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A UNIFIED CONSTRUCTION OF GENERALISED CLASSICAL

POLYNOMIALS ASSOCIATED WITH OPERATORS OF

CALOGERO-SUTHERLAND TYPE

MARTIN HALLNÄS AND EDWIN LANGMANN

Abstract. In this paper we consider a large class of many-variable polyno-
mials which contains generalisations of the classical Hermite, Laguerre, Jacobi
and Bessel polynomials as special cases, and which occur as the polynomial
part in the eigenfunctions of Calogero-Sutherland type operators and their
deformations recently found and studied by Chalykh, Feigin, Sergeev, and
Veselov. We present a unified and explicit construction of all these polynomi-
als.

1. Introduction

In this paper we discuss the construction of symmetric polynomials which arise
as eigenfunctions of exactly solvable quantum many-body systems of Calogero-
Sutherland type [6, 51]. In particular, we demonstrate that a particular construc-
tion method found and studied by us in simple special cases [20,30] can be naturally
extended to the full class of such model. Our results provide a unified approach to
many-variable generalisations of the classical Hermite, Lagueree, Jacobi and Bessel
polynomials. We also show that it is natural to generalise our approach to a larger
family of polynomials related to a deformation of the Calogero-Sutherland type
systems found and studied by Chalykh, Feigin, Sergeev, and Veselov [7, 46, 47].
This allows us to derive, for each such polynomial, a family of different representa-
tions labeled by a pair of non-negative integers (M, M̃). Moreover, one can choose

(M, M̃) such that the representation is simplest, i.e., a linear combination of certain
explicitly given polynomials with the least number of terms. These results are non-
trivial already for the non-deformed polynomials. To mention a specific example,
we find that a Jack polynomial [49] has a (M, M̃) representation if there exists a
pair of non-negative integers (m, m̃) such that the Young diagram corresponding
to this Jack polynomial can be covered by the union of the two rectangular Young
diagrams of size M ×m (i.e., M rows and m columns) and m̃ × M̃ , respectively.

Moreover, the simplest such representation is obtained by minimizing M + M̃ . For
example, the simplest possible representation of the Jack polynomial corresponding
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to the Young diagrams

, , and

is for (M, M̃) = (1, 0), (0, 1), and (2, 3), respectively, and in the first two cases
our representation actually consists only of a single term. The main tool in our
construction are certain identities which, to each (deformed) Calogero-Sutherland
system, relates a system of the same type. In special cases, these identities are well
known and related to a duality of the Jack polynomials (see, e.g., [39]), or, more
generally, the algebra homomorphism which maps Jack polynomials to so called
super Jack polynomials (see, e.g., [48]). We deduce these identities in a unified
manner, and thus unify, as well as extend, previously known results.

While we mention these examples in the beginning to give an impression of the
kind of results we obtain, the emphasis in our presentation is on our construction
method. To avoid overloading our formulae we explain this method in detail for
the non-deformed polynomials and the representations (M, 0). The subsequent
extension to the general case is then remarkably easy.

1.1. Calogero-Sutherland type models. As mentioned above, the polynomials
studied in this paper play an important role in physics since they occur in promi-
nent exactly solvable quantum mechanical models defined by partial differential
operators of Calogero-Sutherland type. These latter operators play a central role
in our construction, and we therefore proceed to explain their relation to the clas-
sical Hermite, Laguerre, Jacobi and Bessel polynomials. As elaborated below, to
each such sequence of one-variable polynomials {pn : n = 0, 1, . . .} there exists a
quantum mechanical model defined by a Schrödinger operator

(1) h = −∂2
x + V (x),

with a particular potential function V such that its eigenfunctions are of the form

(2) ψn(x) = ψ0(x)pn(z) with z = z(x)

for particular C2 functions ψ0(x) and z(x) (x is a real variable, and we use the
notation ∂x := ∂

∂x ). Many-variable generalisation of these polynomials appear in
the following generalisation to an arbitrary number N of particles: each one-particle
Schrödinger operator (1) allows for a many-body generalisation

(3) HN =

N
∑

j=1

(

−∂2
xj

+ V (xj)
)

+ κ(κ− 1)
∑

j<k

W (xj , xk)

withW a particular two-body interaction potential such thatHN has eigenfunctions
Ψn which are labelled by integer vectors n = (n1, . . . , nN ) and are of the form

(4) Ψn(x) = Ψ0(x)Pn(z) with zj = z(xj),

(5) Ψ0(x) =
N
∏

j=1

ψ0(xj)
∏

j<k

(zk − zj)
κ
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where the functions Pn are certain symmetric polynomials in N variables z =
(z1, . . . , zN ) generalising the polynomials pn. To avoid certain technicalities and
since it includes the cases of main physical interests we will assume κ > 0, even
though many of our results actually hold true also for other values of κ. We mention
already at this point that although the symmetry of the polynomials Pn implies
that a complete set of eigenfunctions can be labelled by partitions, i.e., sequences
n = λ = (λ1, . . . , λN ) of non-negative integers λj such that λ1 ≥ · · · ≥ λN , it is in
our approach not always natural to make this restriction, as will become evident
below. These operators HN define exactly solvable quantum-many body systems of
Calogero-Sutherland type [6,22,42,50]; see Table 1 for a list of well-known examples
(note that we have added constants to the potentials V to simplify certain formulae
later on).

1.2. Deformed Calogero-Sutherland operators. A further interesting gener-
alisation of the one-particle Schrödinger operators (1) is the following class of dif-
ferential operators in two sets of variables x = (x1, . . . , xN ) and x̃ = (x̃1, . . . , x̃Ñ ),

where N and Ñ are arbitrary non-negative integers:

(6) HN,Ñ =

N
∑

j=1

(

−∂2
xj

+ V (xj)
)

−
Ñ
∑

J=1

κ
(

−∂2
x̃J

+ Ṽ (x̃J )
)

+ κ(κ− 1)
∑

j<k

W (xj , xk) +
κ− 1

κ

∑

J<K

W (x̃j , x̃k)

+ (1 − κ)
∑

j,K

W (xj , x̃K)

with a potential function Ṽ of the same kind as V but with different parameters, as
specified in Table 1. These differential operators are natural generalisations of the
Schrödinger operator (3) in that they also have polynomial eigenfunctions with cor-
responding eigenvalues that can be computed explicitly; see Section 4 for a precise
formulation of this result. In this paper we present an explicit construction of all
these many-variable generalisations of the above mentioned classical polynomials.
We obtain the results by a unified treatment making no reference to special cases,
as explained below.

1.3. Construction method. To explain the nature of our results we now dis-
cuss the standard Calogero-Sutherland cases Ñ = 0 in more detail. Our approach
is based on a set of remarkable identities which provide us with particular sets
of symmetric polynomials on which the action of the differential operators (3) is
particularly simple. These latter polynomials can be defined by the following ex-
pansion:

(7)

∏

1≤j<k≤N (1 − wj/wk)κ

∏N
j,k=1(1 − zj/wk)κ

=
∑

n∈ZN

fn(z)w−n1

1 w−n2

2 · · ·w−nN

N ,

valid for |wN | > |wN−1| > · · · > |w1| > maxk(|zk|). We mention that these
polynomials were first defined in [30] by a certain contour integral. However, using
Cauchy’s theorem it is easy to verify that the two definitions are equivalent. We
explicitly construct series representations for the polynomials Pn in (4) which are of
the form Pn(z) =

∑

m
un(m)fn(z) and, in addition, we obtain certain completeness



4 MARTIN HALLNÄS AND EDWIN LANGMANN

results; see Section 3 for the precise statements. We will also derive a partial
generalisation of these results to the differential operators HN,Ñ ; see Section 4. We
thus generalise, unify, and extend various results which were known before only in
special cases [20, 31].

We now explain in which sense our approach is unified and give a precise def-
inition of the classical polynomials we consider: each such sequence consists of
polynomials pn of order n = 0, 1, . . . such that they are common eigenfunctions of
a differential operator

(8) h̃ = −ψ−1
0 hψ0 = α(z)∂2

z + β(z)∂z

with

(9) α(z) = α2z
2 + α1z + α0 and β(z) = β1z + β0

for some real coefficients αj and βj ; see Table 2 for the polynomials corresponding
to our examples in Table 1. It is interesting to note that the Schrödinger operator
h in (1) with the eigenfunctions (2) can be fully characterised by these polynomials
α and β: it is straightforward to verify that

(10) V (x) = v(z(x)), v(z) =
(2β(z) − α′(z))(2β(z) − 3α′(z))

16α(z)
− 1

4
α′′(z)+

1

2
β′(z)

V (x) W (x, y) Ṽ (x)

I ω2x2 − ω 2
(x−y)2 ω̃2x2 − ω̃

II 0 1
2 sin2( x−y

2 )
(κ2 − 1)/κ4

III − c(c+1)
cosh2(x)

+ c2 1
2 sinh2( x−y

2 )
− 1

2 cosh2( x+y

2 )
− c̃(c̃+1)

cosh2(x)
+ c̃2

IV ω2x2 + a(a−1)
x2

2
(x−y)2 + 2

(x+y)2 ω̃2x2 + ã(ã−1)
x2

−ω(1 + 2a) −ω̃(1 + 2ã)

V a(a−1)
sin2 x

− a2 1
2 sin2( x−y

2 )
+ 1

2 sin2( x+y

2 )

ã(ã−1)
sin2 x

− ã2

VI a(a−1)
4 sin2( x

2 )
+ b(b−1)

4 cos2( x
2 )

1
2 sin2( x−y

2 )
+ 1

2 sin2( x+y

2 )

ã(ã−1)
4 sin2( x

2 )
+ b̃(b̃−1)

4 cos2( x
2 )

− (a+b)2

4 − (ã+b̃)2

4

VII ω2e−2x 1
2 sinh2( x−y

2 )
ω̃2e−2x

−ω(1 + 2c)e−x + c2 −ω̃(1 + 2c̃)e−x + c̃2

Table 1. Examples of external- and two-body interaction poten-
tials such that the differential operators (3) and (6) have poly-
nomial eigenfunctions. The parameters in the last column are:
ω̃ = −ω/κ, c̃ = −(2c + κ + 1)/(2κ), ã = −(2a − κ − 1)/(2κ) and

b̃ = −(2b− κ− 1)/(2κ).
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(the prime here and in the following indicates differentiation) with z(x) a solution
of the differential equation

(11) z′(x)2 = α(z(x))

and

(12) ψ0(x) = e−w(z(x))

with w(z) any solution of the differential equation

w′(z) =
α(z)′ − 2β(z)

4α(z)
.

Moreover, the potential functions W , ensuring that the differential operators HN

in (3) and HN,Ñ in (6) have polynomial eigenfunctions, are given by

(13) W (x1, x2) =
α(z1) + α(z2)

(z1 − z2)2
− α2 with zj = z(xj).

The constant α2 is subtracted to simplify formulae later on, and Ṽ is given by a
formula as in (10) but with β(z) replaced by

β̃(z) = [(1 + κ)α′(z) − β(z)]/κ.

It is interesting to note that the exact eigenvalues of the differential operatorsHN in
(3) and HN,Ñ in (6) are determined by the leading coefficients of these polynomials

α(z) and β(z). For example, the exact eigenvalues of HN corresponding to the
eigenfunctions (4) are

(14) En = E0 −
N
∑

j=1

(α2nj(nj − 1) + (2κα2(N − j) + β1)nj)

with

(15) E0 = −α2κ
2

3
N(N2 − 1) − κ(β1 − (1 + κ)α2)

2
N(N − 1).

This result, well-known in many special cases (see, e.g., [14]), will naturally emerge
from our construction in Section 3. We are now in a position to state more precisely
in which sense our approach is unified: in our construction information concerning
the different cases will enter only via the two polynomials α and β. We also stress
that the special cases listed in Table 2 are only intended as examples, and that our
approach is for arbitrary polynomials α and β of the form (9).

1.4. Special cases. To put this general scheme into perspective we now discuss
its well-known special cases summarised in Tables 1 and 2. The case α = 1 and
β(z) = −2ωz corresponds to the exactly solvable many-body generalisation of the
quantum harmonic oscillator introduced by Calogero [6] (case I in Tables 1 and
2), while the Sutherland model [50, 51], generalising the quantum model of a free
particle on a circle, is obtained by setting α(z) = −z2 and β(z) = −z (case II).
These models correspond to the Hermite polynomials and the ordinary monomials
pn(z) = zn, respectively. The many-body models associated with the Legendre,
Gegenbauer and Jacobi polynomials (cases IV, V and VI) are identical with Ol-
shanetsky and Perelomov’s BN - and BCN -variants of the Calogero- and Suther-
land models; see [42] and references therein. An exact solution to the many-body
generalisation of the Morse potential (case VII), corresponding to the generalised



6 MARTIN HALLNÄS AND EDWIN LANGMANN

ψ0(x) z(x) pn(z) α(z) β(z)

I e−ωx2/2 x Hn(
√
ωz) 1 −2ωz

(Hermite)

II 1 eix zn −z2 −z

III cosh−c(x) i sinh(x) C
(−c)
n (z) −1 + z2 (1 − 2c)z

(Gegenbauer)

IV e−ωx2/2xa x2 L
(a− 1

2 )
n (ωz) 4z 2 + 4a− 4ωz

(Laguerre)

V sina(x) cos(x) C
(a)
n (z) 1 − z2 −(1 + 2a)z

(Gegenbauer)

VI sina(x
2 ) cosb(x

2 ) cos(x) P
(a− 1

2 ,b− 1
2 )

n (z) 1 − z2 b− a−
(Jacobi) (1 + a+ b)z

VII exp (−ωe−x − cx) ex yn(z, 1 − 2c, 2ω) z2 2ω + (1 − 2c)z
(gen. Bessel)

Table 2. Exact solutions of the one-body Schrödinger equation
associated with classical polynomials, as described in (1) and (2).
Given are also the associated polynomials α and β; see (8)–(12).
More details about the polynomials pn can be found in [1] (cases I
and III–VI) and in [16] (case VII).

Bessel polynomials [26], was first given by Inozemtsev and Meshcheryakov [22]. A
further study of this case can be found in [19]. There exist various other interesting
special cases which we have not explored in detail, but they can all be transformed
to the cases mentioned above by a rescaling and a translation of the variable z.
The deformations of the Calogero-Sutherland models defined by HN,Ñ in (6) were

found and explored by Chalykh, Feigin, Sergeev, and Veselov; see, e.g., [7, 46–48].
We will refer to these differential operators HN,Ñ as deformed Calogero-Sutherland
operators.

1.5. Related previous work. We now discuss the relation of our results to pre-
vious work in the literature. The many-variable polynomials corresponding to the
eigenfunctions of the Calogero-Sutherland type models in cases I–VI in Table 1
have been extensively studied in the mathematics literature; see, e.g., [11, 39] and
references therein. We mention, in particular, Heckman and Opdam’s root sys-
tem generalisation of the Jacobi polynomials [21] and the work of Baker and For-
rester [3], van Diejen [9], and Lassalle [33–35], as well as of Macdonald [38], on
many-variable generalisations of the classical orthogonal Hermite, Laguerre and
Jacobi polynomials. A particularly well-studied case are the so-called Jack poly-
nomials corresponding to the Sutherland model (case II). Explicit formulae for
the Jack polynomials were recently obtained by Lassalle and Schlosser [37] (see
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also [36]) by inverting a so-called Pieri formula. For very particular values of the
integer vector n = (n1, . . . , nN ) or a low number of variables explicit series expan-
sions of the Jack polynomials were obtained by Stanley [49]. In addition, there exist
expansions of the Jack, as well as certain other many-variable classical orthogonal
polynomials, which are of a combinatorial nature [8, 10, 27, 39]. These combinato-
rial results also include a formula resulting from the use of Sutherland’s original
solution algorithm [51]. We also mention operator solutions of the Calogero- and
Sutherland models obtained in [5,24,25,52,53] and [32], respectively, as well as in-
tegral representations of the Jack polynomials; see [2,40,41] and references therein.
Our results in this paper provide an explicit construction of the many-variable
polynomials Pn. These results were recently announced in [17], and they gener-
alise those previously obtained by us for the Sutherland- [30] and the Calogero
models [20]. We mention that our unified treatment of all the cases in Table 1 is
different from the one based on root systems (see, e.g., [42]), and that it has been
previously used by Gomez-Ullate et.al. [14] to obtain the energy eigenvalues in (14)
and (15) by purely algebraic means. We also mention that our point of view is
closely related to the theory of quasi-exactly solvable Schrödinger operators; see,
e.g., [4, 15]. Moreover, the identities which are the key to our results are stated in
Corollaries 2.2 and 2.3 below, and they were known before only in special cases:
an important special case of these identities for the Sutherland model (case II) is a
consequence of a well-known result on Jack polynomials which, to our knowledge, is
due to Stanley (see Proposition 2.1 in [49]), and a generalisation of the latter to the
deformed case and other non-deformed cases can be found in [48] and [13, 39, 45],
respectively. These identities relate Schrödinger- or deformed Calogero-Sutherland
operators with different parameter values and are natural quantum analogs of the
Bäcklund transformations for the classical Calogero-Moser models first found by
Woijekowski [54], as discussed by Kutznetsov and Sklyanin [29]. We obtain these
identities as specialisations of a particular identity stated in Proposition 2.1 which
has the natural physical interpretation of giving the groundstate of a generalisation
of the Schrödinger operator (3) where the particles are allowed to have different
masses mj and with specific mass dependent external potentials Vmj

(xj). This is
a powerful result of independent interest, and to our knowledge it was previously
known only in the special cases I, II and IV in Table 1 [12, 20, 44]. We finally
mention an integral representation of the Jack polynomials recently obtained by
Kuznetsov et.al. [28] using a separation-of-variables approach which is also based
on the identity in Corollary 2.2.

1.6. Plan of the paper. In Section 2 we derive and discuss the identities which are
the key to our solution method. Section 3 contains our explicit construction of series
representation of all many-variable polynomials Pn determining the eigenfunctions
(4) of the Schrödinger operators (3). In Section 4 we extend our construction of
polynomial eigenfunctions to the deformed Calogero-Sutherland operators (6). We
conclude with a few remarks in Section 5.

1.7. Notation. We denote by Z, N, N0 and R the sets of all integers, positive
integers, non-negative integers and real numbers, respectively. We shall say that
an integer vector n = (n1, n2, . . .) is of length N , denoted ℓ(n) = N , if N is the
smallest non-negative integer such that the parts nj of n are zero for j > N . The
symbols n and m will in most instances denote integer vectors, except in Section 2
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where the symbols mj are used for real ‘mass parameters’ rather than for parts
of an integer vector m. We will use the symbols λ, µ and ν to emphasise that a
particular integer vector is a partition. We will also use the notation

xs = xs1
1 · · ·xsN

N

where x = (x1, . . . , xN ) and s = (s1, . . . , sN). Moreover, for m ∈ Z
M and n ∈ Z

N

we will write (m,n) short for (m1, . . . ,mM , n1, . . . , nN ).

2. Identities

In this section we present and prove a particular identity associated with the
one-particle Schrödinger operator (1). The identities underlying our construction
of eigenfunctions of the differential operators in (3) and (6) are stated in Section 2.2
and obtained as special cases of this more general results. Throughout the section,
we assume the polynomials α and β in (9) fixed, and z(x) and W (x1, x2) are as in
(11) and (13).

2.1. Source identity. The following identity can be interpreted as providing the
exact groundstate of a generalisation of the Schrödinger operator (3) where the
particles can have different masses mj . However, we will allow these parameters
mj also to be negative, and we will use this identity as a source from which we obtain
various other identities as special cases. To state this result we find it convenient
to denote this generalised Schrödinger operators as H, the particle coordinates as
Xj, and the particle number as N .

Proposition 2.1. Let

(16) H =
N
∑

j=1

1

mj

(

−∂2
Xj

+ Vmj
(Xj)

)

+
∑

j<k

κ

2
(κmjmk − 1)(mj +mk)W (Xj , Xk)

with mj arbitrary real and non-zero parameters and

(17) Vm(X) = vm(z(X))

with

vm(z) =
(2βm(z) − α′(z))(2βm(z) − 3α′(z))

16α(z)
− 1

4
α′′(z) +

1

2
β′

m(z),

where the prime indicates differentiation with respect to the argument z and

(18) βm(z) = mβ(z) +
1

2
(1 −m)(1 − κm)α′(z).

Furthermore, let

Φ0(X) =

N
∏

j=1

ψ0,mj
(Xj)

∏

j<k

(Zk − Zj)
κmjmk

with Zj = z(Xj) and

(19) ψ0,m(X) = e−wm(z(X))

with wm(z) any solution of the differential equation

w′
m(z) =

α′(z) − 2βm(z)

4α(z)
.
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Then

(20) (H− E0)Φ0 = 0

with the constant

(21) E0 = −g
2α2

3
(|m|3 − |m3|) − κ(β1 − (1 + κ)α2)

2
(|m|2 − |m2|),

where

(22) |mn| :=

N
∑

j=1

mn
j for n = 1, 2, 3.

The m-dependence of the external potentials and one-particle groundstate eigen-
functions for our examples is given in Table 3 with m-dependent parameters defined
in the table captions.

Remark 2.1. Note that β1 and β0 always refers to the coefficients of the polynomial
β(z) as defined in (9), and are not to be confused with βm(z) for m = 1 and m = 0.
There should be no danger of confusion since we always write β(z) for βm(z) if
m = 1 and assume m 6= 0.

Vm(x) ψ0,m(x)

I ω2
mx

2 − ωm e−ωmx2/2

II − 1
4κ

2m2(m− 1)2 eiκm(m−1)x/2

III − cm(cm+1)
cosh2(x)

+ c2m cosh−cm(x)

IV ω2
mx

2 + am(am−1)
x2 − ωm(1 + 2am) e−ωmx2/2xam

V am(am−1)
sin2 x − a2

m sinam(x)

VI am(am−1)
4 sin2( x

2 )
+ bm(bm−1)

4 cos2( x
2 ) − 1

4 (am + bm)2 sinam(x
2 ) cosbm(x

2 )

VII ω2
me

−2x − ωm(1 + 2cm)e−x + c2m e−ωme−x−cmx

Table 3. ‘Mass’ dependence of the external potentials and one-
particle groundstates in our examples, according to Proposi-
tion 2.1. The m-dependence of the parameters is as follows,
ωm = mω, cm = mc − 1

2κm(m − 1), am = ma + 1
2κm(m − 1),

and bm = mb+ 1
2κm(m− 1).

Proof of Proposition 2.1. We will show by straightforward computations that

(23) H =

N
∑

j=1

1

mj
Q+

j Q
−
j + E0,

where

Q±
j = ∓∂Xj

+ Vj , Vj(x) =
1

Φ0(x)
∂Xj

Φ0(x).
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Since Q−
j Φ0 = 0 for all j, this will prove the identity in (20).

To prove (23) we compute

Vj(x) = −w′
mj

(z(Xj))z
′(Xj) +

∑

k 6=j

κmjmk
z′(Xj)

z(Xj) − z(Xk)
,

and thus
N
∑

j=1

1

mj
Q+

j Q
−
j = −

N
∑

j=1

1

mj
∂2

Xj
+ W1 + W2 + W3

with

W1 =

N
∑

j=1

1

mj

(

w′
mj

(Zj)
2α(Zj) − w′′

mj
(Zj)α(Zj) −

1

2
w′

mj
(Zj)α

′(Zj)

)

the one-body terms,

W2 =

N
∑

j=1

∑

k 6=j

κmk

(

(κmjmk − 1)
α(Zj)

(Zj − Zk)2
+

1
2α

′(Zj) − 2w′
mj

(Zj)α(Zj)

Zj − Zk

)

the two-body terms, and

W3 =

N
∑

j=1

∑

k,ℓ 6=j,k 6=ℓ

κ2mjmkmℓ
α(Zj)

(Zj − Zk)(Zj − Zℓ)

the three-body terms; we inserted the relations z′(Xj)
2 = α(Zj) and z′′(Xj) =

1
2α

′(Zj) and used the short hand notation z(Xj) = Zj .

Symmetrising the sum defining W3 and inserting α(Zj) =
∑2

p=0 αpZ
p
j we can

write

W3 =
∑

j<k<ℓ

2κ2mjmkmℓ

2
∑

p=0

αp

Zp
j (Zk − Zℓ) − Zp

k(Zj − Zℓ) + Zp
ℓ (Zj − Zk)

(Zj − Zk)(Zj − Zℓ)(Zk − Zℓ)
,

and observing that the fraction on the r.h.s. is identical with 0 and 1 for p = 0, 1
and p = 2, respectively, we find that W3 is equal to the constant

W3 =
∑

j<k<ℓ

2κ2mjmkmℓα2.

Symmetrising the sum defining W2 and inserting 1
2α

′(Zj) − 2w′
mj

(Zj)α(Zj) =

βmj
(Zj), following from the second equation in (19), we obtain

W2 =
∑

j<k

κ

(

(κmjmk − 1)
mkα(Zj) +mjα(Zk)

(Zj − Zk)2
+
mkβmj

(Zj) −mjβmk
(Zk)

Zj − Zk

)

.

We now decompose W2 into two parts as follows:

W2 = W2,0 + W2,1,

where

W2,0 =
∑

j<k

κ

2
(κmjmk − 1)(mj +mk)

α(Zj) + α(Zk)

(Zj − Zk)2
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and

W2,1 =
∑

j<k

κ

(

1

2
(κmjmk − 1)(mk −mj)

α(Zj) − α(Zk)

(Zj − Zk)2

+
mkβmj

(Zj) −mjβmk
(Zk)

Zj − Zk

)

.

Recalling (13) we find that the symmetric part gives us the two-body terms we
want, up to a constant,

W2,0 =
∑

j<k

κ

2
(κmjmk − 1)(mj +mk) (W (xj , xk) + α2) .

Inserting (18) and (9) a straightforward but somewhat tedious computation shows
that the terms in the antisymmetric term add up to a constant,

W2,1 =
∑

j<k

κ
(α2

2
(κmjmk + 1)(mj +mk) + (β1 − α2(1 + κ))mjmk

)

.

Inserting the second equation in (19) and (18) a simple computation shows that
the one-body terms are identical with

W1 =
∑

j

1

mj
Vmj

(Xj)

with Vm defined in (17). Collecting all terms we obtain the identity in (23) with
the constant

E0 = −2κ2α2

∑

j<k<ℓ

mjmkmℓ − κ2α2

∑

j<k

mjmk(mj +mk)

− κ(β1 − α2(1 + κ))
∑

j<k

mjmk.

Using the notation in (22) we find by straightforward computations that this con-
stant is identical with the one given in (21). �

The physical interpretation of H in (16) as Schrödinger operator of a quantum
many-body system requires that it defines a self-adjoint Hilbert space operator
bounded from below. This is the case under certain obvious restrictions on param-
eters. We now discuss this Hilbert space structure for the different cases listed in
Table 1, but our discussion will be brief since this aspect does not play any role for
our construction in the following sections.

In cases I, III and VII the relevant Hilbert space is L2(RN ), in case IV we have
instead L2(RN

+ ), while L2([−π, π]N ) is associated to case II, and L2([0, π]N ) to
cases V and VI (the weight function is in all these cases constant and equal to
1). It is obvious in all these cases that Q+

j in the proof above is the Hilbert space

adjoint of Q−
j (on suitable domains), and thus, if all mj are positive, that H in (23)

defines a unique self-adjoint operator via the Friedrichs extension (see, e.g., [43])
with Φ0 as groundstate provided that Φ0 is square integrable. In particular, the
HN in (3) define, under obvious restrictions on parameters, self-adjoint operators
bounded from below. However, this is not the case for the deformed operators (6).
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2.2. Important special cases. We proceed to discuss the special cases of Propo-
sition 2.1 which underlies our construction of eigenfunctions of the differential op-
erators (3) and (6) in Sections 3 and 4, respectively. Setting N = N , mj = 1 and
Xj = xj for j = 1, . . . , N we obtain as a first special case the following:

Corollary 2.1. The function Ψ0, as defined by (5) and (12), is an eigenfunction

of the Schrödinger operator (3) with corresponding eigenvalue E0.

The remarkable identity underlying our solution method in Section 3 is obtained
from Proposition 2.1 by choosing N = 2N , mj = 1, Xj = xj , mN+j = −1, and
XN+j = yj for j = 1, . . . , N . We observe that H in (16) then becomes a difference
of two Schrödinger operators (3). Denoting Φ0 as F and E0 as CN we obtain the
following:

Corollary 2.2. Let HN (x) = HN be the operator in (3),

(24) H
(−)
N (y) =

N
∑

j=1

(

− ∂2
yj

+ V−1(yj)
)

+ κ(κ− 1)
∑

j<k

W (yj , yk)

and

F (x,y) =

N
∏

j=1

ψ0(xj)ψ0,−1(yj)

∏

j<k(zk − zj)
κ(wk − wj)

κ

∏

j,k(wk − zj)κ

with zj = z(xj), wj = z(yj), and V−1(x) and ψ0,−1(x) as in (17) and (19) for

m = −1. Then

(25)
(

HN (x) −H
(−)
N (y) − CN

)

F (x,y) = 0

with the constant

CN = κ(β1 − α2(1 + κ))N.

It is important to note that also H
(−)
N is a Schrödinger operator of the same

kind as HN , only the coupling parameters are different. For the convenience of the
reader we give the modified parameters for our examples I and III–VII,

ω−1 = −ω, c−1 = −κ− c, a−1 = κ− a, b−1 = κ− b.

The key property that makes the special case of Proposition 2.1 stated in Corol-
lary 2.2 interesting as a tool for constructing the eigenfunctions of a Schrödinger
operator (3) is that the variables X of H in (16) are divided in two groups x and y

such that the interaction terms involving variables belonging to different groups all
vanish. It is interesting to note that there are other cases where this happens. For
example, the number of particles with parameters mj = 1 and mj = −1 need not
be the same. More generally, if we divide the variables X into two groups where
the ‘mass parameters’ in the first group are mj = 1 or −1/κ and in the second
group mk = −1 or 1/κ, then all interaction terms between particles in different
groups vanish (since 1

2κ(mj +mk)(κmjmk −1) = 0 in all these cases). We then ob-
tain an identity as in (25) but now involving two deformed Calogero-Sutherland
operators (6) which can have, in general, different particle numbers. Such an
identity involves four different kinds of particles, and the number of particles of
each kind can be arbitrary. These identities will allow us to construct eigenfunc-
tions of the deformed Calogero-Sutherland operators (6) in Section 4. The most
general such identity corresponds to the following special case of Proposition 2.1:
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N = N + Ñ + M + M̃ with non-negative integers N, Ñ,M, M̃ such that N is
non-zero, mj = 1 and Xj = xj for j = 1, 2, . . . , N , mN+J = −1/κ and XN+J = x̃J

for J = 1, 2, . . . , Ñ , mN+Ñ+k = −1 and XN+Ñ+k = yk for k = 1, 2, . . . ,M , and

mN+Ñ+M+K = 1/κ and XN+Ñ+M+K = ỹK for K = 1, 2, . . . , M̃ .

Corollary 2.3. Let HN,Ñ(x, x̃) = HN,Ñ be the operator in (6) with Ṽ = V−1/κ,

H
(−)

M,M̃
(y, ỹ) =

M
∑

k=1

(

− ∂2
yk

+ V−1(yk)
)

−
M̃
∑

K=1

κ
(

− ∂2
ỹK

+ V1/κ(ỹK)
)

+ κ(κ− 1)
∑

j<k

W (yj, yk) +
κ− 1

κ

∑

J<K

W (ỹj , ỹk)

+ (1 − κ)
∑

j,K

W (yj, ỹK)

where M and M̃ are arbitrary non-negative integers, and

FN,Ñ,M,M̃ (x, x̃,y, ỹ) =

N
∏

j=1

ψ0(xj)

Ñ
∏

J=1

ψ0,−1/κ(x̃J )

M
∏

k=1

ψ0,−1(yk)

M̃
∏

K=1

ψ0,1/κ(ỹK)

×
∏

j<k(zk − zj)
κ
∏

J<K(z̃K − z̃J)1/κ

∏

j,J (z̃J − zj)

×
∏

j<k(wk − wj)
κ
∏

J<K(w̃K − w̃J )1/κ

∏

j,J(w̃J − wj)

×
∏

j,K(w̃K − zj)
∏

J,k(wk − z̃J)
∏

j,k(wk − zj)κ
∏

J,K(w̃K − z̃J)1/κ

with zj = z(xj), wj = z(yj), z̃J = z(x̃J), w̃J = z(ỹJ), and Vm(x) and ψ0,m(x) as

in (17) and (19), respectively, for m = −1 and m = ±1/κ. Then
(

H
N,Ñ

(x, x̃) −H
(−)

M,M̃
(y, ỹ) − CN,Ñ,M,M̃

)

FN,Ñ,M,M̃ (x, x̃,y, ỹ) = 0

with the constant

CN,Ñ,M,M̃ = −κ
2α2

3

(

(

N− − Ñ−/κ
)3

−N− + Ñ−/κ
3

)

− κ(β1 − (1 + κ)α2)

2

(

(

N− − Ñ−/κ
)2

−N+ − Ñ+/κ
2

)

,

where

N± = N ±M, Ñ± = Ñ ± M̃.

Using this identity we can straightforwardly generalise our solution method
and obtain many different formulae for eigenfunctions of the deformed Calogero-
Sutherland operators (6): for fixed particle numbers N and Ñ one is free to choose

M and M̃ arbitrarily and each choice gives a family of eigenfunctions labelled by

integer vectors n ∈ Z
M+M̃ . As discussed in Section 4.2, we obtain in this way a

number of series representations for each eigenfunction, a fact which is interesting
already in the standard (non-deformed) case Ñ = 0.
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2.3. Case II. In order to put the general discussion in the previous two sections
into perspective we consider in some detail the special case II; see Tables 1 and 2.
The Schrödinger operator (3) is in this case given by

HN = −
N
∑

j=1

∂2
xj

+ 2κ(κ− 1)
∑

j<k

1

4 sin2
(

xj−xk

2

) .

As we mentioned in the introduction, this Schrödinger operator was introduced
and studied by Sutherland [50,51], and its eigenfunctions are given by the so-called
Jack polynomials. In this special case the identity in Corollary 2.2 is equivalent
to a well-known and important identity in the theory of Jack polynomials, and
Corollary 2.3 gives a natural generalisation of this identity to the deformed case.
More precisely, we have the following:

Corollary 2.4. Let

F (x,y) =

N
∏

j=1

wκ
j

∏

j<k(zk − zj)
κ(wk − wj)

κ

∏

j,k(wk − zj)κ

with zj = eixj and wj = eiyj . Then

(26) (HN (x) −HN (y))F (x,y) = 0,

where the arguments indicate that the Schrödinger operator acts in the variables x

and y, respectively.

As mentioned above, the identity (26), and in particular the function F , is
directly related with the theory of Jack polynomials. In order to make this precise
we observe that

F (z,w) =
∏

j<k

(zk − zj)
κ(1/wj − 1/wk)κΠ(z,w)

with the function Π given by

Π(z,w) =
1

∏

j,k(1 − zj/wk)κ
.

It is well known that this latter function Π has the following expansion in the monic
Jack polynomials Jλ:

(27) Π(z,w) =
∑

λ

bλJλ(z)Jλ(w−1)

for some (explicitly known) coefficients bλ, and where w−1 = (1/w1, . . . , 1/wN ); see,
e.g., Sections VI.4 and VI.10 in [39]. We recall that the monic Jack polynomials
are usually denoted Pλ rather than Jλ. We have used the latter notation in order
to avoid clashes with notation used in later sections. Up to degeneracies in the
spectrum of the Schrödinger operator HN , this expansion can be deduced as a
consequence of the identity (26). To establish this fact we let Ψ0(z) =

∏

j<k(zk −
zj)

κ, and similarly for Ψ0(w
−1). It is well known that the functions Ψ0(z)Jλ(z) are

eigenfunctions of HN ; this can for example be inferred from results of Stanley [49].
Since HN (y) is invariant under the substitution of −yj for yj which maps wj to
1/wj, the functions Ψ0(w

−1)Jλ(w−1) are eigenfunctions of the same Schrödinger
operator HN , and with the same eigenvalues. We observe that Π(z,w) is invariant
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under permutations of both the variables z as well as the variables w. It follows
that it has an expansion in Jack polynomials of the form

Π(z,w) =
∑

λ

Qλ(z)Jλ(w−1),

where the functions Qλ are to be determined. Since Ψ0(w
−1)Jλ(w−1) is an eigen-

function ofHN , the identity (26) implies that also Ψ0(z)Qλ(z) is an eigenfunction of
HN , and with the same eigenvalue. It follows that, unless this eigenvalue is degen-
erate, Qλ(z) is proportional to Jλ(z). We mention that although such degeneracies
do occur they are quite rare in this case.

The identities obtained in the previous section thus suggest that there exist
expansions, similar to the one given above, for each function F corresponding to
a Schrödinger operator (3) or a deformed counterpart (6). However, in most cases
the Schrödinger operator HN , as well as its deformed counterpart HN,Ñ , is not

invariant under a change of coordinates mapping wj to 1/wj . This explains the

appearance of the operator H
(−)
N and the constant CN in Corollary 2.2, as well as

that of H
(−)

M,M̃
and CN,Ñ,M,M̃ in Corollary 2.3.

3. Eigenfunctions of Calogero-Sutherland type models

In this section we construct our series representations of the eigenfunctions of the
Schrödinger operators (3). These series representations are in terms of the functions
fn defined in (7). As we will see, the identities deduced in the previous section play
a central role in this construction. These series representation generalises those
obtained in [30] for the special case II and in [20] for I and IV (c.f. Table 1).

3.1. Construction of eigenfunctions. We fix the polynomials α, β in (9) and
the coupling constant κ > 0 and consider the resulting Schrödinger operator HN as
defined by (3), (10), (11) and (13). We observe that the eigenfunctions in (4) are
completely determined by the functions Pn in N variables z, and we will refer to
the latter as reduced eigenfunctions of HN . We also observe that Pn is a reduced
eigenfunction of HN if and only if it is an eigenfunction of the differential operator

(28) H̃N := Ψ−1
0 (HN −E0)Ψ0 = −

N
∑

j=1

(

α(zj)∂
2
zj

+ β(zj)∂zj

)

−2κ
∑

j 6=k

α(zj)

zj − zk
∂zj

,

where the last equality follows by a straightforward computation using the fact
that Ψ0 is an eigenstate of HN with eigenvalue E0 and the identities in (8), (13),
and (11). Using the identity in Corollary 2.2 it is now straightforward to compute
the action of this differential operator on the polynomials fn. In order to state this
action in a simple form, and also to facilitate a discussion of its implications, we first
introduce some convenient notation. An important ingredient in our construction
is the following partial ordering of integer vectors n,m ∈ Z

N :

(29) m � n ⇔ mj + · · · +mN ≤ nj + · · · + nN , ∀j = 1, 2, . . . , N.

That this is only a partial ordering is easily seen, e.g., (522) and (441) are incompa-
rable. The algebra of symmetric polynomials P (z) in N variables z = (z1, . . . , zN)
with complex coefficients is denoted ΛN . The linear subspace consisting of the ho-
mogeneous symmetric polynomials of degree n, together with the zero polynomial,
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is denoted by Λn
N . We also denote as ej the standard basis in Z

N , i.e., (ej)k = δjk

for all j, k = 1, 2, . . . , N , and let

E
p,ν
j,k = (1 − ν)ej + (1 − p+ ν)ek.

As before,

(30) |n| := n1 + . . .+ nN .

For simplicity of notation we shall to each n ∈ Z
N associate the shifted integer

vector n+ = (n+
1 , . . . , n

+
N) with

(31) n+
j = nj + κ(N + 1 − j).

We are now ready to state and prove the following:

Lemma 3.1. For each n ∈ Z
N ,

(32) H̃Nfn = (En − E0)fn

−
N
∑

j=1

(

α1n
+
j (n+

j − 1) + (β0 − (1 + κ)α1)(n
+
j − 1)

)

fn−ej

− α0

N
∑

j=1

(n+
j − 1)(n+

j − 2)fn−2ej

+ κ(κ− 1)
∑

j<k

2
∑

p=0

∞
∑

ν=1

αp(2ν − p)fn−E
p,ν

j,k
.

Proof. Note that the function F in Corollary 2.2 can be written as follows:

F (x,y) = Ψ0(x)G(y)

N
∏

j=1

w
−κ(N+1−j)
j

∏

j<k(1 − wj/wk)κ

∏

j,k(1 − zj/wk)κ

with

G(y) :=

N
∏

j=1

ψ0,−1(yj).

The definition (7) of the polynomials fn thus implies

F (x,y) = Ψ0(x)G(y)
∑

n∈ZN

fn(z)w−n
+

.

It follows from Corollary 2.2 that

(33)
∑

n∈ZN

(H̃Nfn(z))w−n
+

=
∑

n∈ZN

fn(z)(H̄
(−)
N + CN )w−n

+

where
H̄

(−)
N := G−1(y)H

(−)
N G(y).

Using (8), (13), and (11), as well as the definition of H
(−)
N , we find that

H̄
(−)
N = −

N
∑

j=1

(

α(wj)∂
2
wj

+ β−1(wj)∂wj

)

+ κ(κ− 1)
∑

j<k

(

α(wj) + α(wk)

(wj − wk)2
− α2

)

with
β−1(w) = −β(w) + (1 + κ)α′(w).
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Recalling (9) we expand the interaction terms in Laurent series and obtain

α(wj) + α(wk)

(wj − wk)2
− α2 =

2α2wjwk + α1(wj + wk) + 2α0

w2
k(1 − wj/wk)2

=

2
∑

p=0

∞
∑

ν=1

αp(2ν − p)
wν−1

j

wν+1−p
k

valid for |wN | > |wN−1| > · · · > |w1| > maxk(|zk|). It is now straightforward to

compute the r.h.s. of (33), and by comparing the coefficients of w−n
+

on both sides
of the resulting equation we obtain (32) with

En = −
N
∑

j=1

[α2n
+
j (n+

j + 1) + (β1 − 2(1 + κ)α2)n
+
j ] + CN .

By straightforward computations we find that the latter coincides with En in (14)
and (15). �

It is clear that the action of H̃N on the polynomials fn is triangular in the
sense that H̃Nfn is a linear combination of polynomials fm with m � n. In fact,
depending on the specific choice of α and β, the set of possible m is in many cases
significantly smaller. In any case, this triangular structure suggests that there exist
eigenfunctions, with corresponding eigenvalues En−E0, of the differential operator
H̃N which are of the form

(34) Pn = fn +
∑

m

un(m)fm

where the sum is over integer vectors m ≺ n. Indeed, if we take this as an ansatz
then we find that this is the case if and only if the coefficients satisfy the recursion
relation

(35) (En − Em)un(m) = −
N
∑

j=1

m+
j (β0 + α1(m

+
j − κ))un(m + ej)

− α0

N
∑

j=1

m+
j (m+

j + 1)un(m + 2ej) + κ(κ− 1)
∑

j<k

2
∑

p=0

αp(2ν − p)un(m + E
p,ν
j,k ).

Since un(n) is fixed to one, it is clear that if En − Em 6= 0 for all m which appear
in (34), then this recursion relation uniquely determines the remaining coefficients
un(m). This condition of non-degeneracy on the eigenvalues is generically satisfied,
but there exist special cases and specific integer vectors n for which it fails to hold
true; see Remark 3.2 for a further discussion of this point.

3.2. Case II. In order to draw attention to some of the specific features of the
action of H̃N on the polynomials fn we consider in some detail the special case II;
see Tables 1 and 2. On the one hand this is in many ways the simplest non trivial
case, and our construction of reduced eigenfunctions is therefore particularly simple
in this case, but, on the other hand, it already contains many of the key features of
the general case. For the special case II we have α(z) = −z2 and β(z) = −z, and
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consequently that

H̃Nfn = (En − E0)fn − 2κ(κ− 1)
∑

j<k

∞
∑

ν=1

νfn−ν(ek−ej).

Clearly, the right hand side now only contains polynomials fm such that |m| = |n|.
It is interesting to compare this expression with the corresponding action of H̃N on
the monomial symmetric polynomials

(36) mλ(z) :=
∑

P

z
λP (1)

1 · · · zλP(N)

N

with λ a partition of length ℓ(λ) ≤ N , and where the sum extends over all distinct
permutations P of the parts λj of λ. To this end we let ⌊x⌋ denote the integer part
of x ∈ R. In addition, for any n ∈ N

N
0 we identify mn with the unique mλ such

that n = P (λ) for some permutation P . Using the identity

1

x− y
(x2∂x − y2∂y)(xnym + xmyn) = (n−m)

n−m
∑

k=0

xn−kym+k + 2mxnym,

valid for any non-negative integers n and m such that n ≥ m, it is now easy to
verify that

H̃Nmλ = (Eλ − E0)mλ + 2κ
∑

j<k

(λj − λk)

⌊(λj−λk)/2⌋
∑

ν=0

mλ+ν(ek−ej).

We note, in particular, that the action of H̃N on the polynomials fn does not
contain an explicit dependence on the integer vector n. In contrast, the action on
the symmetric monomials mλ do contain an explicit dependence on the partition
λ. It is also interesting to note that the corresponding recursion relation (35)
can in fact be solved to yield the following explicit series representation for the
eigenfunctions of H̃N :

Pn = fn +

∞
∑

s=1

(2κ(1 − κ))s
∑

j1<k1

∞
∑

ν1=1

ν1 × · · · ×
∑

js<ks

∞
∑

νs=1

νs

×
s
∏

r=1

(

Eλ − Eλ−
P

s
t=r

νt(ekt
−ejt

)

)−1

fλ−
P

s
r=1 νr(ekr −ejr );

see [31] for further details. It is important to note that the fact that fn is non-zero
only if n � 0 (see Corollary 3.1) implies that this series only contains a finite number
of terms, and thus is well-defined. Even though it can be done in principle, it
seems harder to solve the recursion relations resulting from the use of the monomial
symmetric polynomials. Detailed discussions of the above construction of series
representations for the reduced eigenfunctions of the Schrödinger operator (3) in
the cases I and IV can be found in [17, 20]. We also mention that it is possible
to write down explicit formulae for the reduced eigenfunctions of the Schrödinger
operator (3) in the general case which, however, are somewhat involved.1

1The interested reader can find these formulae in the first arXiv version of the present paper;
see http://arxiv.org/abs/math-ph/0703090v1.

http://arxiv.org/abs/math-ph/0703090v1
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3.3. Completeness of the reduced eigenfunctions. In Section 3.1 we con-
structed, under a certain condition of non-degeneracy on the corresponding eigen-
values, for each integer vector n ∈ Z

N a reduced eigenfuntion Pn of the Schrödinger
operator HN . In this section we show that if we restrict attention to integer vectors
n = λ for some partition λ, then the corresponding reduced eigenfunctions form a
linear basis for ΛN . The idea of the proof is to first establish that the expansion of
the symmetric polynomials fn in terms of a particular set of symmetric polynomials
gλ, known to constitute such a basis, has a particular triangular structure. This
implies that the fλ, labelled by the partitions λ of length ℓ(λ) ≤ N , form a linear
basis for ΛN . We then obtain a similar result for the reduced eigenfunctions Pλ by
showing that they are, in the same sense, triangular in the fλ.

We proceed to recall that the polynomials gλ in question, sometimes referred to
as the modified complete symmetric polynomials, can be defined by the expansion
(w−1 = (w−1

1 , . . . , w−1
N ))

(37) Π(z,w) =
∑

λ

gλ(z)mλ(w−1)

valid for mink(|wk|) > maxj(|zj |), and where the sum extends over all partitions
λ of length ℓ(λ) ≤ N . It is well known that the gλ constitute a linear basis for
ΛN ; see, e.g., Section VI.10 in [39]. Using this fact we now establish the following
relation between the fn and the gλ, which, in particular, implies that the fn indeed
are well-defined symmetric polynomials:

Lemma 3.2. Let n ∈ Z
N . Then

fn =
∑

µ

anµgµ

for some coefficients anµ and where the sum is over partitions µ � n such that

|µ| = |n|. Moreover, if n = λ for some partition λ of length ℓ(λ) ≤ N , then

aλλ = 1.

Proof. It follows from the definitions of the gλ and fn that
∑

n∈ZN

fn(z)w−n =
∏

j<k

(1 − wj/wk)κ
∑

m∈NN
0

gp(m)(z)w
−m

=
∑

m∈NN
0

gp(m)(z)
∏

j<k

∞
∑

qjk=0

(−1)qjk

(

κ

qjk

)

w−m+
P

j<k qjk(ej−ek)

where p(m) denotes the unique partition obtained by permuting the components
of the integer vector m, e.g., p(2, 4, 5, 2) = (5, 4, 2, 2). Comparing the coefficients
of w−n on both sides of this identity we find that

(38) fn =
∏

j<k

∞
∑

qjk=0

(−1)qjk

(

κ

qjk

)

gp(n+
P

j<k
qjk(ej−ek)).

We thus obtained a representation of fn as a linear superposition of polynomials
gµ where µ = p(m) for

m = n +
∑

j<k

qjk(ej − ek)

with non-negative integers qjk. Obviously, |µ| = |m| = |n| for such µ. To complete
the proof we thus only need to show that µ � n. For that we observe that m � n.
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Moreover, since µ is a partition, µ1 ≥ µ2 ≥ · · · ≥ µN , and the definition of the
ordering (29) thus implies that µ � Pµ for any permutation P of the parts of µ

and, in particular, µ � m. �

Remark 3.1. It is interesting to note that in the particular case κ = 1 the result
in (38) is equivalent to the so-called Jacobi-Trudi identity (originally due to Jacobi
[23]), which implies that the well-known Schur polynomials sλ are identical with
the polynomials fλ for κ = 1. The proof of this fact can be obtained as a simple
consequence of well-known arguments which can be found in Macdonald’s book [39];
see the proof of (3.4”) and the preceding discussion in Chapter I.

The fact that each gµ is a symmetric homogeneous polynomial of degree |µ| now
implies the following:

Corollary 3.1. The function fn, n ∈ Z
N , is non-zero only if n � 0. In that case

it is a symmetric homogeneous polynomial of degree |n|.
Let n be a non-negative integer and consider the two sets of polynomials gλ and

fλ which are both indexed by those partitions λ of n which are of length ℓ(λ) ≤ N .
Let K = (Kλµ) denote the transition matrix from the fλ to the gλ, defined by the
equalities fλ =

∑

µ Kλµgµ. Given a partition λ, Lemma 3.2 implies that Kλµ = 0
unless µ � λ and that Kλλ = 1. It is readily verified that the inverse of such a
matrix always exist and is of the same form; see, e.g., Section I.6 in [39]. It follows
that

(39) gλ = fλ +
∑

µ

(K−1)λµfµ

where (K−1)λµ are the elements in the matrix inverse to K and the sum is over
partitions µ ≺ λ of n. We thus obtain the following:

Proposition 3.1. For any non-negative integer n, the polynomials fλ, labelled by

those partitions λ of n which are of length ℓ(λ) ≤ N , form a linear basis for Λn
N .

Suppose now that the reduced eigenfunctions Pn of the form (34) exist for all
integer vectors n ∈ Z

N such that n = λ for some partition λ. From Lemma 3.2
and (39) we have that any such reduced eigenfunction has a series expansion of the
form

Pλ = fλ +
∑

µ

vλµfµ

for some coefficients vλµ, and where the sum is over partitions µ ≺ λ. Fix a
partition λ of length ℓ(λ) ≤ N and consider the transition matrix from the reduced
eigenfunctions Pµ to the polynomials fµ, both indexed by the partitions µ of length
ℓ(µ) ≤ N such that µ � λ. Observe that its entries are non-zero only if µ � λ and
that all diagonal entries are equal to one. It is clear from the arguments leading
up to Proposition 3.1 that this transition matrix has a well-defined inverse of the
same form. It follows that each polynomial fλ is a linear combination of reduced
eigenfunctions Pµ with µ � λ. Proposition 3.1 thus implies the following:

Proposition 3.2. If the reduced eigenfunctions Pλ in (34) exist for all partitions

λ of length ℓ(λ) ≤ N then they form a linear basis for ΛN .

Remark 3.2. As discussed after Equation (35), a reduced eigenfunction of the form
(34) exist if En − Em 6= 0 for all m which appear in (34). It is easy to see that
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this condition of non-degeneracy holds true if α2 = 0 (and β1 6= 0), including the
special cases I and IV (see, e.g., [20]). It is also known to hold for all integer vectors
n ∈ Z

N such that n = λ for some partition λ in the special case II (see, e.g., [31]),
assuming that κ > 0. It is interesting to note that if α2 6= 0 and if one allow κ
to be negative then there exist parameter values and integer vectors n such that
En = Em for some integer vector m which appear in (34). We stress, however, that
for generic parameter values and integer vectors n this condition of non-degeneracy
on the eigenvalues is satisfied.

4. Eigenfunctions of deformed Calogero-Sutherland type models

In this section we sketch the generalisation of our construction of eigenfunctions
from the previous section to the deformed Calogero-Sutherland operatorsHN,Ñ (6),
emphasising the features which are new. Just as the construction in the previous
section was based on Corollary 2.2, the discussion below is based on Corollary 2.3.
We recall that the identity in this latter corollary relates the operator HN,Ñ to an

operator of the same type, but with particle numbers M and M̃ . We stress that
these particle numbers can be chosen freely, and that, as we will discuss in Section
4.2, the complexity of the resulting series representation of a given eigenfunction can
be highly dependent on the specific choice. As described already in the beginning
of Section 1, this can be used to construct simpler explicit formulae for many of
the eigenfunctions already in the special case Ñ = 0.

We proceed to describe the structure of the eigenfunctions of the deformed
Calogero-Sutherland operators (6). Following Sergeev and Veselov [48] we let
ΛN,Ñ,κ be the algebra of polynomials P (z, z̃) in two sets of independent variables

z = (z1, . . . , zN ) and z̃ = (z̃1, . . . , z̃Ñ) with complex coefficients such that they are
separately symmetric in the variables z and z̃ and, furthermore, obey the condition

(∂zj
+ κ∂z̃J

)P (z, z̃)|zj=z̃J
= 0

for all j = 1, . . . , N and J = 1, . . . , Ñ . We will show that the deformed Calogero-
Sutherland operators (6) have eigenfunctions which are naturally labelled by par-

titions λ = (λ1, λ2, . . .) in the so-called fat (N, Ñ)-hook, i.e., λN+1 ≤ Ñ , and are
of the form

(40) Ψλ(x, x̃) = Ψ0(x, x̃)Pλ(z, z̃)

with zj = z(xj), z̃J = z(x̃J),

(41) Ψ0(x, x̃) =

N
∏

j=1

ψ0(xj)

Ñ
∏

J=1

ψ0,−1/κ(x̃J )

∏

j<k(zk − zj)
κ
∏

J<K(z̃K − z̃J)1/κ

∏

j,J(z̃J − zj)
,

and where the Pλ are particular polynomials contained in the algebra ΛN,Ñ,κ.
Moreover, the corresponding eigenvalues are given by

(42) Eλ = E0 −
ℓ(λ)
∑

j=1

(

α2λj(λj − 1) +
(

2α2(κ(N − j) − Ñ) + β1

)

λj

)



22 MARTIN HALLNÄS AND EDWIN LANGMANN

with

(43) E0 = −κ
2α2

3

(

(

N − Ñ/κ
)3

−N + Ñ/κ3

)

− κ(β1 − (1 + κ)α2)

2

(

(

N − Ñ/κ
)2

−N − Ñ/κ2

)

.

To the best of our knowledge, this fact was previously known only in special cases;
see [47, 48].

4.1. Construction of eigenfunctions. At this point we fix the polynomials α
and β in (9) and the coupling constant κ > 0 and consider the resulting deformed
Calogero-Sutherland operatorHN,Ñ (6). As we will see, the construction of explicit
series representations for the polynomials Pλ is very similar to the one in the pre-
vious section, but there are a few important differences in definitions and notation
which we now specify.

We start by noting that Ψλ is an eigenfunction of HN,Ñ if and only if Pλ is an
eigenfunction of the differential operator

(44) H̃N,Ñ := Ψ−1
0 (HN,Ñ − E0)Ψ0 = −

N
∑

j=1

(

α(zj)∂
2
zj

+ β(zj)∂zj

)

+ κ

Ñ
∑

J=1

(

α(z̃J )∂2
z̃J

+ β−1/κ(z̃J)∂z̃J

)

− 2κ
∑

j 6=k

α(zk)

zj − zk
∂zj

+ 2
∑

J 6=K

α(z̃K)

z̃J − z̃K
∂z̃J

− 2κ
∑

J,k

α(zk)

z̃J − zk
∂z̃J

− 2
∑

j,K

α(z̃K)

zj − z̃K
∂zj

with corresponding eigenvalue Eλ −E0; this equivalence follows from a straightfor-
ward computations using that Ψ0 (41) is an eigenstate of HN,Ñ (6) with eigenvalue

E0 (Corollary 2.3 for M = M̃ = 0) and the identities (8), (13), and (11). We shall
refer to the polynomials Pλ as reduced eigenfunctions of the deformed Calogero-
Sutherland operators (6). Furthermore, we let

(45) F̃N,Ñ,M,M̃ (z, z̃,w, w̃)

=

∏

j<k(1 − wj/wk)κ
∏

J<K(1 − w̃J/w̃K)1/κ

∏

j,J (1 − wj/w̃J )

×
∏

j,K(1 − zj/w̃K)
∏

J,k(1 − z̃J/wk)
∏

j,k(1 − zj/wk)κ
∏

J,K(1 − z̃J/w̃K)1/κ

where

(z, z̃) = (z1, . . . , zN , z̃1, . . . , z̃Ñ) and (w, w̃) = (w1, . . . , wN , w̃1, . . . , w̃M̃ )

and define the polynomials f
(M,M̃)
n (z, z̃), n ∈ Z

M+M̃ , through the following expan-
sion:

(46) F̃N,Ñ,M,M̃ (z, z̃,w, w̃)

=
∑

n∈ZM+M̃

f (M,M̃)
n

(z, z̃)w−n1
1 · · ·w−nM

M w̃
−nM+1

1 · · · w̃−n
M+M̃

M̃
,
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valid in the region |w1| > · · · > |wM | > |w̃1| > · · · > |w̃M̃ | > maxj,J (|zj |, |z̃J |). The

next step is to compute the action of the differential operator H̃N,Ñ on these poly-

nomials f
(M,M̃)
n . In order to simplify such a computation it is useful to introduce

the following ‘parity’ function q on the index set {1, . . . ,M + M̃}:

(47) q(j) :=

{

0, if j = 1, . . . ,M,

1, if j = M + 1, . . . , M̃ .

We also find it convenient to define the following shifted integer vectors n+ associ-
ated with each quantum number n:

(48) n+
j =

{

nj + κ(N + 1 − j) − Ñ, if j = 1, . . . ,M,

nj + (Ñ +M + 1 − j)/κ−N +M, if j = M + 1, . . . , M̃ .

Proceeding in analogy with the proof of Lemma 3.1 in the previous section it is
now straightforward to obtain the following:

Lemma 4.1. For each n ∈ Z
M+M̃ ,

(49) H̃N,Ñf
(M,M̃)
n

=
(

E(M,M̃)
n

− E0

)

f (M,M̃)
n

−
M+M̃
∑

j=1

(

(−κ)q(j)α1n
+
j (n+

j − 1) +
(

β0 −
(

1 − (−κ)1−q(j)
)

α1

)

(n+
j − 1)

)

f
(M,M̃)
n−ej

− α0

M+M̃
∑

j=1

(−κ)q(j)(n+
j − 1)(n+

j − 2)f
(M,M̃)
n−2ej

+
∑

j<k

(1 − κ)(−κ)1−q(j)−q(k)
2
∑

p=0

∞
∑

ν=1

αp(2ν − p)f
(M,M̃)

n−E
p,ν

j,k

with

(50) E(M,M̃)
n

− E0 = −
M
∑

j=1

(

α2nj(nj − 1) + (2α2(κ(N − j) − Ñ) + β1)nj

)

+

M+M̃
∑

j=M+1

(

κα2nj(nj + 1) + (2α2(Ñ −M + 1 − j − κ(N −M)) − β1)nj

)

.

Similarly to the previous section, Lemma 4.1 implies that that there exist an
eigenfunction of the form

(51) P (M,M̃)
n

= f (M,M̃)
n

+
∑

m

un(m)f (M,M̃)
m

,
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where the sum is over integer vectors m ∈ Z
M+M̃ such that m ≺ n, if and only if

the coefficients un(m) satisfy the recursion relation

(

E(M,M̃)
n

− E(M,M̃)
m

)

un(m)

= −
M+M̃
∑

j=1

m+
j

(

(−κ)q(j)α1(n
+
j + 1) +

(

β0 −
(

1 − (−κ)1−q(j)
)

α1

))

un(m + ej)

− α0

M+M̃
∑

j=1

(−κ)q(j)m+
j (m+

j + 1)un(m + 2ej)

+ (1 − κ)
∑

j<k

(−κ)1−q(j)−q(k)
2
∑

p=0

∞
∑

ν=1

αp(2ν − p)un(n + E
p,ν
j,k ).

Provided that E
(M,M̃)
n −E

(M,M̃)
m 6= 0 for all integer vectors m which appear in (51)

this uniquely determines all coefficients un(m). As previously mentioned, an im-

portant feature of our construction is that the non-negative integers M and M̃ can
be chosen freely, and for each choice we obtain a family of reduced eigenfunctions

P
(M,M̃)
n of HN,Ñ which are labelled by integer vectors n ∈ Z

M+M̃ . This yields

eigenfunctions (40) of HN,Ñ with corresponding eigenvalues E
(M,M̃)
n given by (50)

and (43). A priori, it is not clear whether these eigenvalues coincide with the ones
given in (42). In particular, it seems that the eigenvalues we obtain depend on

the specific values of M and M̃ , but, of course, the spectrum of HN,Ñ does not.
This apparent paradox can be resolved by exhibiting an explicit mapping from the

eigenvalues E
(M,M̃)
n (50) to Eλ (42) under certain restrictions on the integer vec-

tors n ∈ Z
M+M̃ . To state this result we need the notion of the conjugate µ′ of

a partition µ, obtained by interchanging rows and columns in the Young diagram
corresponding to µ, e.g.,

µ = (5, 3, 2) : → : µ′ = (3, 3, 2, 1, 1);

see, e.g., Section I.1 in [39].

Lemma 4.2. Let n = (m,µ) with m ∈ Z
M and µ a partition of length ℓ(µ) ≤ M̃ .

Then

(52) E(M,M̃)
n

= Eλ

with λ = (m,µ′).

Proof. We recall the following two well-known identities obeyed by all partitions µ:

∑

j

µ2
j =

∑

j

(2j − 1)µ′
j ,

∑

j

jµj =
∑

j

1

2
µ′

j(µ
′
j + 1),

where the sums are over all non-zero parts µj and µ′
j of µ and µ′, respectively.

This, together with the identity
∑

j µj =
∑

j µ
′
j inserted into the second sum in
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(50), yields

E(M,M̃)
n

= E0 −
M
∑

j=1

(

α2mj(mj − 1) + (2α2(κ(N − j) − Ñ) + β1)mj

)

−
ℓ(µ′)
∑

j=1

(

α2µ
′
j(µ

′
j − 1) + (2α2(κ(N −M − j) − Ñ) + β1)µ

′
j

)

.

The statement now follows by substituting λj for mj and λM+j for µ′
j . �

4.2. On the complexity of the series representations. The construction de-
scribed in the previous section gives reduced eigenfunctions Pn for all integer vectors
n such that a certain condition of non-degenracy on the corresponding eigenvalues
is satisfied, but unless n satisfies the condition in (52) for some partition λ in the

fat (N, Ñ)-hook this function ought to vanish identically. Lemma 4.2 gives, for each

partition λ in the fat (N, Ñ)-hook, such an integer vector n provided one chooses

(M, M̃) = (N, Ñ), and the latter choice thus is natural if one is interested in a
general formula which works for (essentially) all eigenfunctions. However, we stress
that we have constructed a family of reduced eigenfunctions for each choice of non-
negative integers M and M̃ , and that there exist a simple relation between any two
such families: For any two sets of non-negative integers (M1, M̃1) and (M2, M̃2)

one can show that two reduced eigenfunctions P
(M1,M̃1)
n1 and P

(M2,M̃2)
n2 , labelled

by integer vectors n1 and n2 which correspond to one and the same partition λ

under the mapping defined in Lemma 4.2, are equal up to normalisation; see the
first arXiv version (v1) of [18]. We can thus, in a simple manner, obtain different
series representations for one and the same reduced eigenfunction by varying the
values of M and M̃ . Since the complexity of this series representation is highly
dependent on the values of M and M̃ , one can choose the latter such that the com-
plexity is minimised, in many cases substantially below that of the canonical choice
(M, M̃) = (N, Ñ). This is already evident in the case of the Schrödinger operators

(3), i.e., for Ñ = 0. For example, suppose that we are interested in the reduced
eigenfunction of the standard Sutherland model for N = 8 and corresponding to
the partition with diagram

.

Rather than setting M = 8 and M̃ = 0 we can use the fact that the conjugate of
this partition is given by the diagram

,

and thus the sought after reduced eigenfunction can equally well be obtained by
setting M = 0 and M̃ = 2, in the process decreasing the complexity of its series
representation from the 8-particle case to that of only 2-particles. As a further



26 MARTIN HALLNÄS AND EDWIN LANGMANN

illustrative example we consider the reduced eigenfunction corresponding to the
partition with diagram

for which we can set M = M̃ = 2 to minimise the complexity of its series represen-
tation. Similar examples can be easily constructed also in the ‘deformed’ case. In
generally, it can be readily verified that, given a specific partition λ, the minimal
value for M + M̃ is attained by setting M = j and M̃ = λj+1 where j denotes the
row in the diagram of λ for which j + λj+1 is minimal. This means, in particular,

that we always can chooseM and M̃ such that their sum does not exceed the length
ℓ(λ) of the partition λ in question, which may be less than N+Ñ . This observation

is also reflected in the fact that f
(M,M̃)
n = f

(M,M̃+K)
n for all non-negative values of

K as long as M + M̃ ≥ ℓ(n); the latter is readily inferred from the definition of the

polynomials f
(M,M̃)
n .

4.3. Elementary properties of the reduced eigenfunctions. We conclude this

section by verifying that the functions f
(M,M̃)
n , and consequently also the reduced

eigenfunctions P
(M,M̃)
n , are contained in the algebra ΛN,Ñ,κ for all values of the

non-negative integers M and M̃ .

Lemma 4.3. Let n ∈ Z
M+M̃ . Then the function f

(M,M̃)
n is non-zero only if n � 0,

and in that case it is a homogeneous polynomial of degree |n| in ΛN,Ñ,κ.

Proof. The proof is by straightforward computations: expanding each factor on the
r.h.s. in (45) in the region |w1| > · · · > |wM+M̃ | > maxj,J (|zj |, |z̃J |) (recall that
w̃J = wM+J ) in a binomial series one obtains a well-defined series representation of

F̃N,Ñ,M,M̃ as a linear superposition of monomials w−n. By inspection one can check

that in this series only terms w−n with n � 0 appear, that each such term appear
only a finite number of times, and that the coefficients of w−n is a homogeneous
polynomials of degree |n| in the variables zj and z̃J . It thus follows from (46) that

f
(M,M̃)
n is non-zero only if n � 0, and in that case it is a homogeneous polynomial

of degree |n|. To prove that the f
(M,M̃)
n are contained in ΛN,Ñ,κ we observe that

F̃N,Ñ,M,M̃ is separately symmetric in the variables zj and z̃J , and that

(∂zj
+ κ∂z̃J

)F̃N,Ñ,M,M̃

∣

∣

zj=z̃J
= 0

for all j = 1, . . . , N and J = 1, . . . , Ñ . The latter follows from (45) by straightfor-
ward computations,

∂zj
log F̃N,Ñ,M,M̃ =

M̃
∑

K=1

1

zj − w̃K
− κ

M
∑

k=1

1

zj − wk



A UNIFIED CONSTRUCTION OF GENERALISED CLASSICAL POLYNOMIALS 27

and

∂z̃J
log F̃N,Ñ,M,M̃ =

M
∑

k=1

1

z̃J − wk
− 1

κ

M̃
∑

K=1

1

z̃J − w̃K
.

�

5. Concluding remarks

In this final section we briefly discuss the relation of our construction to the
so called generalised classical orthogonal polynomials of Lassalle and Macdonald,
present some further remarks of the effect of spectral degeneracies on our construc-
tions of reduced eigenfunctions of the Schrödinger operators (3) and the deformed
Calogero-Sutherland operators (6), and comment on the question of completeness
in the case of the deformed Calogero-Sutherland operators.

5.1. The relation to generalised classical orthogonal polynomials. As is
well known, the spectra of the Schrödinger operators (3) are degenerate. In partic-
ular, in cases I and IV the eigenvalue of a given reduced eigenfunction Pn depends
only on the weight |n| of the integer vector n. An interesting question is thus
what the relation is between the basises for the reduced eigenfunctions we con-
struct and previously known such basises. Below we will sketch a proof of the
fact that our basis coincide, up to normalisation, with the generalised classical or-
thogonal polynomials of Lassalle [33–35] and Macdonald [38]. We recall that these
latter polynomials are reduced eigenfunctions of the Schrödinger operator in case I
(Hermite), case IV (Laguerre) or case VI (Jacobi), and of the form

Pλ =
∑

µ⊆λ

uλµJµ

for some coefficients uλµ, and where µ ⊆ λ means that the Young diagram of µ is
contained in that of λ. We shall require the following partial order on the set of
partitions:

µ ≤ λ ⇔ µ1 + · · · + µj ≤ λ1 + · · · + λj , ∀j.
When restricted to the set of partitions of a fixed weight this coincides with the
so called dominance order. It is a simple exercise to verify that if |µ| = |λ| and
µ ≤ λ then µ � λ and vice versa. Furthermore, comparing the expansions (27) and
(37), and using the triangular structure of the Jack polynomials when expanded in
monomial symmetric polynomials, one finds that

gλ =
∑

|µ|=|λ|,µ≥λ

aλµJµ

for some coefficients aλµ such that aλλ = bλ; see Equation 10.16 in Section VI.10
of [39] for the definition of bλ (in doing so observe that the parameter α = 1/κ).
It is now readily inferred from Lemma 3.2 that any reduced eigenfunction Pλ, as
constructed in Section 3.1, is of the form

Pλ =
∑

µ�λ

vλµJµ

for some coefficients vλµ such that vλλ = bλ. Since µ � λ if µ ⊆ λ and, up to
normalisation, there can be only one eigenfunction of this form, it follows that the
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relation between the reduced eigenfunctions we construct and those of Lassalle and
Macdonald is given by

Pλ = bλPλ.

5.2. Spectral degeneracies. We stress once more the issue of degeneracies of the
eigenvalues of the Schrödinger operators (3) and the deformed Calogero-Sutherland
operators (6): since our construction of reduced eigenfunction of these operators
only is valid under a certain non-degeneracy condition on the corresponding eigen-
values, this issue plays a decisive role in our construction. From our point of view,
it is essentially only this issue which truly distinguishes the different special cases
of our results listed in Table 1. It thus would be interesting to investigate this issue
further.

5.3. Completeness for deformed Calogero-Sutherland operators. We men-
tion that one can prove an analogue of Proposition 3.2 for our construction of re-
duced eigenfunctions of the deformed Calogero-Sutherland operators (6). In fact,
proceeding similarly to Section 3.3 one can prove that the reduced eigenfunctions
constructed in Section 4.1 have a triangular expansion in so-called super Jack poly-
nomials. We recall that the super Jack polynomials are known to constitute a
linear basis for the algebra ΛN,Ñ,κ. Using these two facts above one can show that

if M ≥ N and M̃ ≥ Ñ then the reduced eigenfunctions constructed in Section 4.1
are also a linear basis for ΛN,Ñ,κ. If either M < N or M̃ < Ñ then they span only a
subspace of ΛN,Ñ,κ which, however, can be given a rather simple characterisation.

A detailed discussion of these facts can be found in the first arXiv version (v1)
of [18].
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[33] M. Lassalle, Polynômes de Jacobi généralisés, C. R. Acad. Sci. Paris 312 (1991),
425–428.
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