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We consider two-dimensional problems based on linear water wave theory concerning 
the interaction of waves with horizontal cylinders in a fluid consisting of a layer of 
finite depth bounded above by a free surface and below by an infinite layer of fluid 
of greater density. For such a situation time-harmonic waves can propagate with 
two different wavenumbers K and k. In a single-layer fluid there are a number of 
reciprocity relations that exist connecting the various hydrodynamic quantities that 
arise. These relations are systematically extended to the two-fluid case. It is shown 
that for symmetric bodies the solutions to scattering problems where the incident 
wave has wavenumber K and those where it has wavenumber k are related so that 
the solution to both can be found by just solving one of them. The particular 
problems of wave scattering by a horizontal circular cylinder in either the upper or 
lower layer are then solved using multipole expansions. 

1. Introduction 
Linear water wave theory is a widely used technique for determining how a wave 

is diffracted by a fixed or floating structure. The underlying assumption of the theory 
is that the amplitudes of any waves or body motions are small compared to the 
other length scales in the problem. At first order, this means that it is only necessary 
to consider the diffraction of a wave of a single frequency and direction, as linear 
superposition yields the diffraction pattern for an irregular sea. Furthermore, the 
velocity potential may be split into a part which describes the scattering of waves by 
a fixed structure and a part which describes the radiation of waves by the body into 
otherwise calm water. The radiation potential may be further split into a number of 
sub-potentials, each of which corresponds to the body moving in a separate mode 
of motion. The resulting potentials may be solved for separately but they are not 
all independent and a series of reciprocity relations which connect various scattering 
and radiation quantities have been derived by many authors over the years. These 
relations may be obtained by applying Green’s theorem to two different potentials 
and a systematic derivation of all the first-order reciprocity relations is given by 
Newman (1976). They yield important information about the hydrodynamic loading 
on a body and the scattered wave field, and form a valuable check on the accuracy 
of any numerical wave diffraction code. 

The reciprocity relations which exist have been derived for single-layer fluids, both 
in two and three dimensions and for finite- and infinite-depth fluids. More recently, 
however, interest has been extended to bodies which are immersed in two-layer fluids, 
each fluid having a different density. One reason for this is the suggestion by Friis, 
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Grue & Palm (1991) that an underwater pipe bridge might be built across one of 
the Norwegian fjords. A fjord typically consists of a layer of fresh water about 10 m 
thick on top of a very deep body of salt water. A bridge would have a diameter large 
enough to hold a two-lane road (about 10 m) and would enter the water at a gentle 
slope passing through the free surface, the middle section being 40 m or so below the 
free surface, (and therefore totally within the lower layer), before rising through the 
upper layer and breaking the free surface on the other side of the fjord. If such a 
bridge were to be built, it would clearly be important to determine the effect a wave 
field would have on it. 

The propagation of waves in a two-layer fluid which does not contain any bodies 
was first investigated by Stokes (1847) and a description of some of the types of 
linear motion which can occur is given in Lamb (1932, Art. 231). Since then many 
authors have studied the purely internal wave problem in which the upper fluid is 
either unbounded or is bounded above by a rigid lid. In particular, much work has 
been done on internal solitary waves in two-layer fluids, pioneered by authors such 
as Keulegan (1953), Long (1956) and Benjamin (1967). In addition, steady two-layer 
flow over bottom topography has been widely investigated (see, for example, Baines 
1984 and references therein). Less work has been done on the unsteady problem in 
which the upper surface of the upper fluid is free. In this situation, Lamb (1932, 
Art. 231) showed that there are two possible linear wave systems at a given frequency, 
each with different wavenumber. These different modes may be interpreted easily 
when the ratio of the densities of the fluids is small. One mode corresponds to an 
oscillation which is mainly confined to the upper fluid and which is almost the same 
as that which would be obtained if its lower surface were a rigid wall. The second 
mode may be thought of as an oscillation in the lower fluid which is almost the same 
as would occur if its upper surface were free. For an arbitrary but stable density 
ratio, there is the possibility that some of the energy may be transferred from one 
mode to another if the wave field interacts with a body and this is one area which is 
investigated in this work. 

In $2 the radiation and scattering problems for an arbitrary, two-dimensional 
configuration of horizontal cylinders in a two-layer fluid are considered. Following 
the approach of Newman (1976), all the first-order reciprocity relations for a two- 
layer fluid are systematically derived from Green’s theorem. Some of the relations 
such as the symmetry of the added mass and damping matrices and the analogue of 
the Haskind relations have already been reported by Wu (1992) and Sturova (1994) 
respectively, but a systematic derivation and collation of all the possible relations 
seems desirable. In $3, the wave scattering by a single, horizontal, circular cylinder 
which is totally contained in the lower fluid is investigated. The reasons for considering 
this specific body are two-fold. First, from a physical viewpoint, a circular cylinder 
is a reasonable model of a pipe bridge. Secondly, it is well-known (Dean 1948) that 
there is zero reflection of waves of any frequency by a circular cylinder submerged in a 
single-layer fluid of infinite depth and it is interesting to investigate the corresponding 
situation in the two-layer fluid. The analysis is slightly more complicated for the two- 
layer fluid because there are two possible reflected waves of different wavenumbers 
to consider. However, by using a multipole expansion analogous to that used by 
Ursell (1950) in the single-layer fluid, we find that regardless of the wavenumber of 
the incident wave, there is no reflection of energy into either mode. The partition of 
energy between the transmitted wave modes is investigated numerically with the aid 
of the reciprocity relations derived in $2. The analysis is repeated in $4 for a circular 
cylinder which is contained in the upper fluid and reflection of waves is found to 
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FIGURE 1. Definition sketch. 

occur in this case. Finally, numerical calculations of the amount of energy reflected 
and transmitted in each mode are presented. 

2. Radiation and scattering problems in two-layer fluids 
The geometry of the two-layer fluid is shown in figure 1 and both fluids are assumed 

to be inviscid and incompressible. The horizontal coordinate is x whilst the vertical 
coordinate is z and is measured upwards from the undisturbed interface between the 
two fluids, the free surface being linearized about z = d.  The upper fluid, 0 < z < d, 
will be referred to as region I, whilst the lower fluid, z < 0, will be referred to as 
region 11. The potential in the upper fluid (of density p')  is 4' and that in the lower 
fluid (of density p" > p' )  is $'I .  The motion is assumed to be irrotational and so 
both 4' and 411 satisfy Laplace's equation: 

v24' = v24" = 0. (2.1) 

If we define p = p* /p" (< 1) then the linearized boundary conditions on the interface 
and free surface are 

where K = 02/g,  the time-dependence of e-'"' having been suppressed. The boundary 
conditions (2.2) and (2.3) represent the continuity of normal velocity and pressure at 
the interface respectively. 

In a two-layer fluid progressive waves take the form 

= AefiUx((u + K)e"(Z-d) + (u  - K)e-U('-d)), 

4" = Ae*iUXeUz((u + K)e-& - (u - K)ed), 

where u satisfies the dispersion relation 

(u - K ) ( K ( o  + e-'&) - u(1 - e-'&)) = 0. 

Here c = (1 + p ) / (  1 - p). It follows that either u = K or u = k where 

K ( a  + e-Utd) = k(l - e-2kd). (2.5) 

This relation can be written in a number if different ways. Lamb (1932, Art. 231) 
gives the equivalent formula 

K ( p  + coth kd)  = k( 1 - p).  (2.6) 

It is straightforward to show that the dispersion relation (2.5) has exactly one positive 
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root k which lies in the range 
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K(a + 1) 
1 - e-2Kd~ ' K a < k <  

Waves of wavenumbers K and k can exist and they can propagate in either 
direction. In any wave radiation or scattering problem therefore, the far field will 
take the form of incoming and outgoing waves at each of the wavenumbers K and 
k. It can be shown that the correct form for the far field is in general given by 

KO-k K - k  e-kz 

K(a  - l)ek' + K(a - 1) 
(2.10) 

(2.11) 

It may appear at first sight that there is a problem with (2.8) as d + 00 since the 
terms involving exp{Kz} become large. However it should be remembered that these 
terms correspond to waves on the surface at z = d and if the amplitudes of such 
waves are chosen to be unity a factor of exp{-Kd} is introduced into the coefficients 
A', C'. A convenient shorthand for (2.8) and (2.9) is 

4 - {A-,B-, C-,D-; A+,Bf, C+,D'}.  (2.12) 

In the case of a single-layer fluid relations exist between the various hydrodynamic 
quantities that arise, which can be determined by an appropriate application of 
Green's theorem. These relations were discovered over a number of years and were 
systematically derived by Newman (1976). Similar results can be obtained in the 
two-fluid case. 

We consider a situation in which there are a number of bodies, some in the upper 
layer, some in the lower layer, and some straddling the two. The boundaries of those 
bodies lying in the upper fluid will be denoted by BI and those in the lower fluid 
by BII. Assume that 4 and w are solutions to two different problems, with a4/an 
and aw/an  given on the boundaries BI and B I I ,  with the far-field form of 4 given by 
(2.12), and 

l# 'u {Z-,B-,C-,3-;%+,B+,C+,3+}. (2.13) 
We now apply Green's theorem, which for harmonic functions 4 and y takes the 
form 

(2.14) 

where S is the boundary of a fluid region completely contained in one of the fluid 
layers and a / a n  is the derivative with respect to the outward normal. Taking S to be 
first the boundary of region I and then the boundary of region 11, closed with lines 
at x = -M and x = L, then using the result that on z = 0, outside of any bodies, 

(2.15) 

which follows from (2.2) and (2.3), we obtain after some lengthy algebra and letting 



The interaction of waves with horizontal cylinders in two-layer fluids 217 

M , L + a ,  

where 

JK = i (1 + 2pK i d e 2 K z  dr) , 

J k  = i (1 + 2pk L[g(r)]'dz) . 

(2.17) 

(2.18) 

In particular, if 4 and y are both scattering potentials having zero normal derivative 
on all body boundaries then the left-hand side of (2.16) is zero. 

If we consider the scattering of waves by a fixed (but otherwise arbitrary) set of 
bodies, then in general there are four problems to consider. These are the scattering of 
an incident wave of wavenumber K from x = -a, which we shall refer to as problem 
1;  the scattering of an incident wave of wavenumber K from x = +a (problem 
2); the scattering of an incident wave of wavenumber k from x = -a (problem 3); 
and the scattering of an incident wave of wavenumber k from x = +a0 (problem 
4). In each case there may be reflected and transmitted waves of wavenumbers K 
and k. Capital letters R and T will be used to represent reflection and transmission 
coefficients corresponding to waves of wavenumber K with r and t used for waves of 
wavenumber k.  Thus the four problems are characterized using the notation of (2.12) 
by 

(2.19) 
(2.20) 
(2.21) 
(2.22) 

Applying (2.16) to $1 and its complex conjugate 6 and writing J = J ~ / J K  leads to 

IR112 + IT1l2 +J(Ir1l2 + h12) = 1, (2.23) 

a result representing the conservation of energy. Similarly 

(2.24) 
(2.25) 
(2.26) 

Taking all possible pairs of functions from 
leads to the relations 

62, 43 and 4 4  and applying (2.16) 

(2.27) 

(2.29) 
(2.30) 

(2.28) 
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T4 = Jtl, 
T3 = Jt2. 

(2.31) 
(2.32) 

The meaning of (2.27) and (2.28) is clear. The transmission coefficient for the wave 
of the same wavenumber as the incident wave is independent of the direction of 
incidence. This has a direct analogue in the non-stratified fluid case where it is 
well-known that the transmission coefficient is independent of the direction of the 
incident wave. 

In order to shed light on the other relations it is convenient to define energies as 
follows: 

Ej R = lRjl 2 3 Ej T -  - I i 1 - 2  j (  , ES = Jlrj12, Ei = JJtjI2, j = l ,2,  (2.33) 

Ef = 1RjI2/J, ET = ITj12/J, ES = (rj12, EJ! = (tjI2, j = 3,4. (2.34) 

Thus EP is the reflected energy at wavenumber K due to an incident wave of 
unit energy and wavenumber K from x = -00, and so on. The energy relations 
(2.23)-(2.26) then become 

(2.35) Ej” + ET 4- Ei + EJ! = 1, j = 1,2,3 or 4. 

In terms of these energies, equations (2.29)-(2.32) imply 

E,R = E;, 
E r  = E f ,  

Ef = E;, 
E: = E;,  

(2.36) 
(2.37) 

(Of course they also contain information about the phases of the various reflection 
and transmission coefficients.) In words the first of these results can be stated as: 
the energy reflected at wavenumber K due to an incident wave from x = -00 (+a) 
of wavenumber k is the same as the energy reflected at wavenumber k due to an 
incident wave from x = -00 (+a) of wavenumber K. Equation (2.37) implies: the 
energy transmitted at wavenumber K due to an incident wave from x = +m (-00) 

of wavenumber k is the same as the energy transmitted at wavenumber k due to an 
incident wave from x = -00 (+a) of wavenumber K. 

By applying (2.16) to one of the potentials $,, j = 1,2,3 or 4, and the complex 
conjugate of a function corresponding to a different j we obtain the following results: 

(2.38) 
(2.39) 

(2.41) 
(2.42) 
(2.43) 

(2.40) 

For the case of a body symmetric about x = 0 the direction of the incident wave 
is immaterial, problems 2 and 4 being equivalent to problems 1 and 3 respectively. 
We thus need only consider problems 1 and 3 and a number of simplifications to the 
above equations are possible. First we note that all the relations stated previously 
reduce to the following eight equations: 

( 2 . 4 )  
(2.45) 
(2.46) 
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(2.47) 
(2.48) 
(2.49) 
(2.50) 
(2.51) 

The first four equations, which are real, provide relations between the reflection 
and transmission coefficients for a particular problem, whereas equations (2.48)- 
(2.5 l), which are complex, provide relationships between the solutions of problem 
1 and those of problem 3. If we consider R I ,  T I ,  rI, and t l  as known then these 
equations constitute four complex equations for the four complex unknowns R3, T3, 
r3, and t 3 .  In fact we obtain 

(2.52) r3(t; - r:)  = 2iT11m{rltl} + Rl(lrl12 - Itll’), 
(2.53) t3(t: - r i )  = 2iR1Im{rlG} + T1(Jrl12 - lt11’). 

Thus providing rl # +tl equations (2.48), (2.49), (2.52) and (2.53) determine the 
solution to problem 3 once that of problem 1 is known. 

There are a great many relationships that can be determined from equations 
(2.44)-(2.51); we simply note the following. From (2.44), (2.46), (2.48) and (2.49) we 
have 

EP + E,T = E; + E j .  (2.54) 

In other words the energy that is scattered at wavenumber K due to an incident wave 
of wavenumber K is the same as the energy scattered at wavenumber k due to an 
incident wave of wavenumber k. Equations (2.45) and (2.47), (2.48) and (2.49) imply 
that 

T ~ K  + = t 3 f i  + r-&, (2.55) 

and this and (2.54) are equivalent to the pair of equations 

- 
- 

k Ti1 2 = 113 kt3l 2 . (2.56) 

Up till now we have considered only scattering potentials. We will now return to 
the case of an arbitrary geometry and see what further relations can be obtained 
using radiation potentials and combinations of radiation and scattering potentials in 
(2.16). 

Let 6, be the radiation potential due to a single body oscillating in such a way 
that 

= n, on S B ,  (2.57) 

where n, is the component of the inward normal to the body in the direction tl and 
Se is the body boundary, which for simplicity we will assume is entirely contained 
within region I or region 11. We can characterize the far-field behaviour of 6, by 

(2.58) 

Let 4 b  be a second radiation potential defined in a similar way with the far-field 
behaviour 

4s - {~-,23-,0,0;(U+,23+,0,0}, (2.59) 

then application of (2.16) to 4, and +p,  in the case when the body boundary is 

* 
an 

- {A- ,  B- ,  O,O;A+, B+,  0, O}. 
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contained within region I, yields 

- imp,p + v,p --= l o p  
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' ' L B  LB &np ds = imp' 4 p n Z  ds = -imps, + vp,, (2.60) 

where the real matrices p and v are respectively the added-mass and damping matrices. 
If the body boundary is contained within region I1 then p' must be replaced by p" 
in these formulas. Thus (2.60) states that, as in the single-layer fluid case, both these 
matrices are symmetric. 

From (2.59), the complex conjugate of 4p has the far-field behaviour 
-- -_ - 

4p 'v {0,0,2f-,9-;0,0,~+,9+}, (2.61) 

and so application of (2.16) to $ J ~  and 6 yields 

(&np - Gn,) ds = JK(A+\U+ + A-'U-) + J k ( B t @  + B - F ) ,  (2.62) 

where 6 = p if the body is situated in the upper layer and 6 = 1 if the body is situated 
in the lower layer. In particular if a = p then (2.62) becomes 

2i61mLB +,n,ds = JK([AtI' + 1A-l') + Jk(lB+12 + lB-12), (2.63) 

showing that the diagonal elements of the damping matrix are proportional to the 
energy radiated by the oscillating body and, from (2.17) and (2.18), are non-negative. 
Again this is completely analogous to the single-layer fluid result. 

Further results can be obtained by applying (2.16) to 4, and each of the scattering 
potentials characterized by (2.19)-(2.22) in turn. Using 4g and $1 gives rise to 

(2.64) 

which can be interpreted physically as meaning that the exciting force on the body 
in direction c1 due to a wave of wavenumber K from x = -cn is proportional to the 
amplitude of the wave of wavenumber K radiated to --oo by the body oscillating in 
direction a. Similarly 

(2.65) 

(2.66) 

6 LB 44nN ds = -JkB+, (2.67) 

each of which has a similar physical interpretation. Equations (2.64)-(2.67) are 
extensions to two-layer fluids of the Haskind relations, see Newman (1976). 

Finally we can also obtain results by applying (2.16) to 4, - & and each of the 
scattering potentials in turn. The far-field behaviour of cpT - 

(2.68) 

is zero on the body. 

(2.69) 

is characterized by 

4, - - { A - ,  B - ,  -F, -IF; A', B+, -Af, -B+}, 
and it follows from (2.57) that the normal derivative of & - 
Hence we obtain 

A- + TIAf + R I A -  = -J ( t lB+  + r l F ) ,  
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A+ + R 2 F  + T 2 F  = - J ( r z B f  + tzF), 
T 3 p  + R 3 T  = - J ( r 3 F  + r 3 F  + B- ), 

+ 7 ' 4 F  = - J ( r 4 F  + t 4 F  + B+ ), 

which extend the Newman relations to the two-layer fluid case. 

Incident wave expansions 
In problem 1 the form of the incident wave is 

iKx K r  
4 i n c  = e e 

whereas in problem 3 we have 
I - ikx I1 - i k x  kr 

4inc - e g ( Z h  4 i n c  - e e . 
If we define polar coordinates r,  8 by 

x = rsin8, c - z  = rcos8, 

22 1 

(2.70) 
(2.71) 
(2.72) 

(2.73) 

(2.74) 

(2.75) 

then expansions of these incident wave potentials about x = 0, z = c can be found 
using the results 

m=O 

For the case of wavenumber K we obtain 

(2.76) 

(2.77) 

(2.78) 

whereas in the case of an incident wave of wavenumber k the form will be different 
depending on whether [ > 0 or 5 < 0. In the latter case $;ic is simply given by (2.78) 
with K replaced by k. However if c > 0 we obtain 

03 

(2.79) 
( K O  - k)ekc 2 (-kr)me-ime ( K  - k)e-kc (kr)me,,,e 

4 n c  = K ( a - 1 )  m=O m! 4- K(a - 1) x4-. m=O 

3. Scattering by a cylinder in the lower fluid 
The technique that will be employed is that of multipole expansions, used originally 

by Ursell (1950) to describe wave scattering by a cylinder submerged in a non-stratified 
fluid. In this context multipoles are singular solutions of the governing equation which 
satisfy all the boundary conditions of the problem except that on the cylinder. The 
idea of constructing multipoles for a two-layer fluid is not new: Kassem (1982) 
constructed such functions for a two-layer fluid bounded above and below by rigid 
walls. The method used below to construct multipoles for a finite fluid layer bounded 
above by a free surface and below by an infinite fluid layer of different density is 
essentially an extension of the method used by Thorne (1953) for the single-layer 
case. 

For the case of a cylinder centred at x = 0, z = c < 0 of radius a (< Ill) we need 
to develop multipoles singular at z = c ,  c < 0. It is convenient to distinguish those 
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multipoles symmetric about x = 0 and those antisymmetric about this line. These will 
be denoted by 4; and 4; respectively. The form of these functions will be different 
in regions I and I1 and we will use the notation 4; when referring to the form of &, 
in region I, etc. 

Solutions of Laplace's equation singular at z = ( are r-"cosn8 and P s i n n 8 ,  
n 2 1, and these have the integral representations, valid for z > (, 

(3.1) 

(Gradshteyn & Ryzhik 1965, 3.944(5) and (6)). It is then straightforward to add 
suitable solutions of Laplace's equation to these functions so that the boundary 
conditions (2.2)-(2.4) are satisfied. We obtain 

a) 

Is u"-l [AL(u)euz + BL(u)e-U'] cos ux du, 4' = ( n -  I ) !  

O3 u"-ICL(u)eUZ cos ux du, 
r" ( n -  I)! 

CQ 

4; = - 1 u"-' [AL(u)eyz + BL(u)e-"'] sin ux du, 

sinno 
= - + - f u"-l CL(u)eui sin ux du, 

r" (n-  l ) !  

where 

AL(u) = K ( l  + a)(u + K)e""-")/(u - K)h(u) ,  
BL(u) = K(l  + a)e"l/h(u), 
CL(U) = (u  + K)e"'[(u + Ko)e-'& - u + K ] / ( u  - K)h(u) .  

(3.7) 
(3.8) 
(3.9) 

Here 
h(u) = (u + K)e-2"d - u + K a  (3.10) 

and from (2.5) is such that h(k) = 0. The path of integration is indented to pass 
beneath the poles of the integrand at u = K and u = k. 

These multipoles can be expanded about r = 0. We obtain, valid for r < ](I, 
m cos n8 4; = + A,rmcosm8, 

m sin n8 4; = + A,rm sin me, 
m= 1 

where 

u"+'"-' CL( u)eUc du. 
(n-  l)!m! 

A, = 

(3.11) 

(3.12) 

(3.13) 

Note that A,, is the same for 4: and 4:. 
In order to find the behaviour of 4; and 4; as 1x1 -, 00 it is clear from (2.8) and 

(2.9) that we only need to consider region I1 as this fully determines the coefficients 
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A*, B*, C* and D*. From (3.4) and (3.6) it follows that as x -P +co 
(- 1)"ni 
(n - l)! 

4 ; I S  rv - [K"-'R(CL : K)e*xXeKZ + L"-'R(CL : k)efYXekZ], (3.14) 

[K"-'R(CL : K)efiKXeK' + k"-'R(CL : k)e*'kxek'], 
- (-1)"n 

rv +- 
(n - l ) !  

To solve the scattering problem we put 

(3.15) 

where R(CL : ug) is the residue of CL(u) at u = ug. 

m 

4 = 4inc + C an(un+: + (3.16) 

where 4 im can be given by either (2.73) or (2.74). Since 8 4 / a r  = 0 on r = a we have 

n= 1 

(3.17) 

Substituting the polar expansions of the multipoles (3.11) and (3.12) and of the 
incident wave, leads to uncoupled sets of equations for the unknowns u, and Pn. Since 
the matrix is the same in each system and the right-hand sides of each system differ 
by a factor of -i we find that 

u, = -iBn (3.18) 
and in the case of an incident wave of wavenumber K the Bn satisfy the infinite 
system of equations 

(3.19) 
n=l 

For an incident wave of wavenumber k it is simply necessary to replace K by k in 
the right-hand side of this system of equations. These equations can be solved by 
truncation and the solution 6 is then given by 

m 

4 = 4inc + C anBn(4S, - i4;). (3.20) 
n=1 

It follows immediately from (3.14) and (3.15) that as x -P -co 

4 rv 4inc (3.21) 

and hence that 

On the other hand as x + +a 
R1 = r1 = R3 = r3 = 0. (3.22) 

[K"-'R(CL : K)exXeKL + kn-'R(C~ : k)eYxek'] (3.23) (-l)nanBn 
m 

4" - 4;; + 2ni C 
(n - l ) !  

n=l 

from which the transmission coefficients T I ,  t l ,  T3 and t 3  are readily obtained. 
In a single-layer fluid of infinite depth it is well known that the reflection coefficient 

for a submerged horizontal cylinder is zero. This was first discovered by Dean (1948). 
This is not the case however in finite depth (see, for example, Evans & Linton 1989) 
and as we shall see it is not the case for a cylinder in the upper layer of a two-layer fluid. 
Crucial to the derivation of (3.22) was the fact that the coefficients A, in the polar 
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expansions of the symmetric and antisymmetric multipoles are the same. However as 
soon as it is necessary for the multipoles to satisfy boundary conditions both above 
and below the cylinder this equivalence is lost. The reflection coefficients for the 
problem under discussion here are functions of the four dimensionless parameters 
K a ,  KlCl, K d  and u and it is remarkable that a function of four parameters should 
vanish identically. In fact preliminary investigations suggest that zero reflection 
occurs when any number of layers are situated above an infinitely deep body of fluid 
containing a circular cylinder. 

Using (3.22) we see that for the case of a horizontal circular cylinder submerged in 
the lower layer of a two-layer fluid equations (2.44H2.51) reduce to 

(3.24) 
(3.25) 
(3.26) 
(3.27) 

Provided t l  # 0 equations (3.26) and (3.27) can be used to determine 7'3 and t3 once 
TI and tl are known. Equations (3.24)-(3.26) can be combined to give 

E,T = E: (3.28) 

showing that the amount of the incident wave energy that is transmitted at the same 
wavenumber as the incident wave is independent of whether the incident wave has 
wavenumber K or k. Finally equations (3.26) and (3.27) imply that 

arg(T1) - 2 arg(t1) + arg(t3) = (2n + l ) ~ ,  (3.29) 

where n is an integer. 
In order to compute solutions we must solve (3.19) using a truncation procedure. 

We thus convert this system into an N x N system of equations and check the 
convergence of the results as N increases. As is typical with multipole methods the 
convergence is extremely rapid and a value of N = 6 appears to give reflected and 
transmitted energies to five decimal places of accuracy. The results shown below were 
all computed using this value for N and they were all checked against the conservation 
of energy condition (2.35). Also both problem 1 and problem 3 were solved and the 
results checked against the relations (3.26) and (3.27). All these relationships were 
satisfied to a high degree of numerical accuracy. 

Figure 2 shows the proportion of the incident energy that is transmitted at 
wavenumbers K and k due to a wave of wavenumber K incident on a cylinder 
in the lower layer. The geometrical parameters are chosen to be typical of a situation 
that might be found in the case of an underwater pipe bridge, namely d/a  = 2 
and c / a  = -2. The ratio of the densities in the two layers is taken to be 0.97, 
corresponding to the ratio of the densities of fresh and salt water. The value of ka, 
found by solving the dispersion relation (2.5) is shown along the top of the figure. 
It is clear that for these parameter values the amount of energy that is transferred 
from the incident wavenumber to wavenumber k is very small indeed. These results 
are typical for the density ratio p = 0.97. For smaller values of p a greater effect is 
observed but the effect is still small. For example, with d / a  and C/a as in figure 2 
but with p = 0.5 the maximum value of EI is approximately 0.032 and occurs when 
K a  = 0.24 (ka = 0.77). 

If we let p + 0 in this problem (corresponding to u + 1) then we see that the 
multipoles defined by (3.4) and (3.6) go over to the single-layer multipoles for infinite 
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FIGURE 2. Reflected and transmitted energies due a wave of wavenumber K incident on a cylinder 

in the lower layer; d l a  = 2, ( / a  = -2 and p = 0.97. 

depth evaluated by Thorne (1953). Thus by letting p + 0 in the above analysis 
we recover the results for the scattering by a horizontal circular cylinder in deep 
water. 

4. Scattering by a cylinder in the upper fluid 

representations (3.1) and (3.2), the following representations valid for z < [: 
To develop multipoles singular at z = [ > 0 we require, in addition to the 

03 

1 J un-l u(2-0 
cos ntl 

sin ntl 

e cosuxdu, -- 
rn ( n -  l)! 

rn ( n -  l)!  
-=- 1" un-leu(z-i) sin ux du. 

Suitable multipoles, satisfying the conditions (2.2)-(2.4), are 
co cos ntl 41s = - + f u"-l [AA(uO'(u)eUZ + B$)(U)~-~'] cos ux du, (4.3) r" ( n -  l ) !  
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(4.4) 

(4.5) 
OD sin ne & = - + 4 un-l [A(:)(u)e"' + BE)(u)e-"'] sin ux du, 

rn (n-  l ) !  

(4.6) 

where 

At ' (u )  = (u + K)e-2ud[(-l)n+q+1(u - Ko)eUc - (u  - K)e-"6]/(u - K)h(u) ,  (4.7) 

(4.8) 

(4.9) 

B$'(u) = [(-l)"+q+l(u + K)e'(r-u) - (u - K)e-"']/h(u), 

C$)(U) = K(l  - o)B$)(u)/(u - K). 

The polar expansions of these multipoles, valid for r < c, are 

m=O 
m sin no 

4; = ).)1 + BP,rm sin me, 

(4.10) 

(4.1 1) 
m=l 

where 

BS nm = ( n -  l)!m! yf" u"+~-'  [(-1)"A~'(u)eUS + BE)(u)e-x] du, (4.12) 

B" = nm 4" unfm-'[(-l) m+l A ,  (1) (u)eUC + B l ) ( ~ ) e - ~ ]  du. (4.13) 
(n- l)!m! 

We note that unlike the case of multipoles singular in the lower layer, the coefficients 
in the polar expansions of 4: and 4; are not the same. The far-field behaviour of 
these multipoles is given by 

[K"-'R(C;' : K)efXXeKZ + kn-'R(CE) : k)e*""ek'], (4.14) 
ni 

(n - l)!  

-(n - l ) !  

4 ; ; s  N ~ 

rv +- 7t [Kn-lR(C;) : K ) ~ ~ ~ K x ~ K L  +kn-l~(c!) : k)e33x e kz I, (4.15) 

as x + Loo. 
To solve the scattering problem we again write $I as in (3.16) and the body boundary 

condition again implies (3.17). First we consider an incident wave of wavenumber K. 
In this case we obtain the systems of equations 

n=l 

When the incident wave has wavenumber k we obtain 

(4.16) 

(4.17) 

" 
a, - anan+m BP, = i(ka)m [(-l)"+'(Ko-k)eki + ( K  -l~)e-~'], m =  1,2, ..., 

K ( a  - l)m! 
n=l 

(4.18) 



The interaction of waves with horizontal cylinders in two-layer fluids 227 

ka 
0 0.5 1.0 1.5 2.0 2.5 3.0 

0.75 ' 
0.25 , 
0.20 

0.15 

0.10 

0.05 

0 

Ka 
FIGURE 3. Reflected and transmitted energies due a wave of wavenumber K incident on a cylinder 

in the upper layer; dla  = 2.5, [ / a  = 1.25 and p = 0.5. 

(4.19) 

The reflection and transmission coefficients can be obtained from the far-field form 
of the potential whch is 

+P-' [&~,R(C;) : k )  + ipnR(CF) : k)~e*"~e~" } (4.20) 

as x --+ +a. 
In order to illustrate the conversion of energy from one mode to another we 

will consider some geometrical parameters unrelated to the case of underwater tube 
bridges for which the reflected and transmitted energies are considerable. Thus if we 
take d / a  = 2.5, ( / a  = 1.25 and p = 0.5 then the reflected and transmitted energies 
due to an incident wave of wavenumber K, computed from (4.20) after solving (4.16) 
and (4.17), are shown in figure 3. Figure 4 shows the results for the same parameters 
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FIGURE 4. Reflected and transmitted energies due a wave of wavenumber k incident on a cylinder 

in the upper layer; dla  = 2.5, [ / a  = 1.25 and p = 0.5. 

but an incident wave of wavenumber k. These were computed by solving (4.18) and 
(4.19) though of course they could have been obtained from the results in figure 3 by 
using equations (2.48), (2.49), (2.52) and (2.53). The conservation of energy condition 
(2.35) shows that for any given value of Ka the sum of the values of the four curves 
in either figure must be unity. The equivalence of Ei and ET and of Ei  and E f  is 
clear from the figures. 

If we let p + 0 in this problem then it can be shown that the multipoles defined 
by (4.3) and (4.5) go over to the single-layer multipoles for finite depth evaluated by 
Thorne (1953). Thus by letting p + 0 in the above analysis we recover the results for 
the scattering by a horizontal circular cylinder in finite water depth. 

5. Conclusion 
In this paper we have examined the relationships that exist between the solutions 

of two-dimensional radiation and scattering problems in two-layer fluids where the 
upper fluid is bounded above by a free surface and the lower fluid is infinite in extent. 
In such a situation propagating waves can exist at two different wavenumbers for 
any given frequency and we have shown that in the case where a body is symmetric 
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about a vertical line the scattering problems involving an incident wave at each of 
these wavenumbers are related. A systematic derivation, using Green's theorem, of all 
the reciprocity relations for such problems has been carried out including extensions 
to the two-fluid case of the Haskind and Newman relations. 

We have then considered the scattering problems for two specific geometries, namely 
a horizontal circular cylinder situated entirely within either the upper or lower layer. 
These problems have been solved using multipole expansions. In a single-layer fluid 
of infinite depth it is well-known that no energy is reflected by such a cylinder and 
we have shown that for a cylinder in the (infinite) lower layer of a two-layer fluid this 
is again the case, with no energy reflected at either of the possible wavenumbers. The 
amount of energy that is transferred between wavenumbers in the transmitted energy 
is also very small. 

For a cylinder in the upper layer zero reflection is not observed. This is to be 
expected since letting the density of the lower layer tend to infinity transforms the 
problem into a single-layer finite-depth scattering problem for which it is known that 
non-zero reflection exists. 
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