

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Parameterization of point-cloud freeform surfaces using adaptive sequential
learning RBF networks

Qinggang Menga, Baihua Lib,∗, Horst Holsteinc, Yonghuai Liuc

aDepartment of Computer Science, Loughborough University,UK.
bSchool of Computing, Mathematics & Digital Technology, Manchester Metropolitan University, UK

cDept. of Computer Science, Aberystwyth University, UK

Abstract

We propose a self-organizing Radial Basis Function (RBF) neural network method for parameterization

of freeform surfaces from larger, noisy and unoriented point clouds. In particular, an adaptive sequential

learning algorithm is presented for network construction from a single instance of point set. The adaptive

learning allows neurons to be dynamically inserted and fully adjusted (e.g. their locations, widths and

weights), according to mapping residuals and data point novelty associated to underlying geometry. Pseudo

neurons, exhibiting very limited contributions, can be removed through a pruning procedure. Additionally, a

Neighborhood Extended Kalman Filter (NEKF) was developed to significantly accelerate parameterization.

Experimental results show that this adaptive learning enables effective capture of global low-frequency

variations while preserving sharp local details, ultimately leading to accurate and compact parameterization,

as characterized by a small number of neurons. Parameterization using the proposed RBF network provides

simple, low cost and low storage solutions to many problems such as surface construction, re-sampling,

hole filling, multiple level-of-detail meshing and data compression from unstructured and incomplete range

data. Performance results are also presented for comparison.

Keywords: Surface parameterization, point clouds, adaptive sequential learning.

1. Introduction1

Laser scanners are routinely used for model acquisition. They can obtain point clouds of surfaces more2

quickly and with greater accuracy compared to other digitization techniques. A point-cloud range scan, such3

as shown in Fig. 1, typically contains huge numbers of unstructured, densely and non-uniformly distributed4

∗Corresponding author
Email address:b.li@mmu.ac.uk (Baihua Li)

Preprint submitted to Pattern Recognition November 26, 2012

*Manuscript
Click here to view linked References Pattern Recognition. Accepted and in press

http://ees.elsevier.com/pr/viewRCResults.aspx?pdf=1&docID=10131&rev=2&fileID=710839&msid={9036922B-9314-4CBD-8527-CE499C145C28}
coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

−50

0

50 −50

0

50
−1350

−1300

−100

−50

0

50

100

−100
−50

0
50

−1700

−1650

−1600

−50
0

50
100

−100

−50

0

50

100

−960

−940

−920

−900

−880

−50

0

50

−50

0

50

−900

−850

Figure 1: Unstructured noisy point clouds.

points. Measurement errors and occlusions during digitization can make range data noisy and incomplete,5

with “holes”. Direct meshing and manipulation of such pointclouds can be inefficient and difficult with re-6

gard to computational cost, memory overhead and robustnessto data noise. Modeling from an intermediary7

parametric domain could significantly improve data representation and manipulation flexibility using only8

a small set of control parameters and mathematical calculations. Parameterization of point clouds in a low9

dimensional space, and consequently, with manageable computational cost, good compactness and desired10

accuracy, would therefore provide an alternative and more preferable solution to many problems in freeform11

surface modeling, including remeshing, multi-resolutionanalysis, level-of-detail (LOD), morphing, texture12

transfer, and geometry manipulation [1, 2].13

While much research has been conducted on surface parameterization, the majority has focused on14

complete mesh surfaces with known vertex connections, or aimed at surfaces with lower spatial complex-15

ity represented by small data sets [1, 3, 4, 5]. Such parameterizations make useful tools for remeshing or16

triangulating clean data, but they are not suitable for noisy and unstructured point clouds. Direct parameter-17

ization from point clouds would involve less error comparedto parameterization from intermediary meshed18

surfaces. However, a robust method which directly transforms noisy point clouds into a compact, unified19

parametric domain (as opposed to piecewise approaches) is still an open problem.20

To address this problem, we introduce a neural network approach involving self-growing Radial Basis21

Functions (RBFs). Parameterization is achieved through adaptive sequential learning. The resulting net-22

work forms a parametric space, so that vertices or control points can be generated, from which a complete23

parametric surface exhibiting smoothness can be created. To our knowledge, the proposed RBF network for24

direct parameterization of point clouds has the following novel aspects:25

• Parameterization is achieved in aunified self-organizing network space, superior to piecewise or26

spatial multi-partitioning representation.27

2

• Our method is applicable to unoriented, noisy, incomplete and non-uniformly distributed point clouds,28

rather than only clean, regular or oriented point sets, or surface points generated from structured29

polygonal meshes. It can deal with freeform surfaces with real-world geometric complexities, such30

as sharp local details and low-frequency global variations.31

• Parameterization can be conducted at a desired LOD, simplifying multi-resolution applications. It32

establishes a compact functional representation and finds applications on surface construction, re-33

sampling, mesh repair, LOD, and data compression from pointsets with only coordinate information.34

• The network is constructed through adaptive sequential learning using a single instance of range scan.35

Our proposed adaptive learning provides a general solutionto the common problem of effective RBF36

fitting. Neurons are generated according to heuristicnovel inputsrather than being randomly chosen37

from all points. They can be located, removed and adjusted infull dimensionality in terms of location,38

weight and width, thereby adapting to the distribution of underlying data. This adaptivity ultimately39

determines the effectiveness and compactness of RBF fitting, which is particularly important for40

handling large point clouds and complex spatial features.41

• The development of theNeighborhood Extended Kalman Filter(NEKF) dramatically reduces the42

RBF network construction cost, enabling parameterizing large point sets within feasible time.43

• Experimental results demonstrate that the proposed parameterization RBF network provides an ef-44

ficient solution for many frequently encountered tasks thatprocess point-sampled surfaces, such as45

surface reproduction, multiple LODs, mesh repair and data compression.46

The rest of the paper is organized as follows: Section 2 reviews related work on surface parameteriza-47

tion. Section 3 presents point-cloud parameterization through adaptive learning. In Section 4, we provide48

experimental results and evaluate parameterization regarding accuracy, speed, compactness, adaptivity and49

multi-LOD ability. Section 5 discusses general issues suchas network parameter definition and parameter-50

ization performance relative to other methods. We concludeour work in Section 6.51

2. The research context and related work52

Apart from the usual requirements concerning accuracy, speed, low memory overhead and compact-53

ness, an important criterion for sophisticated surface parameterization is the ability to deal with complex54

3

freeform surfaces, such as those containing highly variable and irregular spatial features, represented by55

unstructured noisy data. Numerous methods have been developed, but the majority have focused on mesh56

surface parameterization [1, 3]. In these works, the main purpose of parameterization was to obtain piece-57

wise linear mappings between a 3D mesh (represented by triangles or polygons) and a parametric space,58

such as a parametric plane [6], a parametric sphere [7, 8] or an intermediary parametric domain [9, 10], so59

as to minimize angular and area distortion for the whole mesh. To this end, an entire mesh was commonly60

partitioned into patches or charts according to certain feature curves, and then each patch was interpolated61

or approximated piecewise using, for example, polynomials, splines or radial basis functions. The whole62

parameter mapping was often obtained by linear assembly of anumber of local functions based on least-63

square energy minimization. Consequently, piecewise approaches were likely to suffer from discontinuity64

and self-intersection over the cuts between patches. The computational cost for non-linear optimization65

could be tremendously high for large and complex surfaces. Most importantly, these parameterizations66

aimed to achieve an exact one-to-one mapping between each vertex and a point in the parametric domain,67

relying on information about vertex connections in the mesh. Such methods are suitable for structured mesh68

data, but not to unstructured and noisy point sets.69

Surfaces represented by unorganized scattered point sets provide challenges of their own. Parameteri-70

zation of point-sampled surfaces is particularly important for geometry formulation and data compression.71

To cope with unstructured point sets, acharacteristic shapealgorithm was proposed to generate simple72

polygons for a shape of a set of clean point data in the plane [4]. The algorithm was based on the Delaunay73

triangulation of the points, and a single normalized parameter was used to control the parametric shape.74

Floater and Hormann [5] have suggested that piecewise methods for convex combination mapping could75

be applicable when suitable neighborhood information was available. Several choices of such neighbor-76

hoods were proposed, but the most effective and widely adopted method was the use of nearest neighbors.77

To this end,k-means clustering or similar techniques have been extensively adopted to search locally for78

k-nearest neighbors, so as to assist partitioning a surface into a set of charts [11, 12, 13]. Due to searches79

being based on local surface attribute estimates, such as curvatures and differential features, thek-means80

clustering could be very sensitive to noisy and incomplete data. A neighborhood graph has also been intro-81

duced to preserve topological information [14]. However, it could be argued that the highly complex graph82

connectivity structure could become unmanageable in the case of noisy and extensive point sets.83

As discovered by recent advances in function approximationand pattern classification using Radial Ba-84

4

sis Functions [15, 16, 17, 18], RBFs possess many useful properties such as good generalization, continuity85

and stability [19, 20]. These abilities make RBFs well suited for accommodating scattered data without86

relying onprior information about the connectivity and topology of underlying data. Meanwhile, the ex-87

traordinary interpolation and extrapolation capabilities of the RBFs allow smooth approximation and repair88

of noisy range data. Fitting RBFs to scattered points as implicit surface [21, 22, 23, 24] has been proposed89

in computer graphics as modeling methods.90

It has been noticed that using all the data to interpolate RBFcenters could result in a poorly conditioned91

matrix, producing unmanageable computational costs and wasted RBFs on large and dense data sets [21].92

As an improvement, multi-scale [25] or multi-level spatialpartitioning approaches [26, 27, 28] have been93

developed. A common strategy in these works has been first to fit the surface with basis functions of large94

support, followed by fitting the residuals with basis functions of diminishing support. To accommodate95

RBF fitting, the entire shape was decomposed into subdivisions iteratively according to local errors. For96

example, regions with large fitting residuals were hierarchically partitioned into small cells using Octrees97

[26], or support centers were iteratively chosen by spatially uniform, random sampling of the point set98

[27]. RBF support centers were restricted on regular cells,or on a subset of the scattered points. This99

is not optimal with regards to adaptivity of spatial features of underlying points and robustness to data100

noise. In addition, oriented point sets (coordinates and normals of all points) were required to analyze sharp101

geometric features when choosing an appropriate approximation type [26, 27]. RBF scales were often fixed102

at a same partition level or determined requiring additional information (e.g. acquisition confidence of scan103

points). For RBF based modeling, fitting effectiveness, namely using the least number of RBFs to best fit104

underlying data, remains largely unsolved.105

As a new genre of computational infrastructure, neural network based methods have been reported. In106

particular, a Self-Organizing Map (SOM) [29] has been introduced for forming a quadrilateral control grid107

from scattered point sets, thus allowing surface fitting by Bezier-surface or NURBS [30, 31]. Barhak and108

Fischer [32] used this network map to parameterize small sets of clean points with low frequency spatial109

variations. They reported that the SOM outperformed the traditional Partial Differential Equation (PDE)110

method, leading to smooth approximation of surfaces. Motivated by the similar idea to [31] and [32], a self-111

organizing feature map (SOFM) has also been proposed [33]. However, the structure of these network maps112

was fixed, and the scale of all the neurons was at a constant pre-defined value. A more effective network113

approach was one employing a multi-layer hierarchical RBF structure as proposed in [34, 35]. Layers in114

5

this network were represented by partition grids at increasing resolutions. Although neurons were still115

located on these regular grids, the neuron scales were allowed to be halved at every higher layer, allowing116

coarse-to-fine RBF fitting to the mapping residuals.117

Despite the various advantages of RBF based methods, problems remain with adaptive fitting of RBFs118

to the underlying data. Due to the lack of flexibility on RBF distribution and scaling in the aforementioned119

works, a large number of fine-scale RBFs were inevitably required to absorb local residuals. This could120

result in the required number of RBFs being even higher than the number of original points. For a RBF121

network approach, a large portion of neurons may be unnecessarily fitted in low frequency regions, while122

resolution could fall short for sharp features and details [31, 32]. Consequently, the computational cost123

of dense RBFs can be unmanageable, particularly for data with highly variable spatial frequencies. Solv-124

ing the problem of fitting adaptivity is crucial and would be of benefit to both RBF based modeling and125

parameterization.126

As an solution to effective RBF fitting of noisy unoriented point clouds, we propose a self-organizing127

RBF network approach. Specifically, a fast adaptive learning algorithm is presented. In particular, neuron128

choice is fully dynamic and adjustable according to the novelty and distribution of underlying data. These129

attributes make our approach preferable to those that use RBF fittings at fixed locations, network structure,130

or pre-defined scales. As demonstrated by the experimental results, parameterization using the proposed131

adaptive sequential RBF (ASRBF) network is highly adaptiveto complex spatial features, robust to data132

noise, and is compact and efficient for handling extensive dense point sets.133

3. Parameterization through adaptive sequential learning RBF networks134

In this section, we present the network topology structure,the form of RBF kernel employed, and in135

particular, the three-stage adaptive sequential learningalgorithm.136

3.1. Network topology137

A typical feed-forward network is shown in Fig. 2. It has a simple topology linking an input layer, a138

hidden layer and an output. The input layer has ani-dimensional inputx(x1, ...,xi), the hidden layer hasK139

kernelsφk(x),k= 1,2, ...K, and the network outputf (x) is a linear combination of kernels taking the form140

f (x) = a0+
K

∑
k=1

akφk(x) , (1)

where coefficientak is the real-valuedweightof thekth kernel, anda0 is the basis element.141

6

1x1x 2x2x ix

)x(1φ)x(2φ)x(Kφ
1a Ka

0a

2a

∑

)x(f

Figure 2: Feed-forward RBF network topology.

In this study, Gaussian Radial Basis Functions (RBFs), acting as the nonlinear kernels of the hidden142

layer, are used as the computational substrate of the network. A Gaussian RBF imposes no restriction on143

point location, and its response falls quickly with increasing distance from the kernel, allowing signifi-144

cant local influence and controllability. This quasi-locality makes Gaussian RBFs well suited for surface145

modeling from irregularly sampled points. Therefore Gaussian RBFs, of the form146

φk(x) = exp

(

−
1

σ2
k

‖x−uk‖
2
)

, (2)

are chosen in this study. In Eq. (2),‖.‖ denotes the Euclidean norm,uk indicates thecenterof thekth neuron147

kernel, andσk represents thewidth of its coverage.148

3.2. The adaptive sequential learning149

The adaptivity of the parameterization RBF network derivesfrom the strategy of dynamic network con-150

struction through supervised sequential learning. The network starts from an empty space with no neurons151

and no pre-defined structures. Training data (a point set from a single instance of range scan) is sequentially152

fed into the network. For each input, three tasks will be carried out:153

1. Network growth: the network may self-grow one neuron at the current input, if the input point satisfies154

the “novelty” criteria. (Section 3.3)155

2. Optimization: for a fast optimization that minimizes parameterization residuals, a subset of neighbor156

neurons will be updated with full dimensionality using a Neighborhood Extended Kalman Filter157

(NEKF) algorithm; (Section 3.4)158

3. Neuron pruning: finally, a pruning strategy is applied to remove network redundancy.Pseudoneu-159

rons, which consistently make little contribution to the parameterization process, will be discarded.160

(Section 3.5)161

7

We present a three-stage parameterization process in the following sections and summarize the adaptive162

sequential learning algorithm in Algorithm. 1.163

3.3. Network growth according to the novelty of point inputs164

The training sequence of a point cloud can be denoted asT = {xn,zn}|n=1,2,...N . It consists ofN165

independent observations of 3D points{xn,yn,zn} with random data orderings. Vectorxn = (xn,yn) is used166

as network input, andzn is its associated measurement output, to be approximated bythe network. The167

random ordering of the training set aims to obtain uniformlydistributed points from the whole data domain.168

This is necessary for balanced network growth and pseudo neuron validation (Section 3.5). We do not169

assume any prior knowledge on the topology or dependencies within the point set.170

The network starts with no neurons in its space. At each learning stepn, if the current observation{xn,zn}171

satisfies the following three novelty conditions below, then a corresponding new neuron will be added into172

the network.173

Novelty criterion 1:the inputxn of the currentnth observation is far away from the centers of all existingK174

neurons in the network,175

‖xn−un near‖> DK , (3)

whereun near represents the neuron center nearest to the current inputxn.176

This criterion aims to ensure that neurons are inserted at a distance of at leastDK from each other, so as177

to guarantee a well spread and balanced neuron distributionin the network space. This separation distance178

DK is initially set to a maximumDmax, allowing a sparse neuron insertion. During the network growing179

process,DK is made to decay exponentially with the increasing number ofneuronsK involved at that stage180

in the network,181

DK = max{Dmaxγ K ,Dmin}, 0< γ < 1, (4)

until a pre-defined minimumDmin is reached. The minimum separation distanceDmin actually indicates an182

overall neuron separation levelin the network which can be used to control the detail level ofparameter-183

ization and network compactness. Adecay factorγ is used to control the decline speed. Obviously, the184

consistent decay on the separation distance enforces the tendency of sparse-to-dense RBF fitting.185

Novelty criterion 2:the parameterization erroren between the network outputf (xn) and the measurement186

valuezn at current observation{xn,zn} is significant,187

‖en‖> E , where en = f (xn)−zn . (5)

8

Algorithm 1 : Parameterization by adaptive sequential RBF network.

1. Initialization: network parameter initialization and sequential training data generation in random point

ordering

2. Iteration: parameterization starts with no neuron in the network K = 0

for each point input (xn, zn), n= 1,2, ...,N do

Stage 1: Network growth (Section 3.3)

(1) define the neuron separation distance:DK = max{Dmaxγ K ,Dmin}

(2) calculate network output and error residuals at currentnetwork inputxn:

f (xn) = a0+
K
∑

k=1
akφk(xn) ,

‖en‖= ‖ f (xn)− zn‖ ,

eω
n =

√

∥

∥

∥

∥

∑n
i=n−(ω−1) e2

i

ω

∥

∥

∥

∥

.

(3) apply novelty criteria to add a new neuron:

if (‖xn−un near‖> DK) ∧(‖en‖> E) ∧(eω
n > Eω)

add a newK+1th neuron;

set neuron parameters as:uK+1 = xn , aK+1 = en , σK+1 = ψ ‖uK+1−un near‖ .

end if

Stage 2: Optimization (Section 3.4)

(1) select neighbor neurons

(2) update neuron parameters by NEKF.

Stage 3: Neuron pruning (Section 3.5)

for each neuronk in the network,k= 1,2, ...,K

(1) calculate the neuron outputΠk = ak exp

(

− ‖xn−uk‖
2

σ2
k

)

at current observation

(2) calculate its contribution ratiork =
|Πk|

K
∑

k=1
|Πk|

if rk < P for ω observations

remove thekth neuron from the network.

end if

end for

end for

9

This criterion is used to verify whether the desirednetwork accuracy Ehas been achieved locally at the188

current input. Obviously, this criterion attempts a closest fit at local points. It is effective when a point189

measure is accurate. However this assumption usually does not hold. Point clouds can be severely corrupted190

due to various measurement errors, data holes and outliers.To tolerate possible data noise, a “closeness”191

measure in the “mean” sense would be preferable, as described in Criterion 3.192

Novelty criterion 3:the RMS parameterization error for the lastω consecutive inputs before the currentnth193

input{xn,zn} is still significant,194

eω
n > Eω , where eω

n =

√

√

√

√

∥

∥

∥

∥

∥

∑n
i=n−(ω−1)e

2
i

ω

∥

∥

∥

∥

∥

. (6)

Satisfying this criterion could mean that an accuracyEω towards a smooth approximation in the whole data195

domain has not been achieved. Therefore, new neurons are still required to improve the parameterization196

accuracy.197

In summary, the first criterion enforces a well separated andincrementally sparse-to-dense neuron distri-198

bution, guaranteeing balanced network growth and neuron coverage. The second criterion ensures that neu-199

rons are generated only in areas with larger local mapping residuals. The third criterion evaluates whether200

a global accuracy of the parameterization has been achieved.201

If the current input point satisfies all these three novelty conditions, a new(K + 1)th neuron will be202

inserted into the network. To best absorb mapping residuals, the new Gaussian neuron positionuK+1 is203

placed at the same location as the inputxn, its weightaK+1 is initialized to be the local mapping erroren,204

and its widthσK+1 is scaled in proportion to the distance from its nearest neighbor, according to205

uK+1 = xn

aK+1 = en

σK+1 = ψ ‖uK+1−un near‖ ,

(7)

whereψ is a user-definedoverlap factorwith a value between 0 and 1. Parameterψ defines the overlap206

level between the new neuron and its neighbors. A higher value indicates a larger RBF support with more207

influence on its neighbors; while when a smaller value is chosen, the Gaussian will produce a more focused208

local response.209

During network construction, parameterization error willconsistently reduce. Accordingly, weights of210

newly added neurons tend to reduce in magnitude. Meanwhile,due to the decay policy applied to the sepa-211

ration distanceDK , neuron density changes from sparse to dense, therefore, the neuron widthσ associated212

10

with its nearest neighbor will decline as well. As an overalltendency, fewer neurons with significant widths213

and weights are initially generated to model low-frequencyvariations and form the smooth substrate sur-214

face, while neurons of smaller width and weight are subsequently recruited in areas with larger residuals to215

refine local details (see Section 4.4). This sparse-to-dense and coarse-to-fine adaptive RBF fitting gives the216

network high adaptivity to the underlying data.217

If the current observation does not satisfy the three novelty conditions, no new neuron is added. In the218

next stage, a neighborhood EKF algorithm is employed to optimize neuron parameters, thereby minimizing219

parameterization error.220

3.4. Optimization by fast neighborhood EKF221

The least mean square (LMS), gradient descent (GD) and Extended Kalman filters (EKF) are commonly222

used methods to optimize neuron parameters in nonlinear networks and sequential learning [20, 36, 37].223

EKFs have been reported to outperform LMS and GD on stabilityand accuracy, despite the high compu-224

tational cost. The EKF method updates all neurons at each learning step, we therefore refer to it asglobal225

EKF (GEKF). The computational complexity of the GEKF isO(A2) per learning step, whereA denotes226

the total number of neuron parameters to be updated [38]. In our case, if the network containsK neurons,227

wn = {a0,wk | k= 1,2, ...,K }, and each neuron is represented by four parameters aswk = (ak,σk,uk): two228

scalars for weightak and widthσk, and one neuron centeruk in 2D, then the computational cost for updating229

all theseK neurons will beO((4K)2). This cost can become unmanageable for networks with hundreds or230

thousands of neurons.231

To reduce computational cost of the GEKF, we introduce a fastlocal approach, calledneighborhood EKF232

(NEKF). At thenth learning step, only a subset ofK′ neighbor neuronsof the current observation{xn,zn}233

are updated. Selection of neighbor neurons is based on:234

1. if it is the nearest neighbor to the current observation, or235

2. if it is in a neighborhood region proportional to the separation distanceDK .236

Using the first criterion, only the nearest neighbor, possibly the most influential to the current observation,237

is selected and updated. Updating only the nearest is fast and gives good stability. When using the second238

criterion, on one hand, due to the decay on separation distance DK , the neighborhood region will reduce;239

on the other hand, the neuron density will increase during network growth. There will, therefore, always240

be a sufficient and fairly consistent number of neurons selected, initially from larger areas with sparsely241

11

distributed neurons for approximating coarse features, but gradually concentrating on more local regions to242

refine details. This implies that the local NEKF actually performs a dynamic global-to-local optimization243

on neuron parameters during network construction.244

Using the NEKF, thenth training step updates the selected subset ofK′ neurons in full dimensionality of245

weight, width and locationwn = {a0,wk |wk = (ak,σk,uk), k= 1,2, ...,K′, K′ < K } by246

wn = wn−1+Gnen , (8)

whereen = f (xn)− zn is the parameterization error at thenth observation(xn,zn), andGn is the Kalman247

gain calculated by248

Gn = Pn−1Bn
[

Rn+BT
n Pn−1Bn

]−1
, (9)

in which Rn is the variance of the measurement noise,Bn = ∇wn f (xn) is the gradient matrix of the network249

output f (xn) with respect to the network parameterwn, andPn is an error covariance matrix, which is250

updated by251

Pn =
[

I−GnBT
n

]

Pn−1+qI , (10)

where the scalarq determines the allowed random step in the direction of the gradient vector, andI is a unit252

matrix.253

The computational cost of NEKF is reduced fromO((4K)2) to O
(

(4K′)2
)

, where the selectedK′ neigh-254

bors are usually much less numerous than the totalK neurons in the network. The minimum cost can255

consistently beO
(

42
)

in the extreme case where only the nearest neighbor is updated (K′ = 1). Experi-256

mental results showed a remarkable gain in performance speed of the NEKF over the GEKF and GD with a257

comparable accuracy (Section 4.6).258

3.5. Effective neuron pruning to enhance the compactness ofparameterization259

Network size can become large under the growth strategy alone, possibly leading to network overfit.260

To avoid this, we use a pruning process on thosepseudoneurons, that make an insignificant contribution261

to parameterization over a number of consecutive observations. These neurons are very likely to have262

been added due to noisy points, or become redundant as a result of network optimization. Removing263

these neurons not only promotes parameterization compactness, but also helps to reduce artifacts caused by264

measurement errors.265

12

To find such pseudo neurons, at each point observation (xn,zn), we calculate the network outputΠk from266

each neuron at the inputxn,267

Πk = ak exp

(

−
‖xn−uk‖

2

σ2
k

)

, (11)

and then its contribution ratiork268

rk =
|Πk|

K
∑

k=1
|Πk|

. (12)

If the ratiork is consistently less than thepruning thresholdP for ω consecutive observations in sequential269

learning, that is270

rk < P|ω , (13)

this neuron is detected as apseudoneuron and is removed from the network.271

In order to provide an effective validation on the contribution of a neuron, the network pruning requires272

theω consecutive observations to be uniformly sampled points from the entire data space. This is another273

reason for requiring random point orderings in the trainingset. The performance of neuron pruning is pre-274

sented in Section 4.3. The adaptive sequential learning algorithm for point-cloud surface parameterization275

is summarized in Algorithm 1.276

4. Experimental results277

We implemented the proposed adaptive sequential learning RBF network in C++ for point-cloud surface278

parameterization. In this section, we present results thatdemonstrate the performance of the parameteriza-279

tion with regard to mesh reproduction and repair (Section 4.1), multi-LOD (Section 4.2), pruning effective-280

ness (Section 4.3), adaptivity (Section 4.4), compactnessand accuracy (Section 4.5) and finally performance281

efficiency by using the NEKF (Section 4.6).282

4.1. Range surface reproduction and mesh repair from point-cloud parameterization using ASRBF net-283

works284

The point-cloud range data used in our experiments of parameterization were obtained from the Ohio285

SAMPL range scan database [39]. Each range scan was presented by a 200× 200 array, consisting of286

densely distributed surface points and labeled margin areas. These range points have irregular spatial sam-287

pling, generally contain measurement noise and many contain data holes.288

13

The range scans of different objects vary in physical size and were obtained using different coordinate289

systems. To enable the parameterization process be carriedout with consistently chosen network parameters290

in a unified network space, while also using same guidelines,each scan was normalized to a unit cube in its291

x, y andz dimensions. Surface points were then taken with random point orderings to generate a training292

sequenceT = {xn,zn}
∣

∣

n=1,2,...,N , includingN 3D point observations{xn,zn} in which xn = (xn,yn) and293

xn,yn,zn ∈ [0,1]. Thexn was used as the network input, andzn its associated output. Details on how the294

network parameters were defined will be discussed in Section5.295

The parameterization RBF network of a point-cloud range scan was constructed using adaptive sequential296

learning as described in Section 3. The resulting network can be evaluated anywhere, so that surface vertices297

can be calculated at any desired resolution and ordering, allowing the production of the parametric surface1.298

For direct comparison between the parametric surface and its original scan, the network was evaluated at the299

same(xn,yn) locations as in the normalized 200×200 range array, with the outputs as their corresponding300

depth valueszn, and the normalized surface points calculated from the parameterization were then re-scaled301

to restore the actual aspect ratio and 3D size of the objects.302

The results of direct meshing from point clouds and corresponding parametric surfaces reproduced from303

parameterization ASRBF networks are shown in Fig. 3. From these examples, we observe that although304

the range scans contain bumpiness, jagged protuberances and various irregular data holes, the reproduced305

parametric surfaces are smooth and complete, preserving high fidelity to the original surfaces. Both low306

frequency variations and high frequency details are retained, including flat facets and sharp edges/corners.307

Jagged protuberances (e.g. particularly at sharp edges andcorners) and bumpiness (e.g. cheek in Fig. 3308

(b)) were smoothly filtered. Benefiting from the extraordinary interpolation and extrapolation capability of309

the Gaussians, Irregular holes that are large compared to the geometric variation in surfaces (e.g. missing310

protruding patterns on the “cow” and missing legs of the “Santa”) are convincingly restored. Therefore, our311

method does not require the availability of multiple instances to train a prior model [40, 41]. Missing data312

between adjoined faces (e.g. in the “valve” and “Santa”) canalso be filled and seamlessly blended into313

surfaces. The extended smooth margin areas in the parametric meshes, generated by evaluating the entire314

network space, exhibit the remarkable extrapolation of Gaussians 2. The accuracy of these parametric315

surfaces and data compression achieved will be discussed inSection 4.5 with results provided in Table 2.316

1Alternatively, these vertices can also be used as control points to generate the surface mesh using NURBS or Bezier methods

[5]
2Margin areas in the parametric meshes in Fig. 3 can be removedaccording to the margin labels in the range scans.

14

−60
−40

−20
0

20
40

−50

0

50

−1340

−1320

−1300

X

Scan data

Y

(a) “cow” (N = 4,956) with large, irregularly shaped holes; parametric surface reproduced byK = 522 neurons,̄E= 0.58%.

−150
−100

−50
0

50
100

150

−150

−100

−50

0

50

100

−1750

−1700

−1650

−1600

−1550

(b) “face” (N = 18,370) with bumpy facial regions; parametric surface reproduced from 1056 neurons.

−50
0

50
100 −100

−50

0

50

100

−950

−900

(c) “Santa” (N = 23,429) with large portion of missing data at boundaries; parametric surface reproduced from 1901 neurons.

−50

0

50

−50

0

50

−900

−850

(d) “valve” (N = 10,145) with flat faces and sharp edges; parametric surface reproduced from 1527 neurons.

Figure 3: Direct meshing results (middle column) from clouds ofN points (left), and repaired parametric surfaces generatedfrom

ASRBF networks (right). 15

4.2. Multi-level parameterization and multiple LODs317

Reproducing a surface with high fidelity to the level of detail in its raw scan is not always desirable.318

A smooth approximation would be more preferable when point clouds are severely corrupted with noise.319

Moreover, meshing at different LODs is often required for real-time rendering and multi-resolution pur-320

poses.321

The proposed ASRBF parameterization provides the flexibility of LOD control in two ways. The first322

is to parameterize the point cloud towards the best resolution provided in the original scan, then compute323

parametric points and surfaces at degrading sampling levels to get downgraded LODs. This method is ef-324

ficient when multiple LOD meshes of a surface are required from the parameterization. In the case where325

only one specific downgraded LOD is required, the second method, which carries out downgraded param-326

eterization at a corresponding detail level, would be beneficial for compactness. To this end, referring to327

the first novelty criterion (Section 3.3), the neuron separation levelDmin can be used to control the neuron328

density in the network, and hence the detail level of parameterization. Generally, a larger separation level329

Dmin will allow a smaller number of neurons that are more sparselydistributed, producing a lower resolution330

parameterization; conversely, an appropriately smaller value ofDmin will allow more neurons to be added,331

thus improving parameterization fidelity towards scan details.332

Figure 4 demonstrates varying mesh LODs from multi-level parameterization of the “cow”. The “cow”333

range scan contained 4956 points. We used the data twice in random point orderings to generate training334

sequences of sufficient length. In Fig. 4(a), the separationvalueDmin = 0.1 produced a much downgraded335

parameterization relative to the resolution (200×200) of the original scan. Therefore, only a coarse profile336

of the “cow” was reproduced from the highly compacted network, with K = 53 neurons. WhenDmin337

was reduced to 0.05 (Fig. 4(b)) and 0.03 (Fig. 4(c)), the parameterization generated increasingnumbers338

of neurons (K = 116 and 224 respectively), leading to more surface details being presented. When the339

separationDmin was set to 0.01 in Fig. 4(d), a highly detailed surface was achieved from the network with340

K = 522 neurons.341

Using the example of the “cow”, Fig. 5 shows how the neuron separation levelDmin affects neuron den-342

sity and the detail level of parameterization. The sequential training data were generated using four different343

randomization of the “cow” scan to avoid the possible effects due to the training data length. The normal-344

ized parameterization error indicated in Fig. 5 was defined by Ē = avg{‖ f (xn)−zn‖}|n=1,2,...N . It is the345

average error betweenzn values of allN points in the scan and their corresponding RBF outputsf (xn) at346

16

(a) Dmin = 0.1, K = 53 neurons (b) Dmin = 0.05,K = 116 neurons

(c) Dmin = 0.03,K = 224 neurons (d) Dmin = 0.01,K = 522 neurons

Figure 4: Surface LODs of the “cow” generated from multi-level parameterization using ASRBF networks. The detail levelof

parameterization is controlled by neuron separationDmin. A higherDmin value downgrades the level of parameterization relative

to the resolution in the original scan, and therefore a degraded LOD is obtained from a compact network composed of fewerK

neurons.

17

0

200

400

600

800

1000

1200

0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
0.018
0.02

0.001 0.01 0.1

num
ber of neuronspa

ram
et

er
za

tio
n e

rro
r

neuron separation level Dmin

error

neuron

Figure 5: The effect of neuron separation levelDmin on network compactness and parameterization accuracy, as shown by neuron

separation levelDmin vs. parameterization error and number of neurons in the “cow” parameterization.

the same locationxn = (xn,yn). We found that whenDmin was 0.01, the parameterization error was around347

0.0032, the number of neuron was about 730; whenDmin was greater than 0.01, the parameterization error348

increased exponentially due to a consistently reducing number of neurons, therefore downgrading param-349

eterization relative to the resolution provided in the original scan; whenDmin was less than 0.01, the pa-350

rameterization accuracy was incrementally improved untilparameterization accuracy achieved 0.0028, and351

network reached saturation with around 1010 neurons atDmin = 0.007. Obviously, this benefit on accuracy352

came at the expense of a largely increased number of neurons.Based on our experiments, we considered353

Dmin = 0.01 was appropriate regarding best detail level of parameterization and network compactness.354

4.3. Parameterization compactness enhanced by neuron pruning355

Figure 6 demonstrates the effectiveness of pruning, using the example of parameterization of the “cow”.356

We compared RMS network error (as defined in Eq. 6) and number of neurons involved for cases with prun-357

ing (Fig. 6(b)) and without pruning (Fig. 6(a)). To keep the network stable and ensure effective evaluation358

of neuron contribution, the pruning threshold was set toP = 0.001 forω = 1000 consecutive observations359

for the pruning results.360

The experimental results shown in Fig. 6 were averaged over 10 trials. Based on these experiments,361

we observed that, at the start of parameterization, neuronswere consistently recruited into the network in362

both cases (Fig.6 left column), and the RMS error reduced rapidly (Fig.6 right column). When the network363

18

error leveled to a steady value after 4000 steps, the with-pruning network in Fig. 6(b) showed effective364

neuron growth control. Pseudo neurons, exhibiting very limited contributionsrk < P for 1000 consecutive365

observations, were detected and removed. By the end of construction, the with-pruning network produced366

only 522 neurons, while achieving competitive accuracy. However, without pruning, as shown in Fig. 6(a),367

neurons were added incessantly throughout network construction, resulting in 718 neurons.368

�������������
� ���� ���� ���� ���� �����

training steps

n
o

. o
f

n
eu

ro
n

s

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2000 4000 6000 8000 10000

training steps

tr
ai

n
in

g
 e

rr
o

r

trendline

(a) without pruning: neurons were consistently added into the network (left), RMS error reduced during parameterization (right).

�������	��
��
� ���� ���� 	���
��� �����

training steps

n
o

. o
f

n
eu

ro
n

s

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2000 4000 6000 8000 10000
training steps

tr
ai

n
in

g
 e

rr
o

r

trendline

(b) with pruning: neurons were added and pseudo neurons wereremoved for effective control of network growth (left), RMS

error (right) reduced in a comparable way. A pseudo neuron was detected if its contribution ratio was less thanP = 0.001 over

ω = 1000 consecutive inputs.

Figure 6: Parameterization with and without neuron pruning.

4.4. Neuron adaptivity369

The adaptivity of parameterization is derived from the adaptive RBF learning: 1) neurons are heuristi-370

cally located according to the novelty of input; 2) pseudo neurons can be removed by pruning; 3) neuron371

parameters are adjustable in full dimensionality of location, width and weight.372

Figures 7 and 8 illustrate neuron spatial distribution and properties of width and weight in the parameter-373

ization network space for the “cow” and “face”. For a more intuitive visualization, neurons are represented374

by circles displayed in normalized 3D network space at their2D centers, with their depthz-values evaluated375

from the network. To allow better insight, neuron width (Fig. 7 and Fig. 8 bottom left) is indicated by376

19

the radius of the neuron circle, and the absolute value of neuron weight (Fig. 7 and Fig. 8 bottom right) is377

presented by the neuron circle diameter. Both display ratios are reduced to 1:3 to lessen visual clustering3.378

−60
−40

−20
0

20
40

−50

0

50

−1340

−1320

−1300

X

Scan data

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

0.5

1

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0.5

1

Figure 7: Neuron spatial distribution and properties in the“cow” parameterization. Top: point cloud (4,956 points); bottom left:

neuron width of 522 Gaussians in the network; bottom right: neuron weight.

We observe that neuron distribution and density are highly consistent with surface variations. Meanwhile379

the neuron properties of width and weight reflect spatial features. Neurons with large widths or high weights380

were located in areas with lower variations. These were usually created at the start of network training to381

form a smooth base, while smaller and denser neurons were presented in regions with highly variable details.382

Although there is an inherent tendency by the greedy algorithm to favor capture of lower frequencies before383

higher ones, smaller neurons consistently retouch the smoothness towards increasing fidelity to local details.384

Figure 9 shows the average width and weight of neurons at eachtraining step of network construction for385

the “cow” and the “face”. It visualizes an automatic mechanism of neuron scale decline during adaptive386

coarse-to-fine RBF fitting.387

Table 1 provides statistics on neuron properties for both networks. At the end of training, the “cow”388

parameterization used 522 neurons, relatively large and weighed, to approximate the smoothly varying389

3Small neurons in Fig. 7 and Fig. 8 may not be visible due to limited display resolution.

20

−150
−100

−50
0

50
100

150

−150

−100

−50

0

50

100

−1750

−1700

−1650

−1600

−1550

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

0
0.2
0.4
0.6
0.8

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

Figure 8: Neuron spatial distribution and properties in the“face” parameterization. Top: point cloud (18,370 points); bottom left:

neuron width of 1056 Gaussians in the network; bottom right:neuron weight.

21

0.01

0.1

1

0 2,000 4,000 6,000 8,000 10,000

ne
ur

on
 sc

ale

training steps

weight
width

(a) the “cow” parameterization.

0.01

0.1

1

0 5,000 10,000 15,000 20,000

ne
ur

on
 sc

ale

training steps

weight
width

(b) the “face” parameterization.

Figure 9: Average neuron width and weight decrease during coarse-to-fine RBF fitting. The results were averaged over 10 trials. To

fully investigate the trend of neuron scales, the “cow” datawas used twice in random point orderings to obtain training sequences

of sufficient length.

body shape; whereas 1,056 neurons were generated by the parameterization for the more complex “face”.390

As indicated by the standard deviations, the neuron weighting of the “cow” varied more than those of the391

“face”. This was probably because the “cow” simultaneouslypossessed richer features at both low (e.g.392

smooth variation of the body) and high frequencies (e.g. protruding patterns on the body) than the “face”.393

parameterization network neuron width neuron weight

max min mean std max min mean std

cow (522 neurons) .4673 .0081 .0307 .0426 .8337 .0033 .0311 .0544

face (1,056 neurons) .4364 .0038 .0210 .0312 .6896 .0065 .0269 .0477

Table 1: Neuron properties in parameterization RBF networks.

4.5. Parameterization accuracy and data compression394

Experimental results on the compactness and accuracy of theparameterizations from the examples in395

Fig. 3 are provided in Table 2, in whichN stands for the number of surface points in a range scan, and396

K denotes the number of Gaussian neurons generated by the network. Data compression is indicated by:397

1) point to neuron compactness ratioN : K, and 2) storage compression ratio 3N : 4K, defined as the398

total storage ofN 3D range points to the total storage ofK neurons, each represented by the 4 parameters399

of width, weight and 2D centers. For a fairer comparison of network performance on different scans,400

parameterization error̄E was provided in normalized network space, as defined in Section 4.2, indicating401

a percentage accuracy relative to the data variation range in each scan. The absolute reconstruction errors402

22

point clouds # of points # of RBFs normalized error data compression reconstruction error (mm)

N K Ē N : K 3N : 4K mean std

face 18,370 1,056 .0036 17.4:1 13.1:1 .50 .58

Santa 23,429 1,901 .0055 12.3:1 9.2:1 .51 .67

cow 4,956 522 .0058 9.5:2 7.1:1 .36 .46

valve 10,145 1,527 .0069 6.6:1 5.0:1 .61 .89

average 14,225 1,251 .0055 11.5:1 8.6:1 .50 .65

Table 2: Parameterization accuracy and data compression.

of these parametric surfaces were also given as a means for comparison with other works. It is represented403

by the mean and standard deviation of the errors between eachre-scaled network output (restoring actual404

aspect ratio and 3D size of the surface) and its corresponding scan point in the real-world measurement of405

millimeters.406

The results show that the ASRBF network provides a compact parameterization of range data with a407

desired accuracy. The average total number of Gaussians wasless than one tenth of the total number of408

range points, and the average storage compression ratio achieved 8.6 : 1. The normalized parameterization409

error Ē reached the level of 0.55%. The average accuracy for the parametric surfaces achieved 0.50mm in410

z, where the average variation ofz-values in the four scans was 9.35cm. The “face”, with smoothvariations411

of facial features and curly hair patterns, achieved the highest compression ratio and best accuracy by using412

Gaussians. However, simultaneously modeling both low frequency (e.g. large background plane in the413

“Santa”) and high frequency features (in particular the “valve”), was relatively difficult and costly.414

It seems that absolute reconstruction errors did not consistently agree with the normalized̄E, due to the415

data range varying among the different scans. For example, the variation ofz-values in the “face”, “Santa”416

and “valve” were 13.9 cm, 9.3 cm and 8.0 cm respectively, but it was only about 6.2 cm in the “cow”.417

Therefore, although the normalized error of the “cow” was ranked third, its absolute reconstruction error418

was comparatively lower than the others.419

4.6. Parameterization efficiency420

Parameterization time is mainly determined by the amount oftime used in updating neuron parameters421

during network optimization. We therefore compared the speed and accuracy of the neighborhood EKF422

(NEKF) method with two commonly used methods: gradient descent (GD) [37] and global EKF (GEKF)423

[38]. The experimental results were obtained using a Pentium 3GHz PC with 1GB RAM. Figure 10 shows424

23

��������������
� ��� ��� ��� ��� ���

number of neurons

tr
ai

n
in

g
 t

im
e

(s
)

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of neurons

R
M

S
 tr

ai
ni

ng
 e

rr
or

(a) GEKF [38]: parameterization using GEKF produced 490 neurons, showing an exponentially increasing network training cost

up to the level of seconds.

���������������������
� ��� ��� ��� ��� ���

number of neurons

tr
ai

n
in

g
 t

im
e

(m
s)

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of neurons

R
M

S
 tr

ai
ni

ng
 e

rr
or

(b) GD [37]: parameterization using GD produced 530 neurons, showing a linearly increasing network training cost up to the level

of milliseconds.

��������� ��!��"��#
� ��� ��� �� !�� "��

number of neurons

tr
ai

n
in

g
 t

im
e

(m
s)

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of neurons

R
M

S
 tr

ai
ni

ng
 e

rr
or

(c) NEKF: parameterization using NEKF produced 520 neurons, showing a consistent cost at a level of 10−4 seconds.

Figure 10: Comparison of how parameterization speed was affected by an increasing number of neurons using GEKF, GD or

NEKF. Training time costs are displayed on the left, and their corresponding RMS errors are shown on the right.

24

results averaged over 10 trials of the “cow”. The NEKF results in Fig. 10(c) demonstrate the extreme case425

of updating only the nearest neighbor at each learning step.426

As shown in Fig. 10 right column, network updating using the three aforementioned methods produced427

comparable accuracy with similar network RMS errors and error reduction rate, although the GEKF had428

slightly better accuracy than the GD and NEKF due to a global optimization strategy employed.429

However, the network training time (Fig. 10, left column) differed remarkably with increasing number430

of neurons. The GEKF showed a complexity ofO((4K)2) for K neurons (Fig. 10(a)). The GD appeared431

to have a linear relationship (Fig. 10(b)). The cost of the NEKF (Fig. 10(c)), however, was nearly constant432

O((4)2) when updating only the nearest neighbor. Training time should also remain be consistently low of433

O((4K′)2), when updating a small set ofK′ neighbor neurons. Towards the end of network training, the434

GEKF spent 6.3 seconds to update around 490 neurons, the GD used 6.1 milliseconds for 530 neurons,435

while the NEKF spent only around 0.12 milliseconds throughout the training process, right through to the436

case of 522 neurons. Compared to the GEKF, the computationalload of NEKF was dramatically reduced,437

by a factor of 104.438

5. Discussions439

5.1. Network parameters440

The adaptive parameterization RBF network is conceptuallysimple and straightforward to implement.441

The network employs a number of parameters. Based on their functions, they can be used flexibly, facilitat-442

ing the use of the network for different proposes, such as controlling the level of parameterization detail by443

using different values ofDmin, as shown in Fig. 4. After the scan image was normalized to a unit cube inx,444

y andz dimensions, default values were used and are recommended for the general purpose of surface pa-445

rameterization and reproduction. In this section, we indicate how the defaults were chosen or automatically446

calculated from the input data.447

Local accuracy thresholdE and RMS errorEω are utilized in the novelty criteria to determine if a new448

neuron should be added. The value 0.01 was used as default forboth the parameters, as this value not only449

helped to better preserve the fidelity to local inputs, but also to tolerate a certain degree of measurement450

errors.451

The value of separation distanceDmax = 0.4 was used to enforce a sparse neuron distribution in nor-452

malized space at the beginning of network construction. Theneuron separationDmin helped to control453

25

the density level of newly inserted neurons. This value can be obtained by doubling the uni-dimensional454

sampling density of input data. Thus for a sampling density of 1/200 in our 200×200 scan array, we set455

Dmin = 2×1/200= 0.01. The default decay factorγ = 0.99 provided a moderate decline speed of neuron456

separation, giving opportunity for coarse-to-fine RBF fitting.457

We found that these default values worked effectively on large datasets containing different objects with458

highly varying and complex spatial features; there was no need to adjust them from one experiment to459

another. Critically, parameters only need to be set at an approximate level as opposed to a precise value.460

This relaxation is gained due to the nature of adaptive learning as employed by the ASRBF. For example, the461

above network parameters are mainly associated with the necessity of inserting new neurons. Using these462

general settings, neurons added unnecessarily, wrongly inserted due to outliers or having become redundant463

as a result of network optimization, can still be removed from the network by the pruning process.464

In our experiments, only the Gaussian RBF overlap factorψ was set to slightly different values, varying465

between 0.7∼ 0.8. For example, the “cow”, possessing smoother variations,used aψ value of 0.8, whereas466

“face”, “Santa” and “valve”, with relatively sharper details, used a lowerψ value of 0.7. To evaluate the467

network accuracy achieved from different values ofψ at a sufficient training length, we replicated the data468

in random orderings to extend the training sequence. The experimental results on the “cow” withψ values469

between 0.8±0.1 are shown in Fig. 11, whereN denotes the number of points in the scan. We observe470

that the differentψ values have a limited effect on network accuracy. This is because the overlap factorψ471

is only used to initialize the width of a newly inserted neuron; however each neuron can be later adjusted472

dynamically during iterative learning and in full dimensionality in terms of location, weight and width.473

In summary, precise parameter values do not need accuratelypre-determined by trial and error, since the474

network automatically fine-tunes itself by means of adaptive learning.475

5.2. Density and size of point-cloud data sets476

The parameterization RBF network is capable of handling non-uniformly sampled data with varying477

densities and sizes. In a normalized space, a large number ofscan points in the “face” (18,370 points) and478

“Santa” (23,429 points) presented higher densities; whereas the size and density of the “cow” (4956 points)479

and “valve” (10,145 points) were relatively lower. Unlike other RBF methods, which could encounter over-480

fitting problems when dealing with dense point sets, the parameterization RBF network essentially favors481

large and dense data sets, because its neurons are generatedonly according tonovel inputsrather than from482

all points. Sufficient length of point cloud data is desired to produce high detail level of parameterization.483

26

$%$$&$$%$$&'$%$$($$%$$('$%$$)$$%$$)'$%$$'$$%$$''$%$$*$

2N 4N 6N 8N 10N+,-././0 1-+- 23/0+4
56789:;6::9:

$%<$%='$%=$%>'$%>

Figure 11: Limited effect of differentψ values on network accuracy.N denotes the number of points in the scan.

0

100

200

300

400

500

600

700

800

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1N 3N 5N 7N 9N 11N

num
ber of neurons

pa
ram

et
er

iza
tio

n e
rro

r

training data length

error

neuron

Figure 12: Replication of original data improves parameterization accuracy: replication of scan data vs. parameterization error and

number of neurons.N denotes the number of points in the scan.

27

When a surface was somewhat under-sampled relative to its geometric complexity (e.g. the “cow”), we484

replicated the data in random orderings to extend the training sequence. Although this method did not485

create any new inputs, it did increase the chance of a point being a novel instance during a longer process486

of network optimization, thereby promoting the accuracy ofparameterization. In the example of the “cow”,487

Figure 12 demonstrates how the number of data point replications of the original scan affected the accuracy488

and number of neurons in the network. When using a single replication of scan data (fromN to 2N),489

a moderate parameterization errorĒ = 0.0058 was achieved with 522 neurons; when using the data three490

times (3N), the error was significantly reduced tōE = 0.004 with increased number of neurons (K = 718).491

After replicating the data to four sets (4N), the network achieved saturation, so that the extended training492

sequence length by anotherN caused neuron number to increase only a couple each time. After 8N , the493

neuron number remained constant at 738. However, the network accuracy was still improved incrementally494

as the result of network optimization. This indicates that acertain number of training replications can help495

deal with under-sampled data sets and always improve network accuracy in sequential learning.496

5.3. Performance comparisons497

point cloud GEKF [38] GD [37] NEKF

Tpara Trep #RBFs Ē Tpara Trep #RBFs Ē Tpara Trep #RBFs Ē

(#points) (hrs) (s) (10−3) (s) (s) (10−3) (s) (s) (10−3)

cow (4,956) 0.75 .74 490 5.5 4.1 .8 530 6.2 1.4 .8 522 5.8

face (18,370) 23.6 5.8 965 3.2 61.4 6.7 1097 4.1 14.5 6.6 1056 3.6

valve (10,145) 42.5 4.7 1452 7.1 35.8 5.4 1690 9.1 8.7 5.3 1527 7.5

Santa (23,429) 98.2 13.6 1786 4.9 153.4 17.5 2159 7.0 33.1 15.6 1901 5.5

average (14,225) 41.3 hrs 6.2 s 1,073 5.1 63.7 s 7.6 s 1,369 6.6 14.4 s 7.1 s 1,252 5.6

Table 3: Parameterization performance when using GEKF, GD and NEKF.

Table 3 shows the performance results of parameterization using ASRBF networks. We presented results498

on parameterization time (Tpara), the time (Trep) used to reproduce all points at original inputs, number of499

Gaussian RBF (#RBF) and normalized parameterization error(Ē). We compared our results using NEKF500

to the results using GEKF [38] and GD [37]. The experiments were carried out on PC with 3GHz Pentium501

processor and 1GB of RAM. For comparison, consistent network parameters were used on each range scan502

for GEKF, GD and NEKF, so that parameterization with each of the three methods was carried out to the503

same desired accuracy level while similar numbers of neurons were produced.504

28

From the results shown in Table 3, we observed that parameterization using GEKF appeared to achieve a505

slightly better accuracy, but this came at expense of increasing training time by several orders of magnitude.506

This was due to the high complexityO((4K)2) required by the GEKF to update allK neurons at each input.507

This computational cost overhead become unmanageable for large networks and training sets. Parameteri-508

zation time using GD increases linearly with the number of neurons and training points. Comparing GEKF509

to GD, average training time used by the GEKF was 41.3 hours, whereas the GD required only 63.7 seconds.510

The NEKF achieved the fastest parameterization, at an average of 14.4 seconds. Only a handful of neighbor511

neurons were updated at each training input. Its average training time was further reduced to one fourth of512

that used by GD. Furthermore, it also improved on GD accuracyby 25%, using 8.5% fewer neurons.513

The time used for reproducing a point from the parameterization network is directly proportional to the514

number of RBF neurons. In our experiments, the average time used to compute one RBF output was around515

3.3×10−7 seconds. Since each of the three methods generated a similarnumber of neurons, the reconstruc-516

tion timesTrep are therefore on a similar level for each scan. By comparison, NEKF parameterization used517

less time (Trep = 7.1 seconds) on average to produce 14,225 parametric points, while retaining a relatively518

high accuracy of 5.6×10−3, while using fewer neurons (1,252 neurons).519

In addition, the proposed adaptive dynamic RBF network structure outperforms networks with fixed520

structures. We compare our approach with the most relevant and state-of-art multi-layer hierarchical RBF521

(HRBF) network structures [34, 35]. Each layer in the HRBF network contains a regular grid of Gaussians522

at decreasing scales. A neuron is located according to the extent of local mapping error, thus the grids do523

not need to be fully filled. Although neurons still have to be placed on the partition grids, neuron sizes vary524

at multi-scales by means of halving the width at every higherlayer. Once a neuron is inserted, it cannot525

be moved or discarded. The network construction time increases linearly to the size of scan data and the526

number of neurons involved.527

The HRBF network has been applied to point-cloud surface modeling. In [35], a 4-layer HRBF network528

was used to approximate a human face scan containing 12,641 points. Experimental results showed that529

the reconstruction error achieved 0.77 mm, with 5,570 Gaussians being generated by the network. The530

compression ratioN : K was thus 2.3:1. In [34], results based on a toy face scan (16,851 points) showed531

a similar reconstruction accuracy of 0.779 mm and compression ratioN : K = 2 : 1 involving the use of532

8,087 Gaussians in a 4-layer HRBF network.533

In comparison, thanks to the adaptive learning and dynamic network structure, as shown in Table 2, the534

29

ASRBF achieved higher compression ratios at comparable accuracy. This is particulary evidenced by the535

“face” data set (N = 18,370 points). OnlyK = 1,056 Gaussians were generated for the “face” using the536

ASRBF parameterization network. The compression ratioN : K = 17.4 : 1 achieved by the ASRBF was537

significantly higher than that by the HRBF networks, while ASRBF also achieved a comparable level of538

reconstruction accuracy of 0.50mm.539

5.4. Comparison with Self-Organizing Maps540

The ability of SOM to learn topological maps from input data distributions has been explored for surface541

reconstruction from vertices in a mesh or a point cloud [30, 31]. This section compares results on the542

accuracy of meshes reproduced from SOM [29] and the proposedASRBF. Firstly, range scan data was543

used to train the ASRBF network and SOM network. Surface vertices calculated from the obtained ASRBF544

network and from the SOM were meshed using the same function Ball Pivoting in Meshlab [42]. The545

accuracies of the ASRBF mesh and the SOM mesh with respect to original mesh generated from the raw546

scan were computed using Metro Tool [43].547

Accuracy measures presented by the Hausdorff distance, themean and RMS deviations from each orig-548

inal mesh to its reconstructed mesh, are shown in Table 4. TheHausdorff distance indicates the maximum549

difference between two meshes; however, the mean and RMS values are more descriptive due to being less550

susceptible to the influence of outliers. The accuracy measures in Table 4 were averaged over 10 trials,551

presented as a percentage of the bounding box diagonal length in the original mesh. Since range data input552

was over a 200×200 square, for fair comparison, we chose the most square-like SOM grid with the number553

of SOM nodes and the the number of neurons in the ASRBF as closeas possible. The size of the SOM grid554

used for each point cloud is given in the first column of SOM table entries.555

The results show that the ASRBF networks produce better accuracy than standard SOM when using556

similar numbers of neurons. As described in previous sections, the advantage of ASRBF based mesh re-557

production is primarily driven by the benefits from: 1) the extraordinary interpolation and extrapolation558

capability of Gaussian kernels to provide better surface fidelity; 2) network structure flexibility and neuron559

adaptivity to the unorganized underlying data. The SOM requires a grid structure composed of point nodes.560

The 3D locations of SOM point nodes are used directly as vertices on the mesh. Although the SOM net can561

be broken where necessary to adapt to the input data, the pre-defined number of nodes and fixed connection562

linkages ultimately constrain the flexibility and accuracyof the topological map generated by SOM.563

30

point clouds ASRBF SOM [29]

of neurons Hausdorff dist. mean RMS # of nodes Hausdorff dist. mean RMS

face 1,056 1.5% .09% .14% 1,056 (33×32) 2.6% .16% .31%

Santa 1,901 2.6% .09% .15% 1,892 (44×43) 4.7% .17% .38%

cow 522 1.5% .12% .19% 529 (23×23) 2.2% .19% .33%

valve 1,527 2.9% .13% .19% 1,521 (39×39) 3.6% .25% .49%

average 1,251 2.1% .10% .17% 1,250 3.3% .19% .38%

Table 4: Comparison on mesh accuracy reproduced from the ASRBF and SOM.

6. Conclusions564

We presented a neural network based method to solve the problem of point-cloud surface parameteriza-565

tion. The network employs a dynamic structure through adaptive learning. It allows Gaussian neurons to566

be fitted according to the novelty of inputs, while also beingfully adjustable on their locations, widths and567

weights. Compared to approaches using RBFs at fixed locations and at pre-defined scales, our approach568

achieved a high compression ratio and a comparable level of accuracy. The developed NEKF method569

dramatically reduces the training cost to a manageable time, enabling parameterization of extensive point570

clouds, involving the use of large scale of networks. Experimental results show that complete surfaces can571

be accurately reproduced from unified low-storage parameterization networks, and multiple LODs can be572

easily obtained. Our adaptive learning strategy contributes to the general problem of effective RBF fitting,573

and thus could be of value to other RBF based methods. The possibility of effectively absorbing nonuni-574

form mapping residuals in areas with learning difficulties may be addressed by extending the adaptivity to575

a multi-layer network. This is left for future work.576

References577

[1] A. Sheffer, E. Praun, K. Rose, Mesh parameterization methods and their applications, Foundations and Trends in Computer578

Graphics and Vision 2 (2) (2006) 105–171.579

[2] X. Sun, E. Hancock, Quasi-isometric parameterization for texture mapping, Pattern Recognition 41 (5) (2008) 1732–1743.580

[3] M. Floater, K. Hormann, Surface Parameterization: a Tutorial and Survey. Advances in Multiresolution for Geometric Mod-581

elling, Springer Berlin Heidelberg, 2005.582

[4] M. Duckham, L. Kulik, M. Worboys, A. Galton, Efficient generation of simple polygons for characterizing the shape of aset583

of points in the plane, Pattern Recognition 41 (10) (2008) 3224–3236.584

31

[5] M. Floater, K. Hormann, Parameterization of triangulations and unorganized points, in: Tutorials on Multiresolution in585

Geometric Modelling, 2002, pp. 287–315.586

[6] E. Zhang, K. Mischaikow, G. Turk, Feature-based surfaceparameterization and texture mapping, ACM Transactions on587

Graphics 24 (1) (2005) 1–27.588

[7] C. Gotsman, X. Gu, A. Sheffer, Fundamentals of sphericalparameterization for 3D meshes, in: ACM SIGGRAPH, 2003, pp.589

358–363.590

[8] E. Praun, H. Hoppe, Spherical parametrization and remeshing, ACM Transactions on Graphics 22 (3) (2003) 340 – 349.591

[9] J. Schreiner, A. Asirvatham, E. Praun, H. Hoppe, Inter-surface mapping, ACM Transactions on Graphics 23 (3) (2004)592

870–877.593

[10] S. Dong, P. Bremer, M. Garland, V. Pascucci, J. Hart, Spectral surface quadrangulation, in: ACM SIGGRAPH, 2006, pp.594

1057 – 1066.595

[11] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, A. Wu, An efficient k-means clustering algorithm: Analysis596

and implementation, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) (2002) 881–892.597

[12] Y. Miao, J. Feng, C. Xiao, Q. Peng, A. Forrest, Differential-based segmentation and parameterization for point-sampled598

surfaces, J. of Computer Science and Technology 22 (5) (2007) 749–760.599

[13] R. Morales, Y. Wang, Z. Zhang, Unstructured point cloudsurface denoising and decimation using distance RBF K-nearest600

neighbor kernel, in: PCM Advances in Multimedia Information Processing, 2011, pp. 214–225.601

[14] M. Zwicker, C. Gotsman, Meshing point clouds using sphereical parameteriztion, in: Proc. Eurographics Symposiumon602

Point-Based Graphics, 2004, pp. 173–180.603

[15] F. Fernández, C. Hervásand, P. Gutiérrez, A dynamicover-sampling procedure based on sensitivity for multi-class problems,604

Pattern Recognition 44 (8) (2011) 1821–1833.605

[16] C. Silva, S. Ranganath, L. Silva, Cloud basis function neural network: A modified RBF network architecture for holistic606

facial expression recognition, Pattern Recognition 41 (4)(2008) 1241–1253.607

[17] A. Alexandridisa, H. Sarimveisb, K. Ninosb, A radial basis function network training algorithm using a non-symmetric608

partition of the input space - application to a model predictive control configuration, Advances in Engineering Software609

42 (10) (2011) 830–837.610

[18] Q. Meng, M. Lee, Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks,611

Connection Science 19 (1) (2007) 25–52.612

[19] B. Choi, J. Lee, Comparison of generalization ability on solving differential equations using backpropagation and reformu-613

lated radial basis function networks, Neurocomputing 73 (2009) 115–118.614

[20] Y. Lu, N. Sundararajan, P. Saratchandran, Performanceevaluation of a sequential minimal radial basis function (RBF) neural615

network learning algorithm, IEEE Trans. Neural Networks 9 (2) (1998) 308–318.616

[21] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright,B. McCallum, T. Evans, Reconstruction and representation of 3D617

objects with radial basis functions, in: ACM SIGGRAPH, 2001, pp. 67–76.618

[22] H. Liu, X. Wang, W. Qiang, A fast method for implicit surface reconstruction based on radial basis functions networkfrom619

3D scattered points, Int J Neural System 17 (6) (2007) 459–65.620

[23] Y. Lin, C. Chen, M. Song, Z. Liu, Dual-RBF based surface reconstruction, Visual Computer 25 (2009) 599–607.621

[24] N. Pears, T. Heseltine, M. Romero, From 3d point clouds to pose-normalised depth maps, Int. Journal of Computer Vision622

32

89 (2010) 152–176.623

[25] C. Walder, B. Schlkopf, O. Chapelle, Implicit surface modelling with a globally regularised basis of compact support, Com-624

puter Graphics Forum 25 (3) (2006) 635–644.625

[26] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H. Seidel, Multi-level partition of unity implicits, ACM Trans. Graph. 22 (3)626

(2003) 463–470. doi:http://doi.acm.org/10.1145/882262.882293.627

[27] Y. Ohtake, A. Belyaev, H. Seidel, Sparse surface reconstruction with adaptive partition of unity and radial basis functions,628

Graphical Models 68 (1) (2006) 15 – 24.629

[28] D. Chen, B. Morse, B. Lowekamp, T. Yoo, Hierarchically partitioned implicit surfaces for interpolating large point set models,630

Geometric Modeling and Processing 4077 (2006) 553–562.631

[29] T. Kohonen, The self-organizing map, Neurocomputing 21 (1998) 1–6.632

[30] A. Junior, A. Neto, J. de Melo, Surface reconstruction using neural networks and adaptive geometry meshes, in: Proc. IEEE633

Int. Joint Conf. on Neural Networks, 2004.634

[31] L. Varady, M. Hoffmann, E. Kovacs, Improved free-form modelling of scattered data by dynamic neural networks, J. for635

Geometry and Graphics 3 (2) (1999) 177–181.636

[32] J. Barhak, A. Fischer, Parameterization and reconstruction from 3D scattered points based on neural network and PDE, IEEE637

Trans. Visualisation and Computer Graphics 7 (1) (2001) 1–16.638

[33] G. Knopf, A. Sangole, Interpolating scattered data using 2D self-organizing feature maps, Journal Graphical Models 66 (1)639

(2004) 50–69.640

[34] A. Borghese, S. Ferrari, V. Piuri, Real-time surface reconstruction through HRBF networks, IEEE international workshop on641

haptic virtual environments and their applications (2002)19 – 24.642

[35] S. Ferrari, M. Maggioni, N. A. Borghese, Multiscale approximation with hierarchical radial basis functions networks, IEEE643

Trans. on Neural Networks 15 (1) (2004) 178–188.644

[36] J. Platt, A resource-allocating network for function interpolation, Neural Comput. 3 (2) (1991) 213–225.645

[37] N. Karayiannis, Reformulated radial basis neural networks trained by gradient descent, IEEE Trans. on Neural Networks646

10 (3) (1999) 657–671.647

[38] D. Simon, Training radial basis neural networks with the extended Kalman filter, Neurocomputing 48 (2002) 455–475.648

[39] Range image database at Ohio SAMPL, http://sampl.ece.ohio-state.edu/data/3DDB/RID/minolta.649

[40] W. Smith, E. Hancock, Facial shape-from-shading and recognition using principal geodesic analysis and robust statistics, Int.650

J. of Computer Vision 76 (1) (2008) 71–91.651

[41] V. Blanz, T. Vetter, A morphable model for the synthesisof 3D faces, in: Proc. SIGGRAPH, 1999, pp. 187–194.652

[42] Meshlab, http://meshlab.sourceforge.net.653

[43] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measuringerror on simplified surfaces, Computer Graphics Forum 17 (2)654

(1998) 167–174.655

33

Author Biography

QINGGANG MENG received B.Sc. and M.Sc. degrees in Electronic Engineering from Tianjin University,

China and Ph.D. degree in Computer Science from Aberystwyth University, UK. He is a Senior Lecturer in

the Department of Computer Science, Loughborough University, UK. His research interests include

biologically and psychologically inspired learning algorithms and developmental robotics, service robotics,

robot learning and adaptation, multi-UAV cooperation, driver's distraction detection, human motion

analysis and activity recognition, activity pattern detection, pattern recognition, artificial intelligence

and computer vision. He is a member of the IEEE and a fellow of the Higher Education Academy of United

Kingdom.

BAIHUA LI received B.Sc. and M.Sc. degrees in Electronic Engineering from Tianjin University, China

and Ph.D. degree in Computer Science from Aberystwyth University, UK. She is a Senior Lecturer in the

School of Computing, Mathematics & Digital Technology, Manchester Metropolitan University, UK. Her

current research interests include computer vision, pattern recognition, advanced 3D computer graphics,

human motion analysis and behavior understanding from multi-modality imaging and sensory data. About

40 fully refereed research papers have been published in leading national/international journals and

conferences, including IEEE Trans. SMC, PR and IVC. She takes a role as reviewer and Program

Committee member for a number of high quality journals and conferences. She is a member of the BMVA.

HORST HOLSTEIN received the degree of B.S. in Mathematics from the University of Southampton, UK,

in 1963, and obtained a Ph.D. in the field of rheology from Aberystwyth, UK, in 1981. He is a Lecturer in

the Department of Computer Science, University of Wales, Aberystwyth, UK. His research interests

include computer graphics, motion tracking, computational bioengineering and geophysical gravi-magnetic

modelling.

YONGHUAI LIU received his first PhD degree from Northwestern Polytechnical University, People’s

Republic of China, in 1998, and his second PhD degree in computer science from The University of Hull,

UK, in 2001.Currently he is a senior Lecturer at Aberystwyth University. He is a guest editor for the special

issue of Computer Vision and Image Understanding Journal on the registration and fusion of range images

published in 2002. He has served as a program committee member and a referee for more than 30

international conferences and journals. He has published more than 100 papers in international conference

proceedings and journals. His primary research interests lie in computer graphics, image registration,

motion estimation, pattern recognition, image processing, machine learning, 3D vision and artificial

intelligence. He is a member of the IEEE and a fellow of the Higher Education Academy of United

Kingdom.

*Author Biography

