
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288381855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Experiences from Porting the Contiki Operating
System to a Popular Hardware Platform

George Oikonomou, Iain Phillips
Computer Science, Loughborough University, Loughborough, LE11 3TU, UK

Email: {G.Oikonomou, I.W.Phillips}@lboro.ac.uk

Abstract—In contrast to original belief, recent work has
demonstrated the viability of IPv6-based Wireless Sensor Net-
works (WSNs). This has led to significant research and standard-
ization efforts with outcomes such as the “IPv6 over Low-Power
Wireless Personal Area Networks” (6LoWPAN) specification. The
Contiki embedded operating system is an important open source,
multi-platform effort to implement 6LoWPAN functionality for
constrained devices. Alongside its RFC-compliant TCP/IP stack
(uIP), it provides support for 6LoWPAN and many related
standards. As part of our work, we have made considerable
fixes and enhancements to one of Contiki’s ports. In the process,
we made significant optimizations and a thorough evaluation of
Contiki’s memory and code footprint characteristics, focusing
on network-related functionality. In this paper we present our
experiences from the porting process, we disclose our optimiza-
tions and demonstrate their significance. Lastly, we discuss a
method of using Contiki to deploy an embedded Internet-to-
6LoWPAN router. Our porting work has been made available to
the community under the terms of the Contiki license.

Index Terms—6LoWPAN, RPL, IPv6 for Embedded Devices

I. INTRODUCTION

Over the last decade the wireless sensor network (WSN) re-
search community members have invested considerable effort
towards the design of novel network protocols and architec-
tures. Originally, it was believed that internet protocols would
not be applicable [1] and that WSN design would benefit by
steering away from the abstraction of layered architectures [2].
Thus, significant portion of the development and evaluation
effort focused on the link layer, while protocol optimizations
have mainly been guided by application-specific requirements.

However, the release of uIP demonstrated the viability
of RFC-compliant TCP/IP stacks for embedded devices [3].
Subsequently, the IETF 6LoWPAN working group published
RFC 4944, discussing a method of carrying IPv6 datagrams
within 802.15.4 low power radio frames [4]. Among other
topics, this and subsequent documents specify methods for
the fragmentation of datagrams and the compression of their
headers. Further work demonstrated that a purely IPv6-based
network architecture is not only viable but can also outperform
application-centric designs [5]. For those networks, the emerg-
ing standard for routing is the “IPv6 Routing Protocol for Low
power and Lossy Networks” (RPL) [6]. Lastly, IETF members
have been working on optimizing IPv6 neighbor discovery
(ND) for 6LoWPAN and similar networks [7].

Meanwhile, the uIP stack was integrated into the Contiki
embedded operating system and was enhanced to include IPv6
support (uIPv6) [8]. Additionally, the Contiki OS includes

an implementation of the RPL routing protocol [9] as well
as mature 6LoWPAN support (IPv6 datagram fragmentation
and header compression). Contiki has been designed with
portability in mind and has been used successfully on multiple
diverse hardware platforms. One of these porting efforts has
been for the Sensinode devices, which are based on the
Chipcon/Texas Instruments CC2430 and CC2431 System-on-
Chip (SoC) solutions. However, the effort was discontinued
during the early months of 2010, leaving the port in a defunct
state.

As part of our work, we resumed this porting effort; we
fixed existing problems, we enhanced it by implementing
multiple additional features and we made it available to the
community1. In this paper we discuss our experiences: We
contribute an in-depth analysis of optimizations required to
overcome hardware limitations and we analyze the port’s code
and memory footprint characteristics.

In order to better understand this work, the reader needs
to be familiar with the CC2430 architecture. We thus intro-
duce some important concepts in section II. Our fixes and
improvements to the Contiki/Sensinode port are presented
and evaluated in section III. Motivated by the Wireless Em-
bedded Internet vision of interconnected IPv6-based WSNs,
in section IV we evaluate an embedded 6LoWPAN-to-IPv6
router implemented with Contiki. This paper concludes with
a discussion of future work and open issues in section V.

II. HARDWARE

Our hardware has been manufactured by Sensinode Ltd
and is based on the Chipcon/Texas Instruments CC2430 and
CC2431 System-on-Chip (SoC) solutions. These SoCs combine
an Intel 8051 micro controller (MCU), 8 KBytes of volatile
RAM, up to 128 KBytes of non-volatile flash, a 2.4GHz low
power RF transceiver and various sensing elements. Compared
to the industry standard 8051, the MCU on the CC2430 offers
performance enhancements while using the same instruction
set. The most noteworthy improvements are faster instruction
execution and the addition of a second data pointer (dptr) [10].
The CC2431 is equipped with a location estimation hardware
module but is otherwise identical to the CC2430 [11].

Sensinode devices combine a CC2430-based SoC with ad-
ditional sensing elements (e.g. 3-axis accelerometer, light
sensor), a USB connector and for some models an RS232
connector. They can be powered from battery or over USB.

1http://nets-www.lboro.ac.uk/george/contiki-sensinode/



A. Memory Spaces

Memory on the CC2430 is logically separated into four
distinct but partially overlapping memory spaces: i) DATA
ii) XDATA iii) SFR and iv) CODE. DATA and XDATA are
read/write memory spaces for program data and are physically
located in the 8 KByte volatile ram during execution. The
former can be accessed with a single MCU instruction whereas
the latter can only be addressed indirectly, taking 4-5 MCU
instructions. The SFR space provides access to the hardware’s
special function registers (for instance the data, instruction and
stack pointers and peripheral-controlling registers). Lastly, the
read-only CODE space is used for the application code and
constants and is physically located on flash.

B. Code Banking

The CODE memory space on the CC2430 is used to address
flash memory, but it can only address up to 64 Kbytes at a time.
Expanding CODE beyond this limit relies on a technique called
code banking, which is necessary for embedded software
images with a code footprint greater than 64 Kbytes.

Flash memory on the CC2430 is broken down into up to
four 32 KByte blocks. With code banking, the lower 32
KBytes of the CODE memory space always address the first
block (also called common area) while the higher 32 KBytes
can switch, during execution, from addressing one block to
addressing another. The side effect of this technique is that it
is impossible to directly invoke code in one switched area
from another. Function calls (and returns) across switched
banks are implemented by invoking intermediate code (often
called a trampoline) which resides in the common area. This
mechanism adds an overhead of additional MCU cycles per
call, which is why functions used very frequently should be
positioned in the common area when possible. An additional
side effect of code banking is that interrupt service routines
must always reside in the common area. The exact details of
how to develop bankable software are toolchain-dependent,
usually rely on compiler hints and language extensions and
require additional effort from the code author. This is discussed
further in sec. III-A.

III. THE CONTIKI SENSINODE PORT

The contiki code repository contains an existing port for
older CC2430-based Sensinode devices, supporting basic func-
tionality and designed to build with the Small Device C
Compiler (SDCC), discussed in the next section. However,
since before the release of contiki version 2.4 (Feb. 2010), the
sensinode port has been in a defunct state: it fails to compile
due to API changes, toolchain incompatibilities and non-
standard code. Code banking is not fully configured, leading to
bugs which only appear at runtime. Additionally, enabling IPv6
results in frequent stack overflows during execution, further
discussed in sec. III-D.

As part of our work, we have solved all compilation and
linking errors in the original code and we have added more
comprehensive banking support, permitting us to success-
fully execute images with code footprint of more than 100

KBytes (sec. III-B). Additionally, we have extended the port
by implementing drivers for additional features, including
Analogue to Digital Conversions (ADC), all sensing elements
(accelerometer, light sensor, voltage and temperature sensors),
hardware watchdog timer, general purpose buttons and the
CC2431 location engine [11], [12]. Lastly, we have imple-
mented optimizations in order to reduce stack usage and avoid
overflows (sec. III-D).

A. The Small Device C Compiler - Memory Models

Due to the 8051 MCU’s unique characteristics there are only
a handful of toolchains available, most of them being com-
mercial products. The most noteworthy open source solution
is the Small Device C Compiler (SDCC), a “. . . retargettable,
optimizing ANSI - C compiler that targets the Intel 8051,
Maxim 80DS390, Zilog Z80 and the Motorola 68HC08 based
MCUs.” [13]. The 8051 target is actively maintained and
developed, providing very good support for the MCU. The
toolchain also provides support for code banking, as discussed
in section II-B. However, it is unaware of the CC2430’s archi-
tectural enhancements and as a result can not exploit features
such as the presence of a second data pointer.

When building a project with SDCC, the developer has a
choice of four different memory models: small, medium, large,
huge. The choice of memory model influences the compiler’s
variable allocation algorithm as well as code banking. Due
to the size of the contiki operating system, the small and
medium model are not suitable. With the large memory model,
functions residing in switched banks must be marked as such
by the developer with a keyword. When encountering a call to
one of those functions, the compiler automatically replaces the
call with a trampoline invocation. With the huge model, SDCC
treats all functions as if they resided in a switched bank and
replaces all function calls with a banked call. This simplifies
the development process considerably, since the code author
no longer has to use keywords to flag banked functions.
However, this method also increases code size considerably
and adds some additional burden on the stack. In the following
sections, we thoroughly evaluate the impact of code banking
with both methods on code size as well as stack utilization.

B. Port Configuration and Footprint

Our contiki port has been configured to use the CSMA
module for the MAC layer and the sicslowmac module for
the radio duty cycling (RDC) layer (which effectively keeps
the radio always on). In the 6LoWPAN adaptation layer we
use the most recent header compression scheme available in
contiki. The network stack is configured with UDP and ICMPv6
enabled, while routing is handled by RPL.

In Table I lists the code and memory footprint for various
components of the contiki operating system and for both SDCC
memory models. One observation of interest is that when RPL
is in use, code footprint increases considerably. Note that this
only includes message generation and handling but does not
include routing table processing nor packet forwarding (those



TABLE I
FLASH AND RAM USAGE IN BYTES WITH CODE BANKING

(LARGE / HUGE)

In Flash In RAM
CODE CONST XRAM

System
Core 7750 / 8153 0 / 0 348 / 349

Standard Libraries 2649 / 2661 0 / 0 0 / 0
Timers 5596 / 6026 0 / 0 33 / 35

Architecture Specifics (Port)
RF driver 2358 / 2595 20 / 30 3 / 3

Sensor drivers a 1669 / 1992 49 / 58 27 / 27
Other drivers b 1565 / 1708 0 / 0 13 / 14

Network
Buffers 2917 / 3243 0 / 0 2087 / 2087

Data Structures c 8687 / 9148 0 / 0 778 / 778
UDP 2474 / 2726 0 / 0 25 / 27

uIPv6 4422 / 4563 0 / 0 550 / 550
ICMPv6 1320 / 1374 0 / 0 16 / 16

Neigh. Disc. 7460 / 7869 0 / 0 275 / 277
6LoWPAN 7565 / 7997 36 / 38 25 / 25

MAC 5445 / 5848 20 / 26 118 / 123
Radio Cycling 1105 / 1370 26 / 32 55 / 55
Routing (RPL) 20891 / 21537 0 / 0 721 / 730
Border Router 903 / 1020 10 / 12 68 / 69

SLIP 1962 / 2214 25 / 27 291 / 293
Totals d 88071 / 93645 279 / 314 5513 / 5538

a ADC and button drivers
b UART, clock, timers, watchdog
c Network interface and address table, routing table, ND table
d Some modules are included in the totals but not explicitly listed

(e.g. debugging functions)

are listed in separate categories). A second important obser-
vation is that while building contiki with the huge memory
model makes code banking trivial, it also has an impact on
code size. We further analyze this in the next section. Lastly,
for simplicity reasons, we have currently configured the port
with TCP disabled. Enabling it adds approximately 11 KBytes
of code and increases ram usage by about 600 bytes. This
suggests that it would be feasible to fit an image with TCP
on the device flash. This would require banking configuration
and potentially some stack optimizations similar to the ones
discussed in section III-D.

C. Impact of Banking on Code Footprint

In order to evaluate the impact of banking on code footprint,
we built sample firmware images with three methods: i) large
model without banking (only possible when image size is
< 64KB), ii) large model with banking, iii) huge model
(thus, implicitly with banking). The total code footprints for
each image and method are summarized in Table II, with
column one containing the image name. Blind Node is the
image that we used for the evaluation of the CC2431 Location
Engine (which is not discussed here due to space limitations).
Border Router is the software discussed in sec. IV and UDP
Server was used for the stack depth evaluation in sec. III-D.
Notice that two of the aforementioned images have too large
a footprint and may not be built without banking support (N/A
cells in the table). The % Increase column lists the percentile
increase in code size caused by the huge memory model

TABLE II
IMAGE CODE FOOTPRINT (IN BYTES) WITH AND WITHOUT BANKING

Large Large Huge %
No Banking Banked Banked Increase

Blind Node 40658 41091 45006 9.53%
Border Router N/A 85015 90348 6.27%

UDP Server N/A 88716 94127 6.10%

TABLE III
SUMMARY OF PER-FILE BANKING OVERHEAD ON CODE FOOTPRINT

Large Large Huge
No Banking Banked Banked

Sample 40 object files
Average Code Footprint 1919 1964 2110

Average % Increase N/A 2.35% 9.98%
Minimum % Increase N/A 0.40% 2.13%
Maximum % Increase N/A 26.09% 51.78%

compared to the large model with banking. We observe that
the huge memory model induces a code footprint overhead of
between approximately 6% and 10%.

To better understand the exact huge model overhead, we
further analyzed it on a per-file basis, using a sample of
40 object files used by our builds. Table III summarizes the
results. We found out that, compared to non-bankable code, the
average increase in code size was 2.35% when building with
the large model and banking support. With the huge memory
model, the average increase across the same files is 9.98%.
For the same model and sample, the values had high variance
ranging from as low as 2.13%, up to a 51.78% increase. The
explanation for this diversity is that the code increase for each
file depends on the number of function definitions and the
number of outgoing function calls. Therefore, a very large file
but containing only a single function without many external
calls will increase less in size than a smaller file with many
function definitions and many external calls. Furthermore, a
file with many calls to functions among which only 1 is
bankable will increase in size a lot with the huge model
(since all calls will be treated as if they were bankable) but
considerably less so with the large banked model (since calls
to non banked functions will result in zero overhead).

D. Stack Depth Optimizations

As discussed in section II-A, the CC2430 memory layout
defines a fast access, 256 byte memory space (DATA). This
is shared among variables allocated to internal RAM, MCU
register banks and all bit-addressable variables. The remainder
is occupied by the stack, leading to a theoretic maximum stack
size of 256 bytes. Our builds allocate 223 bytes for the stack,
which is very limited and poses a very significant challenge.
After having written all the necessary hardware drivers, we
found out that enabling 6LoWPAN and RPL leads to very deep
function call hierarchies during execution, resulting in frequent
stack overflows and node crashes.

In order to circumvent this problem, we implemented a se-
ries of optimizations. The first set, which we will call Stage 1,



0

50

100

150

200

250

300

0 5 10 15 20 25 30

Checkpoint Number

S
ta

c
k
 D

e
p

th
 (

B
y
te

s
)

0

223

S
ta

c
k
 O

v
e
rf

lo
w

 T
h

re
s
h

o
ld

Stage 1 - Huge Model
Stage 1 - Large Model
Final - Huge Model
Final - Large Model

Fig. 1. MCU stack depth evolution over time, starting with the reception of a data packet. The white area represents normal operation whereas the grey
area represents overflows.

involved changing the declaration of large variables in multiple
positions of the RPL code. Examples of large variables are
those used to hold IPv6 addresses (16 bytes) or the information
stored in an RPL DIO message (80 bytes). When those variables
are declared dynamically with local scope, they get allocated
on stack at runtime. With a maximum stack size of 223 bytes,
this allocation policy results in frequent overflows. In our port
we have moved many of those variables to the external RAM
memory space, significantly reducing stack burden at a trade
off of slightly larger memory footprint. For instance, compared
to the original code, Stage 1 optimizations reduce maximum
stack depth by 97 bytes during the processing of incoming
RPL DIO messages, thus preventing a stack overflow.

The next change involved re-writing the radio driver for
the CC2430. Instead of implementing it as a contiki process
receiving asynchronous events when a network packet arrives,
we directly poll it from the main() function periodically.
The third change revolves around contiki’s implementation
of synchronous events, which results in significant stack
overhead. For some code execution branches, it is possible
to predict which process is meant to receive what event. It is
thus possible to replace the event post with a simple call to
the receiving function.

To better illustrate the stack overflow issue and the signifi-
cance of our optimizations, we placed a series of checkpoints
in the code, one at each layer of the network stack and in
various points in the RPL code. In Contiki, we implemented
a very simple UDP echo server and issued request messages
from a remote client. Upon reception of a request, we observed
and recorded stack depth at each of the aforementioned check-
points. We repeated this experiment with Stage 1 optimizations
only as well as with the final version of the code (all optimiza-
tions in place), using both SDCC’s memory models. Please note
that it was impossible to reproduce this measurement with the
original code since, for the reasons outlined earlier, a stack
overflow would occur upon the reception of the first RPL DIO
message (long before reception of our UDP client’s request).

Fig. 1 illustrates the results. Reception of a UDP datagram
from the client (X = 0) triggers a series of events, displayed
from left to right on the X axis. The packet is forwarded up
the network stack until it gets delivered to the server process
(X = 15). The server generates a response which moves down
the network stack until it gets transmitted by the radio driver
(X = 22). This is followed by a series of callback notifications
before the execution branch returns. The horizontal line at
223 bytes represents the stack overflow threshold. The lines
with crosses and triangles depict stack behaviour after Stage 1
optimizations, while squares and diamonds illustrate the final
optimized code. Notice how without all optimizations, stack
overflows occur regardless of memory model (lines above the
overflow threshold have been inferred from the corresponding
non overflowing ones).

In the figure, one can observe three points where the lines
diverge abruptly. The first one at X = 1 is due to our change
in the implementation of the radio driver, as discussed above.
This optimization results in a 37 byte difference in stack depth
when using the large memory model (40 bytes with huge). The
second and third points at X = 11 and X = 15 are due to our
synchronous events optimization, reducing stack depth with
the large memory model by 43 and 27 bytes respectively (48
and 29 when building with the huge model). Including some
other minor changes (e.g. bypassing redundant function calls),
for this specific execution branch we have achieved maximum
stack depth reduction by 120 and 129 bytes respectively for
the two memory models. This is a quite significant quantity,
considering that the total size is only 223 bytes.

IV. CONNECTING THE 6LOWPAN TO THE INTERNET

For data collection, management and monitoring purposes,
it is often desirable to connect a 6LoWPAN to the internet.
To achieve this, a gateway device is necessary in order to
forward packets to and from the WSN. On the wireless side,
the gateway can run RPL or any other routing protocol for
6LoWPANs, while on the internet side it will run some other



6LoWPAN

Contiki uIPv6

USB Stick + 802.15.4 RF

UART802.15.4 tun device

SLIP

over USB

Linux Kernel

IPv6 Forwarding

eth

To / From

Internet

To / From

Sensor Net

Linux PC

6LoWPAN

802.15.4

Linux Kernel

IPv6 Forwarding + RPL

eth

To / From

Internet

To / From

Sensor Net

Linux PC

(a)

(b)

Fig. 2. Two methods of connecting the 6LoWPAN network with the internet: MCU-hosted gateway (a) or kernel-hosted gateway (b). Both approaches make
the wireless sensor network seamlessly accessible from the internet over IPv6.

standard routing mechanism.
It is possible to achieve this functionality with a PC, by

attaching an 802.15.4 device to it (e.g. over USB). The PC’s
kernel will handle IPv6 forwarding between the internet and
the sensor network. It will also run the routing protocol on the
internet side. For the 6LoWPAN side, there are two approaches
as to which device will handle the routing and IPv6 logic
i) hosted by the PC ii) hosted by the MCU.

In the former case, the entire logic is handled by the
computer’s kernel, while the wireless device only handles
packet transmission and reception [Fig. 2 (b)]. In order to
achieve this setup, one needs a driver for the device and a
software implementation of 6LoWPAN functionality for the
computer’s operating system (routing, IPv6 header compres-
sion, 6LoWPAN ND). This approach may sound straightforward
but there are caveats. Crucially, the only mature 6LoWPAN
and RPL implementations have been written for embedded
operating systems such as Contiki. For example, while some
efforts have been made to add 6LoWPAN functionality to the
linux kernel, so far they have not been widely adopted. The
same applies for RPL implementations while there are only
a few drivers which would permit directly attaching 802.15.4
devices to a PC.

The alternative is to host all the 6LoWPAN logic on the
embedded device [Fig. 2 (a)]. In this case, RPL-generated
routing tables and IPv6 neighbor tables are stored on the
wireless device’s RAM and all processing is performed by the
micro controller. This includes IPv6 header compression and
all software functionality required for the correct operation of
the radio transceiver. In order for this to work, it is necessary to
configure a virtual network device (tunnel) which will be used
for the exchange of packets between the USB device and the
computer’s kernel. Lastly, the USB device will need to forward
all traffic from the USB to the 6LoWPAN and vice-versa. While
slightly more complex, this approach has the advantage that
it capitalizes on existing and relatively mature 6LoWPAN and
RPL implementations.

Table IV summarizes the advantages and disadvantages of
each approach. The MCU hosted approach suffers from the
restrictions imposed by embedded devices. Memory limita-
tions restrict the size of routing and neighbor tables while

TABLE IV
TWO APPROACHES TO IMPLEMENT RPL BORDER ROUTERS IN LINUX

MCU Hosted Kernel Hosted
Mature 6LoWPAN Yes No

Mature RPL Yes No
Device Drivers Many Ports No

Performance Low High
Hardware Restrictions Severe -

Complexity Moderate Low
Device-to-PC Interface PPP/SLIP Directly attached (e.g. USB)

MCU speeds have a negative impact on the performance of
the routing algorithm, packet processing and forwarding.

A. Evaluation of a Contiki Embedded Router

We configured our port discussed in sec III and built an
MCU-hosted IPv6-to-6LoWPAN router. The image is for the
Sensinode N601 NanoRouters, equipped with a CC2430 system
on chip and a USB interface. On the wireless side, our router
uses RPL while on the internet side, the linux host can
implement any standard routing mechanism. Communication
between the embedded device and the hosting Linux PC is
achieved over the Serial Line Internet Protocol (SLIP) (over
USB). Subsequently, we investigated this solution’s scalability
with increasing network size.

The border router’s total code footprint is approximately 85
KBytes, with SLIP forwarding functionality occupying around
1 KByte (line Border Router in Table I). Memory footprint
is more interesting, since it directly influences the scalability
of this approach. As the number of nodes in the 6LoWPAN
increases, so do the size requirements for the routing and
neighbor tables on the border router. In Contiki, the maximum
size of each of those tables is configurable and space gets pre-
allocated statically in RAM (XDATA memory space). Static
allocation has the advantage that the size is constant and
predictable: new entries will not cause the table to expand,
they will merely occupy some space in the pre-allocated area.
The drawback is that special attention must be paid during
configuration to prevent under (or over) allocation. On the
CC2430, total external RAM space is 7936 bytes. The router
firmware image has 5059 bytes allocated for storage of all



5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

0 10 20 30 40 50 60 70

Routing Table Sizes (Entries)

R
A

M
 F

o
o

tp
ri

n
t 

(K
B

y
te

s
)

5.000

7.936

25 Neighbors

15 Neighbors

10 Neighbors

1 Neighbor

Maximum XRAM

Fig. 3. RAM usage for different sizes of the neighbor and routing table.

necessary variables, leaving a total of 2877 bytes available for
the two tables. Choosing correct configuration values can be
a balancing act. The normal approach would dictate for more
routes than neighbors. However, in a dense network topology
(e.g. extended mesh) it may prove necessary to decrease the
number of routes in favor of more neighbors.

In Fig. 3, we plot the total external RAM footprint increase
for different configurations. The thick horizontal line at 7936
bytes represents the maximum possible XRAM allocation
(configurations resulting a larger footprint will cause a linker
error). Fig. 4 presents a different view of the same information.
Each additional route occupies 41 bytes while each neighbor
46. Thus, a configuration with r routes and n neighbors is
valid if 41r + 46n ≤ 2877. In the figure, this restriction
is represented by the white area while the negative slope
line represents the area’s limits. Any combination within the
shaded area would result in a linker error.

V. CONCLUSIONS AND FUTURE WORK

While IPv6-based protocols and algorithms have been pro-
posed and evaluated, most of the work has so far taken
place in simulated environments. On the other hand, the
most significant large scale WSN deployments have been
using application-specific, link layer-based design. Thus, the
community currently lacks understanding of how well the
emerging standards for 6LoWPANs will work in a real field
environment. Our future planning includes field experiments
and evaluation of 6LoWPAN and RPL in terms of scalability,
performance and energy requirements with increasing network
size and traffic. We are also in the process of implementing our
own version of the Constrained Application Protocol (CoAP)
for Contiki. Evaluating this protocol in the field and enhancing
it or suggesting alternatives is also part of our future plans.
The work discussed in this paper will form the basis of our
future efforts.

The current Contiki implementations of the embedded IPv6
stack and the 6LoWPAN adaptation layer have reached a
stage of maturity. The RPL implementation adheres to recent

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Routing Table Size (Entries)

N
e
ig

h
b

o
r 

T
a
b

le
 S

iz
e
 

(E
n

tr
ie

s
)

Valid

Combinations

Insufficient 

RAM

Fig. 4. Valid combinations for neighbor and routing table sizes fall within
the boundaries of the white surface.

versions of the internet draft to great extent but it would benefit
from code size and memory usage optimizations. Since the
RPL specification has been moving forward with leaps over
the past months, it would make sense to delay any such
optimizations until the specification becomes more mature.
Lastly, one feature that is currently missing from Contiki, is
support for 6LoWPAN ND.

REFERENCES

[1] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proceedings
of the ACM/IEEE International Conference on Mobile Computing and
Networking. Seattle, Washington, USA: ACM, Aug. 1999, pp. 263–270.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” SIGPLAN Not.,
vol. 35, pp. 93–104, November 2000.

[3] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in Proc. 1st inter-
national conference on Mobile systems, applications and services -
MobiSys ’03, May 2003, pp. 85–98.

[4] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 packets over IEEE 802.15.4 networks,” RFC 4944, Sep. 2007.

[5] J. W. Hui and D. E. Culler, “IP is dead, long live IP for wireless sensor
networks,” in Proc. 6th ACM conference on Embedded network sensor
systems (SenSys ’08). New York, NY, USA: ACM, 2008, pp. 15–28.

[6] T. Winter, Ed., P. Thubert, Ed., A. Brandt, T. Clausen, J. Hui, R. Kelsey,
P. Levis, K. Pister, R. Struik, and J. P. Vasseur, “RPL: IPv6 Routing
Protocol for Low power and Lossy Networks,” IETF Internet Draft,
Oct. 2010.

[7] E. Shelby, Zach, S. Chakrabarti, and E. Nordmark, “Neighbor discovery
optimization for low-power and lossy networks,” IETF Internet Draft,
Dec. 2010.

[8] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske,
M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and A. Dunkels, “Making
sensor networks IPv6 ready,” in Proc. 6th ACM conference on Embedded
network sensor systems (SenSys ’08), Raleigh, North Carolina, USA,
Nov. 2008.

[9] N. Tsiftes, J. Eriksson, and A. Dunkels, “Poster abstract: Low-power
wireless IPv6 routing with ContikiRPL,” in Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in Sen-
sor Networks (IPSN 2010), Stockholm, Sweden, Apr. 2010.

[10] “A True System on Chip solution for 2.4 GHz IEEE 802.15.4 /
ZigBee R©,” CC2430 Data Sheet (rev. 2.1), May 2007.

[11] “System on Chip for 2.4 GHz ZigBee R© / IEEE 802.15.4 with Location
Engine,” CC2431 Data Sheet (rev. 2.0.1), May 2007.

[12] K. Aamodt, “CC2431 Location Engine,” Texas Instruments Application
Note AN042 (Rev. 1.0), Jul. 2006.

[13] “Sdcc - Small Device C Compiler,” retrieved 2011. [Online]. Available:
http://sdcc.sourceforge.net/


