the centre of the dentsi shifts upwards as the glazed area
increases (from Figure 8 (a) to (c)). The reasortHis requires further investigation,
but is likely to relate to the fact that singlezgld cell positioned at the top of the facade
is unlikely to provide sufficient daylight peneiat onto the artificial lighting control
sensor that is positioned closest to the facade.

The absolute sensitivities for the capital costlar@% for the maximum energy
use solution, 1.90% for the median energy useisoluand 1.27% for the minimum
energy use solution. In all cases the sensitigityniform across the facade with a
change of a cell from opaque to glazed resultingniincrease in cost; correspondingly,
replacement of a glazed cell with an opaque coatstmu results in a reduction in cost.
As well as being uniform across facade for a giselition, the change in cost is known
to be linear across the entire search space (EEquéli The change in percentage
sensitivities between the different solutions giveme is a result of the cost of the base
case solution increasing with the size of the windthe sensitivity being given as a
percentage change against the base case costhagmtude of the energy use for the
base case solutions also affects the energy usdigey but by a small amount (these
sensitivities being driven largely by the localdjemt for the change in energy use). The
cost sensitivities also differ between the solutisimce the median and minimum
energy use sensitivities include the effect ofdtierhangs, whereas the maximum
energy use solution does not. Finally, note thatntlagnitude of the sensitivies is small
due to the fact that each cell occupies only 0.88%e facade, so it might be expected
that a change in the state of the cell would hasmall effect.

The procedure for performing the local sensitiahalysis is equivalent to that
of a local search of the solutions around the lbase designs. Each sensitivity analysis
results in 120 new solutions (the state of all &@lls being changed in the procedure).
These results can be used to examine the optinudlitye base case solutions by the
extent to which they dominate, or are dominatedlingy,120 new solutions (the
domination being examined for both the energy umskcapital cost objective
functions). The maximum energy (minimum cost) soluis sub-optimal and
dominated by just one of the 120 solutions (andefloee by a single glazed cell); the
new non-dominated solution has a fully opaque fagalhe median energy use solution
dominates all 120 new solutions and so it can tbezéde concluded that this solution is
locally optimal. Two new non-dominated solutions@@und for the minimum energy
use base case, one for an additional glazed oellaaecond for the removal of a single
glazed cell from the base-case window; the base s@lstion was dominated by both of
the new solutions. It can therefore be concludiedi the optimization results in locally
near Pareto optimal solutions, with the median g@nese solution in this case being
locally fully optimal.



Figure 8 (d), illustrates the global sensitivityagrsis, with the shading
indicating the magnitude of the standard rank regjom coefficients (SRRC); no SRRC
is available for the boxed cell located in the nhedof the facade as this cell was
automatically removed from the regression moddlcééfficients have a positive value
which indicates that the use of a glazed cell raen an opaque cell results in an
increase in energy use. The sensitivity as repteddry the SRRC’s increases towards
the bottom of the fagade. This is a result of esathtion used in the analysis having an
approximately 50% glazed area (since each celal#¥6 chance of being glazed or
unglazed). Given that the minimum energy use smiufiFigure 8 (c)), has a glazed area
of 35%, a 50% glazed fagade is bound to resulthigler energy use. Although
unconfirmed, the effect is likely to be greatesewlglazed cells are positioned at the
bottom of the facade, as these are likely to hagddwest impact on energy use due to
artificial lighting. This effect is also apparentiin the local sensitivity analysis for the
minimum energy use, as in comparison to the meali@maximum energy use
solutions, the bottom row of cells has an increasatitivity. Given the premise that
placing cells towards the bottom of the facadeltesn the highest increase in energy
use, the global sensitivity analysis confirms thatoptimization is placing the windows
in a generally optimal location of towards the niedth upper region of the facade.

7.2 Constrained optimization

Table 2, indicates that the seeding of the ingi@gulation with a range of feasible
solutions had a significant impact on the optim@atesults for the constrained
optimization (in which the aspect ratio is consteal to be approximately equal to the
Golden Ratio). In particular, no feasible solutievigere found for the integer encoding
for the randomly initialised population (the unsegahitial population), and without
seeding, only 43.8% of the solutions for the hitrgt encoding where feasible,
feasibility taking between 20 and 100 generationse achieved and with no
improvement in feasibility being found beyond 1@hgrations. In contrast, all
solutions for both the bit-string and integer enngd where feasible when the initial
population was seeded. The success of the seedlingpart due to the seeded solutions
of the initial population being feasible (feasibhkeaning that all seeds satisfy the
constraints). This eliminates the need for thedetr find feasible solutions and allows
more of the search effort to be focused on miningishe objective function values. The
seeded integer encoding results in the best pediocmas measured by all metrics
(hypervolume, spread, minimum energy use, and mimmost). However, no
solutions had an energy use or capital cost lolen that found by the incremental
traverse. This is unsurprising in that the traveesailts in window geometries that
violate the aspect ratio constraints, these canstreesulting in both a higher minimum
cost (in this case, a small window rather than maew), and higher energy use (due
to constraints producing tall-thin windows rathiesint short-wide windows).

Figure 9, illustrates the attainment curves feriost and least successful
algorithm configurations that resulted in any feéssolutions (these being the seeded
integer encoding and the unseeded bit-string).tidue-offs found for the seeded
integer-encoding are more consistent with the nmedral best fronts these covering a
similar range in both of the objectives. The waution is convergent on the best
solution, but is restricted to the low cost designsontrast, the unseeded and bit-
string-encoded solutions show a greater variatioth in extent and in closeness to the
origin (this is reflected in Table 2 by a highearslard deviation for the hypervolume).



This illustrates the usefulness of the hypervolum&tric in selecting a good Pareto
front from a number alternative optimization runs.
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Figure 9. Attainment curves for the constrainedrogz@ation

(for the most and least successful variable engsjlin

Figure 10, illustrates three solutions taken ftbmbest Pareto front, the
minimum cost solution, the minimum energy use soitytand the median cost and
energy use solution (as indicated in Figure 9). fldnere illustrates that as the glazed
area increases, the aspect ratio constraint rasuttsiltiple windows and that the
window cells also have a greater tendency to bdeshhy overhangs (all window cells
being shaded for the highest cost solution). Tdriven by the trade-off in energy use,
in that as the cost increases with glazed areartbegy use must reduce (the shading
contributing to the reduction in energy use).

As is the case for the unconstrained solutionsthferigher glazed solutions,
the window cells tend to be located towards theotojhe facade in order to capitalize
on daylight penetration. Figure 10, also indicakes for the high cost solution there is a
slight bias in the cell positions towards the taght side of the facade (this being the
top-west side as viewed from inside the buildidd)is is similar to the solutions found
in a single objective optimization study in whidtetbias was thought to be a result of
the distribution of the solar beam radiation om® internal surfaces of the room
(Wright and Mourshed, 2009). This has not beenshgated further here, as
conversely, it was also noted that across theréifiterepeat optimization runs, although
the optimum energy use and cost found were oftariasi, the distribution of individual
glazed cells varied across the facade. This imghiasposition of the cells is of
secondary importance to the number of glazed aallsthe general areas of the fagade
that is glazed.



(@) (b) ()
Lowest capital cost; Median capital cost Highest capital cost
highest energy use and energy use and lowest energy use

Figure 10. Selected solutions from the constraop@dnization
(overhangs are illustrated as solid black blocl®svalihe blue window cells)

Figure 11, illustrates the probability that a ¢elflazed for any one solution on
the best Pareto front found for the alternativealde encodings and use of seeding.
The solutions for the unseeded integer encoding baen omitted since no feasible
solutions were found for this configuration.

The figure for the unseeded bit-string encodinggiflates that there is a poor
distribution of probabilities, this indicating theggardless of the position of the solution
on the Pareto front, the same cells tend to beedlazurther analysis of the individual
optimization runs indicated that once the algorithas found one solution that met the
aspect ratio constraint, that solution dominatedppulation, and therefore limited
variation in solutions amongst the Pareto setolmtrast, there is a greater variation in
probabilities and therefore diversity of solutidos both of the seeded optimization
results. As for the unconstrained solutions, tledabilities are highest towards the
centre of the facade.

(a) (b) (c)
Unseeded bit-string Seeded bit-string Seeded integer

Figure 11. Probability of a cell being glazed fayaolution in the Pareto set
(constrained optimization)

7.3 Theimpact of the aspect ratio constraints

Figure 12, compares the attainment curves for és¢ $olutions found from the
unconstrained, and constrained optimization expanis The difference in the results
IS most noticeable as the glazed area (and ca@joisd) increases, the solutions being
convergent for the low glazed areas (and low cd$t¢. reason for the divergence is that
the constraints have increasing impact on the sbifiee windows as the glazed area
increases. The high cost unconstrained windows aakert-wide aspect ratio (Figure
6(c)), whereas the high cost constrained windowe laatall-thin aspect ratio (Figure



10(c)). The convergence of the solution as thetabpost reduces is due to a reduction
in the sensitivity of the energy use to the nundieglazed cells. An increase from 1
cell (Figure 6(a)) in the unconstrained case, tedtltells in the constrained
optimization (Figure 10(a)) having a limited impact capital cost.
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Figure 12. Best attainment surfaces from the urtcaingd and constrained
optimization

7.4 Seeded Solutionsin the Final Population

Given that for this problem, seeding has suchangtimpact on the success of the
optimization, the extent to which the seeds suitregough the search and dominate
the final population has been investigated by ibtadce (in the variable space),
between any solution and the seed solutions. Thlysis is based on the bit-string
encoded solutions, as the distance between sadutam be easily measured using the
Hamming distance (this being the number of bit$ #ne different in comparing a
solution from the search, and any one of the sekdisns). The Hamming distance
was only computed between the bits that represenglazing, as the shading overhangs
were all omitted in the seeds. The smallest Hamrdis@nce (that is, the distance from
a given solution to the most similar seed), wasnméed and aggregated over all trial
runs of the algorithm.

Table 3, gives: the mean Hamming distance betwaeln member of the Pareto
set and the seed most similar to it; the numbephbftions in the Pareto set in which the
glazing pattern exactly matched a seed solutiamo(igg shading); and the number of
unique seeds present in each Pareto set.

Seeded solutions persisted most in the constraiptchization, with a 15%
mean number of seeds remaining in the Pareto friowever, this equates to a mean of
only 1.5 seeds. The solutions along the Paretd @oly being different to the seeded
solutions by an average of 8.6 bits (or 7% of #rgth of the bit-string).



Survival of the seeded solutions into the finale®afront is lower for the
unconstrained optimization with a mean of less thaa seed surviving, and less than
1% of the final solutions being seeds. The distdrateseen the solutions and the seed
solution is also higher at 10.3 bit (9%) for theanstrained solutions. The reason for
the reduction in the number of surviving seedfa the seeds have geometries that
satisfy the constraints on the aspect ratio, wisettea solutions for the unconstrained
aspect ratio are very different in the position gedmetry of the windows (for instance,
compare the solutions illustrated in Figure 6 amgife 10). It might therefore be
concluded that although the final Pareto set aftgmis for the constrained optimization
contained a high number of seeds, the result$@®unconstrained problem suggest that
the search is inherently able to benefit from saegeithout being dominated by the
seeding.

Number of unique
Number of seeds in Pareto setseeds in Pareto set

()

Hamming
Problem Form distance to

closest seed (4)
S %)
Constrained 8.6 7.6 15.0 1.5
(1.2) (2.7) (0.5)
Unconstrained 103 0.28 0.56 0.16
(1.1) (0.73) (0.37)

Table 3. Influence of seeding on the final Pareto s
(the values are given as the mean with standanatitavs in brackets)

8.0 Conclusions

This paper investigates the multi-objective optexidesign of fenestration that is based
on the facade of the building being divided intauenber of small regularly spaced
cells, this formulation providing the search witie tflexibility to optimize the glazed
area, number of windows, and window shape (a windowthe facade being defined by
a set of adjoining glazed cells). Dividing the fdganto a number of cells is similar in
concept to that of a digital image in which the gmas constructed from a number of
different pixels. In the same manner as the remuludf a digital image being dependent
on the number of pixels, the clarity of the dessgiutions, particularly the window
shape, is dependent on the number of cells oretfagle. The fagade in the example
optimization presented in the paper is divided 0 cells, with each cell occupying
less than 1% of the facade area. It was concluusdhis should provide sufficient
clarity as to the optimized position, number, andpe of the windows, without the
search space being excessively large (the sizeeddarch space increases in the order
of 3", wheren is the number of cells).

The objective functions minimized by the optimipatin the paper are; the
energy use associated with heating, cooling arificat lighting; and the capital cost of
the facade construction. The paper also invessgae use of constraints to control the
aspect ratio of the windows (the use of this camstralso has an indirect impact on the
number of windows).The optimization algorithm usedolve the optimization problem
is an implementation of the non-dominated sortiegegic algorithm (NSGA-II). The
energy performance of a candidate design founahduhe optimization was evaluated
using the EnergyPlus performance simulation withékample building being located
in in Chicago USA.



The paper investigates the impact of two altereafivrns of variable encoding
(bit-string and integer) and the use of seedingrthial population of solutions. Given
the probabilistic behaviour of the genetic algarittihe impact of a particular variable
encoding and seeding configuration was evaluatedigih 32 repeat trial optimizations,
this enabling the results to be reported usingssizdl means and standard deviations
for hypervolume, solution spread, and the minimun@rgy use and capital cost.

Both the bit-string and integer encodings were &blénd solutions for the
unconstrained optimization problem, although ttslts for the integer encoding were
noticeably worse when the initial population cotesisentirely of randomly generated
solutions. Seeding of the initial population withasmge of possible solutions improved
the optimality of the unconstrained results obtdifae both the bit-string and integer
encodings, this improvement being most significarihe case of the integer encoding.
The use of constraints to control the aspect adtibe windows resulted in failure to
find any feasible solutions for the randomly idisad search and integer encoding.
However, 43% of the of the randomly initialisedioptation trials for the bit-string
encoding resulted in feasible solutions. Seediegrttial population with feasible
solutions resulted in all trail constrained optiatinns having feasible solutions for both
the bit-string and integer encodings. The extentticch the final solutions were
dominated by the seeds was also investigated.imhksblutions to the constrained
optimization contained a small number of seed gwist even fewer seeds being
present in the unconstrained solutions. It waeefoee inferred that the search was
inherently able to find alternatives to the seddtsins and that the seeding enabled the
search to spend more time in improving the optityalf the energy use and cost
objective functions, and less time on finding feéssolutions.

An analysis of solutions obtained from the beghefunconstrained
optimization confirmed that the search provide@taos alternative design solutions that
ranged from an almost unglazed facade to a 35%dgdltade. The median and higher
cost (most glazed), and lower energy use solutahwindows positioned towards the
top of the facade, and all had overhangs for slgadihe lower cost (least glazed),
solutions had no overhangs and were positionedalnon the fagcade.

The optimality of the unconstrained solutions westéd by comparing them to
the results from a binary traverse of the facadecal search and sensitivity analysis, a
global sensitivity analysis, and a subjective assest of the probable window
placement informed through building physics. Intisatar, through the local search and
sensitivity analysis, it was possible to confirmatth solution taken from the middle of
the trade-off curve dominated the solutions fromltital search (in terms of both
energy use and capital cost), but that the solstatreither extreme of the trade-off
where dominated by one or two solutions found ftbmlocal search. It was therefore
concluded that the optimization results were Igca#tar Pareto optimal.

The range of solutions found for the constrainetihoipation problem and the
general position of the windows and the use of sttaavere, in general, similar to the
solution characteristics of the unconstrained ogition problem. However, in
comparison to the unconstrained solutions, comsitrgithe aspect ratio resulted in an
increase energy use for the higher glazed solyttbedifference in both cost and
energy use diminishing for the lower glazed arédthough the extent to which the
solutions to the constrained optimization are llyoaptimal has not been explored
using a local search and sensitivity analysisytrg low standard deviations for all
quantitative metrics applied to the statisticalyngficant repeat optimization trails
suggests that the search consistently convergatli¢éast a local Pareto optimal front.



It can be concluded, that a cellular facade, withgtate of each cell (glazed or
solid) being optimized using NSGA-II, is not onlffextive in the minimization of
building energy use and capital cost, but thaait also result in design solutions that
are atypical to common design practice and as Bach innovative architectural
forms. Using an integer encoding of the variablewiged the best solutions, but only
when the initial population was seeded with feasgalutions. Although in comparison
to the solutions for the integer encoding the itsdiol the bit-string encoding were sub-
optimal, the bit-string encoding is robust in thavas able to find solutions to the
constrained problem without seeding.

The multi-objective approach resulted in at le&stBique solutions for both of
the unconstrained and constrained optimizationt &l solutions lying on the trade-
off between energy use and capital cost. Seledi@particular solution for
construction can be achieved through inspectidgh@tolutions and for example, the
manner in which the energy use changes with capistl Given that in this example,
each cell occupied less than 1% of the facadesehesitivities of the energy use and
capital cost to minor changes in the solutiond@se This allows the architect to
modify the optimized design without there beinggmiicant reduction in optimality of
the solutions. For instance, say by exaggeratiagebtangular form of the window or
alternatively by giving the window edges a cunalm rather than rectangular form.

Further research is required to investigate théiegion of the approach to
architectural design, particularly the use of déf@ constraints to control the window
position and geometry (previous work by Wright &madurshed (2009) described
window density and window count metrics that cdatdused to produce alternative
window forms). Given the success of the seedimyagrh demonstrated in this paper,
it is reasonable to suggest that it would be egaitcessful in solving others
constrained cellularwindow optimization problemarther work is also necessary to
extend the approach to integrated “whole-buildibgilding design in which other
elements of the building are optimized simultangowsth the fenestration.
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Appendix A: Feasible Seed Solutions
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Figure Al. Seed Solutions and the Frequency Digion of the Glazed Area
among the Seed Solutions



