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ABSTRACT 

PURPOSE. Highly trained athletes are associated with high resting antigen-stimulated whole 

blood culture interleukin (IL)-10 production. The purpose of the present study was to 

examine the effects of training status on resting circulating T regulatory (Treg) cell counts 

and antigen-stimulated IL-10 production and the effect of acute bout of exercise on the Treg 

response. METHODS. Forty participants volunteered to participate and were assigned to one 

of the 4 groups: sedentary (SED), recreationally active (REC), sprint-trained athletes (SPR) 

and endurance-trained athletes (END). From the resting blood sample CD4
+
CD25

+
CD127

low/-
 

Treg cells and in vitro antigen-stimulated IL-10 production were assessed. Ten REC subjects 

performed 60 min cycling at 70% of maximal oxygen uptake and blood samples for Treg 

analysis were collected post- and 1 h post-exercise. RESULTS. IL-10 production was greater 

in END compared with the other groups (P < 0.05). END had a higher Treg percentage of 

total lymphocyte count compared with SED (P < 0.05). A smaller proportion of Treg CD4
+
 

cells was observed in SED compared with all other groups (P < 0.05). IL-10 production 

significantly correlated with the proportion of Tregs within the total lymphocyte population 

(rs = 0.51, P = 0.001). No effect of acute exercise was evident for Treg cell counts in the REC 

subjects (P > 0.05). CONCLUSION. Our results demonstrate that high training loads in END 

are associated with greater resting IL-10 production and Treg cell count and suggest a 

possible mechanism for depression of immunity commonly reported in athletes engaged in 

high training loads.    
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INTRODUCTION 

From its conception in the early 1990s, the ‘J’ shaped curve has commonly been used to 

express the association between habitual physical activity level and risk of upper respiratory 

tract infection (URTI) (Gleeson et al. 2012; Matthews et al. 2002; Nieman 1994). Defined 

within this relationship, regular moderate exercise is seen to enhance immunosurveillance 

and immune function (Nieman 2000), in turn reducing the risk of such infections. 

Conversely, very prolonged bouts of strenuous exercise and periods of heavy training are 

seen to result in a transient depression of immune function (Gleeson 2007), resulting in an 

‘open window’ for infection and increased the susceptibility to URTI (Nieman 2000). 

Observations from the athletic population have given support to these findings, with high 

training loads (Gleeson et al. 2012; Nieman 1990) and intensified periods of training 

(Fahlman and Engels 2005) reported to be associated with a higher incidence of URTI. 

Although higher relative risk of infection in physically active individuals has been linked 

with hormonal and adrenergic effects impairing immune system function (Pedersen and 

Hoffman-Goetz 2000), more recent evidence suggests that an enhanced anti-inflammatory 

cytokine response to antigen challenges (e.g. interleukin (IL)-10 and IL-4 production) may be 

also involved in driving this relationship (Gleeson et al. 2012; Wang et al. 2012). 

 

In the last decade, mounting evidence suggests that training status can have substantial 

influences on IL-10 secretion in response to antigen challenge in vitro (Walsh et al. 2011a,b). 

Regular moderate intensity exercise, in the form of a 12-week tai chi chuan intervention 

programme, was seen to result in significant elevations in IL-10 secretion responses in 

middle-aged individuals (Yeh et al. 2006). More recently, elevations in antigen-stimulated 

whole blood IL-10 production have been reported in individuals engaged in high levels (~14 

h/week) of moderate-vigorous endurance exercise compared with those performing relatively 
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moderate (~5 h/week) training loads (Gleeson et al. 2012). In addition to this, the authors also 

highlighted a significantly higher incidence of URTI episodes in those individuals performing 

higher training loads. It is therefore plausible that habitual exercise could modulate 

alterations in immune status, via modification of cell counts and/or cell sensitivity, which 

result in an enhanced IL-10 response and a subsequent heightened immune-depressive effect. 

Alterations in one such immune parameter, the proportion and/or number of regulatory T 

cells (Tregs) could be an important factor in this altered cytokine response as they are 

proposed to be the primary source of IL-10 within the body (Gleeson et al. 2011b). 

 

Treg cells, a T lymphocyte subset, express CD4 and high levels of CD25, a receptor for the 

highly potent T cell growth factor IL-2. Furthermore, these cells are known to express high 

levels of Fork-head box protein 3 (FoxP3), which is the most specific marker of this 

population to date (Liu et al. 2006). Due to its intra-cellular nature, identification of this 

structural marker is problematic. However, recent discovery of an inverse relationship 

between CD127 and FoxP3 expressed on CD4
+
CD25

+
 cells (Liu et al. 2006) allows more 

easily attainable estimations of this Treg cell population via flow cytometry. Evidence 

suggests that circulating levels of Treg cells increase following an acute bout of strenuous 

exercise in humans (Wilson et al. 2009) and in response to a period of high intensity exercise 

training in a murine model (Wang et al. 2012). These elevations in Treg cells have also been 

reported in individuals engaged in regular resistance exercise (i.e. weight lifting), with a 3-

fold greater level seen when compared with control subjects (unpublished data, cited in 

Nandakumar et al. 2009). It is therefore possible that elevations in IL-10 secretion may be 

associated with increases in the numbers of circulating Treg cells in response to chronic 

exercise training; however, this relationship has yet to be explored.  
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Thus, the aims of the present study were to examine possible associations between antigen-

stimulated IL-10 secretion, resting circulating Treg cell counts and habitual physical activity 

load, including possible differences between sprint-trained and endurance-trained athletes 

(i.e. the effect of training type). Specifically, we wished to determine whether the percentage 

or numbers of Treg cells correlated with IL-10 production within a population of varying 

levels of habitual activity. We also wished to examine the effect of an acute bout of exercise 

on Treg cell numbers before and after exercise. We hypothesized that individuals engaged in 

greater levels of physical activity would have higher IL-10 production in response to antigen 

challenge, and that this would be accompanied by larger percentage and/or numbers of 

circulating Treg cells. We also hypothesized that an acute bout of submaximal exercise would 

elevate the circulating Treg cell percentage and count. 
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METHODS 

Two separate studies were performed: (1) To identify the effect of different physical activity 

levels on Treg cell counts and in vitro IL-10 production, a cross-sectional design study was 

carried out; (2) A second study examined the influence of an acute bout of exercise on the 

blood Treg cell count in recreationally active participants. 

 

Participants 

Between May and July forty healthy male university students ranging in levels of habitual 

activity volunteered to participate in the cross-sectional study. Subjects ranged from 

sedentary individuals to Olympic triathletes. All participants completed a comprehensive 

health-screening questionnaire before testing commenced, and had declared absence from 

cold symptoms (cough, sore throat, blocked sinuses) in the 2-week period prior to testing. 

Participants were only included if they had abstained from all exclusion criteria, including 

smoking, excessive alcohol consumption (>20 units/week) and blood donations in the 

previous 3 months; determined via a short questionnaire. Participants were informed fully 

about the rationale for the study and the procedures involved, before providing written 

informed consent to participate in the study. Approval for the study had earlier been received 

from the Loughborough University ethical advisory committee.  

 

Study Design 

Participants were assigned to one of four sub-groups for cross-sectional analysis, based on 

current exercise training load and sports performed at a competitive level. The groups 

identified were sprint-trained athletes (SPR), endurance-trained athletes (END), 

recreationally active (REC), and sedentary (SED) individuals (Table 1). Participants were 

classed as SED if they did not engage in sport or exercise training; REC if they performed 
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regular exercise (moderate-to-vigorous exercise 2 to 3 times per week) but did not train or 

compete within a sport at a competitive level; SPR if they trained for and competed in short-

distance track running events (100 – 800 m) or END if they trained for and competed in 

events of a prolonged duration (≥ 1500 m events, triathlon). For the acute exercise study, 10 

REC cycled for 60 min at 70% maximal oxygen uptake ( maxOV 2
 ). 

 

Questionnaires 

Participants were required to complete the short form of the International Physical Activity 

Questionnaire (IPAQ; https://www.ipaq.ki.se/downloads.htm); cataloguing the frequency and 

duration of walking, vigorous intensity and moderate intensity activity they had partaken in 

during the previous 7 days. This questionnaire allows subsequent quantification of physical 

activity in metabolic equivalents (MET) hours per week, and is seen to be a reliable estimate 

of physical activity levels in an adult population between the ages of 18 – 65 years (Craig et 

al. 2003). For additional information, participants were required to complete a secondary 

questionnaire detailing their primary sport, how often they trained for this sport per week and 

the total duration of training per week. 

 

Laboratory Visit 

Cross-sectional study 

Participants arrived at the laboratory at 08:00-09:00 following an overnight fast of at least 10 

h, during which time only water consumption was permitted. Participants had been instructed 

to abstain from physical activity, alcohol consumption and caffeine consumption in the 24 h 

prior to the visit. Information about the study was provided before each participant gave 

informed consent. Following this, participants sat quietly for 15 min while they completed a 

comprehensive health-screening questionnaire, questionnaires assessing habitual activity and 
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training habits, and the inclusion/exclusion criteria questionnaire. Venous blood was 

collected via venipuncture from an antecubital vein into two Vacutainer tubes (Becton 

Dickinson, Oxford, UK) containing either K3EDTA (4 mL) or heparin (7 mL). Measures of 

height (to nearest cm) and body mass (to 0.1 kg) were then taken. 

 

Acute study 

The same 10 REC individuals participated in the acute exercise study. Their VO2max was 

determined using an incremental cycling protocol performed on an electromagnetically 

braked cycle ergometer (Lode Excalibur Sport V4.67, Groningen, The Netherlands). After an 

overnight fast, participants began cycling at 70 W; power output was increased in 35 W steps 

every 3 min until volitional fatigue. Expired gas was collected via Douglas bags during the 

final minute of each 3-min stage and during the final minute of the test. Heart-rate, using 

short range telemetry (model A3, Polar, Kempele, Finland), and ratings of perceived exertion 

(RPE) (Borg 1973), were also recorded during these periods to confirm true maximal values 

had been achieved.  

 

Expired gas samples were passed through a gas analyzer (series 1400, Servomex, 

Crowborough, Sussex, UK), which had been calibrated with gases of known concentrations, 

in order to determine oxygen consumption and carbon dioxide production. Volumes were 

determined using a dry gas meter (Harvard Apparatus, Edenbridge, Kent, UK). The oxygen 

uptake at each power output was plotted on a scatter graph and the linear relationship was 

used to estimate a power output which would elicit 70% maximum oxygen uptake; this power 

output was used in the main trial. 
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Main trial  

Participants arrived at the laboratory at 09:00 after an overnight fast (10-12 h) having 

refrained from caffeine and alcohol and without partaking in vigorous exercise in the 

previous 24 h. Participants sat for 15 min before a 12 mL venous blood sample was acquired 

through venipuncture from an antecubital vein and collected into two Vacutainer tubes as 

described previously. Following a short (< 5 min), self-paced warm-up each participant at 

room temperature (~22°C) for 1 h at the power output estimated to elicit 70% VO2max. 

Drinking water was provided ad libitum but no food was ingested during the exercise and the 

first hour of recovery. Expired gas samples were collected and analyzed every 15 min to 

ascertain exercise intensity, and power output was adjusted if necessary. Heart-rate and RPE 

were also measured every 15 min. Immediately upon completion of exercise a 12 mL blood 

sample was collected in the same manner as before. The participant remained seated for the 

following hour before a final 12 mL venous blood sample was collected. 

 

Haematological analysis 

Immediately after collection, blood cell counts [Red blood cells (RBC), total leukocytes, 

lymphocytes, monocytes, neutrophils], as well as haemoglobin concentrations and 

haematocrit levels, were determined from blood collected in the K3EDTA vacutainer using an 

automated cell counter (AcT
TM

5diff haematology analyzer, Beckman Coulter, High 

Wycombe, UK).  Based on duplicate analysis of 80 samples the intra-assay coefficients of 

variation for all variables were <3%. 

 

Lymphocyte subsets 

Fluorescent-conjugated monoclonal antibodies were used to identify specific cell surface 

markers (CD4, CD25, CD127) using via four color flow-cytometry (FACS-Calibur,  Becton 
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Dickinson, Oxford, UK) with CellQuest analysis software (Becton Dickinson Biosciences, 

Oxford, UK). Briefly, 10µL of human regulatory T cell cocktail (Becton Dickinson 

Biosciences, Oxford, UK) was added to 120 µL heparinized whole blood and incubated in the 

dark for 20 min on ice. Erythrocytes were then lysed by adding 1.5 mL of lysis solution 

(FACS lysis buffer, Becton Dickinson Biosciences); following which the sample was 

incubated for a further 10 min, before being spun at 3500 rpm for 6 min at 6°C. The 

supernatant was then aspirated and the cells being re-suspended in phosphate buffered saline 

solution (PBS) containing 0.1% bovine serum albumin and 2 mM EDTA. The mixture was 

then spun for a further 6 min at 3800rpm, the supernatant aspirated and the cells re-suspended 

in 400 µL PBS.  Forward-scatter versus side-scatter plots were used to gate lymphocytes 

based on size and density, with 50,000 lymphocyte events acquired per analysis. CD4
+
 

lymphocytes were further gated to identify CD25
+
 cells, and those that also were CD127

low/-
 

(Fig.1). Values obtained represented a percentage of total lymphocytes for 

CD4
+
CD25

+
CD127

low/-
 (Treg cells), with absolute values for CD4

+
CD25

+
CD127

low/-
 cells 

calculated using the total lymphocyte count obtained previously via the automated cell 

counter. This calculation process was repeated to determine CD4
+
 and CD4

+
CD25

+
 cell 

counts. 

 

Antigen-stimulated IL-10 production 

Briefly, 0.25 mL of heparinized whole blood was added to 0.75 mL of RPMI 1640 medium 

(Sigma Chemicals, Poole, UK) with an added 40 µL of Pediacel vaccine cocktail (Sanofi 

Pasteur msd Limited, Maidenhead, UK), containing diphtheria, tetanus, acellular pertussis, 

poliomyelitis, and hemophilus influenzae Type b antigens, at a dilution of 1:100, before being 

incubated at 37°C and 5% CO2 for 24 h. The stimulant dilution of 1:100 used in this study 

was based on a separate experiment (unpublished data), which established the dose–response 
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curve for the measured cytokines over the dilution range of 1:100–1:20 000. Samples were 

then centrifuged at 15000 rpm for 4 min at 4°C, following which the supernatant fluid was 

harvested and stored at -20°C. At a later date, samples were thawed at room temperature 

before high sensitivity enzyme- linked immunosorbent assay (ELISA) was used to assess IL-

10 concentrations (Quantikine HS100C, R&D systems, Minneapolis, USA). The intra-assay 

coefficient of variation for IL-10 was 6.4%. 

 

Statistical analyses 

All statistical tests were performed using SPSS (SPSS for windows version 18.0, SPSS Inc., 

Chicago, IL). Age and anthropometric measures were compared between groups using one-

way ANOVA. Blood cell counts, haematocrit levels, haemoglobin concentrations, CD4+ cell 

counts, CD4+CD25+ cell counts, Treg lymphocyte counts, Treg lymphocyte percentages and 

IL-10 production were compared between groups by one-way ANOVA for normally 

distributed data or via non-parametric Kruskal-Wallis tests for data that were not normally 

distributed or where variances were not homogenous between groups. Post hoc analysis using 

Sidak or Mann-Whitney tests were used for further analysis of significant differences 

between groups for data that were normally and not normally distributed, respectively. 

Correlations between IL-10 production, levels of physical activity and resting cell counts 

were quantified using Spearman’s coefficient correlation. The effects of acute bout of 

exercise on haematological variables and Tregs were analyzed using within-measures design 

ANOVA or Friedman’s ANOVA with post hoc Sidak and Wilcoxon test for normally and not 

normally distributed data, respectively. Effect sizes (ES), r and ω, for the differences between 

groups were also determined. Statistical significance was set at P < 0.05 for all analyses, with 

all results presented as means ± standard deviations unless specified otherwise. 
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RESULTS 

Cross-sectional study  

There was no significant difference in age and height between groups. A significant 

difference was found for participants’ body mass between groups, F(3,36) = 7.11, P = 0.001, 

ES = 0.56, with END being lighter than SED. Similarly, a significant difference for BMI 

among groups was observed, F(3,36) = 6.82, P = 0.001, ES = 0.55, with SED having a greater 

BMI than REC and END.  

 

According to the analysis of data obtained via the IPAQ, there were significant differences 

for training loads in MET-h during the week before the baseline data were collected (F(3,39) = 

10.113, P < 0.05, ES = 0.64) with SED having lower training loads than SPR and END. 

Additionally, REC had lower training loads than END (Fig. 2).  

 

There were no significant differences for any haematological variables between groups 

(Table 2), although red blood cell counts tended to be lower in END than in SED (P = 0.06, 

ES = 0.31). Similarly, no significant differences were observed in circulating neutrophil, 

lymphocyte and monocyte counts. 

 

Whole blood culture antigen-stimulated IL-10 production was significantly affected by the 

training status, H(3) = 11.01, P < 0.001 (Fig. 3). Planned contrasts revealed that IL-10 

production was significantly greater in END when compared with all other groups (P < 0.05, 

ES ≥ 0.49). 

 

A significant difference was found for the CD4
+
CD25

+
CD127

low/-
 cell percentage of total 

lymphocyte count, with values higher in END compared with SED (F(3,36) = 3.279, P < 0.05, 
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ES = 0.38; Fig 4A). Similarly, a significant difference was observed in the 

CD4
+
CD25

+
CD127

low/-
 cell percentage of CD4

+
 cell count (F(3,36) = 10.492, P < 0.001, ES = 

0.55) with values lower in SED compared with all other groups (Fig. 4B). No significant 

difference was found between groups for the absolute numbers of CD4
+
CD25

+
CD127

low/-
 

cells (F(3,39) = 2.206, P > 0.05, ES = 0.29; Fig. 4C), though values tended (P = 0.104) to be 

lowest in SED. 

 

The in vitro production of IL-10 by antigen-stimulated whole blood culture significantly 

correlated with CD4
+
CD25

+
CD127

low/-
 cell percentage of total lymphocyte population (rs = 

0.51, P = 0.001), CD4
+
CD25

+
CD127

low/-
 cell percentage of CD4

+
 cell count (rs = 0.41, P = 

0.01) and with the absolute concentration of CD4
+
CD25

+
CD127

low/-
 cells (rs = 0.38, P < 

0.05). Additionally, the CD4
+
CD25

+
CD127

low/-
 cell percentage of CD4

+
 cell count correlated 

positively with MET-h/week (rs = 0.47, P < 0.01). 

 

Acute study  

The VO2max of the REC participants was 49.2 ± 7.3 mL/kg/min. These ten participants 

completed the 1 h cycle at an average of 158 ± 28 W, relative exercise intensity of 72.9 ± 

5.9% of VO2max, heart rate of 160 ± 12 bpm and  RPE of 15 ± 1, indicating that exercise was 

perceived as “Hard”.  

 

Table 3 shows the changes in haematological variables and the main effect of time for each 

parameter. Exercise induced a significant leukocytosis (F(1.000, 9.000) = 23.181, P = 0.001, ES = 

0.84); post hoc tests revealed that the total leukocyte count increased from baseline to post-

exercise (P < 0.001) and continued to increase 1 h post-exercise (P < 0.001). This increase 

was also observed for neutrophils (χ (2) = 17.590, P < 0.001); neutrophils significantly 
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increased from pre-exercise to post-exercise (P < 0.01, ES = 0.63) and further increased 1 h 

later (P < 0.01, ES = 0.63). Similarly, lymphocytes exhibited a significant biphasic response 

to exercise (F(1.000, 9.000) = 21.785, P = 0.001, ES = 0.84). Exercise induced a 30% increase in 

lymphocytes at post-exercise (P = 0.001) compared with baseline values; however, at 1 h 

post-exercise values were significantly lower than at pre-exercise (24%, P < 0.01) and post-

exercise (42%, P < 0.01). 

 

There was no significant effect of acute exercise on CD4
+
CD25

+
CD127

low/-
 cell percentage of 

total lymphocyte count (main time effect: F(2,18) = 1.170, P > 0.05; Fig 5A). Similarly, no 

significant influence of acute exercise was observed for the CD4
+
CD25

+
CD127

low/-
 cell 

percentage of CD4
+
 cells (F(2,18) = 0.011, P > 0.05; Fig 5B) or for the absolute concentration 

of CD4
+
CD25

+
CD127

low/-
 cells (F(2,18) = 1.788, P > 0.05; Fig 5C). 
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DISCUSSION 

The purpose of this study was to examine the effects of different training loads on resting 

circulating Treg cell counts and whole blood culture antigen-stimulated IL-10 production. A 

further aim was to investigate changes in the circulating Treg cell count in response to an 

acute bout of submaximal exercise. The main findings of this study demonstrate that 

physically active individuals had higher resting circulating Tregs as a percentage of total 

lymphocyte count and of CD4
+
 cells. The other main finding of the present study was a 

higher in vitro IL-10 production in END compared with the other groups. These findings 

support our hypothesis that high training loads are associated with a higher resting Treg cell 

counts and greater IL-10 production following antigen stimulation. These findings suggest 

that endurance exercise training results in higher percentage of circulating Tregs at rest. 

Considering the finding that an acute bout of exercise did not affect the circulating Treg cell 

percentage or count (albeit shown only for the REC participants), it appears likely that the 

higher Treg percentage at rest in END represents a chronic adaptation to high training loads. 

Furthermore, the higher in vitro IL-10 production in END implies that those engaged in high 

training loads have a greater capacity of whole blood culture to secrete this anti-inflammatory 

cytokine, which may come from Tregs as both percentages and numbers of these cells were 

positively correlated with in vitro IL-10 production.  

 

IL-10, an anti-inflammatory cytokine, exerts numerous inhibitory effects on the immune 

system (Saraiva and O’Garra 2010). The principal function of IL-10 appears to be to limit 

and ultimately terminate inflammatory responses (Moore et al. 2001). IL-10, originally 

termed cytokine synthesis inhibitory factor, induces the downregulation of major 

histocompatibility complex II (MHCII) molecules, the intercellular adhesion molecule-1, the 

costimulatory B7 molecules on antigen presenting cells (APCs), expression of several pro-
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inflammatory cytokines (e.g. IL-12) and toll-like receptor 4 (Maynard and Weaver 2008; 

McCoy et al. 2010). Thus, it has the potential to depress immunity if produced in excess. 

Although, the number of URTI episodes was not directly assessed in the present study, we 

have previously demonstrated an association between in vitro IL-10 production and incidence 

of the common cold in highly physically active people (Gleeson et al. 2011a, 2012), which 

further supports the hypothesis that IL-10 plays a key role in the immune-suppressing effects 

of chronic strenuous physical activity. The precise source of the IL-10 remains unknown but 

the present study suggests that Tregs are a strong possibility.  

 

Tregs have been shown in numerous animal- and human-based studies to be the key cells 

mediating dynamic balance of the immune system (LeGuern 2011; Shalev et al. 2011). Tregs 

exert their immune-modulating effects using cytokine-independent and cytokine-based 

signaling pathways including IL-10-mediated immune depression (Delves et al. 2011; Taylor 

et al. 2006). These suppressive actions of Treg cells include: apoptosis (programmed cell 

death) of APCs; binding to B7 molecules on APCs, rendering the latter incapable of 

activating naïve T cells; local inhibition of T cell effector functions mediated by changes in 

intracellular signaling molecules and inhibition of dendritic cell function (Delves et al. 2011; 

Shalev et al. 2011). The results of the present study provide evidence of an association 

between high training load, in vitro antigen-stimulated IL-10 production and the numbers of 

circulating Treg cells, supporting the hypothesis that Treg cell-mediated inhibitory effects on 

the immune system via greater IL-10 production in highly physically active individuals play 

an important role in modifying URTI risk (Gleeson et al. 2011a, 2012). This hypothesis is 

also partially supported by the recently reported finding that a greater resting Treg cell 

percentage coincided with an increase of URTI episodes in a group of elite swimmers 

(Teixeira et al. 2011). 
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Our data are in line with previous murine and human studies and further expand our 

knowledge of the effects of chronic, high volume physical activity on in vitro IL-10 

production and resting circulating Treg cell counts. For example, in mice Wang et al. (2012) 

demonstrated higher in vivo IL-10 production and CD4
+
IL10

+
/CD4

+
FoxP3

+
 Treg percentage 

following 6 weeks of high-intensity training. Furthermore, higher absolute circulating 

CD4
+
CD25

+
 Treg cell counts and a 1.8-fold increase in in vitro IL-10 production were 

observed in response to a 12-week tai chi chuan exercise programme in 37 middle-aged 

participants (Yeh et al. 2006). Surprisingly, the same protocol did not induce an increase in 

Treg cell counts in the case-control study (Yeh et al. 2009). It is possible that methods could 

partially explain discrepancies in both studies, where in the first Tregs were assessed by 

labeling CD4 and CD25 cell surface receptors, while in the latter study qPCR was chosen to 

quantify FoxP3 mRNA, a Treg characteristic transcription factor. Since Yeh et al. (2006) 

examined middle-aged participants, it remained unknown whether these training-induced 

effects on resting Tregs and IL-10 would be evident in younger and more physically active 

individuals. Indeed, this was the key finding of the present study. Furthermore, compared 

with SED, although SPR exhibited a higher proportion of Treg CD4
+
 cells, only END had 

greater resting numbers of circulating Tregs and IL-10 production, despite no significant 

difference in the IPAQ-based training volumes between the two athletic groups. 

Consequently, it may be the nature of the training (i.e. long-lasting, predominantly aerobic 

versus high-intensity, short bursts of relatively more anaerobic exercise) that accounts for 

these differences. 

 

The published literature examining the relationship between exercise training and Tregs 

reports cell data as either absolute numbers, as a proportion of a cell population, or both.  In 
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the present study only the proportion of Tregs within the total lymphocyte and CD4+ 

population differed between the groups, and not the absolute numbers of Treg cells. In the 

context of IL-10 release it could be argued that the absolute number of Tregs is perhaps the 

most relevant measurement as it reflects the absolute capacity for IL-10 release in a given 

volume of blood.  On the other hand, it could be argued that the proportion of Tregs within 

the lymphocyte/CD4+ population gives a better indication of the lymphocyte response to 

training stress as it reflects the preferential mobilisation of a particular phenotype within the 

circulating lymphocyte pool.  Alternatively, this finding may simply reflect the variance that 

exists within the absolute and relative data given the relatively small numbers of participants 

in each group. 

 

The other main finding of this study was that an acute bout of exercise of moderate intensity 

does not result in an increase in the percentage or count of circulating Treg cells implying 

that acute bout of exercise does not affect Treg cell numbers. It is noted that this suggestion 

may be limited to REC group and the time frame over which Tregs were examined. Whether 

the same is true for the other training status groups or higher exercise intensities remains to 

be determined. This finding is in contrast to a study by Wilson et al. (2009), where numbers 

of CD4
+
CD25

+
 cells were shown to rise following 6 and 7 min bouts of race-pace swimming 

in a cohort of 22 elite adolescent swimmers. Differences in results may be accounted for the 

less specific identification of the Treg population in the study by Wilson et al. (2009) or by 

the higher relative intensity of exercise that was used with the swimmers. As illustrated in 

Figure 1B, gating on the CD4
+
CD25

+
 cell population does not give a clear delineation of a 

distinct (Treg) population and additional staining for CD127 is needed to achieve a 

sufficiently specific identification of  Tregs as recently suggested by De Serres et al. (2011). 
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Collectively, our data imply that chronic strenuous physical activity results in higher numbers 

of Tregs and IL-10 and may provide a mechanistic explanation for higher IL-10 

concentration being associated with a higher risk of common cold in physically active 

individuals. The actual mechanisms by which chronic exercise training induces Treg cell 

count upregulation remain, however, unknown. Based on our findings, an acute bout of 

moderate exercise does not appear to induce a rise in Tregs. There is some evidence for a 

stimulatory role of IL-2 on Treg cell proliferation, differentiation and activation (De Serres et 

al. 2011; Malek 2003) and plasma levels of IL-2 are increased for several hours after 

prolonged exercise (Castell et al. 1997).  Thus, repeated elevations of IL-2 availability with 

regular prolonged exercise sessions could be responsible for the elevated Treg count with 

endurance training. . In addition, Treg cell activation state, and therefore potentially their 

ability to produce IL-10 may be also mediated by immunoregulatory effects of circulating 

hormones such as glucocorticosteroids, suggesting another loop which may explain the 

variability (Xiang and Marshall, 2011). 

 

It is concluded that the present study confirms and further expands the existing evidence that 

chronic physical activity induces greater in vitro antigen-stimulated IL-10 production in 

comparison with less active individuals. Additionally, chronic but not acute exercise results 

in a higher Treg cell count which positively correlates with IL-10 production. Although this 

may impair the immune response in endurance athletes when a new pathogen is encountered, 

long term effects of the enhanced anti-inflammatory state could be regarded as beneficial in 

counteracting low-grade inflammation that is associated with risk of cardiovascular disease, 

type 2 diabetes mellitus, obesity and cancer (Gleeson et al. 2011b). 
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Figure legends 

 

Fig. 1.
 
Identification of Treg cells via flow cytometry. (A) – Forward scatter (FSC-H) versus 

side scatter (SSC-H) gating the total lymphocyte population (R1). (B) - CD4 (FL1-H) versus 

CD25 (FL3-H), gating CD4+ cells (R4). (C) – CD25 (FL3-H) versus CD127 (FL4-H) 

identifying CD4+CD25+CD127
low/-

 (Treg) cells (R5). 

 

Fig. 2. Training loads in MET-h/week among groups. # different from SPR and END, P < 

0.01; † different from END, P < 0.05. SED – sedentary; REC – recreationally active; SPR – 

sprint-trained; END – endurance-trained. Data are expressed as mean ± SD. 

 

Fig. 3. Whole blood culture antigen-stimulated IL-10 production. # different from other 

groups, P < 0.05. SED – sedentary; REC – recreationally active; SPR – sprint-trained; END 

– endurance-trained.  Data are expressed as mean ± SD. 

 

Fig. 4. CD4
+
CD25

+
CD127

low/-
 cells percentage of total lymphocyte count (A), percentage of 

CD4+ cell (B), and absolute concentration (C). # different from SED, P < 0.05; † different 

from other groups, P < 0.05. SED – sedentary; REC – recreationally active; SPR – sprint-

trained; END – endurance trained. Data are expressed as mean ± SD. 
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Fig. 5. Effect of acute exercise on CD4
+
CD25

+
CD127

low/-
 cell percentage of total lymphocyte 

count (A), CD4
+
CD25

+
CD127

low/-
 cell percentage of CD4

+
 cells (B) and absolute 

concentration of CD4
+
CD25

+
CD127

low/-
 cells (C). Pre – before exercise; Post – post exercise; 

1h Post – 1h after exercise. Data are expressed as mean ± SD.  
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Table 1 Participant characteristics 

 SED REC SPR END 

Age (years) 23 ± 1 22 ± 1 23 ± 3 24 ± 3 

Height (cm) 177 ± 8 178 ± 6 182 ± 5 178 ± 5 

Body mass (kg) 79.7 ± 6.6 72.4 ± 6.7 76.5 ± 6.9 67.3 ± 5.0* 

BMI (kg/m
2
) 25.7 ± 3.2 22.8 ± 1.4* 23.0 ± 1.9 21.2 ± 2.0* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are mean ± SD. n = 10 for all groups. * different from SED, P ≤ 0.05. SED – 

sedentary; REC – recreationally active; SPR – sprint-trained; END – endurance-trained; 

BMI – Body Mass Index. 
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Table 2 Hematological variables and leukocyte counts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SED REC SRP END 

RBC (x10
12

/L) 4.80 ± 0.19 4.57 ± 0.40 4.60 ± 0.28 4.45 ± 0.22 

Hb (g/L) 156 ± 8 156 ± 13 157 ± 7 147 ± 9 

Hct (%) 45.2 ± 1.6 44.8 ± 4.0 44.3 ± 2.3 43.0 ± 2.5 

WBC (x 10
9
/L) 5.5 ± 1.6 5.7 ± 0.8 4.6 ± 1.1 5.6 ± 1.2 

Ne (x 10
9
/L) 2.7 ± 0.9 2.5 ± 0.6 2.2 ± 1.0 3.3 ± 1.6 

Ly (x 10
9
/L) 2.0 ± 0.6 2.4 ± 0.5 1.9 ± 0.3 2.0 ± 0.5 

Mo (x 10
9
/L) 0.50 ± 0.20 0.46 ± 0.09 0.41 ± 0.07 0.51 ± 0.15 

Data are mean ± SD. n = 10 for all groups. RBC – red blood cells; Hct – hematocrit; 

Hb – hemoglobin; WBC – white blood cells; Ne – neutrophils; Ly – lymphocytes; Mo 

– monocytes; SED – sedentary; REC – recreationally active; SPR – sprint-trained; 

END – endurance-trained.    
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Table 3 Effect of acute exercise on hematological variables and leukocyte counts 

 

 

 

 

 

  

 Pre-Exercise  

(n = 10) 

Post-Exercise  

(n = 10) 

1 h Post-

Exercise 

(n = 10) 

 

 

     

RBC (x 10
6
/μL)  4.58 ± 0.40 4.85 ± 0.43* 4.64 ± 0.40†  

Hct (%) 44.8 ± 4.0 47.8 ± 4.3* 45.7 ± 3.9†  

Hb (g/L) 156 ± 13 165 ± 14* 158 ± 13†  

WBC (x 10
9
/L) 5.69 ± 0.84 7.76 ± 1.33* 11.40 ± 3.59*†  

Ne (x 10
9
/L) 2.50 ± 0.62 3.63 ± 1.07* 8.56 ± 3.15*†  

Ly (x 10
9
/L) 2.35 ± 0.53 3.07 ± 0.97* 1.79 ± 0.39*†  

Data are mean ± SD. * different from pre-exercise, P < 0.05; † different from post-exercise, P 

< 0.05. RBC – red blood cells; Hct – hematocrit; Hb – hemoglobin; WBC – white blood cells; 

Ne – neutrophils; Ly – lymphocytes.   
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(Figure 2) 
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(Figure 3) 
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(Figure 4)  
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(Figure 5)  
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