B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the
following Creative Commons Licence conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vYou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

® Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

*Manuscript

Click here to view linked References Pattern Recogmtlon. Accepted and in press

Parameterization of point-cloud freeform surfaces usiraptide sequential
learning RBF networks

Qinggang Meng Baihua LP*, Horst Holsteifi, Yonghuai Litf

aDepartment of Computer Science, Loughborough University,UK.
bSchool of Computing, Mathematics & Digital Technology, Manchester Metropolitan University, UK
®Dept. of Computer Science, Aberystwyth University, UK

Abstract

We propose a self-organizing Radial Basis Function (RBF) neural network method for parameterization
of freeform surfaces from larger, noisy and unoriented point clouds. In particular, an adaptive sequential
learning algorithm is presented for network construction from a single instance of point set. The adaptive
learning allows neurons to be dynamically inserted and fully adjusted (e.g. their locations, widths and
weights), according to mapping residuals and data point novelty associated to underlying geometry. Pseudo
neurons, exhibiting very limited contributions, can be removed through a pruning procedure. Additionally, a
Neighborhood Extended Kalman Filter (NEKF) was developed to significantly accelerate parameterization.
Experimental results show that this adaptive learning enables effective capture of global low-frequency
variations while preserving sharp local details, ultimately leading to accurate and compact parameterization,
as characterized by a small number of neurons. Parameterization using the proposed RBF network provides
simple, low cost and low storage solutions to many problems such as surface construction, re-sampling,
hole filling, multiple level-of-detail meshing and data compression from unstructured and incomplete range
data. Performance results are also presented for comparison.

Keywords: Surface parameterization, point clouds, adaptive sequential learning.

1 1. Introduction

2 Laser scanners are routinely used for model acquisition. They can obtain point clouds of surfaces more
s quickly and with greater accuracy compared to other digitization techniques. A point-cloud range scan, such

4 as shown in Fig. 1, typically contains huge numbers of unstructured, densely and non-uniformly distributed

*Corresponding author
Email addressb. | i @mu. ac. uk (Baihua Li)

Preprint submitted to Pattern Recognition November 26, 2012

http://ees.elsevier.com/pr/viewRCResults.aspx?pdf=1&docID=10131&rev=2&fileID=710839&msid={9036922B-9314-4CBD-8527-CE499C145C28}
coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

coqm
Typewritten Text

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 1: Unstructured noisy point clouds.

points. Measurement errors and occlusions during digitizacan make range data noisy and incomplete,
with “holes”. Direct meshing and manipulation of such pailtuds can be inefficient and difficult with re-
gard to computational cost, memory overhead and robusto@sga noise. Modeling from an intermediary
parametric domain could significantly improve data repnes@n and manipulation flexibility using only

a small set of control parameters and mathematical calontat Parameterization of point clouds in a low
dimensional space, and consequently, with manageableutatigmal cost, good compactness and desired
accuracy, would therefore provide an alternative and mgteble solution to many problems in freeform
surface modeling, including remeshing, multi-resoluteoralysis, level-of-detail (LOD), morphing, texture
transfer, and geometry manipulation [1, 2].

While much research has been conducted on surface par@agter, the majority has focused on
complete mesh surfaces with known vertex connections,noe@iat surfaces with lower spatial complex-
ity represented by small data sets [1, 3, 4, 5]. Such paraizatiens make useful tools for remeshing or
triangulating clean data, but they are not suitable forynared unstructured point clouds. Direct parameter-
ization from point clouds would involve less error compar@@arameterization from intermediary meshed
surfaces. However, a robust method which directly trams$onoisy point clouds into a compact, unified
parametric domain (as opposed to piecewise approachés) amopen problem.

To address this problem, we introduce a neural network agpravolving self-growing Radial Basis
Functions (RBFs). Parameterization is achieved througiptack sequential learning. The resulting net-
work forms a parametric space, so that vertices or contrioitpean be generated, from which a complete
parametric surface exhibiting smoothness can be createdurTknowledge, the proposed RBF network for

direct parameterization of point clouds has the followingel aspects:

e Parameterization is achieved inuaified self-organizing network space, superior to piecewise or

spatial multi-partitioning representation.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

e Our method is applicable to unoriented, noisy, incomplateraon-uniformly distributed point clouds,
rather than only clean, regular or oriented point sets, diase points generated from structured
polygonal meshes. It can deal with freeform surfaces widihweorld geometric complexities, such

as sharp local details and low-frequency global variations

e Parameterization can be conducted at a desired LOD, symgiimulti-resolution applications. It
establishes a compact functional representation and fipplgcations on surface construction, re-

sampling, mesh repair, LOD, and data compression from getstwith only coordinate information.

e The network is constructed through adaptive sequentiatilegusing a single instance of range scan.
Our proposed adaptive learning provides a general soltditine common problem of effective RBF
fitting. Neurons are generated according to heuristieel inputsather than being randomly chosen
from all points. They can be located, removed and adjustédlidimensionality in terms of location,
weight and width, thereby adapting to the distribution oflerying data. This adaptivity ultimately
determines the effectiveness and compactness of RBF fittwhgch is particularly important for

handling large point clouds and complex spatial features.

e The development of th&leighborhood Extended Kalman FiltéNEKF) dramatically reduces the

RBF network construction cost, enabling parameterizingelgoint sets within feasible time.

e Experimental results demonstrate that the proposed p#edaration RBF network provides an ef-
ficient solution for many frequently encountered tasks fltatess point-sampled surfaces, such as

surface reproduction, multiple LODs, mesh repair and datagcession.

The rest of the paper is organized as follows: Section 2 wev/ielated work on surface parameteriza-
tion. Section 3 presents point-cloud parameterizatioautin adaptive learning. In Section 4, we provide
experimental results and evaluate parameterization dggpaccuracy, speed, compactness, adaptivity and
multi-LOD ability. Section 5 discusses general issues sischetwork parameter definition and parameter-

ization performance relative to other methods. We conctudenork in Section 6.

2. Theresearch context and related work

Apart from the usual requirements concerning accuracyedpew memory overhead and compact-

ness, an important criterion for sophisticated surfacarpaterization is the ability to deal with complex

3

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

freeform surfaces, such as those containing highly vaiabld irregular spatial features, represented by
unstructured noisy data. Numerous methods have been gedelbut the majority have focused on mesh
surface parameterization [1, 3]. In these works, the maipgae of parameterization was to obtain piece-
wise linear mappings between a 3D mesh (represented bglegor polygons) and a parametric space,
such as a parametric plane [6], a parametric sphere [7, 8] ortarmediary parametric domain [9, 10], so
as to minimize angular and area distortion for the whole m@&sltthis end, an entire mesh was commonly
partitioned into patches or charts according to certaitufeacurves, and then each patch was interpolated
or approximated piecewise using, for example, polynomtiines or radial basis functions. The whole
parameter mapping was often obtained by linear assemblynafréber of local functions based on least-
square energy minimization. Consequently, piecewisecgubies were likely to suffer from discontinuity
and self-intersection over the cuts between patches. Timpuational cost for non-linear optimization
could be tremendously high for large and complex surfacesstNMmnportantly, these parameterizations
aimed to achieve an exact one-to-one mapping between edel @ad a point in the parametric domain,
relying on information about vertex connections in the mé&alch methods are suitable for structured mesh
data, but not to unstructured and noisy point sets.

Surfaces represented by unorganized scattered pointreeigde challenges of their own. Parameteri-
zation of point-sampled surfaces is particularly impartfan geometry formulation and data compression.
To cope with unstructured point setscharacteristic shapalgorithm was proposed to generate simple
polygons for a shape of a set of clean point data in the pland [¥e algorithm was based on the Delaunay
triangulation of the points, and a single normalized patameas used to control the parametric shape.
Floater and Hormann [5] have suggested that piecewise netioo convex combination mapping could
be applicable when suitable neighborhood information wadlable. Several choices of such neighbor-
hoods were proposed, but the most effective and widely adaptethod was the use of nearest neighbors.
To this end,k-means clustering or similar techniques have been extgsadopted to search locally for
k-nearest neighbors, so as to assist partitioning a sunfdceiset of charts [11, 12, 13]. Due to searches
being based on local surface attribute estimates, suchreataeres and differential features, tkemeans
clustering could be very sensitive to noisy and incompleiti&.dA neighborhood graph has also been intro-
duced to preserve topological information [14]. Howevecould be argued that the highly complex graph
connectivity structure could become unmanageable in the cbBnoisy and extensive point sets.

As discovered by recent advances in function approximatiahpattern classification using Radial Ba-

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

sis Functions [15, 16, 17, 18], RBFs possess many usefuepiep such as good generalization, continuity
and stability [19, 20]. These abilities make RBFs well siiifer accommodating scattered data without
relying onprior information about the connectivity and topology of underydata. Meanwhile, the ex-
traordinary interpolation and extrapolation capab#ited the RBFs allow smooth approximation and repair
of noisy range data. Fitting RBFs to scattered points asiamgurface [21, 22, 23, 24] has been proposed
in computer graphics as modeling methods.

It has been noticed that using all the data to interpolate &BRers could result in a poorly conditioned
matrix, producing unmanageable computational costs astedd@RBFs on large and dense data sets [21].
As an improvement, multi-scale [25] or multi-level spafirtitioning approaches [26, 27, 28] have been
developed. A common strategy in these works has been firgttteefsurface with basis functions of large
support, followed by fitting the residuals with basis funos of diminishing support. To accommodate
RBF fitting, the entire shape was decomposed into subdngsiteratively according to local errors. For
example, regions with large fitting residuals were hierally partitioned into small cells using Octrees
[26], or support centers were iteratively chosen by sgatiahiform, random sampling of the point set
[27]. RBF support centers were restricted on regular celispn a subset of the scattered points. This
is not optimal with regards to adaptivity of spatial feagi@ underlying points and robustness to data
noise. In addition, oriented point sets (coordinates amchats of all points) were required to analyze sharp
geometric features when choosing an appropriate appréximgpe [26, 27]. RBF scales were often fixed
at a same partition level or determined requiring additiamfarmation (e.g. acquisition confidence of scan
points). For RBF based modeling, fitting effectiveness, elsgmsing the least number of RBFs to best fit
underlying data, remains largely unsolved.

As a new genre of computational infrastructure, neural oekvbased methods have been reported. In
particular, a Self-Organizing Map (SOM) [29] has been idtroed for forming a quadrilateral control grid
from scattered point sets, thus allowing surface fitting leziBr-surface or NURBS [30, 31]. Barhak and
Fischer [32] used this network map to parameterize smadl sietlean points with low frequency spatial
variations. They reported that the SOM outperformed theiticanal Partial Differential Equation (PDE)
method, leading to smooth approximation of surfaces. Mt by the similar idea to [31] and [32], a self-
organizing feature map (SOFM) has also been proposed [38}ekfer, the structure of these network maps
was fixed, and the scale of all the neurons was at a constaigefireed value. A more effective network

approach was one employing a multi-layer hierarchical RB&cture as proposed in [34, 35]. Layers in

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

this network were represented by partition grids at indngasesolutions. Although neurons were still
located on these regular grids, the neuron scales wereealltovbe halved at every higher layer, allowing
coarse-to-fine RBF fitting to the mapping residuals.

Despite the various advantages of RBF based methods, prebémain with adaptive fitting of RBFs
to the underlying data. Due to the lack of flexibility on RBBtdibution and scaling in the aforementioned
works, a large humber of fine-scale RBFs were inevitably irequo absorb local residuals. This could
result in the required number of RBFs being even higher thamumber of original points. For a RBF
network approach, a large portion of neurons may be unnaglysktted in low frequency regions, while
resolution could fall short for sharp features and detdls, 32]. Consequently, the computational cost
of dense RBFs can be unmanageable, particularly for datahighly variable spatial frequencies. Solv-
ing the problem of fitting adaptivity is crucial and would bekenefit to both RBF based modeling and
parameterization.

As an solution to effective RBF fitting of noisy unorientedrgaclouds, we propose a self-organizing
RBF network approach. Specifically, a fast adaptive legrailgorithm is presented. In particular, neuron
choice is fully dynamic and adjustable according to the itgvand distribution of underlying data. These
attributes make our approach preferable to those that usefiRiBgs at fixed locations, network structure,
or pre-defined scales. As demonstrated by the experimergalts, parameterization using the proposed
adaptive sequential RBF (ASRBF) network is highly adaptoveomplex spatial features, robust to data

noise, and is compact and efficient for handling extensiveselg@oint sets.

3. Parameterization through adaptive sequential learning RBF networks

In this section, we present the network topology structtire,form of RBF kernel employed, and in

particular, the three-stage adaptive sequential leamogyithm.

3.1. Network topology

A typical feed-forward network is shown in Fig. 2. It has a plentopology linking an input layer, a
hidden layer and an output. The input layer has-dimensional inpuk(x,...,X;), the hidden layer has

kernelsg(x),k = 1,2,...K, and the network output(x) is a linear combination of kernels taking the form

K
f(x) =ao+ kzlak@(X) , 1)

where coefficiengy is the real-valuedveightof the kth kernel, andy is the basis element.
6

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

B—— X
ch \ %N
ax) @kx) ----- % (X)
\ /
A

Figure 2: Feed-forward RBF network topology.

In this study, Gaussian Radial Basis Functions (RBFs)ngas the nonlinear kernels of the hidden
layer, are used as the computational substrate of the netwotaussian RBF imposes no restriction on
point location, and its response falls quickly with incliegsdistance from the kernel, allowing signifi-
cant local influence and controllability. This quasi-lagaimakes Gaussian RBFs well suited for surface
modeling from irregularly sampled points. Therefore Gars&BFs, of the form

) = exp(o -) @

k
are chosen in this study. In Eq. (#)|| denotes the Euclidean normy indicates theenterof thekth neuron

kernel, andoy represents theidth of its coverage.

3.2. The adaptive sequential learning

The adaptivity of the parameterization RBF network derivem the strategy of dynamic network con-
struction through supervised sequential learning. Theort starts from an empty space with no neurons
and no pre-defined structures. Training data (a point set &single instance of range scan) is sequentially

fed into the network. For each input, three tasks will beiedrout:

1. Network growth: the network may self-grow one neuron atdirrent input, if the input point satisfies
the “novelty” criteria. (Section 3.3)

2. Optimization: for a fast optimization that minimizes aareterization residuals, a subset of neighbor
neurons will be updated with full dimensionality using a ¢l@orhood Extended Kalman Filter
(NEKF) algorithm; (Section 3.4)

3. Neuron pruning: finally, a pruning strategy is appliedémove network redundancyseudoneu-
rons, which consistently make little contribution to thegaeterization process, will be discarded.

(Section 3.5)

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

We present a three-stage parameterization process inltbifig sections and summarize the adaptive

sequential learning algorithm in Algorithm. 1.

3.3. Network growth according to the novelty of point inputs

The training sequence of a point cloud can be denoted’as {Xn,zn}|,_1, 4. It consists of./’
independent observations of 3D poikts, yn, Z,} with random data orderings. Vects = (X,,Yn) is used
as network input, and, is its associated measurement output, to be approximatddebgetwork. The
random ordering of the training set aims to obtain uniforiistributed points from the whole data domain.
This is necessary for balanced network growth and pseudmneralidation (Section 3.5). We do not
assume any prior knowledge on the topology or dependendiasihe point set.

The network starts with no neurons in its space. At each ilegstepn, if the current observatiofx,, z, }
satisfies the following three novelty conditions below,rtlzecorresponding new neuron will be added into
the network.

Novelty criterion 1:the inputx, of the currentth observation is far away from the centers of all existihg
neurons in the network,

[IXn — Un_near|| > % ,)

whereun_near represents the neuron center nearest to the currentxgput

This criterion aims to ensure that neurons are inserted &tande of at leastk from each other, so as
to guarantee a well spread and balanced neuron distributittre network space. This separation distance
Yk is initially set to a maximunZmax, allowing a sparse neuron insertion. During the networkving
processZk is made to decay exponentially with the increasing numbeeoafonK involved at that stage

in the network,

.@K - maX{.@maxyK,.@min}, 0 < y< l, (4)

until a pre-defined minimun#y, is reached. The minimum separation distagtg, actually indicates an
overall neuron separation leveh the network which can be used to control the detail levgbarameter-
ization and network compactness. d&cay factory is used to control the decline speed. Obviously, the
consistent decay on the separation distance enforcesritieriey of sparse-to-dense RBF fitting.

Novelty criterion 2:the parameterization errer between the network outpdix,) and the measurement

valuez, at current observatiofix,, z, } is significant,

|len]| > E, where e, = f(Xn) — 2z, . (5)
8

Algorithm 1: Parameterization by adaptive sequential RBF network.

1. Initialization: network parameter initialization and sequential training data generation in random point
ordering
2. Iteration: parameterization startswith no neuron in thenetwork K =0
for each point inputX, z,), n=1,2,...,.4 do
Stage 1: Network growth (Section 3.3)
(1) define the neuron separation distan@g:= max{ Zmaxy <, Zmin}
(2) calculate network output and error residuals at cumetwork inputxy:
f) =20+ 3 adh(xo),
[lenl] = |[f(Xn) — zn|

zin:n—(w—l) elz

w

er(;) p—
(3) apply novelty criteria to add a new neuron:
if (|IXn — Un_near|| > Zk) A(|l&n|| > E) A(€F > Ew)
add a newK+1th neuron;

set neuron parameters ag1 = Xn, a+1=€n, Ok+1 = Y ||Uk+1— Un_near| -
end if
Stage 2: Optimization (Section 3.4)
(1) select neighbor neurons
(2) update neuron parameters by NEKF.
Stage 3: Neuron pruning (Section 3.5)

for each neurokin the networkk=1,2,...,K

2
Q) calculate the neuron outpii, = a@xp(—%) at current observation
k
2 calculate its contribution ratig = K“_'—k‘
> My

if re < & for wobservations
remove thekth neuron from the network.
end if
end for

end for

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

This criterion is used to verify whether the desimetwork accuracy Ehas been achieved locally at the
current input. Obviously, this criterion attempts a clodésat local points. It is effective when a point
measure is accurate. However this assumption usually diémld. Point clouds can be severely corrupted
due to various measurement errors, data holes and outliertlerate possible data noise, a “closeness”
measure in the “mean” sense would be preferable, as deddnilgriterion 3.

Novelty criterion 3:the RMS parameterization error for the lastonsecutive inputs before the currextit

input {xn, z,} is still significant,

e > Eg , where e¥

o Zin:n—(w—l) e|2
Rl

Satisfying this criterion could mean that an accurggytowards a smooth approximation in the whole data
domain has not been achieved. Therefore, new neurons hreatiired to improve the parameterization
accuracy.

In summary, the first criterion enforces a well separatedirereémentally sparse-to-dense neuron distri-
bution, guaranteeing balanced network growth and neurearage. The second criterion ensures that neu-
rons are generated only in areas with larger local mappisiguels. The third criterion evaluates whether
a global accuracy of the parameterization has been achieved

If the current input point satisfies all these three novetipditions, a new(K + 1)th neuron will be
inserted into the network. To best absorb mapping residtizdsnew Gaussian neuron positioR. 1 is
placed at the same location as the inpytits weightak 1 is initialized to be the local mapping erreg,

and its widthok 1 is scaled in proportion to the distance from its nearesthimg according to

UK+1 = Xn
aki1=€n (7)
Ok+1 = Y ||Uk+1— Un_nearl|
wherey is a user-definedverlap factorwith a value between 0 and 1. Parametedefines the overlap
level between the new neuron and its neighbors. A highervialdicates a larger RBF support with more
influence on its neighbors; while when a smaller value is ehpthe Gaussian will produce a more focused
local response.
During network construction, parameterization error wihsistently reduce. Accordingly, weights of
newly added neurons tend to reduce in magnitude. Meanwhiketo the decay policy applied to the sepa-

ration distanceZx, neuron density changes from sparse to dense, thereferagtiron widtho associated
10

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

with its nearest neighbor will decline as well. As an overatidency, fewer neurons with significant widths
and weights are initially generated to model low-frequemasiations and form the smooth substrate sur-
face, while neurons of smaller width and weight are subsattyueecruited in areas with larger residuals to
refine local details (see Section 4.4). This sparse-toaland coarse-to-fine adaptive RBF fitting gives the
network high adaptivity to the underlying data.

If the current observation does not satisfy the three ng\wihditions, no new neuron is added. In the
next stage, a neighborhood EKF algorithm is employed towtipé neuron parameters, thereby minimizing

parameterization error.

3.4. Optimization by fast neighborhood EKF

The least mean square (LMS), gradient descent (GD) and &adeidalman filters (EKF) are commonly
used methods to optimize neuron parameters in nonlinearonet and sequential learning [20, 36, 37].
EKFs have been reported to outperform LMS and GD on stalality accuracy, despite the high compu-
tational cost. The EKF method updates all neurons at eachimgpstep, we therefore refer to it giobal
EKF (GEKF). The computational complexity of the GEKF@A?) per learning step, wher& denotes
the total number of neuron parameters to be updated [38Julrcase, if the network contai neurons,
wp = {apg,Wk| k=1,2,...,K }, and each neuron is represented by four parametewg as(ay, 0k, Ux): two
scalars for weighty and widthai, and one neuron centeg in 2D, then the computational cost for updating
all theseK neurons will beO((4K)?). This cost can become unmanageable for networks with hdadne
thousands of neurons.

To reduce computational cost of the GEKF, we introduce ddasi approach, calledeighborhood EKF
(NEKF). At thenth learning step, only a subset §f neighbor neuronsf the current observatiofx,, z,}

are updated. Selection of neighbor neurons is based on:

1. ifitis the nearest neighbor to the current observation, o

2. ifitis in a neighborhood region proportional to the sepian distanceZx .

Using the first criterion, only the nearest neighbor, pdgdfte most influential to the current observation,
is selected and updated. Updating only the nearest is fdsgigas good stability. When using the second
criterion, on one hand, due to the decay on separation dsstag, the neighborhood region will reduce;
on the other hand, the neuron density will increase duririggor growth. There will, therefore, always

be a sufficient and fairly consistent number of neurons sedecnitially from larger areas with sparsely

11

242 distributed neurons for approximating coarse featuresgtadually concentrating on more local regions to
23 refine details. This implies that the local NEKF actuallyfpens a dynamic global-to-local optimization
244 ON neuron parameters during network construction.

245 Using the NEKF, thenth training step updates the selected subs&t ofeurons in full dimensionality of

226 weight, width and locatiomv, = {ag, wk |wk = (&, Ok, uk), k=1,2,...,K’, K’ <K} by
Wnp = Wn_1+ Gpén , (8)

227 Wheree, = f(x,) — z, is the parameterization error at thth observationx,, z,), andG,, is the Kalman
248 gain calculated by

-1
Gn=Pn_1Bn[Rn+BjPr1Bn] . 9)

220 in which Ry, is the variance of the measurement noBe= Uy, f (Xn) is the gradient matrix of the network
250 output f(xp) with respect to the network parametep, andP, is an error covariance matrix, which is
251 Updated by

Po=[l —GnB}|Pn1+dl , (10)

252 Where the scalag determines the allowed random step in the direction of tadignt vector, andis a unit

253 matrix.

254 The computational cost of NEKF is reduced fr@0(4K)?) to O (4K’)?), where the selecteld’ neigh-

255 bors are usually much less numerous than the ttakeurons in the network. The minimum cost can
256 consistently beD (42) in the extreme case where only the nearest neighbor is up@éte= 1). Experi-

257 mental results showed a remarkable gain in performancelsgeke NEKF over the GEKF and GD with a

258 comparable accuracy (Section 4.6).

0 3.5. Effective neuron pruning to enhance the compactngsarameterization

260 Network size can become large under the growth strategyealoossibly leading to network overfit.
261 To avoid this, we use a pruning process on thpseudoneurons, that make an insignificant contribution
262 10 parameterization over a number of consecutive obsensti These neurons are very likely to have
263 been added due to noisy points, or become redundant as & oéswdtwork optimization. Removing

264 these neurons not only promotes parameterization comgss;thut also helps to reduce artifacts caused by

265 Measurement errors.

12

2

o

6

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

To find such pseudo neurons, at each point observatipa,j, we calculate the network outpki from

each neuron at the inpyt,

2
Xn—U
My = akexp<—7” L il) , (11)
Oy
and then its contribution ratik
Mk
rg = 7K| | . (12)
> M
k=1

If the ratiory is consistently less than tipeuning threshold?” for w consecutive observations in sequential
learning, that is
< 2w, (13)

this neuron is detected agpaeudmeuron and is removed from the network.

In order to provide an effective validation on the contribatof a neuron, the network pruning requires
the w consecutive observations to be uniformly sampled poimis fthe entire data space. This is another
reason for requiring random point orderings in the trairseg The performance of neuron pruning is pre-
sented in Section 4.3. The adaptive sequential learnirayittign for point-cloud surface parameterization

is summarized in Algorithm 1.

4. Experimental results

We implemented the proposed adaptive sequential learrtgrietwork in C++ for point-cloud surface
parameterization. In this section, we present resultsdbatonstrate the performance of the parameteriza-
tion with regard to mesh reproduction and repair (Sectidi, 4nulti-LOD (Section 4.2), pruning effective-
ness (Section 4.3), adaptivity (Section 4.4), compactaedsiccuracy (Section 4.5) and finally performance

efficiency by using the NEKF (Section 4.6).

4.1. Range surface reproduction and mesh repair from pdimid parameterization using ASRBF net-

works

The point-cloud range data used in our experiments of paeaination were obtained from the Ohio
SAMPL range scan database [39]. Each range scan was predsnie 200x 200 array, consisting of
densely distributed surface points and labeled margirsarBaese range points have irregular spatial sam-

pling, generally contain measurement noise and many codtda holes.

13

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

The range scans of different objects vary in physical sizbvaere obtained using different coordinate
systems. To enable the parameterization process be cantigdth consistently chosen network parameters
in a unified network space, while also using same guidelie@sh scan was normalized to a unit cube in its
X, y andz dimensions. Surface points were then taken with randomt poderings to generate a training
sequenceZ = {Xn,Zn} \nzlﬁz,m,_/ , including.#” 3D point observation$xn, z,} in which X, = (Xn,yn) and
Xn,Yn,Zn € [0,1]. Thex, was used as the network input, angits associated output. Details on how the
network parameters were defined will be discussed in Sebtion

The parameterization RBF network of a point-cloud range sess constructed using adaptive sequential
learning as described in Section 3. The resulting netwanlbesevaluated anywhere, so that surface vertices
can be calculated at any desired resolution and orderitogyial the production of the parametric surfate
For direct comparison between the parametric surface amdiginal scan, the network was evaluated at the
same(X,, Yn) locations as in the normalized 28®00 range array, with the outputs as their corresponding
depth valueg,, and the normalized surface points calculated from thenpaterization were then re-scaled
to restore the actual aspect ratio and 3D size of the objects.

The results of direct meshing from point clouds and corredpa parametric surfaces reproduced from
parameterization ASRBF networks are shown in Fig. 3. Froesehexamples, we observe that although
the range scans contain bumpiness, jagged protuberandesaous irregular data holes, the reproduced
parametric surfaces are smooth and complete, preservwyhgfidielity to the original surfaces. Both low
frequency variations and high frequency details are rethimcluding flat facets and sharp edges/corners.
Jagged protuberances (e.g. particularly at sharp edgesasndrs) and bumpiness (e.g. cheek in Fig. 3
(b)) were smoothly filtered. Benefiting from the extraordinmterpolation and extrapolation capability of
the Gaussians, Irregular holes that are large comparec tgegbmetric variation in surfaces (e.g. missing
protruding patterns on the “cow” and missing legs of the ‘t83rare convincingly restored. Therefore, our
method does not require the availability of multiple insts to train a prior model [40, 41]. Missing data
between adjoined faces (e.g. in the “valve” and “Santa”) @so be filled and seamlessly blended into
surfaces. The extended smooth margin areas in the paramedshes, generated by evaluating the entire
network space, exhibit the remarkable extrapolation ofsSi@ms 2. The accuracy of these parametric

surfaces and data compression achieved will be discuss®eciion 4.5 with results provided in Table 2.

1Alternatively, these vertices can also be used as contint$t generate the surface mesh using NURBS or Bezier mgtho

(5]

2Margin areas in the parametric meshes in Fig. 3 can be remame@atding to the margin labels in the range scans.

14

(d) “valve” (/"= 10,145) with flat faces and sharp edges; parametric surfacedaped from 1527 neurons.

Figure 3: Direct meshing results (middle column) from clewd./" points (left), and repaired parametric surfaces genefateu
ASRBF networks (right). 15

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

4.2. Multi-level parameterization and multiple LODs

Reproducing a surface with high fidelity to the level of detaiits raw scan is not always desirable.
A smooth approximation would be more preferable when pdmiids are severely corrupted with noise.
Moreover, meshing at different LODs is often required faalitme rendering and multi-resolution pur-
poses.

The proposed ASRBF parameterization provides the flewihilf LOD control in two ways. The first
is to parameterize the point cloud towards the best resolyirovided in the original scan, then compute
parametric points and surfaces at degrading samplingslésedet downgraded LODs. This method is ef-
ficient when multiple LOD meshes of a surface are requirechftioee parameterization. In the case where
only one specific downgraded LOD is required, the second odetivhich carries out downgraded param-
eterization at a corresponding detail level, would be berffor compactness. To this end, referring to
the first novelty criterion (Section 3.3), the neuron sepandevel Zmin can be used to control the neuron
density in the network, and hence the detail level of pararzttion. Generally, a larger separation level
Zmin Will allow a smaller number of neurons that are more sparmdistyibuted, producing a lower resolution
parameterization; conversely, an appropriately smabéresof Zn,i, will allow more neurons to be added,
thus improving parameterization fidelity towards scan itieta

Figure 4 demonstrates varying mesh LODs from multi-leveapeeterization of the “cow”. The “cow”
range scan contained 4956 points. We used the data twicadomapoint orderings to generate training
sequences of sufficient length. In Fig. 4(a), the separatidue i, = 0.1 produced a much downgraded
parameterization relative to the resolution (20R00) of the original scan. Therefore, only a coarse profile
of the “cow” was reproduced from the highly compacted nekywavith K = 53 neurons. Wher&nmin
was reduced t0.05 (Fig. 4(b)) and @3 (Fig. 4(c)), the parameterization generated increasurgbers
of neurons K = 116 and 224 respectively), leading to more surface detailsgbpresented. When the
separationZmin was set to @1 in Fig. 4(d), a highly detailed surface was achieved froertetwork with
K =522 neurons.

Using the example of the “cow”, Fig. 5 shows how the neurorassjon levelZn, affects neuron den-
sity and the detail level of parameterization. The seqaétrtining data were generated using four different
randomization of the “cow” scan to avoid the possible effatiie to the training data length. The normal-
ized parameterization error indicated in Fig. 5 was define@& b= avg{|| f (x,) —Z[[}he12..4- Itis the

average error betweem values of all.#” points in the scan and their corresponding RBF outpts) at

16

(@) Zmin =0.1,K =53 neurons

(€) Dmin = 0.03,K = 224 neurons (d) Dmin = 0.01,K = 522 neurons

Figure 4: Surface LODs of the “cow” generated from multideparameterization using ASRBF networks. The detail lefel
parameterization is controlled by neuron separafify,. A higher Zni, value downgrades the level of parameterization relative

to the resolution in the original scan, and therefore a diEgtd OD is obtained from a compact network composed of fédver

neurons.

17

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

0.02 1200

0.018
5 0016 1000
= s
c
e 0014 800 3
S 0012 &
© -
¥ 001 600 S
2 s
@ 0.008 o
£ 400 3
S 0.006)
a w
0.004 500
0.002
0 Fo
0.001 0.01 0.1

neuron separation level 9min

Figure 5: The effect of neuron separation leggl;, on network compactness and parameterization accuracipasmy neuron

separation leve¥min vS. parameterization error and number of neurons in the "ganameterization.

the same locatiow, = (X,,Yn). We found that whewy,i, was 001, the parameterization error was around
0.0032, the number of neuron was about 730; wigs, was greater than.01, the parameterization error
increased exponentially due to a consistently reducinghbaurof neurons, therefore downgrading param-
eterization relative to the resolution provided in the imdd scan; whernZm,, was less than 0.01, the pa-
rameterization accuracy was incrementally improved yoatrthmeterization accuracy achieved 0.0028, and
network reached saturation with around 1010 neurorig@af = 0.007. Obviously, this benefit on accuracy
came at the expense of a largely increased number of neuBaz®d on our experiments, we considered

Zmin = 0.01 was appropriate regarding best detail level of paramzateyn and network compactness.

4.3. Parameterization compactness enhanced by neuroringrun

Figure 6 demonstrates the effectiveness of pruning, ubeg@xample of parameterization of the “cow”.
We compared RMS network error (as defined in Eq. 6) and nunflmuwons involved for cases with prun-
ing (Fig. 6(b)) and without pruning (Fig. 6(a)). To keep thework stable and ensure effective evaluation
of neuron contribution, the pruning threshold was se#te= 0.001 for w = 1000 consecutive observations
for the pruning results.

The experimental results shown in Fig. 6 were averaged dddridls. Based on these experiments,
we observed that, at the start of parameterization, neww@ne consistently recruited into the network in

both cases (Fig.6 left column), and the RMS error reducedisa(rig.6 right column). When the network

18

364

365

366

367

368

369

370

371

372

373

374

375

376

error leveled to a steady value after 4000 steps, the withipg network in Fig. 6(b) showed effective
neuron growth control. Pseudo neurons, exhibiting verytéichcontributiong, < & for 1000 consecutive

observations, were detected and removed. By the end ofraotist, the with-pruning network produced
only 522 neurons, while achieving competitive accuracywehler, without pruning, as shown in Fig. 6(a),

neurons were added incessantly throughout network cantistiny resulting in 718 neurons.

1.00E+00

800
2 S
S 600 51.00&5-01 I\
3 o
Q
< 400 g
kS -5 1.00E-02
2 200 =
0 1.00E-03
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
training steps training steps

(a) without pruning: neurons were consistently added inéortetwork (left), RMS error reduced during parameterizafright).

1.00E+00
2] —
c o .
e = 1.00E-01 —trendline
=1 [
< 2
5 =
<] T 1.00E-02
2 5
1.00E-03
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
training steps training steps

(b) with pruning: neurons were added and pseudo neurons ieereved for effective control of network growth (left), RMS
error (right) reduced in a comparable way. A pseudo neurandetected if its contribution ratio was less thah= 0.001 over

w = 1000 consecutive inputs.

Figure 6: Parameterization with and without neuron pruning

4.4. Neuron adaptivity

The adaptivity of parameterization is derived from the didapRBF learning: 1) neurons are heuristi-
cally located according to the novelty of input; 2) pseudaroas can be removed by pruning; 3) neuron
parameters are adjustable in full dimensionality of lamatwidth and weight.

Figures 7 and 8 illustrate neuron spatial distribution amgberties of width and weight in the parameter-
ization network space for the “cow” and “face”. For a morauitive visualization, neurons are represented
by circles displayed in normalized 3D network space at tPBicenters, with their depthvalues evaluated

from the network. To allow better insight, neuron width (Figand Fig. 8 bottom left) is indicated by

19

377

378

379

380

381

382

383

384

385

386

387

388

389

the radius of the neuron circle, and the absolute value afomeweight (Fig. 7 and Fig. 8 bottom right) is

presented by the neuron circle diameter. Both displaysatie reduced to 1:3 to lessen visual clustefing

Scan data

Figure 7: Neuron spatial distribution and properties in“d@v” parameterization. Top: point cloud (4,956 pointspttom left:

neuron width of 522 Gaussians in the network; bottom rigetiron weight.

We observe that neuron distribution and density are highhsistent with surface variations. Meanwhile
the neuron properties of width and weight reflect spatialies. Neurons with large widths or high weights
were located in areas with lower variations. These werellysc@ated at the start of network training to
form a smooth base, while smaller and denser neurons wesergesl in regions with highly variable details.
Although there is an inherent tendency by the greedy algorib favor capture of lower frequencies before
higher ones, smaller neurons consistently retouch the tmess towards increasing fidelity to local details.
Figure 9 shows the average width and weight of neurons atteaicing step of network construction for
the “cow” and the “face”. It visualizes an automatic meclsamiof neuron scale decline during adaptive
coarse-to-fine RBF fitting.

Table 1 provides statistics on neuron properties for botiworks. At the end of training, the “cow”

parameterization used 522 neurons, relatively large andhsd, to approximate the smoothly varying

3Small neurons in Fig. 7 and Fig. 8 may not be visible due totéhiisplay resolution.
20

Figure 8: Neuron spatial distribution and properties in“faee” parameterization. Top: point cloud (18,370 points)ttom left:

neuron width of 1056 Gaussians in the network; bottom rightiron weight.

21

390

391

392

393

394

395

396

397

398

399

400

401

402

1 1 T

. --- v|vei ht 3 ‘
K 4 g 2 - -~ weight
b Ry — width 8
5 01 ===t = =========x= S 01- width ey
3 = s
S o~ A - .. iy

0.01 0.01
0 2,000 4000 6000 8000 10,000 0 5,000 10,000 15,000 20,000
training steps training steps
(a) the “cow” parameterization. (b) the “face” parameterization.

Figure 9: Average neuron width and weight decrease duriagsesto-fine RBF fitting. The results were averaged overial3irTo
fully investigate the trend of neuron scales, the “cow” da#s used twice in random point orderings to obtain traineguences

of sufficient length.

body shape; whereas 1,056 neurons were generated by thegtaraation for the more complex “face”.
As indicated by the standard deviations, the neuron weigttf the “cow” varied more than those of the
“face”. This was probably because the “cow” simultaneoysigsessed richer features at both low (e.g.

smooth variation of the body) and high frequencies (e.gtrpding patterns on the body) than the “face”.

parameterization networl neuron width neuron weight

max min mean std max min | mean| std
cow (522 neurons) 4673 | .0081 | .0307 | .0426 | .8337 | .0033 | .0311| .0544
face (1,056 neurons) 4364 | .0038 | .0210 | .0312 | .6896 | .0065| .0269 | .0477

Table 1: Neuron properties in parameterization RBF netaiork

4.5. Parameterization accuracy and data compression

Experimental results on the compactness and accuracy qfattagneterizations from the examples in
Fig. 3 are provided in Table 2, in which” stands for the number of surface points in a range scan, and
K denotes the number of Gaussian neurons generated by therketdata compression is indicated by:

1) point to neuron compactness rati¢ : K, and 2) storage compression ratiof3: 4K, defined as the
total storage of4” 3D range points to the total storagekoineurons, each represented by the 4 parameters
of width, weight and 2D centers. For a fairer comparison divoek performance on different scans,
parameterization errd was provided in normalized network space, as defined in @edt2, indicating

a percentage accuracy relative to the data variation rangadh scan. The absolute reconstruction errors

22

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

point clouds| # of points # of RBFs normalized errgr data compression reconstruction error (mm
N K E N K 3.4 :4K | mean std
face 18,370 1,056 .0036 17.4:1 13.1:1 | .50 .58
Santa 23,429 1,901 .0055 12.3:1 9.2:1 .51 .67
cow 4,956 522 .0058 9.5:2 7.1:1 .36 46
valve 10,145 1,527 .0069 6.6:1 5.0:1 .61 .89
average 14,225 1,251 .0055 11.5:1 8.6:1 .50 .65

Table 2: Parameterization accuracy and data compression.

of these parametric surfaces were also given as a meansmuacison with other works. It is represented
by the mean and standard deviation of the errors betweenreastaled network output (restoring actual
aspect ratio and 3D size of the surface) and its correspgratian point in the real-world measurement of
millimeters.

The results show that the ASRBF network provides a compaeinpeterization of range data with a
desired accuracy. The average total number of Gaussiantessmthan one tenth of the total number of
range points, and the average storage compression ratevadt86 : 1. The normalized parameterization
error E reached the level of.B5%. The average accuracy for the parametric surfacesvach@0mm in
z, where the average variation Bfalues in the four scans was 9.35cm. The “face”, with smeatiations
of facial features and curly hair patterns, achieved thbdggcompression ratio and best accuracy by using
Gaussians. However, simultaneously modeling both lowueegy (e.g. large background plane in the
“Santa”) and high frequency features (in particular theved, was relatively difficult and costly.

It seems that absolute reconstruction errors did not camlg agree with the normalizef, due to the
data range varying among the different scans. For exant@eydriation ofz-values in the “face”, “Santa”
and “valve” were 13.9 cm, 9.3 cm and 8.0 cm respectively, butais only about 6.2 cm in the “cow”.
Therefore, although the normalized error of the “cow” waskead third, its absolute reconstruction error

was comparatively lower than the others.

4.6. Parameterization efficiency

Parameterization time is mainly determined by the amoutiné used in updating neuron parameters
during network optimization. We therefore compared theedp@gnd accuracy of the neighborhood EKF
(NEKF) method with two commonly used methods: gradient €es¢GD) [37] and global EKF (GEKF)

[38]. The experimental results were obtained using a PenfiGHz PC with 1GB RAM. Figure 10 shows
23

O 5

(] =

£ o E

= =)

=4 £

< £

= 3

S =

=) 4
E =
E o

0.0 T T T

0 100 200 300 400 500 107 I I I I

0 100 200 300 400 500

number of neurons
number of neurons

(a) GEKF [38]: parameterization using GEKF produced 490 oes; showing an exponentially increasing network trajréost

up to the level of seconds.

60 [----—--- B s L -]
> E i i !
£ 50 | | | i S
2 40| | | | 5]
E F | | | o
o 3.0 [Tt T [=
£ E | | ©
c 20 | i | | = i
8 4 . | | 2}
= 10 ¢ | | I =
E | | | ['4
0.0 T T T T T
0 100 200 300 400 500

0 100 200 300 400 500

number of neurons number of neurons

(b) GD [37]: parameterization using GD produced 530 neursingwing a linearly increasing network training cost uglevel

of milliseconds.

10
i —
E g
s S 10 E
E 2
=
g g
€ =02l J
=]
g s
@
-3
10 L L L L L
0 100 200 300 400 500 0 100 200 300 400 500

number of neurons number of neurons

(c) NEKF: parameterization using NEKF produced 520 neurshewing a consistent cost at a level of #&Geconds.

Figure 10: Comparison of how parameterization speed wasteff by an increasing number of neurons using GEKF, GD or

NEKF. Training time costs are displayed on the left, andrtbeiresponding RMS errors are shown on the right.

24

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

results averaged over 10 trials of the “cow”. The NEKF resirtFig. 10(c) demonstrate the extreme case
of updating only the nearest neighbor at each learning step.

As shown in Fig. 10 right column, network updating using thieé aforementioned methods produced
comparable accuracy with similar network RMS errors andrereduction rate, although the GEKF had
slightly better accuracy than the GD and NEKF due to a glopahuozation strategy employed.

However, the network training time (Fig. 10, left columnjfelied remarkably with increasing number
of neurons. The GEKF showed a complexity®f(4K)?) for K neurons (Fig. 10(a)). The GD appeared
to have a linear relationship (Fig. 10(b)). The cost of theKIREFig. 10(c)), however, was nearly constant
O((4)?) when updating only the nearest neighbor. Training time khalso remain be consistently low of
O((4K")?), when updating a small set & neighbor neurons. Towards the end of network training, the
GEKF spent 6.3 seconds to update around 490 neurons, the &D6us milliseconds for 530 neurons,
while the NEKF spent only around 0.12 milliseconds throughbe training process, right through to the
case of 522 neurons. Compared to the GEKF, the computatimadlof NEKF was dramatically reduced,
by a factor of 16.

5. Discussions

5.1. Network parameters

The adaptive parameterization RBF network is conceptigitiyple and straightforward to implement.
The network employs a number of parameters. Based on thgtifuns, they can be used flexibly, facilitat-
ing the use of the network for different proposes, such atralting the level of parameterization detail by
using different values a¥nn, as shown in Fig. 4. After the scan image was normalized tdtaube inx,

y andz dimensions, default values were used and are recommend#tefgeneral purpose of surface pa-
rameterization and reproduction. In this section, we iatidow the defaults were chosen or automatically
calculated from the input data.

Local accuracy threshole and RMS erroiE,, are utilized in the novelty criteria to determine if a new
neuron should be added. The value 0.01 was used as defahtitfothe parameters, as this value not only
helped to better preserve the fidelity to local inputs, bebdb tolerate a certain degree of measurement
errors.

The value of separation distan€gnax = 0.4 was used to enforce a sparse neuron distribution in nor-

malized space at the beginning of network construction. fAdwgron separatio®ni, helped to control

25

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

the density level of newly inserted neurons. This value camwlitained by doubling the uni-dimensional
sampling density of input data. Thus for a sampling dendity/@00 in our 200< 200 scan array, we set
Pmin = 2x 1/200= 0.01. The default decay factgr= 0.99 provided a moderate decline speed of neuron
separation, giving opportunity for coarse-to-fine RBFriifti

We found that these default values worked effectively ogdatatasets containing different objects with
highly varying and complex spatial features; there was redrie adjust them from one experiment to
another. Critically, parameters only need to be set at anoappate level as opposed to a precise value.
This relaxation is gained due to the nature of adaptive iegrais employed by the ASRBF. For example, the
above network parameters are mainly associated with thesaiyg of inserting new neurons. Using these
general settings, neurons added unnecessarily, wrorggyted due to outliers or having become redundant
as a result of network optimization, can still be removedrfitbe network by the pruning process.

In our experiments, only the Gaussian RBF overlap fagtovas set to slightly different values, varying
between 07 ~ 0.8. For example, the “cow”, possessing smoother variatiossd ap value of 0.8, whereas
“face”, “Santa” and “valve”, with relatively sharper dd&iused a lowery value of 0.7. To evaluate the
network accuracy achieved from different values/oét a sufficient training length, we replicated the data
in random orderings to extend the training sequence. Therewmpntal results on the “cow” witly values
between B+ 0.1 are shown in Fig. 11, whereg” denotes the number of points in the scan. We observe
that the differenty values have a limited effect on network accuracy. This isbee the overlap factay
is only used to initialize the width of a newly inserted neyrbowever each neuron can be later adjusted
dynamically during iterative learning and in full dimensaity in terms of location, weight and width.
In summary, precise parameter values do not need accum@teigetermined by trial and error, since the

network automatically fine-tunes itself by means of ada&pi@arning.

5.2. Density and size of point-cloud data sets

The parameterization RBF network is capable of handling-umdformly sampled data with varying
densities and sizes. In a normalized space, a large numiseanfpoints in the “face” (18,370 points) and
“Santa” (23,429 points) presented higher densities; watettiee size and density of the “cow” (4956 points)
and “valve” (10,145 points) were relatively lower. Unlikeher RBF methods, which could encounter over-
fitting problems when dealing with dense point sets, therpatarization RBF network essentially favors
large and dense data sets, because its neurons are gemattgtadcording tahovel inputgather than from

all points. Sufficient length of point cloud data is desiregbhtoduce high detail level of parameterization.

26

0.0060
——09

0.0055 085 —
_ 0.0050 e
2 —o—0.8
5 0.0045 —
; —#4—0.75
E 0.0040 —_07
2 0.0035

0.0030 —

0.0025

0.0020

2N 4N 6N SN 100
training data length

Figure 11: Limited effect of differeny values on network accuracyt” denotes the number of points in the scan.

0.008 200
0.007 li_'i--*--#“*--&.-*-.*--x o
2

2 0.006 ’ 600 3
o —@m—C[TO §
S 0.005 -—,}‘ '\ 500 &
= x == neuron °
o 0.004 400 S,
2 2
]
£ 0002 200 @
o
0.001 100
0 0
1IN 3N 50 7N IN 1IN

training data length

Figure 12: Replication of original data improves paranie&tion accuracy: replication of scan data vs. paramettoz error and

number of neurons.#” denotes the number of points in the scan.

27

484

485

486

487

488

489

490

491

492

493

494

495

496

497

4

©

8

499

500

501

502

503

504

When a surface was somewhat under-sampled relative toatageic complexity (e.g. the “cow”), we
replicated the data in random orderings to extend the trgisequence. Although this method did not
create any new inputs, it did increase the chance of a poingl@novel instance during a longer process
of network optimization, thereby promoting the accuracpafameterization. In the example of the “cow”,
Figure 12 demonstrates how the number of data point reficabf the original scan affected the accuracy
and number of neurons in the network. When using a singlécegjmn of scan data (from#” to 2.47),

a moderate parameterization erfor= 0.0058 was achieved with 522 neurons; when using the data three
times (347), the error was significantly reducedEo= 0.004 with increased number of neuroms-€ 718).

After replicating the data to four sets.(4), the network achieved saturation, so that the extendédrica
sequence length by anothet” caused neuron number to increase only a couple each timer. &it’, the
neuron number remained constant at 738. However, the neleouracy was still improved incrementally

as the result of network optimization. This indicates thaedain number of training replications can help

deal with under-sampled data sets and always improve ne@emuracy in sequential learning.

5.3. Performance comparisons

point cloud GEKF [38] GD [37] NEKF
Toara | Trep | #RBFs| E Toara | Trep | #RBFs| E Toara | Trep | #RBFs| E
(#points) (hrs) | (s) (1073 | (s) (s) (103) | (1073)
cow (4,956) 075 | .74 | 490 5.5 4.1 8 530 6.2 1.4 8 522 5.8
face (18,370) 236 | 58 | 965 32 | 614 | 6.7 | 1097 | 41 | 145 | 6.6 | 1056 | 3.6

valve (10,145) 42.5 4.7 1452 7.1 35.8 54 1690 9.1 8.7 5.3 1527 7.5
Santa (23,429) 98.2 13.6 | 1786 4.9 153.4 | 17.5| 2159 7.0 33.1 | 15.6 | 1901 55
average (14,225)| 41.3 hrs| 6.2s| 1,073 5.1 63.7s| 7.6s| 1,369 6.6 144s| 7.1s| 1,252 5.6

Table 3: Parameterization performance when using GEKF, GDNEKF.

Table 3 shows the performance results of parameterizasimg WSRBF networks. We presented results
on parameterization timél(ara), the time {rep) used to reproduce all points at original inputs, number of
Gaussian RBF (#RBF) and normalized parameterization eﬁ)orWe compared our results using NEKF
to the results using GEKF [38] and GD [37]. The experimentsavoarried out on PC with 3GHz Pentium
processor and 1GB of RAM. For comparison, consistent nétywarameters were used on each range scan
for GEKF, GD and NEKF, so that parameterization with eachhefthree methods was carried out to the

same desired accuracy level while similar numbers of neuere produced.
28

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

From the results shown in Table 3, we observed that paraizegien using GEKF appeared to achieve a
slightly better accuracy, but this came at expense of isangaraining time by several orders of magnitude.
This was due to the high complexi®((4K)?) required by the GEKF to update &lneurons at each input.
This computational cost overhead become unmanageablarfm hetworks and training sets. Parameteri-
zation time using GD increases linearly with the number afrors and training points. Comparing GEKF
to GD, average training time used by the GEKF was 41.3 hoursreas the GD required only 63.7 seconds.
The NEKF achieved the fastest parameterization, at ange@fal4.4 seconds. Only a handful of neighbor
neurons were updated at each training input. Its averagenigatime was further reduced to one fourth of
that used by GD. Furthermore, it also improved on GD accubg®5%, using &% fewer neurons.

The time used for reproducing a point from the parameteozatetwork is directly proportional to the
number of RBF neurons. In our experiments, the average tsaé to compute one RBF output was around
3.3x 10 " seconds. Since each of the three methods generated a similder of neurons, the reconstruc-
tion timesTep are therefore on a similar level for each scan. By compayis@KF parameterization used
less time Trep = 7.1 seconds) on average to produce 14,225 parametric poihig, itaining a relatively
high accuracy of B x 10~2, while using fewer neurons (1,252 neurons).

In addition, the proposed adaptive dynamic RBF networkctiine outperforms networks with fixed
structures. We compare our approach with the most relevahstate-of-art multi-layer hierarchical RBF
(HRBF) network structures [34, 35]. Each layer in the HRBEnmek contains a regular grid of Gaussians
at decreasing scales. A neuron is located according to tieatexf local mapping error, thus the grids do
not need to be fully filled. Although neurons still have to ll@ged on the partition grids, neuron sizes vary
at multi-scales by means of halving the width at every higager. Once a neuron is inserted, it cannot
be moved or discarded. The network construction time isg®édinearly to the size of scan data and the
number of neurons involved.

The HRBF network has been applied to point-cloud surfaceafugl In [35], a 4-layer HRBF network
was used to approximate a human face scan containing 12@dts.p Experimental results showed that
the reconstruction error achieved 0.77 mm, with 5,570 Ganssbeing generated by the network. The
compression ratio#” : K was thus 2.3:1. In [34], results based on a toy face scan§18ints) showed
a similar reconstruction accuracy of 0.779 mm and compassitio./” : K = 2 : 1 involving the use of
8,087 Gaussians in a 4-layer HRBF network.

In comparison, thanks to the adaptive learning and dynaetiwark structure, as shown in Table 2, the

29

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

ASRBF achieved higher compression ratios at comparableracg This is particulary evidenced by the
“face” data set.(#" = 18 370 points). OnlyK = 1,056 Gaussians were generated for the “face” using the
ASRBF parameterization network. The compression ratia K = 17.4 : 1 achieved by the ASRBF was
significantly higher than that by the HRBF networks, whileRES- also achieved a comparable level of

reconstruction accuracy of 0.50mm.

5.4. Comparison with Self-Organizing Maps

The ability of SOM to learn topological maps from input daistidbutions has been explored for surface
reconstruction from vertices in a mesh or a point cloud [30, 3This section compares results on the
accuracy of meshes reproduced from SOM [29] and the propAS&RBF. Firstly, range scan data was
used to train the ASRBF network and SOM network. Surfacecemicalculated from the obtained ASRBF
network and from the SOM were meshed using the same funct@hFsvoting in Meshlab [42]. The
accuracies of the ASRBF mesh and the SOM mesh with respecigioa mesh generated from the raw
scan were computed using Metro Tool [43].

Accuracy measures presented by the Hausdorff distancep¢he and RMS deviations from each orig-
inal mesh to its reconstructed mesh, are shown in Table 4 HEusdorff distance indicates the maximum
difference between two meshes; however, the mean and RM8svate more descriptive due to being less
susceptible to the influence of outliers. The accuracy nreasin Table 4 were averaged over 10 trials,
presented as a percentage of the bounding box diagonahlemtte original mesh. Since range data input
was over a 200200 square, for fair comparison, we chose the most squaeIDM grid with the number
of SOM nodes and the the number of neurons in the ASRBF as afpessible. The size of the SOM grid
used for each point cloud is given in the first column of SOMdadmtries.

The results show that the ASRBF networks produce betterracguhan standard SOM when using
similar numbers of neurons. As described in previous sestithe advantage of ASRBF based mesh re-
production is primarily driven by the benefits from: 1) thdrarrdinary interpolation and extrapolation
capability of Gaussian kernels to provide better surfacdifid 2) network structure flexibility and neuron
adaptivity to the unorganized underlying data. The SOMiregla grid structure composed of point nodes.
The 3D locations of SOM point nodes are used directly ascaston the mesh. Although the SOM net can
be broken where necessary to adapt to the input data, theefireed number of nodes and fixed connection

linkages ultimately constrain the flexibility and accuradyhe topological map generated by SOM.

30

5

=3

4

565

566

567

568

569

570

571

572

573

574

575

576

577

5

S

8

579

580

581

582

583

584

point clouds ASRBF SOM [29]

of neurons| Hausdorff dist.| mean| RMS # of nodes | Hausdorff dist.| mean| RMS
face 1,056 1.5% .09% | .14% | 1,056 (33 32) 2.6% .16% | .31%
Santa 1,901 2.6% .09% | .15% | 1,892 (44<43) 4.7% 17% | .38%
cow 522 1.5% A12% | .19% | 529 (23<23) 2.2% .19% | .33%
valve 1,527 2.9% A13% | .19% | 1,521 (3%« 39) 3.6% .25% | .49%
average 1,251 2.1% 10% | .17% 1,250 3.3% .19% | .38%

Table 4: Comparison on mesh accuracy reproduced from theBAZRd SOM.

6. Conclusions

We presented a neural network based method to solve theepnaidl point-cloud surface parameteriza-
tion. The network employs a dynamic structure through adapearning. It allows Gaussian neurons to
be fitted according to the novelty of inputs, while also bty adjustable on their locations, widths and
weights. Compared to approaches using RBFs at fixed losatiod at pre-defined scales, our approach
achieved a high compression ratio and a comparable levetafracy. The developed NEKF method
dramatically reduces the training cost to a manageable &mabling parameterization of extensive point
clouds, involving the use of large scale of networks. Expental results show that complete surfaces can
be accurately reproduced from unified low-storage paraizat®n networks, and multiple LODs can be
easily obtained. Our adaptive learning strategy conteibtid the general problem of effective RBF fitting,
and thus could be of value to other RBF based methods. Thépibgof effectively absorbing nonuni-
form mapping residuals in areas with learning difficultieaynve addressed by extending the adaptivity to

a multi-layer network. This is left for future work.

References

[1] A. Sheffer, E. Praun, K. Rose, Mesh parameterizatiorhods and their applications, Foundations and Trends in Qtenp
Graphics and Vision 2 (2) (2006) 105-171.

[2] X.Sun, E. Hancock, Quasi-isometric parameterizatmméxture mapping, Pattern Recognition 41 (5) (2008) 11323.

[3] M. Floater, K. Hormann, Surface Parameterization: aofiat and Survey. Advances in Multiresolution for Geomeiviod-
elling, Springer Berlin Heidelberg, 2005.

[4] M. Duckham, L. Kulik, M. Worboys, A. Galton, Efficient genation of simple polygons for characterizing the shapessta
of points in the plane, Pattern Recognition 41 (10) (200&43:3236.

31

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

M. Floater, K. Hormann, Parameterization of triangidas and unorganized points, in: Tutorials on Multiresioaitin
Geometric Modelling, 2002, pp. 287-315.

E. Zhang, K. Mischaikow, G. Turk, Feature-based surfpaeameterization and texture mapping, ACM Transactions on
Graphics 24 (1) (2005) 1-27.

C. Gotsman, X. Gu, A. Sheffer, Fundamentals of sphepaaameterization for 3D meshes, in: ACM SIGGRAPH, 2003, pp.
358-363.

E. Praun, H. Hoppe, Spherical parametrization and rémgs ACM Transactions on Graphics 22 (3) (2003) 340 — 349.

J. Schreiner, A. Asirvatham, E. Praun, H. Hoppe, Intarface mapping, ACM Transactions on Graphics 23 (3) (2004)
870-877.

S. Dong, P. Bremer, M. Garland, V. Pascucci, J. Hart,cBpesurface quadrangulation, in: ACM SIGGRAPH, 2006, pp.
1057 — 1066.

T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silman, A. Wu, An efficient k-means clustering algorithm: Argdy
and implementation, IEEE Trans. Pattern Anal. Mach. Ingl(7) (2002) 881-892.

Y. Miao, J. Feng, C. Xiao, Q. Peng, A. Forrest, Diffeiaibased segmentation and parameterization for pomipssd
surfaces, J. of Computer Science and Technology 22 (5) J2Z008-760.

R. Morales, Y. Wang, Z. Zhang, Unstructured point clautiface denoising and decimation using distance RBF Kesear
neighbor kernel, in: PCM Advances in Multimedia Informati®rocessing, 2011, pp. 214-225.

M. Zwicker, C. Gotsman, Meshing point clouds using spiml parameteriztion, in: Proc. Eurographics Symposam
Point-Based Graphics, 2004, pp. 173-180.

F. Fernandez, C. Hervasand, P. Gutiérrez, A dynawé-sampling procedure based on sensitivity for mulisslproblems,
Pattern Recognition 44 (8) (2011) 1821-1833.

C. Silva, S. Ranganath, L. Silva, Cloud basis functi@unal network: A modified RBF network architecture for htdis
facial expression recognition, Pattern Recognition 41(28p8) 1241-1253.

A. Alexandridisa, H. Sarimveisb, K. Ninosb, A radialdi& function network training algorithm using a non-symricet
partition of the input space - application to a model predictontrol configuration, Advances in Engineering Sofevar
42 (10) (2011) 830-837.

Q. Meng, M. Lee, Automated cross-modal mapping in ra@beye/hand systems using plastic radial basis functiowards,
Connection Science 19 (1) (2007) 25-52.

B. Choi, J. Lee, Comparison of generalization abilitysolving differential equations using backpropagatiod eformu-
lated radial basis function networks, Neurocomputing T®@ 115-118.

Y. Lu, N. Sundararajan, P. Saratchandran, Performawakeiation of a sequential minimal radial basis functioBFRneural
network learning algorithm, IEEE Trans. Neural Network2p(1998) 308-318.

J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. FrigBt, McCallum, T. Evans, Reconstruction and representatfo8Do
objects with radial basis functions, in: ACM SIGGRAPH, 20pp. 67-76.

H. Liu, X. Wang, W. Qiang, A fast method for implicit sade reconstruction based on radial basis functions netfromk
3D scattered points, Int J Neural System 17 (6) (2007) 459-65

Y. Lin, C. Chen, M. Song, Z. Liu, Dual-RBF based surfaeeanstruction, Visual Computer 25 (2009) 599-607.

N. Pears, T. Heseltine, M. Romero, From 3d point clowpdse-normalised depth maps, Int. Journal of Computepisi

32

623 89 (2010) 152-176.

624 [25] C. Walder, B. Schlkopf, O. Chapelle, Implicit surfacedelling with a globally regularised basis of compact suppoom-
625 puter Graphics Forum 25 (3) (2006) 635-644.

626 [26] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H. Seidel, Midievel partition of unity implicits, ACM Trans. Graph. 23)
627 (2003) 463-470. doi:http://doi.acm.org/10.1145/882282293.

628 [27] Y. Ohtake, A. Belyaev, H. Seidel, Sparse surface reitoogon with adaptive partition of unity and radial basisi€tions,
629 Graphical Models 68 (1) (2006) 15 — 24.

630 [28] D.Chen, B. Morse, B. Lowekamp, T. Yoo, Hierarchicalbrfitioned implicit surfaces for interpolating large ptodet models,
631 Geometric Modeling and Processing 4077 (2006) 553-562.

632 [29] T.Kohonen, The self-organizing map, Neurocomputidg 2998) 1-6.

633 [30] A. Junior, A. Neto, J. de Melo, Surface reconstructismg neural networks and adaptive geometry meshes, in. lHBE
634 Int. Joint Conf. on Neural Networks, 2004.

635 [31] L. Varady, M. Hoffmann, E. Kovacs, Improved free-fornodelling of scattered data by dynamic neural networks, 1J. fo
636 Geometry and Graphics 3 (2) (1999) 177-181.

637 [32] J.Barhak, A. Fischer, Parameterization and recoostm from 3D scattered points based on neural network artd, FEEE
638 Trans. Visualisation and Computer Graphics 7 (1) (2001p61-1

639 [33] G. Knopf, A. Sangole, Interpolating scattered datang<dD self-organizing feature maps, Journal Graphical N&€6 (1)
640 (2004) 50-69.

641 [34] A.Borghese, S. Ferrari, V. Piuri, Real-time surfaceargstruction through HRBF networks, IEEE internationatksbop on
642 haptic virtual environments and their applications (2002} 24.

643 [35] S. Ferrari, M. Maggioni, N. A. Borghese, Multiscale apximation with hierarchical radial basis functions netksy IEEE
644 Trans. on Neural Networks 15 (1) (2004) 178-188.

645 [36] J.Platt, A resource-allocating network for functiantarpolation, Neural Comput. 3 (2) (1991) 213-225.

646 [37] N. Karayiannis, Reformulated radial basis neural meks trained by gradient descent, IEEE Trans. on Neural biddsv
647 10 (3) (1999) 657—-671.

648 [38] D. Simon, Training radial basis neural networks with #xtended Kalman filter, Neurocomputing 48 (2002) 455-475.
649 [39] Range image database at Ohio SAMPL, http://sampbbaestate.edu/data/3DDB/RID/minolta.

eso [40] W. Smith, E. Hancock, Facial shape-from-shading ardgaition using principal geodesic analysis and robusissitss, Int.
651 J. of Computer Vision 76 (1) (2008) 71-91.

652 [41] V.Blanz, T. Vetter, A morphable model for the synthesfiSD faces, in: Proc. SIGGRAPH, 1999, pp. 187-194.

653 [42] Meshlab, http://meshlab.sourceforge.net.

654 [43] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measurirgor on simplified surfaces, Computer Graphics Forum 17 (2)

655 (1998) 167-174.

33

*Author Biography

Author Biography

QINGGANG MENG received B.Sc. and M.Sc. degrees in Electronic Engineering from Tianjin University,
China and Ph.D. degree in Computer Science from Aberystwyth University, UK. He is a Senior Lecturer in
the Department of Computer Science, Loughborough University, UK. His research interests include
biologically and psychologically inspired learning algorithms and developmental robotics, service robotics,
robot learning and adaptation, multi-UAV cooperation, driver's distraction detection, human motion
analysis and activity recognition, activity pattern detection, pattern recognition, artificial intelligence

and computer vision. He is a member of the IEEE and a fellow of the Higher Education Academy of United
Kingdom.

BAIHUA LI received B.Sc. and M.Sc. degrees in Electronic Engineering from Tianjin University, China
and Ph.D. degree in Computer Science from Aberystwyth University, UK. She is a Senior Lecturer in the
School of Computing, Mathematics & Digital Technology, Manchester Metropolitan University, UK. Her
current research interests include computer vision, pattern recognition, advanced 3D computer graphics,
human motion analysis and behavior understanding from multi-modality imaging and sensory data. About
40 fully refereed research papers have been published in leading national/international journals and
conferences, including IEEE Trans. SMC, PR and IVC. She takes a role as reviewer and Program
Committee member for a number of high quality journals and conferences. She is a member of the BMVA.

HORST HOLSTEIN received the degree of B.S. in Mathematics from the University of Southampton, UK,
in 1963, and obtained a Ph.D. in the field of rheology from Aberystwyth, UK, in 1981. He is a Lecturer in
the Department of Computer Science, University of Wales, Aberystwyth, UK. His research interests
include computer graphics, motion tracking, computational bioengineering and geophysical gravi-magnetic
modelling.

YONGHUALI LIU received his first PhD degree from Northwestern Polytechnical University, People’s
Republic of China, in 1998, and his second PhD degree in computer science from The University of Hull,
UK, in 2001.Currently he is a senior Lecturer at Aberystwyth University. He is a guest editor for the special
issue of Computer Vision and Image Understanding Journal on the registration and fusion of range images
published in 2002. He has served as a program committee member and a referee for more than 30
international conferences and journals. He has published more than 100 papers in international conference
proceedings and journals. His primary research interests lie in computer graphics, image registration,
motion estimation, pattern recognition, image processing, machine learning, 3D vision and artificial
intelligence. He is a member of the IEEE and a fellow of the Higher Education Academy of United
Kingdom.

