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Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical
transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic
Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation
steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes.
Thermally activated atomistic movements are considered as local transition events constrained in potential energy
wells over certain local time periods. These processes are represented by Markov chains of multidimensional
Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain
level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the
fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown
that the process can be characterized by the acceptance of metastable local transitions. The method is applied
to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a
morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth
by accretion. Excellent agreement with observed experimental results is obtained.
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I. INTRODUCTION

Atomistic modeling of the growth of thin films or self-
assembled monolayers has attracted much attention over recent
years due to the large number of technological applications
in the field of nanotechnology [1–3]. Usually these models
include a description of the interaction field between the
atoms of the differing species in terms of a potential energy
function. The deposition simulation then proceeds either
by the addition of another species onto the surface or as
a diffusive process where atoms rearrange themselves on
the surface. Classical molecular dynamics simulations to
model the growth process have been carried out, but usually
these involve unrealistically fast deposition rates because the
diffusive processes are dominated by rare events and would
therefore require extremely long computing times beyond
the scope of present computers. Kinetic Monte Carlo (KMC)
simulations of the growth processes have also been performed,
but in many cases this has required a pre-knowledge of the
likely transitions and their barriers since to calculate these
on-the-fly has also been a computationally expensive process.
Recently, however, some progress has been made into the
problem. For example Sprague et al. [4] have shown by using
temperature-accelerated dynamics that surface growth patterns
are completely different than those that would arise without
a proper description of surface diffusion. Other authors have
also begun to study the growth process by KMC where the
transition barriers are calculated on-the-fly [5–7]. There are,
however, still many unsolved problems, especially when the
potential energy surface is such that there are many small
transition barriers that correspond only to atomic vibration
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rather than a transition to a new state. In addition, calculating
barriers on-the-fly is computationally expensive.

However, even when a traditional KMC process [8] is
driven by a preconstructed events table [9], simulations can
be inordinately long when there are some transitions that are
governed by very small energy barriers but where the main
processes that drive the system have much higher barriers. A
key aim of the paper is therefore to develop a KMC method
that will allow the main escape paths and rate constants to
be determined quickly but at the same time will capture the
essential physics.

A long-running experimental research project at the HZDR
has been in the production of semiconductor crystal surfaces
with ripple structures that have a well-defined wavelength [10].
These are produced by oblique incidence bombardment by
ion beams and can be controlled by varying the beam angle
and energy. It has also been observed that when metal atoms
are deposited onto these surfaces the atoms aggregate on the
crest of the ripples. A second aim of the paper is therefore to
apply the new KMC method for atomistic process simulations
where diffusive rather than ballistic processes dominate, such
as in this metallic nanocluster growth problem. This will allow
a direct comparison between simulation and experimental
observations of deposition on ripple structures and therefore
help explain the fundamental physical processes that drive the
metallic film growth.

To develop the methodology, the general concept of
atomistic evolution induced by thermally activated kinetics
in a discrete space is considered. A new calculation method
including an alternative algorithm for a lattice-based KMC
simulation is presented and applied to the problem of nan-
ocluster growth on rippled surfaces. The basic idea of the
simulation model is the classification of various transitions
into unstable, metastable, and stable (no) transition levels with
their transition probabilities depending on local configurations.
Under the assumption that metastable transitions dominate the
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entire system evolution, the optimization of their efficiency
provides a method to predict the statistical behavior over an
extremely long time. This approach can be represented with an
oriented graph, considered as an extended percolation model
of Fortuin and Kasteleyn [11]. The transition states of cluster
growth evolution induces oriented edges, which essentially
differ from atomistic interactions based on their application to
the Ashkin-Teller-Potts model [12].

The paper is laid out as follows. In Sec. II some termi-
nologies of the mathematical description of the model utilized
in this work are defined. In Sec. III every transition event is
classified into two types, the first caused by an external factor
and the second by a thermal fluctuation. The evolution process
induced by the latter type is then localized for the use with
the KMC simulation. Section IV discusses the efficiency of
the local transition events to the entire system evolution by
the introduction of the equivalence class of the fluctuation.
The implementation of the modified KMC algorithm is also
described. A concrete application to physical vapor deposition
(PVD) experiments is presented in Sec. V, where the basic
physical growth mechanisms and the stability of the formation
process are also discussed.

II. DEFINITIONS

In this section several basic terminologies are given.
Let L := Znx

× Zny
× Znz

be a three-dimensional (3D)
lattice space with the spatial periodicity (nx,ny,nz) for
nx,ny,nz ∈ N ∪ {∞}. We define an object � on L as a
Boolean-valued function. A q-colored object � is a q +
1-valued function onL, i.e., all mappings ofL → {0,1, . . . ,q}.
The number of colors q corresponds to the number of materials
treated in the target simulation. The set of all objects on L is
denoted by O(L). For � ∈ O(L), |�| denotes the number of
cells occupied by atoms.

A morphism f of O(L) is a mapping from O(L) to itself.
For �,�′ ∈ O(L) an ordered pair (�,�′) is called a

transition event from � to �′ and denoted also in the text
by � → �′.

The composition of morphisms fm ◦ fm−1 ◦ . . . ◦ f0 ◦ � on
L induces the Markov chain of objects �0 → �1 → · · · →
�m, where �m′ = fm′ ◦ · · · ◦ f0 ◦ �0 for m′ = 0, . . . ,m. For a
Markov chain of objectsM ≡ �0 → · · · → �m, |M| denotes
the length m of the chain.

III. TRANSITION STATES OF MARKOV CHAINS

A. Local transition events

In an atomistic simulation of a solid, the system evolves
either through a modification induced by external factors, e.g.,
a deposition event, through internal dynamical processes that
occur more quickly than thermal fluctuations at a constant
temperature T , or by internal rare events that occur over longer
time scales. It is these internal rare events that will be the focus
of the work here; i.e., every internal transition event (�l,�l+1)
is temporally well separated, and each microstate of objects is
regarded as a quasi-equilibrium state at T .

We assume that the transition �l → �l+1 has the
unique decomposition into the elementary transition states
induced by an atomic jump attempt including exchange

�l = ν0 → · · · → νs ′ = �l+1. These jump events are as-
sumed to occur locally; i.e., the interaction distance is restricted
so that an atomic jump occurs only to the nearest-, or
second nearest-, neighbor position. Let ℘∗

loc be the set of
all morphisms representing such events. The transition events
ν → μ of the objects ν,μ ∈ O(L) induced by f ∈ ℘∗

loc will be
termed local transition events, and the decomposition of the
transition event (�,�′) into the local transition event together
with the sequence of jump attempts will be called the local
decomposition of (�,�′).

B. The Monte Carlo method

Let �l → · · · → �l′ be a subchain of events lying between
two external modification events. Consider its local decom-
position �l = ν0→ν1→ · · · →νs = �l′ and set this Markov
chain as M. The total length of the decomposition is

s =
l′−1∑
t=l

|�t |. (1)

Now consider simulating this Markov process M with a
Monte Carlo (MC) method. In order to follow the process M
the algorithm is constructed as follows: (1) for every object
νj choose an arbitrary morphism f j ∈ ℘∗

loc, (2) each local
transition event (νj ,f

j ◦ νj ) is considered as a jump attempt
and accepted with probability P (νj ,f

j ), and (3) after each
local transition event a local time consumption, e.g., for an
atom i, τj (i) = 1/|νj | is added to the MC simulation time.
If the atom i jumps to a nonequilibrium state, then the jump
attempt continues until it reaches a position considered as an
equilibrium state without adding τj .

The process (3) implies that every transition is considered
as the transition between two equilibrium states that are not
always consistent with the nearest lattice positions. Note that
one iteration of the simulation step (1)–(3) advances the MC
simulation time only τj time units, and it continues for j =
0, . . . ,s − 1.

Let n be the number of total types of events, and for
k = 1, . . . ,n, let αk be the acceptance number of the type
k local transition event in M. Then the n-events acceptance
distribution (αk) := (α1, . . . ,αn) models the evolution of the
system. Since the local transition probability P (νj ,f

j ) is a
functional of the object νj and the morphism f j that decide
the migration barrier, P is also a function of the migration
barrier and categorized into n types, P1, . . . ,Pn. Without lost
of generality, it is assumed that P1 � P2 � · · · � Pn. Then the
length s of the Markov chain M is approximately

s ≈
n∑

k=1

αkP
−1
k , (2)

and the total MC simulation time unit tMMCT is

tMMCT = l′ − l. (3)

The process of M corresponds to the experimental evolution
time and can be extremely long and impractical to evaluate
within reasonable computation time. In the following section
we consider the effective reduction of this process.
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IV. EFFECTIVE TRANSITIONS OF OBJECTS

In this section, the relation between the accepted event
distribution (αk) defined in Sec. III B and the fluctuation of
the potential energy sequence is considered. This leads to a
method to reduce the number of simulation steps. The effect
of this in terms of the thermal fluctuations is discussed.

A. Convergence of the local fluctuation

Denote by Mι the local decomposition of the subchain
�l → · · · → �l+ι for ι = 0, . . . ,l′ − l and M = Ml′−l as in
Sec. III B. Consider the behavior of the thermal fluctuations of
the microcanonical ensemble. Set

�t := l′ − l (4)

the time interval of the external modification that is preset in
the model, e.g., from experimental data so that

�t = tMexpωeff (5)

for an experimental time interval tMexp and the average effective
transition frequency ωeff of the system. Note that the corre-
sponding time interval of every event (�ι′ ,�ι′+1) is thus ω−1

eff .
Let (αι

k) be the partial distributions of the accepted events
distribution in Mι. If �t is long compared to the recovery
time from an unusual fluctuation induced by the last external
modification to a usual fluctuation (quasi-equilibrium state),
then the convergence of the acceptance of each event αι

k → αk

for ι → �t is also to be considered. Let ε be the range of
the usual fluctuation of the potential energy of the system at
a temperature T . Then one finds the minimal value ι0 = ι0(ε)
with the property that

|�p(�ι′) − �p(�ι′′ )| < ε

for all ι′,ι′′ ∈ [ι0,�t], where �p(�) indicates the potential
energy of � . Denote

θ (ι) := ι

�t
, (6)

the convergence factor of the subchain �l → · · · → �l′ , in the
sense of the potential energy transition within the fluctuation
range ε. θ (ι0) =: θ0 is the minimum convergence factor in
this sense. Let (αt

k) be the continuum extension with respect
to the time parameter ι of (αι

k). Then the dissipation of
unusual fluctuations implies ∂tα

t
k = 0 for t > ι0 and for usual

fluctuations ∂tα
t
k �= 0. The set of microstates consistent with

the fluctuating system is the set of all accessible states with
the screened transition types, i.e.,

{�ι : ι ∈ [ι0,�t]} = [�ι0 ],

where [�ι0 ] is the equivalence class of objects connected by the
pathways consisting of type k transitions with ∂tα

t
k �= 0 for t >

ι0. These transitions are small barriers, and the introduction of
an equivalence class for the whole process is the core idea
of the modified MC algorithm described in Sec. IV C. Due to
the principle of equal a priori probabilities, every microstate
belonging to the class [�ι0 ] appears with same probability in
the sequence �ι0 → · · · → �l′ . Consequently, it is enough
to consider the Markov chain Mι0 to follow the essential
system evolution. The convergence factor (6) indicates how
the physical process is shortened.

Since the number of transition attempts, i.e., the effective
jump frequency, is independent of the system evolution, the
length of the local decomposition Mι is approximately

|Mι| ≈ θ (ι)s = ιs

tMMCT

(7)

from Eqs. (3), (4), and (6)

B. The importance of individual local transitions

The contribution of each local transition event to the entire
system evolution is not straightforward. Clearly, for a high
transition probability Pk a large number of αk is expected.
However, the number of accepted jumps also depends on the
frequency of occurrence of the configuration. The frequency
of occurrence distribution can be represented as

(βk) := (α1/P1, . . . ,αn/Pn). (8)

The quantity βk is called the attempt frequency of the type
k event. The relation βk < βk′ implies that the configuration
giving the type k′ transition is more preferred than the type
k transition event. An excessive acceptance of certain types
of event does not always mean a change. For example, an
adatom deposited on a flat crystal surface can diffuse around
until it reaches a defect or a step edge. During diffusion,
the correlation between the deposition point and the current
position is lost, and only when the adatom finally reaches a
binding site does the system evolution proceed further. The
crucial evolution of the system occurs with a metastable state
transition such as overcoming a step-edge barrier. The model
should ensure that the total potential energy does not change
substantially through the reduction in the number of αks that
the evolution of system is misdirected.

The activation energy barrier border between the unstable
(usual fluctuations) and metastable states is defined to be as
the boost energy Ebst, and all activation energies above Ebst

are considered as effective migration barriers contributing to
unusual fluctuations. The boost energy is a parameter that
needs to be carefully set for each simulation so that the
dynamics is not distorted by choice of too high a factor.
Let Pn0 be the transition probability induced by the smallest
effective migration barrier. Now consider the identification
of transitions with small fluctuations. From the mathematical
point of view, this coarse graining introduces the equivalence
relation in the set of all objects ν,μ ∈ O(L) as follows:

ν ∼ μ ⇔ ∃a ∈ N,∃f1, . . . ,fa ∈ ℘∗
loc,

μ = fa0 ◦ ν,

with P (fa′−10 ◦ ν,fa′ ) > Pn0

for a′ = 1, . . . ,a.

The corresponding equivalence class of objects is [ν] in O(L).
In the worst case, namely, for a system with a high entropy,
each equivalence class retains all possible configurations
consisting of identical atoms. However, if high potential
barriers separate the states, then this enhances the effect of
the metastable transitions.

By introducing this classification method the acceptance
of the local transition probability with small barriers is
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maximized and the time spent to distinguish the local transition
events with small barriers is considerably reduced.

C. The modified algorithm for effective transition states

The modification P ′
k of the transition probability Pk for

the type k local jump attempt described in Sec. IV B is
implemented as

P ′
k =

{
1 (k < n0)

Pk/Pbst (otherwise)
(9)

for the boost probability Pbst corresponding to the acceptance
of the highest barrier Ebst within the usual fluctuations. The
local time consumption τ ′(i) of this type k transition attempt
of atom i is set as

τ ′(i) =
{

0 (k < n0)

τ (i) (otherwise).
(10)

So every simulation step that is spent for the transition with
barrier less than Ebst does not advance the time step.

Now consider a KMC simulation with the algorithm men-
tioned above. Let M′ ≡ �l = ν0 → ν ′

1 → · · · → ν ′
s ′ be the

Markov chain describing the simulation consisting of the local
transition events with the modified acceptance probability (9).
AssumeM′ reproduces the experimentally observed evolution
process and let (α′

k) := (α′
n0

, . . . ,α′
n) be the corresponding

accepted event distribution. If the system evolution excludes
this probability translation, then the number of accepted events
for the effective transitions should be approximately the same
as the number of those transitions in Mι for some ι � ι0, i.e.,

αι
k ≈ α′

k for k = n0, . . . ,n. (11)

It is important that the system evolution proceeds according to
the property (11).

The translation mapping (9) enhances the acceptance
of effective transitions linearly while one might expect a
continuous dynamical evolution would induce a nonlinear
enhancement. This also affects the attempt frequency (8) of
effective transitions, from preferred local configurations. If
various metastable transition events determine the system
evolution, then the relative acceptance ratio plays a crucial
role in the formation of local configurations, and a nonlinear
translation of (Pk) would therefore have a high risk of losing
the correct evolution of the system since it does not keep same
relative acceptance ratio.

For the Markov chain Mι, the length is θ (ι)s from Eq. (7)
and can be represented as

θ (ι)s = δbst +
n∑

k=n0

αι
kP

−1
k (12)

from the same argument by (2), where δbst is the number of
simulation steps spent for local transition events with small
barriers �Ebst. Since the translation mapping for the effective
transition events is linear, a reduction in the time required for
the MC simulation with the boost factor P −1

bst is expected. The

total length ofM′, describing the simulation system evolution,
is

s ′ := δ′
bst + Pbst

n∑
k=n0

αι
kP

−1
k . (13)

Hence, if the Markov chain M′, i.e., the KMC simulation,
reproduces the experimentally observed evolution process with
the reduced simulation steps s ′, then the reduction expectancy
in the number of simulation steps |M′|/|M|(= s ′/s) is given
by the relation

s ′

s
= δ′

bst

s
+ Pbst

(
θ − δbst

s

)
, (14)

from Eqs. (12) and (13). Additionally, if the number of total
atoms in the system is relatively stable during the original
Markov process M, one can estimate the length |M| as

s ≈ tMexpωeff|�l| (15)

from Eqs. (1) and (5). Similarly, since the MC simulation time
counts the number of the effective transitions with (10), it
follows that

s ′ − δ′
bst ≈ tM

′
MCT|�l| (16)

for the MC simulation time tM
′

MCT of M′. Moreover, the
maximization of the small barrier transition acceptance (9)
implies

δbst

s
< θ (ι)

δ′
bst

s ′ . (17)

Thus one can evaluate the convergence factor θ with Eqs. (14)–
(17) and the simulation value s ′,δ′

bst as

tM
′

MCT

tMexpωeffPbst
< θ (ι) <

tM
′

MCT

tMexpωeffPbst

(
1 − δ′

bst

s ′

)−1

. (18)

The relation (18) indicates the stability range in the sense of
the evolution speed of the system that can be reproduced by
the consistent modified KMC simulation M′. In other words,
a successful reproduction by simulation M′ suggests that the
convergence factor θ (ι) is in the range of (18) and θ (ι) > θ0.
For the minimum Markov chain Mι0 and the convergence
factor θ0, the minimum KMC time range required is from (18)

tMexpωeffPbstθ0

(
1 − δ′

bst

s ′

)
< tM

′
MCT < tMexpωeffPbstθ0.

Thus the possible reduction rate of simulation time is from (3),
(4), and (5) and this argument:

tM
′

MCT

tMMCT

∼ Pbstθ0. (19)

Note that if Pbst is chosen so small that Ebst exceeds the usual
fluctuation range of the system, the simulation cannot follow
the evolution process accurately.

V. CLUSTER GROWTH SIMULATION MODELS

Although the method described in the previous sections is
general to many lattice-based systems, a strong motivating fac-
tor for its development was an understanding of experimental
work of Ranjan et al. [13], concerned with the deposition of
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Au and Ag clusters on silica surfaces where ripple structures
had been prepatterned using an ion beam. In this section the
application to this problem is described. We have also tested
the method on some simple one-dimensional examples where a
full KMC simulation without a time boost was also undertaken.
This confirmed that the results of the full and boosted method
were almost equivalent within a certain threshold of the boost
factor [14]. For Ag and Au deposition application, however, a
full KMC simulation is too costly.

The simulation system is a simple cubic lattice of size 512 ×
512 × 128 with the periodic boundary conditions applied in
the plane of the surface. The diagonal length of each square
lattice cell is the equilibrium interatomic distance of Au and
Ag in the perfect fcc crystal structure, i.e., 1 lattice unit (lu)
corresponds to 0.204 nm for the both cases. The model assumes
that depositing and diffusing metal atoms are only allowed to
occupy fcc sites within the perfect cubic overlayer, so grain
boundaries are excluded.

The initial surface is shown in Fig. 1(a) with three clearly
defined ripple peaks along with the direction at which the Ag
atoms deposit. The ripple shape in Fig. 1(a) is an excellent
approximation to the cross-sectional transmission electron
microscope image of the SiO2 substrate [Fig. 1(b)]. The
asymmetrical ripple surface shown in Fig. 1(a) is set as �0

and held fixed during the simulations. This substrate is also
chosen to be commensurate with the metal crystal overlayer.
SiO2 is regarded as an homogeneous material and therefore
q = 2 in O(L), namely, the metallic atoms are regarded as the
type I atoms while every SiO2 component is type II.

The internal modification of the system (local transition
morphisms ℘∗

loc) is handled by single atomistic jumps of
type I atoms to the nearest-neighbor (NN) empty positions
as the local transition. Concerted motions are not allowed.
The external modification to the system occurs through the
deposition of metal monomers. The depositing atoms are
simply set in the positions exposed to the incident trajectories,

FIG. 1. (a) The initial surface of the simulation model, together
with the direction of the arriving flux from the evaporation source
(perpendicular to the ripple structures). The asymmetrical ripple
shape is fitted to represent the rippled v-SiO2 surface shown in (b). (b)
A typical cross-TEM image of rippled Si substrate. The surface layers
(∼2 nm) are oxidized by exposure to the natural environment [15].
The wavelength of the ripples is 33 nm and the height of the ripples
is 2.4 nm.

and neither reflection nor surface drifting on impact is
considered. The atoms detaching from metallic clusters or the
substrate are regarded as re-evaporated atoms and eliminated
from the simulation. Thus there is no effect of redeposition of
atoms returning to the gas phase.

The KMC simulation proceeds either by a single deposition
event on to the surface or through the jump of a surface
atom. The relative frequency of a deposition event is chosen to
match experimental flux rates, but the acceptance or otherwise
of a candidate jump event is determined from energies
obtained from the geometrical arrangements and types of
the neighboring sites. The way in which these energies are
determined is given in the next section.

A. The configuration energy and migration barriers

In order to compute barriers quickly while maintaining the
important physics of the system a combination of a relatively
simple many-body potential energy function is chosen, the
Rosato-Guillope-Legrand (RGL) potential [16], together with
migration values taken from the literature. In the description
that follows the same symbols are used for the potential
parameters as in the original paper. For a type I atom i, let
nI

i and nII
i be the number of type I, and type II NN atoms,

respectively. The potential energy Ei of i is defined by

Ei = −ζ

√
nI

i + AnI
i − E

M−SiO2
i

(
nII

i

)
, (20)

where the first two terms are determined from the RGL
potential with parameters ζ = 1.8352 eV (Au), 1.1663 eV
(Ag), A = 0.2179 eV (Au), 0.09982 eV (Ag) [17], and
E

M−SiO2
i (nII

i ) is the metal-SiO2 interaction term, which is given
by

E
M−SiO2
i

(
nII

i

) =
{

0
(
nII

i = 0
)

E
M−SiO2
b (otherwise).

(21)

The potential functional �p is defined as

�p(�) =
∑

i

Ei,

where i ranges all type I atoms in � ∈ O(L). Let ν ∈ O[L] be
an object. For two sites uini,ufin ∈ L, let uini be the positions
where the atom i is located and ufin be an empty NN position
of uini represented by ν, i.e., |uini − ufin| = √

2 [lu], ν(uini) =
1, and ν(ufin) = 0. For a local transition morphism f :=
fj (1,uini,ufin), set ν ′ := f ◦ ν. Then the migration barrier
Em(ν,f ) is given by

Em(ν,f ) =

⎧⎪⎨
⎪⎩

0 [�p(ν) > �p(ν ′)]
�p(ν ′) − �p(ν) [�p(ν) < �p(ν ′)],
Emig(ν,ν ′) [�p(ν) = �p(ν ′)]

(22)

where Emig is the migration barrier list for potential energy
conservative transitions determined from literature values and
described in more detail below. The advantage of this func-
tional (22) is to give a quick estimation of the migration barriers
such as the Ehrlich-Schwoebel (ES) barrier and various surface
migration barriers during the atomistic movement along the
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network of fcc sites. In the first case of (22), the model assumes
that the transition barrier is negligible if the final configuration
ν ′ is more stable than the initial configuration ν. Particularly it
allows atoms overcoming the ES barrier to move freely until
they reach stable positions. This could, however, cause an error
if the initial configuration ν is already a quasi-equilibrium
state.

Since the transition event modifies only the local configu-
ration around the jumping atom, the potential energy change
occurs only for the atoms neighboring the initial site and
the final site of the jumping atom. These initial and final
positions are surrounded by 18 NN sites and 52 other sites
whose potential energy is affected by the transition. Hence the
total number of possible configurations are 370 (70 sites and
three possibilities at each site, i.e., empty, type I atom, or type
II atom). However for the efficiency of the calculation, only
the 18 NN positions surrounding the initial and the final sites
are used to determine the migration energy.

Figure 2 shows uini, ufin and the 18 NN positions that
are divided into the sets Ni := {1,2,3,4,5,6,11}, Nc :=
{7,9,10,12} and Nf := {8,13,14,15,16,17,18} with respect
to the neighboring uini and ufin. The positions belonging to
Ni and Nf are NN sites of the initial site uini only, and of
the final site ufin only, respectively. The positions of Nc are
the common NNs of the both sites. Since the configuration
energy of each atom is calculated by (20), the local transition
morphism ℘∗

loc consists of all transition types with the form
(|N I

i |,|N II
i |,|N I

c|,|N II
c |,|N I

f |,|N II
f |), where |N I,II

∗ | indicates the
number of occupied NN sites by type-I, as well as type-II
atoms belonging to the position index set N∗. Since the type-II
atoms are fixed and occupy at most 6 NN positions, it is
possible to show that the maximal number of different 18
NN local configurations with respect to the combination of
|N I

i |,|N II
i |,|N I

c|,|N II
c |,|N I

f |, and |N II
f | is 1381. These configu-

rations account for the migration barrier estimation in all cases
of jumps between unequal energy sites where the variation of

FIG. 2. (Color online) The local NN (fcc) configuration of an
initial site uini and final site ufin denoted by i and f . For this system,
the NN sets for i and f can be seen to be Ni := {1,2,3,4,5,6,11}
(orange, or dark gray), Nc := {7,9,10,12} (green, or gray), and Nf :=
{8,13,14,15,16,17,18} (blue, or light gray). The site 0 is occupied
by a Type-I atom, and other sites are either empty, or occupied by a
type-I, or a type-II atom.

the configuration energy is approximated by

�p(ν) − �p(ν ′) ≈ Efin − Eini, (23)

where Eini, Efin are the potential energies before and after
a jump as determined by the 18 NN configurations and the
expected NN configuration of each neighbor atom. The energy
of the initial state Eini is defined by

Eini =
18∑

j=0

εjE
ini
j ,

where εj indicates the occupation of the j th site by the type
I atom. The configuration energy of each occupying atom is
calculated as

Eini
j =

{
Eini

0 (j = 0)

E(n̄) (otherwise),
(24)

where Eini
0 is calculated by Eq. (20) for the initial site 0 and

E(n̄) is the mean configuration energy

E(n̄) := −ζ
√

n̄ + An̄, (25)

for the other atoms. Here n̄ is the average number of type I NNs
of all occupied sites by the type I atoms possessing at least one
empty NN site. This factor is influenced by the mean surface
curvature of clusters growing in the system. The local config-
uration energy of the final state Efin is defined similarly as

Efin =
18∑

j=0

εjE
fin
j ,

where the position j = 0 now implies the final site. Now each
Efin

j is given by

Efin
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Efin
0 (j = 0)

E(n̄ − 1)
(
j ∈ N I

i

)
E(n̄)

(
j ∈ N I

c

)
E(n̄ + 1)

(
j ∈ N I

f

)
.

(26)

The average NN number n̄ is updated every 12 000 time units.
For the case of the symmetric configurations due to the

NN environment of the initial and the final states where the
RGL potential does not change, the migration barrier list
Emig(ν,ν ′) shown in Table I is utilized. The cases shown with
the zero barriers refer to transitions that are either rare or
whose contribution is negligible. The other cases where the
initial, final, and common number of nearest neighbors are
the same as in the cases of adatom transitions on surfaces,
and data from the literature corresponding to these values are
used. The transition barriers for the type I atoms are estimated
from the adatom migration barriers on (111), (100) and
in-channel (110) oriented surfaces calculated in Refs. [18,19].
Although these values are the best estimates for the surface
transitions they may be less accurate for some other configu-
rations possessing the same number of |N I

i |, |N I
f |, and |N I

c|.
Figure 3 shows examples of some configuration energies

of atoms located in various positions and a step-edge barrier.
Each Ei is calculated by Eq. (20) and the step-edge barrier
Em = 0.39 eV for the transition indicated is derived for the
transition of type (|N I

i |,|N I
c|,|N I

f |) = (2,1,1), with the average
NN site occupation n̄ = 8.5 (∗ in Fig. 3).
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TABLE I. Migration energy list Emig(ν,ν ′) for type-I interactions.
|N II

∗ | = 0 for every case. The barriers in the table are estimated
from the literature adatom migration barriers on the (111), (100)
and in-channel (110) oriented surfaces with the same neighbor
configurations. E(111)

mig = 0.04, 0.07 eV (Ag [18], Au [18]), E(100)
mig =

0.38, 0.51 eV (Ag [18], Au [18]), E(110)
mig = 0.28, 0.23 eV (Ag [19], Au

[18]). The zero barriers correspond to transitions and configurations
that have been tested by numerical experiment to be so unimportant
that an accurate determination is unnecessary.

|N I
i |(=|N I

f
|) 0 1 2 3 4 5 6 7

|N I
c| = 0 0 0 0 E(111)

mig E(100)
mig E(110)

mig 0 0

|N I
c| = 1 0 0 E(111)

mig E(100)
mig E(110)

mig 0 0 0

|N I
c| = 2 0 E(111)

mig E(100)
mig E(110)

mig 0 0 0 0

|N I
c| = 3 E(111)

mig E(100)
mig E(110)

mig 0 0 0 0 0

|N I
c| = 4 E(100)

mig E(110)
mig 0 0 0 0 0 0

In Fig. 3, the atom i has been deposited on the part of
the surface that appears to be an island with a (111) surface
orientation, whereas the atom with Ei = −1.93 eV is located
on an island with a (100) surface. Compared to all other atoms
belonging to the (111) island, the configuration energy of i is
quite high. Even for the relatively high-energy atom located
along the edge of the island, the reverse migration barrier
climbing up to the island top is at least Em = 0.98 eV with the
transition type (3,2,0). Such an event is unlikely to happen,
and thus the adatom i will be constrained to the island (see
also Fig. 8). The migration barrier of i on Ag(111) is 0.04 eV
by Table I and therefore following the scheme outlined in the
previous section is regarded as an unusual fluctuation.

The transition probability P for the migration barrier
Em(ν,f ) is assumed to follow the Arrhenius law with a
constant prefactor for all transitions

P (ν,f ) = exp[−Em(ν,f )/kBT ], (27)

FIG. 3. (Color online) The atomistic landscape during an Ag
PVD simulation: The Ei values indicate the individual configuration
energies of atoms calculated from Eq. (20). (∗) Em is the step-edge
barrier for the atom i migrating along the arrow, derived from
Eq. (22)–(26) with the average NN site occupation n̄ = 8.5. The
color of type-I atoms (online version only) indicates the individual
energy states of atoms.

where kB is the Boltzmann constant, and the local time
consumption for atom i is

τ (i) = 1

|ν| .

All the sites possessing at least 3 occupied NN sites are
considered as equilibrium configurations, and the atom i

continues jumping until it gains such a configuration with
local time consumption 1/|ν|.

For the initial nucleation distribution, the optimal values
E

Ag−SiO2
b = 0.26 eV, E

Au−SiO2
b = 0.24 eV are found during

simulations, and it is these energies that are used to determine
the lifetime of metal adatoms on the SiO2 surface by (21). A
similar adhesion energy range of Ag, 0.23 eV, on the regular
oxide site of MgO(100) surface is also predicted by the density
functional theory calculation [20], whereas a bit higher energy
is expected for Ag-SiO2. The effect of the average adatom
lifetime on the nucleation process is described in Ref. [15].
Each transition probability is determined by the primary local
configuration with (22) and (27). Thus the entire system
evolution between the external modification can be regarded
as a class 4 object of a 3D cellular automaton [21].

B. Transition events

For all positive migration barriers determined by (23) let
Em1 , . . . ,Emn

be the barriers with Em1 < · · · < Emn
. Set Pk :=

exp{−Emk
/kBT }. For the both PVD simulations the surface

transitions

P ′
k := exp[−ϑ(Emk

− Ebst)/kBT ] (28)

are considered with Ebst = 0.20 eV. In arriving at this number
some simulations were carried out at different Ebst values.
With Ebst = 0.30 eV, the simulations ran even quicker, but
the system evolution is distorted because of the barriers
associated with the dominant processes of the migration of
metal monomers in the in-channel direction on the (110)
oriented surface. These are 0.28 eV for Ag and 0.23 eV
for Au. For a value of Ebst = 0.10 eV, the nanostructures
showed no observable difference to those formed with Ebst =
0.20 eV. Here ϑ is the temperature factor, which should be
close to 1 by the argument in Sec. IV C. Since the PVD
experiments were carried out at the room temperature, the
temperature parameters are set as ϑ = 1 and T = 300K during
the simulation.

As a result of the choice of Ebst, all transition events
under a barrier 0.20 eV possess the same acceptance ratio
1. Thus the number of the acceptances for every such event
depends only on the frequency of its configuration occurrence.
The boost probability Pbst, defined in Sec. IV C, is thus
Pbst = exp(−0.2/kBT ) = 4.37 × 10−4, and the boost factor
is P −1

bst = 2.29 × 103. Figure 4 shows the list of accepted
migration barrier distribution for type I atoms interaction.
Every activation barrier is calculated by Eq. (28) and listed
in the look-up table. A total of 4039 types (Au) and 4712
types (Ag) local transition events are accepted during 1.2×107

time units, corresponding to 3 CPU days’ calculation on
a typical single-processor desktop machine. However, most
of these transition barriers rely on the mean configuration
energy term (25), and by fixing the average number n̄, the
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FIG. 4. (Color online) The effective migration barriers estimated
by the RGL potential with the parameters [17] for Au and Ag. A total
of 4039 types (Au) and 4712 types (Ag) of effective transition events
are accepted during a MC simulation time of 1.2 × 107 units.

number of accepted event types is reduced to around 100.
This implies that most transition events have a low probability
of acceptance, and only around 100 events represent the
metastable transitions. Figure 5 shows the total accepted
effective event distribution and its attempt frequency (8) during
the simulation of Au and Ag PVD deposition. The distributions
(αk) and (βk) include all local transition events considered as
the internal modification activity.

In the (αk) distribution, the solitary peaks located at 0.23 eV,
0.51 eV (Au) and 0.28 eV, and 0.38 eV (Ag) correspond
to adatom migration attempts on the metal (110) in-channel
and (100) surfaces, respectively. The sawlike peaks in the
graphs mainly indicate the acceptance of various types of
step-edge barriers due to the mean NN configuration. As an
Ag cluster grows, its mean surface curvature decreases. Thus

FIG. 5. (Color online) The distribution of accepted events, and the
attempt frequencies for the Au and Ag growth simulations. Migrations
with barriers lying between 0.2 and 0.7 eV are regarded as metastable
transition states. The barriers shown are for the interactions of
type I atoms only. The solid lines in the (βk) distribution indicate
the inverse probability P −1

k , i.e., the average number of attempts for
one acceptance.

the mean value of the NN occupied positions increases, and
consequently, each local transition event reduces the barrier
slowly by decreasing the configuration energy difference
Eini

j -Efin
j for j > 0 from Eqs. (24), (25), and (26).

In the (βk) distribution, the attempt frequency for barriers
other than the (110) and (100) type transitions slightly
increases with increasing barrier height. This indicates that the
acceptance of small metastable transitions is already saturated
and the system is waiting for a rarer transition with a higher
barrier. The solid lines exhibit the average attempt frequency
for one acceptance, i.e., P −1

k , and it can be seen that this
average arises from only one transition for the high-barrier
events. Hence, as the graph of (αk) also shows, the acceptance
of such a high-barrier event is so small as to have hardly
any influence on the system evolution, and thus the practical
metastable transition range is anticipated only in the range
0.2–0.6 eV.

C. Comparison with experiment

Experimentally, the aggregation of clusters is observed
mainly where the local flux is a maximum, namely, on
the slopes facing the evaporator. A similar tendency is also
observed in the simulations. Nucleation occurs when two
adatoms migrating on the substrate come together. Due to
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FIG. 6. A schematic description of PVD model and simulation
results [15]. (a) The initial rippled surface and schematic description
of Ag deposition. Ag flux f Ag, the incident angle vector �i, and the
surface normal vector �n are shown. The angle of incidence in the
simulations was fixed at 70◦ and perpendicular to the ripple direction.
Deposition occurred at a temperature of 300 K. (b) The relative
Ag arrival rate floc/f = �n · �i as a function of surface topography
�n and flux f�i. (c) Three different examples of Ag structures after the
equivalent of 6 ML Ag deposition. (Top view: 105 nm × 105 nm).
Left: E

Ag−SiO2
b = 0.245 eV; middle: E

Ag−SiO2
b = 0.26 eV; and right:

E
Ag−SiO2
b = 0.30 eV.

the strong binding energy (20) the detachment of a dimer from
the surface is unlikely at the simulation temperature of 300 K.
However, despite their lower mobility than monomers, a small
proportion of dimers still detach from the substrate. The mobil-
ity of trimers including detachment is almost negligible. Thus
the nucleation probability is strongly influenced by the migra-
tion of monomers during the adatom lifetime and the local flux.

In the early stages of growth, nucleation occurs mainly on
the slopes facing the incoming Ag atoms where the local flux
is high, but some small clusters are also observed in the lower
flux regions where there is also a higher relative detachment
rate. Further deposition promotes the Volmer-Weber growth
of Ag clusters and their coalescence.

Figure 6 shows a schematic description of metal deposition
(a), the relative local flux (b), and three different 6 ML Ag
cluster distribution patterns (c). Because of the initial ripple
structure and the 70◦ incidence angle, the local flux floc is
a maximum on the slopes whose normals point toward the
evaporation source and minimum on the slopes of the other
side [Fig. 6(b)]. In fact floc ranges from 20% to 75% of the flux
f from the evaporator. This strongly localized relative flux rate
results in oblique angle deposition on a sawlike asymmetric
rippled substrate. The left diagram of Fig. 6(c) is the nucleation
pattern for E

Ag−SiO2
b = 0.245 eV. For this value of the binding

energy, the total sticking probability is only 18% (i.e., 82%
of deposited atoms evaporate). Arriving atoms rarely stick at
first, even in the relatively high local flux regions. Nucleation
occurs by Ag atoms depositing directly onto preformed Ag
clusters, which remain in the system while atoms deposited
onto the bare substrate are mainly evaporated. This trend
is seen in the Au PVD experiment (see also Fig. 7). The
middle and right diagrams show the nucleation pattern when
E

Ag−SiO2
b = 0.26 eV and E

Ag−SiO2
b = 0.30 eV, respectively.

Although these variations in binding energy are quite small,

FIG. 7. (Color online) A comparison between the experimental
results for Au and Ag PVD with the simulation model. SEM images
of the rippled v-SiO2 surfaces after Au and Ag deposition (left) for
30 and 75 minutes, respectively. A top view of the rippled simulation
surfaces after Au (EAu−SiO2

b = 0.24 eV) and Ag (EAg−SiO2
b = 0.26 eV)

simulations (right) are shown. It is reported in the literature that the
adhesion energy of Au-SiO2 is less than of Ag-SiO2 [22]. The total
metal accumulation is equivalent to 12 ML for Au and 6 ML for Ag.
Arrows indicate the direction of incident metal atoms.

the adatom lifetime of metal monomers on the bare surface
is prolonged exponentially with increasing binding energy.
In the middle diagram, nucleation occurs constantly in the
high-flux region of the surface, and a coalescence of small Ag
clusters is observed. A few clusters are also observed to grow
in the low-flux region. In total 35% of Ag atoms remain in
the system. Experimentally observed Ag nanowires are quite
close to this type of growth mode. In the right diagram, the
sticking probability is 82%, and nucleation can occur overall
on the substrate surface with the Ag accumulation following
almost the same trend as the local flux distribution of (b).

Figure 7 gives a direct comparison of the simulation results
with the SEM images [15,23]. With the chosen binding energy
parameters, the simulated metal clusters are very similar to
the SEM images. Especially the shape of the cluster edges
and sizes agree nicely with the experimental observations.
The similarity of the cluster shapes suggests the validity of the
chosen parameters for Au and Ag and help validate the unusual
fluctuation convergence model considered above. The size and
coalescence of clusters result in the nucleation probability
on the substrate, which is strongly influenced by the adatom
lifetime and local flux.

On a (100)-oriented flat substrate, the mean adatom life-
times of metal monomers T M

AL with the simulation time unit
is given by [15] T M

AL = 3 exp (EM−SiO2
b − Ebst)/kT units. In

the simulation model, E
Au−SiO2
b = 0.24 eV and E

Ag−SiO2
b =

0.26 eV are employed, and therefore the mean adatom
lifetime of two metals on flat surface is T Au

AL = 14.1 units
and T

Ag
AL = 30.6 units. The total MC simulation time and

the experimental deposition time are t
tot,Au
MCT = 2.7 × 107 units,

t
tot,Ag
MCT = 1.2 × 107 units and t tot,Au

exp = 1800 [s], t
tot,Ag
exp = 4500
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[s], respectively. Thus to be consistent with experiment, the
adatom lifetime of metals is T Au

AL = 9.40 × 10−4 [s] and
T

Ag
AL = 1.15 × 10−2 [s] for Au and Ag, respectively. Hence the

simulation model predicts an adatom lifetime of Au monomers
that is one-tenth that of Ag on the bare surface. The consistent
MC simulation time units are 1 unit = 6.67 × 10−5 [s] for
Au and 1 unit = 3.75 × 10−4 [s] for Ag, respectively. These
film growth rates, assuming unit sticking probability, give
flux parameters of f Au = 0.020 [ML s−1] and f Ag = 0.0038
[ML s−1] and are less than those of Petersen and Mayr [24] by
a factor of O(102).

D. Cluster growth stability evaluation

In order to estimate the stability range (18) of the evolution
speed discussed in Sec. IV C, we recall the simulation- and
experimental parameters required. In the simulations shown
in Fig. 7, 6 ML Ag nanocluster growth has been obtained after
a MC simulation time of 1.2×107 units with a boost factor
of 2.3 × 103. The experimentally observed Ag nanostructure
was grown after 75 minutes of PVD.

The effective transition frequency ωeff depends both on the
material and the temperature. According to Ref. [25], its range
is generally in the region of 1012–1013 [s−1]. Now assume
that the effective transition frequency is the Debye frequency
ωeff = ωM

D of the metal to derive the consistent convergence
factor evaluated in (18) and (6) with the simulation. The total
deposition time of an Ag PVD experiment is t tot

exp = 4500 [s].
The total simulation fluence is F =175 [atoms/nm2], corre-
sponding to 15 ML of Ag deposition. The total MC simulation
time is t tot

MCT = 1.2 × 107 units with 3% of all the transition
events belonging to those described as usual fluctuations. The
Debye frequency of Ag is ω

Ag
D = 2.95×1013 [s−1].

Let M,M′ be the original and modified simulation process
in a typical interval between two Ag depositions in a small
region, respectively. Let tMexp,t

M′
MCT be the experimental, and

MC simulation time as defined in Sec. III B and Sec. IV A.
Assume the uniform reduction

tM
′

MCT

tMexp

≈ t tot
MCT

t tot
exp

,

then the relation (18) is given by

t tot
MCT

t tot
expω

Ag
D Pbst

< θ (ι) <
t tot
MCT0.97−1

t tot
expω

Ag
D Pbst

. (29)

Thus θ (ι) is in the range 2.07 × 10−7 < θ (ι) < 2.13 ×
10−7, and the mean acceleration of the simulation time is
[Pbstθ (ι)]−1 ∼ 1.09 × 1010 from (19). To see the situation
more clearly, consider a concrete example. Figure 8 shows
the deposition of an Ag adatom i on an Ag(111) island with
area Smig [nm2]. This scene is same as in Fig. 3.

For the unit vectors of the incident atoms �i and the surface
normal �n the local flux is given by

floc = FSmig�i · �n/
t tot
exp[atoms/s]. (30)

As shown in V A, most transition events relating to the island
are only (1) migration on the (111) island itself, (2) a transition
over the step edge by the atom i, and (3) a transition along the
island edge by i and i ′ since the other transitions are blocked

FIG. 8. (Color online) Schematic description of local flux for Ag
deposition on an Ag (111) island. The area of the island is Smig ∼
3.06 nm2. �n and �i are as defined in Fig. 6.

by high potential barriers. The nondimensional time interval
between two external modifications (Ag deposition) in this
region is

�t = f −1
loc ω

Ag
D . (31)

The consistent numerator of the convergence factor ι for this
situation can be estimated from (6), (29), (30), (31) and the
local parameters as

5.32 × 10−6

Smig�i · �n <
ι

ω
Ag
D

<
5.48 × 10−6

Smig�i · �n [s].

The simulation would therefore predict a convergence time
for local metastable states of the order of microseconds for
the situation shown in Fig. 8. In other words, the deposited
atom i that might arrive at a neighbor position of the atom i ′
would reach a stable local configuration at the latest 1.80 μs for
Smig ∼ 3.06 nm2 after the deposition with a high probability
when the surface is facing the evaporation source (�i · �n = 1).

For the region that is not exposed to the largest flux, the
surface is more bare due to more re-evaporation occurring
before the next deposition event.

VI. CONCLUSION

An atomistic, KMC simulation method has been proposed
and successfully applied to metal cluster growth processes
on surfaces with prepatterned ripple structures. The method
consists of two essential ideas. One is the discretization of
the entire process into local transition events, and the other
is the classification of the transition levels with respect to the
thermal fluctuation of the system. By allowing free transitions
with small barriers to be considered as fluctuations, the
entire system evolves as a Markov chain of equivalence class
objects. The evolution dynamics of the system is promoted
by the metastable level transitions. Also, contrary to some
previous accelerated dynamics methods [25–27], where there
are many small migration barriers, an acceleration of the
system evolution can still be achieved, when the system does
not require too many transition events to reach the quasi-
equilibrium state. In the metallic PVD example, the model
predicts a convergence time of metastable states, after each
metal deposition onto the surface, of < μs order. The model
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can also predict the metal cluster growth patterns accurately
with detailed atomistic transition event statistics.

An application limit of the transition level classification
method may exist, due to the inability of the small transition
effect to model the physics at high temperatures, but so long
as the system does not require too many transition events to
reach the usual fluctuation, the model provides a relatively fast
(3–9 CPU days on a modern single-processor machine)
estimation of the metal cluster growth process of 6–12 ML
accumulation. Since the boost factor is 2290, a traditional
KMC simulation, i.e., without a boost, might require 18–54
CPU years to obtain a similar surface coverage.

These simulations can be developed further by utilizing
more data from experimental measurements together with
more accurate barrier calculations such as those provided by
density functional theory or improved interatomic potentials.
The method can also be extended to more complex systems
such as multicomponent materials and grain boundaries,

provided a good description of the relevant transition barriers
is available.

Other modifications could include, for example, use of the
nudged elastic band method [28] to calculate accurate energy
barriers together with a systematic storage of data [29] so
that local configurations can be easily recognized if they have
previously occurred, thus accelerating the system evolution.
In addition, the aesthetic algebraical structure of the Markov
chain [30] itself is also a subject of interest to study, especially
as an extended class 4 object of cellular automaton [21].
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