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Abstract

Pseudo-random sequences are a crucial component of cryptography, particularly

in stream cipher design. In this thesis we will investigate several measures of

randomness for certain classes of finitely generated sequences.

We will present a heuristic algorithm for calculating the k-error linear com-

plexity of a general sequence, of either finite or infinite length, and results on the

closeness of the approximation generated.

We will present an linear time algorithm for determining the linear complexity

of a sequence whose characteristic polynomial is a power of an irreducible element,

again presenting variations for both finite and infinite sequences. This algorithm

allows the linear complexity of such sequences to be determined faster than was

previously possible.

Finally we investigate the stability of m-sequences, in terms of both k-error

linear complexity and k-error period. We show that such sequences are inherently

stable, but show that some are more stable than others.
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What we call chaos is just patterns we havent recognized. What we call random

is just patterns we can’t decipher.

– Chuck Palahniuk
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Chapter 1

Introduction

Cryptography as a discipline is concerned with the problem of secure communic-

ations in the presence of untrusted third parties. Broadly speaking, it searches

for ways to transmit data such that the set of participants that can obtain the

data contains exactly those parties who we wish it to and no more. Conversely,

the related discipline of cryptanalysis is the study of how to extract information

from communications which are designed to make such an abstraction difficult or

impossible. To put this in a more concrete setting we consider a game, or thought

experiment, consisting of three parties, Alice, Bob and Eve. Alice has some in-

formation that she wishes to send to Bob. However, the channel between Alice

and Bob is unsecure - that is, it is possible for a third party, Eve, to intercept the

message. Therefore Alice has to encrypt the message in such a way that Bob is

able to decrypt it (and hence recover the original message) but Eve cannot. This

is done through the use of a shared secret between Alice and Bob, which Eve does

not possess, usually in the form of a key. We refer to the message that Alice wishes

to translate as the plaintext, and the encrypted information (which we assume Eve

can obtain) as the ciphertext. We say that an encryption method is secure if Alice

can trust that given the ciphertext, only Bob can obtain the plaintext.

There are various different attributes we can give to each of the parties in the

game, and to the channel itself, and each combination gives rise to a different

model of security. One of the most important distinctions is in the way that

the plaintext becomes available, and we distinguish between stream and block

ciphers. If we assume that Alice possesses the entire message when she begins her

encryption, it is possible for her to employ methods which act on the entirety of

the plaintext, or at least break it up into large blocks, and then perform encryption

on each of these. Bob will then receive large chunks of ciphertext, and decrypt

each block as a whole. Schemes that operate in this way are known as block

ciphers. Conversely, consider the case where Alice needs to begin to communicate

the message to Bob whilst the plaintext is still being generated (or becoming

1
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available). In this scenario, she must encrypt the data on-the-fly, in very small

pieces, as any waiting to obtain more of the plaintext is either not possible or

not acceptable. Bob will then receive the ciphertext piece-by-piece and begin to

decrypt each piece as he is still receiving more of the ciphertext. Schemes that

operate in this scenario are known as stream ciphers. For some situations, it is

possible to apply a block cipher in a mode whereby it approximates the behavior

of a stream cipher, but such systems always suffer from an increase in latency.

Arguably the second most important distinction between types of encryption

schemes is between symmetric and asymmetric cryptography. As mentioned be-

fore, the only situation whereby Bob can convert the ciphertext back into plaintext

but Eve cannot, is if Bob posses some secret piece of information that Eve does

not (known as a key), and it is this that Alice exploits. Classically, it was assumed

that Alice possesses the same key as Bob, and this scenario is known as symmetric

encryption as the knowledge at either end of the transmission is identical. How-

ever, in the last 40 years, a new scenario has been developed, whereby Alice and

Bob do not posses the same information. Rather, Alice only possesses Bob’s public

key, which she can use to encrypt the plaintext, and then Bob can use a different

key - his private key - to decrypt the data. The crucial fact here is that Alice does

not possess Bob’s private key, in fact, no one other than Bob does. This is very

useful for situations whereby there are many participants who wish to send secret

messages: Bob is free to make his public key widely known to anyone who wishes

to send a message to him. Then, he does not have to worry about Eve obtaining

this information as is not possible to decrypt a ciphertext by using only the public

key.

Whilst there has been a great deal of progress made in the study of block

ciphers, there is still a comparative lack of maturity in the field of stream ciphers,

from both cryptographic and cryptanalytic view points. We have looked at the-

oretical aspects of symmetric stream ciphers, and seen how some of these can be

applied to practical schemes.

1.1 One Time Pad

Virtually all stream ciphers that are in use today, or have been in use at some

point can trace their design back to the one time pad, or Vernam cipher, first

presented in 1882 by Miller [57]. It uses a very simple encryption method, and

gains its security from the properties of its key, as follows. Assume that Alice and

Bob have agreed on some alphabet and a structure over it that allows addition of

its elements. Now, assume Alice has a message m consisting of n symbols from
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her chosen alphabet:

m = m0,m1, . . . ,mn−1

Further, assume that both she and Bob posses a secret key, k, which is also n

symbols from the chosen alphabet:

k = k0, k1, . . . , kn−1

Then to encrypt her message, Alice simply adds each symbol of the message to

the corresponding symbol of the key (using addition as defined over her alphabet)

to obtain the n symbols of the ciphertext, c:

m⊕ k = m0 ⊕ k0,m1 ⊕ k1, . . . ,mn−1 ⊕ kn−1
= c0, c1, . . . , cn−1

= c

Then, when Bob receives the ciphertext c, he can recover the plaintext p by

subtracting each term from the key from the corresponding ciphertext term. Al-

though this scheme may seem simple, it was proven by Shannon in [68] that if

the terms of the key are random, and if each key defines a unique bijection when

combined with the operator ⊕, then the system is perfectly secure. By this, it is

meant that if Eve intercepts a ciphertext c (and she does not have any information

about the key), no information is leaked about what the plaintext was - that is,

the actual plaintext that was encrypted is as likely to have been used as any other

(of suitable length). Whilst this property gives this scheme great strength, the

scheme is very seldom used for the very same reason: it is necessary to possess a

key that is truly random and as long as the message. For any reasonable message

length, ensuring that Alice and Bob have a long enough key (that they have stored

in some secure way) becomes very difficult. Therefore, virtually all research into

stream ciphers has been into ways that aim to get as close as possible to replicating

the security provided by the one time pad, whilst using shorter keys, and hence

increasing the practicality of the system.

1.2 Pseudo-Random Sequences

The theoretical strength of the one-time pad, combined with its impracticality,

has led to the following structure being adopted for virtually all stream cipher
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proposals. Alice and Bob each posses a small key, k. By feeding this key into

some deterministic function f , they generate identical pseudorandom sequences

f(k) = k0, k1, k2, . . .. Then encryption on the plaintext is done term-by-term just

as for the one time pad, and since Bob possesses the same sequence, he can decrypt,

just as for the one-time pad as well. Assuming that the set of keys is large enough,

it is easy to see that the strength of this scheme depends on the function used to

generate the secret sequence, namely, how close to random the sequence is. If it is

very easy to predict the terms of the sequence, then the scheme will not capture the

security of the one-time pad, and will be easy to attack. Conversely, if the sequence

appears to be random, and its terms cannot be predicted, then the system will

be secure, and no attacks will be possible. Therefore, research into stream ciphers

is closely bound with research into the randomness properties of sequences. The

important fact in this is that any finitely generated sequence (as Alice and Bob

only possess finite keys, and use finite mechanisms to generate the sequence) must

be ultimately periodic, that is, after some initial sequence (possibly of zero length)

the sequence must begin repeating. This is because there are only finitely many

states the system can enter, and since the process is deterministic (which it needs

to be for Alice and Bob to generate the same sequences) if the system enters a state

it has already been in, all future behavior will be identical. Therefore, whatever

generating function is used, the output sequence must be ultimately periodic, and

hence predictable, and hence insecure. It is the cryptographer’s role to try to find

the functions which minimise the degree of predictability, and the cryptanalyst’s

role to try to maximise it.

One basic way to generate a long, pseudo-random sequence given a small item

of starting data is by using a linear feedback shift register (LFSR). To simplify

the following discussion, we will assume that the sequence we are generating is

over the finite field K. An LFSR consists of a series of n registers, each of which

is capable of holding a single value from K, and a characteristic function, which

acts on Kn and outputs a value in K. Initially we fill the n registers with the n

values which make up the secret key. Then, at each clock step, the registers are

updated using the following function:

si(t+ 1) = si+1(t) ∀i ≤ n− 2

sn−1(t+ 1) = f(s0(t), s1(t), . . . , sn−1(t))

=
n−1∑
i=0

si(t)ai

where si(t) is the contents of register i at time t, f is the characteristic function
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and the ai are constants. Then the sequence (s0(0), s0(1), s0(2), . . .) is the sequence

that can be used for encrypting the message.

LFSRs are by far the most widely studied way of generating a pseudo-random

sequence. The reason for this is that any sequence that is finitely generated (that

is, any ultimately periodic sequence) can be generated by some LFSR. Further,

we have a very efficient way of finding the simplest LFSR that can generate a

sequence. Therefore, analysis of sequences is often studied in terms of the LFSR

that can generate the sequence, regardless of the way the sequence was actually

generated. This allows different sequences to be compared, and it is therefore easy

to determine which possess the best properties for the intended use.

1.3 Pseudo-Random Sequence Properties

To determine the strength of a pseudo-random sequence, and hence its suitability

for use, we study its properties. The simplest of these is the minimal period length

of the sequence. That is, the shortest number of terms over which the sequence

repeats. Since stream cipher encryption is based on such a simple encryption

method (a term by term addition) all of the strength of the encryption is derived

from the secrecy of the sequence. However, if the pseudo-random sequence repeats,

an attacker knows that any terms separated by the minimal period length were

encrypted by addition of the same term. Since this is true for all terms after

the sequence has begun to repeat, a huge amount of information is leaked, and

virtually all security is lost. Therefore it is a very basic requirement of stream

ciphers that the minimal period of the pseudo-random sequence that is used for

encryption is longer than the message length. Unless the minimal period length

of a sequence is very long, therefore, the sequence will be not be suitable for use

in encryption, and so it is necessary to determine the minimal period length of a

sequence (or at the very least a lower bound on its value) before a sequence can

be used in a cipher scheme.

Another basic property of a pseudo-random sequence is its linear complexity.

This is defined as the shortest LFSR that is capable of generating the sequence.

If a sequence has a small linear complexity, say n, then it can be completely

determined by a small amount of knowledge, namely, the n coefficients of the

characteristic polynomial, and any consecutive n terms of the sequence. For a

sequence of period m, the linear complexity can be as small as log(m), and so the

entire minimal period (and hence the entire sequence) can be generated from a very

small amount of knowledge. Therefore it is a basic requirement of a pseudo-random

sequence to be used in a stream cipher that it have a large linear complexity.

From these two basic properties, we can derive two more, the k-error period
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and the k-error linear complexity. These are the minimal period and the minimal

linear complexity of any sequence that can be generated by altering up to k terms

in a period of the sequence. To give a simple example, the following sequence has

a period length of 6: 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, . . .. However, by changing just

one term in each period - the final one which we change from a 0 to a 1 - the

sequence becomes: 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . . which has a minimal period of

just 3. Therefore while the minimal period of this sequence was 6, the 1-error

period was just 3. The reason that this is so important for cryptographers, is

that if a sequence has a small k-error period or k-error linear complexity, and if

an attacker can efficiently find the sequence with shorter period or reduced linear

complexity, they may approximate the original sequence by a simpler one, if they

are prepared to tolerate up to k errors in their decryption. This may transform

the sequence from one that was previously considered secure into one that is no

longer so, and so it is vital for security purposes that the k-error period and

linear complexity are known, or at the very least a lower bound on their values is

established.

It should be noted that there are other, more complex properties of pseudo-

random sequences such as balance and mixing, but they will not be discussed in

this thesis

1.4 Modern Stream Cipher Proposals

Modern stream ciphers are highly complex and often take many years of analysis

to fully understand. They are typically made up of several smaller blocks (known

as primitives) whose outputs are combined in complex ways to form the output

of the sequence as a whole. They are designed so that this combining process

retains the desirable properties from each primitive, but removes any weaknesses

that each particular primitive might have. To give a simplified example, consider

a case where we have just two primitives, A and B. Assume, for the sake of

argument, that A has a high k-error period, but a low k-error linear complexity,

and that B has a high k-error linear complexity, but a low k-error period. Then,

if the outputs of the two primitives could be combined in such a way that the

k-error period was the sum of the two primitives and likewise the k-error linear

complexity was the sum of the two primitives, we would have a sequence with

high k-error period, and high k-error linear complexity. In reality the k-error

period and k-error linear complexity are so closely related that this situation is

unlikely to occur, but it is useful as an illustrative example. To further increase

the security, the outputs of each primitive are often fed back into the generating

system, and used as inputs to the other primitives. In this way, the designers can
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further increase the interdependence of the proposal, and ensure that it is much

harder to isolate one primitive for study, and any potential weaknesses present in

a primitive are not present in the output of the proposal.

Currently there is a considerable amount of effort going in to generating new

proposals, and studying them to determine their security. The recent NESSIE

and ESTREAM projects were two collaborative efforts by the community to find

stream ciphers with the desirable properties, and their work is still ongoing. There

are also many individual proposals in the literature. The topics discussed in this

thesis are applicable only to the primitives used in stream ciphers, as is the usual

way of studying such designs, and it is hoped that the results presented are highly

useful to stream cipher designers, as well as to those studying existing designs.



Chapter 2

Definitions and Preliminary

Results

Notation 2.1. Let K be a finite field. We denote by K[x] the set of all polynomials

over K.

Definition 2.2. Let K be a finite field. Given a degree n monic polynomial

f = xn + cn−1x
n−1 + . . . + c0 ∈ K[x] and n initial values, s0, s1, . . . , sn−1 ∈ K,

an infinite sequence s = (s0, s1, . . .) is recursively generated by using the following

linear recurrence relation:

si = −c0si−n − c1si−n+1 − . . .− cn−1si−1

for i ≥ n. Note that it is possible to generate identical sequences using different

polynomials. We refer to f as a characteristic polynomial of s, and any sequence

which can be generated in this way as a linear recurrent sequence. Equivalently we

can use f to generate a finite sequence s′ = (s0, s1, . . . , sm−1) by only considering

the first m terms of s. Note that elsewhere in the literature the term feedback

polynomial is sometimes used instead of characteristic polynomial. The two are

entirely interchangeable.

Definition 2.3. For any linear recurrent sequence s, a characteristic polynomial

of the lowest degree is referred to as the minimal polynomial, and its degree the

linear complexity of the sequence. We will denote the linear complexity of s as

LC(s).

Notation 2.4. We will denote the all zero sequence as 0. We will use the same

notation for the infinite and all finite sequences, where the length of the sequence

will be clear from the context.

Note that by convention 0 has linear complexity 0, regardless of its length.

8
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Lemma 2.5. For infinite sequences the minimal polynomial is unique and any

other characteristic polynomial is a multiple of the minimal polynomial.

Notation 2.6. For a polynomial f we denote by wt(f) the weight of f , i.e. the

number of non-zero coefficients of f (by analogy with the Hamming weight of

vectors).

For convenience we will introduce the following notation:

Definition 2.7. Let K be a finite field. Let f be a monic polynomial in K[x]. We

define M(f) to be the set of all infinite sequences over K with a characteristic

polynomial equal to f . We also define M(f∞) = ∪∞i=0M(f i).

The following definition is a commonly used notion:

Definition 2.8. Let K be a finite field. Let f =
∑n

i=0 aix
i be a polynomial in

K[x], and s = s0, s1, . . . an infinite sequence over K.

We define the action of f on s, denoted fs, to be the infinite sequence t =

t0, t1, . . . defined by ti =
∑n

j=0 ajsi+j.

For a finite sequence s′ = (s0, s1, . . . , sm−1) over K with m > n we define the

action of f on s′, denoted fs′, to be the finite sequence t′ = (t0, t1, . . . , tm−n−1)

defined by ti =
∑n

j=0 ajsi+j. (One could extend the definition to m ≤ n but this

situation will not occur in this thesis.)

Definition 2.9. A sequence s is called periodic if there exists a positive integer

t such that si = si+t for all i = 0, 1, . . .. We call t a period of s and we call the

smallest positive such t the minimal period of s and denote it by P(s).

Using the terminology of actions, the following results concerning characteristic

polynomials are immediate:

Lemma 2.10. Let K be a finite field. Let f ∈ K[x] be monic and let s be an

infinite sequence over K. Then:

(i) f is a characteristic polynomial of s iff fs = 0. Moreover, f is the minimal

polynomial of s iff f is a polynomial of minimal degree for which fs = 0.

(ii) Let g ∈ K[x]. Let gcd(f, g) = f2 and f = f1f2 with all polynomials monic. If

f is the minimal polynomial of s then f1 is the minimal polynomial of gs.

(iii) If s is periodic and N is a period of s then N is also a period of fs.

Proof. Parts (i) and (iii) are clear. For (ii) write g as f2g
′. Denote the minimal

polynomial of gs by f3. We will prove that f1 = f3. From (i) we know fs = f1f2s =

0 and f3gs = f3f2g
′s = 0. Since the minimal polynomial of a sequence divides any

other characteristic polynomial, f1f2|f3f2g′. Since g′ and f1 are coprime we have
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f1|f3. On the other hand, fs = 0 implies fg′s = f1f2g
′s = f1gs = 0 and since f3

is the minimal polynomial of gs, we have f3|f1, which combined with f1|f3 proved

previously results in f3 = f1.

Based on the well-known exponentiation rule (sometimes known as “Fresh-

man’s dream”): (a+ b)p = ap + bp for all a, b ∈ K and p is the characteristic of K,

we have:

Lemma 2.11. Let K be a finite field of characteristic p, and let f ∈ K[x]. Then

wt(fp
w
) = wt(f) for any w ≥ 0.

Definition 2.12. The degree of a polynomial f =
∑n

i=0 aix
i is the power of its

largest non-zero term, n, and we will denote this as deg(f).

Definition 2.13. The order of a polynomial f (with x - f), denoted ord(f), is

the smallest integer n such that f is a factor of xn − 1.

Lemma 2.14. ([44, Theorem 6.27]) The minimal period of a periodic sequence is

the same as the order of its minimal polynomial.

Lemma 2.15. Let K be a finite field of characteristic p. The order of an irre-

ducible polynomial f ∈ K[x] is a factor of pdeg(f) − 1, and hence ord(f) is not

divisible by p.

The order of a power of an irreducible polynomial can be derived as follows:

Theorem 2.16. ([44, Theorem 3.8]) Let f be irreducible over K[x] and let r be

a positive integer. Then ord(f r) = pt ord(f) where t is the smallest integer with

pt ≥ r, and p is the characteristic of the underlying field.

Notation 2.17. Consider a finite sequence, s. We denote by wt(s) the Hamming

weight of s, that is, the number of non-zero terms in s. For simplicity, we will

usually just refer to the weight of s.

Definition 2.18. Consider an infinite, periodic sequence, s. Once we have spe-

cified a (not necessarily minimal) period of s, m, we can refer to the weight of s

by the weight of the finite sequence s0, s1, . . . , sm−1.

Note that the weight of a sequence is not unique as it is dependent on the

length of the period being considered.

Definition 2.19. Consider two finite sequences, s and s′, of the same length, m.

Then we define the Hamming distance, d(s, s′), between the two sequences as the

weight of the sequence s0 − s′0, s1 − s′1, . . . , sm−1 − s′m−1. For simplicity, we will

usually just refer to the distance between the two sequences.
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Definition 2.20. Consider two infinite sequences which share a period, m. Then

we define the distance between the two sequences as the distance between the two

finite sequences which consist of the first m terms of each.

Note that the two sequences do not need to share a minimal period, and that

the distance between them is not uniquely defined, as it is dependent on the period.

Notation 2.21. We will denote the Galois Field of order n as GF(n).

Definition 2.22. Let α ∈ K be a generator of the multiplicative group of K, that is

for every element β in the multiplicative group of K, there exists a positive integer

i such that αi = β. Then α is a primitive element and its minimal polynomial is

a primitive polynomial.

Definition 2.23. Consider a linear recurrent sequence over GF(2) with a prim-

itive characteristic polynomial from GF(2)[x] and initial values that are not all

zero. Any such sequence is known as an m-sequence and has period equal to 2n−1

where n is the degree of the characteristic polynomial.

Lemma 2.24. For any binary sequence generated by a polynomial of degree n, the

period is no greater than 2n − 1 and the maximum is achieved exactly when the

sequence is an m-sequence.

The k-error linear complexity of a sequence is a parameter that generalizes the

linear complexity:

Definition 2.25. [69] [22] Let s be an infinite periodic sequence with period m

and 0 ≤ k ≤ m. The k-error linear complexity of s is defined as:

LCk(s) = min{LC(s′) : s′sequence of period m, d(s, s′) ≤ k}.

Note that this definition implicitly depends on the period.

Definition 2.26. [43] The error linear complexity spectrum of a sequence s of

period m is a list of pairs, (k,LCk(s)), where k takes all values in the range

0 ≤ k ≤ wt(s). A critical point in the spectrum is where LCk(s) < LCk−1(s) for

k > 1 or k = 0.

Note that knowing the critical points of the error linear complexity spectrum

is enough to generate the whole spectrum.

Lemma 2.27. Let s be an infinite periodic sequence of period m. Then LCwt(s)(s)

= 0, so the last critical point in the complexity spectrum is (wt(s), 0). If s is a

binary sequence, LCm−wt(s)(s) ≤ 1 so if wt(s) > m/2 the penultimate critical point

in the spectrum is (m− wt(s), 1).
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We will need a few other parameters related to k-error linear complexity:

Definition 2.28. The minimum number of errors required in each minimal period

to reduce the linear complexity of s to a value that is at most c will be denoted by

ELC(s)(c). The smallest number of errors needed to strictly reduce the linear com-

plexity will be called the linear complexity stability threshold and will be denoted

ELC(s).

Note that for any fixed sequence s, if we consider ELC(s)(c) as a function of c,

and LCk(s) as a function of k, then ELC(s)(c) is the minimum of the preimage of

c under LCk(s).

Example 2.29. Consider the binary sequence s whose minimal period is

(0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0)

Then s has the following linear complexity spectrum: (0,15), (1,15), (2,10), (3,10),

(4,5), (5,5), (6,2), (7,2), (8,0). The critical points on this spectrum are (0,15),

(2,10), (4,5), (6,2), (8,0) and the linear complexity stability threshold is 2. We

also have, for example, ELC(s)(5) = 4.

We define for the period of a sequence analogues of the k-error linear complexity

parameters:

Definition 2.30. For an infinite periodic sequence s we define the k-error period

to be:

Pk(s) = min{P(t) : t sequence of period P(s), d(s, t) ≤ k}

Note t above must have (possibly not minimal) period equal to P(s).

The minimum number of errors required in each minimal period to reduce the

minimal period of s to at most c will be denoted by EP(s)(c). The smallest number

of errors needed to strictly reduce the period will be called the period reduction

value and will be denoted EP(s) (i.e. EP(s) = EP(s)(P(s)− 1)).

Note that EP(s)(c) and Pk(s) have the same relation as ELC(s)(c) and LCk(s).

We recall some terminology from number theory.

Definition 2.31. A Mersenne number is any number of the form 2n− 1 for some

positive integer n. A Mersenne prime is a Mersenne number that is prime.

Note that in the definition of a Mersenne number we do not require that either

n or 2n−1 be prime, by following the terminology used in, for example, the Online

Encyclopedia of Integer Sequences [60].
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Definition 2.32. For a, q relatively prime positive integers we have aϕ(q) ≡ 1 mod

q, where ϕ denotes Euler’s totient function. The multiplicative order of a modulo

q is the smallest integer u such that au ≡ 1 mod q. We will refer to this as simply

the order of a mod q and denote it as ordq(a).

Lemma 2.33. For any integer v, av ≡ 1 mod q iff ordq(a)|v. In particular

ordq(a)|ϕ(q). We have loga(q + 1) ≤ ordq(a) ≤ ϕ(q) ≤ q − 1. When q = an − 1

the lower bound is reached. The upper bound ordq(a) = q − 1 is also reached for

certain values of a and q. Namely, we have ϕ(q) = q − 1 iff q is prime. For each

prime q, there is at least one value a which achieves ordq(a) = q − 1 (namely the

primitive elements in the field of integers modulo q).

Definition 2.34. A code, C, of length n over K is a set of words

c = (c0, c1, . . . , cn−1). We will associate with this codeword the polynomial c(x) =

c0 + c1x+ . . .+ cn−1x
n−1 for ease of notation.

Definition 2.35. A code is linear if the codewords define a linear subspace of Kn.

Definition 2.36. A code C is cyclic if it is linear and if any cyclic shift of a

codeword is also a codeword, i.e, whenever (c0, c1, . . . , cn−1) is in C then so is

(cn−1, c0, . . . , cn−2).

Definition 2.37. Let Rn denote the ring K [x] / (xn − 1). An ideal C of Rn is a

linear subspace of Rn such that if c(x) ∈ C then so is xc(x). For some polynomial

f which we will call the generating polynomial of the ideal, the ideal is equal to

all polynomials fg for any g ∈ Rn 6= 0.

Note that if the elements of Rn are identified with vectors over K of length n

in the obvious way then Rn being an ideal is equivalent to the corresponding code

being cyclic.

Definition 2.38. A minimal ideal is one which does not contain any smaller

nonzero ideal. The corresponding cyclic code is called a minimal cyclic code and

we refer to the generating polynomial of the ideal as a generating polynomial of

the code.

An alternative definition for a set of linear codes is given below (presented only

in the binary case). We will go on to show that the set of codes satisfying this

definition is exactly the same as the set of minimal cyclic codes.

Definition 2.39. The absolute trace function of β ∈ GF(2m) is defined as∑m−1
i=0 β2i and is denoted Tr(β). As this is the only trace function we will use

in this thesis, we will simply refer to it as the trace function.
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Definition 2.40. Let r = 2m for some integer m, and let N be an integer dividing

r − 1. Put n = (r − 1)/N , let α be a primitive element of GF(r) and θ = αN .

Then the set

C(r,N) =
{

Tr(β),Tr(βθ), . . . ,Tr(βθn−1) : β ∈ GF(r)
}

is an irreducible cyclic [n,m] binary code.

In the following lemma we will use the term reciprocal to mean reversing the

order of the coefficients of a polynomial. That is if f = c0 + c1x+ . . .+ cnx
n is a

polynomial, the reciprocal of f is: cn + cn−1x+ . . .+ c0x
n.

Lemma 2.41. Let s be an m-sequence generated by characteristic polynomial f .

If we consider the decimated sub-sequences of s as codewords from a code C then

C is an irreducible cyclic code with check polynomial equal to the reciprocal of f

(where a check polynomial is a polynomial g such that gc = 0).

Proof. The terms of s can be written as si =
∑

j a
2j
(
θ2

j
)i

where a is uniquely

determined by the initial values of s. By re-arranging, we can see that si =

aθi + (aθ)2 + (aθ)4 + . . . = Tr(aθi). But then

(s0, s1, . . . , sn−1) =
(
Tr(a),Tr(aθ), . . . ,Tr(aθn−1)

)
and more generally:

(si, si+1, . . . , si+n−1) =
(
Tr(β),Tr(βθ), . . . ,Tr(βθn−1)

)
where β = aθi, and so the subsequences of length n form an irreducible cyclic code

of length n, C, and the roots of f , θ, are the roots of the irreducible polynomial

that defines C. This implies that f is the reciprocal of the check polynomial of C
as required.

Note that the choice of initial terms in the sequence corresponds to the choice

of β in the definition of irreducible cyclic codes.

We will now go on to show that this code corresponds to a minimal cyclic ideal.

Lemma 2.42. The code C with generator polynomial equal to g = (xn − 1)/f for

irreducible f corresponds to a minimal ideal generated by f .

Proof. By converting from codewords to polynomials, we can see that C is repres-

ented by an ideal generated by g:

C = 〈g〉 = {gh : h ∈ GF(2) [x]} (mod xn − 1)
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Assume that this is not minimal, that is, there exists some g′ 6= 0 such that

〈g′〉 ( 〈g〉. Then g′ ∈ 〈g〉 and so g divides g′, but if g′ generates an ideal then

g′ divides xn − 1. By the definition, we also know that g = (xn − 1)/f , and f is

irreducible, so g′ = xn−1. But then g′ ≡ 0 (mod xn−1), which is a contradiction,

and so 〈g〉 must be minimal.

From now on we will refer to irreducible cyclic codes (rather than minimal

cyclic codes) as this appears to be the more common term in the literature.



Chapter 3

Literature Review

3.1 Linear Complexity

To determine the security of a sequence that is to be used in a cryptographic

protocol, it is crucial to be able to determine the linear complexity of the sequence

or at least establish a lower bound on its value. Furthermore, from a cryptanalysis

viewpoint, it is desirable to be able to determine the remainder of a sequence

if only part of it is known, which is possible once a characteristic polynomial

has been found. Determining the remainder of the sequence is easiest when the

characteristic polynomial is as small as possible. Since determining the minimal

characteristic polynomial gives us the linear complexity of a sequence for free, it

is easy to see why being able to find the minimal polynomial is regarded as one

of the most crucial aspects to the security of sequences. It is this property which

we will focus on.

It is possible to find the smallest characteristic polynomial which can generate

the sequence simply by trying all relations, starting with the shortest ones, but

this is a highly inefficient process. A polynomial time algorithm is possible by

solving a system of linear equations, which runs in O(n3) operations. The work of

Berlekamp [15] on BCH codes was adapted to the problem of determining the char-

acteristic polynomial of a sequence by Massey [47] and this resulted in a superior

algorithm which finds the shortest relation in O(n2) operations. Furthermore, the

Berlekamp-Massey algorithm determines the characteristic polynomial from only

2n terms (where n is the linear complexity), which is a small part of the period,

as the period could be up to pn − 1 terms long (where p is the characteristic of

the underlying field).

The Berlekamp-Massey algorithm is still the best known algorithm for determ-

ining the linear complexity of a general sequence, in terms of both its computa-

tional complexity, and the number of terms of the sequence needed before the char-

16
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acteristic polynomial can be determined. However, for certain classes of sequences,

improved algorithms have been found. The Games-Chan algorithm [28] takes lin-

ear time and works for binary sequences with period of the form 2n. It exploits

the fact that in this case the minimal polynomial is a factor of x2
n−1 = (x−1)2

n
;

hence it is a power of x− 1 and it is only needed to determine which power. The

Games-Chan algorithm assumes that a whole (not necessarily minimal) period of

the sequence is known.

The Games-Chan algorithm has been generalised to fields of arbitrary charac-

teristic by Ding et al. in [22]. It too has linear computational complexity, and

requires a full period of the sequence to be known for the characteristic polynomial

to be determined. It was also generalised to binary sequences of period u2v (for

odd u) by Meidl [53].

It was noted by Sălăgean in [64] and by Meidl in [54] that it is actually not

necessary to have a whole period of the sequence in order to determine its linear

complexity using the Games-Chan algorithm. It suffices to have a number of

terms greater or equal to the linear complexity, provided we still know that the

sequence admits as a characteristic polynomial a power of x− 1 or more generally

of some irreducible polynomial f . For finite sequences which have a characteristic

polynomial of the form f v Meidl gives two algorithms in [54]: one for f = x−1 and

arbitrary v, the other for arbitrary f and v being a power of 2. These algorithms

both have linear time computational complexity.

Other sequences have also been studied to determine their linear complexity,

for example sextic residue sequences were studied by Kim and Song [40], who were

able to find a closed form expression for the linear complexity of such sequences,

dependent only on their period.

3.2 k-Error Linear Complexity

The notion of k-error linear complexity was first proposed by Diffie in 1989 [27].

By using the Berlekamp-Massey algorithm, on any sequence that differs from the

original sequence in no more than k positions, it is possible to determine the k-

error linear complexity. However, the computational complexity of this algorithm

is superpolynomial - specifically it is:
∑k

i=0

(
m
i

)
(p − 1)i for a sequence of length

m over a field of size p. This approach, which is known as the exhaustive search

method, is not considered practical due to its high computational requirements

and the need to know an entire period of the sequence. Currently there is no

known polynomial time algorithm for finding the k-error linear complexity of a

general sequence, although methods are known that are faster than the exhaustive

search method, and in some special cases, a polynomial time algorithm is known.
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The algorithm of Stamp and Martin [69] is based upon the algorithm of Games

and Chan, and introduces errors into the sequence to reduce the running total of

linear complexity that is calculated by the Games-Chan algorithm. Just as with

the Games-Chan algorithm, an entire period of the sequence has to be known,

and that period length must be a power of two and just as with the Games-Chan

algorithm its computational complexity is linear in the period of the sequence.

The algorithm of Lauder and Paterson [43] builds upon the Stamp-Martin

algorithm and calculates the full linear complexity spectrum without having to

determine the k-error linear complexity for each value of k. Repeatedly ap-

plying the Stamp-Martin algorithm, would have a computational complexity of

O (N2 logN), but the improved algorithm of Lauder and Paterson, reduces this to

O
(
N (logN)2

)
. Lauder and Paterson also presented an algorithm for determining

the specific sequence which has the lowest linear complexity out of all those at

distance up to k from the given sequence, which is not explicit from the algorithm

of Stamp and Martin. The work of Stamp and Martin was extended by Zhou

[74] to sequences over a field of any prime size, and whose period length is 2pn.

Further results on the linear complexity spectrum were presented by Etzion et

al. [26] where upper and lower bounds on the number of critical points the linear

complexity spectrum can have were established.

The biggest strength of the algorithm of Berlekamp and Massey from a crypto-

graphic viewpoint is that it can find the linear complexity, n, of a sequence given

just 2n terms. However the algorithms of Stamp and Martin and Lauder and

Paterson require knowledge of the full sequence before they can be applied. The

work of Sălăgean [64] showed that the Games-Chan algorithm can be adapted so

that it only requires knowledge of 2n terms to determine the linear complexity.

As the Stamp-Martin and Lauder-Paterson algorithms are based on the algorithm

of Games and Chan, adaptations to these algorithms were also presented in [64]

so that they too only require knowledge of 2n terms of the sequence, where n is

the linear complexity of the original sequence.

The results of Kaida, Uehara and Imamura [39] extended upon the work of

Lauder and Paterson by generalizing their methods from sequences over fields

with characteristic 2 to fields with arbitrary prime characteristic.

Whilst the algorithms mentioned above impose a condition on the length of the

sequence, Meidl [54] instead imposes a condition on the form of the characteristic

polynomial of the sequence. That is, an algorithm is presented that can determine

the k-error linear complexity of a binary sequence whose characteristic polynomial

is a power of x2 − x− 1. Note that any condition on the length of the period of a

sequence is equivalent to a condition on the characteristic polynomial as a sequence

has a period of length N exactly when xN − 1 is a characteristic polynomial.
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3.3 Approximation Algorithms

An entirely different approach to finding the k-error linear complexity was pro-

posed by Alecu and Sălăgean [2]. An evolutionary computation model is presen-

ted, whereby a large number of randomly selected error sequences are initially

chosen, and then through an evolutionary process it is attempted to find the

optimal solution. It is shown that each of the commonly used techniques for mod-

eling evolutionary processes produces highly similar results, and that these results

were, in all cases, close to the actual values of the k-error linear complexity. How-

ever, it is not possible the find the exact value of the k-error linear complexity

using this approach, and furthermore, the linear complexity of the algorithm is

super-polynomial in the linear complexity of the sequence.

Another alternative approach to the problem of determining k-error linear

complexity was proposed by Alecu and Sălăgean [3] [4] [66]. Their results extended

the earlier work of Blackburn [16], Paterson [61], Massey and Serconek [49] and

Massey [48], who each used Blahut’s Theorem to determine the linear complexity

of a sequence by transforming the sequence using the Discrete Fourier Transform.

The algorithm presented by Alecu and Sălăgean has polynomial computational

complexity, but is only an approximation algorithm, and does not guarantee to

find the actual k-error linear complexity.

3.4 General Results on k-Error Linear

Complexity

Although very little is known on the distribution of the k-error linear complexity

in general, there are some classes of sequence, for which closed form expressions on

the k-error linear complexity are known. Meidl and Niederreiter [55] present lower

bounds for the k-error linear complexity of sequences over GF(q) with period of

the form n = pv or n = pvr where p is the characteristic of the field GF(q) and r

is a prime. In some specific circumstances, these lower bounds were improved to

equalities. These results are based on knowledge of the number of sequences of

length N with a particular linear complexity.

The work of Aly and Winterhof [6] developed formulae for the k-error linear

complexity of two specific families of sequences, Legendre sequences and Sidel-

nikov sequences. For these results, no knowledge is required other than the field

over which the sequence lies, and the sequence itself. Further work was later car-

ried out by Aly, Meidl and Winterhof on cyclotomic sequences [51]. They found

lower bounds for the k-error linear complexity of such sequences, and in certain
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instances, equalities. These results were of particular interest as the k-error linear

complexity of such sequences was shown to be high in all cases, which implies that

these sequences may be suitable for use in cryptographic applications.

Another, closely related, problem was studied by Meidl and Niederreiter [56]

[58] who found a class of sequences which simultaneously achieve the maximal

linear and k-error linear complexity. Before this work it was not known whether

sequences with such properties existed, and so this was a crucial work on proving

that sequences can be found that are arbitrarily secure in relation to both of

these measures. Continuing on from this, Meidl [52] derived an exact formula for

determining the k-error linear complexity for sequences having maximal possible

linear complexity.

3.5 General k-Error Knowledge

An alternative, but closely related problem, to that of determining the k-error

linear complexity of a sequence, is to study the effects on the linear complexity of

sequences in general, when certain terms, or combinations of terms are altered.

Fell [27] determined the average change in linear complexity when a term early

in a finite sequence is changed, as well as the average change in linear complexity

when the final term is changed, and determined that changing bits at the beginning

of the sequence was much less likely to change the linear complexity. Also, results

were presented on the impact of an arbitrary bijection on the terms of a period of

a sequence. Permuting the terms of a sequence is equivalent to changing some of

them, with the added restriction that the total number of terms of any particular

value in the field must be unchanged. An upper bound was established on the

average change in linear complexity, which was dependent on the exact length of

the period, but lower than 5/3, independent of period.

The work also presents results on the theoretical capabilities of any k-error

algorithm. By considering a k-error algorithm as a mapping from any given se-

quence to one with lower linear complexity, it is shown that a low value of k will

ensure that there are certain sequences whose linear complexity can only be re-

duced by a small amount. Similarly, if it is required that every sequence have its

linear complexity reduced to a low value, then the value of k must necessarily be

large.

Meidl and Niederreiter [55] presented results on the total number of sequences

of a given length whose k-error linear complexity was below a certain threshold.

Specifically, the number of sequences of length N , whose k-error linear complexity

was equal to 0, or less than 1 or N − 1 was presented. These results are used to

calculate the expected value of the k-error linear complexity for sequences with



CHAPTER 3. LITERATURE REVIEW 21

prime period, and lower bounds on the k-error linear complexity in a slightly more

general case.

This work was later extended by Meidl [54], to the number of sequences with

period length a power of 2 whose 1- or 2-error linear complexity is strictly less

than the linear complexity of the sequence itself. This is used to determine the

expected value for the 1- or 2-error linear complexity, for sequences with period

length a power of 2.

Xiao, Wei, Lam and Imamura [71] presented results on the linear complexity

of sequences over GF(q), where q is a prime, with period length pn where p is an

odd prime and q is a primitive root modulo p2. Results from number theory on

the properties of cyclotomic polynomials were used to develop an algorithm for

determining the linear complexity of a sequence which has linear computational

complexity. These results were extended by Han, Chung and Yang [32] to results

concerning k-error linear complexity. A value of k is found, such that for any

sequence the k-error linear complexity is strictly less than the linear complexity.

Results are also presented on the expected value of the k-error linear complexity for

certain values of k, and upper and lower bounds on the k-error linear complexity

for certain values of k.

3.6 Determining the Required Number of

Errors

Most of the results mentioned above are concerned with the situation where a fixed

number of errors are introduced with the goal of altering the linear complexity.

Kurosawa, Sato, Sakata and Kishimoto [42] presented results on the converse

problem, that is, what is the minimum number of changes that need to be made

to a sequence to cause a specified change in the linear complexity. Specifically,

they provided results on the minimum number of errors needed to strictly reduce

the linear complexity for a sequence whose period length is a power of 2, and also

results on the new value of the linear complexity in these cases.

This work was extended by Sălăgean [64] who presented an algorithm for find-

ing the minimum number of errors required to reduce the linear complexity by

any amount, in linear time. As with the work by Kurosawa et al. the results are

only applicable to binary sequences of period a power of two.
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3.7 Feedback Carry Shift Registers

In this section we will refer only to the binary situation for ease of notation, but all

the concepts can be applied easily to larger base fields. Klapper and Goresky [41]

introduced the notion of Feedback Carry Shift Registers (FCSRs) as an alternative

to Linear Feedback Shift Registers (LFSRs). The model of the FCSR is similar

to that of the LFSR, but contains an extra register. This register is known as the

memory cell, and (unlike the other cells) is capable of taking any integer value.

Let M be the contents of the memory cell, ai the characteristic constants, and si

the contents of the n registers. Then the characteristic function for the FCSR is∑n
i=0 aisi + M = σ. The register is updated by entering σ (mod 2) as sn, and the

memory register is updated to be (σ − sn)/2, and all other registers are updated

by si ← si+1.

The FCSR model allows us to assign another value of linear complexity to a

sequence, namely the length of the shortest FCSR needed to generate it, plus the

size of the additional memory cell. Since the memory cell can take any value in

the integers, it is not of a fixed size, and so this is why it must be included in the

complexity of a register. This measure is referred to as the 2-adic complexity of

the sequence, since the analysis of FCSRs relies heavily upon 2-adic arithmetic.

The formulation of a new measure of complexity also allows us to define a new

type of k-error complexity, referred to as the k-Error 2-Adic Complexity which

was originally proposed by Hu and Feng [36]. In their work they propose some

lower bounds for this value, but they do not improve upon the analogous values

known for the standard k-error linear complexity.

3.8 Irreducible Cyclic Codes

Determining the weight enumerator polynomial of an irreducible cyclic code is a

problem that is closely related to determining the k-error linear complexity of a

sequence, see Chapter 6. An overview of the current state of knowledge in this area

is given by Ding [23], which shows that it is still an open problem to determine

the weight enumerator polynomial for a general sequence. However, for certain

classes of sequence, the weight enumerator polynomial is known.

The first results in this area were given by McEliece and Rumsey [50], who

presented a way of calculating the weight enumerator polynomial for a certain

class of a codes, namely those that correspond to cyclotomic sequences. This

result was extended by Baumert and McEliece [11] who were able to determine

the weight enumerator polynomial for all codes in a class known as semi-primitive.

For more details on these codes see Chapter 7. Another key result in this area was
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presented by Baumert and Mykkeltveit [12] who determined the weight enumerator

polynomial for another class of irreducible codes, namely those which satisfied a

certain condition on the length of the codes. Again, for more details, see Chapter

7. Helleseth, Kløve and Mykkeltveit [34] studied another class of codes, again,

which are classified by a condition on their length, and they determined the weight

polynomial for these codes.

Another result was presented by Schmidt and White [67] who limited their

consideration to two-weight codes. As well as the already known two weight

codes, such as the semi-primitive ones, they claimed to have found all further two

weight codes, and determined their weight, although they were unable to prove

conclusively that they had indeed found all such codes.

Aubry and Langevin [8] studied binary irreducible codes, and were able to

determine new results relating to the divisibility of the weights of the codewords,

although they were not able to explicitly determine the weights of the codewords

themselves.

Although defined differently, minimal cyclic codes are entirely equivalent to

irreducible cyclic codes. Research into their weights are therefore also useful for

determining the k-error linear complexity of certain sequences. Pruthi and Arora

[63] were able to determine the weight enumerator for codes of prime power length

and then in [7] extended these results to codes of length 2pn for some odd prime

p, and were able to determine the weights of the codewords as well. Bakshi and

Raka [10] investigated codes of length pnq for some primes p and q and were able

to find the minimal distance of such codes, which is useful, but does not provide

as much information as the weight enumerator polynomial.

An alternative approach had been pursued by MacWilliams and Seery [46],

who instead of trying to find algorithms or expressions for certain classes of codes,

chose to compute the weights of irreducible codes for all instances of codes up to

length 227 − 1.

3.9 Stream Cipher Proposals

The largest single contribution to the field of stream cipher proposals in recent

years has been the eStream project. For a full list of schemes that were proposed

and studied, please see the website of the project [25]. The full details of the

various proposals and the attacks that have been carried out on them is beyond

the scope of this thesis, but we will mention the ciphers which exhibit properties

that make the results presented in this thesis particularly applicable.

Decim (and its variants) [13] is a hardware orientated stream cipher, which

uses an LFSR to construct an m-sequence of period length 2192 − 1.
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Grain [33] is another hardware targeted stream cipher, which also uses an

LFSR to generate an m-sequence. The sequence in this case has period length

280 − 1.

Pomaranch [38] is a stream cipher based on jump registers and LFSRs. Due

to the nature of the jump registers and the way the LFSR is irregularly clocked, it

is not possible to know, in advance, the period length of the outputted sequence.

Trivium is also based on three separate NLFSRs, and the input to each is

dependent on the other two, in a circular dependency fashion. Therefore, again,

it is not possible to determine the exact value of the period length of the output.

MICKEY [9] uses two registers, one linear and one non-linear. However, even

though the feedback polynomial for the LFSR is known, the register is also de-

pendent on the output of the NLFSR and so the LFSR cannot be analysed in

isolation.

SOSEMANUK [14] is a software focused cipher, which uses an LFSR as part of

its design. However, unlike most other ciphers, it employs a cipher over GF(232),

instead of over GF(2). This is done as storing 32-bit words in software is very

easy (as is carrying out operations on them), and doing so increases the speed of

the cipher. Similarly SOBER [31] (which was not an eStream Candidate) uses an

LFSR over GF(28).

Outside of the eStream project, there have been many individual proposals,

far too many to list here. We will just mention two that are particularly relevant

to this thesis:

SSC2 [73] uses an LFSR to generate an msequence of length 2128−1 as part of

its design, and LILI-128 [21] uses two LFSRs both of which generate m-sequences,

of length 239 − 1 and 289 − 1.

3.10 Contribution to Knowledge

In this field there are many open problems that have been discussed above and

in this thesis we will investigate some of those. Firstly, there is the problem that

there is no known polynomial time algorithm for determining the k-error linear

complexity of a general sequence, either finite or infinite periodic. There is also no

known way of calculating the k-error period of a general sequence in polynomial

time. Whilst there are algorithms for determining the linear complexity of a

general sequence, it is desirable to be able to reduce the time complexity of the

algorithm for certain classes of sequence.

We first present a heuristic algorithm for determining the k-error linear com-

plexity of a sequence. We present versions of this algorithm for both infinite and

finite sequences. The algorithm is based on a technique whereby it is assumed that
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the correct minimal polynomial has been found, by using a bi-directional variation

of the Berlekamp-Massey algorithm, and then individual errors are located at the

appropriate locations throughout the sequence. We determine the situation in

which the algorithm can be guaranteed to find the correct k-error linear complex-

ity, and determine the proportion of sequences which possess this property out

of all sequences of a given length. This proportion is exponential in the length

of the sequence, and yet the complexity of the algorithm is polynomial. We also

present results on the performance of the algorithm on the sequences on which it

is not guaranteed to find the correct k-error linear complexity. We then present

a variation of this algorithm for the situations whereby different assumptions can

be made, namely that a full period of the sequence is known.

We then go on to present an algorithm for determining the linear complexity of

a certain class of sequences, namely those with characteristic polynomial a power

of an irreducible polynomial. The key advantage of this algorithm is that its

computational complexity is linear in the length of the sequence. Our algorithm

generalises a number of previously known algorithms, namely those of Games and

Chan (and variations of it), Ding et al., and Meidl. For ease of use, we present

variations of this algorithm for the general case, and because of its importance, the

case whereby the underlying field has characteristic 2. We then go on to present

a variation of this algorithm for the case whereby the input is a finite sequence,

generalising the algorithms of Sălăgean and Meidl. Again, this algorithm has

linear computational complexity. Finally we present a variation of the algorithm

whereby the input sequence has a characteristic polynomial which is the product

of known irreducible factors. The complexity of this algorithm depends on the

specific set of irreducible polynomials that is used, but in general, the larger and

more general the set of sequences, the less efficient the algorithm is. The majority

of the results in this chapter were originally published as [19].

We finally go on to study various properties of m-sequences, and their use in

stream cipher proposals. We focus our efforts on the k-error linear complexity of

m-sequences and the closely related idea of k-error period, which we believe to be

a new notion, although it has been looked at implicitly before. We also study the

complexity stability threshold and the period stability threshold of m-sequences,

which we also believe to be a new notion. We split the problem up into various

different cases, some of which we are able to solve completely, some of which we

are only able to partially solve, and some of which we are only able to prove very

basic results for. However, for virtually all m-sequences, we provide a method of

reducing the complexity of the problem, and so for many sequences, although we

do not have a closed form expression, we are able to apply a small amount of brute

force computation to find the required results. We also apply our results to several
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stream cipher proposals, and are able to show that from a stability viewpoint some

of the sequences used are more secure than others, although all performed very

well. We finally use some further results from coding theory to study more classes

of m-sequence. The results of Chapter 6 were originally published in [20].

Although all of the core results that are presented here were originally de-

veloped by myself, they were developed and refined through an iterative process

with my main supervisor (Dr. Sălăgean), and so the credit for the final form of

these results must be partly split between us.



Chapter 4

A Heuristic Algorithm for

Determining k-error Linear

Complexity of a Sequence

4.1 Introduction

In this chapter we will introduce a heuristic algorithm for approximating the k-

error linear complexity of either a finite or infinite periodic sequence. The al-

gorithm is based on the idea of viewing the error sequence as a series of individual

errors, rather than as one complete sequence. We provide some results as to the

size of the search space that is covered by the algorithm, and to the average be-

havior of the results obtained. We also provide a variant of the algorithm, which

runs on a slightly different input type, and again provide results on its theoretical

and observed performance.

4.2 The Algorithm

Finding a sequence s′ within Hamming distance k of s is equivalent to finding an

error sequence, e, with Hamming weight less than k, such that s + e = s′ (where

the addition is carried out termwise). In this chapter we will analyse the sequence

term-by-term, rather than analyzing it as a whole. Therefore, the problem is

transformed from one of trying to find an optimal error sequence to one of trying

to find the optimal locations for the individual errors to be placed. Once this has

been done, it is trivial to construct the optimal error sequence.

The algorithm proposed here uses the Berlekamp-Massey algorithm repeatedly

by making the assumption that it has the correct characteristic polynomial for the

sequence, and then uses this relation to locate errors where the sequence disagrees

27
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with the value predicted by the polynomial. This idea is similar to the one used

by Stamp and Martin [69], but is used in a much more general setting here. In this

way the algorithm passes along the length of the sequence, locating errors where

the sequence disagrees with the predicted values. There are then two situations

which can cause this process to terminate: either the algorithm requires more than

k errors, or the algorithm reaches the end of the sequence without using too many

errors, and so has found a candidate for the error sequence.

The recurrence relation is initially generated by taking a number of terms of

the sequence, the initial segment, and by using the Berlekamp-Massey algorithm

to find a relation that generates this part of the sequence. Initially the shortest

such segments are used, and are taken starting at the first term of the sequence.

To maximise the probability of finding an optimal solution by maximising the

number of proposed relations the algorithm considers initial segments of varying

length and position within the sequence. However this requires the generated

relation to be able to generate terms in both increasing and decreasing order of

index, a criterion that is not fulfilled by the original Berlekamp-Massey algorithm.

Therefore a modified version of the Berlekamp-Massey algorithm is used, that

fulfills this requirement, known as bi-directional, developed by Sălăgean [65].

Once all possible segments in the sequence of a certain length have been tried

as the initial segment, it is necessary to use longer segments, and so generate

longer recurrence relations. Then all possible segments with this length must be

examined and the process repeated until a relation is found that does not require

more than k errors to generate the entire sequence. The algorithm is given in

pseudo-code form as kErAp.

4.3 Notes on the Algorithm

There are several points in the algorithm kErAp which should be explained. The

line labeled (11) will determine the discrepancy between the predicted value for

the next term in the sequence, and the actual value. The two similar while loops

(lines (10) to (21) and (23) to (34)) analyse the sequence in opposite directions.

It may appear that once the algorithm has found a success, that this must be

the smallest such relation, and that the algorithm can terminate. This would have

the advantage of reducing the expected running time of the algorithm, but may,

in certain circumstances, lead to the algorithm missing a shorter relation. This

is because the algorithm does not search through relations in order of increasing

linear complexity, but searches through initial segments of the sequence in order

of increasing length. While this will usually lead to a longer relation, this is not

always the case, and so it is important to continue to run the algorithm. An
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Algorithm 1: kErAp

Input : A sequence S, the length of S, n, and an integer, k
Output: The approximate k-error linear complexity of S

1 begin
2 for L = 1 to n do
3 for j = 0 to n− L do
4 K ← 0;
5 s← S (s is initialized as a copy of S);
6 Berl← BiBM (s, L, j);
7 (BiBM is a subroutine which returns the shortest bi-directional

recurrence relation on L terms of s, starting at j, where Berl [1]
is returned as the linear complexity of the relation, and Berl [2]
are the coefficients of the polynomial)

8 i← j + 1;
9 e← [0, . . . , 0];

10 while K ≤ k and i ≤ (n−Berl [1]) do

11 d←
∑Berl[1]

i′=0 Berl [2] [1 + i′] ∗ s [i+ i′];
12 if d = 0 then
13 e [i+Berl [1]]← 0;
14 i← i+ 1;

15 else
16 s [i+Berl [1]]← s [i+Berl [1]]− d;
17 e [i+Berl [1]]← −d;
18 i← i+ 1;
19 K ← K + 1;

20 end

21 end
22 i← j;
23 while K ≤ k and i ≥ 1 do

24 d←
∑Berl[1]

i′=0 Berl [2] [1 + i′] ∗ s [i+ i′];
25 if d = 0 then
26 e [i]← 0;
27 i← i− 1;

28 else
29 s [i]← s [i]− d;
30 e [i]← −d;
31 i← i− 1;
32 K ← K + 1;

33 end

34 end
35 if K ≤ k then
36 Result [Length(Result) + 1]← Berl [1];
37 end

38 end

39 end
40 Return(Min(Result));

41 end
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example is given below:

Example 4.1. Consider the sequence s = 011111110101100010, over GF(2) and

let k = 3. By an exhaustive search we can find that the 3-error linear complexity

of s is 5. However when kErAp is run on s, the first success it finds is when

L = 8 and the starting point for the initial segment is the second term. On this

initial segment, the Berlekamp-Massey algorithm returns the polynomial x7+x+1,

which, when used with error sequence 000000000000110001, generates s. However

if the algorithm is allowed to continue, when L = 10 and the initial segment is

taken starting at the eighth term, then the Berlekamp-Massey algorithm returns the

polynomial x6 + x4 + 1, which has lower degree. This polynomial, when combined

with the error sequence 01000100000000001, also generates s, and so we have seen

that by allowing the algorithm to continue to run on longer sequences, it is possible

to reduce the linear complexity. It should be noted that there were other successful

relations returned for L = 8 and L = 9, but none of length 6. It should also

be noted that although the returned linear complexity is reduced by increasing the

length of the initial sequence, it is still not the optimal linear complexity, which is

not found by the algorithm in this instance.

We should also mention that there is not necessarily a unique minimal bi-

directional relation on the initial sequence. That is, there could be more than one

bi-directional relation of minimum length that will generate the terms of the initial

segment that is used in BiBM. The subroutine, however, will only return one of

these, chosen at random. This might appear to mean that a potential relation

could be missed by the algorithm, but this is not actually the case, since if one of

the unused alternative relations was a suitable candidate, then it will be generated

uniquely when the length of the initial segment has been increased until it is twice

the length of the relation, with the same initial segment starting point.

4.4 Performance of the Algorithm

Theorem 4.2. If a sequence, s, of length N , has k-error linear complexity n,

2n ≤ N , and the optimal error sequence, e, has a gap of length at least 2n (that

is, 2n consecutive zeros) then kErAp will return the k-error linear complexity and

an optimal error sequence.

Proof. If the optimal relation is generated at some point during the algorithm,

then it will be returned. Therefore it suffices to show that the optimal relation

will be generated at some point in the running of the algorithm. Denote this

relation as R.
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Consider the case when the initial segment to be considered is of length 2n and

begins at the term which is also the first term of the gap in the error sequence.

Then BiBM will return R, and the algorithm will only be required to place errors

in the optimal positions, and so will consider R as a potential solution.

Lemma 4.3. Let fk be defined as follows:

fk (N, n) =


1 k = 0

(min (N, 2N − 4n)) (q − 1) k = 1∑N−k
i=2n

(
(N − 1− i)

(
N−2−i
k−2

)
+ 2
(
N−1−i
k−1

))
(q − 1)k k ≥ 2

Consider the set of sequences of length N over GF(q). Then when N/2 ≤ 2n < N

the number of sequences whose optimal error sequence has a gap of size at least

2n is given by
k∑
i=0

fi (N, n)

Proof. In Lemma 4.2 it was shown that kErAp will find the optimal error sequence

whenever such a sequence has a sufficiently large gap. The condition of 2n ≥ N/2

is necessary to ensure that the gap we are considering is the largest such gap,

otherwise the function will double count some error sequences. The three cases

given for fk are considered separately.

When k = 0 the k-error linear complexity of the sequence is equal to the

linear complexity. There is only one possible error sequence in this case, the

all zero sequence, and the algorithm will run until L = 2n at which point the

BiBM subroutine will return the optimal recurrence relation and the algorithm

will terminate.

When k = 1 the error gap will be large enough if the single error occurs at

either the beginning or the end of the sequence. More specifically it will large

enough if the error occurs in position 1, 2, 3, . . . , N − 2n or 2n+ 1, 2n+ 2, . . . , N .

If N − 2n < 2n + 1 then there is no overlap between these two sections, but if

there is such an overlap, then the error can occur at any position in the sequence,

namely at any one of the N positions. If N − 2n < 2n + 1 holds then there are

N−2n+(N − 2n) = 2N−4n possibilities. For each of these error positions, there

are q − 1 choices for the value of the error, since it can take any value other than

zero.

Finally consider the case when k ≥ 2. The error-sequences that are found

by the algorithm can be classified by the exact length of their largest gap, and

the position of this gap. The gap lengths can range from 2n to N − k giving

N − k − 2n + 1 different lengths. We now split such sequences into two groups,

those where both ends of the gap are denoted by a non-zero element, or those
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where one end of the gap is denoted by the end of the sequence. In the first case,

we can place the gap anywhere apart from at the two ends, so if we assume that

the length of the gap is i (where 2n ≤ i ≤ N−k) then there are N−1−i positions

for this gap. Then the remaining k − 2 errors can be placed in any one of the

remaining N − 2− i positions, giving the first term in the sum. The second case

considers when one end of the gap is given by the end of the sequence, and in this

case, regardless of the length of the gap, there are only ever 2 valid positions for

it. Once the position has been fixed the remaining k − 1 errors can be placed in

any of the remaining N − 1 − i terms. This gives the second term in the sum.

For each such error sequence, each of the k errors can take any one of the q − 1

non-zero values in GF(2), and so we need to consider each set of error locations

(q − 1)k times.

We have now seen that fk gives us the number of errors for each specific value of

k, and it just remains to note that for the k-error linear complexity it is necessary

to check all error sequences with the number of errors less than or equal to k, and

this gives the final sum.

Corollary 4.4. If fk is defined as in Lemma 4.3 then the number of error se-

quences considered by kErAp is given by

k∑
i=0

fi (N, n)

That is, kErAp will return the correct k-error linear complexity for a sequence if

its optimal error sequence is of the right form, and the set of sequences of the right

form is of exponential size.

Remark 4.5. It should be noted that the fraction of the error sequence space con-

sidered by the algorithm does not necessarily relate to a probability of success. This

is for two reasons. Firstly, the error sequences may not be distributed uniformly

over this space, and secondly, each sequence may have more than one optimal re-

currence relation, and so more than one error sequence. Since only one such error

sequence needs to be in the form given above, the chances of finding a successful

error sequence will be improved.

Corollary 4.6. The number of error sequences considered by kErAp is exponen-

tial.

Theorem 4.7. Algorithm kErAp has running time of O(N4), where N is the

length of the sequence.

Proof. kErAp consists of 2 main for loops. Inside the inner most loop there is

a call to the bi-directional Berlekamp-Massey subroutine, and two while loops.
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The number of executions of each while loop depends on the value of j, but

between them, the number of executions is constant, namely N − Berl[1], where

Berl[1] is the linear complexity returned by the subroutine. The complexity of

the subroutine itself is O((2L)2) [64]. This means that for each iteration of the

innermost for loop, the complexity will be O(((2L)2) + N) = O(N2). The inner

for loop is run up to (N − 1) times, and the outer for loop is run up to N times.

This gives a total complexity of O(N ∗N ∗N2) = O(N4)

Example 4.8. In the following example we outline the running of kErAp for

the example of the sequence 000100110111, for when k = 2, and the sequence is

taken over GF(2). We give the values of L and j, the characteristic polynomial

returned by the subroutine, the number of errors that have been used after each of

the while loops, and finally whether or not the algorithm has found a candidate for

the optimal linear complexity. If the number of errors used has exceeded 2, then

we give the last position in which an error was placed (given in brackets). The best

solution found by the algorithm is x3 + x2 + x+ 1, which is found on two separate

occasions, namely L = 5, j = 4 and L = 6, j = 3.

L j Polynomial Errors After Success

First While Second While

(Location of third error)

2 0 1 3(8) -

1 1 3(8) -

2 x2 + 1 3(9) -

3 x2 + 1 3(9) -

4 1 3(10) -

5 x2 + 1 3(9) -

6 x2 + 1 1 3(5)

7 x2 + 1 1 3(6)

8 x2 + 1 1 3(6)

9 x2 + 1 0 3(5)

10 x2 + 1 0 3(5)

3 0 1 3(8) -

1 x3 + 1 3(9) -

2 x2 + 1 3(9) -

3 x3 + 1 3(9) -

4 x3 + 1 3(9) -

5 x2 + x+ 1 1 3(2)

6 x2 + x+ 1 1 3(2)

continued on next page
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L j Polynomial Errors After Success

First While Second While

(Location of third error)

7 x2 + 1 1 3(6)

8 x2 + x+ 1 1 3(2)

9 x+ 1 0 3(5)

4 0 x4 + 1 3(7) -

1 x3 + 1 3(9) -

2 x3 + 1 3(9) -

3 x3 + 1 3(9) -

4 x3 + x+ 1 3(9) -

5 x2 + x+ 1 1 3(2)

6 x2 + x+ 1 1 3(2)

7 x2 + x+ 1 1 3(2)

8 x3 + x+ 1 0 3(3)

5 0 x4 + 1 3(7) -

1 x3 + 1 3(9) -

2 x3 + 1 3(9) -

3 x3 + x+ 1 3(9) -

4 x3 + x2 + x+ 1 1 2 Yes

5 x2 + x+ 1 1 3(2)

6 x2 + x+ 1 1 3(2)

7 x3 + x2 + 1 0 3(3)

6 0 x4 + 1 3(7) -

1 x3 + 1 3(9) -

2 x3 + x+ 1 3(9) -

3 x3 + x2 + x+ 1 1 2 Yes

4 x4 + x2 + x+ 1 2 3(4)

5 x2 + x+ 1 1 3(2)

6 x4 + x3 + x2 + x+ 1 0 3(4)

7 0 x4 + x3 + 1 1 1 Yes

1 x4 + x3 + 1 1 1 Yes

2 x4 + x3 + 1 1 1 Yes

3 x4 + x3 + 1 1 1 Yes

4 x4 + x2 + x+ 1 0 2 Yes

5 x4 + x2 + x+ 1 0 2 Yes

8 0 x4 + x3 + 1 1 1 Yes

continued on next page
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L j Polynomial Errors After Success

First While Second While

(Location of third error)

1 x4 + x3 + 1 1 1 Yes

2 x4 + x3 + 1 1 1 Yes

3 x5 + x4 + x3 + x+ 1 0 2 Yes

4 x5 + x2 + x+ 1 0 2 Yes

9 0 x4 + x3 + 1 1 1 Yes

1 x4 + x3 + 1 1 1 Yes

2 x5 + x4 + x2 + 1 0 1 Yes

3 x5 + x4 + x3 + x+ 1 0 2 Yes

10 0 x4 + x3 + 1 1 1 Yes

1 x6 + x4 + 1 0 1 Yes

2 x5 + x4 + x2 + 1 0 1 Yes

11 0 x7 + x4 + x3 + 1 0 0 Yes

1 x6 + x4 + 1 0 1 Yes

12 0 x7 + x4 + x3 + 1 0 0 Yes

Table 4.1: Example Running of kErAp

4.5 Numerical Results

In Tables 4.2, 4.3 and 4.4 we tabulate the size of the space searched by kErAP for

various values of N , n and k, where N is the sequence length and n is the k-error

linear complexity. Each of these examples is considered over GF(2).

From the tables, the fraction of the total error space that is searched is de-

pendent upon the value of k, and the difference between N and n. However, since

there is no way of knowing beforehand what the value of n will be, this makes it

difficult to estimate the size of the space that will be searched. A simple upper

bound on the complexity can be established by calculating the linear complexity

of the sequence, and hence a simple lower bound on the search space can be estab-

lished, but this is likely to be a very crude measure, especially for higher values of

k.

The algorithm does not provide any guarantees about the results provided

when the optimal error sequence is not of the required form. Instead we have

run the algorithm on a randomly generated set of 50 sequences, each of length

30. We then compared the results with those generated by an exhaustive search

algorithm. The results are displayed in Table 4.5.
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N=32, k = 1
n=8 10 12 14

Total Space Size 33 33 33 33
Searched Space 33 25 17 9

Percentage 100.0% 75.8% 51.2% 27.3%

N=32, k = 2
n=8 10 12 14

Total Space Size 529 529 529 529
Searched Space 393 223 101 27

Percentage 74.3% 42.2% 19.1% 5.1%

N=32, k = 3
n=8 10 12 14

Total Space Size 5489 5489 5489 5489
Searched Space 2633 1103 325 43

Percentage 48.0% 20.1% 5.9% 0.8%

Table 4.2: Size of the search Space, N=32

4.6 Alternative Implementation

By applying the idea behind the algorithm to a different model, we can produce

a different algorithm, with different results. Namely, if we assume that we have

a full period of the sequence, then we can produce more promising results. By

assuming the full period, we effectively increase the length of the sequence we are

studying, as we can assume repetitions of the sequence and so this gives us more

opportunity to find a sufficiently large gap in the error sequence, and so find the

optimal relation. The adjusted algorithm is presented below as kErApFP .

There are certain points in the algorithm which should be explained. Firstly,

because we are now assuming a full period, there is no need for the recurrence

relation to be forced to be bidirectional, since the repetition of the sequence will

naturally do this. Also when an array index is taken (mod n) it is understood

that if the index is equal to n, then the n-th term in the array will be taken, rather

than the zero-th.

Theorem 4.9. If a sequence, s, has k-error linear complexity n, and the optimal

error sequence, e, has a gap of length at least 2n, or the leading and trailing zeros

in the error sequence create a gap of length 2n then kErApFP will return the

k-error linear complexity and the optimal error sequence.

Proof. This is simply the analogue of Lemma 4.2, with the added condition that

if the gap occurs over the end of the period then the algorithm will also find the

optimal sequence. This is clear from the algorithm.
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N=48, k = 1
n=12 14 16 18 20 22

Total Space Size 49 49 49 49 49 49
Searched Space 49 41 33 25 17 9

Percentage 100% 83.7% 67.3% 51.0% 34.7% 18.4%

N=48, k = 2
n=12 14 16 18 20 22

Total Space Size 1177 1177 1177 1177 1177 1177
Searched Space 877 611 393 223 101 27

Percentage 74.5% 51.9% 33.4% 18.9% 8.6% 2.3%

N=48, k = 3
n=12 14 16 18 20 22

Total Space Size 18770 18770 18770 18770 18770 18770
Searched Space 8973 5171 2633 1103 325 43

Percentage 47.8% 27.5% 14.0% 5.9% 1.7% 0.2%

Table 4.3: Size of the search Space, N=48

N=60, k = 1
n=16 18 20 22 24 26 28

Total Space Size 61 61 61 61 61 61 61
Searched Space 57 49 41 33 25 17 9

Percentage 93.4% 80.3% 67.2% 54.1% 41.0% 27.9% 14.8%

N=60, k = 2
n=16 18 20 22 24 26 28

Total Space Size 1831 1831 1831 1831 1831 1831 1831
Searched Space 1191 877 611 393 222 101 27

Percentage 65.0% 47.9% 33.4% 21.5% 12.1% 5.5% 1.5%

N=60, k = 3
n=16 18 20 22 24 26 28

Total Space Size 36051 36051 36051 36051 36051 36051 36051
Searched Space 14295 8973 5171 2633 1103 325 43

Percentage 39.7% 24.9% 14.3% 7.3% 3.1% 0.9% 0.1%

Table 4.4: Size of the Search Space, N=60
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Algorithm 2: kErApFP

Input : A sequence S, n, the length of S and an integer k
Output: The approximate k-error linear complexity of S

1 begin
2 for L← 2 to n do
3 for j ← 0 to (n− L) do
4 K ← 0;
5 s← S (s is initialized as a copy of S);
6 Berl← BM (s, L, j);
7 (BM is a subroutine which returns the shortest recurrence

relation on L terms of s, starting at j)
8 i← 1;
9 e← [0, . . . , 0];

10 while K ≤ k and i ≤ n do

11 d←
∑Berl[1]

i′=0 Berl [2] [1 + i′] ∗ s [(i+ i′) (mod n)];
12 if d← 0 then
13 e [(i+Berl [1]) (mod n)]← 0;
14 i← i+ 1;

15 else
16 s [(i+Berl [1]) (mod n)]←

s [(i+Berl [1]) (mod n)]− d;
17 e [(i+Berl [1]) (mod n)]← −d;
18 i← i+ 1;
19 K ← K + 1;

20 end

21 end
22 if K ≤ k then
23 Result [Length(Result) + 1]← Berl [1];
24 end

25 end

26 end
27 Return(Result);

28 end
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k = 0 1 2 3
Average Linear Complexity: 15.04 12.90 11.14 9.42
Number of Sequences Re-
turning Correct Linear
Complexity:

50 31 22 18

Average Difference Between
Returned and Optimal Lin-
ear Complexity:

- 0.56 0.88 1.14

Difference as a Fraction of
the Linear Complexity:

- 0.04 0.08 0.12

Average Difference for Se-
quences that do not Return
the optimal Linear Com-
plexity:

- 1.47 1.57 1.78

Difference as a fraction of
the Linear Complexity:

- 0.12 0.14 0.19

Table 4.5: Numerically Generated Results, on 50 sequences, each of length 30

Lemma 4.10. Let fk be defined as follows:

fk (N, n) =


1 k = 0

N(q − 1) k = 1∑N−k
i=2nN

(
N−2−i
k−2

)
(q − 1)k k ≥ 2

Then when N/2 ≤ 2n < N , the number of error sequences with gap of length 2n

or with at least 2n leading and trailing zeros is given by

k∑
i=0

fi (N, n)

.

Proof. This lemma can be seen as the analogue of Lemma 4.3. Again the three

cases will be considered separately.

When k = 0, as before, there is only on error sequence, and the algorithm will

find the optimal recurrence.

When k = 1, wherever the error is located in the sequence, there must be a

gap of size N −1, that is, all the other terms in the sequence. Therefore, provided

2n < N , kErApFP will find the optimal error sequence, which is equivalent to

searching through all N possible locations for the error, and all (q − 1) non-zero

values for it.

When k ≥ 2 all error sequences will have their largest gap between two non-

zero elements. This gap can begin at any point in the sequence, giving N different

possibilities. We sum over the different lengths of the gap, and note that once the
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N=32, k = 1
n=8 10 12 14

Total Space Size 33 33 33 33
Searched Space 33 33 33 33

Percentage 100.0% 100.0% 100.0% 100.0%

N=32, k = 2
n=8 10 12 14

Total Space Size 529 529 529 529
Searched Space 513 385 257 129

Percentage 97.0% 72.8% 48.6% 24.4%

N=32, k = 3
n=8 10 12 14

Total Space Size 5489 5489 5489 5489
Searched Space 3873 2145 929 225

Percentage 70.6% 39.1% 16.9% 4.1%

Table 4.6: Size of the search Space, N=32

size of the gap has been fixed, and two of the non-zero elements have been fixed

at either end of the gap, we are left to place the remaining k − 2 errors freely in

the remaining N − i − 2 positions, where i is the size of the gap. As before, for

each possible error there are (q − 1) possible, non-zero values for it.

We also note that since the search space for kErApFP is at least as big as the

search space for kErAp that it also searches an exponentially large space, and that

the running time for the algorithm is unchanged, that is, O(N4).

4.7 Numerical Results

In Tables 4.6, 4.7 and 4.8 we tabulate the size of the space searched by kErApFP for

various values of N , n and k. As before only sequences over GF(2) are considered.

From these tables, and the lemmas above, it can be seen that there is a dramatic

increase in the number of error sequences that are considered by kErApFP when

compared to kErAp. However, there is the trade-off that it is necessary to assume

that the sequence that is used as the input for the algorithm is the whole period

of the sequence. Whether or not this is suitable will be dependent on the specific

instance that the algorithm is being used in.

As before, this algorithm does not provide any assurances about the closeness

of the result when the optimal relation is not found. Therefore we have run the

algorithm on 50 randomly generated sequences, each of length 30, and the results

are shown in Table 4.9. The first thing to note about these results is that there is a

dramatic increase in the average linear complexity of the sequences. This is caused
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N=48, k = 1
n=12 14 16 18 20 22

Total Space Size 49 49 49 49 49 49
Searched Space 49 49 49 49 49 49

Percentage 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

N=48, k = 2
n=12 14 16 18 20 22

Total Space Size 1177 1177 1177 1177 1177 1177
Searched Space 1153 961 769 577 385 193

Percentage 98.0% 81.6% 65.3% 49.0% 32.7% 16.4%

N=48, k = 3
n=12 14 16 18 20 22

Total Space Size 18770 18770 18770 18770 18770 18770
Searched Space 13297 9169 5809 3217 1393 337

Percentage 72.0% 49.6% 31.4% 17.4% 7.5% 1.8%

Table 4.7: Size of the search Space, N=48

N=60, k = 1
n=16 18 20 22 24 26 28

Total Space Size 61 61 61 61 61 61 61
Searched Space 61 61 61 61 61 61 61

Percentage 100% 100% 100% 100% 100% 100% 100%

N=60, k = 2
n=16 18 20 22 24 26 28

Total Space Size 1831 1831 1831 1831 1831 1831 1831
Searched Space 1681 1441 1201 961 721 481 241

Percentage 91.8% 78.7% 65.6% 52.5% 39.4% 26.3% 13.2%

N=60, k = 3
n=16 18 20 22 24 26 28

Total Space Size 36051 36051 36051 36051 36051 36051 36051
Searched Space 22741 16621 11461 7261 4021 1741 421

Percentage 63.1% 46.1% 31.8% 20.1% 11.2% 4.8% 1.2%

Table 4.8: Size of the Search Space, N=60
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k = 0 1 2 3
Average Linear Complexity: 27.09 21.78 17.92 14.60
Number of Sequences Re-
turning Correct Linear
Complexity:

50 6 3 5

Average Difference Between
Predicted and Actual Lin-
ear Complexity:

- 4.40 5.80 6.78

Difference as a Fraction of
the Linear Complexity:

- 0.22 0.34 0.47

Average Difference for Se-
quences that do not Return
the optimal linear complex-
ity:

- 5.00 6.17 7.53

Difference as a fraction of
the linear complexity:

- 0.24 0.36 0.53

Table 4.9: Numerically Generated Results, on 50 sequences, each of length 30

by the relation needing to generate the entire sequence, and looping round to the

beginning again. As we have seen before, an increase in the linear complexity of

the relation will result in a smaller number of error sequences being considered

by the algorithm, and so this explains the higher values for the differences in the

predicted and optimal linear complexity.

4.8 Analysis of Results

We have seen that the performance of the algorithm varies depending on the situ-

ation in which it is being applied and the particular sequence upon which it is

running. Specifically, while we have enumerated the set of sequences on which

it is guaranteed to find the optimal error sequence, there are many sequences for

which it does not, and on these sequences, we can provide no guarantees about the

closeness of the approximation. Whilst it does appear to give a close approxim-

ation for small sequences, the performance is less good for longer sequences, and

also when considering more errors. We have also looked at the size of the search

space and seen that as the sequence length increases, or the linear complexity in-

creases, the performance of the algorithm worsens. Whilst is some situations the

entire set of error sequences was considered, in the worst case we studied (finite

sequence, N = 60, k = 3, n = 28) the performance was poor. Finally, we can see

that whilst the algorithm searched a smaller set of error sequences in the finite

case, its performance in terms of approximations was less good on average, when

compared to the periodic case.



Chapter 5

Linear Complexity for Sequences

with Characteristic Polynomial of

the Form fv for an Irreducible f

As discussed in Chapter 3 the Berlekamp-Massey algorithm computes the lin-

ear complexity and minimal polynomial of a sequence in quadratic time, and for

certain classes of sequences more efficient algorithms exist. The Games-Chan al-

gorithm [28] takes linear time and works for binary sequences with period of the

form 2n. It exploits the fact that in this case the minimal polynomial is a factor

of x2
n − 1 = (x − 1)2

n
; hence it is a power of x − 1 and it is only needed to

determine which power. The Games-Chan algorithm assumes that a whole (not

necessarily minimal) period of the sequence is known. In Algorithm 3 we gener-

alise the Games-Chan algorithm to the case when it is known a priori that the

minimal polynomial is a power of a certain fixed irreducible polynomial f (so the

Games-Chan algorithm would be the case f = x− 1).

The Games-Chan algorithm has been generalised to fields of arbitrary charac-

teristic by Ding et al. in [22] and we will similarly give Algorithm 4 which is the

generalisation of Algorithm 3 to arbitrary characteristic. (Our algorithm reduces

to the one of Ding et al. in [22] when f = x− 1.)

It was noted by Sălăgean in [64] and by Meidl in [54] that it is actually not

necessary to have a whole period of the sequence in order to determine its linear

complexity using the Games-Chan algorithm. It suffices to have a number of

terms greater or equal to the linear complexity, provided we still know that the

sequence admits as a characteristic polynomial a power of x− 1 or more generally

of some irreducible polynomial f . For finite sequences which have a characteristic

polynomial of the form f v Meidl gives two algorithms in [54]: one for f = x − 1

and arbitrary v, the other for arbitrary f and v being a power of 2. We generalise

43
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his approach as Algorithm 6, which works for arbitrary f and arbitrary v. At first

sight it would seem tempting to take this generalisation further, to k-error linear

complexity, as in [54, Section 4]. However, we do not feel that such work would

be worthwhile, as the definition used for the k-error linear complexity in [54] is

a restricted one (it computes the minimum linear complexity of all sequences z

at Hamming distance k from s with the additional condition that z admits as

a characteristic polynomial a power of f), and is not equivalent to the generally

used definition (except for f = x − 1). A further explanation is contained in

Remark 5.13.

All the algorithms mentioned so far have linear computational complexity, like

the Games-Chan algorithm.

We further generalise our algorithms for infinite sequences to determine the

minimal polynomial when all its irreducible factors are known a priori (Algorithm

7). This algorithm is efficient only if the number of irreducible factors is small.1

5.1 Linear Complexity of Infinite Sequences

with a Characteristic Polynomial a Power

of an Irreducible Polynomial

We assume that we are given an infinite sequence s of (not necessarily minimal)

period N over a field K of characteristic p and that we know that the sequence

admits as a characteristic polynomial a power of a fixed irreducible polynomial f ,

i.e. s ∈M(f∞). Our goal is to determine the minimal polynomial of s, which will

obviously be of the form f r for some integer r. A naive algorithm could compute

f is for increasing values of i (by repeatedly replacing s by fs) until the zero

sequence is obtained. The more efficient method described here finds an upper

bound for r and then does a p-ary search for the value of r.

An upper bound on the value of r can be obtained by looking at the period N

and using Theorem 2.16:

Lemma 5.1. Let s ∈ M(f∞), s 6= 0 and let N be a (not necessarily minimal)

period of s. Write N as N = pwN ′ with p - N ′. Then s ∈M(fp
w
), ord(f)|N ′ and

pw ord(f) is also a period of s.

Proof. Let f r be the minimal polynomial of s and let w′ be the smallest integer

with pw
′ ≥ r. The minimal period of s is ord(f r), which by Theorem 2.16 equals

pw
′
ord(f). Any other period of s, for example N = pwN ′ is a multiple thereof.

1The main results of this Chapter were originally published in [19].
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Since neither ord(f) nor N ′ are divisible by p, this means w′ ≤ w and ord(f)|N ′.
Hence r ≤ pw

′ ≤ pw so s ∈M(fp
w
) and pw ord(f) is a period of s.

Once we have an upper bound for r we can find the exact value of r by a p-ary

search. We actually find the largest exponent i for which f is 6= 0, i.e. r − 1. To

obtain r, a correction of +1 is added at the end. One can view the p-ary search

equivalently as determining the digits of the base p representation of r− 1. When

testing whether f is 6= 0 for different values of i, the values of i which are powers

of p are preferred for efficiency reasons, as they minimise the weight of f i, as is

shown in Lemma 2.11.

Lemma 5.2. Let s ∈ M(f∞), s 6= 0 and let N = pwN ′ with p - N ′ be a (not

necessarily minimal) period of s (which by Lemma 5.1 means s ∈ M(fp
w
)). Let

f r be the minimal polynomial of s. If w = 0 then r = 1. For w ≥ 1, let r − 1 =

rw−1p
w−1+rw−2p

w−2+ . . .+r1p+r0 with ri ∈ {0, 1, . . . , p−1} be the representation

of r − 1 in base p. Then we have: rw−1 is the largest integer i ≥ 0 for which

f ip
w−1

s 6= 0.

Moreover, putting t = f rw−1pw−1
s we have t ∈ M(fp

w−1
), t has minimal poly-

nomial f r−rw−1pw−1
and period N/p.

Proof. It is easy to see that rw−1p
w−1 ≤ r−1 < (rw−1 +1)pw−1, hence rw−1p

w−1 <

r ≤ (rw−1 + 1)pw−1. So f rw−1pw−1
is not a characteristic polynomial of s, whereas

f (rw−1+1)pw−1
is. By Lemma 2.10(i), this means f rw−1pw−1

s 6= 0 and f (rw−1+1)pw−1
s =

0.

The last equality also means that fp
w−1

t = 0, i.e. t ∈ M(fp
w−1

). By The-

orem 2.16, pw−1 ord(f) is a period of t. By Lemma 5.1, we know ord(f)|N ′. Hence

pw−1N ′ = N/p is also a period of t.

From Lemmas 5.1 and 5.2 we have:

Corollary 5.3. With the notations of Lemma 5.2: rw−1 = 0 iff fp
w−1

s = 0 iff

s ∈M(fp
w−1

) iff s has period N/p.

Based on the Lemmas and Corollary above we present the following two al-

gorithms LinCompChar2 and LinComp given as Algorithms 3 and 4. The first is

for p = 2 and the second for arbitrary p (including p = 2). We formulated the

algorithm for p = 2 separately due to the importance of characteristic 2 and sim-

ilarity with Games-Chan algorithm, as well as the fact that the code is somewhat

simplified by the existence of only 2 cases at each step, corresponding to a 0/1

digit in the binary representation of r− 1, so the test in Corollary 5.3 is sufficient

for determining the digit.
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Note that throughout the algorithms the current value of the infinite sequence

s is implicitly stored as being the finite sequence s′ = (s0, s2, . . . , sN−1) of length

N repeated periodically. When computing the action of a polynomial say g =∑n
i=0 aix

i on the infinite s thus stored, the result will be an infinite sequence t of

period N stored as the finite sequence t′ = (t0, t2, . . . , tN−1) consisting of the first

N terms of t, computed from s′ as ti =
∑n

j=0 ajs(i+j) mod N .

Algorithm 3: LinCompChar2(s′, N, f)

Input : f ∈ K[x] an irreducible polynomial over a field K of characteristic
2; s′ = (s0, . . . , sN−1) a finite sequence over K consisting of the
first N terms of an infinite sequence s of (not necessarily minimal)
period N such that s ∈M(f∞).

Output: The minimal polynomial of the sequence s
1 begin
2 C = 0;
3 if s′ = 0 then
4 return(fC);
5 end
6 w = the largest integer for which 2w divides N ;
7 Optionally, if ord(f) precomputed, set N = 2w ord(f) and

s′ = (s0, s1, . . . , sN−1);
8 while w ≥ 1 do

9 t′ = f 2w−1
s′ (as action on an infinite sequence);

10 if t′ 6= 0 then
11 s′ = t′;
12 C = C + 2w−1;

13 end
14 s′ = (s0, s1, . . . , sN/2−1);
15 w = w − 1;
16 N = N/2;

17 end
18 C = C + 1;
19 return(fC);

20 end

Theorem 5.4. Algorithms LinCompChar2 and LinComp (Algorithms 3 and 4)

are correct and terminate.

Proof. Let r be such that f r is the minimal polynomial of the input sequence, i.e.

the expected output of the algorithm. For the correctness of both algorithms we

can prove the following invariants. At the start and at the end of each run of the

outer while loop, s′ is a finite sequence of length N , and s′ 6= 0. If we denote by

s the infinite sequence of period N obtained by repeating s′, we have s ∈M(fp
w
)

and the minimal polynomial of s is f r−C .
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Algorithm 4: LinComp(s′, N, f)

Input : f ∈ K[x] an irreducible polynomial over a field K of characteristic
p; s′ = (s0, . . . , sN−1) a finite sequence over K consisting of the
first N terms of an infinite sequence s of (not necessarily minimal)
period N such that s ∈M(f∞).

Output: The minimal polynomial of the sequence s
1 begin
2 C = 0;
3 if s′ = 0 then
4 return(fC);
5 end
6 w = the largest integer for which pw divides N ;
7 Optionally, if ord(f) precomputed, set N = pw ord(f) and

s′ = (s0, s1, . . . , sN−1);
8 while w ≥ 1 do

9 t′ = fp
w−1

s′ (as action on an infinite sequence);
10 while t′ 6= 0 do
11 s′ = t′;
12 C = C + pw−1;

13 t′ = fp
w−1

s′ (as action on an infinite sequence);

14 end
15 s′ = (s0, s1, . . . , sN/p−1);
16 w = w − 1;
17 N = N/p;

18 end
19 C = C + 1;
20 return(fC);

21 end
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We outline the proofs for these invariants. The fact that s′ is a finite sequence

of length N is immediate. The fact that s′ 6= 0 is obviously true before the while

loop, due to the first if statement, line 3. If s′ is non-zero at the start of the outer

while loop it will stay non-zero throughout, as each new value of s′ is always set

to either the first N/p elements of s′ (and by Corollary 5.3, s′ consists in this case

of p repeating identical sequences, which are therefore non-zero) or to a non-zero

value of t′.

The fact that s ∈M(fp
w
) and the minimal polynomial of s is f r−C holds before

the outer while loop due to Lemma 5.1 and is then maintained due to Lemma 5.2.

Finally, upon exiting the outer while loop, we have that w = 0 so s ∈ M(f).

Since s′ 6= 0, this means f is the minimal polynomial of s. On the other hand we

saw that the minimal polynomial of s is f r−C , therefore 1 = r − C at this point,

so C + 1 is correctly returned as r.

The termination follows from the fact that the value of w is decreased by one

at each run of the while loop. Additionally, for characteristic p, the inner while

loop will run at most p − 1 times, as we know that at the beginning of each run

of the outer while loop we have s ∈M(fp
w
) hence fp

w
s = 0.

Theorem 5.5. The complexity of Algorithms LinCompChar2 and LinComp (Al-

gorithms 3 and 4) is O(N) if we consider f to be fixed, or O(wt(f)N) if f is an

input parameter.

Proof. It suffices to show the second result. Let N0 be the initial value of N , w0

be the initial value computed for w and let N ′ = N0/p
w0 . The (outer) while loop

will run w0 times, as showed in the proof of Theorem 5.4.

In the binary case, the complexity of each individual loop is dominated by

the calculation of t′ = f 2w−1
s′, a finite sequence representing the first 2wN ′ terms

of an infinite sequence of period 2wN ′. The number of summands for each term

is fixed by Lemma 2.11 as wt(f). So the number of arithmetic operations is

2wN ′(wt(f)− 1). For characteristic p each run of the outer while loop consists of

at most p computations of t′ = fp
w−1

s′, each taking (wt(f)− 1)pwN ′ steps.

In total we have
∑w0

w=1 2wN ′(wt(f)−1) = 2(2w0−1)N ′(wt(f)−1) < 2N0 wt(f)

for the binary case and (wt(f) − 1)N ′
∑w0

w=1 p
w+1 = (wt(f) − 1)p2N ′ p

w0−1
p−1 <

p2

p−1 wt(f)N0 for arbitrary p.

Alternative algorithms can be obtained for LinCompChar2 and LinComp (Al-

gorithms 3 and 4) by using the last equivalence of Corollary 5.3. Namely, we can

check immediately at the start of the outer while loop whether the current value

of s′ consists of p repeating copies of the same sequence. If this is the case we do
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not compute t′ but skip to the instructions for updating the values of s′, w and

N at the end of the loop. The algorithms thus modified would have the same

worst-case complexity but will behave slightly better for the case when r − 1 has

many 0’s in its representation in base p. Since each digit has a 1/p chance of being

0, the savings will be more significant when the underlying field has characteristic

2. We present an alternative to Algorithm 3 as Algorithm 5.

Algorithm 5: LinCompAlternative(s′, N, f)

Comment: Same as algorithm LinCompChar2 except that lines 8-17 are
replaced by

8 while w ≥ 1 do
9 if (s0, s1, . . . , sN/2−1) 6= (sN/2, sN/2+1, . . . , sN−1) then

10 s′ = f 2w−1
s′ (as action on an infinite sequence);

11 C = C + 2w−1;

12 end
13 s′ = (s0, s1, . . . , sN/2−1);
14 w = w − 1;
15 N = N/2;

16 end

Remark 5.6. For f = x− 1, Algorithm 3 reduces to the Games-Chan algorithm,

[28]. Firstly, ord(f) = 1, so we can put N = 2w in line 7. Secondly, computing

t′ = (x − 1)2
w−1

s′ = (x2
w−1 − 1)s′ for a sequence of period 2w means t′ is the

component-wise subtraction of the two halves of s′ (i.e. t′ is L(s) − R(s) if L(s)

and R(s) denote the left and right half of s, as in the notation used in the Games-

Chan algorithm). Therefore checking whether t′ = 0 will in this case mean checking

whether the two halves of s′ are identical. Algorithm 5 will also become virtually

the same as Algorithm 3 and the same as Games-Chan algorithm in this situation.

Similarly, for f = x− 1 Algorithm 4 reduces to the algorithm of Ding et al. [22].

Note that in the Games-Chan algorithm the final instruction C = C+1 is done

conditionally, only if s′ 6= 0. If one deals at the start of the algorithm with the

case of an all-zero input sequence (as we do), it is no longer necessary to check at

the end if s′ 6= 0, as this will always be the case (see the proof of Theorem 5.4).

Example 5.7. Let K = GF(2) and f = x3 +x+1. The sequence s ∈M(f∞) has

period N = 28 and its first 28 terms are s′ = 0000000 0101100 0010111 0111011.

The running of Algorithm 3 is described in Table 5.1.
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Table 5.1: Example Running of LinComp
s′ w t = 0? C

0000000 0101100 2 No 2
0010111 0111011
0010111 0010111 1 Yes 2

0010111 0
C = C + 1 3

return(f 3)

5.2 Linear Complexity of Finite Sequences with

Characteristic Polynomial a Power of an

Irreducible Polynomial

It was noticed by Sălăgean in [64] and by Meidl in [54] that we actually do not need

to have the whole period of the infinite sequence in the Games-Chan algorithm

in order to compute the linear complexity. In this section we generalise the idea

of Meidl, [54, Sections 2 and 3], by using the initial terms of a sequence, and

knowledge of a characteristic polynomial to treat it as an infinite sequence.

For a fixed polynomial g, an individual infinite sequence s with characteristic

polynomial g is uniquely defined (within the class of all sequences with charac-

teristic polynomial g) by its initial deg(g) terms. Can we decide if s admits a

characteristic polynomial of lower degree just by examining these initial deg(g)

terms?

Lemma 5.8. Let s be an infinite sequence with characteristic polynomial g = g1g2

with g1, g2 monic. Then s has characteristic polynomial g1 iff s′ = (s0, . . . , sdeg(g)−1)

has characteristic polynomial g1.

Proof. The direct implication is obvious. Conversely, assume s′ has characteristic

polynomial g1 i.e. g1s
′ = (0, . . . , 0), a finite sequence of deg(g)−deg(g1) = deg(g2)

terms. Note this sequence also coincides with the first deg(g2) terms of the infinite

sequence g1s. By Lemma 2.10(i), gs = g2g1s = 0, so g1s has characteristic poly-

nomial g2. But then g1s = 0 as its first deg(g2) terms are all zero and its linear

complexity is at most deg(g2).

Consequently, if we are given s′ as being the first v deg(f) terms of a sequence

s ∈M(f v) we can check whether s admits some characteristic polynomial of lower

degree, i.e. f v
′

with v′ < v by checking whether f v
′
s′ = 0. Again, a p-ary search

will make it more efficient.

The algorithm LinCompFinite is given as Algorithm 6 and is similar to the

Algorithm 4 in the previous section. Note that throughout the algorithm, the
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length of the current value of s′ is v deg(f) for the current value of v.

Algorithm 6: LinCompFinite(s′, v, f)

Input : A finite sequence s′ consisting of the first v deg(f) elements of an
infinite sequence s ∈M(f v) where f ∈ K[x] is a fixed irreducible
polynomial over a field K of characteristic p.

Output: The minimal polynomial of the sequence s
1 begin
2 C = 0;
3 if s′ = 0 then
4 return(fC);
5 end
6 w = the smallest integer such that v ≤ pw;
7 while w ≥ 1 do

8 t′ = fp
w−1

s′ (as action on a finite sequence);
9 if t′ 6= 0 then

10 s′ = t′;
11 C = C + pw−1;
12 v = v − pw−1;
13 w = the smallest integer such that v ≤ pw;

14 else
15 v = pw−1;
16 w = w − 1;
17 s′ = (s0, s1, . . . , sv deg(f)−1);

18 end

19 end
20 C = C + 1;
21 return(fC);

22 end

Theorem 5.9. Algorithm LinCompFinite is correct and terminates.

Proof. Let s(0) be the original value of the infinite input sequence s and let r

be such that f r is its minimal polynomial. For the correctness, we will show

that throughout the algorithm s′ consists of the first v deg(f) terms of fCs(0)

and pw ≥ v ≥ r − C ≥ 1, with w minimal such that pw ≥ v. Therefore s′ in

conjunction with the characteristic polynomial f v correctly defines the infinite

sequence fCs(0). All these statements are obviously true before the while loop

begins. We will assume they are true at the start of a run on the loop and show

they are true at the end of the loop.

If the t′ 6= 0 branch of the if is taken, then vnew = vold − pwold−1 ≥ r − Cold −
pwold−1 = r − Cnew, where the old and new indicies refer to the value at the

beginning and at the end of the loop. In addition, r−Cnew ≥ 1: if we assume the

contrary, i.e. r ≤ Cnew, then fCnew would be a characteristic polynomial for s(0),
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Table 5.2: Example running of LinCompFinite
s′ w v t = 0? C

010100001011010110 3 6 Yes 0
010100001011 2 4 No 2

001111 1 2 No 3
101 0 1

C = C + 1 4
return(f 4)

so fCnews(0) = 0. But then s′new, consisting of the first terms of fCnews(0), would

equal 0. On the other hand s′new = t′ 6= 0, giving a contradiction.

If the else branch of the if is taken, we know fp
wold−1

s′old = 0. By Lemma 5.8,

this means fColds(0) has characteristic polynomial fp
wold−1

= f vnew , so vnew deg(f)

of its initial terms are sufficient to determine the sequence. Moreover, since f r−Cold

is the minimal polynomial of fColds
(0) we have pwold−1 ≥ r − Cold. Hence vnew =

pwold−1 ≥ r − Cold = r − Cnew.

Finally, upon exiting the while loop we have w = 0 and since 1 = pw ≥ v ≥
r − C ≥ 1, it follows that r − C = 1, so C + 1 is correctly returned as r.

To show termination, it suffices to note that v decreases throughout the al-

gorithm.

Theorem 5.10. Algorithm LinCompFinite has complexity O(v) for a fixed f , or

O(v deg(f) wt(f)) if f is an input parameter.

Proof. We can see from the proof of Theorem 5.9 that each run of the while loop

takes v deg(f) wt(f) steps for the current value of v, which is upper bounded by

pw. In each run of the loop, the value of w is decreased or stays the same, but can

only stay the same for at most p successive runs of the while loop. So if w0 is the

initial value of w, we have at most
∑w0

w=1 p
w+1 deg(f) wt(f) steps.

Example 5.11. Let K = GF (2) and f = x3 + x + 1. The finite sequence s′ =

010100001011010110 consists of the first 6 deg(f) = 18 terms of a sequence s ∈
M(f 6). The running of Algorithm 6 is described in the Table 5.2.

Remark 5.12. For f = x− 1, p = 2 and arbitrary v, our Algorithm 6 reduces to

Algorithm 1 of [54]. For f = x2 + x + 1 and v being a power of 2, it reduces to

Algorithm 2 in [54] (which, as was remarked at the end of Section 3 of [54] could

be generalised to arbitrary f and v a power of 2).

Let us examine the relation between the algorithms in this section (where a finite

portion of the sequence is known) and the ones in the previous section (where a

whole period of the sequence is known, i.e. the whole infinite sequence is known).

We could easily transform one problem into the other, namely, if we have a finite
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sequence we can generate the whole period using the given characteristic polynomial

f v (note that this process can take a number of steps exponential in the length of

the original input finite sequence, see discussion further on). Conversely given

an infinite sequence of period N we could restrict to the initial pw deg(f) terms

(with w maximal such that pw|N), as fp
w

is guaranteed by Lemma 5.1 to be a

characteristic polynomial of f . We compare now the complexities of the two types

of algorithm. Algorithms 3, 4 and 5 of the previous section are O(N wt(f)), so

since pw ord(f)|N , they are O(pw ord(f) wt(f)). On the other hand, Algorithm 6 of

this section has complexity O(pw deg(f) wt(f)). Since deg(f) ≤ ord(f) ≤ pdeg(f)−
1 with both lower and upper bounds attained for particular values of f , it means that

the algorithms of the previous section are no better, and potentially exponentially

slower than the ones in this section (to clarify, all are linear in the size of the

input, but the size of the input can be exponentially higher if we use the full period

rather than the initial v deg(f) terms). So the algorithms of the previous section

should be avoided in favour of the one in this section. We did nevertheless present

them as they are direct generalisations of the Games-Chan algorithm.

Remark 5.13. Since the algorithm developed here is a generalization of the ones

given by Meidl in [54], it may seem natural to go further and adapt these algorithms

into ones capable of determining the k-error linear complexity, as a generalization

of the work carried out in [54], Section 4. However, we do not believe that such

work would be worthwhile for the following reason:

In [64] the following definition is given for the k-error linear complexity of a

finite sequence, z, of length t with respect to a set A of infinite sequences:

LCk(z, A) = min{LC(s)|s ∈ A,wt((s0, s1, . . . , sn−1)− z) ≤ k}

where LC(s) is the linear complexity of the infinite sequence s. This definition

is used in [64] with the set A being the set of all sequences with period a power

of 2. This is because, if it is known that the initial finite sequence was part of

an infinite sequence s whose period was a power of 2, introducing errors to this

infinite sequence would not affect this property (because the error sequence would

have the same period as s, i.e. a power of two and hence adding them to the

sequence would again result in a sequence with period a power of two), and so

LCk(z, A) ≡ LCk(z,S) where S is the set of all binary sequences. However, this

is not always the case, and specifically, it is not the case in the way the definition

is used in [54, Section 4].

In [54, Section 4], the same general definition is used, although now the set A

is defined to beM((x2 +x+1)2
v
). However, s ∈M((x2 +x+1)2

v
) does not imply

(s + e) ∈ M((x2 + x + 1)2
v
), for all sequences e of the same period as s. Hence



CHAPTER 5. LINEAR COMPLEXITY FOR CERTAIN SEQUENCES 54

in this case ck(s,M((x2 + x + 1)2
v
)) 6≡ LCk(s,S). Therefore while the algorithm

presented in [54, Section 4] does calculate LCk(s,M((x2 + x + 1)2
v
)), this is not

equal to the k-error linear complexity (in the classical sense) of the input sequence

s. Therefore we do not feel it is worthwhile adapting the algorithm presented in

this paper to the k-error linear complexity problem, as it would suffer from the

same restriction.

5.3 Linear Complexity of Infinite Sequences

with a Characteristic Polynomial a Product

of Known Irreducible Factors

With a simple adjustment to the algorithms in Section 5.1, we can greatly increase

their scope, so that they can be applied to any sequence provided each of the

irreducible factors of a characteristic polynomial are known.

As a consequence of Lemma 2.10(ii) we have:

Corollary 5.14. Assume that the minimal polynomial of a sequence s is of the

form f r11 f
r2
2 . . . f rmm , with fi distinct irreducible polynomials. Let xi ≥ ri for i =

2, . . . ,m. Then f r11 is a minimal polynomial of the sequence fx22 . . . fxmm s.

Therefore, if we know each of the irreducible polynomials which divides a

characteristic polynomial of a sequence and we have an upper bound on the powers

of each irreducible polynomial, we can use Corollary 5.14 and Algorithms 3 or 4,

to successively determine the powers of each irreducible polynomial in the minimal

polynomial. To obtain an upper bound of the power of each irreducible polynomial,

note that the minimal polynomial is a factor of xN − 1 where N is a period of

s. Writing N = pwN ′ with p - N ′ we have xN − 1 = (xN
′ − 1)p

w
. Putting

ΦN ′ = {f ∈ K[x]|f irreducible factor of xN
′ − 1} all irreducible factors of the

minimal polynomial are in ΦN ′ and have multiplicity at most pw. The resulting

algorithm LinCompSet is presented as Algorithm 7.

Theorem 5.15. For a sequence of period N , and a fixed set Φ, Algorithm 7 has

complexity O(N). For a general set of m elements Φ = {f1, . . . , fm}, the algorithm

has complexity O((
∑m

i=1 wt(fi))mN).

Proof. In each of the m runs of the outer for loop, the computation of t′ takes

((
∑m

j=1 wt(fj))−wt(fi))N . By Theorem 5.5, LinComp has complexityO(wt(fi)N)

so a total of O(N
∑m

i=1 wt(fi)) for each loop.

Note that Algorithm 7 is therefore efficient only if Φ has a small cardinality

and the total weight of its elements is small. We could remove the condition that
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Algorithm 7: LinCompSet(s′, N,Φ = {f1, . . . , fm})
Input : s′ a finite sequence consisting of the first N terms of an infinite

sequence s of (not necessarily minimal) period N ; Φ a superset of
the set of all irreducible factors of the minimal polynomial of s.

Output: The minimal polynomial of s
1 begin
2 w = the largest integer for which pw divides N ;
3 g = 1;
4 for i = 1, 2, . . . ,m do
5 for j = 1, 2, . . . ,m do
6 if j 6= i then

7 t′ = fp
w

j s′ (as action on infinite sequences);

8 end

9 end
10 g = g ∗ LinComp(t′, N, fi);

11 end
12 return(g);

13 end

Φ must be known in advance by computing ΦN ′ as above and using it as Φ during

the algorithm. Hence we would have m = |ΦN ′ |. The cases of interest will be the

ones where N ′ is a small constant, or again m is small and the total weight of the

elements of ΦN ′ is small.

If Φ = ΦN ′ and N ′ is arbitrary, in the worst case this algorithm becomes less

efficient than the Berlekamp-Massey algorithm. The number of operations would

be at least m2N with m = |Φ|. For the particular case when N = pwN ′ with

N ′ = 2n − 1 a (Mersenne) prime and w a small constant, we have m = N ′−1
n

+ 1

(the factors of x2
n−1 − 1 are in this case x − 1 and the ϕ(2n − 1)/n primitive

polynomials of degree n as in [44, Theorem 3.5]). Since in this case m ≈ N
logN

, the

complexity of the algorithm becomes in the worst case Ω(N3/ log2N) i.e. more

than quadratic.



Chapter 6

m-Sequence Stability

Linear feedback shift registers (LFSRs) are frequently used in stream ciphers (see,

for example [33] [13] [21] [24] [73]) due to their well understood properties and

simplicity of construction in hardware. m-Sequences were discussed by Golomb

[29], and have many interesting and well studied properties.

However, to our knowledge, one property that has not been studied is the k-

error linear complexity of such sequences. The stability of the linear complexity

(i.e. high k-error linear complexity for small values of k) is an important criterion

[22] in the design of stream ciphers because if a sequence has a low k-error linear

complexity, an attacker could potentially recover easily all but k terms of the

sequence.

The k-error linear complexity and the error linear complexity spectrum are

very difficult to determine for a general sequence but for some classes of sequences

polynomial time algorithms have been found [69] [51] [43] [39]. However, these

classes of sequences are usually chosen so that the k-error linear complexity is easy

to determine, rather than being chosen because they are used in cryptographic

primitives. We begin to rectify that in this chapter by analyzing the k-error

complexity of m-sequences, specifically by finding lower bounds on the minimum

number of errors that are required to reduce the linear complexity of the sequence.

By analogy to the k-error linear complexity, we can define the k-error period

of a sequence, i.e. the minimal period that we can obtain for a sequence by

changing up to k terms in each period. As the period of m-sequences is maximal

among all sequences of a given linear complexity, m-sequences are often used as

components of stream ciphers in order to ensure a large period, see [35]. Therefore

it is perhaps even more important in such situations to guarantee the stability

of the period rather than of the linear complexity. Moreover for m-sequences

the linear complexity cannot be reduced without also reducing the period and

therefore the minimum number of errors needed for reducing the period is a lower

bound for the minimum number of errors needed for reducing the linear complexity

56
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(Proposition 6.1).

The case of m-sequences with prime period (Section 6.1.1) is relatively easy

and we obtain a closed form expression for the k-error linear complexity and the k-

error period. When the period is composite, the problem is related to the problem

of determining the weight enumerator of minimal cyclic codes (also known as

irreducible cyclic codes) (Section 6.1.2). This is a well studied and as yet not

fully solved problem (see for example [23]). The weight enumerator is known

for certain particular cases, but for the general case it seems no closed form or

algorithm better than brute force is known.

If we denote by p a factor of the period of the m-sequence, then we have

studied the two extreme cases with regards to the order of 2 modulo p, namely

where the order is minimal or maximal. The first of these is where p is a Mersenne

number (Section 6.1.3), and the second is where the order of 2 modulo p is p− 1

(Section 6.1.4) and in both cases we give exact formulae for the minimum number

of errors needed to reduce the period of the m-sequence by p. Other results from

coding theory can be similarly transformed to solve more cases, and this is a topic

of Chapter 7. In Section 6.1.5 we conjecture that the minimum number of errors

needed to reduce the period of an m-sequence is achieved when we reduce the

period as little as possible, i.e. we divide the period by its smallest factor. We

give several theoretical and experimental results in support of our conjecture. If

the conjecture is true then for at least 76% of m-sequences, at least one quarter

of the terms in each period must be changed to reduce the period, which implies

that these sequences are highly secure from a period (or linear complexity) stability

viewpoint.

Finally, in Section 6.2 we study how these results relate to the LFSR compon-

ents of several cipher systems: the eStream candidates Grain and DECIMv2 and

also LILI-128 and SSC2. We compute the number of errors needed for reducing

their period by several small prime factors. If our conjecture holds, it follows that

all of these LFSRs are secure from the point of view of the stability of the period

and linear complexity.1

6.1 k-Error Linear Complexity and Period for

Various Classes of m-Sequence

In this chapter we study binary m-sequences. We aim to determine the number of

errors needed for reducing the linear complexity of such sequences and the number

of errors needed for reducing the period. Due to the fact that m-sequences achieve

1The main results of this Chapter were originally published in [20].
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minimum linear complexity amongst all sequences of that minimum period, in

order to reduce the linear complexity of an m-sequence we have to reduce its

period as well:

Proposition 6.1. For any given m-sequence s, the period stability threshold is

a lower bound on the linear complexity stability threshold. Moreover if s′ is any

linearly recurrent sequence with LC(s′) < LC(s) then P(s′) < P(s).

Proof. It suffices to show the second result. Assume s′ is a sequence with LC(s′) <

LC(s), then P(s′) ≤ 2LC(s′) − 1 < 2LC(s) − 1 = P(s).

6.1.1 Prime period

We will first deal with the relatively easy case when the period of the m-sequence

is prime. In this case, we are able to determine not just the period stability

threshold, but the full error linear complexity spectrum, which trivially gives the

linear complexity stability threshold.

Theorem 6.2. Consider an m-sequence, s, with P(s) = m = 2n − 1. If m is a

Mersenne prime, then the critical points of the k-error linear complexity spectrum

of s are: (0, n), ((m− 1)/2, 1), ((m+ 1)/2, 0).

Proof. From Lemma 2.27 we know that the spectrum will contain at least the

three critical points listed in the statement. By Proposition 6.1, the only way to

reduce the linear complexity of s is by reducing its period to a factor of m, i.e. to

1, as m is prime. That means s can only become a sequence of all ones (requiring

(m− 1)/2 changes) or a sequence of all zeros (requiring (m+ 1)/2 changes).

Note that Theorem 6.2 implies that EP(s) = (m − 1)/2 and so the linear

complexity stability threshold and the period stability threshold are almost half

the period length, which implies that such sequences are very stable, in fact,

by Lemma 2.27 they are as stable as possible. Since it is possible to construct

an m-sequence of period equal to any Mersenne number, the frequency of such

sequences among all m-sequences is dependent on the frequency of Mersenne

primes among Mersenne numbers. There are no known results about this, but

the widely believed Lenstra-Pomerance-Wagstaff Conjecture [62] implies that the

proportion of Mersenne primes less than x as a proportion of all Mersenne num-

bers is log log x/ log x. This implies that the frequency of these sequences is low,

and decreases as we consider longer sequences. Out of the smallest 200 lengths for

m-sequences, 13 of them are prime, a proportion of 0.07.
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6.1.2 Reducing the period of an m-sequence by an

arbitrary factor

For treating the case when the period is composite, reducing the period to a factor

r of the original period can be visualized by writing the sequence row-wise in a

table of r columns and aiming to make each column of the table contain one single

value. We formalize this as follows:

Definition 6.3. For a periodic sequence s, with P(s) = m and m = qr for some

integers q, r, we define the r-decimation matrix of s to be the q by r matrix T with

entries: Ti,j = sir+j for i = 0, . . . , q−1 and j = 0, . . . , r−1. That is, we construct

T by sequentially filling its rows with the values of s. It will often be useful for us

to refer to the columns of T as sequences themselves.

Note that using the notation above, the columns of T are r-regular, improper

decimations of s.

Lemma 6.4. The minimum number of errors needed for reducing the period m =

qr of a binary sequence s from m to r equals: EP(s)(r) =
∑r−1

i=0 min{wt(Ti), q −
wt(Ti)} where Ti is the i-th column of the r-decimation matrix of s.

Proof. The period of the sequence has been reduced to r iff each column of the r-

decimation matrix contains only one value. The number of errors needed to make

the column Ti contain only zeros is wt(Ti) and to contain only ones is q−wt(Ti).

Note that an algorithm for computing by brute force the weight of the columns

of the decimation matrix is linear in the period length of the sequence. However,

for m-sequences the period length is exponentially higher than the degree of the

characteristic polynomial, so a more efficient algorithm, or a closed formula, would

be preferable.

Theorem 6.5. Let s be a sequence with P(s) = m, and m1m2|m.

Then EP(s)(m/m1m2) ≥ EP(s)(m/mi) for i = 1, 2.

Proof. Note that a sequence of period m/mimj also has period m/mi. Therefore

EP(s)(m/mimj) errors can change s into a sequence of period m/mi, and so the

result follows.

Corollary 6.6. Let s be a sequence with P(s) = m = pe11 p
e2
2 . . . pevv , with pi prime

for all i. Then EP(s) = mini{EP(s)(m/pi)}.

Corollary 6.6 implies that to determine the period stability threshold for an

m-sequence, we will only need to consider reducing the period by a prime factor.

We recall the following results which shed light on the structure of the decim-

ation matrix:
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Lemma 6.7. [70] Assume that T is the r-decimation matrix for an m-sequence s

with P(s) = qr. Then the columns of T are all generated by a single, irreducible

polynomial.

Lemma 6.8. [70] Let s be an m-sequence of period m, and assume m = qr. If

q = 2n − 1 for some n (that is, q is a Mersenne number) then each column of

the r-decimation matrix of s will either be an m-sequence or the all zero sequence.

Further, each of the m-sequences will be identical, up to a cyclic shift.

The following is a closely related result from coding theory:

Theorem 6.9. ([45, Theorem 11, Ch. 8, §4]) Let q, n be integers such that n =

ordq(2). Let s be an m-sequence with period length 2n − 1. The columns of the

(2n − 1)/q-decimation matrix of s are a set of representatives (with respect to the

equivalence relation of cyclic shifting) of the non-zero codewords in an irreducible

[q, n] cyclic code.

Please note that the original version of the above theorem uses a matrix which

is the transpose of our decimation matrix.

Recall that a cyclic code of length q with generator polynomial g|xq − 1 can

be equivalently viewed as the set of sequences of period q with characteristic

polynomial equal to the reciprocal of the parity check polynomial (xq − 1)/g. We

can define an equivalence relation on the set of sequences generated by a fixed

polynomial: two sequences of period t are equivalent if when represented as a

finite sequence of length t one can be obtained from the other by a cyclic shift.

We can therefore formulate Theorem 6.9 above equivalently as follows:

Corollary 6.10. Let q, n be integers such that n = ordq(2). Let s be an m-sequence

with period length 2n − 1. The columns of the (2n − 1)/q-decimation matrix for s

are a set of representatives for the set of non-zero sequences generated by a fixed

irreducible polynomial of degree n and order q.

We extend the results above to the case when n is not the order of 2 mod q:

Theorem 6.11. Let q, n be integers such that q|2n − 1. Let n′ = ordq(2). Let s

be an m-sequence with period length 2n − 1. In the (2n − 1)/q-decimation mat-

rix of s there are 2n−n′−1
q

all-zero columns and 2n−n
′

columns from each of the

2n
′−1
q

equivalence classes of the non-zero sequences generated by a fixed irreducible

polynomial of degree n′ and order q.

Proof. We decimate the sequence s in two stages. Let B be the (2n− 1)/(2n
′ − 1)

decimation matrix of s. Each column of B has length 2n
′−1 and so by Lemma 6.8

it is either the all-zero column or one fixed m-sequence (possibly shifted). As
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in [70, Section IV B] we can count how many of each we have and show that there

are 2n−n′−1
2n′−1 all-zero columns and 2n−n

′
m-sequences. To obtain the (2n − 1)/q-

decimation matrix T of s we can think of concatenating the first (2n
′ − 1)/q rows

of B to obtain the first row of T , then concatenating the next (2n
′ − 1)/q rows of

B to obtain the second row of T and so on. Looking at a particular column of B,

say column j, we see that its elements end up as columns j, j + (2n − 1)/(2n
′ −

1), j + 2(2n − 1)/(2n
′ − 1), . . . of T . Moreover, these columns of T are exactly a

(2n
′−1)/q-decimation matrix for the sequence in column j of B. If this sequence is

an m-sequence, then by Theorem 6.9 the resulting columns of T are exactly a set

of representatives for the equivalence classes of the non-zero sequences generated

by a fixed irreducible polynomial. If column j of B is all-zero, then obviously the

corresponding columns in T are also all-zero.

We have therefore:

Corollary 6.12. Let s be an m-sequence of length 2n − 1 and let q be a factor of

2n − 1. Let n′ = ordq(2). Then:

EP(s)((2
n − 1)/q) = 2n−n

′
EP(s)((2

n′ − 1)/q).

Recall that the weight enumerator (or weight distribution) of a code C of

length m can be defined as the list of integers A0, A1, . . . , Am with Ai equal to the

number of codewords in C that have Hamming weight equal to i. In a minimal

[q, n] cyclic code each of the q cyclic shifts of a non-zero codeword are distinct, i.e.

there are exactly q codewords in each equivalence class, all of the same weight.

Therefore, as a consequence of Theorem 6.9 and Corollary 6.12 we have:

Corollary 6.13. Let s be an m-sequence of length 2n − 1 and let q be a factor of

2n− 1. Let n′ = ordq(2). If A0, A1, . . . , Am is the weight enumerator of a minimal

[q, n′] cyclic code, then

EP(s)((2
n − 1)/q) = 2n−n

′

(q−1)/2∑
i=1

iAi
q

+

q∑
i=(q+1)/2

(q − i)Ai
q


The problem of finding the weight enumerator for a general cyclic code is a

well studied, and yet unsolved, problem in coding theory (see, for example, [23]).

There are a number of particular cases for which the problem has been solved, and

we examine some of them in the next sections; others can be similarly transferred.

However the general case seems difficult as no better solution than brute force

(i.e. determining the weight of each column in the decimation matrix) is known.
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In view of the corollary above, we suspect that determining EP(s)(c) for s an m-

sequence is an equally difficult problem.

In the rest of this section, we will explain how to analyze certain classes of m-

sequence. However, in the cases where these results are not applicable, Corollaries

6.12 and 6.13 will allow us to analyze large m-sequences, by transforming the

problems into problems about shorter sequences, which may be suitable for a

brute force approach. An example of this is given in Section 6.2.

6.1.3 Reducing the period by a Mersenne number

When the period length of an m-sequence is a Mersenne number 2n − 1 with n

not prime, certain factors of the period are Mersenne numbers themselves and can

easily be obtained by factorizing the exponent n. Namely, if n′ is a factor of n,

then 2n
′ − 1 is a factor of 2n − 1. In this section we will compute the number of

errors needed to reduce the period of an m-sequence by a Mersenne number.

Theorem 6.14. Consider an m-sequence s with P(s) = m and assume m has a

factor of the form 2n
′ − 1. Then

EP(s)(m/(2
n′ − 1)) = (m+ 1)

2n
′−1 − 1

2n′
= wt(s)

(
1− 1

2n′−1

)
Proof. Let Ti be the i-th column of the q-decimation matrix T of s. By Lemma 6.8

each Ti is either an m-sequence (and therefore wt(Ti) = 2n
′−1) or the all zero

sequence (and so wt(Ti) = 0). As in the proof of Theorem 6.14 we can count

how many of each we have: (m + 1)/2n
′

columns of T are m-sequences and the

rest are all-zero sequences. Applying Lemma 6.4, EP(s)(m/(2
n′ − 1)) = ((m +

1)/2n
′
)(2n

′−1 − 1).

Note that Theorem 6.14 can also be viewed as a particular case of Corollary 6.12

for q = 2n
′ − 1, as in that case EP(s)((2

n′ − 1)/q) = EP(s)(1) = 2n
′−1− 1 (to reduce

the period of an m-sequence to 1 we need to change all zeros into ones).

Example 6.15. The most important cases will be when the period length m

is reduced by a small factor. Theorem 6.14 shows that (for sequences whose

period length is divisible by the appropriate factor) EP(s)(m/3) = (1/4)(m + 1),

EP(s)(m/7) = (3/8)(m + 1), EP(s)(m/15) = (7/16)(m + 1) and EP(s)(m/31) =

(15/32) (m+ 1).

Corollary 6.16. If the period of an m-sequence s is being reduced by a factor that

is a Mersenne prime q, the smallest number of errors required will be when q = 3,

in which case (P(s) + 1)/4 errors are required, i.e. half of the weight of s. As q

increases, the number of errors approaches the weight of the sequence.
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Example 6.17. Let s be an m-sequence of period to 4095. Then EP(s)(4095/3) =

EP(s)(1365) = 1024 = (1/2) wt(s) and EP(s)(4095/7) = EP(s)(585) = 1536 =

(3/4) wt(s).

6.1.4 Reducing the period by a prime p with

ordp(2) = p− 1

We will now discuss primes p with the property that ordp(2) = p − 1, which

are those primes where 2 is a primitive root modulo p. For such primes, the

factorization of xp − 1 into irreducible factors is the trivial factorization xp − 1 =

(x−1)(xp−1 +xp−2 + . . .+1), i.e. xp−1 +xp−2 + . . .+1 is an irreducible polynomial

of degree p − 1. Therefore, if s is an m-sequence of minimal period 2p−1 − 1, by

Corollary 6.10 the columns of its (2p−1 − 1)/p-decimation matrix are all the non-

zero sequences generated by this irreducible polynomial, i.e. sequences obtained

by a parity-check bit type equation, so the sum of the bits equals 0. For each

even weight 2i with i 6= 0 there are
(
p
2i

)
such sequences, i.e. 1

p

(
p
2i

)
inequivalent

sequences (taking equivalence under cyclic shifts). Hence by Lemma 6.4 we have

EP(s)((2
p−1 − 1)/p) =

p−1
2∑
i=1

1

p

(
p

2i

)
min(2i, p− 2i).

With some combinatorial manipulation we will obtain:

Theorem 6.18. Let p be a prime such that ordp(2) = p−1. Let s be an m-sequence

of minimal period 2p−1 − 1. Then:

EP(s)((2
p−1 − 1)/p) = 2p−2 − 1

2

(
p− 1
p−1
2

)
.
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Proof.

EP(s)((2
p−1 − 1)/p) =

=

p−1
2∑
i=1

1

p

(
p

2i

)
min(2i, p− 2i)

=
1

p

b p−1
4
c∑

i=1

2i

(
p

2i

)
+

p−1
2∑

i=b p−1
4
c+1

(p− 2i)

(
p

2i

)
=

1

p

b p−1
4
c∑

i=1

2i

(
p

2i

)
+

p−1
2∑

i=b p−1
4
c+1

(p− 2i)

(
p

p− 2i

)
=

1

p

p−1
2∑
j=1

j

(
p

j

)

=

p−1
2∑
j=1

(
p− 1

j − 1

)
.

The last expression is the sum of the combinatorial coefficients in Pascal’s

triangle on the row p − 1 up to but excluding the middle element. If we would

also add half of the middle element we would obtain exactly half of the total sum

of the row, i.e. 2p−2. Hence the result in the theorem follows.

Combining this theorem with Corollary 6.12 we obtain:

Corollary 6.19. Let s be an m-sequence of minimal period 2n − 1 and let p be a

prime factor of 2n − 1. If ordp(2) = p− 1 then

EP(s)((2
n − 1)/p) = 2n−1 − 2n−p

(
p− 1
p−1
2

)
= wt(s)

(
1− 1

2p−1

(
p− 1
p−1
2

))

By using Stirling’s approximation, we can transform this result to obtain

EP(2n−1)/p(s) ≈ wt(s)

(
1− 1√

π(p−1)

)
where the accuracy of the approximation

depends only on the value of p (and becomes a closer approximation for higher

p). This shows that for any fixed n the number of errors will tend to wt(s) as p

becomes larger, just as we saw for the situation when p was a Mersenne Prime.

These results, combined with our experimental results lead us to believe that this

holds for all m-sequences, but we have not been able to prove this.
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6.1.5 The minimum number of errors needed for

reducing the period of an m-sequence

In the previous sections we examined the number of errors needed for reducing the

period of an m-sequence to specific factors of the original period. In this section

we examine the period stability threshold, i.e. the minimum number of errors

needed for reducing the period of an m-sequence at all. By Corollary 6.6 this is

the minimum among EP(s)(m/p) for the different prime factors p of the period m.

We can determine the minimum among different EP(s)(m/p) for those p which fall

in the cases of Theorem 6.14 and Corollary 6.19:

Corollary 6.20. Let s be an m-sequence with P(s) = m, and let p1 < p2 be factors

of m. Moreover assume that p1 and p2 are such that both satisfy condition (i) or

both satisfy condition (ii) or p1 satisfies condition (ii) and p2 satisfies condition

(i) below:

(i) being a Mersenne number

(ii) being a prime p such that ordp(2) = p− 1.

Then EP(s)(m/p1) < EP(s)(m/p2).

Proof. The first situation is immediate, for the second we use the combinatorial

inequality 4
(
2t
t

)
>
(
2(t+1)
t+1

)
. For the last situation, using a Stirling inequality of the

form
(
2t
t

)
≥ 22t−1

√
t

, it suffices to prove that 1√
2(p1−1)

> 2
p2+1

, which can be easily

verified.

It would be tempting to conjecture that EP(s)(m/p1) < EP(s)(m/p2) for any

prime factors p1 < p2 of m. However, this is not true, as the following example

shows:

Example 6.21. Consider an m-sequence with period m = 2180 − 1, p1 = 31

(which falls into case (i) in Corollary 6.20) and p2 = 37 (which falls into case

(ii) in Corollary 6.20). We compute EP(s)(m/31) = 2180(15/32) ≈ 7.2 ∗ 1053 using

Theorem 6.14 and EP(s)(m/37) = 2179−2143∗
(
36
18

)
≈ 5.7∗1053 using Corollary 6.19.

Hence EP(s)(m/p1) > EP(s)(m/p2) holds.

However, for our purposes we are only interested in finding the minimum

EP(s)(m/p) and in this example neither of these primes achieves it, as EP(s)(m/3) =

2178 ≈ 3.8 ∗ 1053 is lower than both EP(s)(m/p1) and EP(s)(m/p2).

Proposition 6.22. Let s be an m-sequence with P(s) = 2n − 1 = m, and let p

be a prime such that p divides m and ordp(2) = p − 1. Then the smallest prime

factor of m is 3 and EP(s)(m/3) < EP (s)(m/p).
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Proof. The prime factors of m are exactly those primes q with ordq(2)|n. For the

particular p in the statement we have therefore (p−1)|n. Since p is odd (obviously

2 is never a factor of 2n−1) that means n is even. On the other hand, ord3(2) = 2,

so 3 must be a factor (the smallest one) of 2n − 1 whenever n is even.

Using Corollary 6.19 the inequality becomes
(p−1

p−1
2

)
< 2p−2, which can be easily

proved.

The results of this section together with an exhaustive search computation for

all sequences up to length 217−1 (see Appendix) led us to the following conjecture:

Conjecture 6.23. Let s be an m-sequence with P(s) = m, and p1 be the smallest

prime factor of m. Then if p2 is any prime prime factor of m, EP(s)(m/p1) ≤
EP(s)(m/p2).

Corollary 6.6 becomes:

Corollary 6.24. Let s be an m-sequence of period m and let p be the smallest

prime factor of m. If Conjecture 6.23 holds then EP(s) = EP(s)(m/p).

Using Theorem 6.14 we obtain therefore:

Corollary 6.25. Let s be an m-sequence of period m. If the smallest factor of m

is a Mersenne prime 2n− 1 and Conjecture 6.23 holds then the minimum number

of errors needed to reduce the period of s is EP(s) = (m+ 1)2
n−1−1
2n

≥ (1/2) wt(s).

We will estimate now what proportion of m-sequences are covered by Corol-

lary 6.25, i.e. the proportion of Mersenne numbers that admit a Mersenne prime

as their smallest factor. As previously stated, for a given prime p, the Mersenne

numbers that are multiples of p are exactly those of the form 2v−1 with ordp(2)|v.

Table 6.1 contains ordp(2) for small values of p. Note that ord2n−1(2) = n when

2n − 1 is prime.

We can compute how many Mersenne numbers have a particular prime as

their smallest factor, by using the inclusion-exclusion principle. Specifically, the

proportion of Mersenne numbers with some prime p as their smallest factor will

be 1/ ordp(2)-th of all those which are not divisible by any prime smaller than p.

The first few values are contained in Table 6.2, and adding them up allows us

to say that the proportion of m-sequences whose period length has a Mersenne

prime as its smallest factor is at least 0.76. For each of these sequences, the period

stability threshold is at least (P(s) + 1)/4 (achieved for smallest factor 3). Note

that this is a large proportion of errors, as usually the largest number of errors

considered is P(s)/20 or possibly P(s)/10. Out of the smallest 200 lengths of m-

sequences, 146 of them have a Mersenne prime as their smallest factor, a proportion
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Prime p ordp(2)
3 2
5 4
7 3
11 10
13 12
17 8
19 18
23 11
29 28
31 5
37 36
41 20
43 14

Table 6.1: ordp(2) for small prime p

Prime p Proportion of Mersenne numbers having p as smallest factor
3 1/2
7 1/6
31 2/33
127 16/483

Table 6.2: Proportion of Mersenne numbers with certain factors

of 0.73. From a cryptographic standpoint this implies that using m-sequences as

primitives in a cipher scheme to ensure a minimum period of the output is a very

secure method by this measure, since an unreasonably large number of the bits

need to be changed to reduce the period or the linear complexity at all.

We can also determine the proportion of sequences which have a period length

that is composite, but that do not have a Mersenne Prime as their smallest factor.

Since the proportion of sequences that have prime period length will become arbit-

rarily small as the lengths considered increase, and we have seen that at least 0.76

of all m-sequences have period length that is divisible by a Mersenne Prime, the

proportion that do not cannot be more than 0.24. Out of the smallest 200 lengths

for m-sequences, 41 were composite with their smallest factor not a Mersenne

prime, a proportion of 0.21.

Example 6.26. The smallest m-sequence period length which does not have a

Mersenne prime as its smallest factor is 2047 = 211 − 1, with a smallest factor

of 23. We have calculated by brute force that the period stability threshold is 869,

(when the period is reduced by a factor of 23) which is a large proportion of the

weight of the sequence, which is 1024. The next smallest example will occur for

the m-sequence of length 8388607 = 223 − 1, with a smallest factor of 47.
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6.2 Application to Grain and other Stream

Ciphers

We will first apply our results to one of the eStream Candidates, namely Grain

[33]. Grain is composed of a linear feedback shift register and a non-linear feedback

shift register, whose outputs are combined using a non-linear function. We will be

looking at the LFSR, which has 80 registers, and a primitive minimal polynomial

polynomial: f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80 Therefore it generates

an m-sequence of period length 280 − 1(≈ 1.2 ∗ 1024) which we will refer to as s.

It would clearly require a very large amount of processing power to compute by

brute force either the k-error linear complexity or the k-error period for s, even for

small values of k, but we can use the results of this chapter to study the security of

this sequence. To reduce the period of the sequence, we need to know the factors

of its period length:

280 − 1 = 3 ∗ 52 ∗ 11 ∗ 17 ∗ 31 ∗ 41 ∗ 257 ∗ 61681

∗4278255361

By using Theorem 6.14, Corollaries 6.19 and 6.12 and a small amount of brute

force we can determine the number of errors required to reduce the period by

several factors, including all prime factors except 41 and the two largest ones, see

Table 6.3. We note that out of the values we computed, the smallest number of

errors are needed for reducing the period by 3, the smallest non-trivial factor of the

period, as predicted by Conjecture 6.23. It seems unlikely (but we are unable to

prove) that any of the remaining primes (41, 61681 or 4278255361) would need less

errors. Hence if Conjecture 6.23 holds in this case, the period stability threshold

for s is 280/4 = 278 ≈ 3.0∗1023 and by Proposition 6.1 this is also a lower bound on

the linear complexity stability threshold. Note that since 3 is the smallest possible

factor of a Mersenne number, the period stability threshold is as low as it could

be for an m-sequence (again assuming Conjecture 6.23 holds). However, since this

is half the weight of s, the sequence is still very secure from this point of view.

We also note that the LFSR primitive is included as part of Grain not to provide

linear complexity for the output, but to ensure that the output of the cipher has

a very high minimum period. Therefore, while we have not calculated the linear

complexity stability threshold of s in this case it is more important to calculate the

period stability threshold which we have done, subject to Conjecture 6.23 holding

for this example.

We will also briefly provide some results that can be obtained by applying

the results in this paper to other ciphers. Firstly, SSC2 [73] uses an LFSR to
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EP(s)((2
80 − 1)/q)

q Formula Exact Approx.
3 280 ∗ (1/4) 278 3.0 ∗ 1023

5 280−1 − 280−5(4
2

)
5 ∗ 276 3.8 ∗ 1023

11 280−1 − 280−11(10
5

)
193 ∗ 271 4.6 ∗ 1023

15 280 ∗ (7/16) 7 ∗ 276 5.3 ∗ 1023

17 280−8EP(s)((2
8 − 1)/17) 51 ∗ 273 4.8 ∗ 1023

25 Not Computed
31 280 ∗ (15/32) 15 ∗ 275 5.7 ∗ 1023

33 280−10 ∗ EP(s)((2
10 − 1)/33) 109 ∗ 272 5.1 ∗ 1023

41 Not Computed
51 280−8 ∗ EP(s)((2

8 − 1)/51) 115 ∗ 272 5.4 ∗ 1023

55 Not Computed
75 Not Computed
85 280−8 ∗ EP(s)((2

8 − 1)/85) 117 ∗ 272 5.5 ∗ 1023

93 280−10 ∗ EP(s)((2
10 − 1)/93) 241 ∗ 271 5.7 ∗ 1023

123 Not Computed
155 Not Computed
165 Not Computed
187 Not Computed
205 Not Computed
255 280 ∗ (127/256) 127 ∗ 272 6.0 ∗ 1023

257 280−16 ∗ EP(s)((2
16 − 1)/257) 31029 ∗ 264 5.7 ∗ 1023

Table 6.3: Errors Required for Reducing the Period of the Grain LFSR
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generate an m-sequence of length 2127−1, which is prime. Therefore, by Theorem

6.2 the complete error linear complexity spectrum for this sequence is: (0, 127),

(2126 − 1, 1), (2126, 0) and the period stability threshold is 2126 − 1, i.e. as high as

possible.

DECIMv2 [13] uses an LFSR to generate an m-sequence of length

2192 − 1 = 32 ∗ 5 ∗ 7 ∗ 13 ∗ 17 ∗ 97 ∗ 193 ∗ 241 ∗ 257

∗641 ∗ 673 ∗ 65537 ∗ 6700417 ∗ 22253377

∗18446744069414584321

≈ 6.3 ∗ 1057

Again by using Theorem 6.14, Corollaries 6.19 and 6.12 and a small amount

of brute force we can compute the results given in Table 6.4.

If Conjecture 6.23 holds for this case, the period stability threshold for s is

2190. Note again that since 3 is a factor of the period, this value is as low as it

could be, but still high enough not to represent a threat.

LILI-128 [21] uses two LFSRs both of which generate m-sequences. The first

is of length

239 − 1 = 7 ∗ 79 ∗ 8191 ∗ 121369 ≈ 5.5 ∗ 1011

and so by Theorem 6.14 we can say that

EP(s)((2
39 − 1)/7) = 239 ∗ (3/8) ≈ 2.1 ∗ 1011

which also equals the period stability threshold if Conjecture 6.23 holds for this

case. The second is of length 289 − 1, which is prime, and so by Theorem 6.2

its error linear complexity spectrum is (0, 89), (288 − 1, 1), (288, 0) and the period

stability threshold is 288 − 1, i.e. as high as possible.

To summarize, all the ciphers considered are highly secure (subject to our

conjecture) from the point of view of the period stability of their LFSR component,

with SSC2 and LILI-128 even more secure than Grain and DECIMv2.
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EP(s)((2
192 − 1)/q)

q Formula Exact Approx.
3 2192 ∗ (1/4) 2190 1.7 ∗ 1057

5 2191 − 2187
(
4
2

)
5 ∗ 2188 2.0 ∗ 1057

7 2192 ∗ (3/8) 3 ∗ 2189 2.4 ∗ 1057

9 2192−6 ∗ EP(s)((2
6 − 1)/9) 23 ∗ 2186 2.3 ∗ 1057

13 2191 − 2179
(
12
6

)
793 ∗ 2181 2.4 ∗ 1057

15 2192 ∗ (7/16) 7 ∗ 2188 2.7 ∗ 1057

17 2192−8 ∗ EP(s)((2
8 − 1)/17) 51 ∗ 2185 2.5 ∗ 1057

21 2192−6 ∗ EP(s)((2
6 − 1)/21) 13 ∗ 2187 2.6 ∗ 1057

35 2192−12 ∗ EP(s)((2
12 − 1)/35) 437 ∗ 2182 2.7 ∗ 1057

39 2192−12 ∗ EP(s)((2
12 − 1)/39) 899 ∗ 2181 2.8 ∗ 1057

45 2192−12 ∗ EP(s)((2
12 − 1)/45) 1823 ∗ 2180 2.8 ∗ 1057

51 2192−8 ∗ EP(s)((2
8 − 1)/51) 115 ∗ 2184 2.8 ∗ 1057

63 2192 ∗ (31/64) 31 ∗ 2186 3.0 ∗ 1057

65 2192−12 ∗ EP(s)((2
12 − 1)/65) 917 ∗ 2181 2.8 ∗ 1057

85 2192−8 ∗ EP(s)((2
8 − 1)/85) 117 ∗ 2184 2.9 ∗ 1057

91 2192−12 ∗ EP(s)((2
12 − 1)/91) 1869 ∗ 2180 2.9 ∗ 1057

97 Not Computed
105 2192−12 ∗ EP(s)((2

12 − 1)/105) 235 ∗ 2183 2.9 ∗ 1057

117 2192−12 ∗ EP(s)((2
12 − 1)/117) 1889 ∗ 2180 2.9 ∗ 1057

119 Not Computed
153 Not Computed
193 Not Computed
195 2192−12 ∗ EP(s)((2

12 − 1)/195) 959 ∗ 2181 2.9 ∗ 1057

221 Not Computed
241 Not Computed
255 2192 ∗ (127/256) 127 ∗ 2184 3.1 ∗ 1057

257 2192−16 ∗ EP(s)((2
16 − 1)/257) 31029 ∗ 2176 3.0 ∗ 1057

Table 6.4: Errors Required for Reducing the Period of the DECIMv2 LFSR



Chapter 7

Further results on m-sequence

stability

7.1 Period Stability Results

In this chapter we will use the same notation as Chapter 6. First we recall Theorem

6.11 (slightly rephrased):

Theorem. Given an irreducible cyclic [q,m] code C, the codewords of C will cor-

respond with the columns of the q-decimation table of an m-sequence of length

2m− 1. Therefore determining the weight enumerator of C is sufficient to determ-

ine EP(s) ((2m − 1)/q). For ease of notation we will define N as (2m − 1)/q.

In Chapter 6 we used this theorem to show how the weight enumerator of

irreducible cyclic codes can be used to determine the number of errors needed to

reduce the period of an m-sequence by a given amount. As the weight enumerator

is not known for the general case, we must restrict ourselves to specific cases where

it is known. Throughout we will use the notation introduced in Definition 2.40

7.1.1 Two Weight Irreducible Cyclic Codes

Various classes of irreducible cyclic codes have been studied, and there has been

particular success in determining the weight enumerator polynomial for two weight

codes, that is codes where the weight of the codewords takes at most two non-

zero values. These codes are described by Schmidt and White [67], and three

cases are considered. The first is the Subfield Case, which corresponds to the

situation whereby the decimated sequences are also m-sequences. This is the case

that was discussed in Chapter 6, and we will not go into any more detail here.

The second case studied by Schmidt and White is where N divides 2j + 1 for

some j that is a divisor of m/2 and is known as the Semi-Primitive case. It was

72
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originally studied by (amongst others) Baumert and McEliece [11], and the weight

enumerator polynomial has been determined. The final case that is considered by

Schmidt and White is that of all two weight codes that do not fall under either of

the previous categories, and is denoted as exceptional. However, none of the known

exceptional cases are binary codes, and it is conjectured that all exceptional cases

have been found. Therefore the only case that we need to consider from the paper

of Schmidt and White is the semi-primitive case. For ease of notation, however,

we will present the results as they were originally given in the paper of Baumert

and McEliece. Throughout this section, we will restrict ourselves to the binary

case.

Definition 7.1. Let N = (2m − 1)/q and assume C is an irreducible cyclic [q,m]

code. When N divides 2j + 1 for some j that is a divisor of m/2, this is known

as the Semi-Primitive case.

Theorem 7.2. ([11, Theorem 6]) The weight of the codewords, s of an [q,m] semi-

primitive irreducible cyclic code over a field of characteristic 2 has the following

form:

Class 1 (containing q codewords):

wt(s) =
r − 1

2N
+

1± (N − 1)
√
r

2N

Class 2 (containing q(N − 1) codewords):

wt(s) =
r − 1

2N
+

1∓
√
r

2N

where N = (2m − 1)/q, r = 2m and the sign of ± is uniquely determined by the

requirement that the weight is an integer.

However, as we are only interested in determining the weight of the columns

of the n-decimation matrix, we only need to consider the weights of the cyclic

representatives of the code. That is, if two codewords only differ by a cyclic shift,

we do not consider them as distinct. This gives us:

Corollary 7.3. When N |2j + 1 for some j|(m/2) then the sequences generated by

an irreducible characteristic polynomial have exactly two different weights. Spe-

cifically, there will be one sequence with weight:

wt(s) =
r − 1

2N
+

1± (N − 1)
√
r

2N
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and N − 1 sequences with weight:

wt(s) =
r − 1

2N
+

1∓
√
r

2N

By using the formula given in Lemma 6.4:

EP(s)(N) =
N−1∑
i=0

min (wt(Si), n− wt(Si))

Corollary 7.3 allows us to determine the number of errors needed to reduce the

period of an m-sequence to at most N .

Example 7.4. Consider the m-sequence of length 255. We will reduce its period

to 17. In this case, N = 17, q = 15, m = 8 and we can see that j = 4 satisfies the

condition in Definition 7.1. Therefore, by Corollary 7.3, there will be 1 sequence

of weight:
255

34
+

1± (16)
√

256

34

and 16 sequences of weight:
255

34
+

1∓
√

256

34

Trying both possibilities for ± determines that there is 1 sequence of weight 0 and

16 sequences of weight 8. This, in turn, implies that

1 ∗min (0, 15− 0) + 16 ∗min (8, 15− 8) = 16 ∗ 7 = 112

errors are required to reduce the period, which can be verified by comparison with

Appendix A.

7.1.2 Prime factors N , such that N ≡ 3 (mod 4) and

ordN(2) = (N − 1)/2

Baumert and Mykkeltveit [12] studied the problem of determining the weight

enumerator polynomial for irreducible cyclic codes with N ≡ 3 (mod 4) and

ordN(p) = (N − 1)/2 for some prime p. For our cases we will just restrict our

studies to the case when p = 2. We will need the following notation:

Notation 7.5. Let t = t02
0 + t12

1 + t22
2 + . . . be the base 2 expansion of t. Then

w2(t) = t0 + t1 + t2 + . . ..

Specifically Baumert and Mykkeltveit proved the following:
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Theorem 7.6. (Theorem from page 131 of [12]) Let N be a prime such that N ≡ 3

(mod 4) and N 6= 3. Let k = ordN(2) = (N − 1)/2, a = w2(q), r = 2k and c and

d be the unique positive odd integers that satisfy c2 +Nd2 = 2(k−2a)+2. Then there

are three distinct weights of non-zero codewords of the associated [q, k] irreducible

cyclic code:

Class 0 (containing n codewords):

wt(s) =
2r ∓ 2ac(N − 1)

4N

Class 1 (containing q(N − 1)/2 codewords):

wt(s) =
2r ∓ 2a(dN − c)

4N

Class -1 (containing q(N − 1)/2 codewords):

wt(s) =
2r ± 2a(dN + c)

4N

Again, as before, we are not interested in cyclic shifts of a codeword, so the

number of sequences will be q times less than the corresponding number of code-

words. This gives us:

Corollary 7.7. Using the terminology from Theorem 7.6 sequences generated by

an irreducible polynomial which are of length N will have three distinct weights.

There will be one sequence of weight:

2r ∓ 2ac(N − 1)

4N

(N − 1)/2 sequences of weight:

2r ∓ 2a(dN − c)
4N

and (N − 1)/2 sequences of weight:

2r ± 2a(dN + c)

4N

Again, by using the formula given in Lemma 6.4:

EP(s)(N) =
N−1∑
i=0

min (wt(Si), n− wt(Si))

Corollary 7.7 allows us to determine the number of errors needed to reduce the
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period of an m-sequence to a factor N .

Example 7.8. Consider the m-sequence of length 2047, and we will reduce its

period to 23. This satisfies the conditions of Theorem 7.6 as 23 ≡ 3 (mod 4) and

ordN(2) = 11 = (N − 1)/2. We can calculate that a = w2(89) = 4, and solving

c2 + 23d2 = 211−8+2 gives us c = 3, d = 1. Therefore, by Corollary 7.7, there will

be 1 sequence of weight:
2 ∗ 2048∓ 24 ∗ 3 ∗ 22

4 ∗ 34

11 sequences of weight:
2 ∗ 2048∓ 24(1 ∗ 23− 3)

4 ∗ 34

and 11 sequences of weight:

2 ∗ 2048± 24(1 ∗ 23 + 3)

4 ∗ 34

Trying both possibilities for the ∓ and ± shows us that the weights of the three

classes of codewords are 56, 48 and 40 respectively. Therefore

EP(s)(23) = 1∗min(56, 89−56)+11∗min(48, 89−48)+11∗min(40, 89−40) = 924

which again agrees with the results in Appendix A.



Chapter 8

Conclusions

Pseudo-random sequences are used as a crucial part of stream ciphers. As such it

is important to be able to determine the properties of such a sequence, and so to

determine just how predictable a sequence is, under a number of different models.

In this thesis, we have explored a number of different randomness measures, and

have found new ways of determining them for certain classes of sequence.

In Chapter 4 we have given details of a new way of attempting to determine

the k-error linear complexity of a sequence. We detailed two algorithms, which

are based on the same principles, run in O (N4) time, and search an exponentially

large space of error sequences. We also provided examples of the size of the space

searched in the examples where the length of the sequence was 32, 48 or 60, the

sequence was taken over GF(2), where k was not greater than 3, and for a variety

of sequence complexities.

In Chapter 5 we proposed algorithms for computing the linear complexity

and minimal polynomial for sequences which admit as a characteristic polynomial

a power of a fixed irreducible polynomial f . They work for any field of finite

characteristic and we do not necessarily need the whole period of the sequence.

For f = x− 1 our algorithms reduce to the algorithms of Games-Chan [28], Ding

et al. [22] and Meidl [54]. When we have a whole period of the sequence, we

can also apply our algorithms to the case where the characteristic polynomial is

a product of powers of a small number of known irreducible polynomials. All our

algorithms have linear computational complexity (when assuming the irreducible

polynomials are fixed).

In Chapter 6 we have studied the k-error linear complexity and k-error period

of m-sequences. We have shown that although the general problem of determining

these values is likely to be difficult, there are certain cases where we can find

results. We have fully solved the case where the period length of the m-sequence

is prime. We have shown how in general the problem of determining the number

of errors needed for reducing the period of a sequence s by a factor q can be
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reduced to an equivalent problem for shorter m-sequences and we have provided

a closed form expression for this number when q is a Mersenne number or a prime

with ordq(2) = q − 1. Subject to a conjecture, for a large proportion (> 76%) of

m-sequences we have provided results for the number of errors needed to reduce

the period at all. Finally we have applied these results to the LFSRs of several

stream ciphers, and seen that, subject to our conjecture, they are all very secure

from this particular viewpoint, with DECIMv2 and LILI-128 even more so than

Grain and SSC2.

8.1 Future Work

There are a number of possible ways that the work in this thesis could be extended

in future. Arguably the most interesting of these is to study how the results of

Chapters 6 and 7 could be extended to sequences over larger fields. Increasingly

in modern cryptographic proposals, the pseudo-random sequences that are used

are over fields whose size is a power of a small prime, such as GF(2r) or GF(3r) for

some integer r. I feel it would be relatively straightforward to extend our results

to these fields, but unfortunately did not have time to do so during my studies.

Alternative ways to extend these results would be to look at sequences over simpler

fields, such as GF(p) for some small prime p. Another possibility would be to look

at other sequences for which the auto-correlation has been well studied, such as

those discussed by No et al. [59], Gong and Xiao [30], Alhakim and Akinwande

[5], Boztaş and Parampalli [17] or others as this is the main property which was

exploited in determining the results of Chapters 6 and 7.

Other potential ways in which our work could be extended would be to study

the way that period, linear complexity, k-error linear complexity or k-error period

are inherited when sequences are combined. Although pseudo-random sequences

are often combined in non-linear ways with other primitives as part of stream

cipher proposals, it was only recently that Hu and Gong [37] showed that in certain

models, the period of the sequence is a lower bound on the period of the output of

the cipher. As this work only concerned two specific stream ciphers, and only the

properties of the period length, there is much room for future investigations into

other sequence measures, and other ways of combining cryptographic properties.

We also feel that there is a potential for a lot more research to be done in

general on the k-error period of sequences. Whilst previously, the k-error linear

complexity of a sequence has been a popular topic for research, we feel that due

to the straightforward nature of the period length, the k-error period has been

overlooked. However, as it is the period length that most LFSR primitives are

relied upon to provide, it seems that this should be the focus of the community in
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ensuring that cryptographic schemes really do have the properties that they are

claimed to, and that it is not possible to vastly reduce the period of the output

by simply tolerating a small number of errors in the decrypt.
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Appendix A

k-Error Period Tables

We computed an exhaustive table for the the m-sequences of period up to m =

217 − 1. For each factor q of m we computed EP(s)(m/q), i.e. the number of

errors needed for reducing the period to m/q. Conjecture 6.23 was verified in all

these cases. We also computed the linear complexity LC(s′) of the sequence s′

obtained by making these errors. Note that this linear complexity is not always

lower than the complexity n of the original sequence. This shows that while we

know that for reducing the linear complexity it is necessary to reduce the period

(Proposition 6.1), this is not always sufficient and further errors may be needed

to reduce the linear complexity. In other words, the period stability threshold is a

lower bound for the linear complexity stability threshold, but not a tight one. To

aid the reader, we also included the section of the paper from which the results

were used to obtain the data in each row.

m n q EP(s)(m/q) LC(s′) Relevant

Section

15 4 3 4 4 6.1.3

5 5 3 6.1.4

15 7 1 Lemma 2.27

31 5 31 15 1 6.1.1

63 6 3 16 9 6.1.3

7 24 8 6.1.3

9 23 4 Brute Force

21 26 2 Brute Force

63 31 1 Lemma 2.27

127 7 127 63 1 6.1.1

255 8 3 64 16 6.1.3

5 80 24 6.1.4

continued on next page
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m n q EP(s)(m/q) LC(s′) Relevant

Section

15 112 16 6.1.3

17 102 6 Brute Force

51 115 5 Brute Force

85 117 3 Brute Force

255 127 1 Lemma 2.27

511 9 7 192 27 6.1.3

73 235 4 Brute Force

511 255 1 Lemma 2.27

1023 10 3 256 25 6.1.3

11 386 67 6.1.4

31 480 32 6.1.3

33 436 15 Brute Force

93 482 10 Brute Force

341 490 2 Brute Force

1023 511 1 Lemma 2.27

2047 11 23 869 45 Brute Force

89 924 11 Brute Force

2047 1023 1 Lemma 2.27

4095 12 3 1024 36 6.1.3

5 1280 99 6.1.4

7 1536 64 6.1.3

9 1472 112 Corollary 6.12

& Brute Force

13 1586 161 6.1.4

15 1792 81 6.1.3

21 1664 16 Corollary 6.12

& Brute Force

35 1748 60 Brute Force

39 1798 27 Brute Force

45 1823 64 Brute Force

63 1984 65 6.1.3

65 1834 36 Brute Force

91 1869 19 Brute Force

105 1880 12 Brute Force

continued on next page
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m n q EP(s)(m/q) LC(s′) Relevant

Section

117 1889 19 Brute Force

195 1918 5 Brute Force

273 1945 11 Brute Force

315 1988 12 Brute Force

455 1991 9 Brute Force

585 1972 3 Brute Force

819 1996 4 Brute Force

1365 2005 3 Brute Force

4095 2047 1 Lemma 2.27

8191 13 8191 4095 1 6.1.1

16383 14 3 4096 49 6.1.3

43 7189 192 Brute Force

127 8064 128 6.1.3

129 7583 78 Brute Force

381 8066 42 Brute Force

5461 8106 2 Brute Force

16383 8191 1 Lemma 2.27

32767 15 7 12288 125 6.1.3

31 15360 243 6.1.3

151 15270 53 Brute Force

217 15544 30 Brute Force

1057 15964 10 Brute Force

4681 16233 7 Brute Force

32767 16383 1 Lemma 2.27

65536 16 3 16384 64 6.1.3

5 20480 288 6.1.4

15 28672 256 6.1.3

17 26112 96 Corollary 6.12

& Brute Force

51 29440 320 Corollary 6.12

& Brute Force

85 29952 288 Corollary 6.12

& Brute Force

255 32512 256 6.1.3

continued on next page



APPENDIX A. K-ERROR PERIOD TABLES 90

m n q EP(s)(m/q) LC(s′) Relevant

Section

257 31029 123 Brute Force

771 31852 44 Brute Force

1285 32095 9 Brute Force

3855 32527 17 Brute Force

4369 32439 5 Brute Force

13107 32563 4 Brute Force

21845 32597 3 Brute Force

65536 32527 1 Lemma 2.27

131071 17 131071 65536 1 6.1.1

Table A.1: m-Sequence Period Stability Results
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