
 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



 

 

 

 

 

ENHANCED GRADIENT CRYSTAL-

PLASTICITY STUDY OF SIZE EFFECTS IN 

B.C.C. METAL 

 

by 

Murat Demiral 

 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements for the award of 

Doctor of Philosophy of Loughborough University 

December 2012 

 

 2012 Murat Demiral 



 

 

II 

 

ABSTRACT 
Owing to continuous miniaturization, many modern high-technology applications 

such as medical and optical devices, thermal barrier coatings, electronics, micro- 

and nano-electro mechanical systems (MEMS and NEMS), gems industry and 

semiconductors increasingly use components with sizes down to a few micrometers 

and even smaller. Understanding their deformation mechanisms and assessing their 

mechanical performance help to achieve new insights or design new material 

systems with superior properties through controlled microstructure at the 

appropriate scales. However, a fundamental understanding of mechanical response 

in surface-dominated structures, different than their bulk behaviours, is still elusive. 

In this thesis, the size effect in a single-crystal Ti alloy (Ti15V3Cr3Al3Sn) is 

investigated. To achieve this, nanoindentation and micropillar (with a square cross-

section) compression tests were carried out in collaboration with Swiss Federal 

Laboratories for Materials Testing and Research (EMPA), Switzerland. Three-

dimensional finite element models of compression and indentation with an implicit 

time-integration scheme incorporating a strain-gradient crystal-plasticity (SGCP) 

theory were developed to accurately represent deformation of the studied body-

centered cubic metallic material. An appropriate hardening model was 

implemented to account for strain-hardening of the active slip systems, determined 

experimentally. The optimized set of parameters characterizing the deformation 

behaviour of Ti alloy was obtained based on a direct comparison of simulations and 

the experiments. 

An enhanced model based on the SGCP theory (EMSGCP), accounting for an 

initial microstructure of samples in terms of different types of dislocations 

(statistically stored and geometrically necessary dislocations), was suggested and 

used in the numerical analysis. This meso-scale continuum theory bridges the gap 

between the discrete-dislocation dynamics theory, where simulations are performed 

at strain rates several orders of magnitude higher than those in experiments, and the 
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classical continuum-plasticity theory, which cannot explain the dependence of 

mechanical response on a specimen‘s size since there is no length scale in its 

constitutive description.  

A case study was performed using a cylindrical pillar to examine, on the one hand, 

accuracy of the proposed EMSGCP theory and, on the other hand, its universality 

for different pillar geometries. An extensive numerical study of the size effect in 

micron-size pillars was also implemented. On the other hand, an anisotropic 

character of surface topographies around indents along different crystallographic 

orientations of single crystals obtained in numerical simulations was compared to 

experimental findings. The size effect in nano-indentation was studied numerically. 

The differences in the observed hardness values for various indenter types were 

investigated using the developed EMSGCP theory.    

Keywords: Size effect; Micro-pillar-compression experiments; Nano-indentation 

experiments; Enhanced model of strain gradient crystal-plasticity theory; Ti alloy 

(Ti15V3Cr3Al3Sn); Geometrically necessary dislocations; Statistically stored 

dislocations 
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NOMENCLATURE 
CHAPTER 2 

  Resulting imprint area 

      Projected area for a spherical indenter 

  Burgers vector 

  Curvature of the loading 

  Grain size 
  ,    Young`s modulus of the indenter and the specimen 

   Reduced modulus 

  The average contact pressure or hardness 

   Hardness in the limit of infinite depth 

   Characteristic length 

  Indentation depth 

   Contact depth 

   Residual depth after complete unloading 

         Displacement at the peak load 

  Hall-Petch slope 
   Source-hardening rate 
  Intrinsic material length-scale parameter  

  Load 

     Peak load 

 
  

  
   

 
Stiffness measured from the unloading indentation curve at    

R Radius of the spherical indenter 

  ,    Poisson`s ratios of the indenter and the specimen 

   Elastic work 

   Plastic work 

   Total work done by loading 

      Compressive stress of the material at a representative strain of 

approximately 8% 

     Yield strength 

   Friction stress 
   

  Deviatoric part of the Cauchy stress 

   Average source strength 
    
  Deviatoric part of Cauchy stress 

   Geometrical parameter 

  Shear modulus 

  Average source length 
  Angle of the indenter 

  Correction factor 

   Work increment per unit volume 
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     Variation of strain 

      Variation of strain gradient 

CHAPTER 3-7 

a, b, c Lattice axial length 

  Strain matrix 

  The magnitude of Burgers vector 

    Body and surface forces 

  Tensor of elastic moduli 

   Nodal displacement in the element e 

  Symmetric parts of the L 

    Magnitude of strength of a particular slip interaction 

  Deformation gradient 

   Deformation gradient for elastic stretching 

   Deformation gradient for plastic stretching 

   Deformation gradient for rigid body rotation of the lattice 

     External forces 

  Interactive (cross) hardening that occurs between slip systems during 

the second and third stage of hardening 

  
       Incipient strength of slip systems 

   is the strength of each slip system   

    Hardening modulus for the stage-I hardening 

    Slip hardening moduli 

    Initial hardening modulus 

  Second-order identical tensor 

   Jacobian, determinant of deformation gradient 

   Stiffness of the element e 

   Critical edge length of pillar 

L Spatial velocity gradient 

     Shape function 

  Slip-plane normal 

NSLPTL Total number of slip systems 

  
  Effective density of GNDs for slip system   

  Rate sensitivity of the crystal 

  First Piola-Kirchhoff (P-K) stress tensor 

  Latent to the self-hardening ratio 

R Orthogonal rotation tensor 

  Reference, material or Lagrangean configuration 

     Residual function 

  Current, spatial or Eulerian approach 

  Slip direction 

  Second P-K stress tensor 

S,  ̅ Surface and normalized surface of the pillar 

      Smallest period in the finite-element mesh, 

    Right and left stretch tensors 
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V,  ̅ Volume and normalized volume of the pillar 

  Skew-symmetric parts of the L 

      Highest natural frequency of the system 

α, β, γ Inter-axial angles 

   Taylor coefficient 

  Applied stress, Cauchy stress 

  Angle between tensile axis and slip plane  

  Angle between tensile axis and slip direction 

         Schmid factor 

   Frechet-derivative 

   ̇  Total plastic shear, plastic shear rate on slip system   

  Matrix product or the dyad of two vectors 

   Deformed volume 

  Kirchoff stress tensor 

 ̇ Time derivative of deformation gradient 

 ̇ Green-Lagrange strain tensor 

 ̇̂ Jaumann rate of the Cauchy stress 

            Increments of resolved shear stress and current strength in slip 

system   

   Initial value of current strength of the slip systems 

   Break-through stress 

  ,   Mass density in the reference and current states 

  
 ̇  Reference strain-rate on slip system   

   
   

 Schmid factor 

   Shear modulus 

  Coefficient of friction 

      Isoparametric coordinates 

   Nabla operator relative to the isoparametric coordinate system 

 ̃  Unit vectors of dislocations k 

 ̃  is the Mandel stress 

 ̃ Dislocation density tensor 

 ̃
 

 Projected density force  

  
  and 

  
  

Densities of screw and edge dislocations 

ξ1 Correction factor accounting for the misalignment 

   Density of statistically stored dislocations (SSDs)  

   Density of geometrically necessary dislocations (GNDs) 

       Incipient density of SSDs 

       Incipient density of GNDs 

    Shear strain gradient for slip system    

Ω Domain of continuum and represents the traction boundary 

conditions 

Ґ The traction boundary conditions 

     Critical time step 
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Chapter I 

1 Introduction 

1.1 Motivation 

Owing to continuous miniaturization, modern high-technology applications such as 

medical and optical devices, thermal barrier coatings, electronics, micro- and nano-

electro mechanical systems (MEMS, NEMS), gems industry and semiconductors 

increasingly use components with sizes down to a few micrometers and even 

smaller. Recent advances in experimental characterization methods such as high-

resolution load-displacement sensors and actuators, and micro-fabrication 

techniques as well as developments in computational capabilities assist exploration 

of material properties with decreasing sample dimensions, where (Stelmashenko et 

al., 1993; McElhaney et al., 1998; Greer and De Hosson, 2011). Understanding 

deformation mechanisms and assessing mechanical performance at micron and 

sub-micron scales provide insight helping to achieve or design new material 

systems with superior properties through controlled microstructure at the 

appropriate scales as an alternative to traditional strengthening techniques such as 

solution strengthening, cold working or alloying (Figure 1-1).  Furthermore, 
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understanding the interaction between the mentioned extrinsic size effect and 

intrinsic size effect, i.e. strengthening due to microstructural constraints such as 

grain-size and second-phase particles [Zhu et al., 2008], contributes to 

enhancement in materials performance and sheds light on their design constraints.    

 

Figure 1-1: Micro-truss structure depicted at different length scales 

demonstrating concept of “architected” material. Reprinted with permission 

from (Jacobsen et al., 2007) 

1.2 Goal and objectives 

The goal of this research is to further the understanding of size effect in single-

crystal base-centered-cubic (b.c.c.) Ti alloy, Ti15V3Cr3Al3Sn (Ti-15-3-3-3), 

experimentally and numerically, employing a non-local crystal-plasticity theory. 

To achieve the aim of the project, its major objectives are formulated in the 

following way: 

 To investigate the size effects due to dimensional constraints, i.e. extrinsic 

size effect, in Ti alloy using micro-pillar-compression and nano-

indentation experiments; 

 To develop multi-scale continuum numerical models incorporating strain-

gradient constitutive laws representing the mechanical performance of the 

Ti alloy in above mentioned tests. In connection with this to obtain an 

accurate description of local fields of strains and stresses inside the 

samples that is not possible to achieve in the experiments;  
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 To investigate the applicability of different continuum-plasticity theories 

such as classical plasticity, crystal-plasticity and strain gradient crystal-

plasticity, at different length scales. 

1.3 Methodology 

This research employs a combined experimental and numerical study to describe 

the size effect in the material under investigation, Ti-15-3-3-3. To achieve this, 

several experimental and computational procedures described below were followed. 

This methodology is also described in a block diagram in Figure 1-2. 

Initially, micro-pillars of Ti-15-3-3-3 with a square cross section of different 

dimensions were produced at EMPA, Switzerland using a focused-ion-beam (FIB) 

technique. To eliminate the influence of crystallographic orientation of the crystal, 

all pillars were produced from the same grain. In-parallel, nano-indentation tests 

for different crystal orientations were performed in the same alloy. Both 

experiments were implemented using quasi-static loading regimes.      

As the material under investigation had a crystalline structure, a crystal-plasticity 

(CP) theory was planned to be used in numerical analysis. However, the classical 

continuum-plasticity theory cannot explain the dependence of mechanical response 

on size as no length scale enters the constitutive description. Discrete-dislocation 

dynamics (DDD) models are capable of modelling the size effect. However, it is 

still not possible with the current computational resources to perform those 

simulations on a realistic time scale and real-life structures; hence, they are 

necessarily performed at strain-rates several orders of magnitude higher than those 

in experiments. A multi-scale continuum theory, therefore, is needed to bridge the 

gap described above. The plasticity theories with gradient approaches have been 

successful in addressing the size-effect problem due to incorporation of a 

microstructural length-scale parameter in the governing equations of the 

deformation description. The strain gradient crystal-plasticity (SGCP) theory as 

well as its enhanced model is therefore used in numerical analysis within the 

framework of finite-element method (FEM).  
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The methodology followed in this thesis (Figure 1-2) can be described briefly as 

follows. Through multiple trial runs, material parameters of the studied single-

crystal Ti alloy were determined by calibrating the developed FE models with the 

performed micro-pillar compression and nano-indentation experiments. Using the 

optimized set of material parameters, case studies were performed to verify the 

models. Ultimately, a thorough numerical investigation of size effects was 

implemented for each experiment separately. 

 

Figure 1-2: Research methodology used to describe size effects in micro-pillar-

compression and nano-indentation experiments 



 

 

 

Chapter II 

2 Size effect in micro-pillar-

compression and nano-indentation 

experiments 

This chapter review pillar-compression and indentation experiments with regard to 

a size effect. In the first part of this chapter introductory information about the 

main aspects of size effect and the fundamentals of the mentioned experimental 

setups are given. A critical review about the observed size effects in pillar-

compression and indentation experiments is given in the second and third parts of 

this chapter, respectively where the performed experiments and numerical analysis 

are documented extensively.  

2.1 Introduction 

Numerous experimental and numerical studies demonstrated that the strength of a 

material or plastic deformation at the micron or sub-micron scales is dramatically 
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different than that of macro-scale. This pronounced size effect have been observed 

in torsion (Fleck et al., 1994), bending (Stölken and Evans, 1998), indentation 

(Stelmashenko et al., 1993; McElhaney et al., 1998) and pillar-compression (Greer 

et al., 2005; Uchic et al., 2004) experiments. Size effects can be separated into two 

groups - ―intrinsic‖ and ―extrinsic‖. What is meant by intrinsic size effects is 

strengthening due to microstructural constraints such as grain size and second-

phase particles (Zhu et al., 2008). On the other hand, extrinsic size effects arise 

from dimensional constraints due to a sample size. Although the intrinsic size 

effect has been studied by materials science community for more than a century, 

the extrinsic size effect was discovered in the last two decades and there is no full 

agreement about it, hence it is currently a topic of rigorous investigations.  

Understanding of interaction between these two size effects is beyond the scientific 

curiosity as elucidating the interplay between the microstructural and geometrical 

constraints can contribute to enhancement of materials performance and shed light 

on their design constraints.    

The intrinsic size effects can be controlled by means of processing steps in 

material‘s production. Its quantification depends on the characteristic length scale 

of a particular microstructure, such as grain or precipitate size, twin-boundary 

spacing and dislocation density. This microstructural size governs mechanical 

properties and a plastic behaviour of the material at all dimensions; hence, its value 

does not depend on the size of the specimen (Greer and De Hosson, 2011). The 

grain size has long been known to have a significant effect on the mechanical 

behaviour of polycrystalline materials and metallic glasses. Hall (1951) and Petch 

(1953) experimentally justified that yield strength of iron changes inversely with 

the square root of grain size   and expressed this relation with the following 

universal equation:  

        √ , 2-1 

where    is termed the friction stress and   is the Hall-Petch slope as a material 

constant. In polycrystalline materials, the interaction between defects and grain 
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boundaries is significant as a consequence of misorientation between grains. Grain 

boundaries act as pinning points impeding further dislocation propagation, i.e. 

resist to plastic deformation. This explains the physical mechanism of equation 2-1. 

The smaller the grains in polycrystalline sample, the larger the density of grain 

boundaries; hence, more energy is needed to move the dislocations. However, the 

Hall-Petch relation is valid for polycrystals down to the grain size of around 40 nm. 

When the grains are reduced to 40 nm, alternative plastic deformation mechanisms 

like grain-boundary sliding, partial dislocation emission and absorption at grain 

boundaries become important (Ke et al., 1995; Van Swygenhoven and Derlet, 

2001). At grain sizes below 20 nm, the inverse Hall-Petch relation manifested and 

attributed to diffusional creep in nano-crystalline samples (Chokshi et al., 1989). 

Other researchers related this behaviour to grain-boundary sliding (Schiøtz et al., 

1999), individual dislocation motion (Louchet et al., 2006) and atomic structure 

differences between grain boundary and inside the grain (Takeuchi, 2001). Figure 2 

summarizes the yield stress-grain size relation for copper polycrystals from 

different studies. The general tendency of the curves indicates that an inverse Hall-

Petch relation is valid in the region where the grain size is smaller than 25 nm 

(
 

√ 
         ), while beyond this size there exists a Hall-Petch relation.   

 

Figure 2-1: Yield stress versus grain size plot for Cu polycrystals from 

different studies. Reprinted with permission from (Meyers et al., 2006) 
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In addition to grain-size-dependent plasticity, an extrinsic size effect has been 

reported in the last two decades. According to it, material strength scales inversely 

with sample dimensions such as diameter of micro- or nano-pillar or thin film 

thickness due to defect interaction with a free surface (Greer and De Hosson, 2011). 

Similarly, various indentation experiments performed by different research  groups 

revealed that there exists a very strong relationship between material properties, 

such as hardness and indentation depth, i.e. a size of indentation (Stelmashenko et 

al., 1993; McElhaney et al., 1998; Ma and Clarke, 1995; Nix and Gao, 1998).       

A single-crystal or monocrystalline solid is a material where the crystal lattice of 

the entire sample is continuous, without grain boundaries. The absence of defects 

associated with grain boundaries can give monocrystals unique mechanical, optical 

and electrical properties. On the other hand, in a polycrystalline material owing to 

misorientation of its grains, a collective behaviour of constitutive grains defines its 

performance, i.e. the macroscopic polygrain structure possesses almost isotropic 

properties. Figure 2-2 demonstrates the electron-back-scatter diffraction (EBSD) 

map of the polycrystalline surface of a Ti-alloy (Ti15V3Cr3Al3Sn) with an 

inserted inverse pole figure. In this figure two grains with different orientation and 

grain boundary are shown. Different colours for various grains represent the 

orientations shown in the inverse pole figure.  

 

Figure 2-2: EBSD scan of the surface of the Ti 15-3-3-3 sample with the 

corresponding pole figure. 

http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Crystal_lattice
http://en.wikipedia.org/wiki/Grain_boundaries
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Single-crystal materials with their unique anisotropic properties have many 

different application areas. They are particularly used in optics, electronics, micro- 

and nano-electro mechanical systems, gems industry and semiconductors. The 

precise fabrication and reliable operation of single-crystal components at micron- 

or nano scale entails the exploration of their mechanical properties with a 

decreasing sample size as material behaviour diverge from that of the bulk material. 

Indentation and pillar-compression experiments are two experiments commonly 

used to assess the mechanical performance of materials at small scales. In 

indentation experiments plastic deformation induced by small loads and a nano-

indenter tips is confined within a very small volume, which, in turn, leads to 

formation of non-uniform stresses and strains within the sample tested resulting in 

strong strain gradients (Figure 2-3). The observed size effect in indentation is 

ascribed to inherent gross gradients in strains (Abu Al-Rub, 2007). On the other 

hand, pillar-compression experiment can be considered as an extension of 

indentation, in which the indenter tip compresses the whole pillar in axial direction 

(Figure 2-3). In contrast to indentation experiment, deformation is applied 

homogeneously in this technique. However, deformation develops in an 

inhomogeneous manner from the onset of deformation and is confined to discrete 

slip bands (Maass et al., 2008; Zhang and Aifantis, 2011; Maass et al., 2007; 

Horstemeyer et al., 2001; Maass et al., 2007). This experiment therefore can be 

considered as macroscopically homogenous, but microscopically heterogeneous. 

Different explanation of size effects in pillar-compression experiment exist. 

Indentation experiments are extensively used to characterize local deformations at 

various length scales and to identify material properties such as Young‘s modulus 

and hardness, based on the experimentally determined loading - unloading curves. 

However, interpretation of material properties such as yield stress or work-

hardening rate (WHR) remains difficult owing to imposed gross strain gradients. 

On the other hand, relative experimental simplicity and minimal requirements for 

sample preparation assists ubiquitous use of indentation. Indentation can be 

performed several times on a single specimen and can be used to probe different 

volumes of materials (Gouldstone et al., 2007). Pillar-compression experiments are 
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performed without strain gradients at the macroscopic scale qualifying this method 

to attain critical parameters of pillars studied. The intrinsic complexity of the 

experiment such as precise fabrication of pillars without significant damage and 

performing the experiment with a perfect alignment of pillar and indenter tip 

entails a qualified person to carry out it. 

 

Figure 2-3: The schematic of pillar-compression (a) and nano-indentation (b) 

experiments 

In this thesis the size effects in a single-crystal Ti alloy is explained with the 

aforementioned material characterization techniques, viz. pillar-compression and 

indentation. It is worth to mentioning that as the size of pillars considered in this 

study ranges from 1 μm to 32 μm, pillar-compression technique henceforth is 

referred as micro-pillar-compression experiment. On the other hand, indentation 

experiments are referred as nano-indentation since they are performed with 

indentation depths of up to 400 nm. In the next section, a detailed overview for 

both techniques in the context of size effects is given.     

2.2 Micro-pillar-compression experiment 

Investigations into the size-dependence of single-crystals can be traced back to 

mid- 20
th

 century. However, these first experiments were performed partially for 

metal whiskers without any dislocations. In 1952, the study of Herring and Galt 

revealed that measured tensile strength of tin (Sn) whiskers (filamentary crystals 
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with diameter of a few micrometers) are likely to approach theoretical values for a 

perfect Sn lattice (Herring and Galt, 1952; Shan et al., 2008). Later Brenner 

reported that dislocation-free metal whiskers yielded at higher stress with smaller 

diameters (1956). Since then, the change in mechanical properties of crystalline 

materials with a size became the subject of numerous experimental studies 

(Brenner, 1958) and scientific discussions (Nix, 1989; Nix, 1998). Among the 

earliest works to explore the effect of dimensional constraint on mechanical 

behaviour, Suzuki et al. (1956) and Fourie (1967) studied a size effect in single-

crystals of Cu. In the first study the extension of stage-I glide to higher strains with 

a decrease in the size of Cu single-crystals was reported, whereas critical resolved 

shear stress and work-hardening rate remained constant. In the second study it was 

observed that a stage-2 work-hardening rate dropped sharply when the size of Cu 

single-crystals decreased from 270 μm to 50 μm. 

Several years ago, Uchic and co-workers (Uchic et al., 2004) developed a testing 

methodology to measure the flow behaviour of miniature samples in compression. 

In this technique micro-scale cylindrical samples fabricated using a focused-ion-

beam (FIB) milling technique (Figure 2-4 (a)) were uniaxially compressed by 

nanoindentation system equipped with a flat punch (Uchic and Dimiduk, 2005; 

Uchic et al., 2009). This method was specifically designed to probe mechanical 

properties intrinsic to the material as a function of the decreasing sample size. Later 

this technique was extended by Greer et al. (2005) to perform uniaxial compression 

tests on Au nano-pillars with diameters less than those of studied in Uchic et al 

(2004). 

The recent advances in the compression experimental setup enable to probe the 

size-dependent mechanical performance of materials in smaller dimensions. For 

instance Uchic et al. (2004) tested three different materials with a size from 1 to 40 

μm: Ni, Ni3Al-1%Ta and a Ni-based super alloy with an (269) orientation. These 

experiments showed an increase in the strength of crystals up to 15 times compared 

to bulk Ni with a decrease in the sample size. However, no significant increase in 

the work-hardening rate of the crystals was observed. It was also reported that 



Chapter 2. Size effects in micro-pillar-compression and nano-indentation experiments 

 

12 

 

frequent strain bursts, avalanches of dislocations, and increased finite discrete slip 

bands along the gauge length of the crystal were observed when the crystal size 

became smaller. In contrast to the smooth stress-strain curve obtained during 

compression of a bulk material, the stress-strain curves of small-sized pillars 

contain several discrete strain bursts, where strain jumps discontinuously to an 

increased value while the stress value remains constant or decreases. Figure 2-5 

demonstrates typical strain bursts, more frequent in small-size pillars, observed in 

stress-strain curve of f.c.c. nano pillars. The group of Nix and Greer (2006) 

performed similar tests on (001) oriented Au crystals with dimensions of less than 

1 μm. This study showed a trend of an increase in the strength of the pillar with a 

decrease in its size. It was also revealed that the flow-stress value of as high as 800 

MPa was observed in the compression of 200 nm Au specimens, which is 

extraordinarily high compared to its bulk counterpart with corresponding value 

around 25 MPa at 10% strain.  

  

Figure 2-4: SEM images showing Ti-15-333 single-crystal micro-pillars with 

circular (a) and square (b) cross sections after compression 

Due to the absence of commercial in-situ mechanical testing equipment and the 

challenge associated with sample preparation (dog-bone shape) in tensile test, 

mostly a compressive behaviour of materials at the micron and sub-micron scales 

have been reported. Recently, Kiener et al. (2009) reported a new method to 

measure tensile behaviour of single-crystals at the micro- and nano scales using the 

samples fabricated with FIB. The mechanical test was performed inside a scanning 
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electron microscope (SEM) and a transmission electron microscope (TEM). In this 

experiment, f.c.c. single-crystal Cu samples with diameters ranging from 500 nm to 

8 μm and an aspect ratio from 1 to 13.5 were tested. This study revealed the 

presence of a size effect, which strongly depended on the sample‘s aspect ratio; 

however, the reported size effect was less pronounced than its compression 

counterpart. It was reported that size-dependent hardening was linked to dislocation 

pile-ups due to their constrained glide in the sample. Jennings and Greer (2010) 

performed in-situ tensile-deformation test with [111] oriented single-crystal Cu 

nano-pillars with diameters ranging from 75 nm to 165 nm fabricated by e-beam 

lithography and electroplating. A power-law relationship between strength and 

diameter of nano-pillar was reported similar to that for fabricated by FIB 

machining. In this study the inhomogeneous deformation is explained by 

annihilation of dislocations at free surfaces of the pillar.   

 

Figure 2-5: Typical stress-strain curves in compression of Au pillars with 

various diameters. Reprinted with permission from (Kim and Greer, 2009) 

Brinckmann et al. (2008) did a comparative experimental study of face-centered 

cubic (f.c.c.) Au crystals and body-centered cubic (b.c.c.) Mo crystals at nanoscale. 

This study showed that Au specimens reached 44% of its theoretical strength but 

no strain-hardening was observed, whereas Mo specimens reached only 7% of its 

ideal strength but showed strain-hardening. The difference is ascribed to 

differences in dislocation behaviour during deformation: Dislocation starvation is 
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the predominant mechanism in nano scale f.c.c. crystals while junction formation 

and hardening characterize the plasticity in b.c.c. crystals. 

Most of the reports explaining the size effects are focused on f.c.c. structures, with 

only several recent studies on b.c.c. crystalline pillars, due to lower complexity of 

internal microstructures of f.c.c. In the next part deformation mechanisms and 

detailed studies for these two crystal structures are explained. The relevant reviews 

for more complex microstructures such as non-cubic single-crystals hexagonal 

close-packed (Lilleodden, 2010; Sun et al., 2011) and tetragonal (Lee et al., 2010; 

Lee et al., 2011), shape memory alloys (Clark et al., 2010; Frick et al., 2007; Frick 

et al., 2008), nano-crystalline metals (Yamakov et al., 2002; Van Swygenhoven et 

al., 2002), nano-laminate composites (Mara et al., 2008) and metallic glasses 

(Telford, 2004) are not discussed in this thesis due to space limitations. The reader 

is referred to respective references and the references therein. 

2.2.1 Face-centered cubic metals 

Different deformation mechanisms have been interpreted for the nano- and micron-

size f.c.c. pillars. Among the proposed theories ―hardening by dislocation 

starvation‖ is the mostly accepted one to explain the size effects in f.c.c. nano-

pillars (Frick et al., 2008) . The basic premise of the theory is as follows: Owing to 

smaller dimensions of the nano-size pillars the dislocations present at the onset of 

plastic deformation leave the specimen before they multiply. Having reached this 

―dislocation starvation‖ state, new dislocations are necessarily nucleated both at the 

sample surface and in the bulk of the crystal in the course of deformation since the 

movement of dislocations is required for a compatible plastic deformation. As the 

nucleation of these new dislocations requires high stresses approaching near-

theoretical strength, the strength of nano-size pillars is observed to increase with 

decreasing sample size. This theory appears to be in good agreement with in-situ 

TEM performed by Shan et al. (2008). Figure 2-6 (a) demonstrates the FIB micro-

fabricated (111) Ni pillar with 160 nm of diameter in this study. It is apparent that 

there is a high initial dislocation density in the pillar. However, the pre-existing 

dislocations progressively left the pillar during the initial compression stage, and a 
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completely dislocation-free pillar was ultimately obtained (Figure 2-6 (b)). 

Computational atomistic simulations performed by different research groups also 

justify this theory (Rabkin et al., 2007; Tang et al., 2007; Deshpande et al., 2005).  

 

Figure 2-6: Dark-field TEM image of Ni pillar before tests (a) and after first 

compression (b). Reprinted with permission from (Shan et al., 2008)  

The prominent deformation mechanism for the micron-sized pillars (larger than 

500 nm-1000 nm) is the single-arm source theory proposed and developed by 

Parthasarathy et al. (2007) and Rao et al. (2008). In this theory, creation of 

dislocations occurs as a result of operation of partial Frank-Read sources or 

truncated sources also known as single-arm sources. This theory suggests that a 

random distribution of dislocation sources either exists initially in pillars or 

generated by interaction of initially present dislocations and the average source 

strength (  ) is related with the average source length ( ) by the following equation: 

      
       

     
  2-2 

where    is a source-hardening rate,   is the shear modulus and   is the Burgers 

vector. According to this equation, with a decrease in the diameter of pillar, the 

source length becomes smaller, hence overall strength increases. Ng and Nyan 

(2009) studied a size effect of Al micro-pillars with diameters changing from 1.2 

micron to 6 micron either coated or center-filled with a tungsten-based compound. 
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A higher strain-hardening rate and a much smoother stress-strain curve suggest 

suppression of dislocation avalanches and a lack of nucleation-controlled plasticity. 

The TEM analysis reveals higher dislocation densities in the post-deformed 

specimens confirming the trapping of the dislocations inside the micro-pillars 

rather than annihilating at the free surface in contrast to nano-sized pillars (Greer 

and De Hosson, 2011).  

Maass and co-workers studied the role of strain gradients on the plastic 

deformation of micron-size f.c.c. pillars using a synchrotron micro-diffraction 

technique (Maass et al., 2007; 2008; 2009). These studies demonstrate that 

geometrically necessary dislocations (GNDs) are generated during the deformation 

process leading to strain gradients. GNDs are the extra storage of dislocations 

required to accommodate the lattice curvature that arises in the presence of non-

uniform plastic deformation (Gao and Huang, 2003). Section 2.3.2 provides further 

discussion of GNDs. The assumed dislocation starvation theory, therefore, is not 

applicable to micron-size pillars since it is impossible to squeeze all dislocations to 

the surface of the pillar. Likewise, Guruprasad and Benzerga (2008) argued that 

although the deformation in a pillar-compression test is macroscopically 

homogenous, it is heterogeneous microscopically, i.e. GNDs vanish 

macroscopically but present locally. Akarapu et al. (2010) numerically 

demonstrated that the deformation is heterogeneous from the onset of deformation 

and is confined to the discrete slip bands.  On the other hand, SEM images of 

micron-sized pillars taken after the compression in (Dimiduk et al., 2005; Ng and 

Ngan, 2008) suggest that deformation evolves in an in-homogenous manner, 

though it is applied homogeneously as the end regions of the pillars appear non-

deformed while the sample center is sheared by multiple slip zones (Zhang and 

Aifantis, 2011). 

The FIB technique is the most prevalent method for producing small-size pillars to 

investigate the influence of sample‘s dimensions on mechanical properties. In this  

method Ga
+
 ions are bombarded and implanted to fabricate the pillars (Bei et al., 

2007; Zhang and Aifantis, 2011; Hurtado and Ortiz, 2012). This process inevitably 
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introduces surface dislocation loops, and precipitates also instigate surface 

amorphization. The presence of FIB-induced defects led several researchers to infer 

that the fabrication process may play a significant role in the observed size effects. 

On the one hand, Bei et al. (2007) proposed that increasing strength of pillars with 

a decrease in the pillar size would be a consequence of the increased volume 

fraction of a FIB-damaged layer with a decreasing pillar diameter. But Kiener et al. 

(2007) investigated the Ga
+
 ion-induced damage with TEM and Monte Carlo 

simulations, where a non-negligible influence of the ion damage in the order of 100 

MPa (assuming Taylor hardening) was reported for submicron-sized samples. In 

order to understand the importance of fabrication technique on the size effects, 

Jennings et al. (2010) developed a FIB-less method to produce nanopillars. In this 

method arrays of vertically oriented gold and copper nanopillars are created based 

on patterning polymethylmethacrylate by electron beam lithography and 

subsequent electroplating into the prescribed template. In this technique the pillars 

are produced intentionally with non-zero dislocation densities to compare and 

contrast them with the pillars produced with the FIB method; otherwise the pillars 

without dislocations would render theoretical strengths regardless of size. This 

study demonstrated that nano-size pillars created without any Ga
+
 bombardment 

and containing initial dislocations with density comparable with that for pillars 

created with Ga
+
 bombardment exhibit an identical size effect with the pillars 

produced with the FIB method. This study evidently suggests that the observed size 

effect in small-size pillars is a function of microstructure rather than the fabrication 

technique. 

2.2.2 Body-centered cubic structures 

Experimental and computational studies of compression of single-crystal Mo nano-

pillars showed that the deformation mechanism in b.c.c. nano-pillars is 

fundamentally different from that of f.c.c. nano-pillars (Kim et al., 2010). 

Brinckmann et al. (2008) reported a comparison of uniaxial compression results for 

Mo and Au nano-pillars. This study revealed that both methods provided different 

deformation mechanism. Especially, size-dependent strengths, stochastic discrete 



Chapter 2. Size effects in micro-pillar-compression and nano-indentation experiments 

 

18 

 

bursts in their stress-strain curves, fractions of attained theoretical strength as well 

as extents of strengthening were different. These discrepancies were attributed to 

profound differences in the plasticity mechanisms of f.c.c. and b.c.c. metals as also 

confirmed by atomistic simulations (Greer et al., 2008). In b.c.c. metals, the screw 

components of a dislocation loop are not restricted to glide any particular single 

plane and can also cross-slip on any other favourable crystallographic plane during 

shearing of the crystal, whereas the edge components glide on a specific plane. The 

reason for the differences is attributed to dissimilar mobilities of dislocation 

components: In b.c.c. metals mobility of screw dislocations is estimated at around 

one fortieth of the motion of edge dislocations. The dislocations in b.c.c. nano-

pillars, therefore, are likely to have a higher residence time inside a pillar rather 

than leaving it, significantly increasing the probability of individual dislocation 

interaction, multiplication of dislocations and formation of junctions, which, in turn 

lead to new dislocation sources (Kim et al., 2010). As the junction size is 

proportional to size of the pillars, the junctions are shorter for small-size b.c.c. 

pillars. It is therefore harder to break through the gliding mobile dislocations 

leading to an increase in strength of the pillar. On the other hand, as the increase in 

temperature greatly increases mobility of screw dislocations, the number of formed 

junctions is reduced requiring nucleation of new dislocations. The size effect, 

therefore, in b.c.c. metals would be expected to become closer to f.c.c. metals at 

higher temperatures. However, the b.c.c. pillars never become dislocation starved 

as in the f.c.c. nano-pillars, instead complex networks of short dislocation segments 

are formed (Greer et al., 2008). This is also consistent with molecular-dynamics 

(MD) and dislocations-dynamics (DD) simulation of Weinberger and Cai (2008).  

Kim and Greer (2009) reported size-dependent strengths of (001) oriented Mo 

nano-pillars in compression and tension. The observed higher flow-stresses are 

explained by an increase in yield strength rather than strain-hardening. It was also 

reported that the amount of strain-hardening under tension is much lower compared 

to that under compression demonstrating a tension-compression asymmetry. This 

observed asymmetry is attributed to the differences in the Peierls stress, i.e. lattice 

resistance to dislocation motion, in twinning and anti-twinning direction (Gröger et 
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al., 2008). It is worth mentioning that friction stress or intrinsic lattice resistance, 

accounting for the flow-stress indirectly related to dislocation activities, is 

negligibly small in f.c.c. metals but it is significant in b.c.c. metals (Nix, 1989; 

Narutani and Takamura, 1991; Beltz et al., 1996). In (Kim and Greer, 2009; 2010) 

TEM images of Mo nano-pillars with diameter of 100 nm before and after the 

deformation were analyzed. The results indicate formation of an entangled 

dislocation substructure and justify differences in the deformation behaviour of 

f.c.c. and b.c.c. metals. The effect of crystal orientation on the tension-compression 

asymmetry of Mo nano-pillars was studied by Kim et al. (2009). It was shown that 

compressive flow-stresses are higher in (001) orientation and smaller in (011) 

orientation compared to tensile flow-stresses. This study revealed that tension-

compression asymmetry was a function of size of the pillar for sizes less than 800 

nm, whereas strength differential for larger pillars approaches size-independent 

bulk values (Greer and De Hosson, 2011).  

The influence of applied strain-rate on the size effect in b.c.c. single-crystals was 

investigated by Kim and Greer (2010). Under a constant displacement rate the 

imposed strain-rate varied by around one order of magnitude between the largest 

and smallest Mo pillar that ranged from 200 nm to 800 nm. In this study, around 50% 

differential in the yield stress for the smallest and around 20% differential in the 

yield stress for the largest pillar were reported. This study revealed that the strain-

rate had an influence on the observed size effects in nano-size pillars.   

Kim and Greer (2010) also studied different b.c.c. metals in addition to Mo. The 

(011)-oriented single-crystal nano-size pillars of Ta, W, Nb and Mo were subjected 

to uniaxial compression and tension. This study demonstrated a power-law slope 

for size-dependent flow-stress of pillars. The corresponding slopes are -0.93 for Nb, 

-0.44 for W, Mo and Ta in compression and -0.80, -0.77, -0.58 and -0.43 for Ta, 

Nb, W and Mo in tension, respectively. The size-dependency of observed tension-

compression asymmetry was also reported in this study. However, the authors did 

not observe any consistent correlation between the strain-hardening exponent and 

material type or size. That implies that strain-hardening is more likely to be a 
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function of the initial microstructure rather than the pillar size, whereas the yield 

and flow-stress fundamentally depends on the size of nano-pillar (Greer and De 

Hosson, 2011). On the other hand, the findings of Han et al. (2010) for b.c.c. V 

nano-pillars comply with the studies reported above.  

The deformation mechanism in b.c.c. micron-sized pillars is similar to that in nano-

sized pillars, unlike the different mechanism in f.c.c. nano- and micro-pillars. 

Therefore the mechanisms explained above for b.c.c. single-crystal nano-pillars can 

be generalized to micron-size pillars. The interpretation of deformation in micron-

size pillars using a microscopic strain gradient concept owing to heterogeneous 

deformation occurring on discrete slip layers, as explained for f.c.c. metals in 

Section 2.2.1, can be extended for b.c.c. micron-scale single-crystals since the 

fundamental aspects of strain gradient theory is irrelevant of the crystal structure.   

In summary, it is justified that in b.c.c. single-crystals a single dislocation can 

generate multiple new dislocations (Greer et al., 2008). Dislocation segments will 

further interact and form Frank-Read sources leading to an increase in dislocation 

density and requiring flow-stress due to inherent characteristic of screw dislocation 

gliding at different slip planes. It is worth mentioning that the hardening 

mechanism of b.c.c. single-crystals via entanglement of dislocation segments is 

similar to the forest-hardening model in bulk crystal-plasticity (Brinckmann et al., 

2008).  

Numerical modelling and simulations of pillar-compression experiment was 

performed by several teams. Among these works, Zhang et al. (2006) presented a 

parametric study of design of accurate pillar-compression experiments using 2D 

and 3D isotropic plasticity finite-element modeling. In these study geometric 

factors such as curvature at the bottom of the pillar connecting to the substrate, the 

aspect ratio and taper of the pillar, misalignment between indenter tip and pillar, 

material properties such as strain-hardening and strain-rate-sensitivity and plastic 

bucking phenomena were studied extensively. Schuster et al. (2008) followed this 

work and studied the effect of specimen taper on the compressive strength of 

metallic glass. On the other hand Chen et al. (2010) focused on local stress 
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concentration in metallic glass pillars using an isotropic plasticity model. 

Horstemeyer et al. (2001) performed atomistic simulations of plasticity via the 

embedded atom method (EAM) for single-crystal f.c.c. metals. The results of 

molecular-dynamics simulations indicated that plastic deformation was intrinsically 

inhomogeneous and the yield strength depended on the sample size, i.e. scaled 

inversely with the volume-to-surface area ratio, even in the absence of strain 

gradients. Raabe et al. (2007) used a crystal-plasticity FE model to investigate the 

influence of stability of the initial crystal orientation, aspect ratio and contact 

conditions between the indenter tip and pillar on anisotropy and changes in 

crystallographic orientation during the deformation. This study revealed that the 

evolution of orientation changes was in part due to shape inclination owing to 

buckling rather than crystallographic orientation solely. Shade et al. (2009) did a 

combined experimental and crystal-plasticity finite-element study to examine 

lateral constraint effects on compression of single-crystals. It was reported in this 

study that the degree of lateral constraint in a compression test system could 

influence the behaviour of the material tested. Finally, Zhang and Aifantis (2011) 

developed a strain gradient model for single-crystal Ni micro-pillars. In this study a 

higher-order strain gradient theory was used to capture the size effects and strain 

bursts that were experimentally observed in compression.  

2.3 Indentation 

An indentation test is one of the most commonly used experimental techniques to 

measure mechanical properties of small-size components as the conventional 

tensile tests are difficult to conduct at nano- or micro-scales. Another underlying 

reason for its ubiquitous use is its relative experimental simplicity and minimal 

requirements for sample preparation. Indentation can be performed several times 

on a single specimen and can be used to probe different volumes of materials 

(Gouldstone et al., 2007). Size effects in indentation have been reported by many 

authors (Stelmashenko et al., 1993; McElhaney et al., 1998; Ma and Clarke, 1995). 

It is interpreted as the increase in the hardness values of material with a decrease in 

the depth of indentation or a radius of the spherical indenter. A close relationship 
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exists between the observed size effect in indentation and the main features of the 

experiment. For instance, hardness of the indented specimen varies with respect to 

different types of indenter, contact conditions and surface profile of the indented 

surface besides the pronounced size effect. The main aspects of indentation 

therefore are described in the next section before starting to explain or interpret the 

size effects in micro- or nano-indentation.  

2.3.1 Main aspects of indentation 

In indentation a hard indenter with known mechanical properties is pushed into a 

test material and then withdrawn (Figure 2-7). The indentation load and the 

penetration depth into the material are simultaneously recorded, and a load-

penetration depth curve is obtained (Figure 2-7). This curve contains a wealth of 

information relating to the deformation behaviour of materials and can be used to 

determine many mechanical properties such as hardness and an elastic modulus 

(Cheng and Cheng, 2004). 

 

Figure 2-7: Schematic illustration of identification of bulk material (Guo, 2010) 

Indentation testing has its origins from 1822 where German scientist Friedrich 

Mohs characterized scratch resistance of various minerals through the ability of a 

harder material to scratch a softer material (Fischer-Cripps, 2002). The indexing 

scheme, called as Mohs scale, ranges from 1 on the soft end for talc to 10 for 

diamond. The analytical approach to the contact problem in indentation testing 

traces back to the Hertz contact theory of 1881. Since that time, many methods 

were developed for hardness measurements, and various definitions for hardness 

http://en.wikipedia.org/wiki/Mineral
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were proposed. The most-known of them, originated at the beginning of the 20th 

century, are Brinell, Vickers and Rockwell hardness tests.  

The Brinell hardness test method was proposed at the very beginning of the 

twentieth century (Hutchungs, 2009). In this first widely used and standardised 

hardness test a 5 or 10 mm steel ball indenter with a load ranging from 5000 N to 

30000 N is applied on a metal sample with a flat surface. The Brinell hardness 

value is calculated by dividing the maximum applied load to the imprint area after 

unloading. The Vickers hardness test was developed in 1922 (Hutchungs, 2009). 

Compared to the Brinell test, here a pyramidal diamond indenter with a square base 

is used and magnitude of the applied force is of the order of newtons. In this test, 

first of all, two diagonals of the imprint after unloading are measured using a 

microscope and then the average length is calculated to evaluate the square area of 

the imprint. The ratio of the maximum applied load to the imprint area gives us the 

Vickers hardness value. In the Rockwell hardness test method, developed in the 

early twentieth century (Hutchungs, 2009), the procedure is different.  First, a 

diamond-cone (or hardened steel-ball) indenter is forced into a sample at a 

prescribed minor load, then a major load is applied and held for a set period of time 

and, finally, the force on the indenter is decreased back to the minor load. The 

Rockwell hardness is calculated from the difference in indenter positions before 

and after the application of the major load. The summary of those methods is 

presented in Table 2-1. 

Table 2-1: Hardness-testing techniques (Callister, 1997) 

Name of 

hardness test 
Indenter Applied load 

Brinell 5 or 10 mm diameter steel ball 

5000-15000 N 

(softer material) 

30000 N 

(metal sample) 

Vickers Diamond pyramid 0.01-10 N 
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Rockwell 

Diamond cone or spherical 

hardened balls with 1.588-

12.70 mm diameters 

100-1500 N 

In general, the above-mentioned traditional hardness tests employ application of a 

single static force with a specified tip shape and tip material. The output of these 

hardness tests is typically a single indentation hardness value as a measure of the 

relative penetration depth of the indentation tip into the sample. On the other hand, 

in traditional indentation experiments optical imaging of the indented surface 

imposes a lower limit on the length scale of indentation. Since the early 1970s, 

instrumented micro- and nano-indentation techniques have been developed and are 

now widely available (Cheng and Cheng, 2004).  Compared to traditional hardness 

tests, the load and the indenter displacement are recorded simultaneously during 

the entire loading and unloading processes in instrumented indentation. 

Instrumented indentation can be accurately conducted using force levels from 

hundreds mN to as small as a few micro-Newtons over depths from tens microns 

down to a nano-meter range. This technique, therefore, allows a single instrument 

to be used to characterize nearly all types of material systems. Instrumented 

indentation, also known as depth-sensing indentation, is being increasingly used to 

probe a mechanical response of wide range of materials, such as metals, polymers, 

ceramics, composites, biological materials (Hengsberger et al., 2003), rocks 

(Yoshioka and Yoshioka, 1995) and even food products (Liu and Scanlon, 2003). 

More specifically, the application area of instrumented indentation covers 

dislocation behaviour in metals (Nix and Gao, 1998); mechanical behaviour of thin 

films (Lilleodden, 2002; Huber et al., 2002; Saha and Nix, 2002)and bones (Fan et 

al., 2002); time dependent behaviour of polymers (VanLandingham et al., 2001; 

Oyen and Cook, 2003)and metals (Asif and Pethica, 1997; 1998); scratch resistance 

of coatings (Randall and Consiglio, 2000; Jardret et al., 2000) and wear resistance 

of metals (Li and Bhushan, 2001). Figure 2-8 provides a schematic illustration of 

an instrumented indentation system (IIS). In the IIS a force is applied using either 

electromagnetic or electrostatic actuator connected to the indenter shaft by a series 

of leaf springs where a capacitive sensor is typically used to measure displacement. 
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The coupled force and displacement data are measured at leaf springs. The 

deflection of the leaf springs is a measure of the load applied to the indenter. 

 

Figure 2-8: Schematic illustration of instrumented indentation system. 

Reprinted with permission from (VanLandingham, 2003) 

Indenter types 

In indentation experiments the most frequently used indenters are divided into two 

subgroups: The indenters with a revolutionary surface and pyramid indenters. 

Conical and spherical indenters constitute the first group, while three-sided 

Berkovich and four-sided Vickers indenters constitute the second group (Figure 

2-9).  

When a spherical indenter, i.e. spherical indenter tip, is used in an indentation 

experiment, contact stresses are initially small and produce only elastic 

deformation, later followed by a transition from elastic to plastic deformation. The 

spherical indenter (Figure 2-9(a)), therefore, has been widely used for brittle 

materials where a small-strain elastic deformation is required to avoid failure of the 

material. On the other hand for analysis of ductile materials sharp conical indenter 

(Figure 2-9(b)) is used, simplifying extraction of elastic-plastic properties. Self-

similarity of indenters with a revolutionary surface makes them unique in the 

indentation of anisotropic crystalline materials as they do not introduce any kind of 
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anisotropy  other than that of the tested specimen. Pyramid indenters are widely 

used when the desired level of strain is greater such as thin film coatings (Fischer-

Cripps, 2003) or for analysis of ductile materials beside the application of a sharp 

conical indenter tip. 

Extended information on how mechanical properties of materials are extracted with 

different indenter types can be found in the following works: For spherical 

indentation see (Taljat and Pharr, 2004; Harsono et al., 2009); for conical 

indentation see (Abu Al-Rub, 2007; Fischer-Cripps, 2003; Cheng, 1999; Durban 

and Masri, 2008; Berke et al., 2009); for Vickers indentation see (Antunes et al., 

2006; 2007; Yin et al., 2007) and, finally, for Berkovich indentation see (Fischer-

Cripps, 2001; Kese et al., 2005; Foerster et al., 2007; Sakharova et al., 2009).  

 

Figure 2-9: Geometries of indenters used in instrumented indentation 

(Fischer-Cripps, 2002) 

In the use of identification to determine material properties such as hardness and 

the Young‘s modulus, the projected contact area as a function of penetration depth 

is required. The schematics of projected contact area for different indenter 

geometries are demonstrated in Figure 2-9. The area for a spherical indenter 

(Figure 2-9(a)) corresponds to  
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                2-3 

where   is the radius of the contact area and R is the radius of the spherical indenter. 

The contact area corresponds to a square cross section (Figure 2-9(c)) for a Vickers 

indenter with       and calculated as   

     
                             2-4 

In the case of Berkovich indenter (        , the equilateral-triangle projected 

contact area (Figure 2-9(d)) is expressed as,   

     
  √      √                                2-5 

On the other hand, the circular contact area when the surface is indented with the 

conical indenter (Figure 2-9(b)) can be written as 

     
               2-6 

In the numerical modelling of indenter, some researchers (Cheng and Cheng, 2004; 

Mata et al., 2002a; Mata et al., 2002b; Mata and Alcala, 2004) preferred to replace 

their Vickers and Berkovich pyramidal indenters with a conical counterpart to use 

advantages of axisymmetric characteristics of a conical indenter in their 2D models. 

For such conditions, the half-apex angle of the conical indenter   is chosen to 

impose an identical contact area penetration depth relation by using the Vickers or 

Berkovich pyramidal indenter. The following equation, as an equivalent of 

equations 2-4 and 2-6, therefore, should be satisfied for a Vickers indenter, 

                    . 2-7 

Then the half apex angle of the equivalent conical indenter becomes         . 

Using the same way,          is calculated for a Berkovich indenter. Vickers 
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and Berkovich indenters therefore can be replaced with a conical indenter in 

numerical models. 

Analyzing mechanical properties using indentation curves 

In the middle of the twentieth century, based on indentation experiments Tabor 

(1951) proposed the following relationship for a hardness value of the material: 

  
 

 
         2-8 

where   is a load applied to a flat surface with a rigid pyramidal tip,   is the 

resulting imprint area and       corresponds to compressive stress of the tested 

material at a representative strain of approximately 8%. This relationship has been 

widely used in the materials science community century for more than half a 

century. Several other methods were also proposed in the mean-time to 

characterize the properties of materials from indentation tests. These methods are 

explained below. 

Figure 2-10 shows a typical load-displacement curve of a homogeneous elastic-

plastic material obtained with a sharp indenter tip. In this figure,      represents 

the displacement at the peak load,     .   ,    and θ correspond to the contact 

depth (defined as the depth of the indenter that is in contact with the sample under 

load), the residual depth or the final displacement after complete unloading and 

geometrical parameter (  ) in equation 2-14,  respectively. The areas underneath 

the loading curve and unloading curves corresponds to the total work done by 

loading    and released by elastic unloading   , respectively. Then the plastic 

work (  ) done by the indentation process equals to the differences between    

and   , i.e.          . 

The average contact pressure or hardness of the indented material is defined by  

  
  

     
  2-9 
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where       is the true projected (real) contact area of the hardness impression. The 

following equations show how the elastic modulus of the indented sample is 

calculated:  

   
√ 

 

 

      
 
  

  
     

  2-10 

 

 

  
 

    
 

  
 

    
 

  
  2-11 

 

Figure 2-10: Schematic of load-depth curve for sharp indentation of ductile 

material (a) with deformed pattern of an elastic-plastic sample during and 

after indentation (b) (Gerday, 2009) 

where   is a correction factor (constant) that depends on the geometry of the 

indenter ( =1.034 for a Berkovich indenter,  =1 for a conical indenter and 

        for Vickers indenter (Pharr, 1998; Poon et al., 2008),    is the reduced 

modulus accounting for the fact that elastic deformation occurs in both the 

specimen and the indenter;   ,    and   ,    are the Young`s modulus and Poisson`s 

ratios of the indenter and the specimen; and  
  

  
   

 corresponds to stiffness 

measured from the unloading indentation curve at   , i.e. the slope of the initial 

portion of the unloading curve. Equation 2-10 is derived from the Sneddon‘s 
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solution of the contact problem between a rigid indenter and compressed isotropic 

elastic half-space (Sneddon, 1965).  It has been shown that this equation can be 

also extended to any indenter, which can be described as a solid of revolution of a 

smooth function (Pharr et al., 1992) and to indentation on elastic-plastic materials 

(Cheng and Cheng, 1997). The correction factor   is introduced to avoid 

overestimation of elastic modulus measured by indentation experiments (Cheng 

and Cheng, 1997; Dao et al., 2001).  

Different methods were proposed to calculate the contact area. Pethicai, Hutchings 

and Oliver (1983) suggested a simple method based on measured load-

displacement curve and the cross sectional area of the indenter as a function of the 

distance from the indenter tip, known as shape function. Two obvious choices - 

     and    - were suggested to establish the shape function. It was found that the 

final depth gives a better estimate of the contact area then the depth at peak load. A 

More comprehensive method was later proposed by Doerner and Nix (1986) to 

evaluate the contact area. Their approach is based on the observation that during 

the initial stages of unloading, the elastic behaviour of the indentation contact is 

similar to that of a flat cylindrical punch where the area of contact remains 

unchanged as the indenter retracts back, hence the initial unloading part of the 

curve is assumed to be linear. To estimate the contact area, they extrapolated the 

initial linear part of the unloading curve to zero loads linearly and the 

corresponding depth was used to determine the contact area. Experiments in iron-

nickel based amorphous alloy (METGLAS 2826) revealed that the extrapolated 

depth gives a better estimate for the contact area then either the depth at maximum 

load or the final depth. This observation was later confirmed by FE simulations of 

the indentation on silicon and nickel using a conical indenter (Bhattacharya and 

Nix, 1988). However, indentation of a large number of materials with instrumented 

indentation demonstrated that the unloading curves obtained were rarely linear, 

even in the initial stages of unloading. Oliver and Pharr (1992) employed a special 

dynamic technique, where the contact stiffness can be measured continuously as 

the elastic recovery takes place during the unloading stage of indenter. They found 

out that unloading contact stiffness changes immediately and continuously. These 
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results revealed that the flat-punch approximation proposed by Doerner and Nix 

(1986) was not an entirely adequate description of a real material behaviour. Oliver 

and Pharr (1992) therefore suggested fitting the initial section of the unloading 

curve by a power law. Their developments estimate the contact area better and, 

hence, provide a more accurate evaluation of the elastic modulus and hardness.  

The power-law relationship of Oliver and Pharr used to describe the initial 

unloading curve for the stiffness measurement is 

         
   2-12 

where the constants  ,  ,    are determined by a least-squares fitting procedure 

(Oliver and Pharr, 1992). Then the initial unloading stiffness can be calculated as 

follows:    

 
  

  
   

         
     2-13 

According to the investigation of Oliver and Pharr, the projected contact area is a 

function of the contact depth    and equals to the following expression: 

          

  

 
  
  

   

 2-14 

where    is a geometrical parameter that equals 1 for a flat punch, 0.72 for a 

conical indenter and 0.75 for a spherical or pyramidal indenter. On the other hand, 

the area function for a perfect sharp Berkovic indenter as explained in the previous 

section is given by  

                   
   2-15 

The deviations from a perfect sharp Berkovic indenter owing to blunting at the tip 

is incorporated in the calculation of area function as follows; 
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2-16 

where    through    are fit constants (Wang et al., 2004). These values are 

calibrated for different indenter tips by means of various reference materials, which 

mechanical properties are already known such as copper, tin, the fused silica 

(Albrecht et al., 2005). Once     is obtained through equation 2-14, the contact area 

can be computed using equations 2-15 and 2-16. Ultimately, the hardness and the 

elastic modulus of the indented specimen can be obtained from equations 2-9, 2-10 

and 2-11. 

Pile-up vs. sink-in behaviour 

It is well known that the materials around the contact area usually deform and do 

not remain flat, instead they flow upwards (pile-up) or downwards (sink-in). For a 

heavily work-hardened metal, such as copper or mild steel, the material around the 

contact area bulges upwards or piles-up, whereas for a fully annealed metal the 

material around the contact area sinks in. Both phenomena are schematically 

illustrated in Figure 2-11. The occurrence of pile-up and sink-in patterns is related 

to the strain-hardening behaviour of the indented material (Pharr et al., 1992; 

Chaudhri and Winter, 1988). Alcala et al. (2000) investigated piling-up and 

sinking-in of materials using Vickers and spherical indenters. Their research 

demonstrated that sinking-in predominates in materials with a strain-hardening 

value larger than 0.2. In the indentation of well-annealed soft metals, in the direct 

vicinity of the indenter tip, rapid strain-hardening leads plastic deformation to 

occur slowly further away from the contact region. That results in material to be 

displaced far away from the indentation zone leading to sink-in patterns. On the 

other hand, in indentation of strain-hardened samples, materials have only little 

reserves for further hardening and hence show a stronger localization in the plastic 

zone. A local pile-up instead of a sink-in displacement pattern around the indent, 

therefore, is observed (Wang et al., 2004). Taljat and Pharr (2004), on the other 
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hand, reported that the surface profile of the indents is also a function of a non-

dimensional ratio     . It was demonstrated that high values of the      ratio lead 

to development of a pile-up profile around the indenter; by contrast, small values of 

the      ratio lead to development of a sink-in profile.  

 

Figure 2-11: Schematic representation of pile-up and sink-in effects during 

micro-indentation (a), the cross section of pile-up contact area (b) and sink-in 

contact area (c). Reprinted with permission from (Lee and Chen, 2010) 

The influence of temperature on surface profile of indented workpiece material was 

investigated by Huang et al. (2005). This study, where a micro-indentation of a 

NiTi shape-memory alloy was performed, demonstrated that the material showed a 

sink-in surface profile at low temperature whereas a pile-up surface profile was 

obtained at high temperature. Wang et al. (2004) demonstrated experimentally and 

using a crystal-plasticity finite-element model that the appearance of pile-up 

patterns in nano-indentation of single-crystals depended on crystallography and 

orientation of the indented workpiece material. On the other hand, Liu et al. (2005) 

and Bucaille et al. (2003) found that introduction of friction affected the indent 

surface pile-up profile. It was observed that an increase in the friction coefficient 

led to a reduction in the pile-up height. Liu et al. (2005) observed this reduction up 

to a friction coefficient value of 0.4, for a larger friction coefficient, no further 

reduction in pile-up heights was observed. 
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A surface profile of the indented sample is of great importance as it affects accurate 

determination of a contact area and, hence, hardness and elastic-modulus 

measurements. For instance, sink-in patterns reduce the contact area while pile-up 

patterns increase it and neglecting them can result in significant errors. For instance, 

Fischer-Cripps (2002) argues that the errors could give rise to 60%.  To determine 

the actual contact area correctly, different techniques have been used. For instance, 

atomic force microscopy (AFM) has been used in indentation using a Berkovich 

indenter to determine the actual contact area. However, this procedure was 

observed to be limited as the continuous measurement of the contact area was 

impossible even during the elastic recovery. The finite-element (FE) method may 

constitute a helpful alternative to overcome this barrier, where the stress and 

deformation field can be predicted continuously. FE simulations accounting for 

pile-up or sink-in effects were performed by Mata et al. (2002) and 

Giannakopoulus and Suresh (1999) for Berkovich tips and Maneiro and Rodriquez 

(2005) and Ai and Dai (2008) for a spherical indenter.      

Effect of friction 

Several researchers (Mata and Alcala, 2004; Bucaille et al., 2003; Cai, 1993; 

Harsono et al., 2008) investigated experimentally and numerically the influence of 

friction in indentation. Cai (1993) conducted indentation experiments with both 

lubricated and non-lubricated pyramidal indenters into the annealed samples to 

study the influence of friction. That study demonstrated that the frictional effects 

became dominant when the angle of indenter decreased. Similar observation was 

also noticed by Bucaille (2003) who examined the influence of indenter tip‘s angle 

on the friction coefficient using an analytical model proposed by Taylor. Mata and 

Alcala (2004) carried out FE simulations of indentation by a rigid conical tip with a 

half-apex angle of 70.3°. In their study they used a Coulomb friction model. It was 

reported that in assessment of a mechanical behaviour of materials showing 

considerable piling-up, the effect of friction coefficient should not be neglected. 

Otherwise, the values of the yield stress and work-hardening exponent may be up 

to 50% larger than the actual ones. Harsono et al. (2008) did a parametric study for 
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various apex angles of conical and Berkovich indenter tips to investigate the effect 

of friction on the indentation parameters such as     and      , where   

correspond to the curvature of the loading. It was concluded that the influence of 

friction depended on material properties of the target and the type of indenter tips 

adopted in the tests.  

Liu et al. (2008) performed nano-indentation experiments using a spherical 

indenter on single-crystal copper in different crystallographic orientations. In this 

study, the coefficient of friction between the indenter and workpiece material was 

predicted by calibrating a 3D crystal-plasticity finite-element model of nano-

indentation with the experiments. It was reported that different friction coefficients 

were found to be appropriate for indentation of single-crystal with different crystal 

orientations. For instance,       is appropriate for (100) orientation,       for 

(011) orientation and       for (111) orientation. The role of friction coefficient 

in nano-indentation was also studied by Liu et al. (2005) and Bucaille et al. (2003). 

It was reported that the introduction of friction did not change the obtained load 

versus displacement relationship, but significantly changed the indent surface‘s 

pile-up profile. This observation was explained by Tabor (1951) analytically where 

the normal force applied by indenter is described by the following equation as a 

function of indenter angle,  , and friction coefficient,  , using a conical indenter: 

        
    

 

    
   2-17 

where    is the contact radius and   is the contact pressure (Figure 2-12). 

According to equation 2-17, the force applied with the indenter is independent of 

the cone angle under frictionless conditions. On the other hand the contribution of 

friction is negligibly small for a conical indenter (       ) as the ratio of      ⁄  

corresponds to 0.00716 and 0.0716, far less than 1 in equation 2-17, when   

     and      , respectively.  
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Figure 2-12: Schematics of conical indentation with frictional conditions. 

Reprinted with permission from (Bucaille et al., 2003) 

2.3.2 Size effects in indentation 

Experiments carried out in the past few decades demonstrated a strong size effects 

in indentation experiments when the material‘s length scale and the non-uniform 

plastic deformation were of the same order at micron or submicron levels. 

Stelmashenko et al. (1993), Ma and Clarke (1995), Nix and Gao (1998), 

McElhaney et al. (1998) reported that the measured hardness values were observed 

to increase with a decreasing indentation size, especially in the sub-micrometer 

depth regime. Figure 2-13 demonstrates a typical size effect observed in 

indentation. In this figure an experimentally obtained depth dependence of 

hardness value of a single-crystal copper and a cold worked polycrystalline copper 

is presented. Similar observations were also reported for yield strength and strain 

hardening by Fleck et al. (1994) in torsional experiments of copper wires and by 

Stolken and Evans (1998)  in micro-bend tests. 

Indeed, hardness measurements have been recognized to be size-dependent in the 

early 1950s by Tabor (1951). The research into the indentation size effect (ISE) has 

continuously increased over the last decades; this was partly motivated by the 

development of large-scale application of thin films in electronic components, and 

partly by the availability of novel methods of probing mechanical properties in 

very small volumes (Carpinteri and Puzzi, 2006). Many different mechanisms have 

been suggested to be responsible for the ISE. Several authors demonstrated that the 

following factors cannot be responsible solely for the strong dependence of 
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indentation hardness on the indentation depth even though they may have some 

influence: The pile-up or sink-in surface profile (McElhaney et al., 1998), loading 

rate of indenter (Lilleodden, 2002; Xue et al., 2002), grain size or Hall-Patch effect 

(Stelmashenko et al., 1993), oxidation layer or work-hardened surface layer 

(Lilleodden, 2002; Swadener et al., 2002) and indenter-tip radius ( McElhaney et 

al., 1998; Xue et al., 2002). 

 

Figure 2-13: Indentation size effects in crystalline materials. Reprinted with 

permission from (McElhaney et al., 1998)  

A number of authors argued that the size dependence of material‘s mechanical 

properties resulted from an increase in strain gradients inherent to small localized 

zones leading to presence of geometrically necessary dislocations, which, in turn 

resulted in additional hardening (Gao and Huang, 2003; Aifantis, 1984; Busso et 

al., 2000; Fleck and Hutchinson, 1997; Nix and Gao, 1998). The characteristic 

features of deformation in metals are dislocation formation, dislocation motion and 

dislocation storage. According to the Taylor‘s hardening rule, dislocation storage is 

responsible for material hardening (Carpinteri and Puzzi, 2006). Stored dislocations 

can be divided into two groups: Statistically stored dislocations (SSDs) and 

geometrically necessary dislocations (GNDs). SSDs are generated by trapping each 

other in a random way and believed to be dependent on the effective plastic strain 

(Ashby, 1970; Gao et al., 1999b). On the other hand, GNDs are the stored 
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dislocations that relieve plastic-deformation incompatibilities within the material 

caused by non-uniform dislocation slip. The density of GNDs is directly 

proportional to the gradients of effective plastic strain, and their presence causes 

additional storage of defects and, hence, increases the deformation resistance by 

acting as obstacles to SSDs (Fleck and Hutchinson, 1997; Ashby, 1970; Kröner, 

1962; Arsenlis and Parks, 1999). The dependency of SSDs and GNDs on the 

effective plastic strain and gradients of the effective plastic strain, respectively, is 

responsible for the size effect. The smaller the length scale, the larger the density of 

GNDs relative to SSDs and, consequently, the larger the plastic strain gradients 

compared to average plastic strains. Using this concept, Nix and Gao (1998) 

modelled the indentation size effect for crystalline materials. The following 

characteristic form explaining the depth dependence of hardness is obtained from 

this model: 

 

  
 √  

  

 
  2-18 

where   is hardness for a given indentation depth  ,    is hardness in the limit of 

infinite depth and    is a characteristic length depending on the indenter shape, 

shear modulus and    (Nix, 1998).   

The classical continuum plasticity theory (Hill, 1950) cannot explain the 

dependence of mechanical response on size as no length scale enters the 

constitutive description. However, the plasticity theory with gradient approaches 

has been successful in addressing the size effect problem. This success is related to 

the integration of a microstructural length-scale parameter in the governing 

equations of the deformation description (Abu Al-Rub and Voyiadjis, 2004). 

Gradient approaches typically retain terms in the constitutive equations of higher- 

or lower-order gradients with coefficients that characterize length-scale measures 

of the deformation microstructure associated with the non-local continuum (Abu 

Al-Rub and Voyiadjis, 2004). On the other hand, the classical continuum plasticity 

theories including a strain gradient plasticity theory represent the collective 
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behavior of dislocations and their interactions at the micro-scale. Therefore, there 

must exist a lower limit on the length scale, below which the continuum plasticity 

theories are not applicable. In other words, the continuum plasticity theories are 

only applicable at a scale much larger than an individual dislocation spacing. This 

is similar to the relation between the elasticity and the lattice theories; where the 

elasticity theory is applicable to a few lattice spacing (atomic spacing) below which 

the lattice theory governs. Similarly, the continuum plasticity theories are 

applicable to a few dislocation spacings below which the dislocation theories 

govern. Gao et al. (1999) identified that the lower limit for the applicability of 

strain gradient plasticity theory was around 100 nm. In other words, only when the 

characteristic length of deformation is larger than 100 nm the pronounced strain 

gradient plasticity theories can be used (Xue et al., 2002). 

The gradient regularization in solid mechanics was first studied by Aifantis 

(Aifantis, 1984). Later, the gradient terms were introduced in several plasticity 

models through the yield function (Gao et al., 1999b; Muhlhaus and Aifantis, 1991; 

De Borst and Mühlhaus, 1992; Fleck and Hutchinson, 2001; Chen and Wang, 

2002). The gradient concept in damage was studied by Voyiadjis et al. (2001) for 

anisotropic damage. Extension of the gradient theory to rate-dependent 

plasticity/damage was succeeded by few authors (Wang et al., 1998; Aifantis, 

1999; Oka et al., 2000; Voyiadjis et al., 2003; Gurtin, 2003). A reasonable 

agreement between gradient-plasticity theories and experiments was demonstrated 

in micro- and nano-indentation (Nix and Gao, 1998; Gao et al., 1999a; Shu and 

Fleck, 1999; Begley and Hutchinson, 1998; Huang et al., 2000; Yuan and Chen, 

2001) in micro-bend and micro-twist experiments (Abu Al-Rub and Voyiadjis, 

2004; Gao et al., 1999a; Tsagrakis and Aifantis, 2002). Crystal-plasticity models 

were also developed for the study of fatigue (Manonukul and Dunne, 2004; Bennett 

and McDowell, 2003; Dunne et al., 2007) and to predict the locations of fatigue 

crack nucleation in well-characterized f.c.c. polycrystals (Dunne et al., 2007).   

In gradient-plasticity theories a constitutive length-scale parameter   is used to 

scale the effects of strain gradients and is thought of as an internal material length, 
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related to storage of GNDs. The strain gradient effects become important when the 

characteristic length associated with deformation becomes comparable to the 

intrinsic material length-scale parameter  . In other words, if the representative 

length of non-uniform deformation is much larger than  , strain gradient effects are 

negligible and the strain gradient theories degenerate to classical plasticity theories 

(Gao et al., 1999). The study of Begley and Hutchinson (1998) indicated that 

indentation experiments might be the most effective way of measuring the length-

scale parameter as the typical tension test cannot be effectively used to determine 

the material properties of gradient theories due to uniform deformation, whereas in 

indentation experiment significant work-hardening evolves due to severe and non-

uniform plastic and damage deformation concentrated in the localized region 

directly below the indenter (Abu Al-Rub and Voyiadjis, 2004). 

Nix and Gao (1998) estimated the material length scale parameter   from the micro-

indentation experiments of McElhaney et al. (1998) to be       and         for 

annealed single-crystal copper and for cold-worked polycrystalline copper, 

respectively. Yuan and Chen (2001) proposed that the unique intrinsic material 

length parameter   can be computationally determined by fitting the Nix and Gao 

(1998) model from micro-indentation experiments, and they identified        

for polycrystal copper and         for single-crystal copper. Begley and 

Hutchinson (1998) estimated that the material length-scale associated with the 

stretch gradients ranged from     to     , while the material lengths associated 

with rotation gradients were on the order of      by fitting micro-indentation 

hardness data (Abu Al-Rub and Voyiadjis, 2004). Different tests also have been 

used to determine the length scale parameter. For instance, Fleck et al. (1994) 

conducted micro-torsion tests of thin copper wires and predicted   to be      for 

copper, whereas Stolken and Evans (1998) did micro-bend tests of thin nickel 

beams and proposed        for nickel (Abu Al-Rub and Voyiadjis, 2004).  

Strain gradient plasticity theories are classified into two frameworks: Higher-order 

and lower-order continuum theories. The higher-order theories belong to the 

Mindlin`s framework of higher-order continuum theories. In this theory, higher-
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order stresses are involved as a work conjugate of the strain gradient with the 

following equation:  

      
          

        2-19 

where    is the work increment per unit volume of an incompressible solid due to 

a variation of displacement,    
  is the deviatoric part of the Cauchy stress,      is 

the variation of strain,     
  is the deviatoric part of Cauchy stress and       is the 

variation of strain gradient. Here, the order of equilibrium equations is higher than 

that of the conventional continuum theories requiring additional boundary 

conditions. The theories developed by Fleck and Hutchinson (1997), Fleck et al. 

(1994), Gao et al. (1999), Huang et al. (2000), Gurtin (2000) are in this class. On 

the other hand, in the lower-order strain gradient plasticity theory, the higher-order 

stresses are not incorporated in the constitutive equations; hence, no additional 

boundary conditions are required. In this type of non-local plasticity theory, the 

strain gradient effects come into play through the incremental plastic modulus. The 

strain gradient theories proposed by Acharya and Bassani (2000), Acharya and 

Beaudoin (2000), Bassani (2001), Beaudoin and Acharya (2001) and Evers et al. 

(2002) are examples of this class. The mechanism-based strain gradient crystal-

plasticity theory developed by Han et al. (2005) also belongs to this category, 

where size-dependent plastic deformation at micron and submicron length scales is 

modelled. The core idea in this theory is to incorporate the concept of 

geometrically necessary dislocations into the continuum plastic constitutive laws 

using the Taylor function. 

Huang et al. (2004) compared the obtained solutions using higher-order and lower-

order strain gradient theories for a one-dimensional example, where a bar was fixed 

at one end and subjected to a constant body force and a uniform stress at the free 

end along the direction of the bar (Figure 2-14). Figure 2-14 demonstrates the 

distribution of strain gradient in the bar using lower-order and higher-order strain 

gradient theories. It is clearly visible that both theories agree very well except near 
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the two ends of the bar. As the higher-order stresses become significant at the 

boundaries, different strain gradient distributions are obtained using different 

frameworks of the theories. 

 

Figure 2-14: Distribution of strain gradients in bar predicted by lower-order 

(conventional theory of mechanism-based strain gradient) and higher-order 

(mechanism-based strain gradient theory) theories. Reprinted with permission 

from (Huang et al., 2004) 

Different indenter types were also used to study size effects in indentation. For 

instance, Qu et al. (2006) used five different spherical indenter tips with radius 

ranging from       to         to measure the size effect in indentation. It was 

observed that indentation hardness   increased with an increase in the ratio of 

contact radius   to the indenter radius   (Figure 2-15). Swadener et al. (2002) and 

Tymiak et al. (2001) also observed that the indentation hardness increased 

systematically with an increase in the indentation depth using a spherical indenter, 

i.e., the so-called reversed size effect, contrary to the usual size effect observed in 

sharp indentation. The opposite dependence of indentation hardness on indentation 

depth is explained by different dislocation densities underneath the indenters. In the 

case of a sharp indenter, the average density of SSDs is independent of the 
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indentation depth (Ma and Clarke, 1995; Arsenlis and Parks, 1999), while the 

density of GNDs is inversely proportional to it (Gurtin, 2000). On the other hand, 

in the case of indentation using a spherical indenter, although the density of SSDs 

increases with an increase in the indentation depth (through a contact radius) the 

density of GNDs becomes essentially independent (Fleck and Hutchinson, 1997; 

Fleck and Hutchinson, 1993). The total dislocation density, therefore, displays an 

opposite depth dependence for sharp and spherical indenters, so does the 

indentation hardness values (Xue et al., 2002). However, Abu Al-Rub and 

Voyiadjis (2004) interpreted the size effect in hardness experiments with a 

spherical indenters in a different way. It was explained in this study that to get an 

analogy on the ISE in spherical indentation similar to sharp indentation, plastic 

strain was required to be independent of the sphere size as in the case of sharp 

indentation, where the plastic strain is independent of indentation depth. In this 

study, the hardness values obtained using different spherical indenters were 

compared for the same     ratio representing the same plastic strain value. A 

decrease in the hardness value with an increasing spherical indenter size was 

reported, which can be also interpreted from Figure 2-15.    

 

Figure 2-15: Indentation hardness of iridium versus ratio of contact radius (a) 

to spherical indenter radius (R). Reprinted with permission from (Qu et al., 

2006) 
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The calibration of different material parameters in the models incorporating strain 

gradient theories plays a significant role in understanding the physical role of the 

gradient. This necessitates carrying out truly definite experiments at those scales, 

where their influences can be traced from the deformation patterns. In other words, 

the calibration of constitutive coefficients of a gradient-dependent model should 

not rely on the mechanical tests, where gradient effects are comparatively less, but 

draw information from the experiments at a compatible scale, where the gradient 

effects become significant. Micro/nano-indentation, micro-bending, micro-torsion 

experiments can be counted as gradient-dominant tests (Abu Al-Rub and Voyiadjis, 

2004). 



 

 

 

Chapter III 

3 Strain gradient crystal-plasticity 

theory 

Constitutive modeling of crystalline deformation accounting for size effects is dealt 

with in this chapter.  The chapter begins with a description of fundamental 

mechanics of crystalline solids in terms of their atomic structure followed by 

analysis of plastic-deformation mechanisms in crystals. In the second part, 

constitutive modelling of crystalline deformation is explained, where the 

kinematics of finite deformation is described briefly and later a crystal-plasticity 

framework with appropriate constitutive laws is introduced. In the final part of this 

chapter, detailed information about the strain gradient theory is given.  
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3.1 Fundamentals of crystals 

3.1.1 Crystal structures 

Metals, alloys, and some ceramic materials are examples of crystalline materials. In 

crystalline material, or crystalline solid, atoms are arranged in a pattern repeating 

itself in three dimensions and thus forming a solid with a crystal structure. The 

arrangement of atoms in crystalline solids is described by referring atoms to the 

points of intersection of a network of lines in three dimensions. Such a network is 

called a space lattice, which can be also described as an infinite three-dimensional 

array of points (Figure 3-1) (William and Javad, 2004). In crystalline solids the 

atomic order shows that small groups of atoms are forming a repetitive pattern. 

Hence, it is often convenient in describing crystal structures to subdivide the 

structure into small repeating entities called unit cells (Figure 3-1). As the unit cell 

is chosen to represent the symmetry, it is the basic structural unit, or building 

block, of the crystal structure (Callister, 1997). By assigning specific values for 

axial lengths (a, b, c) and inter-axial angles (α, β, γ) (Figure 3-1), different types of 

unit cells can be constructed.  

 

Figure 3-1: Space lattice of crystalline solid (a) and one unit cell showing 

lattice constants (b) (William and Javad, 2004) 

Most elemental metals (about 90 %) crystallize upon solidification into three 

densely packed crystal structures: body-centered cubic (b.c.c.), face-centered cubic 

(f.c.c.) and hexagonal close-packed (h.c.p.) (Figure 3-2). In cubic crystal structures 

three axes intersect each other at right angles and in hexagonal crystal structure two 

axes intersect at 120° and third axis at right angle (William and Javad, 2004). 
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Figure 3-2: Crystal structures: body-centered cubic (a), face-centered cubic (b) 

and hexagonal close-packed (c) (William and Javad, 2004) 

As Ti15V3Cr3Al3Sn (Ti-15-3-3-3) (a titanium-based beta-alloy), the material 

studied in this thesis, belongs to a group of metastable β-titanium alloy possessing 

a single phase b.c.c. crystal structure, this crystal structure is discussed below. In 

the b.c.c. unit cell, one atom is in contact with eight identical atoms located at the 

corners of an imaginary cube (Figure 3-3). The atomic packing factor (APF) for the 

unit cell is calculated to be 68%, i.e. 68% of the unit cell volume is occupied by 

atoms and 32% is empty space. The b.c.c. crystal structure is not a close-packed 

structure since the atoms could be packed closer together as in the f.c.c. and h.c.p. 

crystal structure where the APF corresponds to 74%. As the b.c.c. structure is not a 

close-packed structure, it does not have close-packed planes like the {111} planes 

in the f.c.c. structure or the {0001} planes in the h.c.p. structure (Sun et al., 2011). 

The most densely packed planes in the b.c.c. structure are the {110} family of 

planes. However, the atoms in the b.c.c. structure do have close-packed directions 

<111> along the cube diagonals. Figure 3-4 presents how the directions and planes 

are defined in cubic unit cells.  

 

Figure 3-3: Different representation of b.c.c. unit cell (William and Javad, 

2004) 
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Figure 3-4: Some planes and directions in cubic unit cells (William and Javad, 

2004) 

3.1.2 Slip in crystals 

Crystallographic slip is the governing mechanism of plastic deformation in metals 

and alloys driven by the motion of dislocations. Dislocations are crystallographic 

defects, or irregularities, within a crystal structure, which can be introduced in 

materials either during plastic deformation, during solidification or as a result of 

thermal stresses owing to rapid cooling (Callister, 1997). An interesting analogy to 

dislocation motion can be considered as the movement of a worm where the worm 

propels itself by stretching out a section of its body and thus moving its head 

forward. The fundamental dislocation types are edge and screw. In real materials 

dislocations exist as a mixture of both dislocation types. In an edge dislocation, 

there exists a localized lattice distortion along the end of an extra half-plane of 

atoms whereas in screw dislocation a helical path is traced around the linear defect 

by the atomic planes in the crystal lattice (Figure 3-5).  
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Figure 3-5: Schematic of edge (a) and screw dislocations (b) (Wk, 2008)  

The movement of dislocations is not with the same degree of ease on all 

crystallographic planes of atoms and in all crystallographic directions. Instead, 

there is a preferred plane, called slip plane, and in that plane there are specific 

directions, along which dislocation motion occurs, called slip directions. The 

combination of the slip plane and the slip direction is called slip system. In b.c.c. 

materials there are 48 slip systems, viz. 6 slip planes of type (110), each with 2 

[111] directions makes 12 systems, 24 (123) and 12 (112) planes each with  [111] 

direction makes 24 and 12 systems, respectively (Figure 3-6). 
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Figure 3-6: B.c.c. crystal structure (a) with three types of glide planes (b-d) 

and 48 slip systems in total (Siddiq, 2006) 

Slip in single-crystals occurs in response to shear stress applied along a slip plane 

and in a slip direction. The shear component of applied stress is called as resolved 

shear stress and depends on the applied stress and orientation of the slip system. 

Slip begins when this value reaches a threshold value known as critical resolved 

shear stress. The relation, known as Schmid’s law, between resolved shear stress 

and applied stress can be written as 

            , 3-1 

where   is the applied stress (equals to   ⁄ ) and            is called the Schmid 

factor. During plastic deformation of a single-crystal, each existing slip system has 

a potential to be activated. However, one slip system is generally oriented most 

favourably with the largest Schmid factor           , and, hence, the highest 

resolved shear stress, known as primary slip system. For instance, the orientation 

         corresponds to the most favourable slip system where the Schmid 

factor is the highest attainable one. 

In fact the Schmid law has two distinct assertions. The first one is that plastic flow 

begins when the resolved shear stress on a possible slip system reaches a CRSS, 

which is a constant, independent of the slip system and of the sense of slip. The 

second one states that this critical stress is not influenced by any other component 

of the applied stress tensor (Duesbery and Vitek, 1998).  These assumptions are 

valid in metals with close-packed crystal structures for which the Schmid law was 

established (Ito and Vitek, 2001). However, many authors observed that there exist 

difference in CRSS for tension and compression loading, i.e. an intrinsic 

anisotropic resistance to slip, in materials crystallizing in the b.c.c. structure 

proving the evidence of deficiencies in the Schmid law (Taylor and Elam, 1926; 

Vitek et al., 1970, Duesbery and Vitek, 1998). In fact, in the b.c.c. lattice {111} 

planes are not mirror planes, hence shearing in opposite direction along <111> 

differs in contrast with the <110> slip direction of f.c.c. crystals since {110} planes 
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are mirror planes, which, in turn, guarantees the equivalence of the two senses of 

slip (Ito and Vitek, 2001). Nowag et al (Nowag et al., 2012) demonstrated 

experimentally that the investigated material in this thesis, b.c.c. Ti alloy, does not 

violate the Schmid‘s law. Therefore, the finite-strain continuum theory assuming 

the Schmid-type constitutive behaviour is a reasonable choice for this study. 

However, for some b.c.c. materials, plasticity may start on a slip system that is 

geometrically not predicted, i.e. breakdown of Schmid‘s law. In such cases, the 

present continuum model cannot predict the material‘s deformation response 

accurately.     

 

Figure 3-7: Geometrical relationship between the tensile axis, slip plane and 

slip direction (Callister, 1997) 

The critical resolved shear stress required for activation of a slip system is not a 

constant value, but evolves with an increase in deformation, known as strain- or 

work-hardening. Strain-hardening is caused basically due to interaction of 

dislocations in different slip systems. An extended discussion regarding this 

phenomenon is presented in Section 3.2.2. 

Deformation in polycrystals is relatively complicated compared to single-crystals. 

Polycrystalline materials are the aggregation of many single-crystals, each of which 
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has a different crystallographic orientation Due to existing geometrical constraints 

between crystals in polycrystalline aggregate, a single grain, which is favourably 

oriented, cannot deform until the adjacent or less favourably oriented grains are 

capable of slip also, which in turn leads to higher forces. Polycrystalline materials, 

therefore, are stronger compared to their single-crystal counterparts (Callister, 

1997). 

3.2 Constitutive modelling of crystalline deformation 

The main aspects of continuum mechanics used in this thesis are reviewed in this 

section. Here, first the fundamentals of finite deformation are explained 

kinematically, later this concept is extended to the crystal-plasticity framework.  

3.2.1 Kinematics of finite deformation 

The motion of a deformable body from a reference configuration to a current 

configuration is denoted by continuous, invertible, one-to-one function      

     . Here   represents the reference, material or Lagrangean configuration 

and   represents the current, spatial or Eulerian approach. The fundamental 

descriptor of kinematics of deformable bodies is the deformation gradient ( ), 

defined as the tangent of mapping vector, where the Frechet-derivative of the 

motion function,     is taken (Ogden, 1997). 

             
  

  
   3-2 

 

where    is an infinitesimal material line element in the reference configuration 

and    in the deformed configuration. The deformation gradient   can be 

decomposed into a product of two second-order tensors using the polar 

decomposition theory as follows (Figure 3-8): 

       , 3-3 
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Figure 3-8: Polar decomposition of the the deformation gradient 

where   and   denote right and left stretch tensors, respectively.   and   are both 

positive definite and symmetric tensors, hence can be related to each other by  

      , 3-4 

where R is a orthogonal rotation tensor with the following properties: 

       , 3-5 

      . 3-6 

The material time derivative of equation 3-2 gives us the velocity difference in the 

current configuration of a line element    in the reference frame  

  

  
 

 

  
(
  

  
)   

3-7 

 ̇  
  

  
   

3-8 

   can be also described as the velocity difference of the end points of a line 

element    in the spatial frame as 

          3-9 
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where L is the spatial velocity gradient. If equations 3-2, 3-8 and 3-9 are combined, 

the following equations are obtained: 

 ̇       

   ̇   . 
3-10 

If equation 3-3 is put with the right stretch tensor into equation 3-10, the following 

equations are obtained: 

       ̇      , 

    ̇       ̇  . 
3-11 

The symmetric and skew-symmetric parts of the spatial velocity gradient represent 

the spatial rate of deformation and rigid-body rotation rate, respectively. 

          ̇         , 

          ̇           ̇  . 

3-12 

3.2.2 Crystal-plasticity theory 

In this section the kinematical theory of Taylor (1938)  describing the mechanics of 

crystals and its precise mathematical theory developed by Hill (1966), Rice (1971), 

Hill and Rice (1972) is used for the crystal-plasticity theory. The key equations of 

the crystal-plasticity theory are summarized below following the works of Rice 

(1970) and Asaro (1983). The reader is referred to Dunne and Petrinic (2005) and 

the references therein for extended information.  

The basic idea of crystal-plasticity formulation described here rests on the fact that 

a material flows through a crystal lattice via dislocation motion, whereas the lattice 

itself undergoes elastic deformations. In other words, a crystalline slip triggers 

inelastic deformation of a single-crystal, but does not distort the crystal lattice 

(Figure 3-9). 
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Figure 3-9: Kinematics of crystalline deformation (Prakash, 2009) 

For finite deformation, mapping a reference configuration of the material to the 

deformed configuration is denoted by the total deformation gradient F, which can 

be decomposed as 

         3-13 

where    accounts for elastic stretching (  ) and rigid body rotation of the lattice 

    , and hence described as 

        . 3-14 

   represents material‘s plastic shear and corresponds to the amount of 

deformation that remains in the crystal after the load has been removed, i.e. the 

crystal lattice is brought back to its original configuration (Prakash, 2009). 

According to the crystal-plasticity theory, deformation remaining in the crystal 

after elastic recovery corresponds to     .  

The deformation gradient for a single slip in crystals can be written as 

            3-15 

where   is the slip direction,   is the slip-plane normal,   is the total plastic shear 

and   represents the matrix product or the dyad of two vectors. In the case of 
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multiple slip, the evolution of    is the sum of shears on individual slip systems 

( ) and related to the slipping rate ( ̇ ) by  

  ̇       ∑  ̇      

 

   

 3-16 

In the deformation of crystal, vectors connecting lattice sites are stretched and 

rotated according to   . The slip direction and slip plane normal in deformed 

configuration are therefore defined by: 

           , 3-17 

               3-18 

Here, the deformed vectors of slip direction (     ) and slip plane normal (     ) 

are not unit vectors, unlike the undeformed ones (  ,   ), but remain orthogonal 

to each other (Figure 3-9).  

The spatial velocity gradient can be rewritten as a function of   and    when the 

equation 3-13 is inserted into equation 3-10. Then the following equation is 

obtained: 

      ̇          ̇           

    ̇        ̇               

   ̇           ̇               

3-19 

Here the velocity gradient contains two terms; the first term measures the lattice 

deformation (  ) and the second term measures plastic slip (  ), i.e. 

     ̇      ,         ̇               3-20 

Then the plastic velocity gradient in the current configuration due to shearing of a 

set of slip systems can be rewritten using the equation 3-16: 
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     ̇       ∑  ̇     

 

   

 ∑  ̇       

 

   

  3-21 

The velocity gradient can be also decomposed into symmetric and skew symmetric 

parts representing stretching ( ) and spin ( ), respectively: 

                               3-22 

In the first section of crystal-plasticity theory, the kinematics of crystalline 

deformation are introduced. What follows next is the constitutive equations used in 

crystal-plasticity theory.  

Constitutive equations 

Many constitutive equations used in crystal-plasticity theory are given in a rate 

form as a relation between stress rate and strain-rate. The rate definition of the 

stress tensors requires invariance of the material frame (objective) to ensure 

objectivity of the constitutive response of a material. If the stress and strain 

measures are material quantities then objectivity is automatically satisfied. 

However, if the quantities are spatial, then the objectivity of stress rate is not 

guaranteed even if the strain-rate is objective (Simo and Hughes, 1998). To 

preserve objectivity, modified time derivatives of stress tensors are used. Among 

numerous objective stress rates in the literature on continuum mechanics, three 

widely used are the Truesdell rate, the Green-Naghdi rate and the Jaumann rate. 

The Jaumann rate used in the formulation of crystal-plasticity theory is briefly 

explained here.  

Stress rates used in crystal-plasticity 

The objective stress rates are obtained by taking the derivative of equations 

transforming different stress tensors. Here, first the definitions of different stress 

tensors are given used in crystal-plasticity. 

The Cauchy (―true‖) stress ( ) represents the force per unit deformed area in the 

solid. The definition of the work using the Cauchy stress over a deformed volume 

(  ) is given by 
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  ∫         3-23 

Equation 3-23 can be described with different stress tensors and their work 

conjugates as follows: 

  ∫       ∫        ∫   ̇     ∫   ̇       3-24 

where    corresponds to the Kirchoff stress tensor,   corresponds to the first Piola-

Kirchhoff (P-K) stress tensor,   corresponds to second P-K stress tensor,   ̇ is time 

derivative of deformation gradient,  ̇  is Green-Lagrange strain tensor and, 

ultimately,     denotes undeformed volume. The definition of Green-Lagrange 

strain tensor is 

  
 

 
         

 ̇      . 

3-25 

The relation between the Cauchy stress and the 2
nd

 P-K stress is called the Piola 

transformation which can be written as 

              3-26 

where   (Jacobian) corresponds to determinant of deformation gradient. The 

Jaumann rate of the Cauchy stress ( ),  ̇̂, is defined as material time derivative of 

equation 3-26 

 ̇̂        ̇  . 3-27 

This equation can be rewritten in an open form if equation 3-26 is inserted in 

equation 3-27: 

 ̇̂      
 

  
                3-28 
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For the purpose of defining an objective stress rate, it is assumed that    , then 

    is obtained from equation 3-3, i.e. there is no stretch (J = 1). Then equation 

3-28  is simplified to 

 ̇̂   
 

  
               3-29 

Expanding out the derivative of equation 3-29 leads to the following: 

 ̇̂    ̇              ̇            ̇       

 ̇̂    ̇     ̇    ̇      

3-30 

It is known from equation 3-5 that 

        3-31 

When the derivative of both sides is taken the following equation is obtained: 

 

  
          

 ̇     ̇      

 ̇      ̇   

3-32 

If equations 3-31 and 3-32 are inserted into equation 3-30, the following is 

obtained: 

 ̇̂    ̇     ̇    ̇  . 3-33 

Recall that the spin tensor    (equation 3-22) is the skew part of the velocity 

gradient and can be expressed as 

              (  ̇       ̇  )  

 
 

 
  ( ̇        ̇)    ̇    

3-34 
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The first term in equation 3-34 is negligibly small compared to the second term. 

The skew tensor, therefore, can be simplified as   

   ̇    3-35 

Then the Jaumann rate of the Cauchy stress on axes rotating with the material takes 

the following final form  

 ̇̂   ̇       . 3-36 

The objectivity of the material constitutive response entails the objectivity of the 

Jaumann rate of the Cauchy stress (Holzapfel, 2000). 

Constitutive laws 

A constitutive law describing the relation between the symmetric rate of stretching 

the lattice (  ) and the Jaumann rate of Cauchy stress  ̂ ( ̇̂) is given by (Hill and 

Rice, 1972) 

 ̇̂               , 3-37 

where   is the second-order identical tensor and   is the tensor of elastic moduli 

having the following symmetries: 

                         3-38 

The f.c.c. and b.c.c. metals have cubic symmetry. The elastic moduli for such 

crystals is particularly simple, and can be parameterized by only 3 material 

constants,    ,    ,    . The following matrix expresses the elastic moduli of such 

materials:   

  

[
 
 
 
 
 
         

         

         

   
   
   

   
   
   

     
     
      ]

 
 
 
 
 

. 

 

3-39 
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Equation 3-37 is formed on the axes that rotate with the crystal lattice and related 

to the co-rotational stress rate on axes rotating with the material ( ̂) by 

 ̇̂   ̂            3-40 

The crystalline slip is governed by the Schmid‘s law, in which the slipping rate ( ̇) 

in any particular slip system is assumed to depend on the so-called Schmid stress 

    , just the resolved shear stress when elastic distortions are negligible. The 

relation between the Schmid stress and the current Cauchy stress ( ) is given by 

the equation (Rice, 1970; Hill, 1967; Mandel, 1965) 

      
  

 
        3-41 

where    and   are the mass density in the reference and current states. The rate of 

change of Schmid stress ultimately is given by the equation in (Hill and Rice, 

1972) as 

 ̇       [ ̇̂                  ]      . 3-42 

Now the next step is to determine the evolution of shear-strain   ̇  by the 

corresponding   . A Power law (Hutchinson, 1976) is used to predict the plastic 

slip-rates in a single-crystal. The viscoplastic expression of flow rule is as follows: 

  ̇    
 ̇          |

  

  
|

 

  3-43 

where   
 ̇  is the reference strain-rate on slip system  ,    is the strength of each 

slip system and a functional of the past slip history, i.e., accumulated plastic strains 

during previous increments of loading,         returns an integer indicating the sign 

of an argument (  ) and n represents the rate sensitivity of the crystal. A rate-

independent material (n goes to large numbers) is treated as a limit of rate-

dependent plasticity.  

Strain-hardening of each slip system is characterized by the evolution of strengths 

through the incremental relation: 
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 ̇    ∑    ̇   

 

  3-44 

where     are the slip hardening moduli and summation is performed over all 

activated slip systems. In this equation     represent the self-hardening moduli 

where no summation is done and     (   ) represent latent hardening moduli 

relating the rate of hardening on each system, which is most naturally defined w.r.t. 

the rotating crystal lattice (Wu et al., 1991). Different hardening models used in 

crystal-plasticity are presented in Table 3-1. 

Table 3-1: Different hardening models 

Hardening model Description Observation 

(Taylor, 1938) Isotropic hardening 
No information about 

latent hardening 

(Nakada and Keh, 1966) 

(Havner and Shalaby, 1978) 

Latent hardening is 

incorporated. 

Predicts strong latent 

hardening. 

(Peirce et al., 1982) (PAN) 

A modified model of 

latent hardening is 

suggested. 

More in accord with 

experimental results, 

but Bauschinger effect 

is neglected. 

(Wu et al., 1991) (BW) 

Three-stage hardening of 

crystalline materials is 

described. 

An explicit expression 

of slip interactions 

between slip systems 

As the PAN and BW models described in Table 3-1 are more in accord with 

experimental results, they are used in our numerical models. The self-hardening 

moduli in the PAN model are described by the following equation: 

                
 |

   

     
|  3-45 
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where     is the initial hardening modulus,    is the yield stress equivalent to the 

initial value of current strength of the slip systems (       ),    is the break-

through stress, where large plastic flow initiates, and   corresponds to cumulative 

shear-strain on all slip systems and is described by 

  ∑∫| ̇   |   

 

  

  3-46 

In equation 3-45 the hyperbolic secant function is used to describe self-hardening 

starting with higher initial hardening and vanishing after reaching a saturation 

resolved shear stress (Figure 3-10). The latent hardening moduli are given by the 

following equation: 

                 3-47 

where   is a latent to the self-hardening ratio. These expressions for hardening 

moduli neglect the Bauschinger effect in a crystalline solid. 

 

Figure 3-10: PAN model for self-hardening of slip system in single-crystal 

materials (Siddiq et al., 2007) 

In the BW model, a different expression for the hardening moduli is used to 

describe three-stage hardening of crystalline materials (Figure 3-11). In Figure 
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3-11, stage I corresponds to easy glide, where the crystal extends considerably at 

almost constant stress and slips on the primary slip system. In stage II as the 

geometry of the crystal changes as slip proceeds, slip may begin on a second slip 

system when the corresponding Schmid factor becomes compatible to that of the 

primary slip system with dislocations starting to glide on two slip systems; hence, 

further glide is inhibited due to interaction of slip systems. This phenomenon is 

called work-hardening. Stage III corresponds to extension at high stresses, where 

the applied force saturates sufficiently to overcome the obstacles. Therefore, the 

slope of the graph becomes progressively less steep. In stage III work-hardening 

saturates and it is finalized by the crystal‘s failure.  

 

Figure 3-11: BW model for self hardening of slip system in single-crystal 

materials (Siddiq et al., 2007) 

The hardening moduli in the BW model are described by the following equation 

depending on the shear-strains of all slip systems:  

    {             
 [

          
   

       
]     } (          )  

                

3-48 

where     is the hardening modulus for the stage-I hardening (Figure 3-11),      is 

the total shear-strain in slip system   and      is the total shear-strain in slip system 
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 . Here the function   represents interactive (cross) hardening that occurs between 

slip systems during the second and third stage of hardening and expressed by the 

following equation: 

 (    )    ∑           (      ⁄ )      , 3-49 

where    is the amount of slip, after which the interaction between slip systems 

reaches peak strength, and     denotes the magnitude of strength of a particular 

slip interaction. 

3.3 Mechanism-based strain gradient crystal-plasticity (MBSGCP) 

theory  

The mechanism-based strain gradient crystal-plasticity theory (MBSGCP) used in 

this thesis was developed by Han et al. (2005) following the basic idea of 

mechanism-based strain gradient plasticity theory (MBSG), where the 

geometrically necessary dislocations are incorporated into the continuum plastic 

formulation via the Taylor relation (Taylor, 1938):  

       √       3-50 

where    is an empirical coefficient,    is the shear modulus,   is the magnitude of 

Burgers vector, and   ,    are densities of statistically stored dislocations and 

geometrically necessary dislocations, respectively. In this theory an effective 

density of GNDs for a specific slip system is defined via a continuum analog of the 

Peach-Koehler force in dislocation theory (Han et al., 2005). This theory, 

belonging to the category of lower-order strain gradient models, is generalization 

of the conventional crystal-plasticity theory, i.e. the mechanism-based strain 

gradient crystal-plasticity theory reduces to a conventional crystal-plasticity theory 

when the strain gradient vanishes or the level of non-uniform deformation is larger 

than the intrinsic length scale of the material.  
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In dislocation theory, Peach-Koehler force is one of the most important concepts to 

describe the energetic force on a dislocation line element and given by for a 

volume element as  

 ̃ 
    ∑ ̃ 

 

 

 ∑  ̃    ̃  ∑ ̃ 
 

   

   ̃ 

 

  3-51 

 where  ̃ ,  ̃  are unit vectors of dislocations k and  ̃  is the Mandel stress. For a 

group of dislocations,  ̃ 
    can be written as (Han et al., 2005)    

 ̃    ̃   ̃ , 3-52 

where  ̃ is the dislocation density tensor and corresponds to  ̃      
           

with            . The dislocation density tensor defined here has a dimension of 

[1/Length] deviating slightly from a more common definition of [1/(Length)
2
] due 

to direct linkage of  ̃ with the strain gradient (Han et al., 2005). Equation 3-52 can 

be considered as a dislocation density force  ̃ acting on GNDs by  ̃. As the shear 

stress resolved onto a specific slip system α is     ̃   ̃   ̃  , the resolved 

dislocation density force can be written as   

 ̃
 

     ̃    ̃   ̃   . 3-53 

The projected density force  ̃
 

 in this equation can be interpreted as a force acting 

on GNDs due to   . When  ̃ is expanded as in (Arsenlis and Parks, 1999; Gurtin, 

2002, Cermelli and Gurtin, 2002)   

 ̃  ∑   
  ̃   ̃    

  ̃   ̃  

 

  3-54 

where  ̃   ̃   ̃ ,    
  and   

 are the densities of screw and edge dislocations 

on slip system α. Then the equation 3-60 can be rewritten as  
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 ̃
 

     ̃  ∑ ̃     
 
 ̃    

 
 ̃  

 

 3-55 

As  ̃
 

 is parallel to the slip plane, it can be expressed as  

 ̃
 

      ̃ 
  ̃   ̃ 

  ̃  , 3-56 

where  ̃ 
  and  ̃ 

  are effective dislocation densities associated with edge and screw 

dislocations of the slip system α. Then the norm  

  ̃
 
         

  provides an effective measure of dislocation density as   
  

√   
       

   . The resolved dislocation force in equation 3-53 defines an 

effective density of GNDs on the slip system α as  

  
    ̃    ̃   ̃    . 3-57 

In Fleck et al. (1994), it was demonstrated that for a single slip system strain 

gradients normal to the slip plane do not introduce lattice distortions; hence, do not 

contribute to the hardening of the slip system and are not contained in  ̃. On the 

other hand; although, in the case of multiple slip systems,  ̃ and      ̃  can 

contain strain gradients normal to a given slip plane, equation 3-64 ensures that 

gradients normal to the specific slip plane α are excepted from contribution to the 

hardening on this specific system (Han et al., 2005). This complies with the 

physical picture given by in Fleck et al. (1994). 

Strain gradient formulations of crystal-plasticity were previously proposed by 

many authors. In the higher order strain gradient theories, such as proposed by   

Smyshlyaev and Fleck (1996) and Shu and Fleck (1999) higher order stresses and 

additional boundary conditions were required. In this framework, Regueiro et al. 

(2002) suggested a relationship between the dislocation density tensor and back 

stresses. Cermelli and Gurtin (2000) developed a general theory of GNDs by 

characterizing dislocations through a tensor measuring the local Burger‘s vector 



Chapter 3. Strain gradient crystal-plasticity theory 

 

68 

 

per unit area. Gao et al. (1999) proposed a mechanism-based strain gradient 

plasticity theory (MBSGP) based on a multi-sale framework linking the micro-

scale notion of SSDs and GNDs to the meso-scale notion of plastic strain and strain 

gradient. Shizawa and Zbib (1999), Menzel and Steinmann (2000) and Gurtin 

(2002) used kinematic hardening formulations, where second-order strain gradients 

were related to back stresses resulting from  dislocation pile-ups in front of 

obstacles. In the case of problems with constant strain gradients such as plastically 

bent beam, these formulations predict no size dependence in contrast to 

experiments (Stölken and Evans, 1998) and discrete-dislocation simulations 

(Cleveringa et al., 1999).  

In the lower order strain gradient theories the strain gradient effects are introduced 

directly into the evolutionary laws of the internal slip system variables. Although, 

these theories provide more physically intuitive approach to describe strain 

gradient effects without the need to include higher order stresses or additional 

boundary conditions, they are unable to describe problems which may require non-

standard boundary conditions, such as the problem given in Shu et al. (2001). In 

this framework, Acharya and Bassani (2000) described a dependence of the work-

hardening moduli on strain gradients with the help of a quadratic norm of a 

dislocation-density tensor.  In the model of Arsenlis and Parks (2002), dislocation 

density state variables evolve from initial conditions according to equations based 

on fundamental concepts in dislocation mechanics such as the conservation of 

Burgers vector in multiplication and annihilation processes. Groma (1997) and 

Groma et al. (2003) developed models using a statistical description of dislocation 

interactions. Although these models are in good agreement with dislocation 

simulations (Yefimov et al., 2004), the classical hardening laws used in crystal-

plasticity were abandoned in these models. On the other hand, Busso et al. (2000) 

and Han et al. (2005) attempted to link the evolution of slip system strength to the 

presence of GNDs; where, while in the former one the evolution of GNDs were 

linked to local slip rate gradients, in the latter MBSGCP model, GND densities 

were obtained from spatial gradients of the plastic shear strain on slip systems.     

http://www.sciencedirect.com/science/article/pii/S0749641906001215#bib2


Chapter 3. Strain gradient crystal-plasticity theory 

 

69 

 

MBSGCP is a crystal-plasticity formulation of MBSG accounting for the effects of 

lattice anisotropy on size-dependent deformation due to dislocation hardening in a 

crystal (Han et al., 2005). In this model the intrinsic length scale of a material is 

given by: 

  
  

   
  

     
  3-58 

where    stands for a reference slip resistance which is taken to be      . In this 

model, the effective slip resistance (  
 ) takes the contribution of geometrically 

necessary dislocations   
  into account besides strain-hardening caused by SSDs 

(  
 ) for slip system   as follows: 

  
  √   

       
     3-59 

The slip resistance   
  is obtained using equation 3-44 as in the conventional 

crystal-plasticity theory, whereas the slip resistance   
  is calculated by  

  
    √   

   3-60 

where   
  stands for the effective density of GNDs. In the case of comparatively 

small deformation and negligible elastic strains, the displacement gradient can be 

decomposed additively such as         , where    corresponds to the 

plastic distortion and    the lattice rotation (Cermelli and Gurtin, 2001). In the 

case of multiple slip,    can be written as ∑            and the effective 

dislocation density tensor  ̃  is reduced to  ̃  ∑            
 . This leads 

equation 3-57 to take the following form to compute the effective density of GNDs: 

  
  |   ∑      

 

   |  3-61 
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It is worth mentioning that finite strain theory was used in the simulations of the 

following chapters, where only the formulation of   
  is obtained based on the 

assumption of small deformation theory.   

Equation 3-60 can be rewritten as follows using equation 3-58: 

  
      √   

   3-62 

Having calculated the effective slip resistance due to both SSDs and GNDs using 

the above equations, the plastic slip-rate is obtained using the following equation  

  ̇    
 ̇          |

  

  
 |

 

  3-63 

where   
  corresponds to  

  
  √   

              
   3-64 

The numerical procedure and the details of the implementation of the MBSGCP 

theory (equation 3-58 to 3-64 ) into conventional crystal-plasticity are discussed in 

the next chapter.  



 

 

 

Chapter IV 

4 Computational frameworks for 

strain gradient crystal-plasticity theory 

In this chapter the solution framework for the strain gradient crystal-plasticity 

theory using the finite-element method (FEM) is presented. Here, the aspects of 

FEM pertaining to coupling with the constitutive equations are first dealt with. In 

the second part, an incremental formulation of the crystal-plasticity theory is 

explained. This chapter closes with the details regarding implementation of the 

mechanism-based strain gradient crystal-plasticity theory into the conventional 

crystal-plasticity theory. 

The crystal-plasticity model was implemented in the implicit finite-element code 

ABAQUS/Standard using the user-defined material subroutine (UMAT), initially 

developed by Huang (1991) and modified by Kysar (1997). The UMAT subroutine 

has been further modified to account for the strain gradient theory. The details of 

the extension of the code are given at the end of this chapter. The reader is referred 
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to Dunne and Petrinic (2005) and the references therein for extended information 

about the computational plasticity.  

4.1 Finite-element model 

FEM is a general numerical scheme to solve complex engineering problems, where 

the application of the conventional analytical methods may be limited or 

impractical. The general premise of this method is to discretize an arbitrary domain 

into an assembly of simply shaped elements, in which differential equations are 

approximately solved (Figure 4-1). In each element, a convenient approximate 

solution is assumed and the conditions of overall equilibrium of the structure 

derived. Satisfaction of these conditions result in approximate solutions for the 

unknowns such as displacements, strains and stresses (Rao, 1999). 

 

Figure 4-1: Steps of physical simulation process (Felippa, 2007) 

An extended step-by-step process of FEM can be listed as follows (Huebner et al., 

2001): 

 Discretize the continuum 

The continuum is divided into elements. 

 Select interpolation functions 

Nodes are assigned to each element and the interpolation function represented by 

polynomials is chosen to represent the variation of the field variable over the 

element. Here, a displacement field is described using the shape function,     , 

with FE Ansatz as 
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              4-1 

where    represents the nodal displacement in the element e.      describes how 

the nodal displacements are distributed throughout the element corresponding to 1 

at the node location and 0 at the neighbouring nodes. 

 Find the element properties 

The matrix equations expressing the properties of individual elements are 

determined. The FEM expresses the dependent fields such as elastic strain    and 

stress   as follows: 

            4-2 

        4-3 

where    is the displacement gradient,    is the elasticity tensor and   is the strain 

matrix.  

 Assemble the element properties to obtain the system equations 

The matrix equations are combined to express the behaviour of the entire system 

with the following equilibrium equation: 

        , 4-4 

where    is the density and   corresponds to body forces. Equation 4-4, written in a 

strong form, can be formulated in a weak form by introducing a field of test 

functions      , selected to satisfy any prescribed kinematic constraint. The 

principle of virtual work now becomes  
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    ∫      

 

  ∫      

 

  ∫     

 

    4-5 

where   and   are the components of body and surface loads, respectively, Ω 

represents the domain of continuum and Ґ represents the traction boundary 

conditions. When equations 4-1 and 4-2 are inserted into equation 4-5, the 

following boundary-value problem is obtained: 

∑    

   

   

{∫     

 

  ∫      

 

  ∫     

 

 }      4-6 

Here, the assembly operator assembles the system of equations for each element.  

 Impose the boundary conditions 

The equations of the system are modified to account for the boundary conditions at 

the nodes or the elements. 

 Solve the system equations 

The set of simultaneous equations are solved to obtain the unknown nodal values 

such as displacement. In equation 4-6, the first term is called as internal nodal 

forces due to the induced stresses (equation 4-7) whereas the remaining part 

corresponds to external nodal forces due to body and traction forces (equation 4-8).   

     ∫     

 

        4-7 

     ∫      

 

  ∫     

 

   4-8 
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The algebraic system of equations 4-7 and 4-8 constitutes equilibrium between 

internal and external nodal forces. Solving them using an iterative scheme reveals 

the solution, i.e. the displacement field. In equation 4-7    representing the 

stiffness of the element e is a function of displacement field for nonlinear systems, 

i.e.          . 

 Computation of other variables 

The other important fields such as strains and stresses are calculated from 

displacement field using equations 4-2 and 4-3.  

4.1.1 Iterative Solution Technique 

Iterative solution techniques in FE analysis are used to find the unknowns in 

nonlinear systems. The nonlinearity is defined as the dependence of the stiffness 

matrix on displacement and/or force. A nonlinear behaviour in solid mechanics 

may exist due to geometrical, material and contact nonlinearities.   

Large rotations and displacements even with small strains cause geometric 

nonlinearity. In such cases, where deformation of a body is sufficiently large, the 

fınite-deformation theory (see Section 3.2.1) is used rather than a small-strain 

theory. Nonlinearity may also be observed in case of relatively small displacements 

that exceed a dimension of the deformed body such as thin-sheet metals (Bathe, 

1996).  

Material nonlinearity occurs also when there exists a nonlinear relationship 

between strains and stresses, where a material behaviour depends on the current 

deformation state and past history of the deformation. It is worth pointing out that 

material nonlinearity should not necessarily be present only in non-elastic region, it 

can also be observed in the elastic region such as hyperplastic materials like rubber. 

On the other hand, gradual interaction of deformable bodies with other bodies 

during the deformation process is the source of contact nonlinearity. 

Solution of nonlinear equations can be performed using various solution 

techniques, such as the Euler method, direct iteration method, modified Newton-

Raphson method, quasi-Newton-Raphson method and Newton-Raphson method. 
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The Newton-Raphson method is selected for the solution of nonlinear equation 

systems studied in this thesis. The main motivation for this choice is the quick 

convergence rate of this method compared to others (Systemes, 2010). 

The Newton-Raphson  method is an iterative procedure and generally used to find a 

root of an equation. The nonlinear equation           is written as the 

equilibrium of equations 4-7 and 4-8. To find the solution of this equation a 

residual function,             , is defined. Here the main purpose is to 

minimize the residual, i.e. the displacement value,  , is recalculated until a certain 

amount of accuracy is reached. 

Equation  (    )     (    )     describes how the residual is calculated after 

each iteration. The Taylor series expansion of the residual at the    iteration with 

an increment     is written as follows: 

 (  )   (        )

  (    )  [
     

  
]
    

                       
4-9 

As the iteration advances the residual force,  (  ), is supposed to approach zero. 

When the high order terms are neglected due to their negligible contribution, it 

gives a rise to the following linear equation calculating the displacement increment: 

    
  (    )

[
     
  

]
    

   
4-10 

where the denominator at the right-hand side is called the Jacobian matrix. The 

next approximation to the solution after each iteration is calculated as follows: 

              4-11 
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The iteration continues until a certain amount of tolerance is reached.  

The Newton-Raphson method is expensive per iteration as the Jacobian must be 

formed and solved at each iteration. Alternative methods such as the modified 

Newton-Raphson method, where the Jacobian is recalculated occasionally, or the 

approximate Newton-Raphson method, where an approximation to the Jacobian 

matrix is calculated, can be used for the solution of nonlinear problems (Systemes, 

2010). However, these methods are not suitable in terms of accuracy for severely 

nonlinear cases, though they could lead to a shorter total solution time.  

4.1.2 Convergence Control 

The convergence criteria are assigned in the calculations in order to conclude the 

iterations when a desired value of accuracy is reached. There must be a 

compromise between accuracy and computational time for an effective 

computation. If a tight tolerance is selected, excessive computation effort is spent 

on unnecessary accuracy. If the tolerance is set too loose, the equilibrium error may 

be excessive and an inaccurate solution resulted. In the commercial FE software, 

the convergence criteria are based on a relative and/or an absolute value of residual 

forces, 
  (   )   (   )

  (  )   (  )
    , and/or displacements, 

         

           . Equilibrium is 

only assumed when both of the equilibrium checks for each iteration is satisfied. In 

our FE simulations        is taken as the criterion for residual force value.  

4.1.3 Time Integration methods 

To find the unknowns in the numerical analysis such as displacements, stresses and 

strains, the rate equations must be integrated with respect to time. As the 

constitutive rate equations are highly non-linear, integration is usually achieved 

incrementally, and stress and other state variables are updated in every increment. 

The computational algorithms for the time integration fall into two general classes: 

Explicit and implicit algorithms. 

In an explicit algorithm, the information at time   is used to get the unknowns at 

time      directly. The well-known explicit methods are a simple/forward Euler 
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method and Runge-Kutta method (Huang, 1991). In an explicit FEM analysis, the 

stiffness matrix is updated at the end of each increment, and then the next 

increment of load (or displacement) is applied to the system.  One drawback of this 

method is that smaller time increments are required to have an accurate solution 

which in turn leads to longer computational time.  Otherwise, the solution tends to 

drift from the correct solution. The time step for explicit methods is limited by the 

time that the physical wave crosses the element; therefore the solution time is 

comparable to the time required for the wave to propagate through the structure 

(Bathe, 1996). The critical time      can be calculated from the mass and stiffness 

properties of the complete element assemblage:  

        
     

 
 

 

     
 

 

     
   4-12 

where      is the critical time step size,      is the smallest period in the finite-

element mesh,       is the highest natural frequency of the system and       is 

the highest natural frequency of all individual elements in a model (Bathe, 1996). 

In an implicit algorithm, information at times   and      is used to get the 

unknowns at time     . An example of a fully implicit method is the backward 

Euler method. In an implicit method, after each increment the analysis does 

Newton-Raphson iterations to enforce equilibrium of the internal structure forces 

with the externally applied loads within some user-specified tolerance (see Section 

4.1.2). On the other hand, explicit analysis does not enforce any equilibrium. This 

fundamental difference qualifies implicit analysis to be more accurate. In implicit 

analysis, challenging problems can be handled quite efficiently such as cyclic 

loading, snap through, and snap back as long as sophisticated control methods such 

as arc length control, generalized displacement control are used.  Since the stiffness 

matrix (Jacobian) in implicit analysis must be updated and reconstructed after each 

iteration, it is expensive computationally.  
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4.2 Incremental formulation of crystal-plasticity 

In this section, the incremental formulation and complete algorithm of the crystal-

plasticity theory discussed in Section 3.2.2 is explained. Geometric and/or material 

nonlinearity in crystal-plasticity require an incremental approach for integration of 

equilibrium equations. The tangent modulus method (Peirce et al., 1984) is used to 

determine the increment of plastic shear-strain in slip system   within the time 

increment    by the equation 

                ̇ 
   

    ̇    
   

 , 4-13 

where    is an integration constant ranging from 0 to 1 depending on the implicit or 

explicit method.      corresponds to the simple Euler time integration scheme, 

an explicit method, and if    varies between 0 and 1, it becomes a backward Euler 

integration scheme, which is an implicit method. 

The Taylor expansion of slipping rate gives 

 ̇    
   

  ̇ 
   

 
  ̇   

     
      

  ̇   

     
       4-14 

where        and       are the increments of resolved shear stress and current 

strength in slip system   within the time increment   , respectively. When equation 

4-14 is inserted into equation 4-13, the following incremental relation is obtained:  

        [ ̇ 
   

   

  ̇   

     
        

  ̇   

     
     ]  4-15 

From equation 3-44, the incremental formulation of current hardening function can 

be written as 

      ∑   

 

       4-16 

The increments of resolved shear stress       can be obtained through equations 

3-21, 3-37 and 3-42 as follows: 
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      *        
   

    
   

       
   

   + [     ∑   
   

     

 

]   4-17 

where       are the elastic moduli.    
   

        
   

 are ―Schmid factors‖ for each slip 

system     and defined as  

   
   

 
 

 
[  

   
    

   
 ]  

   
   

 
 

 
[  

   
    

   
 ]  

4-18 

To compute the incremental relation for the shear-strain increment   , equations 

4-16 and 4-17 are inserted into equation 4-15, then the following equation is 

obtained: 

∑{        
  ̇   

     
*        

   
    

   
       

   
   +   

   

     
  ̇   

     
       ( ̇   )}       

  ̇          
  ̇   

     
*        

   
    

   
       

   
   +       

4-19 

 

The co-rotational stress increment       ̇̂     given in equation 3-36 can be 

written as 

                       ∑*        
   

    
   

       
   

   +     

 

  4-20 

The algorithm used in a UMAT subroutine is as follows. The first step is using the 

known strain, strain increment, orientation of the grain, current strength of a slip 

system and resolved shear stress at time  , the Schmid tensor and the shear-strain-

rate are calculated using equations 4-18 and 3-43 and an initial value of    is 

predicted using equation 4-19. Next, new increments for the current strength of slip 

systems, the resolved shear stress and the stress increments are calculated with 
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equations 4-16, 4-17 and 4-20, respectively. Finally, the Newton-Raphson iterative 

scheme is applied until the convergence is reached according to the following 

residual equation 

               ̇ 
   

      ̇      , 4-21 

where   corresponding to an absolute error of shear-strains in slip systems is taken 

10
-5

 in our simulations. Once the iteration has converged, the orientation update is 

performed for the crystal lattice with the following equations. 

   
    

 [           ∑      
   

     
   

      

 

]   
    

  4-22 

   
    

    
    

[           ∑      
   

     
   

      

 

]  
4-23 

4.3 Numerical procedure in implementation of strain gradient 

theory 

The mechanism-based strain gradient crystal-plasticity theory (MBSGCP) belongs 

to the category of the lower-order strain gradient theory. In this type of non-local 

plasticity theory neither higher-order stress nor additional boundary conditions are 

involved as in the conventional crystal-plasticity (CP) theory, only the strain 

gradient effects come into play through the incremental plastic modulus as 

explained in Section 3.3. All constitutive equations are therefore identical to those 

in CP; hence, the incremental formulation explained in Section 4.2 is also 

applicable for MBSGCP. The only modification is performed while calculating the 

shear-strain-rate, i.e. equation 3-63 is used in MBSGCP rather than equation 3-43. 

As the strain gradient in this theory is not calculated directly as an independent 

variable, unlike higher-order theories, linear hexahedral C3D8 brick element 

(Figure 4-2) can be used. In other words an inherent constant strain field in this 

element type does not restrict the application of the lower-order theory; however, it 

cannot be used in higher-order theories as no strain gradient evolves due to the 
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constant strain field. For such theories higher-order elements should be used 

(Busso et al., 2000).  

 

Figure 4-2: 2x2x2 integration points in eight-node hexahedral C3D8 brick 

element  

To implement the MBSGCP constitutive model in UMAT, the strategic step is how 

to calculate the gradient of shear-strain     for each slip system ( ) in equation 

3-61 while calculating the incremental plastic modulus. To achieve this, the 

following steps are followed: 

 At the end of each time increment, the shear-strain value (  
      

) at each 

gauss point ( , integration point) and slip system ( ) is saved by means of 

the UMAT inherent looping over Gauss points for each element. As the 

shear-strain values are defined as state variables in the UMAT subroutine, 

they are updated for each time increment; hence, the state variables from 

the previous steps must be stored in a COMMON block.  

 In the next step, the extrapolation scheme presented in equation 4-24 (Busso 

et al., 2000) is employed to obtain shear-strain values at nodes   
      

 using 

the isoparametric shape functions       (Table 4-1) 

  
      

  ∑       
      

 

   

  4-24 

where   given in  
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Table 4-2 corresponds to the isoparametric coordinates of the integration 

point. In this section, to distinguish the representation of integration point 

and node, non-bold     and bold characters     are used, respectively. The 

isoparametric shape functions in equation 4-24 are constructed in such a 

way that it takes a unit value at node ( ) and is zero at all other nodes 

(Bathe, 1996). For instance, the value of first shape function is zero at all 

the nodes except the first node with coordinates (1, -1, -1). It is worth 

mentioning here that the sequence of nodes and integration points with 

respect to their coordinates (Figure 4-2) needs to be cared and addressed 

properly in equation 4-24. By inverting equation 4-24, the unknown corner 

nodal values can readily be determined from the solution of the inverse 

problem.  

As an alternative way to the methodology explained above, another user subroutine, 

URDFIL, is used besides the UMAT subroutine to determine the shear-strain 

values at the nodes. As the subroutine URDFIL permits the user to read the results 

at the nodes at the end of each time increment while the analysis is running, the 

shear-strain values can be stored in COMMON blocks and passed into UMAT 

subroutine. Both methods were used in our FE simulations and give exactly the 

same results. 

Table 4-1: Shape functions of the C3D8 linear brick element (Figure 4-2) 
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Table 4-2: Isoparametric coordinates          of integration points 

Integration 

point( ) 
      

1 0.577 -0.577 -0.577 

2 0.577 0.577 -0.577 

3 -0.577 -0.577 -0.577 

4 -0.577 0.577 -0.577 

5 0.577 -0.577 0.577 

6 0.577 0.577 0.577 

7 -0.577 -0.577 0.577 

8 -0.577 0.577 0.577 

 Having obtained the shear-strain values at 8 nodes, the shear-strain 

gradients at 8 integration points are determined by calculating the spatial 

derivatives of linear shape functions, i.e. the spatial derivative of equation 

4-24 as given in (Dunne et al., 2007;  Liang and Dunne, 2009 ; Busso et al., 

2000) 

   
      

 
   

      

  
 

   
      

    

    

  
  ∑           

      

 

   

     4-25 

where  

  
  

    
 ∑           

 

   

  4-26 

Here,    is the nabla operator relative to the isoparametric coordinate system,   is 

the Jacobian matrix and   is the position of the integration points. With the known 

nodal values,   
      

, equation 4-25 is used to calculate the gradient of shear-strain 

   
      

 at each integration point ( ) and for each slip system ( ) based on the 

spatial derivative of shape functions given in Table 4-3, which depends on the 

isoparametric coordinates of the integration points (Table 4-2). For the convenience 
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of the reader, the values of spatial derivative of shape functions w.r.t.   were 

presented in Table 4-4. This methodology aids to calculate the gradients of strains 

from first order finite elements (C3D8). Similar approaches were also used in 

Siddiq et al. (2007) and Lee and Chen (2010).  

Table 4-3: Spatial derivative of isoparametric shape functions           

Shape function 

( ) 

   

  
 

   

  
 

   

  
 

1 
 

 
            

 

 
            

 

 
           

2 
 

 
           

 

 
            

 

 
           

……. ……. ……. ……. 

8  
 

 
            

 

 
           

 

 
           

Table 4-4: The values of spatial derivative of isoparametric shape functions 

w.r.t.             at the integration points 

 ( )       
   

  
 

   

  
 …. 

   

  
 

   

  
 

1 0.577 -0.577 -0.577 0.083 0.022 …. -0.311 -0.083 

2 0.577 0.577 -0.577 0.022 0.083 …. -0.083 -0.311 

3 -0.577 -0.577 -0.577 0.083 0.311 …. -0.022 -0.083 

4 -0.577 0.577 -0.577 0.311 0.083 …. -0.083 -0.022 

5 0.577 -0.577 0.577 0.083 0.022 …. -0.311 -0.083 

6 0.577 0.577 0.577 0.022 0.083 …. -0.083 -0.311 
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7 -0.577 -0.577 0.577 0.083 0.311 …. -0.022 -0.083 

8 -0.577 0.577 0.577 0.311 0.083 
 

-0.083 -0.022 

In the following chapter, the material parameters of single-crystal b.c.c. Ti alloy are 

identified using the model of nano-indentation and micro-pillar-compression 

experiments. The strain gradient crystal-plasticity model is used therein. This 

constitutive law was implemented in the implicit finite-element code 

ABAQUS/Standard using the user-defined material subroutine (UMAT), initially 

developed by Huang (1991) and modified by Kysar (1997). This code is further 

developed by the author with regard to several aspects as follows: 

  The mechanism-based strain gradient theory was implemented in the 

subroutine. To achieve this, UMAT and URDFIL subroutines are used 

within two different methods. The details can be found in Section 4.3. 

 The implicit UMAT subroutine was converted to its explicit counterpart, 

VUMAT. This amendment enables to run simulations within an explicit 

analysis since the implicit one has convergence difficulties and needs 

enormous computational time. Of course, very fine time increments are 

needed in an explicit analysis of a model having rather small element sizes, 

which, in turn, leads to longer computational times. In this thesis mainly the 

implicit analysis is used.  

 In the UMAT subroutine the parameters of the slip hardening model are 

assumed to be the same as those for the same set of crystallographically 

identical slip systems, although it could be different from those in other 

sets. Here the code is adjusted in such a way that it gives flexibility to 

define the slip hardening parameters individually even in the same set of 

slip systems. This modification enables to evaluate the local fields 

accurately for a b.c.c. crystal structure, where there exists a difference in the 

Peierls stress, i.e. different lattice resistance to dislocation motion in 
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twinning and anti-twinning direction corresponding to different slip 

parameters in the same set of slip systems.  

 In the UMAT material subroutine, the shear-strain-rate value for each slip 

system is calculated using equation 3-43. During the calculations,   when 

the resolved shear stress value (  ) exceeds strength of the slip system (  ) 

as a result of any finite strain increment,   ̇  reaches very large values, 

especially becoming infinitely large when rate sensitivity ( ) is large, such 

as 50 or 100, which, in turn, leads to termination of the analysis. To avoid 

this, smaller strain increments along the whole computational time domain 

should be used. This leads to very long computational time. To circumvent 

this problem, an additional statement is inserted in the code checking the 

ratio (     ). When this ratio reaches a critical threshold value (selected 

1.3 in our analysis), the UMAT assigns a smaller time increment using the 

variable ―PNEWDT‖, i.e. the code abandons the current time increment in 

favor of a time increment given by PNEWDT*DTIME (Systemes, 2010), 

where DTIME corresponds to the present time increment. This variable, 

PNEWDT, was selected 0.25 in our simulations.   

 It is well known that deformation of the crystals leads to change in its 

orientation. Such orientation gradients need to be evaluated as they give 

hints about the deformation mechanism. In the subroutine, the lattice 

deformation and rotation are fully characterized by reciprocal vectors 

coinciding with slip directions and normal to slip planes in the deformed 

configuration. The modification is done in the following way: The initial 

orientation of the crystal (            ,             ,             ) 

is saved in the COMMON blocks. The underlying reason is the slip 

directions and normals to slip planes defined as state variables in the 

subroutine are updated after each time increment; hence, the history of state 

variables should be saved in a common block, which could be accessed by 

the UMAT subroutine. In the second step, using the ATAN2 function and 

the present ((              ,               ,           

    ) and initial orientation of the crystal for each slip system (I), the 
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orientation changes are computed in all directions, defined as state variables 

(                   ,                    ,           

         ) with the following formulations:  

                   

 (     (                             )

      (                         ))      ⁄  

4-27 

                   

 (     (                             )

      (                         ))      ⁄  

4-28 

                   

 (     (                             )

      (                         ))      ⁄   

4-29 

where NSLPTL refers to the total number of slip systems.  

Our first 3D FE nano-indentation simulations demonstrated that the solutions 

obtained using MBSGCP is time-increment-dependent; hence, temporal 

convergence cannot be obtained (Figure 4-3). The underlying reason is differences 

in the frequency of the updating of shear-strain values for each slip system due to 

existing strain gradients for different time increments. As explained in Section 4.3, 

strain gradients at present time for each slip systems are calculated using the shear-

strain values from the previous time increment. When the smaller time increments 

are used, on the one hand, the slip systems evolves quicker as the contribution of 

GNDs is accounted for more frequently compared to larger time increments. To 

circumvent this problem, the formulation of strain gradient in equation 3-62 is 

modified as follows: 

   
       √   

  
  

      
 4-30 
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These two modifications can be also presented in a single equation by 

reformulating equation 3-61 as  

  
  |   ∑      

      
 

  

      
  

 

   |  4-31 

The change in equation 4-30 is performed to correlate the slip resistance due to 

GNDs with the used time increment. With these modifications, the dependency of 

solutions on the time increment is not allowed as seen from Figure 4-4. Detailed 

information about the obtained load-displacement curves can be found in Chapter 6.  

 

Figure 4-3: Nano-indentation simulations: Load-displacement curves obtained 

using different time increments with MBSGCP 
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Figure 4-4: Nano-indentation simulations: Load-displacement curves obtained 

using different time increments with modified MBSGCP 

To demonstrate the successful implementation of the MBSGCP theory in UMAT 

subroutine, here a simple bending problem was studied. As seen in Figure 4-5, a 

rectangular f.c.c. single crystal in the unrotated state ((100) orientation) with 

dimensions of 2.5 μm × 1.0 μm × 4.0 μm was deformed by imposing a 

displacement constraint on the side surfaces with a maximum displacement value 

of 0.5 μm on the top and bottom lines whilst decreasing linearly towards the center 

and become zero at the center line. This model was developed intentionally to 

obtain a constant strain gradient through the specimen‘s height. 

 

Figure 4-5: Bending model. Purple lines represent the direction of the 

displacement imposed on the edges and red lines represent the magnitude of 

its variation through the thickness (Dimensions in μm)  

Figure 4-6 demonstrates the resulting distribution of total cumulative shear strains 

on all slip systems (sum of the absolute values of shear strains in all slip systems) 

in the deformed body (for the undeformed shape) while Figure 4-7 shows its 

variation through path A-B (Figure 4-5). As expected cumulative shear values were 

largest at points A and B and decreases towards the center and insignificant at the 
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very center of this path. To evaluate the influence of strain gradients, effective 

density of GNDs on the first slip system (at full loading) (  
   

), correlated with the 

shear strain gradients in equation 4-31, was plotted. Figure 4-8 revealed that the 

GNDs were observed to be similar through the height of the deformed sample as 

expected due to a linear variation of shear strains on path A-B, i.e. constant 

gradients. However, as this variation was not linear in the center of this path and 

was not as steep as the other sections (Figure 4-6 and Figure 4-7), the 

corresponding effective density of GNDs was observed to be less. This study 

justified the successful implementation of the shear strain gradient theory as the 

constant GNDs were predicted on the respective path successfully. 

 

Figure 4-6: Distribution of total cumulative shear strains on all slip systems 

(sum of the absolute values of shear strains in all slip systems) obtained with 

FE simulations of the bending problem 
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Figure 4-7: Distribution of total cumulative shear strains on all slip systems 

(sum of the absolute values of shear strains in all slip systems) at full loading 

obtained with FE simulations through path A-B. 

 

Figure 4-8: Distribution of effective density of GNDs (  
   

) at full loading 

obtained with FE simulations through path A-B. 

In the next two chapters, the size effect in micro-pillar compression and nano-

indentation experiments for single crystal b.c.c. Ti alloy were discussed extensively, 
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respectively. The block diagram (Figure 4-9), as an extension of Figure 1-2, 

demonstrates the detailed methodology used in the relevant chapters. 

 

Figure 4-9: Summary of the research methodology to describe size effects in 

micro-pillar compression and nano-indentation experiment 

 



 

 

 

Chapter V 

5 Size effect in beta-phase Ti alloy  

The aim of this chapter is to characterize a size effect in b.c.c. cubic beta phase of 

Ti alloy at micron-scale. To achieve this, a micro-pillar-compression experiment 

for different pillar sizes is performed. A FE model of this experiment is developed 

for identification of material parameters. This also enables extraction of 

information, which is not possible in the experiments, such as local fields of 

stresses and strains inside the pillar body or contribution of different slip systems 

during deformation.  

In the first part of this chapter, the details regarding the performed experiments are 

given. In the second part, numerical modelling of the experiment is discussed and a 

3D FE model is developed on the study of its different aspects such as mesh 

sensitivity, effect of substrate, misalignment between an indenter‘s tip and a pillar‘s 

top surface. It is followed by a thorough analysis of contact conditions in the model. 

In the following of this chapter, material parameters of beta-phase Ti alloy is 

determined using a strain gradient crystal-plasticity constitutive law and an 

extensive sensitivity analysis of the material parameters is performed and different 
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notions are considered to model the size effect such as fabrication of pillars or pre-

existing strain gradients. This chapter closes with a thorough numerical analysis of 

the studied micro-pillar-compression experiment using the set of parameters 

obtained in the chapter. 

5.1 Experimental details 

This section starts with analysis of information about the material under 

investigation followed by the details of the performed experiments.   

5.1.1 Material under investigation: Ti15V3Cr3Al3Sn  

The material under investigation in this thesis is Ti15V3Cr3Al3Sn (Ti-15-3-3-3) (a 

titanium-based beta-alloy). Ti-15-3-3-3 belongs to the group of metastable β-

titanium alloys and it has a single-phase b.c.c. crystal structure. In the following the 

material properties of Ti alloy are explained.  

Titanium after aluminium, iron and magnesium is the fourth most popular metal on 

this planet with a fraction of about 0.6 % (Lütjering and Williams, 2007). Titanium 

is known for its high strength-to-weight ratio but it is an expensive material.  The 

reason for its high price is due to its high reactivity with oxygen, which entails the 

use of an inert atmosphere or a vacuum during production and the melting process. 

Titanium is a strong metal with low density. Aluminium challenges titanium in 

lightweight structural applications, but this metal has a lower melting point (Table 

5-1), thereby making titanium convenient in high-temperature applications 

(Lütjering and Williams, 2007). Titanium is a quite ductile metal especially in an 

oxygen-free environment and it has a fairly low electrical and thermal conductivity 

(Table 5-1). 

Table 5-1: Comparison of titanium with aluminium (Lütjering and Williams, 

2007) 

Material features Ti Al 

Melting temperature (°C) 1670 660 
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Density (g/cm
3
) 4.5 2.7 

Young`s modulus 115 72 

Yield stress (MPa) 1000 ~500 

Thermal conductivity (W/m.K) 21.9 237 

Comparative price Expensive Medium 

Comparative corrosion resistance 

and reactivity with oxygen 
Very high High 

Pure titanium, depending on a temperature range, exists in different 

crystallographic structures. The transus temperature, the temperature that separates 

different crystal structures, of Ti is 882°C.  Below the transus temperature, titanium 

is stable in the α-phase and above the transus temperature it is stable in β-phase. 

The alpha stabilizers such as aluminium (Al), gallium (Ga), germanium (Ge), 

carbon (C), oxygen (O), and nitrogen (N) raise the α - β transition temperature. On 

the other hand, beta stabilizers such as molybdenum (Mo), vanadium (V), tantalum 

(Ta), niobium (Ni), manganese (Mn), iron (Fe), chromium (Cr), cobalt (Co), nickel 

(Ni), copper (Cu) and silicon (Si) lower the transition temperature (Joshi, 2006). β-

phase titanium is known to be more ductile, whereas its α-phase counterpart is less 

ductile. 

Pure Ti has acceptable mechanical properties and has been used in medical 

applications such as orthopaedic, dental implants, artificial hips, etc. as it does not 

react within the human body. For advanced engineering applications, the 

mechanical performance of Ti needs to be improved. This is accomplished by 

titanium alloys, where alloying elements are mixed with titanium. This mixture has 

a solid solubility assisting by undergoing precipitation strengthening. For instance, 

alloying elements like aluminium (Al), vanadium (V), iron (Fe), chromium (Cr), tin 

(Sn) and silicon (Si) increase the tensile yield strength value significantly.  

Titanium alloys have very high tensile strength and toughness, light weight (even at 

extreme temperatures) and extraordinary corrosion resistance.  However, the high 

cost of production of titanium alloys limits their use to military applications, 
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spacecraft, medical devices and special components (connecting rods, engine) of 

expensive cars.  

In this thesis based on research performed within the MaMiNa
1
 project (Macro, 

Micro and Nano aspects of Machining), the size effect in Ti-15-3-3-3 is 

investigated. The chemical composition of the alloy is given in Table 5-2. The Ti-

15-3-3-3 alloy is developed during the 1970`s on an Air Force contract to lower the 

cost of titanium sheet metal parts by reducing processing cost through the 

capability of being strip producible and its excellent room-temperature formability 

(Siemers, 2010). This solute-rich titanium alloy belongs to the group of metastable 

β-titanium alloys with martensite start temperature of below room temperature, 

thereby leading to the formation of an oversaturated β-microstructure when it is 

water-quenched or air-cooled from above β-transus temperature (Siemers, 2010).    

Table 5-2: Composition of Ti-15-3-3-3  

 Ti V Cr Al Sn 

Ti-15-3-3-3 76% 15% 3% 3% 3% 

The alloy Ti-15-3-3-3 was produced at GfE Metalle and Materialien GmbH in 

Germany. In the first stage of production, titanium sponge coming from 

Kazakhstan has been mixed with different pre alloys (85V-15Al and 50V-40Cr-

10Al) and pure tin (Sn) which compacted to an electrode of 120 mm diameter. In 

the second stage the electrode was molten into a first ingot (160 mm diameter) in a 

VAR furnace followed by VAR remelting step, which, in turn led to the final ingot 

diameter of 200 mm. In the third stage these round bars were deformed at 850°C by 

rotary swaging in several steps to reduce the diameter of bars to 78 mm, which 

were later water-quenched from 700°C (as received state). Ultimately the material 

was solution-treated at 790°C for 30 minutes followed by air cooling. This final 

process led to microstructure consisting of pure β-grains, without any α- or γ'-

precipitates. The average grain size of the body-centred cubic (b.c.c.) Ti alloy was 

                                                 
1
 The MaMiNa project combine the work of seventeen European universities, research institutions 

and industrial companies to analyse and improve the machinability of three selected alloys that are 

widely used in the industry, namely Ti15V3Cr3Al3Sn, Ni-based alloy 625 and Ti6Al2Sn4Zr6Mo.    
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about 1000 µm (Siemers, 2010). The microstructure analysis was performed by 

optical microscopy and electron backscatter diffraction (EBSD). 

The specimen was polished before performing the experiments. The mechanical 

polishing procedure was followed by 12 hours of vibratory polishing in a solution 

of oxide polish suspension (OPS, containing silicon dioxide particles with diameter 

of 0.04 µm) and hydrogen peroxide in a proportion of 4:1 to remove the damage 

induced by mechanical polishing. Indentation tests were conducted on the present 

vibro-polished sample and an electro-polished sample for comparison, showing 

good agreement of the mechanical properties. Thus, vibratory polishing was shown 

to be a sufficient technique to remove the surface damage layer induced during 

mechanical polishing. 

5.1.2 Micro-pillar compression experiment 

The micro-pillar compression experiments were performed at Swiss Federal 

Laboratories for Materials Testing and Research (EMPA). Micro-pillars with 

square cross sections, with the edge length varying between 1 μm and 2 μm were 

fabricated in a single grain of a polycrystalline sample, by using a dual beam FIB / 

SEM Tescan FIB Lyra instrument (Figure 5-1 and Figure 5-4). The exact 

orientation of the grain, along the compression axis of the micro-pillars was (0.489 

0.443 0.751). The aspect ratio (i.e. a ratio of height to the edge length) was kept 

constant at approx. 2.1. 

To find a compromise between a fabrication time and accuracy of the process, 

pillars were produced in consecutive steps using different energies. The first step 

was conducted using a current of approx. 4 nA; for obtaining the final shape lower 

energies were used, approx. 0.15 nA (for a micro-pillar with a 1 µm edge length) 

and 0.79 nA (2 µm), respectively, while the voltage was kept constant at 30 kV.  

All the compression tests were carried out inside a Zeiss DSM 962 scanning 

electron microscope (SEM), using a micro-indenter designed by EMPA in 

cooperation with the Institute of Materials Science, Swiss Federal Institute of 

Technology Lausanne (Rabe et al., 2004), which allows precise pillar-punch 
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positioning and in situ characterization of deformation events. A flat punch tip was 

used to compress the pillars in order to achieve a homogeneous contact over the 

whole surface of the pillar and, thus, to enable an ideally uniaxial state of stress (In 

fact, the stress state is not fully uniaxial due to the tapered shape of the pillar and 

misalignment between the tip and pillar). All the pillars were compressed in a 

displacement controlled mode at a strain-rate of approx. 1×10-4 s-1. A Hitachi 

S4800 high-resolution SEM system was used for imaging the pillars before and 

after compression.  

The active slip system was identified by comparing SEM pictures of the 

compressed pillar and pole-figures of the EBSD scan (Figure 5-2). It should be 

emphasized that the typical uncertainty in EBSD measurements was between 0.5° 

and 1.4° (Nowag et al., 2012). The slip direction / Burgers vector was assigned by 

the projected direction, in which the top part of the pillar moved, as indicated in 

Figure 5-2 by the red arrows in the SEM picture (top right) and {111} pole-figure 

(top left). This direction is in compliance with exactly one {111} direction, 

represented by an intersection point in the pole-figure. The direction    ̅   is 

therefore found to be the active slip direction. 

Second, a line of intersection between the active slip-plane and pillar surface, 

highlighted in Figure 5-2 (top right) in green, can be used to identify the active slip 

plane. However, as pole-figures depict only crystallographic directions and no 

planes, the active slip plane has to be determined via direction of its corresponding 

normal, as shown in the {112} pole-figure (Figure 5-2, bottom left). Again, exactly 

one matching plane was found and no compliance was achieved for other possible 

families of slip planes - {011} and {123}. Hence, the matching point is the normal 

of our slip-plane, identified to be (121). This result is manifested by comparison of 

the angle between the surface and slip plane measured using SEM (Figure 5-2, 

bottom right) and its theoretically calculated magnitude. They were found to be 30° 

and 29.7°, respectively, and thus exhibit excellent agreement.  

A similar analysis was conducted for all the pillars, and it was found that, 

irrespective of the pillar-size, deformation took places by single slip on the slip 
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system         ̅  . This particular system exhibits a Schmid factor of 0.4, the 

highest of all possible slip systems of {112} <111> type.  

 

Figure 5-1: SEM images showing Ti-15-333 single-crystal micro-pillar C 

(Figure 5-4) before (a) and after (b) compression 

 

Figure 5-2: Determination of active slip system by comparing EBSD pole-

figures for {111} (top left) and {112} directions (bottom left) with SEM images 

taken after compression from top (top right) and under 45° tilt (bottom right, 

dimensions corrected for tilt). The active slip system was found to be 

        ̅  . 
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Figure 5-3 demonstrates experimentally obtained average stress-strain curves for 

pillars A, B and C, where pillar A is the smallest pillar and pillar C is to the largest 

one (Figure 5-4).  Average yield strength of micro-pillars is observed to increase 

greatly with decreasing edge length, which provides evidence of a strong size effect. 

It should be pointed out that due to limitations in the accessibility of the micro-

pillar compression experimental set up at EMPA, single tests were performed. The 

obtained results seem to be promising and consistent with the studies in the 

literature (Greer and De Hosson, 2011). Based on these results, the material 

parameters of single crystal Ti alloy were determined using the methodology 

explained in this and next chapters.  

In the experimental procedure of micropillar compression experiments several 

errors may occur due to following reasons. Firstly, tapered shape of the pillars 

induced during FIB milling could lead to a comparatively non-homogenous state of 

stress (Kiener et al., 2007; 2009). Secondly, due to misalignment between pillar‘s 

upper surface and the indenter tip, stress concentrations may occur on this region of 

pillar, which, in turn, leads to its buckling and hence induce a bending component 

(Kiener et al., 2007; 2009). Thirdly, due to FIB milling process, a damaged layer 

(range of several tens of nm, additional defects and dislocation loops) on the pillar 

surface may be introduced, which may influence the observed size effect in the 

experiments. The possible stress concentrations located on the transition region 

between the pillar and its substrate may also affect the resulting measurements. 

These points were discussed in detail numerically in Section 5.2.2, 5.2.3, 5.3 and 

5.4.5 to get an idea about their affects on the obtained results.  

It is worth mentioning about how average stress and average strain values plotted 

in Figure 5-3 were calculated. The definitions for these terms are  ∑      ⁄  and 

        ⁄  , respectively, where  ∑     corresponds to the overall reaction force 

on the contact pillar surface in the vertical direction,    corresponds to instant 

(during deformation) middle cross-sectional area of the pillar, and    and    

corresponds to instant and initial height of the pillar, respectively. As the stress 

state is not fully uniaxial due to the tapered shape of the pillar and misalignment 
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between the indenter‘s tip and pillar surface, here average stress and average strain 

are not equal to true stress and true strain, respectively.  

 

Figure 5-3: Experimental average stress-strain curves of pillars A, B and C 

(Figure 5-4)  

5.2 Modelling considerations 

A three-dimensional finite-element model of micro-pillar-compression experiment 

was developed to represent deformation of a single-crystal of Ti-based alloy. 

Numerical simulations were performed using the crystalline plasticity-based 

constitutive law incorporating the strain gradient theory implemented in a UMAT 

subroutine (see Section 4.3 for the details of the material subroutine). As the 

experimental study suggested that         ̅   was found to be the dominant slip 

system during deformation, only the set {112} <111> is switched on among the 

potential three different sets in the following FE simulations. Nowag et al. (2012) 

also investigated the active slip systems for different sizes, orientations and 

geometries of micropillars (Ti-15-333 with b.c.c. crystal structure) and it was 

observed that slip was generally found to occur on {112} <111> slip-systems (by 

single slip). In connection with this, Lewis et al. (2010) did a FE investigation of 

b.c.c. titanium alloy using three separate single-crystal plasticity formulations for 

each loading: reduced 12 slip systems, reduced 24 slip systems and full 48 slip 
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systems. This study revealed that 12-slip-system model generally followed the full 

model results and provided reasonable predictions in the global stress-strain curve 

of the material with an error less than 10%. In this chapter the material parameters 

were calibrated with the experiments w.r.t. macroscopic stress-strain curves; hence, 

activating one set of slip system in the simulations seems to be an acceptable 

assumption. On the other hand, identical conditions were considered for all the 

investigated pillar sizes; hence, the influence of including all set of available slip 

systems on the size effect was not considered in this thesis and assumed to be 

negligible. 

To explore the size effect in a single-crystal Ti alloy observed in experiments, three 

pillars with different sizes were modelled. Dimensions of the micro-pillar models 

are demonstrated in Figure 5-4 (a), and the schematic of the micro-pillar-

compression model is shown in Figure 5-4 (b). When the pillars are produced with 

a FIB milling, some amount of taper is typically introduced in the sample as also 

observed in (Zhang et al., 2006; Shan et al., 2008). The taper is defined as an angle 

between the wall of the pillar and its axis, i.e. the top of the pillar is smaller 

compared to its bottom. In the milled samples an angle of 2.5° taper was measured 

and this value was introduced into the model (Figure 5-4). As the modulus of the 

diamond indenter used in the experiments was one order of magnitude higher than, 

that of Ti-alloy single-crystal workpiece (Section 5.4.1), the indenter was modeled 

as a rigid body in the simulations. The relative movement of the workpiece and 

indenter was introduced as translation of the indenter in the negative y-direction 

(Figure 5-4). Kinematic boundary conditions were imposed on the bottom face of 

the pillars by constraining modal displacements in all the directions since the 

micro-pillars fabricated by FIB are tightly bonded to a substrate. The Coulomb‘s 

friction law was used to model frictional interaction between the indenter tip and 

the pillar‘s top surface. 

In the next part, different aspects of numerical modelling of the micro-pillar-

compression experiment are discussed. First, a mesh-sensitivity analysis for the 

workpiece material is performed to find a compromise between the computational 
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cost and numerical accuracy in simulations. In the second part, the effect of 

substrate on the numerical solutions is analyzed followed by a thorough 

investigation of misalignment between the indenter‘s flat punch tip and the pillar‘s 

top surface. In the simulations of the following sections, unless otherwise stated, 

the elastic and plastic parameters presented in Table 5-3 are used.  

 

Figure 5-4: Dimensions of micro-pillars (in µm) (a); 3D model of micro-pillar-

compression experiment (b) 

Table 5-3: Crystal-plasticity parameters used in simulations to optimize FE 

model of micro-pillar-compression experiment   

Elastic constants 

               

               

              

Hardening 

parameters (PAN 

model) 

  
 ̇           

     

    

            

           

           



Chapter 5. Size effects in beta-phase Ti alloy 

 

105 

 

Strain gradient 

parameters 

       

             

                

5.2.1 Mesh sensitivity 

In this section, a mesh-sensitivity analysis of the model is performed to find a 

compromise between conflicting requirements of accuracy and computational cost. 

Eight-node linear brick elements (C3D8) were used to discretize the workpiece 

sample. In this part, a friction coefficient value   of     is considered to 

characterize the contact condition between the indenter tip and (001) 

crystallographically oriented pillar to avoid geometrical softening in the pillars 

assuring to demonstrate the influence of strain gradients on the mesh-sensitivity 

analysis properly. 

Three different meshes were used to discretize pillar A, i.e. the smallest pillar, viz. 

Mesh 1, Mesh 2 and Mesh 3. The sizes of the elements in each mesh were similar, 

and in Mesh 1, on average, 140 nm × 140 nm × 140 nm. In Mesh 2 and Mesh 3, the 

corresponding sizes were 210 nm × 210 nm × 210 nm and 280 nm × 280 nm × 280 

nm, respectively. Figure 5-5 demonstrates the average stress-strain curve obtained 

for pillar A in FE simulations using different mesh sizes. The definition of average 

stress and average strain was given in Section 5.1.2. The FE model predicts the 

same stress-strain curve for all the meshes. It can be therefore concluded that any 

of the mesh sizes studied here can be used to discretize pillar A. However, a choice 

of the coarsest mesh, Mesh 3 is, naturally, more beneficial as it leads to lower 

computational times compared to other meshes.   
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Figure 5-5: Average stress-strain curves obtained with MBSGCP simulations 

using different meshes  

Of particular interest in this thesis are material‘s local fields such as stresses, 

strains, strain gradients etc., especially when the size of deformed volume is 

decreased. So, variations of fields for different mesh sizes were, therefore, 

investigated. Figure 5-6 presents a distribution of von Mises stress through the 

centre y-axis of pillar A for different FE meshes at 10% strain. This strain value 

was selected intentionally, as in the experiments the pillars were compressed 

approximately up to that strain level (Figure 5-3). It is observed that the FE model 

with Mesh 3 predicts a higher stress value between middle- and bottom-center of 

the pillar compared to other two meshes. As the prediction based on Mesh 2 in FE 

simulation is in good agreement with its finer counter-part, Mesh3, the former 

provides a compromise between the computational accuracy and computational 

cost. Therefore, Mesh 2 is used in the following sections of this chapter.  

In the lower-order MBSGCP theory implemented here, shear-strain gradients 

evaluated at the integration points were computed by averaging the shear-strain 

values at corner nodes using the weighting functions, the spatial derivatives of 

linear shape functions. The mesh resolution used for the pillar, therefore, influences 

the magnitude of strain gradients, hence, affecting a macroscopic response of the 

material, e.g., the reaction force. Such an observation was also reported by Cheong 
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et al. (2005). In their study, mesh sensitivity of the FE results in the deformation 

behaviour of Cu polycrystals was investigated over a spectrum of length scales. 

The study revealed that in the case of predominance of geometrically necessary 

dislocations over statistically stored ones, the polycrystalline response became 

increasingly mesh-sensitive. Similar observations were also reported in our 

simulations as demonstrated in case study B in Section 5.5.1. It is therefore ensured 

that the same mesh size was used in FE modelling of pillars B and C to 

characterize the evolved strain gradients (Figure 5-4). The mesh convergence is 

automatically satisfied for these pillars since it already corresponds to a finer mesh 

for both pillars. 

 

Figure 5-6: Distribution of von-Mises stress along path A-B (see Figure 5-4) at 

10% average strain for pillar A 

5.2.2 Effect of pillar base 

In this section, the effect of pillar base on results of numerical solutions is studied. 

The term ―substrate‖ is used below synonymously to the term ―base‖. It should be 

also emphasized that here and in the following sections, unless stated otherwise, 

       is used to characterize the contact condition between the indenter tip and 

the pillar with a crystallographic orientation of (0.489 0.443 0.751). The micro-

pillar compressed in the experiment was modelled as a prism with a rectangular 

cross-section and a specific taper; the micro-pillar was assumed to be ideally 
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bonded to a substrate and, hence, modelled with nodes of the bottom face of the 

pillars constrained in all directions (Figure 5-4). This assumption needs to be 

checked for the sake of accuracy of the results. To achieve this, two models were 

considered. In addition to the discussed one, another model was created, with the 

substrate introduced directly into simulations.  In the latter FE model, the same 

mesh size and crystal orientation were considered for the substrate (Figure 5-7).  

 

Figure 5-7: 3D FE model of micro-pillar with substrate (dimensions in µm)   

Zhang et al. (2006) performed a parametric study to design an accurate 

compression experiment. One of particular interests in that study was the effect of 

curvature of transition of the micro-pillar into the bulk substrate. Depending on the 

ratio of the curvature radius to the radius of pillar, the flow-stress in the material 

was evaluated (Figure 5-8). The study suggested that the curvature did not change 

the material‘s response significantly. For instance, for the aspect ratio of 2, similar 

to the case studied here, even for the largest studied ratio of curvature radius to the 

radius of micro-pillar, the error in flow-stress was less than 6%. Hence, this 

curvature therefore was not taken into account in our model.  
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Figure 5-8: Schematic of cylindrical pillar and its substrate (a). Effect of 

radius of curvature on FE simulation output (b). The inset demonstrates the 

zoomed view of the circled region to facilitate comparison. Different output 

curves correspond to different ratios of the radii of pillar curvature to the 

pillar radius. Reprinted with permission from (Zhang et al., 2006) 

 

Figure 5-9: Average stress-strain curves obtained in FE simulations with 

substrate and without substrate  
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Figure 5-10: Distributions of von Mises stress at 8%  average strain obtained 

in FE simulations with substrate (a) and without substrate (b)  

The numerical results demonstrate that the stress-strain curve of the material with 

base and without base does not differ significantly (Figure 5-9). Of a special 

interest in this plot here is underestimation of the elastic modulus when the 

substrate is accounted for. Zhang et al. (2006) ascribed this difference to the 

neglection of the contribution of substrate compliance to the overall compliance. In 

other words, although the substrate was deformed along with the pillar and this 

deformation contributes to the system compliance, it was not accounted in the 

collected displacement data. The influence of substrate on local fields was also 

analysed. The distribution of von Mises stress on the pillar surface was calculated 

at 8% strain to comply with the experiments as the pillars are compressed up to that 

strain level in the experiment (Figure 5-10). This figure demonstrates that the 

obtained stress distribution for both models are very similar confirm a relatively 

good approximation when neglecting the substrate in the model. This simplification 

in the model also allows reduction of computational times as simulations for a 

pillar with the base run longer. The finding of the Jerusalem et al. (2012) where the 

base of the cylindrical pillar was also neglected is akin to our observations. 

5.2.3 Effect of misalignment 

Our first FE simulation results demonstrate that there exists discrepancy between 

simulations and the experiments at the initial stage of compression. This 
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disagreement arises due to underestimation of stiffness in the experiments. Such 

observations were also made in other studies (Zhang et al., 2006; Schuster et al., 

2008; Jérusalem et al., 2012; Kunz et al., 2011), where the reason was linked to 

misalignment between the indenter‘s flat punch tip and the pillar‘s top surface. It 

was reported that when the misalignment increased, a decrease in the measured 

elastic modulus was observed. Zhang et al. (2006) characterized this relationship in 

3D FE simulations with an isotropic constitutive law (Figure 5-11). This figure 

indicates that even a 1° of misalignment leads to underestimation of the elastic 

modulus by approx. 55%. Therefore, a special care is needed to reduce or eliminate 

the misalignment in the test system.  

 

Figure 5-11: Effect of system misalignment on error in elastic modulus. 

Reprinted with permission from (Zhang et al., 2006) 

In this section the effect of misalignment of the system on the initial portion of the 

loading is numerically studied. In the model, the misalignment is represented as an 

angle (  ) between the indenter‘s tip and the pillar‘s axis; when   =0°, the system 

is perfectly aligned. Figure 5-12 demonstrates the effect of various magnitudes of 

   on the stress-strain curve. The FE simulations suggest that the material‘s elastic 

modulus is underestimated when a misalignment is introduced into the model, i.e. 

with an increase in the misalignment, the elastic modulus is increasingly 

underestimated. This finding is in agreement with observations in other studies 

(Zhang et al., 2006; Schuster et al., 2008; Jérusalem et al., 2012; Kunz et al., 2011). 
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Figure 5-12 suggests that misalignment of 6° exists in the experiment between 

indenter‘s tip and the pillar‘s axis. It should be emphasized that this value also 

accounts for the contribution arising due to neglection of substrate compliance to 

the overall system‘s compliance. This implies that misalignment in the experiments 

was less than 6°. Figure 5-11 also supports this fact where the elastic modulus is 

underestimated even for a perfect alignment.  

 

Figure 5-12: Average stress-strain curves obtained with FE simulations for 

different misalignments (for direction of axes see Figure 5-4)  

 

Figure 5-13: Distribution of von Mises stress at full loading from FE 

simulation of misalignment w.r.t. to x-axis (a) and z-axis (b)  
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Misalignment, on the other hand, causes contact anisotropy in the system that is 

especially significant at the beginning of the compression, i.e. while a portion of 

the pillar is in contact with the indenter, and other parts remaining without contact. 

This also leads to differences between the obtained solution and the test results. For 

instance, although the misalignment in the system is introduced with the same 

amount (4°) w.r.t. x- and z-axis, the obtained stress-strain curves (Figure 5-12) and 

the corresponding stress distributions on the surface of the pillars (Figure 5-13) are 

different.  

Since in this thesis, the main focus is on the deformation behaviour of a single- 

crystal Ti alloy where only the material anisotropy is accounted for, it is tried to 

avoid introducing any anisotropy in the model other than those due to the crystal 

structure. It is, therefore, preferred not to introduce any misalignment in our 3D FE 

model; instead the misalignment will be accounted for in the models by introducing 

a correction factor    in the constitutive laws. This factor is introduced in the 

constitutive equation 3-37 and in the equations incorporating equation 3-37 . This 

pronounced equation after ξ is introduced becomes  

 ̇̂                  . 5-1 

 

Figure 5-14: Average stress-strain curves obtained with FE simulations for 

different correction factors accounting for misalignments 
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The modified constitutive law is used to study the influence of different correction 

factors ranging from 0.3 to 1 on the load-displacement curve, where    =1 

corresponds to perfect alignment in the system. Figure 5-14 demonstrates that the 

correction factor value of 0.3 accounts correctly for misalignment in the 

experiments correctly. This correction factor henceforth is used in the constitutive 

laws in the simulations for the respective experiment as a fitting parameter.  

5.3 Contact conditions 

The effect of friction characteristics at the indenter-workpiece interface is studied 

in this section. As mentioned earlier, the Coulomb‘s friction law was used to model 

the frictional interaction. In this linear model when the shear stress at the interface 

exceeds the critical shear stress     that is equal to the product of the friction 

coefficient   and contact pressure, slipping will occur; otherwise, there exists a 

sticking regime at the interface between the contacting bodies. Three different 

idealised friction conditions were studied. First,     was considered to represent 

the effect of a well-lubricated indenter-workpiece interface followed by two dry 

(non-lubricated interface) contact conditions:       was considered to represent 

the extreme contact condition and        corresponds to a medium friction 

coefficient between two extremes. It is worth mentioning that        is between 

the lower (   .03) and upper (   .06) bounds for a contact condition of a 

diamond-metal surface interface given in the literature (Spear, 1989). The lateral 

displacement of the pillar at 10% strain for different contact conditions was 

compared. It was observed in numerical simulations that the pillar with     and 

        showed buckling during compression, i.e. geometric softening, whereas 

the pillar with       revealed a more stable evolution of the shape during 

deformation (Figure 5-15). The in-situ videos recorded during the compression 

experiments indicate that the lateral slipping of the pillar occured during the 

deformation process.  It was therefore concluded that       does not represent 

the contact conditions accurately. The contact condition without friction also does 

not reflect the reality as the presence of at least a small amount of friction is 

intrinsic to these experiments (Zhang et al., 2006). A friction-coefficient value of 
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0.05, therefore, seemed to be an appropriate choice to represent the contact 

conditions in the experiments; hence, it was used in the subsequent simulations. 

The influence of friction is also observed in the corresponding flow curves (Figure 

5-16). In the case of    , the stress-strain curve becomes unstable at an early 

stage of deformation, whereas in the case of        the instability in the stress-

strain curve starts at strain of approx. 4%. The instability here is defined as the 

deviation of the flow curve from the one for      . On the other hand, buckling 

observed in Figure 5-15 may appear at first sight like classical elastic-plastic 

buckling. However, classical analytical models predict that buckling is expected to 

occur for pillars, which are at least 20 times longer than the present pillars for the 

same cross-section (Raabe et al., 2007). Buckling observed here occurs rather due 

to crystalline anisotropy, which promotes shape instability. The finding of Raabe et 

al. (2007) confirms this argument and demonstrated that a stable deformation 

process can be achieved for a pillar with a stable orientation such as (100) even 

with    .  

 

Figure 5-15: Distribution of displacements in z-direction at full loading in FE 

simulations for different contact conditions 

5.4 Determination of material parameters 

In this section the appropriate values of material parameters for the studied single-

crystal Ti alloy are determined based on a direct comparison between simulations 

and the experiments. It should be emphasized that the optimized set of parameters 
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representing the deformation behaviour of Ti alloy was obtained based on both 

micro-pillar-compression and nano-indentation experiments. 

 

Figure 5-16: Average stress-strain curves obtained with FE simulations for 

different contact conditions 

5.4.1 Elastic properties 

Elastic properties of the single-crystal Titanium alloy are represented by three 

material constants,    ,    ,     as given in equation 3-39. Two different sets for 

those constants are considered (Table 5-4). The first set of elastic parameters was 

obtained using ab-initio simulations performed at 0 K for b.c.c. Ti alloys (Tegner et 

al., 2012). The second set was obtained from the experimental results for the b.c.c. 

titanium single-crystal performed at high temperature (1273 K) using resonant-

ultrasound spectroscopy (Ledbetter et al., 2004). To find the material‘s elastic 

constants for Ti alloy at room temperature (300 K), at which the micro-pillar-

compression experiments were performed, these two different sets were considered. 

The dependence of elastic constants on temperature was studied for different 

metals by Varshni (1970). This study demonstrated that elastic constants decreased 

linearly with an increase in temperature except at very low temperatures (0-50 K) 

where an exponential change occured. As a first estimate, the two different sets 

were interpolated linearly; the obtained values are presented in Table 5-4. Since the 

stress-strain curve obtained from the micro-pillar-compression experiment was 
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affected by misalignment between the indenter‘s tip and the pillar‘s top surface as 

explained in Section 5.2.3, the exact elastic parameters cannot be predicted 

properly from this experiment. The first estimation of the material‘s elastic 

parameters therefore was tested with the data from the nano-indentation 

experiments, with the slope of the unloading curve describing the material‘s elastic 

behaviour. The FE simulations (see Chapter 6) demonstrated that using those 

elastic parameters the slope of the unloading curve in experiments was predicted 

accurately. It was, therefore, decided to use those elastic parameters in this thesis 

without any additional corrections. Based on these elastic constants, the value of 

shear modulus    presented in Table 5-4 was calculated using the equation 

proposed by Schulze (1979) in the following form: 

   √              . 5-2 

Table 5-4: Elastic constants for Ti alloy  

 T 

(K) 

    

(GPa) 

    

(GPa) 

    

(GPa) 

A (Anisotr. 

fac.) 

   

(GPa) 

Ab-initio sim. 0 137.00 130.00 46.00 13.14 12.68 

Experiments 1273 97.70 82.70 37.50 5.00 16.77 

Interpolated (linear) 300 127.74 118.85 43.99 11.22 13.98 

The sensitivity analysis of material‘s plastic parameters is performed in the next 

section describing how parameters giving the best fit to the experimental stress-

strain curves were obtained through multiple trial runs. The influence of different 

material‘s plastic parameters such as  ,   ,   ,    and    on the stress-strain curve 

of the deformed pillar is studied for pillar A with    =0.3. 

5.4.2 Effect of strain-rate sensitivity  

The strain-rate sensitivity   of the material should be determined for each set of 

slip systems for evolution of the plastic strain-rate   ̇ in equation 3-63. It is worth 

mentioning that the reference strain-rate   
 ̇  in this equation is taken as          
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since the compression experiments were performed approximately at that strain-

rate. Smaller values of   such as 1, 2 or 5 represent a strain-rate-sensitive, whereas 

larger values such as 20, 50, 100 correspond to a strain-rate-insensitive model. As 

the rate sensitivity of single-crystal Ti alloy, from which the pillars were produced, 

is not known, this was assumed to be strain-rate insensitive, hence   was selected 

as large as possible to represent the material behaviour close to rate-independent 

plasticity. It was, therefore, first, assumed that   = 100, and both micro-pillar-

compression and nano-indentation simulations were performed with that level in 

parallel. It was observed that while the former simulations ran smoothly, very long 

computational times were required in the latter case due to convergence problems. 

The reason for this was a noticeable difference in strain gradients imposed in those 

two different processes. It seemed therefore plausible to select this parameter based 

on the nano-indentations simulations that required reasonably well computational 

stability. The computational analysis presented in Section 6.4.1 suggested   to be 

15 and this value still corresponds to the strain-rate insensitive material‘s behaviour 

of the single-crystal Ti alloy. The extended information about selection of   is 

given in the next chapter, where the sensitivity to   in nano-indentation simulations 

is investigated thoroughly. 

 

Figure 5-17: Average stress-strain curves obtained with FE simulations of 

micro-pillar compression for different values of   



Chapter 5. Size effects in beta-phase Ti alloy 

 

119 

 

The stress-strain curves for different   values obtained for micro-pillar 

compression are presented in Figure 5-17. A decrease in value of   moves this 

curve upwards. This can be explained by the fact that for larger values of  , which 

represent rate-independent behaviour, the hardening saturates earlier compared to 

that of smaller values of n, which represent rate-sensitive behaviour. It is worth 

mentioning that the softening part in the curves (after the ultimate tensile strength 

is reached) arises due to geometrical softening (similar to Figure 5-15).  

5.4.3 Effect of Taylor coefficient 

The    value in Equation 3-50 is an empirical coefficient in the well-known Taylor 

relation (Taylor, 1938) describing the shear flow-stress in terms of dislocation 

density. The Taylor coefficient enters in the constitutive equations through 

MBSGCP theory (Section 3.3). 

In this section, the influence of    value on the stress-strain behaviour of the 

single-crystal micro-pillar is studied. Three different values of    were considered, 

viz. 0.0, 0.8 and 0.16. Here,    = 0.0 represents the solution obtained using CP 

while other values represent the solution obtained using MBSGCP. Figure 5-18 

demonstrates how different values of    affect a simulated stress-strain behaviour 

of the micro-pillar. It is clear that with an increase in the value of   , the flow-

stress increases after strain of 5% since the contribution of strain gradients to the 

overall response is negligibly small at the beginning of deformation and increases 

gradually with its increase. In the micro-pillar-compression experiment, 

deformation was macroscopically homogenous, which, in turn, led to a lower effect 

of strain gradients. On the other hand, gradual development of strain gradients 

justifies that deformation was microscopically heterogeneous. Similar observations 

were also made by Maass et al. (2007) experimentally and by Zhang and Aifantis 

(2011) numerically, where the presence of GNDs in the micro-pillars was justified 

though it vanishes macroscopically. On the other hand, strain gradients are more 

profound in nano-indentation experiments compared to micro-pillar experiments. 

The value of    was therefore determined using nano-indentation experiments. 

Through multiple trial runs,    = 0.7 was found to give a reasonably good 
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agreement by comparing the results of numerical models with the experiments 

(Section 6.5). This value will be used in the simulations described below. 

 

Figure 5-18: Average stress-strain curves obtained with FE simulations for 

different values of    

5.4.4 Effect of other plastic parameters 

In this section, the influence of   ,    and    on the stress-strain relationship for 

simulation of micro-pillar-compression is analysed. The stress-strain curves for 

different    values for a constant value of              are presented in Figure 

5-19. An increase in    value moves this curve up. This can be explained by the 

fact that larger force value is needed to activate slips systems for larger value of   . 
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Figure 5-19: Average stress-strain curves obtained with FE simulations for 

different values of    

The influence of saturation stress    and initial hardening modulus     on the stress-

strain curve is in the same line with   . An increase in the value of    for a constant 

value of            leads to a shift of the curves upwards as larger force values 

are needed to saturate the hardening behaviour of material for larger    values 

(Figure 5-20 (a)). That also results in an increase in the plastic work done by the 

indentation process. Likewise, with an increase in the value of     for constant 

values of           and           , the stress value increases at the same 

strain value, hence the amount of work done by the indenter tip increases (Figure 

5-20 (b)). 

 
(a) 

 
(b) 
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Figure 5-20: Average stress-strain curves obtained with FE simulations for 

different values of    (a) and    (b) 

5.4.5 Determination of material parameters of single-crystal Ti alloy 

In this section, through multiple trial runs the material parameters of the single-

crystal Ti alloy are determined using the MBSGCP theory by comparing the 

simulated stress-strain responses with those from the experiments (Figure 5-3). It 

should be emphasized that the general trends of the curves obtained in the previous 

section provide hints to determine the material parameters. Different cases are 

considered below.  

In the first case, the flow curve of pillar C was used to identify plastic parameters. 

As demonstrated in Figure 5-21, a reasonably good match between experiments 

and simulations was obtained for pillars B and C using the parameters presented in 

Table 5-5; however, prediction of the stress-strain relation prediction for pillar A 

was unsuccessful. Different cases were also considered, for instance, the 

experimental flow curves of pillars B and C were also considered individually to 

identify plastic parameters. It was recognized that fitting the numerical stress-strain 

curve of all the pillars to the experimental results using the MBSGCP theory was 

not possible. These observations led to the conclusion that different approaches 

should be considered to describe the size effects observed in the experiments. In 

the next, the influence of production of pillars on the size effect is discussed.  

Table 5-5: Crystal-plasticity parameters used in FE simulations to determine 

material plastic parameters of Ti alloy   

Plastic parameters 

(PAN model) 
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Figure 5-21: Average stress-strain curves obtained from experiments and FE 

simulations of pillars A, B and C using MBSGCP theory 

The focussed ion beam (FIB) technique is the most prevalent method for producing 

small-size pillars to investigate the influence of sample dimensions on mechanical 

properties. In the FIB method, Ga
+
 ions are bombarded and implanted to fabricate 

the pillars. This process inevitably introduces surface dislocation loops and 

precipitates also instigating surface amorphization. The presence of FIB-induced 

defects led several researchers to infer that the fabrication process may play a 

significant role in the observed size effects. For instance, Bei et al. (2007)  

proposed that increased strength of a pillar with a decrease in its size would be a 

consequence of the increased volume fraction of the FIB-damaged layer with a 

decrease in pillar diameter. Similarly Kiener et al. (2007) investigated Ga
+
 ion-

induced damage by means of TEM investigation and Monte Carlo simulations. In 

this study a non-negligible influence of the ion damage in the order of 100 MPa 

assuming Taylor hardening for submicron-sized samples was reported. To 

understand the importance of fabrication technique on the size effects, Jennings et 

al. (2010) developed a FIB-less method to produce nanopillars. In this method, 

arrays of vertically oriented gold and copper nanopillars were created based on 

patterning polymethylmethacrylate by electron-beam lithography and subsequent 

electroplating into the provided template. In this technique the pillars were 

produced intentionally with none zero dislocation densities to compare and contrast 
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them with the pillars produced with FIB, since the pillars without dislocations 

would render theoretical strengths regardless of size. This study demonstrated that 

nano-size pillars created without Ga+ bombardment (containing initial dislocations 

with the density of the same order with that of the pillars created with Ga+ 

bombardment) exhibited an identical size effect with the pillars produced with the 

FIB method. This study evidently suggested that the observed size effect in small-

size pillars is a function of microstructure rather than the fabrication technique. The 

production method of pillars, therefore, is not taken into account while 

reformulating the constitutive equations. 

The influence of microstructure on strength of the nano- and micro-pillars was 

studied by a few researchers. The experimental study of Maass and co-workers 

(2007) revealed that a significant density of geometrically necessary dislocations 

was generated during compression and giving a rise to strain gradients; this was 

also demonstrated by the discrete-dislocation analysis (Guruprasad and Benzerga, 

2008; Akarapu et al., 2010). On the other hand, Maass et al. (2008) investigated the 

initial microstructure of undeformed Au, Ni, Cu and NiTi micro-pillars using a 

white-beam Laue micro-diffraction technique. In this method, continuous streaking 

of Laue diffraction peaks was related to internal strain gradients and discontinuous 

streaking to the presence of dislocation walls as white-beam Laue diffraction 

patterns are sensitive to microstructure (Maass et al., 2009; Maass et al., 2007; 

Maass et al., 2006). In the cited work, anisotropic peak shapes of several micro-

pillars were analysed as indicators of strain gradients. This study suggested that 

strain gradients existed predominantly in the initial microstructure of micro-pillars 

with diameters less than 5 μm, consistent with the observations of Maass et al. 

(2006) and it was also suggested that a higher surface-to-volume ratio in smaller 

pillars increased the occurrence of pre-existing strain gradients. The following may 

give an idea about these observations. During the fabrication process of pillars, e.g. 

with the FIB method, pillars become work-hardened, hence finite stresses evolve in 

their body. It is well known that traction-free surfaces of pillars dictate a zero stress 

value on their surfaces. This difference in the stress distribution results in stress 

gradients, i.e. strain gradients in the body. For instance, for the smaller pillar size, 
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where the traction-free surfaces are closer to the pillar‘s axis, physically (and 

numerically) strain gradients become more pronounced compared to larger pillar 

sizes. Accordingly, the smaller the size of pillar is, the higher the density of GNDs 

and thus higher the pillar strength. Based on these observations in this study, an 

enhanced model of strain gradient crystal-plasticity (EMSGCP) theory is suggested, 

where the initial microstructure of pillars as a function of surface-to-volume ratio is 

accounted for. This multi-scale continuum theory promising to explain the size 

effect for different micron-size pillar characteristics bridges the gap between the 

discrete-dislocation-dynamics (DDD) theory (Tang et al., 2007; Deshpande et al., 

2005; Benzerga and Shaver, 2006), where simulations are performed at strain-rates 

several orders of magnitude higher than those in real experiments, and the classical 

continuum plasticity theory, which cannot explain the dependence of mechanical 

response on a specimen‘s size since there is no length scale in its constitutive 

description (Raabe et al., 2007; Wang et al., 2004). The presented model here 

complies with the recent studies of Fan et al. (2012) and Hurtado and Ortiz (2012), 

where the contribution of surface effects to the size effect was demonstrated using 

DDD and non-local continuum models, respectively.  

Enhanced modelling of strain gradient crystal-plasticity theory  

EMSGCP theory requires the constitutive equation relating the incipient density of 

dislocations with the initial strengths of the slip systems (CRSS,    or   
      ). 

The following equation, which has a similar structure with the Taylor equation, is 

suggested. 

    √       5-3 

where   is a constant and taken as 0.0392 MPa.mm, and       is the incipient 

density of the dislocations. In the MBSGCP theory, the contribution of pre-existing 

strain gradients due to GNDs to the CRSS value is not accounted for, only the 

initial SSDs determine the initial shearing of the slip systems as shown in equation 

5-4.    
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        √        5-4 

In other words the pillars initially are assumed to be strain gradient free. In the 

EMSGCP theory, the pre-existing strain gradients in the pillar are accounted for by 

incorporating the contribution of GNDs in the overall hardening function of the slip 

systems. However, the interaction between SSDs and GNDs in the constitutive 

equation needs to be identified first.  

The following general expression for the flow-stress accounting for the coupling 

between SSDs and GNDs has been proposed by Columbus and Grujicic (2002):  

  [    
         ]

   ⁄
  5-5 

where    is the interaction coefficient,    and    are given by the Taylors 

hardening law as  

      √              √     5-6 

Different values of    were investigated in the literature. Two mostly considered 

values for    are 1 and 2, where  

      corresponds to a superposition of contributions of SSDs and GNDs 

to the flow-stress, where        √   √  ) and the total dislocation 

density    is expressed as the sum of square roots of SSD and GND 

densities,     √   √    . This type of expression for the flow-stress 

as a coupling of SSDs and GNDs was studied by Columbus and Grujicic 

(2002)  

      corresponds to a simple arithmetic sum of  SSD and GND densities, 

i.e.         . The flow-stress is expressed as        √      . 

This type of expression for the flow-stress was studied by many authors 
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(Abu Al-Rub and Voyiadjis, 2004; Stelmashenko et al., 1993; Ma and 

Clarke, 1995; Busso et al., 2000).    

Another way of a coupling between SSD and GND densities was proposed by 

Fleck and Hutchinson (1997), where    equals to a harmonic sum of    and   , i.e. 

   √           . These different types of interactions between SSDs and 

GNDs in the formulation of flow stress were also considered to express CRSS. The 

followings can be written when      1 and 2, respectively. 

     
        √        √ 

 ̅

 ̅
           5-7 

     
        √        

 ̅

 ̅
            5-8 

In these equations the contribution of pre-existing GNDs is correlated with the ratio 

of normalized surface (  ̅ ) to normalized volume (  ̅ ) of micro-pillar as 

complementary to the approach discussed. The surface and volume of the pillar are 

normalized by the corresponding values of the benchmark pillar C. With this new 

reformulation of the CRSS, the plastic parameters of the single-crystal Ti alloy for 

different pillar sizes are given in Table 5-6, where the given density values are 

compatible in magnitude with those in (Norfleet et al., 2008). It is worth 

mentioning that the saturation stress value (  
      ) is also reformulated in a same 

manner since the pre-existing strain gradients do also influence the break-through 

stress where large plastic flow initiates. 

The FE simulation results for different pillar sizes using       1 and 2 are 

presented in Figure 5-22. These results demonstrate that the experimental stress-

strain curves of pillars A, B and C are predicted appropriately using both 

interaction coefficients. In this study, it is decided to use     ; hence only 

equation 5-8 will be used below. It should be emphasized that, as expected from 

the continuum nature of the constitutive model, the discrete strain bursts observed 
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in the experiments are not captured by the calculations. However, the overall trends 

with regards to hardening rates and the yield stresses are well captured using the 

EMSGCP theory.  

Table 5-6: EMSGCP parameters used in FE simulations for different    

values  

Pillar type 
 ̅

 ̅
 

     1      2 

                     

                       

                       

                      

Pillar A 2.033 
  

                 
               

  
                 

               

Pillar B 1.182 
  

                 
               

  
                 

               

Pillar C 1.0 
  

                 
               

  
                 

               

 

 
(a) 
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(b) 

Figure 5-22: Average stress-strain curves for pillars A, B and C obtained from 

experiments and with FE simulations using EMSGCP theory with      1 (a) 

and      2    

At the next step, a case study is performed where a cylindrical pillar with an 

orientation of (0.538 0.532 0.652) is compressed (Figure 5-23). The pillar‘s 

dimensions are 0.955 μm in diameter and 2.73 μm in height. This study enables us 

to examine, on the one hand, accuracy of the proposed the EMSGCP theory and, on 

the other hand, universality of the theory for different pillar geometries. The FE 

model was developed consistent with the considerations explained in Section 5.2. 

The normalized surface-to-volume ratio of the cylindrical pillar is 2.055, and the 

corresponding material parameters used in the simulations are presented in Table 

5-7. Our first FE simulation suggested a misalignment between the indenter‘s tip 

and the cylindrical pillar since the elastic modulus was underestimated in the 

experiment (Figure 5-24). It was found that with an introduction of misalignment 

of 2.5° into the model, the elastic modulus of the pillar was estimated accurately; 

hence, the found misalignment was adopted in the FE model. As demonstrated in 

Figure 5-24, a reasonably well match was obtained between the experiment and the 

simulation using the EMSGCP theory, justifying the accuracy of the proposed 

model. 



Chapter 5. Size effects in beta-phase Ti alloy 

 

130 

 

It should be emphasized that geometrical softening observed in the experiment was 

not captured in simulations; hence, the flow curves in Figure 5-24  start diverging 

after initial strain of 2.2%. It is important to underline that geometrical softening 

observed in the experiments and in the simulations are not similar to each other. In 

the experiment, the upper surface of the pillar starts to slip w.r.t. the indenter‘s tip, 

and at some instance a part of the pillar begins to shears off at certain plane, most 

likely where the Schmid factor is the highest. This leads to geometrical softening in 

the experiment due to decrease in cross-sectional area (Figure 5-24). On the other 

hand, in the simulations, geometrical softening arises only due to slip between the 

upper surface of the pillar and the indenter‘s tip, where no explicit tearing of the 

material occurs (as in the experiments) since such a mechanism is not introduced 

into the model. This pronounced difference between the experiments and the 

simulations results in deviation of the obtained stress-strain curve. However, this 

occurs beyond the yield point as seen from Figure 5-24, thereby the first part of the 

stress-strain curve obtained from the simulations do represent the experiments 

accurately. It should be mentioned that in the case of compression of a pillar with a 

stable orientation such as (001), where slip systems have an identical Schmid factor, 

the specimen do not undergo any buckling during compression (Raabe et al., 2007); 

hence, the above-mentioned difference between the experiment and simulation 

does not appear. For such orientations, it is more likely to accurately predict the 

material response numerically even at higher strain values. It must be emphasized 

that the continuum crystal plasticity approach presented here is limited to interpret 

the experimental results up to the development of planar slip nucleation, beyond 

this point the pillar‘s behaviour cannot be predicted numerically.  
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Figure 5-23: (a) Dimensions of cylindrical micro-pillar (in µm); (b) 3D FE 

model of micro-pillar-compression experiment 

Table 5-7: EMSGCP parameters for modelled cylindrical pillar  

Pillar type  ̅

 ̅
   

         
       

Pillar D 2.055                 

 

 

Figure 5-24: Average stress-strain curves for pillar D obtained from 

experiment and with FE simulations for different misalignments  
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5.5 Numerical predictions of size effects in pillars 

In this section, the size effect in the single-crystal Ti alloy is studied, with the 

factors such as different aspect ratios, misalignment in the test system (   =1 is 

therefore used in the followings, see Section 5.2.3) and taper of pillars, which may 

influence the size effect, are eliminated. On the other hand, that leads fully 

homogenized deformation macroscopically; hence, the average stress and strain 

values whose definitions were given in Section 5.1.2 corresponds to true stress and 

true strain values, respectively in the followings.  Pillars having a square cross-

section with an edge length of 1, 2, 4, 8 and 16 μm were modelled. The height-to-

edge length aspect ratio was fixed at 2.1 in all the models. The material‘s plastic 

parameters for different pillar sizes are presented in Table 5-8. Consistent with the 

mesh-sensitivity analysis performed in Section 5.2.1, the mesh size of 210 nm × 

210 nm × 210 nm was used to discretize the pillars. The crystal was oriented so that 

the micro-pillar axis was in the (010) direction enabling to avoid geometrical 

softening in simulations. For such an orientation of the crystal, four slip systems, 

viz. the fifth, sixth, seventh and eighth are expected to be activated according to the 

Schmid‘s law (see Table 5-9). 

Table 5-8: EMSGCP parameters for different sizes of pillars   

Pillar 

type 

 ̅

 ̅
 

Pillar 

dimensions 

(width × length 

× height, μm) 

  
         

       

Pillar E 2.208 1 × 1 × 2.1                 

Pillar F 1.104 2 × 2 × 4.2                 

Pillar G 0.552 4 × 4 × 8.4                 

Pillar H 0.276 8 × 8 × 16.8                 

Pillar I 0.138 16 × 16 × 33.6                 

Pillar J 0.069 32 × 32 × 67.2                 

Table 5-9: Schmid factors of different slip systems for (0 1 0) crystallographic 

orientation 
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5.5.1 Case studies 

This section starts with case studies to demonstrate the influence of boundary 

conditions and crystal orientation on the evolved strain gradients during loading 

(compressed to 76% of its height at full loading). To achieve this, following cases 

were studied.  

 Case A: Pillar E was deformed by fixing its bottom surface only in the 

loading direction and allowed to move in the lateral directions. This enabled 

us to obtain a homogenous, uniform uniaxial strain and stress distribution 

(Figure 5-25 (a, b)), which, in turn, generates a zero plastic strain gradient 

as seen in Figure 5-25 (c).    

 

Schmid factor

number (0 1 0)

1 1 1 2 1 1 -1 0.236

2 -1 1 2 1 -1 1 -0.236

3 1 -1 2 -1 1 1 -0.236

4 1 1 -2 1 1 1 0.236

5 1 2 1 1 -1 1 -0.471

6 -1 2 1 1 1 -1 0.471

7 1 -2 1 1 1 1 -0.471

8 1 2 -1 -1 1 1 0.471

9 2 1 1 -1 1 1 0.236

10 -2 1 1 1 1 1 0.236

11 2 -1 1 1 1 -1 -0.236

12 2 1 -1 1 -1 1 -0.236

Slip system

plane direction
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Figure 5-25: Distribution of stress values in the loading direction (a), total 

cumulative shear strains on all slip systems (sum of the absolute values of 

shear strains in all slip systems) (b) and sum of the absolute values of effective 

density of GNDs in all slip systems (∑    
   

 ) (c) obtained with FE simulations 

for pillar E in case study A  

 Case B: The bottom surface of Pillar E was fixed in all directions. This 

leads to a heterogeneous deformation as seen from in Figure 5-26 (a, b) 

where the stress distribution in the loading direction and total cumulative 

shear strains on all slip systems (sum of the absolute values of shear strains 

in all slip systems) were non-uniform. Also due to variation in the obtained 

total shear strain values, GNDs were generated in the deformed body as 

demonstrated in Figure 5-26 (c) where the effective density of GNDs on all 

slip systems (sum of the absolute values of effective density of GNDs in all 

slip systems) were observed to be non-uniform and mostly populated 

around the bottom corner nodes. 

 

Figure 5-26: Distribution of stress values in the loading direction (a), total 

cumulative shear strains on all slip systems (b) and sum of the absolute values 
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of effective density of GNDs in all slip systems (c) obtained with FE 

simulations for pillar E in case study  B 

To fully understand the developed heterogeneous deformation, total accumulated 

plastic strain values in the loading direction and evolved GNDs on Y-Z center 

plane at half- (t = t1)  and full-loading (t = t2)  were analyzed. Figure 5-27 clearly 

demonstrated that with an increase in the amount of deformation, the accumulated 

plastic strain increased and more GNDs were evolved. Especially the distribution 

of 22 at full loading (t = t2) indicated that the plastic strain was confined to the 

center of the plane and its variation was much more significant between center and 

bottom parts compared to other areas. The distribution of  ∑    
   

  also justified 

this observation that GNDs were mostly populated on the respective areas (Figure 

5-27 (b)). At this point, to demonstrate the proper implementation of strain gradient 

theory, the variation of shear strain values (|(22)
i+1

-(22)
i
|) and  ∑    

   
  on path X-

Y (Figure 5-27) were plotted, where i corresponds to number of nodes on the path 

(Figure 5-29). Here the first parameter characterizing roughly the gradients in the 

total plastic strain value in the loading direction should be in the same line with the 

latter parameter, which is in fact the measure of shear strain gradients. Figure 5-29 

showed that the general trend of these two curves at half- and full-loading 

resembles to each other confirming that the strain gradient theory used in this study 

addressed the variation in the shear strain values accurately.   
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(a) 

 

(b) 

Figure 5-27: Distribution of accumulated plastic strain values in the loading 

direction (left) and sum of the absolute values of effective density of GNDs in 

all slip systems (right) at half- (t=t1) (a) and full-loading (t=t2) for different 

mesh sizes (b) on the mid-plane of  pillar E obtained with FE simulations in 

case study B 

The influence of mesh on the calculated strain gradients was also analyzed. Figure 

5-27 (b) clearly indicates that the distribution of ∑    
   

  were not identical when a 

different level of mesh refinement is used in the discretization of the deformed 

body, even though the strain distribution for both were very similar to each other. 

Figure 5-28 demonstrated the computed sum of the absolute values of effective 

density of GNDs in all slip systems at full-loading (t=t2) on path X-Y (Figure 5-27) 

for different mesh sizes, where mesh C corresponds the coarsest mesh and mesh A 
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and mesh B are demonstrated in Figure 5-27. This plot also confirmed the mesh 

dependency of the computed strain gradients. The study of Cheong et al. (2005) 

also revealed that in the case of predominance of GNDs over SSDs, the structure 

response became increasingly mesh-sensitive. The same mesh size was therefore 

used in the discretization of the different size of pillars in this study.     

 

Figure 5-28: The plot of the sum of the absolute values of effective density of 

GNDs in all slip systems (∑     ) at full-loading (t=t2) on path X-Y (Figure 

5-27) obtained with FE simulations for different mesh sizes 

 

(a) 
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(b) 

Figure 5-29: The plot of variation in the accumulated plastic strain values in 

the loading direction |(22)
i+1

-(22)
i
| (a) and sum of the absolute values of 

effective density of GNDs in all slip systems (b)  at half- (t=t1) and full-loading 

(t=t2) on path X-Y (Figure 5-27) obtained with FE simulations in case study B 

 Case C: Compared to case B, the compressed crystal was rotated to (0.489 

0.443 0.751) orientation in this case study. As seen in Figure 5-30 (a), due 

to slip between pillar‘s upper surface and the indenter, the pillar‘s two 

corners were in tension, while the others were in compression. The resulting 

total shear strain values (on all slip systems) were significant between the 

upper left corner and lower right corner of the pillar (Figure 5-30 (b)) as 

most of the load was carried with this portion. The shear strain gradients 

were therefore larger on these areas (Figure 5-30 (c)). The distribution of 

22 and ∑    
   

  values on Y-Z center plane at full-loading also clearly 

indicated that the shear activity and its variation were confined to this 

region and hence the gradients were there significant (Figure 5-31). 
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Figure 5-30: Distribution of stress values in the loading direction (a), total 

cumulative shear strains on all slip systems (b) and sum of the absolute values 

of effective density of GNDs in all slip systems (c) obtained with FE 

simulations for pillar E in case study  C 

 

Figure 5-31: Distribution of accumulated plastic strain values in the loading 

direction (left) and sum of the absolute values of effective density of GNDs in 

all slip systems (right) on the mid-plane of pillar E obtained with FE 

simulations in case study C 

5.5.2 Size effects in different size of pillars 

The obtained true stress-strain curves for Ti micro-pillars E, F, G, H and I are 

compared in Figure 5-32. Yield strength of micro-pillars is observed to increase 
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with a decreasing pillar size, providing evidence of a strong size effect. It may be 

noted that the phenomena is more pronounced for pillars of smaller sizes compared 

to those of larger ones. This figure also suggests that no size effect is observed for 

pillars H and I since their flow curves are almost identical, implying that the effect 

of initial microstructure for both pillars is very similar. The flow curve of pillar I, 

indeed, forms a lower bound for all the flow curves since its CRSS value, 152 MPa, 

is very close to the corresponding value obtained from the nano-indentation 

experiments, 150 MPa, where the influence of incipient strain gradients was 

negligibly small (Figure 5-32).  From these results it was concluded that the 

―smaller is stronger‖ phenomena was observed for pillars E, F, G and H, and pillar 

H had the critical size, with no observable size effect for larger pillar sizes. The 

edge length of this pillar, 8 μm, is therefore considered as the critical edge length   , 

below which the relative change in the corresponding stress value is less than 5%. 

The value of critical resolved shear stress can be scaled with respect to the diameter 

  of the micro-pillar using the following power-law form: 

    

  
  (

 

 
)
 

  5-9 

where    is the shear modulus,   is the Burgers vector magnitude, and   and   are 

constants. Dou and Derby (2009) obtained the universal constants        and 

          by using a least-squares fit to the experimental data for Al, Au and Ni 

micro-pillars. The corresponding curve for Ti alloy is plotted using the material 

parameters of pillars E, F, G and H (it should be emphasized that one of the edge 

lengths of square pillars is used to replace the diameter term in equation 5-9). It is 

worth mentioning here that is since the size effect was not observed for pillars H 

and I, pillar I was not considered in the fitting. As seen from the logarithmic plot 

shown in Figure 5-33, the obtained constants are 0.63 and -0.40 for   and  , 

respectively. A comparatively good agreement was achieved for constant  , 

whereas a lower value of constant   was predicted, i.e. the curve for Ti alloy is not 

steep as compared to the universal curve. This difference can be ascribed to the 
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difference in the range of pillar size considered: while for the universal curve both 

nano and micron-size pillars were considered to determine the constants, here only 

micron-size pillars were considered.  

 

Figure 5-32: True stress-strain curves for pillars E, F, G, H and I obtained 

with FE simulations using EMSGCP theory and for pillars E and F using CP 

theory 

 

Figure 5-33: Logarithmic plot of CRSS normalized with    versus l 

normalized with   for pillars E, F, G and H  

In Figure 5-32 the solutions for pillars E and F obtained using the CP theory with 

incipient strain gradients accounted for, but not strain gradients introduced during 
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deformation are also plotted. In these solutions, however, the incipient strain 

gradients are considered while obtaining values of CRSS (  
      ) for slip systems. 

It is observed that the hardening rate for the CP theory based results is small and 

border on ideal plasticity, this can be explained by the used PAN hardening model 

(Figure 3-10). However, the solutions obtained using the EMSGCP theory 

demonstrate that the hardening rates are higher due to the strain gradients 

developed during deformation. To quantify the evolved strain gradients as a 

function of pillar size, the work-hardening rate (WHR) for pillars E, F, G and H 

were determined (Table 5-10). The WHR was defined as a slope of the curve 

between true stress-strain data values for strains of 15 and 20%. Interestingly, a 

significant increase in WHR is observed with a decreasing pillar size, with a best fit 

line of WHR   ( )-0.675 
justifying the fact that size effect is pronounced in the WHR 

as well (Figure 5-37). The evolved strain gradients for different size of pillars were 

also investigated. To explain it properly, firstly the accumulated plastic strain 

values in the loading directions (22) for the mid-plane of pillar E, F and G at full 

loading (strain of approx. 27%) were compared. Figure 5-34 demonstrated that the 

values were similar to each other. As mentioned earlier the same mesh size was 

used in all the pillars to eliminate the influence of mesh on the predictions since the 

calculated strain gradients are mesh dependent (see case study B in Section 5.5.1). 

The variation of 22 values on path X-Y (Figure 5-34) were plotted to get a rough 

idea about the amount of strain gradients evolved during loading. Figure 5-35 

demonstrated that they were largest for the smallest pillar and decreases with an 

increase in the pillar‘s size. The distribution of the sum of the absolute values of 

effective density of GNDs in all slip systems (∑    
   

 ) in Figure 5-36 also supports 

this observation. The contour plots in this figure indicated that the GNDs were 

significant for pillar E, modest for pillar F and lowest for pillar G. Also the GNDs 

were mostly populated between the middle and bottom sections of the pillars‘ mid-

planes since the variations in total shear strain values on these regions were more 

significant as demonstrated earlier in Figure 5-35. It should be emphasized that 

although the strain distributions of different pillar sizes were similar to each other, 

their gradients, i.e. their variation through the dimensions, became different due to 
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their different geometrical sizes. These results justify that the smaller the pillar, the 

higher strain gradients evolve during deformation.   

Table 5-10: Work-hardening rates for pillars of different sizes  

Pillar Work-hardening rate (MPa) 

Pillar E 981 

Pillar F 659 

Pillar G 480 

Pillar H 229 

 

Figure 5-34: Distribution of accumulated plastic strain values in the loading 

direction at full loading obtained with FE simulations for mid-plane of pillars 

E, F and G (consider different length scales) 
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Figure 5-35: The plot of variation in the accumulated plastic strain values in 

the loading direction |(22)
i+1

-(22)
i
|  at full-loading on path X-Y (Figure 5-27) 

obtained with FE simulations for pillars E, F and G   

 

Figure 5-36: Distribution of the sum of the absolute values of effective density 

of GNDs in all slip systems at full loading obtained with FE simulations for 

mid-plane of pillars E, F and G (consider different length scales) 
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Figure 5-37: Logarithmic plot of work-hardening rate (WHR) versus l for 

pillars E, F, G and H  

5.5.3 Sensitivity of characteristic length  

In the previous section, the range of pillar sizes, where the size effect is significant, 

is determined. For the Ti alloy the edge length of 8 μm is observed to be the critical 

length (  ), below which effectively no size effect is observed. Here, the sensitivity 

of this critical length is investigated with respect to different material parameters 

representing different material characteristics, e.g. CRSS, K and dislocation 

interaction coefficient. Since CRSS (  
      ) is a function of incipient density of 

SSDs (      ) and incipient density of GNDs (      ) as demonstrated in equation 

5-8, different cases are considered here for varying relative magnitudes of    and 

  . In addition to already determined values of densities presented in Table 5-6, 

labelled as ―Present‖, two cases with different density values were also analysed as 

shown in Table 5-11. In the first case        was kept the same and        was 

decreased, whereas in the second case        was kept the same, while        was 

decreased.  

The change in the CRSS value with the edge length of pillars E to J for different 

cases is shown in a logarithmic plot in Figure 5-38. This plot reveals that the 
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critical edge length varies for different cases. For instance,    is 16 μm for case 1 

and the corresponding value for case 2 is 4 μm, whereas, as mentioned above,    is 

8 μm for the present case. This result suggests that a decrease in        causes an 

increase in   ; hence, the size effect can be observed for a larger range of pillar 

edge length. On the other hand, a decrease in        leads to a smaller   . In the 

case of smaller values of        and larger values of       , the size effect is 

observed for a larger range of pillar size and similarly in the case of larger values of 

       and smaller values of       , the size effect is observed for a smaller range 

of pillar size.  

Table 5-11: EMSGCP parameters for different cases  

Cases Density values,           

Present 
             

            

Case 1 
           

             

Case 2 
            

            

 

Figure 5-38: Logarithmic plot of CRSS versus l for different cases (see Table 

5-11) 
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The sensitivity of    was also investigated for other material properties - K and β. 

The former one correlates the initial strength of slip system to the incipient density 

of dislocations and the latter one represents the sensitivity to coupling between 

       and       . In the first study here in addition to K = 0.04 that was used for 

the above analysis, K = 0.02 and 0.08 are also considered. The CRSS value for 

pillars E to J as a function of pillar edge length in a logarithmic plot is shown in 

Figure 5-39. This plot indicates that    is      for all K values, implying that    is 

not sensitive to parameter K.  

To see the influence of    on   , two different values of    - 1 and 2 - were 

considered. Figure 5-40 demonstrates the corresponding CRSS value for pillars E 

to J as a function of pillar edge length in a logarithmic plot. This plot suggests that  

         for    = 1 and, as known from the previous analysis,         for    

= 2. It is worth mentioning that the CRSS value of a pillar with dimensions of 32 

μm × 32 μm × 67.2 μm is checked. This demonstrates a less than 5% difference in 

CRSS value compared to corresponding value of pillar J, hence justifying that 

         for    =1. Figure 5-40 suggests that an increase in the    value leads to 

a decrease in   . Abu Al-Rub and Voyiadjis (2004) demonstrated that the smaller 

the interaction coefficient   , the more significant interaction between SSDs and 

GNDs. Based on this it is concluded here that the stronger interaction of incipient 

SSDs and incipient GNDs leads to a larger range of pillar size with the size effect. 
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Figure 5-39: Logarithmic plot of CRSS versus l for different   values  

 

Figure 5-40: Logarithmic plot of CRSS versus l for different    values 

5.5.4 Influence of size effect on local properties 

In this section the change in local mechanical properties of pillar with a change in 

pillar size was investigated. Figure 5-41 compares the calculated contour plots on 

deformed shape of the von Mises stress for the mid-plane of pillar E, F and G at 

full loading. The first noteworthy feature of the finite deformation is the barreling 

of pillars under compression regardless of the size. As expected, the stress values 

of smallest pillar are largest, and with an increase in the size a decrease in the 

obtained stress levels is observed. This can be explained by the fact that as the total 

density of dislocations is larger for smaller-size pillars, larger forces are required to 

move dislocations, leading to higher stress values in the body of the pillar.  
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Figure 5-41: Distribution of von Mises stress at full loading obtained with FE 

simulations for mid-plane of pillars E, F and G (consider different length 

scales) 

Compared to distribution of von Mises stress, a completely inhomogeneous 

distribution of shear-strains for different active slip systems is observed in pillar E 

(Figure 5-42). The contour plots in this figure suggest that the shear activity takes 

place basically on slip systems 5, 6, 7 and 8, whereas negligibly small shear 

happens on all other slip systems. This result complies with Table 5-9 where the 

Schmid factor was calculated before the start of deformation. This justifies that in 

the course of loading the local boundary conditions of each material point do not 

change since the deformation is macroscopically homogenous, i.e. the Schmid 

factor does not evolve with an increase in deformation.  
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Figure 5-42: Distribution of shear-strains ( ) for different slip systems at full 

loading from FE simulations on the mid-plane of pillar E 

5.6 Conclusions 

The performed micro-pillar compression experiment demonstrated that the size 

effect was observed in the beta phase of Ti-15-333, i.e. the material behaviour 

diverged from that of the bulk material. A 3D FE model of this experiment was 

developed to get an insight about the underlying reason for this phenomenon.  

At the first attempt, constitutive laws of the MBSGCP theory were used in the 

numerical model. However, as the CRSS values for slip systems in this theory are 

independent of the pillar size, this theory was found to be insufficient to explain the 

size effect. A novel enhanced model of strain gradient theory was suggested, where 

the initial microstructure of pillars as a function of the micro-pillar‘s surface-to-

volume ratio was accounted for, based on some experimental evidence (Maass et 

al., 2006; 2007; 2009). This multi-scale continuum theory bridges the gap between 

the discrete-dislocation-dynamics (DDD) theory, where simulations are performed 

at strain-rates several orders of magnitude higher than those in experiments, and the 

classical continuum-plasticity theory, which cannot explain the dependence of 

mechanical response on a specimen‘s size since there is no length scale in its 

constitutive description. The numerical results demonstrated that the experimental 
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stress-strain curves of pillars were predicted appropriately using the EMSGCP 

theory, which accounts for the incipient GNDs in the pillar‘s body. It was also 

demonstrated that, although deformation was applied uniaxially in the micro-pillar 

compression experiment, heterogeneity evolved during loading due to boundary 

conditions and orientation of the pillar itself, leading, in its turn, to strain gradients 

as also suggested by Zhang and Aifantis (2011) and Maass et al. (2007). These 

findings also justified that strain-gradient theories can be used to explain the size 

effect in micro-pillars

The edge length of the pillar, below which the relative change in the corresponding 

stress value was less than 5%, was considered as the critical edge length   . It was 

observed that    was a function of material parameters       ,        and   , 

whereas it was insensitive to parameter K.  

The next chapter aims to characterize the material behaviour of the Ti alloy using 

nano-indentation experiments, where the induced strain gradients during loading 

are more profound. The EMSGCP FE model of this experiment also enables to 

identify some material parameters of the studied alloy, e.g.        and   , which 

are difficult to obtain using micro-pillar compression experiments.  



 

 

 

Chapter VI  

6 FE model of nano-indentation 

experiments based on EMSGCP theory 

The goal of this chapter is to characterize the material‘s behaviour of Ti-15-3-3-3 at 

micron scale in nano-indentation experiment using the EMSGCP theory. In the 

previous chapter material parameters of the Ti alloy were identified by accounting 

for incipient strain gradients in the pillar sample. In micro-pillar-compression 

experiments, the studied volumes are not constrained by the surrounding material; 

however, in indentation experiments, deformation of indented volume of workpiece 

material is restricted by the neighbouring material. As the traction-free surfaces are 

sufficiently away in the nanoindentation sample, the effect of pre-existing strain 

gradients is insignificant, in contrast to the samples in micro-pillar-compression 

experiments. 

3D FE modelling of nano-indentation experiments is developed here using the 

EMSGCP theory. It should be emphasized that the EMSGCP theory degenerates to 

the SGCP theory in case of nanoindentation experiment model as the incipient 
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strain gradients are negligibly small (         ) in the indented workpiece 

material, as mentioned above, i.e.  ̅  ̅⁄  is effectively vanishes. This numerical 

model, on the other hand, enables us to characterize material properties of the 

single-crystal Ti alloy such as CRSS value, which cannot be directly determined 

from the load-displacement curve obtained in nano-indentation experiment due to 

its inherent smooth character, i.e. there exists no obvious transition from elastic to 

plastic deformation. The identified material parameter        also helps here to 

characterize the contribution of        and        to CRSS in micro-pillar-

compression experiment, where their relative magnitudes cannot be determined 

directly from this experiment. The investigation in this chapter sheds light on the 

characterization of the evolved strain gradients in the indented workpiece material 

during deformation, which cannot be achieved in micro-pillar-compression 

experiments, where the strain gradients induced in the course of deformation are 

less profound. 

In the first part of this chapter, details of the performed nano-indentation 

experiments are given, and the obtained load-displacement curves and surface 

profiles of indents are presented. In the second part, a FE model of nanoindentation 

experiments is discussed including mesh-sensitivity analysis and the appropriate 

selection of workpiece dimensions. This part is followed by determination of 

material parameters, including an extensive analysis of sensitivity of material 

parameters. Using the optimized set of material parameter, a comprehensive 

analysis of the mechanical behaviour of the single-crystal Ti alloy at nano scale is 

performed. In the final part of this chapter, a complete numerical analysis of the 

size effects in indentation is performed. 

6.1 Nanoindentation experiment 

Nanoindentation experiments on Ti-15-3-3-3 were performed at EMPA, 

Switzerland. Detailed information about the indented material is given in Section 

5.1.1. Ex-situ nanoindentation experiments with a SEM instrument have been 

performed using a commercial nano-indenter Hysitron UBI equipped with a 
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conical indenter (tip radius: 1 µm; opening angle: 90°). This symmetrical indenter 

is selected to avoid symmetries other than those of the crystal structure. 

Nanoindentation tests were conducted five times for the each orientations (with a 

maximum deviation of ±0.02% and ±0.05% in the obtained maximum load and 

maximum displacement, respectively), viz. (0.641 0.078 0.764), (0.579 0.417 0.702) 

and (0.114 0.107 0.988), of the single-crystal metastable β-Titanium alloy Ti-15V-

3Al-3Sn-3Cr. The crystal orientations were determined by electron back scattering 

diffraction (EBSD). The maximum load of 6 mN was used to analyse deformation 

anisotropy of the Ti alloy. The loading and unloading rate was kept constant at 0.1 

mN/s. Figure 6-1 demonstrates the obtained load-displacement curves from the 

nanoindentation experiments.  

 

Figure 6-1: Load-displacement curves obtained from nanoindentation 

experiments for different crystallographic orientations 

After the indentation all indents were characterized by atomic force microscopy 

(AFM) and with a field emission Hitachi SEM S4800 system to get more detailed 

information on the deformed material such as the shape of the piled-up material. As 

seen in Figure 6-2, different surface topographies were obtained for different 

orientations although the used indenter tip was symmetric. For the crystal with 

orientation (0.641 0.078 0.764), two-fold symmetry is observed, while orientations 

(0.114 0.107 0.988) and (0.549 0.417 0.702) resulted in a four-fold symmetry and 

three-fold symmetry, respectively. Different pile-up patterns can be explained in 
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terms of the strong crystallographic anisotropy of the out-of plane displacements 

around the indents.  The scanned surface profiles of the indents through the paths 

shown in Figure 6-2 are plotted in Figure 6-3, revealing the fact that the obtained 

pile-up height is maximum for the indentation for (0.114 0.107 0.988) and 

minimum for the orientation (0.549 0.417 0.702).  

  

Figure 6-2: Pile-up structures of imprints taken by AFM-topography 

measurement and SEM imaging for different crystallographic orientations  
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Figure 6-3: Pile-up profiles of indents through different paths (see Figure 6-2) 

for different crystallographic orientations 

The beta phase of Ti-15-3-3-3 has a b.c.c. crystal structure. In such materials slip 

may occur on 48 individual slip systems in three different sets: 12 slip systems 

from {110} <111> and {112} <111> families each and 24 slip systems from {123} 

<111> family. These three different sets are presented in Figure 3-6. The positions 

of the pile-up and orientations of slip lines around the imprints are determined by 

the active slip system. It is generally accepted that material is piling up in positions, 

where the active slip plane intersects the materials surface (Wang et al., 2004). It is 

therefore possible to distinguish between the possible glide planes of b.c.c. crystals 

by observing the position of slip lines surrounding the indentation imprint at the 

material surface and EBSD. For the investigated Ti alloy, Nowag et al (2012) 

compared the experimentally observed and theoretically expected positions of the 

slip bands for all possible glide planes for a grain close to (001) orientation 

including Schmid factors for all possible slip systems (Figure 6-4). In this study the 

investigation of {011} planes showed that there was no match between the theory 

and experimental results, i.e. the observed positions of pile-up and orientations of 

slip lines did not follow theoretical predictions. The analysis of {123} planes 

indicated that some of the experimentally observed slip-lines matched the 

theoretically calculated ones. However, not all of the observed slip lines could be 

correlated to a corresponding {123} plane. It should be emphasized that due to the 

high number of {123} planes it is not surprising that some matches were found. On 

the other hand, the comparison of slip lines with the theoretical positions of {112} 

planes showed a remarkable match: all the experimentally observed slip bands 

could be correlated to a particular {112} plane. In that study, (101) - and (111) - 

oriented crystals were also indented, and their analysis produced similar 

observations. In summary, the study suggested that {112} <111> was the dominant 

slip system during deformation. In the FE simulations of this chapter only this set is 

therefore switched on out of three different potential sets.  
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The detailed explanation of the experimental results will be given in Section 6.5, 

where the material parameters are defined, and in Section 6.6, where the 

mechanical behaviour of the Ti alloy is studied numerically. In the next section, the 

steps in developing a 3D FE model of nano-indentation experiment are shown. 

6.2 Modelling consideration 

A three-dimensional FE model of indentation was developed to represent the 

deformation of the single-crystal Ti-based alloy. Numerical simulations were 

performed using the EMSGCP theory implemented in the UMAT subroutine. This 

section starts with the justification for using the CP-based constitutive laws in FE 

simulations of this thesis rather than isotropic constitutive equations. Figure 6-2 

demonstrates the indent impressions made on the workpiece material with a conical 

indenter. It is visible that the pile-up patterns on the (0.641 0.078 0.764) surface 

forms a two-fold symmetry. This experimental result can be predicted correctly 

using the CP-based constitutive law, where crystalline nature of the material is 

accounted for (Figure 6-5 (b)). On the other hand, the isotropic material model 

cannot predict the material behaviour accurately since the classical isotropic 

continuum mechanics do not account for crystallographic rotations, and hence, 

orientation effects, as there is no anti-symmetric term in the constitutive equations 

associated with the dyadic nature of crystallographic dislocation slip (Raabe et al., 

2007).  

A schematic of the developed indentation model is shown in Figure 6-6. 

Dimensions of the workpiece sample used in FE model were 10 μm × 10 μm × 6 

μm to represent the single-crystal in a polycrystalline sample with dimensions of 

around 2 mm × 2 mm × 1 mm; justification for this selection is given in Section 

6.2.1. Eight-node linear brick elements (C3D8) were used to discretise the 

workpiece sample. As the gradients of stress and strain fields reaches their highest 

value underneath the indenter, a finer mesh was used near the indenter‘s tip and a 

coarser one for the remaining regions (Figure 6-6). As mentioned earlier, to avoid 

asymmetries other than those of the crystal structure, a conical indenter with   = 90° 
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and a tip radius of 1.0 µm was used in the experiment. This was modelled exactly 

in the simulations (Figure 6-6). On the other hand, as the diamond indenter used in 

the experiments has a one-order-of-magnitude higher modulus compared to that of 

the Ti-alloy single-crystal workpiece, the indenter was modelled as a rigid body.  

 

Figure 6-4: Comparison of theoretically expected positions of slip-lines 

determined by EBSD (left) and experimentally observed positions of slip-lines 

(right), with respect to Schmid factors of all systems (middle column) of (011) 

[111] (top), (112) [111] (middle row) and (123) [111] (bottom). Reprinted with 

permission from (Nowag et al., 2012) 
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Figure 6-5: Distribution of displacement in y-direction on indent obtained in 

two different types of FE simulations: (a) FE simulation with isotropic plastic 

constitutive J2 model (no preferred direction, J2 is second invariant of stress 

deviator used as isotropic yield criterion); (b) FE simulation with anisotropic 

SGCP constitutive model 

The relative movement of the workpiece and indenter was monitored by the 

translation of the latter in the negative y-direction (Figure 6-6). Kinematic 

boundary conditions were imposed on the bottom face of the workpiece by 

constraining displacements in all directions, whereas the faces of the workpiece 

perpendicular to x- and z-directions were constrained in x- and z-direction, 

respectively. On the other hand, the top face was free to deform. Such boundary 

conditions were imposed to represent the indentation of a single-crystal in a 

polycrystalline sample. The Coulomb‘s friction law was used to model the 

frictional interaction between the indenter and the surface of the workpiece 

material. 
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Figure 6-6: Dimensions of indenter and workpiece (in µm) (a); 3D finite-

element model of nanoindentation using Mesh 3 (b) (see Section 6.2.2) 

As optimization of material parameters will be performed by calibrating the 

numerical model with the experiments in Section 6.5, the first estimate for them 

presented in Table 6-1 is used in the following sections. Indentation simulations 

were carried out on a single-crystal of the studied Ti alloy in (001) orientation, 

where frictionless contact pair was defined between the indenter and the workpiece 

material. 

Table 6-1: Crystal-plasticity parameters used in mesh-convergency study  

Elastic constants 

               

               

              

Hardening 

parameters (PAN 

model) 

  
 ̇           

     

    

            

  
                     

(               ) 
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Strain gradient 

parameters 

       

             

                

6.2.1 Dimensions of workpiece 

In this section the following steps are performed to find the suitable dimensions for 

the modelled workpiece to represent the experiments accurately. These dimensions 

should be selected in such a way that they are large enough to circumvent the 

influence of traction free surfaces. At the same time, they should be small enough 

to have a computationally less expensive model. Under these circumstances, three 

different sets of dimensions for the workpiece material were considered: 5 μm × 5 

μm × 3 μm (first set); 10 μm × 10 μm × 6 μm (second set) and 15 μm × 15 μm × 9 

μm (third set). It is worth mentioning that the form factor of the workpiece was 

kept the same for all the sets. In this part of the study, the indenter penetrates to the 

workpiece with a maximum indentation depth of 570 nm and later retracts back. 

This value was selected deliberately to make the model more flexible for future 

studies as the maximum indentation depth in the experiments was smaller - 370 

nm. Identical finite-element sizes with a minimum of 200 nm directly underneath 

the indenter were used to discretize the workpiece for all the three sets of their 

dimensions. This element size was selected, on the one hand, as large as possible to 

avoid very long computational times, on the other hand, as small as possible to 

have a promising accuracy in the solutions. The appropriateness of this mesh size 

was proven in the mesh-sensitivity analysis presented in the following section. 

Figure 6-7 (a) demonstrates the obtained nano-indentation load–displacement 

curves for different workpiece dimensions. This plot shows that all the models 

predict identical reaction to indentation. The first set was therefore considered to be 

optimal as it is computationally less expensive. 

In the developed FE model, all the surfaces except for the workpiece‘s top face 

were constrained to represent nano-indentation of a single-crystal embedded in a 

polycrystalline aggregate. The aim here was to extend the model to account for 
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nano-indentation of a single-crystal, which can be possibly cut from the whole 

sample of a polycrystalline material or fabricated as a single-crystal. This 

adjustment was allowed in the model by relieving the constraints on the side 

surfaces. Figure 6-7 (b) presents the obtained load-displacement curve for the 

modified model. This figure clearly indicates that workpiece dimensions of 10 μm 

× 10 μm × 6 μm are ideal for our modelling efforts as the maximum error for the 

curve was only 5.2% compared to results obtained for larger dimensions. This 

study also revealed that a smaller workpiece (dimensions, 5 μm × 5 μm × 3 μm) 

was not sufficient to model the nano-indentation of a single-crystal due to a large 

deviation in the maximum load, - 17.1%, compared to that for the assumed 

benchmark workpiece dimensions (15 μm × 15 μm × 9 μm). The reason for this 

discrepancy is as follows: as dimensions of the workpiece become smaller, the 

influence of traction-free surfaces becomes significant, i.e. the indenter can 

penetrate into the workpiece material with a lower force as the constraints imposed 

by the bulk volume of the single-crystal to the indented surface are lessened. Based 

on the above analysis, it was decided to use dimensions of 10 μm × 10 μm × 6 μm 

for the workpiece in the nano-indentation model. 

Guo (2010) studied the influence of workpiece dimensions on the indentation load- 

displacement curve. In a 2D axisymmetric FE model, a spherical indenter with a 

radius of 2.5 mm was penetrating the workpiece material, whose bottom surface is 

fixed in all directions, at a maximum distance of 0.3 mm. This numerical study 

revealed that when the ratio of workpiece height to indentation depth was 7 or less, 

the applied load decreased by approx. 16% compared to that in the model with 

extremely high workpiece height to indentation depth ratio. This study suggested 

that the height of the indented workpiece should be at least 10 times larger than the 

maximum indentation depth to eliminate the effects of imposed boundary 

conditions at the bottom surface. This ratio is 15.78 in this study, with the 

workpiece height being 6000 nm and maximum indentation depth 380 nm; hence, 

the requirement of the mentioned study was met (Guo, 2010). It is also worth 

mentioning that the dimensions of the workpiece used in our model comply with 

the nano-indentation models developed by different research groups to study the 
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deformation behaviour of different material crystals (Liu et al., 2005; Liu et al., 

2008; Gerday et al., 2009). 

 

(a) 

 

(b) 

Figure 6-7: Load-displacement curves obtained from nanoindentation 

simulations for different workpiece dimensions, for the workpiece constrained 

at side surfaces (a) and without such constraints (b) 

6.2.2 Mesh-sensitivity analysis 

After defining the dimensions of the workpiece in the previous section, a mesh-

sensitivity analysis of the model is performed here to find a compromise between 

the conflicting requirements of accuracy and computational cost before performing 

the planned program of simulations. 
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As stresses and strain gradients reach their highest value underneath the indenter 

region, this area was meshed with a finer mesh and other parts were meshed with a 

coarser one (Figure 6-6). To find the appropriate mesh, numerical simulations with 

different mesh sizes of the workpiece with dimensions of 10 × 10 × 6 μm were 

performed. To achieve this, the edges of this volume were discretized with a bias of 

1.7, viz. double bias towards to center at the width and length edges and single bias 

upwards the height. The total number of elements in the first mesh is 2400 and the 

corresponding dimensions of the smallest element being 200 nm × 200 nm × 200 

nm. The respective parameters for the second and third mesh are 3456 elements 

and 5488 elements and 150 nm × 150 nm × 150 nm and 100 nm × 100 nm × 100 

nm, respectively. Table 6-2 shows the details of the meshes used in the mesh-

sensitivity analysis. A maximum indentation depth of 300 nm was considered in 

this part to reduce the overall computational time. The load-depth relations 

obtained for different meshes are presented in Figure 6-8. Apparently, the features 

of curves are very similar to each other. It is therefore concluded that the coarsest 

mesh was the optimum choice for the study as it was computationally less 

expensive.  

Table 6-2: Details of meshes used in mesh-sensitivity analysis: numbers of 

elements for respective dimensions   

element 

dimension 

Mesh1          

(2400 elements) 

Mesh 2           

(3456 elements) 

Mesh 3          

(5488 elements) 

width and length 20 24 28 

Height 6 6 7 

Of special interest in Figure 6-8 could be oscillations observed in the load-

displacement curves. These are more pronounced in the coarsest mesh, especially 

at certain indentation depths, such as 110 nm or 170 nm. In fact, the solution 

obtained using the coarsest mesh owing to its inherent oscillatory trend deviates 

from and approaches to the results of the finest mesh sequentially, but the 

deviations are within an acceptable range. Many authors reported such non-smooth 

loading curves in nano-indentation simulations. Gerday et al. (2009) ascribed this 
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problem to the new material points entering into contact with penetration.  Smith et 

al. (2001) and Kalidindi et al. (1992) attributed this problem to the finite size of the 

elements and proposed that the jagged load-displacement curve can be 

circumvented by using a finer mesh of the workpiece. On the other hand, 

Bocciarelli (2005) linked this with possible model errors associated with moving 

contact conditions between the indenter and the workpiece material. Our 

observation - the finer the mesh, the smaller oscillations - complies with 

conclusions by Kalidindi et al. (1992).  

 

Figure 6-8: Load-displacement curves obtained from nanoindentation 

simulations with different FE meshes 

An important aspect of indentation is the obtained surface profile of the indented 

surface, e.g. pile-up or sink-in. Such profiles affect the results of contact area 

calculations as its true value increases when the piling-up predominates and 

decreases when the sinking-in occurs. Neglecting these surface-deformation modes 

can result in significant errors for properties extracted from the experimental data 

(Wang et al., 2004). It is, therefore, investigated how the surface profile varies with 

different meshes. Figure 6-9 demonstrates surface profiles of the indented 

workpiece material along path A-B (Figure 6-6) for different element sizes. Here, 

all the models predict a pile-up surface profile and they also agree qualitatively. 

However, the maximum pile-up height was predicted as 54 nm for the coarsest 

mesh, whereas for the medium and the finest mesh, it was 64 nm and 68 nm, 
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respectively. Another important point here is that the indent‘s surface profile at 

zero surface height obtained using Mesh 1 deviates from other profiles (Figure 6-9). 

To characterize the differences in the surface profile using different meshes, the 

contact area was measured. This analysis revealed that the contact area is 

underestimated by 7% and 2% when the coarsest and medium meshes were used, 

respectively, assuming that the contact area of the finest mesh is the benchmark 

solution.  

Based on the above analyses it was concluded that Mesh 2 with a minimum 

element size of 150 nm at the indentation region was sufficient to characterize the 

experimental workpiece accurately.  

 

Figure 6-9: Pile-up profiles of indents along path A-B (Figure 6-6) for 

different FE meshes 

Of another special interest here is the computational time of discussed simulations. 

All the simulations in this section were accomplished with 3 computational nodes, 

each having two six-core Intel Westmere Xeon X5650 CPUs (2.66 GHz) and 24 

GB of memory. Table 6-3 shows the computational time for simulations with 

different element sizes. It is evident that the computational time increased more 

than two-fold when Mesh 3 was used rather than Mesh 2, though both meshes gave 

almost similar results. A mesh with a minimum element size of 150 nm, therefore, 
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enables us to reduce the overall computational time for dozens of simulations 

needed to be performed in the next sections.   

Table 6-3: Comparison of computational time of simulations with different FE 

meshes  

 Mesh 1 Mesh 2 Mesh 3 

CPU time (s) 9631 22713 47064 

6.3 Effect of friction 

In this section, the effect of a friction at the indenter-workpiece interface is studied. 

Three different idealised friction conditions are considered. First, the effect of a 

well-lubricated indenter-workpiece interface, i.e.    , is analyzed, followed by a 

two dry non-lubricated interface conditions:        and      .  

Figure 6-10 demonstrates the obtained load-displacement curves from the 

nanoindentation simulations for (0.641 0.078 0.764) orientation. This plot indicates 

that the introduction of friction does not influence significantly the load-

displacement behaviour of indentation process at the first 250 nm of the indentation 

depth (Figure 6-10). Similar observations were also reported by Gerday et al. 

(2009), Wang et al. (2004), Liu et al. (2005) and Zahedi et al. (2012). However, 

with an increase in the indenter penetration, the indented surface starts to form a 

pile up profile, which, in turn, leads to a relative motion between the indenter‘s 

surface and the workpiece material. It is, therefore, observed an increase in the 

obtained force value after 250 nm indentation depth with an increase in  . It must 

be emphasized that the influence of friction on the deformation behaviour of a 

material is less pronounced in crystal-plasticity constitutive approaches compared 

to that in the J2-based isotropic continuum scheme (Wang et al., 2004). Dève et al. 

(1988) and Harren and Asaro (1989) ascribed this by the characteristics of the 

crystal-plasticity theory itself, where the material is restricted to flow on discrete 

planes and directions leading to a reduction in the material‘s degree of freedom. In 

other words, the characteristic symptoms of the influence of friction, such as non-
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uniform deformation and strain localization, are accounted for naturally in the 

crystal-plasticity theory.  

The effect of friction on the shape of obtained surface profile was also studied. 

Since the pronounced effect was found to be different for different orientations, 

two crystallographic orientations were considered, namely (0.641 0.078 0.764) and 

(100). With an increase in the friction coefficient, it is to be expected that the 

relative motion (displacement) between the indenter‘s surface and the workpiece 

material will be increasingly hindered during the process. It is, therefore, observed 

a decrease in the pile-up height with a growing coefficient of friction at the 

workpiece-indenter interface (Figure 6-11). These results suggest that the pile-up 

height is larger for (100) orientation compared to that for (0.641 0.078 0.764) due 

to the fact that the former is the plane with higher resistance to slip compared to the 

latter plane. Detailed information regarding the influence of orientation on pile-up 

height is given in Section 6.6.  

 

Figure 6-10: Load-displacement curves obtained from nanoindentation 

simulations for different friction conditions   

The change in the spatial position of the pile-up tip for different contact conditions 

is investigated for (0.641 0.078 0.764) orientation. A quantitative measure of the 

spatial location for the pile-up tip was the horizontal coordinate of the tip location 

(x in Figure 6-6). This peak point lies symmetrically on the right- and left-hand 



Chapter 6. FE model of nano-indentation experiments based on EMSGCP theory 

 

169 

 

sides of the indenter tip with a distance of 1978.06 nm when    , whereas it is 

1989.33 nm, when      . This result shows that increased friction at the 

workpiece-indenter interface moves the pile-up tip downwards but at larger 

distance from the indentation axis (Demiral et al., 2010).  

The diamond indenter and workpiece material in the experiments are identical to 

contacting bodies used in the micro-pillar-compression experiment, where the 

analysis demonstrated that        characterized the friction characteristics at the 

indenter-pillar interface. The same contact condition was therefore used in the 

nano-indentation model.  

 
(a) 

 
(b) 
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Figure 6-11: Pile-up profiles of indented surfaces with different orientations - 

(0.641 0.078 0.764) (a) and (100) (b) - along path C-D (Figure 6-6) for different 

contact conditions 

6.4 Sensitivity study of material parameters in nano-indentation 

model  

In the previous chapter the material parameters of the b.c.c. single-crystal Ti alloy 

were identified using micro-pillar-compression experiment. As explained at the 

beginning of this chapter, the pre-existing strain gradients in the pillar body are 

believed to be absent in the indented workpiece due to two reasons: on the one 

hand, the free surfaces in the indented workpiece are far from the workpiece center 

leading to negligibly small strain gradients; on the other hand, as specimens for 

indentation are not produced in the same way as pillars (e.g. with FIB), it is 

unlikely that GNDs may be introduced in the body during manufacturing. In this 

chapter, material parameters of the Ti alloy are characterized from nano-

indentation experiment, where incipient strain gradients do not exist. The 

determination of parameters such as strain-rate sensitivity of material   and Taylor 

coefficient    is left in this chapter as the influence of those parameters is more 

profound in a nano-indentation model compared to the micro-pillar-compression 

model. 

In this section, the sensitivity analysis of material parameters such as  ,   ,   ,    

and    is first performed to get an insight about their influence on the material‘s 

behaviour of the single-crystal Ti alloy. It is well known that good knowledge of 

the deformation zone around an indent is of great importance in nano-indentation 

experiments as the shape of the surface profile determines the actual contact area 

and gives hints about the local fields. Here, the surface profile of the workpiece 

material is therefore mainly focused on. The load-displacement behaviour is not 

demonstrated here unless it is required as their general behaviour is similar to the 

character of stress-strain curves in pillar-compression experiments for different 

material parameters presented in the previous chapter. The results presented in this 
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section are obtained for indentation of a single-crystal of the Ti alloy in the (0.641 

0.078 0.764) orientation, with a zero frictional coefficient being assumed. The 

parameters presented in Table 6-1 are used in the simulations except   
       

           and   
                 .   

6.4.1 Effect of strain-rate sensitivity of the material 

As explained in Section 5.4.2,   is the strain-rate-sensitivity parameter. In fact,   is 

a numerical parameter used to satisfy the Schmid`s law in the MBSGCP theory 

(equation 3-63). When   is equal to infinity, the Schmidt law is satisfied 

accurately. By contrast,   =1 implies that shear stress (  ) is proportional to the 

shear-strain-rate (  ̇ ) corresponding to a case of a Newtonian fluid, which is 

unrealistic for crystal-plasticity. Serious convergence issues arise if infinite   is 

implemented in numerical computations. This is due to the fact that when the value 

of    becomes slightly larger than the strength of the slip system   
  as a result of a 

finite strain increment in FE calculations,   ̇  becomes almost infinite causing 

termination of the analysis. To avoid this, finer strain increments, and, hence, ultra-

fine time increments, should be used, leading to dramatically long computational 

times. On the other hand, according to equation 3-63 the ratio of       
 ⁄   is either 

less than, or equal to, 1 as the stress state of a deformed elastic-plastic material 

cannot exceed the yield, i.e. the stress-state point can be either inside the yield 

surface or on it. For instance, when   is big enough (   ), inside the yield 

surface, the plastic strain-rate becomes infinitesimal, so that almost no shearing 

occurs, whereas on the yield surface, the plastic shear-strain-rate becomes constant 

(  ̇    
 ̇ , see equation 3-63). This is particularly useful to specify a constant slip-

rate in the simulations to represent the experiment, where the loading rate is kept 

constant. In other words, in strain-rate-insensitive materials the shear on the slip 

system occurs only when    equals to   
 , whereas in strain-rate sensitive materials 

the slip occurs not only on the yield surface but also inside the yield surface.  

The surface profile of indented workpiece material was studied for different   

values such as          . Figure 6-12 (a) and (b) demonstrates the 
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displacement distribution in y-direction along path C-D (Figure 6-6) at full loading 

and complete unloading, respectively. The maximum indentation depth was 570 

nm at full loading and reduces to less than 500 nm at complete unloading. The 

amount of spring-back was observed to increases with a decrease in the value of  . 

Especially noteworthy here is that although the piling-up is a common surface 

profile at the complete unloading for different   values, at full loading the pile-up 

behaviour was observed only when      and      and sink-in occured 

when       . So, it was concluded that       indeed represented the well-

annealed single-crystal Ti alloy, whereas other cases represented the strain-

hardened behaviour.  

 
(a) 

 
(b) 

Figure 6-12: Pile-up profile of indent along path C-D (Figure 6-6) at full 

loading (a) and complete unloading (b) at different   values 
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These different types of material behaviour can be summarized briefly as follows. 

For strain-hardened materials, the volume of material displaced by the indenter is 

pushed out to its sides and forms a pile-up profile. On the other hand, for well 

annealed soft metal possessing a high strain-hardening reserve, the displaced 

volume is accommodated mainly by far-field elastic displacements leading to sink-

in behaviour. The reader is referred to Section 2.3.1 for extended information. 

As explained at the beginning of this section, a larger value of   leads to higher 

computational times. This is also confirmed in our simulations. Table 6-4 

demonstrates the total computational time accomplished with 12 processors for 

different   values. It is obvious that the calculation cost increases with an increase 

in the value of  .    

Based on the above analysis, it was decided to use      as the material‘s plastic 

parameter for the studied single-crystal Ti alloy since this value, on the one hand, 

represents the stain-rate-insensitive material behaviour and, on the other hand, it is 

computationally less expensive. 

Table 6-4: Comparison of computational time of simulations with different 

material strain-rate-sensitivity parameter  

 
  = 5   = 15   = 25 

CPU time (s) 6536 8476 15436 

 

6.4.2 Effect of Taylor coefficient  

The influence of    value on a surface profile of the indented single-crystal Ti 

alloy is studied in this section. Extended information about    can be found in 

section 5.4.3. Three different values of    are considered, viz. 0.0, 0.8 and 1.6. 

Here,    = 0.0 represents the solution obtained using the CP theory and others 

represents the EMSGCP theory. Figure 6-13 demonstrates that with an increase in 

   value, the pile-up height decreases. The reason for this observation is that as the 

shear-strain values are averaged in the EMSGCP theory, the gradients in the local 
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fields, e.g. strain fields, are lessened, which, in turn, leads to a smoother strain 

distribution. Therefore, the surface profile becomes more flat in simulations 

employing the EMSGCP theory compared to that for the CP theory. Another 

observation in Figure 6-13 is the increase in the amount of spring-back for larger 

values of   . As demonstrated in Figure 5-18, with an increase in    value the 

hardening reserves of the material increases, hence resulting in the well-annealed 

soft material‘s behaviour. It is therefore observed that the amount of spring back 

increases when the strain gradients are more pronounced in the model, i.e. when    

is larger.  

 

Figure 6-13: Pile-up profiles of indents along path C-D (Figure 6-6) for 

different    values 

6.4.3 Effect of different plastic parameters  

Selection of    value affects the surface profile of indented material considerably. 

Depending on relative amounts of elastic and plastic components in the 

deformation process, characterized by the ratio of elastic modulus to yield stress, 

   ⁄ , the surface either piles-up or sinks-in. Johnson (1974) characterized this 

ratio as the reciprocal of the level of elastic strain at the yield point representing the 

amount of deformation accommodated elastically during indentation. In the limit of 

   ⁄   , the deformation is purely elastic leading to a sink-in surface profile, 
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whereas in the limits of    ⁄   , deformation is rigid-plastic, with an extensive 

piling-up of material around the indent.  

In this section three different values of   , viz.                 and          

are considered in order to examine its role on the deformation behaviour of the 

single-crystal Ti alloy. Figure 6-14 demonstrates that all the considered values of 

   lead to a pile-up surface profile and the height of pile-up increases with an 

increase in the value of   . The latter observation here indeed seems to contradict 

with the study of Johnson (1974). According to it, the pile-up height should 

decrease with an increase in the value of    as the ratio of    ⁄  approaches zero as 

opposed to the behaviour shown in Figure 6-14. The magnitude of pile-up height 

for different    values, however, here is determined by the respective values of    

and   , where           . When    and    values are close to each other, the 

extent of strain-hardening is less compared to the case when    and    values 

differs significantly (Figure 5-19). As explained in the previous section, when the 

strain-hardening reserves are smaller, a pile-up surface profile occurs. It is, 

therefore, observed that the pile-up height is the highest when   =350 MPa, i.e. the 

difference with    is only 50 MPa, corresponding to a smaller hardening reserves, 

followed by the pile-up height when   =300 MPa and   =250 MPa. This 

observation is consistent with the study of Taljat and Pharr (2004), where the 

effects of different material behaviours on the surface profile in indentation were 

studied. In this study different elastic-plastic materials were investigated, e.g. an 

ideal elastic material with a strain-hardening exponent  =1 corresponding to a 

larger strain-hardening reserves, and a rigid-plastic material with  =0 

corresponding to zero strain-hardening reserves as well as strain-hardening 

materials, where n ranges between 0 and 1 (Figure 6-15). It should be emphasized 

that   value there represented the strain-hardening exponent in the power law and 

was different from that in the EMSGCP theory. This study demonstrates that the 

material with a smaller strain-hardening reserves piles-up more compared to that 

with a larger strain-hardening reserves.  
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The effect of    value on the surface profile of the indented material was also 

studied. For fixed           , an increase in    shifted the response to that of  a 

material with a higher hardening exponent (Figure 5-20(a)). The pile-up height, 

therefore, becomes smaller for such material behaviours as seen in Figure 6-16 (a). 

As demonstrated in Section 6.4.1, smaller values of   represent the material with a 

larger hardening reserves such as in case of a well-annealed Ti alloy, and for such 

materials a significant elastic spring back or recovery of the indented material 

occurs (Figure 6-12). Similar results were also observed here. For fixed    an 

increase in    leads to increasing recovery at full unloading of the indenter (Figure 

6-16).  

The influence of initial hardening moduli    on the surface profile of the indented 

material is similar to that of   . For constant values of    and   , a higher value of 

   represents the soft-metal behaviour with a larger strain-hardening reserves 

(Figure 5-20(b)); hence, a lower pile-up deformation pattern and increasing 

recovery at full unloading of the indenter are expected to occur with an increase in 

   value. Figure 6-16 (b) demonstrates that such an increase causes a growth of the 

amount of elastic recovery as expected; however, the change in     does not change 

the pile-up height significantly. 

 

Figure 6-14: Pile-up profiles of indents along path C-D (Figure 6-6) for 

different    values  
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Figure 6-15: Elastic-plastic constitutive law used in finite-element simulations. 

n = 0 represents elastic-perfectly-plastic materials, n = 1 represents purely 

elastic material and 0 < n < 1 elastic-plastic material. Reprinted with 

permission from (Taljat and Pharr, 2004) 

 
(a) 

 
(b) 
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Figure 6-16: Pile-up profiles of indents along path C-D (Figure 6-6) for 

different values of    (a) and    (b) 

6.5 Determination of material’s plastic parameters 

In this section the material parameters of the studied single-crystal Ti alloy are 

determined through multiple trial runs by calibrating the obtained load-

displacement curves and the surface profile of the single-crystal Ti alloy indented 

in (0.641 0.078 0.764) orientation in numerical simulations with the experiments. 

The sensitivity analysis of material parameters performed in the previous section 

provides us hints while identifying the material parameters of the single crystal Ti 

alloy. Using the parameters given in Table 6-5, a reasonably good agreement 

between experiments and simulations was obtained (Figure 6-17 and Figure 6-18). 

It should be emphasized that as the indent profiles were imaged with the blunt 

indenter tip in the experiments, the pit apex appears point-like as seen in Figure 

6-18. This fact indeed explained the difference between the experiments and the 

simulations in the obtained surface profile. Using a sharp indenter, this profile can 

be scanned more accurately (Altebaeumer et al., 2008).    

Additional nano-indentation tests were also conducted in different orientations such 

as (0.114 0.107 0.988) and (0.579 0.417 0.702) to check the validity of the 

developed FE model. Using the same material parameters, the experimental load-

displacement curves for those orientations were predicted accurately (Figure 6-19 

and Figure 6-21). The corresponding surface profiles also demonstrate a reasonable 

match with the experiments (Figure 6-20 and Figure 6-22). These results at this 

scale lending further confirmation on the appropriateness of the selected material‘s 

parameters. The obtained results were also compared to those in the literature.  

Different authors studied nanoindentation of single-crystals for different materials. 

For instance Wang et al. (2004) studied the influence of crystallographic 

orientation on pile-up patterns and micro-textures using a CP FE model for single-

crystal copper. In that study, a correct numerical prediction of the surface pile-up 

patterns was achieved; however, deviation on the order of a magnitude in the load-
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displacement curve between experiments and simulations was reported. Liu et al. 

(2008), on the other hand, did the similar study using a spherical indenter instead of 

a conical one, where a satisfactory agreement between the numerical and 

experimental load-displacement curves was demonstrated. In that study different 

friction coefficients were used to represent the contact condition between the 

indenter‘s tip and the workpiece material for different orientations to match the 

numerically obtained surface profiles with the experimental data; however, an error 

of up to 50% for the maximum pile-up was observed. In the present study, where 

the strain gradient theory was incorporated into the constitutive laws, the maximum 

error was 3% for the load-displacement curve and 19% for the maximum pile-up 

height. These results confirm the robustness of the developed FE model. 

Table 6-5: Material parameters of single-crystal Ti-15-333 obtained using 

nano-indentation experiments  

Elastic constants 

               

               

              

Hardening parameters 

(PAN model) 

 ̇          

     

    

             

  
                  

(         MPa.mm) 

  
                  

Strain gradient 

parameters 
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Figure 6-17: Load-displacement curves obtained for nanoindentation of (0.641 

0.078 0.764) surface from experiment and simulation 

 

Figure 6-18: Pile-up profiles of indented (0.641 0.078 0.764) surface along path 

C-D (Figure 6-24) obtained from experiment and simulation  
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Figure 6-19: Load-displacement curves obtained for nanoindentation of (0.114 

0.107 0.988) surface from experiment and simulation  

 

Figure 6-20: Pile-up profiles of indented (0.114 0.107 0.988) surface along path 

C-D (Figure 6-24) obtained from experiment and simulation    
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Figure 6-21: Load-displacement curves obtained for nanoindentation of (0.579 

0.417 0.702) surface from experiment and simulation  

 

Figure 6-22: Pile-up profiles of indented (0.579 0.417 0.702) surface along path 

C-D (Figure 6-24) obtained from experiment and simulation 

6.6 Mechanical behaviour of single-crystal Ti alloy at nano scale 

The performed nanoindentation experiments revealed anisotropy of the single-

crystal Ti alloy. In this section, an in-depth analysis of mechanical behaviour of 
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this alloy is undertaken in order to understand the underlying mechanisms in nano-

indentation experiments for different crystallographic orientations. Figure 6-23 

shows images obtained with an atomic force microscope (AFM) of the indents on 

various crystallographic surfaces after full unloading of the indenter. After the 

nano-indentation tests, the Ti alloy samples were imaged using a digital instrument 

Hitachi SEM S4800 to determine the surface topography (Figure 6-23). These 

different types of surface profiles were also obtained with our numerical 

simulations (Figure 6-24).  

As the sample studied here was work-hardened, all profiles demonstrate the pile-up 

behaviour instead of sink-in. It should be emphasized that the studies of Pharr et al. 

(1992) and Chaudri and Winter (1988) suggested that the pile-up or sink-in 

behaviour around the indent was primarily affected by the strain-hardening rate of 

the indented material: the soft metals having sufficient hardening reserves showed 

a sink-in behaviour, whereas strain-hardened materials such as alloys and metallic 

glasses exhibiting a low strain-hardening reserve showed a pile-up behaviour. In 

the study of Lim and Chaudri (1999), a pile-up around an indent in work-hardened 

oxygen-free copper and sink-in around an indent in annealed oxygen-free copper 

were observed. However, the observation of Wang et al. (2004) is inconsistent with 

this classical picture, where a pile-up surface profile was reported for the 

indentation of a soft copper single-crystal with considerable strain-hardening 

reserves. That study suggested that the different patterns were strongly related to 

the indented crystallographic planes and all the patterns were pile-ups occurring in 

the well-defined areas and not sink-in patterns. In short, the interpretation of the 

pile-up versus sink-in behaviour for the soft material remains more speculative. 

The active glide systems for a b.c.c. single-crystal Ti alloy consists of {1 1 2} glide 

planes and <111> slip directions as a total of 12 slip systems as explained in 

Section 6.1. Table 6-6 shows the Schmid factor of the slip systems for different 

orientations. For instance, for crystal orientation (0.641 0.078 0.764), the slip 

systems (1 2 1) [1 -1 1] and (1 -2 1) [1 1 1] are expected to be active as they have 

the highest Schmid factor. Figure 6-25 demonstrates the shear-strain distributions 
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on (0.641 0.078 0.764) surface after full unloading for different slip systems. It is 

clear that the fifth and the seventh slip systems were the most active ones, whereas 

the contribution of other slip systems was comparatively small. Here, the primary 

slip planes (1 2 1) and (1 -2 1) intersected the plane of indentation along the [-1.204 

0.102 1] and [-1.180 -0.090 1] directions necessitating a two-fold in-plane 

symmetry. It is worth noting that the first, third, sixth, eighth and eleventh slip 

systems also partially contributed to the total deformation although they are 

considered to be inactive according to Table 6-6 as the corresponding Schmid 

factor is less than 0.1. Likewise, the contribution of second and forth slip systems 

are compatible with those of other non-primary slip systems, whereas they are 

supposed to have a larger contribution. The underlying reason for those 

discrepancies arises from the fact that the Schmid factors calculated in Table 6-6 

are based on the simplifying assumption of uniaxial compression. However, the 

contribution of slip systems to the overall deformation in FE simulations is 

computed by imposing boundary conditions locally. That means that in the course 

of deformation the boundary conditions of the material points start to change as a 

result of strong strain gradients introduced by the indenter‘s tip; hence, the Schmid 

factors start to evolve with deformation and deviate from their starting values.  

Table 6-6: Schmid factor of different slip systems for different 

crystallographic orientation   

 

Number (0.641 0.078 0.764) (0.114 0.107 0.988) (0.579 0.417 0.702)

1 1 1 2 1 1 -1 -0.024 -0.397 0.166

2 -1 1 2 1 -1 1 0.302 0.462 0.252

3 1 -1 2 -1 1 1 0.099 0.458 0.199

4 1 1 -2 1 1 1 -0.283 -0.500 -0.163

5 1 2 1 1 -1 1 0.488 0.308 0.430

6 -1 2 1 1 1 -1 -0.003 -0.197 0.066

7 1 -2 1 1 1 1 0.436 0.253 0.179

8 1 2 -1 -1 1 1 0.002 -0.153 0.090

9 2 1 1 -1 1 1 0.101 0.306 0.289

10 -2 1 1 1 1 1 -0.154 0.247 -0.016

11 2 -1 1 1 1 -1 -0.021 -0.200 0.100

12 2 1 -1 1 -1 1 0.186 -0.153 0.177

plane direction

Schmid factorSlip system
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Figure 6-23: Pile-up structures of imprints taken with AFM for different 

crystallographic orientations (Experiments were performed at EMPA, 

Switzerland.)   
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Figure 6-24: Pile-up structures of imprints obtained from FE simulations for 

different crystallographic orientations 

Figure 6-25 also justifies the advantage of FE simulations, where the individual 

contributions of different slip systems to the overall deformation can be obtained 

that cannot be achieved in the experiments.     

Similar characteristics are also observed for other orientations. For the indented (0. 

114 0.107 0.988) surface, the first four slip systems are expected to be the 

dominant slip systems, i.e., the primary slip systems, as their Schmid factors are 

higher than those of other slip systems (Table 6-6). However, the FE simulations 

suggest that all the slip systems become active during deformation (Figure 6-26). 

On the other hand, the pile-up profiles presented in Figure 6-24 are more likely to 

be governed by these first four slip systems as the zones where those slip systems 

were active are identical to the zones, where the maximum pile-up heights were 

observed, namely on the E-F path in Figure 6-24 and on the path normal to it. This 

leads us to conclude that the fifth, eight, tenth and eleventh slip systems contributed 

partially on the pile-up profile. For the indented (0. 114 0.107 0.988) surface, the 

first four slip planes - (1 1 2) (-1 1 2) (1 -1 2) and (1 1 -2) - intersected the plane of 

indentation along [-110.57 108.57 1], [-3.502 -5.502 1], [-5.439 -3.439 1] and [-

171.714 173.714 1] directions and resulted in a four-fold in-plane symmetry.  
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Figure 6-25: Distribution of shear strains on 12 slip systems predicted with FE 

simulation on indented (0.641 0.078 0.764) surface 

For the indented (0.579 0.417 0.702) surface,  the fifth, seventh and ninth slip 

systems were found to be the primary slip systems, whereas the first, forth, tenth 

and eleventh slip systems can be considered as the secondary active slip systems 

(Figure 6-27). Here, the intersection of primary slip planes (1 2 1), (1 -2 1) and (2 1 

1) with the plane of indentation occured along three directions - [-1.600 0.300 1], [-

1.156 -0.078 1] and [0.899 -2.798 1] - and led to a three-fold symmetry. The 

corresponding Schmid factors in Table 6-6 suggest that the second slip system 

seems to be more active compared to the seventh slip system. However, Figure 

6-27 demonstrates the opposite behaviour, where the latter instead of the former 

became significant with an evolution of local boundary conditions and, hence, 

contributed to the overall deformation together with the fifth and ninth slip systems, 
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which were active from the very beginning.  Such a controversy similar to above 

mentioned was also reported by Zaafarani et al. (2006).   

   

Figure 6-26: Distribution of shear strains on 12 slip systems predicted with FE 

simulation on indented (0.114 0.107 0.988) surface  

Another point to mention here is the total number of active slip systems during 

indentation for different crystallographic orientations. This number was 12 in 

indentation for (0.114 0.107 0.988) orientation, whereas it was 7 with three primary 

and four secondary slips systems in indentation for (0.579 0.417 0.702) orientation. 

On the other hand, in indentation for (0.641 0.078 0.764) orientation, the total 

number of active slip systems was 10 since the sixth and tenth slip systems were 

inactive. Smith et al. (2003)  demonstrated that the occurrence of cross slip was 

very high when more slip systems were active due to their involvement to the 

overall deformation, which, in turn, led to larger pile-up heights. This explains why 
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the highest pile-up was observed in the indentation of (0.114 0.107 0.988) 

orientation followed by (0.641 0.078 0.764) orientation with the lowest for (0.579 

0.417 0.702) orientation in the experiments and simulations (Figure 6-20 and 

Figure 6-22).  

In the following section, the exact orientations - (010), (101) and (111) - will be 

used to demonstrate the influence of orientation on the mechanical behaviour of the 

single-crystal Ti alloy accurately, which cannot be achieved using the orientation 

of the crystals in the experiments as they are comparatively less stable orientations.  

 

Figure 6-27: Distribution of shear strains on 12 slip systems predicted with FE 

simulation on indented (0.579 0.417 0.702) surface  

6.6.1 Evolution of crystallographic texture of nano-indents 

An induced lattice rotation below an indent is of great interest to improve 

micromechanical understanding of indentation experiments since crystalline 
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reorientation occurs as a result of crystallographic shear. Figure 6-28 shows the 

lattice distribution of misorientation for (101) orientation on the cutting plane (-1 0 

1). The colour code is linked to the accumulated orientation change with respect to 

starting orientation of the crystal. This figure shows that the change in local 

rotational fields varies between -30° and 30° except for the regions adjacent to the 

indenter directly below its tip, where extreme reorientation occurs. The 

corresponding orientation change in regions A and C was less, between -10° and 

10°, whereas higher texture evolution is observed in region B. Figure 6-29 

demonstrates the extent of texture evolution on path O-P shown in Figure 6-28. It 

should be emphasized that while 0.07 μm distance to the right and left of the center 

of path corresponds to region A, the remaining part to region B. This plot indicates 

that the orientation change on this path in region A is less than 10°. Figure 6-29 

suggests that steep gradients in the crystalline reorientation exist in region B. Such 

a distribution of texture evolution below the indent was also observed by Zaafarani 

et al. (2006), where the texture and microstructure below a nano-indent in a (111) 

Cu single-crystal was investigated using 3D EBSD and crystal-plasticity FE 

simulations. The experimental part of that study revealed that there were multiple 

transition regimes with steep orientation gradients and frequent changes in the sign 

of rotation directions (Figure 6-30). In that study, the FE simulations predicted a 

similar pattern for the absolute orientation changes but failed to predict the frequent 

changes in the sign of rotation field. However, this trend was predicted more 

accurately in this study as shown in Figure 6-28 and 6-30. On the other hand, 

Zaafarani et al. (2006) carried out isotropic plasticity simulations of the indentation 

process and compared the local rotational fields with the CP simulations. That 

study revealed that the rotation zones tangent to the indenter directly below its tip 

was observed in both simulations; however, the inner rotation zones cannot be 

obtained in an isotropic case. That comparison suggested that the rotations in the 

former zones were not a purely crystalline phenomenon, whereas the rotations in 

the inner rotation zones were justified to occur due to crystalline discreteness of the 

plastic slip. 
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Figure 6-28: Rotation angles and rotation directions predicted by FE 

simulations using EMSGCP theory in (-1 0 1) plane 

The FE simulations were also performed using the CP constitutive laws to 

demonstrate the influence of strain gradient effects on crystalline reorientation. The 

corresponding texture evolution on path O-P is plotted in Figure 6-29. The local 

rotational fields are closer to those obtained with the EMSGCP constitutive laws at 

some regions, however, they are mostly over predicted (Figure 6-28 and 6-30). The 

reason for this discrepancy arises from the fact that GNDs are not accounted for in 

the CP constitutive equations. In indentation model rapid spatial changes occurs in 

the local texture evolution due to imposed boundary conditions as observed in 

Figure 6-30. The resulting mismatches in the lattice spin for neighbouring material 

portions can be accommodated by GNDs. As this is accounted for in the SGCP 

formulations, the orientation change is predicted accurately compared to CP as also 

suggested by Zaafarani et al. (2006). Lattice rotations on the indented surfaces 

were also investigated. 
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Figure 6-29: Lattice rotation angles obtained using EMSGCP and CP theories 

along path O-P (see Figure 6-28) 

 

Figure 6-30: Rotation angles and rotation directions in the (1 1 -2) plane 

obtained from experiment and simulation. Reprinted with permission from 

(Zaafarani et al., 2006)  

Figure 6-31 provides a view of simulation results for the distribution of crystalline 

reorientation around the indents for three exact orientations. In this figure plots on 

the left-hand side are rotations w.r.t. y-axis defined for each orientation separately 

and plots on the right-hand side are rotations w.r.t. x-axis. This figure clearly 

indicates that there exists high symmetry in the texture evolution of indented (010) 

surface w.r.t. both x- and y-axis, where the magnitudes of rotations are almost 

identical.   
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Figure 6-31: Rotation angles and rotation directions predicted with FE 

simulations of indentation for different crystallographic orientation. Top row: 

rotations on (0 1 0) surface w.r.t. [1 0 -1] (left) and [1 0 1] (right). Middle row: 

rotations on (1 0 1) surface w.r.t. [0 -1 0] (left) and [-1 0 1] (right). Bottom row: 

rotations on (1 1 1) surface w.r.t. [1 -2 1] (left) and [-1 0 1] (right)  

Symmetry here is meant as the similarity of the absolute values of rotations at 

opposite sides. Similarly, the similar symmetry was also observed for the indented 

(101) surface, where, however, rotations in x-direction were more pronounced 

compared to those in y-direction. The symmetry, on the other hand, for the 

indented (111) surface was observed only in y-direction, with different absolute 

values of rotations w.r.t. x-direction at two opposite sides. These observations can 

be explained by the pile-up patterns obtained for different orientations (Figure 

6-32). Since the surface profile for the indented (010) surface is symmetric w.r.t. 
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both [1 0 -1] and [1 0 1] axes and the maximum pile-up height is identical at four 

peak points, the obtained rotational fields have the same characteristics. On the 

other hand, the maximum-pile up regions in the indented (101) surface occurs w.r.t. 

[-1 0 1] axis rather than [0 -1 0] axis (Figure 6-32). A higher lattice rotation w.r.t. 

the former axis is therefore observed compared to the latter one, according to 

which the pile-up heights are smaller; hence, lower rotations were observed. With 

the same idea, as the region, where the piling ups were observed on the indented 

(111) surface, is not symmetric w.r.t. [-1 0 1] axis, but located significantly to the 

left of [-1 0 1] axis, larger rotations were observed on that side compared to the 

opposite side. On the other hand, the surface profile is symmetric w.r.t. [1 -2 1] 

axis; hence, the obtained rotation fields are symmetric.  

 

Figure 6-32: Pile-up structures of imprints obtained with FE simulations for 

different crystallographic orientations 
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6.7 Size effects in nano-indentation of single-crystal Ti alloy 

In this section, the size effect in indentation of the single-crystal Ti alloy is 

investigated using the material parameters determined in Section 6.5. Size 

dependency in nano-indentation experiments can be considered as the change in 

material properties such as yield strength and hardness, with respect to indentation 

depth and indenter‘s radius. Therefore, the response of the single-crystal Ti alloy is 

investigated, namely, hardness changes, on the one hand, with a change in the 

indentation depth and, on the other hand, with a change in indenter‘s radius. 

Spherical indenters with two different diameters - 2.25 μm and 4.5 μm - are 

considered. The hardness values are calculated as the ratio of the imposed 

indentation force to the respective projected contact area. To determine the 

projected contact area, a CAREA option in ABAQUS (Systemes, 2010) was first 

considered, which calculates the total area in contact. However, the contact area 

reported by CAREA is, generally, slightly larger than the true contact area for 

reasonably meshed contact surfaces; therefore, interpretation of CAREA should be 

done with care (Systemes, 2010). Instead, here the ABAQUS contact variable 

COPEN outputting the clearance between surfaces was employed to accurately 

calculate the contact areas of each surface element (Figure 6-33). A very strict 

threshold value of      mm is considered for COPEN variable; it means that if the 

clearance between indenter tip and the workpiece material is more than      mm, 

this part of the element was not accounted for in the area calculation as shown in 

Figure 6-33. The overall projected contact area, based on summation over all areas 

of elements in contact, was calculated using the PLOTDIGITIZER program, which 

digitizes scanned plots of functional data (Huwaldt, 2005).  

Figure 6-34 demonstrates the simulation results on the variation of mean pressure, 

i.e. hardness, with the ratio of the indent‘s radius   to the indenter tip radius   for 

two different indenter radii. The definition of   and   is given in Figure 6-35. The 

first observation in Figure 6-34 is that the hardness value increases with an increase 

in the   ⁄  ratio for both indenters as the total dislocation density increases with 
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such an increase. Johnson (1974) estimated the average plastic strain underneath a 

spherical indenter of radius   as 

   
 

  
  6-1 

 

Figure 6-33: Contact area and contact openings for spherical indenter’s tip of 

radius 2.25 μm 

As    is proportional to plastic strain, an increase in the   ⁄  ratio increases   , 

according to Equation 6-1. On the other hand, the average density of GND is 

calculated by Swadener et al. (Swadener et al., 2002) as  

   
 ̅

  
  6-2 

where  ̅ corresponds to the Nye factor and b is the Burgers vector. This equation 

indicates that    is independent of   ⁄  ratio, but increases when the indenter‘s 

radius decreases. In total, the sum of    and    increases with an increase in the 

  ⁄  ratio; hence, an increase in hardness value is observed for both spherical 

indenters (Figure 6-34).  
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Figure 6-34: Numerical results on variation of hardness with   ⁄  for 

spherical indenters with different radii  

 

Figure 6-35: Geometry of spherical indenter used in nanoindentation (Fischer-

Cripps, 2002) 

Equation 6-2 explains partially our second observation in Figure 6-34: at a fixed 

  ⁄  ratio, an indenter with a smaller tip radius gives a larger hardness value 

compared to that for a larger radius. Since    is larger for smaller indenter, the total 

dislocation density becomes larger, hence does the hardness value. It is worth 

mentioning that    is independent of indenter radius. 

The change in indentation hardness with the   ⁄  ratio was also investigated by 

employing the CP theory to make a comparison with the results obtained using the 

EMSGCP theory. Surprisingly, it was found that very close trends were obtained 

for hardness values (Figure 6-36). The obtained hardness values were identical up 

to the   ⁄  ratio of 0.40, whereas beyond that ratio, the hardness values for CP 

were smaller. To get an idea about the underlying reason, the force-displacement 
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diagram was plotted using both theories for the indenter‘s radius of 1.125 μm 

(Figure 6-37). In this figure the indentation depth of approx. 265 nm corresponds to 

the   ⁄  ratio of 0.6. It is clearly visible that there is no appreciable difference in 

the obtained force value using CP and EMSGCP theories up to 180 nm 

(      ⁄ ), after which the force-displacement curve started to diverge. This 

result explains why identical hardness values were obtained using two theories up 

to the   ⁄  ratio of 0.40 and divergence in the hardness values for larger values.  

 

Figure 6-36: Numerical results on variation of hardness with   ⁄  using CP 

theory for spherical indenters with different radii 

In the CP theory the effect of    is not accounted for; only the contribution of    is 

taken into account (see section 3.3). As    is proportional to the   ⁄  ratio, 

compatible hardness values were predicted for both spherical indenters (Figure 

6-36). This explanation is also valid for the EMSGCP theory up to the   ⁄  ratio of 

0.40. However, when the   ⁄  ratio exceeds this threshold value, strain gradients 

start to become significant (Figure 6-37). Larger hardness values were therefore 

observed for the EMSGCP theory. As mentioned above, since    increases with a 

decrease in the indenter‘s radius, the hardness values were larger for a smaller 

indenter when the EMSGCP theory was used (Figure 6-34). 

Following equation explains how the strength of a slip system   is calculated.  
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     √    

             
   6-3 

At the onset of plastic deformation there are no strain gradients,   
          

(see beginning of this chapter). In the course of deformation, strain gradients start 

to evolve with an increase in plastic strain. The first term in the square root of 

Equation 6-3 represents hardening due to SSDs and the second term represents the 

hardening due to GNDs. As the deformation advances, these two terms start to 

contribute to hardening of each slip system by competing with each other. 

However, their contribution occurs gradually since their overall magnitude is 

comparatively small compared to    (  
      ).  Differences in the solutions were 

observed for simulations using CP and EMSGCP theories at later deformation 

instances (Figure 6-37). It should be pointed out that when a smaller value of    is 

used, the influence of strain gradients in the solution can manifest itself at earlier 

deformation stages. In summary, as the influence of    is negligibly small at the 

beginning of plastic deformation, the size effects in indentation at those 

deformation level cannot be captured using the EMSGCP theory. However this can 

be captured at higher deformation levels, where    starts to govern hardening of 

slip systems (Figure 6-34). 

 

Figure 6-37: Load-displacement curves obtained from FE simulations using 

CP and EMSGCP theories for spherical indenter with radius of 1.125 μm 
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Contrary to the case of spherical indenter, indentation hardness for sharp indenters 

decreases with an increase in penetration depth. Due to self-similarity of sharp 

indenters (e.g. conical or Berkovic) the average density of SSDs is independent of 

the indentation depth while the density of geometrically necessary dislocations is 

inversely proportional to   as  

   
         

   
  6-4 

where   corresponds to the angle between the surface of the conical indenter and 

the plane of the indented surface (Nix and Gao, 1998). As the total density 

decreases with an increase in the indentation depth, the hardness value decreases 

(Figure 2-13). Since the contribution of GNDs at the beginning of the plastic 

deformation due to the above-mentioned fact is insignificant, the size effects in the 

case of sharp indenter cannot be captured using the EMSGCP theory. To sum up, 

the EMSGCP theory allows us to characterize the size effects in nano-indentation 

when the GNDs become significant and affect the strength of the slip systems.  

6.8 Conclusions 

In this chapter the material behaviour of beta phase of the single-crystal Ti alloy in 

nano-indentation experiments was investigated. The performed experiments 

revealed different pile-up patterns for different crystallographic orientations 

justifying strong crystallographic anisotropy of the out-of plane displacements 

around the indents. A 3D EMSGCP FE model of this test was developed. The 

numerical model enables, on the one hand, to characterize relative contributions of 

different slip systems during deformation and, on the other hand, to obtain local 

fields of stresses and strains inside the sample. The material parameters were 

obtained by calibrating the developed numerical model with the experiments 

employing the obtained load-displacement curves and surface profiles. The 

obtained        here helps to characterize the contribution of        and        to 

the CRSS of slip systems in the micro-pillar-compression experiment. Similarly, 
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the Taylor coefficient   obtained here also allows quantifying the WHR in micro-

pillars of different sizes. In summary, nano-indentation tests were used to describe 

the size effect in micro-pillar compression experiments.  

The investigation of contribution of different slip systems to the overall 

deformation in FE simulations demonstrated that the Schmid factor of the slip 

systems determined their contributions to the materials behaviour. It evolved with 

deformation, i.e. the slip system active at the very beginning may become inactive 

at advanced deformation levels, and vice versa. This brought the conclusion that 

predictions of active slip systems based on the simplifying assumption of uniaxial 

compression may not be always accurate; whereas, the local boundary conditions 

in connection with the deformation level need to be taken into account. On the 

other hand, in nano-indentation experiments, due to imposed boundary conditions 

rapid changes occurs in the local spatial texture evolution. The resulting 

mismatches in the lattice spin for neighbouring parts of material can be 

accommodated by GNDs. As this was accounted for in the EMSGCP constitutive 

laws, the corresponding simulations describe the local fields of lattice rotations and, 

hence, strains and stresses accurately compared to solutions obtained using the CP 

constitutive laws. The size effect in nano-indentation experiments was studied 

numerically. It was concluded that ISE could be predicted using the EMSGCP 

theory when a spherical indenter is used, but this was not possible in the case of a 

sharp indenter.  

 



 

 

 

CHAPTER VII 

7 Conclusions and future work 

In this chapter a general conclusion on the work done is presented. Although effort 

is made here to circumnavigate discussions already presented in individual 

chapters, it should be noted that some amount of duplication is unavoidable. The 

future work of this thesis is given at the end.  

7.1 Conclusions 

A novel model of strain-gradient theory to predict the size effect, which is observed 

in the micro-pillar compression experiments of the studied Ti alloy, is introduced in 

this thesis. Since background information is vital to understand the underlying 

mechanisms for this phenomenon, a thorough literature review was given in the 

first chapter. As the investigated material, Ti-15-3-3-3, has a b.c.c. crystalline 

structure, the crystal-plasticity theory within the framework of FEM was planned to 

be used at the initial stage. However, as there is no length scale in its constitutive 

description, it cannot explain the dependence of mechanical response on a 

specimen‘s size. This was circumvented by using a non-local continuum MBSGCP 
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theory. However, as the CRSS value of the slip systems in this theory is 

independent of the pillar size, in contrast to observations in the experiments, this 

theory was also found to be insufficient to explain the size effect. A novel 

enhanced model of strain-gradient crystal-plasticity theory was suggested, where 

the initial microstructure of pillars was accounted for, based on some experimental 

evidences (Maass et al., 2006; 2007; 2009). This was explained by the following. 

During the fabrication process of pillars, e.g. with the FIB method, pillars become 

work-hardened; hence, finite stresses evolve in their body. It is well known that 

traction-free surfaces of pillars dictate a zero stress value on their surfaces. This 

difference in the stress distribution results in stress gradients, i.e. strain gradients in 

the body, which can be accommodated by GNDs. For instance, for the smaller 

pillar size, where the traction-free surfaces are closer to the pillar‘s axis and pillar‘s 

surface-to-volume ratio is higher, physically (and numerically) strain gradients 

become more pronounced compared to larger pillar sizes. Accordingly, the smaller 

the size of pillar is, the higher the density of GNDs and thus higher its strength. In 

this theory, the incipient density of GNDs is considered to be a function of surface-

to-volume ratio. It is worth mentioning that the initial density of SSDs is 

independent of the pillar size. The relative contribution of incipient        and 

       to the CRSS needs to be addressed in the EMSGCP theory. In principle, 

       is infinitesimally small in the initial microstructure of bulk large-size pillars; 

hence, incipient        can be characterized for such pillars using this experiment. 

However, their production is difficult. Instead, here a novel technique was 

employed, in which the combination of nano-indentation experiments and 

simulations with EMSGCP theory were used to determine        since        is 

infinitesimally small in the samples in nano-indentation experiments due to their 

negligibly small surface-to-volume ratio. In other words, nano-indentation 

experiments, which are simple to perform, were used to study the size effect in 

pillars. The numerical results demonstrated that the experimental stress-strain 

curves for pillars were predicted appropriately using EMSGCP theory. The results 

also demonstrated that although the deformation was applied uniaxially in micro-

pillar compression experiments, heterogeneity evolved during loading due to 
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boundary conditions and orientation of the pillar itself, leading, in its turn, to strain 

gradients. These findings also justified that it was appropriate to use the strain-

gradient theories to explain the size effect in micro-pillar compression experiments 

as they are being used to explain this phenomenon in nano-indentation, bending or 

torsion experiments. It should be emphasized that the experimental study of the 

b.c.c. Ti alloy revealed that only the slip system {112} <111>  was active during 

loading; hence, only this set among the potential three different sets in the FE 

simulations was switched on. 

The study about the critical edge length (  ) of the pillar, below which the relative 

change in the corresponding CRSS value was less than 5%, demonstrated that 8 μm 

was the value of    for the studied Ti alloy. In other words, for the pillars with an 

edge length of less than 8 μm, the EMSGCP theory should be used, whereas for the 

larger pillar sizes, the MBSGCP theory can be used as it is degenerated from the 

EMSGCP theory (Figure 7-1). It was also observed that    was a function of 

material parameters       ,        and   , whereas it was insensitive to parameter 

K.  

It was concluded from the FE simulations of nano-indentation experiments that the 

local fields of lattice rotations and, hence, strains and stresses can be predicted 

accurately by using the EMSGCP theory as GNDs accommodating the mismatches 

in the lattice spin for neighbouring parts of material are accounted for in contrast to 

the CP theory. The size effect in nano-indentation (ISE) experiments was studied 

numerically. It was concluded that ISE could be predicted accurately using the 

EMSGCP theory when a spherical indenter was used, but this was not possible for 

a sharp indenter. 

In summary, the combination of micro-pillar-compression and nanoindentation 

experiments with their FE models employing the EMSGCP theory were used to 

predict the real-life deformation behaviour of Ti-15-3-3-3 at micron scale under 

quasi-static loading conditions. Manufacturers and designers can facilitate the 

introduced methodology and framework to design and optimize their crystalline 

materials (even for f.c.c. and h.c.p.) for different applications, spanning from 
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micro-scale such as MEMS, medical devices, thermal barrier coatings, optics, 

electronics, etc. It is worth noting that the user subroutine (UMAT) should be 

amended for h.c.p. crystal structures to account for crystal aspect ratio while 

determining the slip systems. 

7.2 Future Work 

In the future work, the applicability of the developed EMSGCP theory to nano-size 

pillars can be checked. To achieve this, additional compression tests for nano-size 

pillars of Ti alloy can be carried out and compared with the numerical model 

(Figure 7-1). This study can help to determine the limit of applicability of the 

EMSGCP theory since in the sub-micron scales the discrete dislocation events 

become more significant and the continuum models do not describe the materials 

behaviour correctly. A similar work can be made for f.c.c. pillars. It is known that 

the deformation mechanism in f.c.c. micron-sized pillars is not similar to that in 

nano-sized pillars, unlike b.c.c. pillars with the same mechanism at both scales 

(Brinckmann et al., 2008). This can lead to differences in the limits of EMSGCP 

theory for different crystal orientations. 

 

Figure 7-1: Length scales in the pillar compression experiments for Ti alloy 

It is also well known that single-crystal components used in high-technology 

applications such as MEMS, gems industry and medical devices can be exposed to 

dynamic loading in their service life; the responses under such loading 

circumstances need to be identified to enhance their dynamic performances. In the 

future work, dynamic behaviour of the single-crystal Ti alloy at different length 

scales can be investigated both experimentally and numerically. To achieve this, 

pillars of different sizes can be compressed dynamically (i.e. at higher strain rates), 
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where material inertial effects become significant, and the obtained results can be 

compared with those obtained with FE simulations using the EMSGCP theory. In 

the numerical model, the CRSS value and strain-hardening of the involved slip 

systems can be implemented as strain-rate dependent. 
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