

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288382149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Adaptive Architectures for Future Highly

Dependable, Real-Time Systems

Brian Ford
1
, Peter Bull

2
, Alan Grigg

3
 , Lin Guan

4
and Iain Phillips

5

1
 BAE Systems, Great Britain, b.ford@lboro.ac.uk

2
 Loughborough University, Great Britain, p.bull@lboro.ac.uk

3
 BAE Systems, Great Britain, a.grigg@lboro.ac.uk

4
 Loughborough University, Great Britain, l.guan@lboro.ac.uk

5
Loughborough University, Great Britain, i.w.phillips@lboro.ac.uk

Abstract

Many present-day safety-critical or mission-critical military applications are deployed using intrinsically static architectures.

Often these applications are real-time systems, where late responses may cause potentially catastrophic results. Static

architectures allow system developers to certify with a high degree of confidence that their systems will provide correct

functionality during operation, but a more adaptive approach could provide some clear benefits. In particular, the ability to

dynamically reconfigure the system at run time would give increased flexibility and performance in response to unpredictable or

unplanned operating scenarios. Many current dynamic architectural approaches provide little or no features to facilitate the

highly dependable, real-time performance required by critical systems. The challenge is to provide the features and benefits of

dynamic architectural approaches while still achieving the required level of performance and dependability.

This paper describes the early results of an ongoing research programme, part funded by the Software Systems Engineering

Initiative (SSEI), aimed at developing a more adaptive software architecture for future military systems. A range of architectures

with adaptive features (including object-based, agent based and publish/subscribe) are reviewed against the desirable

characteristics of highly dependable systems. A publish/subscribe architecture is proposed as a potential way forward and a

discussion of its advantages and disadvantages for highly dependable, real-time systems is given.

Keywords – Real-Time, Adaptive, IMS, SOA, DCPS

1 Introduction

Requirements for dependable systems are common within

military applications and can often be categorised as either

mission-critical, where system failure can lead to loss of

mission effectiveness, or safety-critical where failure can

lead to loss of human life. Generally to meet these

dependability requirements the system must be certified

against governmental or internationally recognised

standards. These standards often require evidence of

rigorous testing alongside formal analysis of the software

system. To simplify this, software systems tend to have

very static architectures, where no or limited changes are

allowed to occur when the system is operational. This

allows highly deterministic behaviour of the system to be

shown.

This paper uses Integrated Modular Systems, an established

approach for building distributed software and electronics

architectures, as a case study to identify features of current

dependable, real time, software systems. We then review a

range of modern software architectural approaches to

identify their adaptive features and their suitability for

working within highly dependable environments. Finally, a

publish/subscribe architecture is proposed as a potential

way forward and a discussion of its advantages and

disadvantages for highly dependable, real-time systems is

given.

2 Background: IMS approach to developing highly

dependable systems

Highly dependable software systems are designed to be

extremely deterministic, where predictable and repeatable

performance is a necessity. As mentioned earlier, traditional

approaches to building highly dependable software systems

are based upon using static architectures. Our research is

aimed at extending one such approach called Integrated

Modular Systems (IMS) to include more adaptive features.

This section introduces IMS and discuses the static features

within the IMS software architecture, with the intention of

showing how conventional highly dependable software

architectures are developed.

Integrated Modular Avionics (IMA) is an architectural

approach for developing the electronics and software

systems onboard aircraft. IMS extends the approach outside

the established avionics domain. Key concepts in IMS

include [1]:

• Modular and standardised hardware cards contained

within integrated cabinets. Multiple cabinets may be

distributed throughout the vehicle/platform.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

• Distributed communication between modules through

deterministic hardware buses or networks.

• The adoption of a multilayer software architecture,

insulating application, operating system and hardware

drivers from changes through common and open APIs.

• The ability to support mixed criticality levels within

the application set.

• The use of open standards for both software and

hardware.

Figure 1: Key concepts in IMS

Standardisation attempts have been made for both

commercial and military IMS systems. Our focus is on the

UK MOD Defence Standard 00-74 [2]. The following is an

overview of features that contribute to making the software

and hardware architecture in IMS deterministic:

Runtime blueprints which contain static system

configurations including resource allocation, real-time

scheduling parameters and hardware support. Transitions

between these configurations are also captured statically.

This allows IMS systems to provide some reconfiguration

capability, (for example adapting to faults), while

maintaining high levels of integrity.

Inter-process communication channels which are statically

defined within each configuration. These communication

channels are unidirectional, connectionless links and can

either be onboard individual hardware modules or offboard.

The IMS API allows applications to write and read from

these channels. Processes can not create or remove channels

once a configuration has been loaded.

Executing processes controlled by a hard real time

schedule. Each configuration in the blueprint defines a

static set of processes. No processes can start dynamically.

Process execution is controlled by a hard real-time

scheduler which guarantees that predefined deadlines of

each individual process are met.

Spatial partitioning of processes, meaning that each process

is allocated its own memory space and no other process can

access that space. This ensures no process can corrupt

another processes memory. This is enforced by the

operating system.

Static Device configurations are captured in the blueprint.

At the software level this means that only device drivers

specified in the blueprint configurations can be loaded.

These static features introduce limitations on how the

system can adapt at runtime, however, they have been

recommended within the standard to ensure that IMS

systems are highly predictable. Although we discuss

adaptive features in the next section, future research is

required into the tradeoffs between predictability and

adaptability before these features can be included within

IMS systems.

3 Emerging Challenges for Dependable

Architectures

Emerging challenges raised by modern and future military

platforms are increasingly requiring support for more

adaptive software architectures, whilst maintaining the

same levels of dependability achieved by approaches like

IMS. Some areas where these challenges arise include:

Autonomous systems which are gradually moving the

responsibility of dealing with unpredictable environments

from humans to software. These systems are likely to

include software algorithms that are difficult or impossible

to introduce static temporal and resource bounds to in

advance. The ability to support increasingly non-

deterministic algorithms with continually changing resource

requirements is predicted.

Complex distributed systems which are becoming

increasingly difficult to use traditional certification

methods, due to the complexity of capturing and analysing

all possible configuration and communication scenarios.

Furthermore, when safety or mission critical components of

these systems are being upgraded or changed,

recertification of large parts of the system is often

necessary. Adaptive architectures may be able to manage

and enable these complex communication networks and

allow for easier incremental technology insertion.

Embedded systems which often have significant size and

weight restrictions, particularly in the field of military

avionics. This means hardware resources like processing,

memory and power may be limited. Static architectures can

leave system resources underutilized as resources are often

allocated based on worst case execution scenarios.

Introducing adaptive techniques can help optimise resource

usage.

Network Enabled Capability where communication

networks are used to enable the armed forces to work more

effectively together by increasing the sharing and

exploitation of information between platforms and

personnel. These networks are expected to be highly

Applications

Operating System

Hardware

Applications

Operating System

Hardware

Modular Hardware

Cabinets e.g.

Processor cards,

Graphics cards and

Network interfaces

Layered

Software
Architecture

Communication via
High speed

data buses

and Networks

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

dependable to support mission critical environments, but

are also expected to be highly adaptable, for example

allowing the ad-hoc creation of networks between

platforms.

4 Adaptive Architectural Approaches

The following section gives a brief description of common

mainstream software architectural approaches. Their

adaptive features and suitability to highly dependable, real-

time systems are discussed.

4.1 Object Oriented Approaches

Common Object Request Broker Architecture (CORBA) is

an OMG standard for distributing functionality throughout

a system [3]. CORBA facilitates interoperability at the

object level, the main advantage of which is that most

applications are currently based on object oriented design

therefore little additional effort in design or redesign of

applications is necessary. The use of objects does, however,

tend to lead to tighter coupling of components, given the

low level of granularity of object interfaces. Figure 2 shows

a high level example of systems using ORB (Object

Request Broker) to ORB based communication using the

Internet Inter-Orb Protocol (IIOP) to communicate over

TCP/IP. The ORB facilitates the communication allowing

function calls between distributed objects and exposing

higher level functionality such as discovery services.

Figure 2 - ORB-to-ORB Communication (Object

Management Group, Inc., 2007)

Henning [4] discusses the development of CORBA from a

historical perspective noting some of the areas in which it

fell short of expectations or failed to deliver on

functionality. These include the high complexity of API’s, a

lack of support for key features such as security and

fundamental design flaws in CORBA’s interoperability

protocol that made it unable to deliver high levels of

performance.

Recent efforts have focused on the development of a real-

time version of CORBA, which, as [5] details incorporates

many features necessary for ensuring predictable

performance including priority based scheduling and

advanced resource management. As with other approaches

this relies on the use of supporting real-time technologies

such as predictable transport protocols and real-time

operating systems.

4.2 Service Oriented Architectures

Service Oriented Architectures (SOA), are a model for

distributing functionality amongst systems and components

to facilitate loose coupling and late binding, therefore

making a system with a greater potential for agility [6].

The basic model for SOA service fulfilment consists of

three main components; the consumer, the service broker

and the service provider, which work together in a

publish/subscribe environment to fulfil a service

requirement.

Services represent logical functional abstractions that

promote reusability through a simple, well defined

interface. For a service to be accessed in an ad-hoc manner

the interface with which it communicates with external

entities should be defined in a commonly accepted and

widely known manner. To support this each service holds a

service policy document that describes the functionality that

it is capable of providing and the manner in which it may be

accessed (for example the result of an operation could be

given as an integer or a floating point number, etc.).

At a basic level a service broker can be described as a

module capable of handling the necessary level of traffic

for service announcements or requests. Additionally the

capability is provided to store the service policies from

announcing services in a service registry that can later be

queried to find matches for requests (i.e. discovery of

services)

Figure 3, as shown by [7], shows the basic SOA model,

where the annotated numbers correspond to the following

stages:

1. A service announces itself to the service broker,

transferring a copy of its service policy document

for storage in a service registry.

2. A consumer requests the fulfilment of a service

from the service broker.

3. Wherever possible the service broker matches this

request to the details of a service held within its

service registry and replies with the location and

interface details of this service.

4. The consumer contacts the service directly to

negotiate service fulfilment.

Figure 3 - SOA Model

Consumer

Service Broker

Service

1

2

3

4

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Dependable, Real Time SOA: While O’Brien et al. [8]

suggests that the loose coupling and unknown network

structures inherent in SOA do not lend themselves well to

dependable applications, there has been some work into

adapting SOA for environments requiring real-time

performance. RTSOA (Real-Time Service Oriented

Architecture), as proposed by Tsai et al. [9] at Arizona State

University, addresses the issues of real-time performance

guarantees not only through the introduction of QoS

constraints but from a wider perspective of the SOA

environment. The main components identified by Tsai et al.

as being key to the RTSOA framework are as follows:

• Real-time Communication

• Service Modelling for Real-Time Properties

• Repositories for Real-Time Composition

• Dynamic Service Composition

• Data collection & Policy Enforcement

• Real-time Service Execution Environment

• Mechanisms for Real-Time Guarantees.

Many of these key areas identified contain issues likely to

have already been addressed in related research into real-

time applications and communication.

4.3 Agent Based Architectures

Agent based architectures are a well established method of

producing flexible, modular systems involving a degree of

autonomy. An introduction to this field is given by

Wooldridge [10], in which the basic premise of an agent

based system is discussed. At a basic level an agent based

architecture consists of a set of agents; components (either

software objects or larger computer systems) with the

ability to perform a unique function and the capability to

manage their own actions through a small amount of

Artificial Intelligence (AI). It is through the combined work

effort of these agents that the systems goals are reached.

The supply of functionality by an agent is negotiated by the

consumer and supplier to ensure that the final deliverable

matches the consumer’s requirements. This loose coupling

and late binding provided by this negotiation step allows for

easy upgrade or replacement of agents without creating

disruption to the overall function of the system.

Agents are of their most use as an architectural choice when

they are capable of interactions, sharing data or

functionality. Allowing agents to communicate through

broadcast messages may be the simplest solution, however,

it is clearly not scalable and therefore an alternative

approach must be employed. Multi agent systems, as

discussed by van der Hoek & Wooldridge [11], typically

make use of one of two strategies to solve this; using either

an agent matchmaker or facilitator. An agent matchmaker

identifies an agent capable of fulfilling the necessary

functionality and passes details of this back to the consumer

who then contacts the agent directly (in a similar manner to

the SOA model). An agent facilitator matches a consumer

to an appropriate agent and then acts as a router for the

communication between the two parties.

These features can be seen to be very similar to those

previously mentioned under the discussion of SOA,

however, as Wooldridge [10] discusses, agents are unique

to other modular architectures for several key reasons.

They:

• Follow the Belief, Desire, Intention (BDI)

model (as shown by Rao & Georgeff [12])

• Are aware of their environment.

• Are autonomous.

• Are goal directed.

Through the combination of these properties agents can be

seen as a way in which to create a more autonomous and

active distributed system in comparison to other

architectures.

Dependable, Real-Time Agents: Many approaches to real-

time agent based systems, such as Urbano [13] or DiPippo

et al. [14] have focused on the use of agents themselves and

how their properties can be exploited to meet deadlines.

This can include for example, using faster executing but

less accurate methods of determining a result with a lower

accuracy or co-ordinating their behaviour in a manner that

takes into account the higher priorities of certain tasks.

Urbano suggests that the AI methods employed by agents

are well suited to adapting system characteristics to support

real-time properties in dynamic environments. The example

given is that of a network of cars with autonomous cruise

control. When an emergency vehicle wishes to pass quickly

through traffic (i.e. a high priority data packet) then the

vehicles are capable of co-ordinating their movements in a

manner that allows this.

While the use of agents in the previously described manners

will certainly aid real-time systems the wider view of the

system is perhaps of most importance. This is noted by

DiPippo et al. [15] who highlight the importance of

choosing an appropriate communication model and

underlying framework.

4.4 Data Centric Publish Subscribe

The Data Distribution Service (DDS), as described by

Pardo-Castellote [16], is an OMG standard for a real-time

data-centric publish/subscribe system architecture. DDS

shares certain properties with other publish/subscribe

architectures (including SOA) such as the modularised

design, loose coupling of participants and open interface,

however, where DDS differs is that the focus is placed on

the sharing of data between participants. (As opposed to

invoking functionality)

DDS follows the publish/subscribe scenario closely. A

client application places a subscription to a topic of

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

information (for example temperature readings or GPS

coordinates), which is then matched to a publisher capable

of dispersing data relevant to that topic. The overall DDS

infrastructure is shown in Figure 4.

Figure 4 - DDS Infrastructure - Schlesselman et al. [17]

The DDS standard describes two levels of interfaces; DCPS

(Data-Centric Publish-Subscribe) and DLRL (Data Local

Reconstruction Layer). The DLRL is an optional higher

level interface and allows for the integration of DDS into

the application layer. DCPS (Data-Centric Publish-

Subscribe) is a lower level interface and is typically

composed of the elements found in Figure 5.

Figure 5 - DDS Entities - Schlesselman et al. [17]

Each node within the system maintains a record of the

available publishers and the subscriber information relevant

to them. Data is separated into domains in order to

minimise the amount of data held by each node within the

system and increase scalability. A domain participant is a

physical (or logical) entry point to the network (or “data

domain”) and can contain both data readers and writers. A

data writer is responsible for publishing instances of topic

data. In order to distinguish between data originating from

different publishers and to ensure that each value is treated

separately to those previously received, each data entry is

assigned a unique value or “key”. Data readers declare their

interest in a topic and the associated Quality of Service

(QoS) properties that they require. The data writer then

matches this request to the stored record of QoS

characteristics available to offer.

The Real-Time Publish/Subscribe (RTPS) protocol is

typically used in conjunction with DDS to provide a

method of passing on the Quality of Service (QoS)

requirements and ensuring that errors in transmission are

detectable (given that transmission typically takes place

over the unreliable UDP due to the importance of

timeliness).

QoS

A key feature of DDS, as previously mentioned, is the

support for QoS characteristics. Through the compliance

with these QoS characteristics the necessary levels of

performance are assured. The support for QoS

characteristics greatly increases its suitability for those

systems requiring performance guarantees. While this

support allows for the specification and compliance with

such performance requirements it does not strictly specify

mechanisms for facilitating this and therefore these are

dependent on the implementation.

4.5 Summary

A key requirement of the previously discussed approaches

is real-time performance, which is vital where safety critical

or mission critical systems are concerned. Table 1 shows a

brief summary and comparison of the discussed

architectural techniques with based on adaptive features and

the maturity of support for dependable systems.

The four distributed architectures discussed here have for a

large part show a lack of provision for dependable

applications. With exception to DDS the architectures have

placed little emphasis on the assurance of Quality of

Service (QoS) characteristics (used to define an

applications performance needs).

While the support for QoS parameters within DDS shows a

progression towards dependable support, there is still a lack

of focus for many key supporting technologies, including

the role of the networks within such systems. It is assumed

that these areas already contain the necessary means of

assuring the required levels of service, a view that may be

slightly short sighted

The maturity of the discussed architectural approaches with

regards to their ability to facilitate highly dependable

applications can be judged based on their actual use within

industry today. In this respect only the data centric

publish/subscribe approach DDS and real-time CORBA can

be said to have reached such a level. DDS follows the

current trend towards the use of a publish/subscribe

environment to facilitate loose coupling and late binding

within adaptive systems. DDS has also already proven itself

to be capable of facilitating real-time communication

between applications through its use by the US Department

of Defense.

Transport

Distributed Application

DDS Infrastructure

Publish/Subscribe Interface

Topic Based

Autonomous

Communications

Per Topic Quality of

Service Configuration

Auto-Discovery Network Architecture

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Table 1 – Comparison of Architectural Approaches

 Features of Architecture which contribute to

adaptability

Maturity of Real Time Support

CORBA

- Runtime activation and deactivation of objects

- Run time discovery of objects

- Run time inter object network creation

- Reflection of object interfaces

Real-time CORBA standard produced by OMG which

includes predictable memory management and support for

fixed priority scheduling. Implementations available.

SOA

- Connectionless communication model

- Run time discovery of services.

- Run time connection to services

- Reflection of service interfaces

Some research conducted but no working real time

standard or implementation produced

Agents

- AI methods employed to provide dynamic behaviour.

- Agents are reactive to their environment

Some research into various approaches to optimise agent

behaviour for real-time systems but no approach

considering the wider architectural issues. Agent based

implementations often rely on other software infrastructures

for communication.

DDS

- Connectionless communication model

- Run time discovery of publishers

- Run time connection to publishers

- Automated selection of ‘best performing’ publishers

- Temporal decoupling between publishers and

subscribers allowing matching of QoS deadlines

- Runtime policing of QoS contracts

Real Time DDS standard produced by OMG. Includes

aspects for QoS management related to real time

performance. Implementations available. Is a mandated

standard for publish-subscribe messaging by the U.S.

Department of Defense (DoD) Information Technology

Standards Registry (DISR).

5 Conclusion

This paper has presented IMS as a current architectural

approach for building highly dependable systems. Features

including inter-process communication networks, executing

processes and real time schedules were identified as static.

Then various challenges were discussed that highlighted the

need for increasingly adaptive features within conventional

approaches such as IMS. Next, a number of current open

architectural approaches were discussed with regards to

their adaptability features and suitability to highly

dependable applications. Two approaches stood out as

having the potential for use within highly dependable

systems, Real Time CORBA and DDS.

Current work is assessing DDS for use within highly

dependable systems. This involves understanding the

tradeoffs between adaptability provided by the DDS

standard and the predictability required by dependability

requirements. Based on these understandings,

recommendations will be made to include adaptive features

in highly dependable architectures like IMS. Candidate

adaptive features include

• Support of mixed hard and soft real time

requirements within hybrid scheduling frameworks

• Integration of QoS parameters into IMS blueprints

and QoS negotiation methods

• Runtime creation of inter-process networks

• Adaptive bandwidth management

• Runtime blueprint configuration generation

6 References

[1] Moir, I., Seabridge, A., & Jukes, M. Military Avionics

Systems, ISBN: 978-0-470-01632-9

[2] Ministry of Defence Standard 00-74 Issue 2, ASAAC

Standards Part 1: Issues for Software, 2008

[3] Object Management Group, Inc. (2007, September 11).

CORBA Basics. Retrieved May 19, 2008, from Object

Management Group:

http://www.omg.org/gettingstarted/corbafaq.htm

[4] Henning, M. (2006, June). The Rise and Fall of

CORBA. Retrieved August 2008, 7, from ACM Queue:

http://www.acmqueue.com/modules.php?name=Content&p

a=showpage&pid=396

[5] Objective Interface Systems, Inc. (2008). What is Real-

time CORBA? Retrieved August 8, 2008, from OIS:

http://www.ois.com/Products/What-is-Real-time-

CORBA.html

[6] Sim, Y. W., Wang, C., Gilbert, L., & Wills, B. (2005).

An Overview of Service-Oriented Architecture. University

of Southampton , 1-8.

[7] Gehlot, V., Way, T., Beck, R., & DePasquale, P. (2006).

Model Driven Development of a Service Oriented

Architecture (SOA) Using Colored Petri Nets. First

Workshop on Quality in Modeling, ACM/IEEE 9th

International Conference on Model Driven Engineering

Languages and Systems, (pp. 63 – 77).

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

[8] O’Brien, L., Bass, L., & Merson, P. (2005). Quality

Attributes and Service-Oriented Architectures, Software

Architecture Technology Initiative.

[9] Tsai, W. T., Lee, Y., Cao, Z., Chen, Y., & Xiao, B.

(2006). RTSOA: Real-Time Service-Oriented Architecture.

Proceedings of the 2nd IEEE International Symposium on

Service-Oriented System Engineering.

[10] Wooldridge, M. (2002). An Introduction to MultiAgent

Systems. Retrieved August 8, 2008, from

http://www.csc.liv.ac.uk/~mjw/pubs/imas/distrib/powerpoin

t-slides/lecture10.ppt

[11] van der Hoek, W., & Wooldridge, M. (2007). Mulit-

Agent Systems. In F. L. van Harmelen, Handbook of

knowledge Representation, 1. Elsevier.

[12] Rao, A. S., & Georgeff, M. P. (1991). Modelling

Rational Agents within a BDI-Architecture. Proceedings of

the 2nd International Conference on Principles of

Knowledge Representation and Reasoning.

[13] Urbano, P. (2002). Agent Based Approach to

Distributed Real-Time Systems Development. Proceedings

of the 3rd International Symposium on Multi-Agent

Systems, Large Complex Systems and E-Business, (pp. 719

– 725).

[14] DiPippo, L. C., Fay-Wolfe, V., Nair, L., Hodys, E., &

Uvarov, O. (2001). A Real-Time Multi-Agent System

Architecture for E-Commerce Applications. Proceedings of

the 5th International Symposium on Autonomous

Decentralized Systems, (pp. 357 – 364).

[15] DiPippo, L. C., Hodys, E., & Thuraisingham, B.

(1999). Towards a real-time agent architecture-a

whitepaper. Proceedings of the Fifth International

Workshop on Object-Oriented Real-Time Dependable

Systems, (pp. 59-64).

[16] Pardo-Castellote, G. (2003). OMG Data Distribution

Service: Architectural Overview. 23rd International

Conference on Distributed Computing Systems Workshops

Proceedings, (pp. 200-206).

[17] Schlesselman, J. M., Pardo-Castellote, G., &

Farabaugh, B. (2004). OMG Data-Distribution Service

(DDS): Architectural Update. IEEE Military

Communications Conference, (pp. 961-967).

