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Expressions are derived for the amplitudes of the second-harmonic waves generated 
when a uniform wave train is normally incident upon a two-dimensional body, 
submerged in water of illfinite depth. These amplitudes are given in terms of integrals 
over the free surface of products of first-order quantities. For a submerged, circular 
cylinder, it is shown analytically that there is no second-order reflected wave a t  any 
frequency. This extends the classical result that there is no reflection a t  first-order for 
this body. 

1. Introduction 
In  recent years, there has been a great deal of interest expressed in the calculation 

of inviscid, second-order wave loading on fixed and floating bodies. Maruo (1960) 
showed that second-order theory predicted a mean drift force on a body which did 
not arise if linear theory only was used. This force, whilst small in magnitude, could 
cause significant motion of a body over a large period of time. Another second-order 
phenomenon is the slowly varying force on EL body, which results from the interaction 
of two linear wave trains of similar frequency. Such forces are discussed in Newman 
(1974). The frequencies a t  which the forces occur are often close to the natural 
frequencies of moored bodies and so can lead to resonant oscillations of the body. The 
total second-order force on a body, due to a monochromatic wave train, is comprised 
of several components. Pinkster (1979) has shown that some of these components 
may be calculated directly from products of first-order quantities, whilst others 
depend on the second-order potential. It is, however, unnecessary to calculate the 
full second-order wave field around a body simply in order to calculate that part of 
the force due to the second-order potential. Molin (1979) applied Green's theorem to 
the second-order diffraction potential and the first-order potential due to the body 
oscillating at twice the frequency of the incoming wave, and obtained an expression 
for this part of the force as an integral of products of first-order quantities. 

More recently, Vada (1987) numerically solved the first- and second-order 
diffraction problems for a submerged cylinder of arbitrary shape, in two dimensions. 
He was then able to calculate the first- and second-order forces on the body by direct 
integration of the pressure around the body surface. In  addition to determining the 
forces on a body, he calculated the second-order reflection and transmission 
coefficients, given by R, and T, respectively, directly from the second-order potential. 
In particular, he observed that the magnitude of R, for a submerged, circular 
cylinder was of the same order as the accuracy in his numerical scheme. This gives 
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rise to the interesting speculation that R, is identically zero for a submerged, circular 
cylinder, which will in fact be proved in this work. The remarkable result that  at 
first-order there is zero reflection from a submerged, circular cylinder is well-known 
and due to Dean (1948). The theoretical result that R, is zero is supported by the 
experimental evidence of Chaplin (1984) who observed that there is no detectable 
reflection a t  second or third order. 

In  this paper, formulae for the second-order reflection and transmission coefficients 
associated with an arbitrary two-dimensional body in infinite depth are derived. 
Green's theorem is used to relate R, and T, to the first-order, double-frequency 
diffraction potential. Similar formulae for R, and T, have been derived in concurrent 
work by Wu (1990). He used them to calculate numerically the second-order 
reflection and transmission from horizontal cylinders. His numerical results for the 
submerged cylinder are consistent with the present work. In  the final part of the 
paper, the second-order reflection coefficient for a submerged, circular cylinder is 
shown to be zero, for all frequencies of the incoming wave. 

2. The second-order reflection coefficient 
A fixed, two-dimensional body with surface denoted by S,, is totally submerged 

in water of infinite depth. Rectangular Cartesian coordinates are chosen such that, 
under linear theory, the origin is in the mean free surface and the y-axis points 
vertically downwards, as illustrated in figure 1. A uniform wave train is incident on 
the body, travelling in the direction of decreasing x. The fluid is assumed to be 
inviscid and incompressible and the motion irrotational. Thus, the flow is described 
by a velocity potential @ which satisfies Laplace's equation in the fluid. Neglecting 
surface tension, the kinematic and dynamic boundary conditions at the free surface 
are given by 

and 

- 0  on y = <  a@ at: a m [  
ay at a x a x  

a@ 
-+$(V@)"g[ = 0 
at 

_-_-__ - 

on Y'Y 

respectively, where y = c(x, t )  is the wave elevation and g is the acceleration due to 
gravity. There is no normal flow through the body surface and so the potential 
satisfies 

a@ 
an 
- = 0  on S,, 

where n is a normal coordinate to the surface. The fluid is a t  rest a t  large depths, thus 

V@+O as y + m .  (2.4) 

In  addition to the boundary conditions (2.1)-(2.4), the form of the wave field as 
x+ f 00 must be specified, in order to fully determine @. 

The wave steepness e is assumed to be small and so the velocity potential and wave 
elevation may be expanded as 

and 

The potentials and @, individually satisfy Laplace's equation and the boundary 
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conditions (2.3) and (2.4). At first order, the kinematic and dynamic boundary 
conditions on the free surface are combined to give 

a w l  a@,- 
a t 2  ay -- g-- -0  on y=O,  

whilst the free-surface boundary condition for the second-order potential is 

The incident first-order wave has amplitude A and frequency o and so the total 
first-order potential is written as 

1 - igA 
Qjl(x, y ,K ,  t )  = Re y,K) e-iot , 

o2 

9 
where K = - .  (2.10) 

The time-independent potential satisfies the far-field condition 

(2.11) 

where R,(K) and T,(K) are the first-order reflection and transmission coefficients 
respectively. Using the form of Qj, given by (2.9), the second-order free-surface 
boundary condition, (2.8), may be rewritten as 

(2.12) 

(2.13) 

igzA2 
(2.14) 

where 

and = ~ [ v 1 - - 9 ~ ~ ]  ax2 on y = 0, 
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where * denotes complex conjugate. The form of (2.12) suggests that  @, may be 
decomposed as 

@,(x, y, t )  = QS(x, y) - Tt+ Re [A2wq,(x, y) e-2iwt], (2.15) 

where 9, and @s also depend on frequency although this is not explicitly stated. The 
steady and double-frequency parts of the potential, QS and q~,, individually satisfy 
Laplace's equation and the boundary conditions (2.3) and (2.4). The free-surface 
boundary condition (2.12) is split into the two conditions 

and 

where 

(2.16) 

(2.17) 

(2.18) 

The choice of r in (2.15) affects the position of the mean free surface, but for the 
purposes of this work, the value of r is irrelevant. 

The far-field form of 'pz is determined by considering the asymptotic behaviour of 
f ( z )  as 1x1 + CO. This in turn depends on the far-field form of ql, which is given by 
(2.11), and it may be shown that 

X - + + C O ,  
(2.19) 

07 2 + - C O .  

The form off(x) for large x suggests that the far-field behaviour of q2 is given by 

iR,(K) +R, e4iKx-4Ku , x++CO, 

T,  e-4iKx-4Ky3 X+--co .  
v2 - (2.20) 

When x is large and positive, the first term in (2.20) arises from the interaction of the 
first-order incident and reflected waves, whilst the second term represents a free 
wave of frequency 2w radiating outwards. There is no contribution to  the incident 
wave in water of infinite depth at  second order. When x is large and negative, the 
only term in the representation for 97, corresponds to ,a  free wave of frequency 2w 
propagating outwards. The second-order reflection and transmission coefficients, R, 
and T,, are determined by requiring g~, to  satisfy the body boundary condition (2.3). 

It is of interest to calculate R, and T, because they represent the magnitude of the 
second-harmonic waves which are generated. These coefficients may be determined 
without solving the full second-order problem using a method similar to that 
described by Molin (1979). He showed, using Green's theorem, that the second-order 
forces on a body due to. the second-order potential may be related to the first-order 
radiation potential due to  the body oscillating with frequency 2w. Using a similar 
technique, formulae for R, and T, are generated in terms of the first-order scattering 
potential a t  frequency 2w. Application of Green's theorem to pll(z, y, 4K)  and Q ) ~  

around the contour C illustrated in figure 1 gives 

(2.21) 
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Contributions to the integral in (2.21) arise only from the line y = 0 and the lines 
x = kL. If L is allowed to tend to infinity then v2 and ‘pl take their far-field forms on 
the lines x = + L  and (2.21) yields the following formula for the second-order 
reflection coefficient : 

R, = lim -i v)1(2,0,4K)f(z)dz+iR,(K) [R1(4K)e4iKL-e-4iKL 
L+m [ L 
T, = L+m lim [ -i~-m@l(x,0,4K)f(x)dx+iR1(K)~(4X)e4iKL 1, 

An expression for the second-order transmission coefficient is derived from a similar 
application of Green’s theorem and 

L 

(2.23) 

where @l is the first-order potential due to a wave incident on the body from large 
negative x. 

The integrands of the integrals in (2.22) and (2.23) do not, in general, decay as 
1x1 + co and so the integrals must be combined with the other non-zero terms in the 
expression before the limL+m is taken. Equations (2.22) and (2.23) represent formulae 
for the second-order reflection and transmission coefficients which depend solely on 
first-order quantities. In  the next section, (2.22) will be used to show that the second- 
order reflection coefficient associated with a horizontal, circular cylinder submerged 
in water of infinite depth is zero. 

3. The submerged circular cylinder 
Dean (1948) was the first person to prove the remarkable result that, under linear 

theory, there is no reflection of a plane wave normally incident on a horizontal, 
circular cylinder, submerged in water of infinite depth. This result has been extended 
by Evans (1984), who showed that the magnitude of the amplitude of the far-field 
waves generated by an oscillating line source in the presence of a cylinder is the same 
on both sides of the cylinder. Dean’s work is extended further in this section where 
the second-order reflection coefficient is shown to be zero. 

The first-order reflection coefficient associated with the submerged, circular 
cylinder is zero for all frequencies, and so (2.22) for the second-order reflection 
coefficient simplifies to 

(3.1) 

The proof that R, = 0 for all frequencies follows from contour integration. If the 
integrand in (3.1) is denoted by W ( z ) ,  i t  will be shown that W(z) ,  where z = x+iy, is 
an analytic function in the region Im [z]  d 0 and that the asymptotic behaviour of 
W(z)  is such that 

a3 

R, = - i s_,p’AX> 0, Wf(4 dz. 

where C, is a semicircle of radius r and centre the origin, in the lower half-plane. 
Ursell ( 1950) constructed the first-order diffraction potential for a submerged, 

circular cylinder from a series of multipole potentials. These are singular solutions of 
Laplace’s equation which satisfy the linear free-surface condition, decay with depth 
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and behave like waves radiating outwards as 1x1 + co. Thorne (1953) showed that the 
time-independent, symmetric, nth-order multipole potential which has a singularity 
at the point (0, h)  is given by 

cosn6 (-l)"-l O0 

'''7 (n-i)! (K-Z)  
+ { @+ In-1 e-l(y+h) cos lx dl 

and the corresponding antisymmetric multipole potential has the representation 

The polar coordinates ( r ,  0 )  are defined such that 

(3.5) rcos0 = y-h,  rsin8 = x. 

The details of the construction of the first-order radiation potential for a cylinder of 
radius a,  submerged so that its centre is at a depth h, (a < h), are given by Evans 
et al. (1979). The corresponding linear diffraction potential associated with a wave 
incident on the cylinder from the right is given by 

(3.6) 

where 

+p2.rcijp e-K(y+h)-iKx . (3.7) (n- l ) !  

The coefficients {p,} satisfy the matrix system of equations 

m 
(Ka)m-le-Kh 

p m +  C Dmnpn = 
n-1 

where 

m+n--l lorn FT zm+n-l e -2Zh dZ+ ( - 1) zni(Ka)m+n e-2Kh 
(m- 1) ! n !  (m- 1) ! n!  

(3.9) 

The particular combination of symmetric and antisymmetric multipole potentials 
which occurs in (3.6) arises from the application of the boundary condition of no flow 
through the cylinder surface. This combination leads directly to the result that there 
is no first-order reflection from the cylinder since 

, x+-co, (-I)" 47ciKn e-K(y+h)-iKx 

Xn (n- l ) !  (3.10) 
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and so 

( -  1)" (Ku )~+ 'J I~ ]  
(3.11) 

, x+--Oo, 
n !  c 

c p l h  Y > K )  - n=l 

, X - t o o .  
e-Ky-iKz 

Ursell (1950) showed that (3.8) has a unique solution such that the series 
representation for cpl in (3.6) converges absolutely and uniformly on the cylinder 
surface and outside the cylinder in the region y > -h', where 0 < h' < h. Thus, using 
Harnack's theorem on convergence of harmonic series, described in Kellogg (1953, 
p. 248), i t  is straightforward to  show that the term-by-term differentiated series for 
i3pl/i3x and a2cpl/i3x2 are uniformly convergent! in the fluid and, in particular, on the 
line y = 0. Furthermore, these series are readily shown to be absolutely convergent. 
These properties are necessary to justify the manipulations carried out below. 

Whittaker & Watson (1935, p. 243) showed that for y < h 

and so on y = 0 

(3.12) 

(3.13) 
Using a reduction formula, the integral in (3.13) given by 

may be written as 

where 
f m  o-lh-ilz 

(3.14) 

(3.15) 

e-Kh-iKx [-ni-El(-Kh-iKx)], x < 0, 

= e-Kh Ei (Kh), x = 0, (3.16) 

e-Kh-iKx [ni-El(-Kh-iKz)], x > 0, 

and El  and Ei are the exponential integral functions defined in Abramowitz & Stegun 
(1965, p. 228). This representa%ion for 1, in terms of the exponential integrals is 
determined using contour integration. By definition, El(z )  has a branch cut along the 
negative real axis and the jump in the function across the cut is defined by 

E,(-X+iO) =-Ei(X)Tin,  X > O ,  (3.17) 

and so I,(x, K )  is continuous at x = 0. In fact, it is straightforward to show, from the 
series representation of the exponential integral, that 

I,,(%, K )  = e-K(h+iz) y + lnK(h+ iz) + 
n=l nn! 

(3.18) 
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for all real x, where y is Euler's constant. Thus, I ,  is a continuously differentiable 
function of x and 

0- aI  - -XIo+- 1 

ax h+ix 
(3 .19)  

(The same result is obtained by differentiating under the integral sign in (3 .16 ) . )  
Thus, (3.13) becomes 

(3 .20)  

The quantityf(x) in the integral in ( 3 . 1 )  is given by (2 .18 )  and may be rewritten as 

f(x) = - [""' -++q, ][E --xcp, 1 +- g[ K2cp1+- on y = O ,  (3.21) 
K ax 

where q1 = cpl(x, 0 , K ) .  Differentiation of (3 .13 )  twice with respect to x gives 

W 
Qn = x  

n=l (h  + ix)n+l ' 

A similar procedure yields 

and 

(3 .22)  

(3 .23 )  

(3 .24 )  

Substitution of (3 .20 ) ,  (3 .22 ) ,  (3 .23 )  and (3 .24)  into ( 3 . 1 )  yields the expression for the 
second-order reflection coefficient 
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Each of the series in (3.25) is absolutely and uniformly convergent for all x and so 
term-by-term integration of the expression for R, is permitted. From Gradshteyn & 
Ryzhik (1980, p. 318) 

d x = 0 ,  b > 0 ,  m > 0 ,  

and elementary integration gives 

d x = 0 ,  m > l  
" 1  I -m (h+ix)" 

(3.26) 

(3.27) 

Thus, the only possible non-zero terms in (3.25) arise from integrals of the form 

e-ibxIo(x, L )  K ,  dz, I-, (h+ix)" 
dx and I-a (h+ix)" 

(3.28) 

where b 2 0, L > 0 and m 2 2. Both these integrals are now shown to be zero. 
Whittaker & Watson (1935, p. 91) showed that if a series of functions converges 

uniformly on a closed contour C and the individual functions are analytic within and 
on C, then the sum of the series is an analytic function throughout C and its interior. 
Thus, the function, 

e-Lh-iLz [ --Ri--E1( -Lh-iLz)], 

e-Lh-iz[ni-El( -Lh- i L z ) ] ,  

Re [z ]  < 0, 

= e-L(h--y) Ei (L(h- y ) ) ,  Re[z] = 0, (3.29) 
Re[z] > 0 

is an analytic function of z in any bounded region for which Im[z] < h and has a 
branch cut along that part of the imaginary axis Im [ z ]  2 h. From (3.18) 

Io(x,L) = w(x+iO,L). (3.30) 
By Cauchy's theorem, 

dz = Jc w(z, K ,  w(z, e-ibzw(z, L) I (h+iz)" (h + iz)" 
dz = 0, (3.31) 

where C is any closed curve in the region Im [ z ]  < 0. The asymptotic behaviour of 
w(z,L) is determined from that of E,(z), given by Abramowitz & Stegun (1965), and 
so 

1 
Lh+iLz 

xi e-Lh-ILz + +0(1~1-~) Re [ z ]  < 0, Im [ z ]  < 0, 

Re [ z ]  = 0, Im [z ]  < 0, (3.32) 

+ O( IzI-') Re [ z ]  > 0, Im [z ]  < 0. 
xi e-Lh-iLz 1 I + L h + Z z  

This behaviour is sufficient to ensure that 

(3.33) 
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as r+ 00 where L > 0, b 2 0, m > 2 and C, is a semicircle of radius r and centre the 
origin, in the lower half-plane. By choosing the closed curve C to be that part of the 
x-axis between x = - r and x = r and the curve C,, a combination of (3.30), (3.31) 
and (3.33) shows that both the types of integrals in (3.28) are zero and so, from (3.25) 

R, = 0. (3.34) 

4. Discussion 
The proof of the main result of the paper, that there is no reflection a t  second-order 

from a submerged, circular cylinder, depends crucially on the form of the linear 
diffraction potential given by equation (3.6). It is the particular combination of 
symmetric and antisymmetric multipoles in this potential which leads to the result 
of zero reflection at both first and second order. The actual values of the coefficients 
(p,}, defined by equation (3.8), do not affect the proof. Thus, if it  were possible to 
construct the linear diffraction potential associated with another body from the same 
combination of multipoles but with different coefficients, there would also be zero 
reflection from this body a t  first and second order. It does, however, seem unlikely 
that another such body exists for which there is no first-order reflection a t  all 
frequencies. A variety of bodies do exist for which there is zero first-order reflection 
a t  isolated frequencies. At such a frequency, the equation for the second-order 
reflection coefficient is given by (3.1). An interesting and open question is whether or 
not zeros of second-order reflection occur a t  the same frequencies. 

In two-dimensional problems, the reflection and transmission properties of the 
body are related to the horizontal drift force. Maruo (1960) showed that the leading- 
order contribution to the drift force on a fixed body arises a t  second-order in the 
wave steepness e and is proportional to the square of the amplitude of the first-order 
reflected wave. Thus, for a submerged, circular cylinder there is no contribution to 
the horizontal drift force at O(e2) .  In  general, this drift force may be expressed as a 
perturbation expansion involving only the even powers of e (the time average of the 
contributions to the total force from the odd powers is zero). Two possible 
contributions to the horizontal drift force at O(e4) are proportional to the squares of 
the amplitudes of the second-order reflected and transmitted waves. Longuet- 
Higgins (1977) has shown that, in the absence of a second-order reflected wave, the 
second-order waves give a negative contribution to  the drift force at O(e4). This is 
consistent with the numerical experiments of Cointe (1989) and Dommermuth (1987) 
who calculated the forces on a submerged cylinder due to the passage of fully 
nonlinear waves. There is also the possibility of contributions to the drift force at 
O(e4) from interactions between the first-order and third-order wave fields. However, 
the details of the third-order scattered wave field have not yet been investigated. 
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