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In addition to being a very interesting quantum phenomenon, Schrödinger-cat-state swapping has the potential
for application in the preparation of quantum states that could be used in metrology and other quantum processing.
We study in detail the effects of field decoherence on a Schrödinger-cat-state-swapping system comprising a set
of identical qubits, or spins, all coupled to a field mode. We demonstrate that increasing the number of spins
actually mitigates the effects of field decoherence on the collapse and revival of a spin Schrödinger-cat state,
which could be of significant utility in quantum metrology and other quantum processing.
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I. INTRODUCTION

Two of the most peculiar and distinctive phenomena
of quantum mechanics are encapsulated in entanglement
and macroscopically distinct superpositions of states (or
Schrödinger-cat states) — both of which can be used to realize,
in Einstein’s words, a “spooky action at a distance.” With
applications ranging from metrology, information processing,
and communication to computation, these phenomena account
for the most powerful and interesting aspects of quantum
mechanics [1–6]. Given current experimental progress, at
present there is significant interest in quantum technologies
that can offer advantages with modest quantum resources, such
as metrology. Here, sensing beyond the standard quantum limit
can be achieved using entangled resources, or Schrödinger-cat
states. One candidate tool for the preparation of desired
resources could be the use of Schrödinger-cat state swapping,
where a Schrödinger-cat state is transferred between a field
and a system of spins. For example, a field Schrödinger-cat
state might be prepared through interaction with a single qubit
or spin, or by some other means, and then swapped into a
multispin system for use in metrology.

Clearly, a practical concern with such operations is the
effect of decoherence. Here we examine the effects of field
decoherence on a Schrödinger-cat-state-swapping system of
N spins all coupled individually to a quantum field mode.
Such a setup might be realized by systems as diverse as atoms
in a cavity to a set of superconducting qubits coupled to a strip
line resonator. For metrological and other applications, larger
N resources offer improved quantum advantage. It is often the
case that increasing the number of qubits results in higher
susceptibility to decoherence. However, here we show the
reverse holds in this Schrödinger-cat-state-swapping scenario
and that pursuing the desirable goal of increasing the number
of qubits actually mitigates against decoherence.

We begin our discussion with the one-qubit Jaynes-
Cummings model [7]. Here the very interesting and well-
studied phenomenon of collapse and revival of qubit oscil-
lations occurs [8]. These dynamics and their nonagreement
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with the semiclassical analysis present a clear indication of the
very different nature of quantum and classical fields through
their interaction with another quantum object. While the focus
of the discussion usually centers on the qubit, the field also
undergoes interesting and potentially useful dynamics. In the
Jaynes-Cummings model the initial conditions are most often
taken to be a coherent state of the field together with the qubit
in the spin-up or spin-down eigenstate of the Pauli operator
σz, or some superposition. The collapse and revival dynamics
feature an interesting interplay between the field and the qubit,
where these components initially entangle and 〈σz〉 begins
to oscillate. The initial quantum information of the qubit is
then almost entirely transferred into a Schrödinger-cat state of
the field which is accompanied by the collapse of the qubit’s
oscillations. In the final stages of revival this process is, to
a good approximation, reversed. The information contained
in the field as a macroscopically distinct superposition of
states is transferred to the whole system as entanglement
with the concomitant, and characteristic, revival of oscillations
of 〈σz〉 (see, for example, [6,7,9]). The possibilities for
exploiting Jaynes-Cummings–like interactions become more
varied when the number of qubits is increased to what is often
referred to as the Tavis-Cummings model [10]. One particular
example is that of Schrödinger-cat-state swapping between an
ensemble of spins and a single-field mode. Here it is possible
to leverage analogies of Schrödinger-cat states in an ensemble
of spins and demonstrate that these Schrödinger-cat states can
be exchanged between the spins and the field to which they
are coupled. This subject has recently been explored in depth
in Refs. [11–13], and given recent advances in state-of-the-art
experimental technique, as exemplified by [14], may soon find
utility in real-world quantum technologies such as metrology.
It is the phenomena of Schrödinger-cat-state swapping that we
now investigate.

There are three characteristic time scales associated with
collapse and revival in the one-qubit Jaynes-Cummings model.
These are, for the field initially prepared in a coherent state with
an average of n̄ photons: the Rabi time given by tR = π/(g

√
n̄)

(where g is the atom field coupling strength); the collapse
time that sets the Gaussian decay envelope of the oscillations
by tc = √

2/g; and the first revival time tr = 2π
√

n̄/g that
determines when the oscillations reappear. Importantly, at tr /2,
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for large n̄ the qubit and field almost completely disentangle. In
the Tavis-Cummings model some of these time scales depend
on the number of qubits N coupled to the field mode [12].
Here the key observation is that the first revival time occurs
at tr1 = tr/N . This implies that any quantum information
processing operation in the Tavis-Cummings system that
is based one way or another on collapse and revival can
gain a linear speedup simply by increasing the number of
qubits in the system. In many experimental realizations of the
Tavis-Cummings system it is the field that is most significantly
effected by environmental decoherence, while the qubits can
be quite long lived. The question that we address in this paper
is whether or not a speedup in the Schrödinger-cat-state swap
phenomena affected by an increase in the number of qubits
could be used to overcome or reduce the effects of decoherence
on the field mode.

II. THE MODEL

The Tavis-Cummings Hamiltonian for N identical qubits
interacting, on resonance, via the same dipole coupling g

in the rotating wave approximation with a single mode of
a quantum field can be written by extending the Jaynes-
Cummings Hamiltonian [6,7] and takes the following form
in the interaction picture [10]:

H = h̄g

N∑
k=1

(σ̂ k
+â + σ̂ k

−â†). (1)

Here â†(â) is the creation (annihilation) operator for the field,
with [â,â†] = 1, σ̂ k

± = 1
2 (σ̂ k

x ± iσ̂ k
y ) the qubit operators that

effect transitions between the energy (σ̂ k
z ) eigenstates (here k

is simply a qubit index), and h̄g is the coupling energy between
the qubit and the field. We employ coherent states

|α〉 = e−|α|2/2
∞∑

n=0

αn

n!
(â†)n|0〉, (2)

with mean photon number |α|2 as the initial condition for
our field mode. A common way to display these states is the
Wigner function defined in terms of position and momentum
as

W (q,p) = 1

2πh̄

∫
dζ

〈
q + 1

2
ζ

∣∣∣∣ρ̂f

∣∣∣∣q − 1

2
ζ

〉
e−ipζ/h̄, (3)

where ρ̂f is the density operator for the field. In Fig. 1(a)
we plot the Wigner function for the initial state of the field
|α = √

25〉 which, as is well known, has a Gaussian profile.
An analog of coherent states for an ensemble of N spin half

particles has been developed [15–17]. By defining collective
spin operators for the whole space of spins according to Ŝν =⊕N

k=1 σ k
ν where ν = x,y or z, we can then define the system

ground state |0〉 as the state such that Ŝz = S |0〉 where S =
N/2 is the total spin of the system. This definition naturally
motivates, in analogy with the simple harmonic oscillator, the
definition of raising and lowering operators for the space by
Ŝ± = (Ŝx ± iŜy)/2. Within this framework appears a set of
states that bear a close resemblance in many of their properties
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FIG. 1. (Color online) The dynamical evolution of a system
described by the Tavis-Cummings model for an initial state of
|α = √

25〉 ⊗ |�(1.0,5)〉. On the left-hand side we show the Wigner
function of the field and on the right-hand side the Lambert azimuthal
equal-area projection of spin Wigner function. Snapshots are taken at
(a), (b) t = 0, (c), (d) t = tr/2N , and (e), (f) t = tr/N .

to the coherent states of the harmonic oscillator [11,12,15–17].
These take the form [18]

|z,N〉 = 1

(1 + |z|2)N/2

N∑
n=0

zn

n!
(Ŝ+)n|0〉. (4)

These spin coherent states can be rewritten in the computa-
tional basis of eigenstates of {σ̂ k

z } [12,18]:

|z,N〉 = 1

(1 + |z|2)N/2

N⊗
k=1

(|e〉k + z|g〉k). (5)

We see that a spin coherent state simply comprises a separable
state with all spins pointing in the same direction. Such spin
coherent states can also be represented by Wigner functions.
Here we follow Agarwal et al. [19,20] and define the spin
Wigner function on the surface of a sphere by

Ws(θ,ϕ) =
2S∑
l=0

l∑
m=−l

ρlmYm
l (θ,ϕ), (6)
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where the total spin S = N/2, Ym
l (θ,ϕ) are spherical harmon-

ics functions and ρlm = Tr(ρ̂QT̂
m†
l ) the qubits reduced density

operator. T̂ m
l is the multipole operator defined by

T m
l =

S∑
n,n′=−S

(−1)S−n
√

2l+1

(
S l S

−n m n′

)
|S : n〉 〈S : n′|,

(7)

where ( S l S−n m n′ ) is the Wigner 3j symbol and |S : n〉 denotes the
Dicke eigenstate of Ŝ2 and Ŝz. In terms of the “spin” basis, |S :
n〉 is simply the symmetrized sum of all states with total spin S

and Ne spins up and n = (Ne − Ng)/2. For example, for three
qubits and Ne = 2 we have |S = 3

2 : n = 1
2 〉 = 1√

3
[|011〉 +

|101〉 + |110〉].
In direct analogy with systems described in terms of the

position p̂ and momentum q̂ operators, there exist superposi-
tion states for an ensemble of spins that are macroscopically
distinct, that is, Schrödinger-cat states. The field Schrödinger-
cat states can be represented as a superposition of two coherent
states,

|�±(α)〉 = 1√
2

(|α〉 ± |−α〉), (8)

where for convenience we have assumed α � 1. These
Schrödinger-cat states have spin coherent analogs of the form

|�(z,N )〉 = 1√
2

(|z,N〉 + |−z,N〉). (9)

In Fig. 1(b) we plot the spin Wigner function for the initial
state of the spin Schrödinger-cat state |�(1.0,5)〉. Here we
have used the Lambert azimuthal equal-area projection [21]
of the spherical spin Wigner function where the spherical
coordinates (θs,ϕs) are mapped onto the polar coordinates
according to (r,θp) = (2 cos(ϕs/2),θs). In this projection the
north pole is the central point and its antipode is mapped onto
the boundary with the equator being a concentric circle with a
slightly wider radius than half that of the whole map. As with
the analogous states for the Harmonic oscillator, |�(1.0,5)〉
takes the form of a a superposition of two Gaussian states
(here centered on the equator) and the oscillations that are
manifest between them (placed on a great circle intersecting
both poles) indicate quantum coherence. It is the presence of
these interference terms in Wigner functions that can be used
to distinguish between macroscopically distinct superpositions
of states and statistical mixtures, the latter exhibiting no such
interference.

III. RESULTS

Snapshots of the evolution of the field’s Wigner function
and qubits’ spin Wigner function under Schrödinger evolution
for the Hamiltonian of Eq. (1) are shown in Fig. 1. We have
chosen an initial state of |α = √

25〉 ⊗ |�(1.0,5)〉 and have
selected three sample times in order to best illustrate the
Schrödinger-cat-state-swapping process. These are t = 0 (a),
(b), t = tr/2N (c), (d), and t = tr/N (e), (f). The initial state
shown in Figs. 1(a) and 1(b) comprises a coherent state of
the field and a Schrödinger-cat state of spin coherent state.
In Figs. 1(c) and 1(d) we see that the Schrödinger-cat state

N = 5

N = 4

FIG. 2. (Color online) Lambert azimuthal equal-area projection
of spin Wigner function at tr/Nwith � = 0.001 for an initial state of
|α = √

25〉 ⊗ |�(1.0,5)〉. Data is shown for the case of four or five
qubits. Here we see that the interference terms for N = 5 are more
pronounced than for N = 4.

has swapped from the ensemble of spins into the field and the
system’s state now approximates |�(α ≈ √

25)〉 ⊗ |z = i,5〉.
From Figs. 1(e) and 1(f) at the first revival time t = tr/N we
see that process has reversed and the Schrödinger-cat-state
character of the system has swapped back from the field to the
spins to form a macroscopically distinct superposition of states
which is similar to |α = −√

25〉 ⊗ |�(1.0,5)〉. It is this process
that we now use to probe the interplay between the number of
qubits in the system and environmental decoherence [22].

We now consider the spin Wigner functions at t = tr/N

as depicted for N = 5 in Fig. 1(f). We introduce decoherence
applied to the quantum field mode using a simple Lindblad [23]
master equation of the form

˙̂ρ = − i

h̄
[Ĥtc,ρ̂] + 1

2

∑
m

{[L̂mρ̂,L̂†
m] + [L̂m,ρ̂L̂†

m]}. (10)

Schrödinger evolution is represented by the first term, and
the terms due to the operators {Lm} introduce the interaction
with environmental decoherence, such as might be introduced
by coupling the system to an infinite bath of other quantum
degrees of freedom. We introduce ohmiclike damping to the
quantum field via the Lindblad operator L = √

�a, where �

is the decay constant. This form of decoherence corresponds
to the field mode being in a lossy cavity at zero temperature.

In Fig. 2 we show the spin Wigner functions at t = tr/N

for � = 10−3, where we clearly see that for both N = 4 and
5 that the qubits are in macroscopically distinct superposi-
tions of spin coherentlike states. To further investigate this
macroscopically distinct superpositions we plot in Fig. 3 the
fidelity F = 〈�(z,N )|ρ|�(z,N )〉 of the resulting spin state at
t = tr/N for various N and �. At � = 0.001 (blue, ∗ curve)
a fidelity greater than 99% is observed, with F increasing as
N increases (at least for the limited varieties of N shown).
Next, by � = 0.1 (red, +) the decoherence has become
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FIG. 3. (Color online) Fidelity of the reduced density matrix for
the spins for the decohered system as a function of the number of
qubits at t = tr/N for specific decay constants � = 0.1 (red, +), 0.01
(green, x), 0.001 (blue, ∗), and 0.0001 (magenta, �).

very significant, with the fidelity dropping significantly as N

increases (F ∼ 0.72 for N = 6). This shows how much the
quantum correlations have reduced. For smaller � we observe
from the strength of the interference terms that the quantum
coherence between the two macroscopically distinct lumps is
stronger for N = 6 than for N = 4.

This behavior can be explained in the following
sense. For a Schrödinger-cat state of the form
|�+(α)〉 the effect of damping is to transform it
to the mixed state ρ = F |�+(αe−�t )〉〈�+(αe−�t )| +
(1 − F )|�−(αe−�t )〉〈�−(αe−�t )|, where F = (1 +
exp{−2|α|2(1 − e−�t )2})/2. Here t is the time in which
our decoherence acts. Now we know that the time
for Schrödinger-cat-state swapping is determined by
the single-qubit revival time and the number of qubits
in the system according to t = tr/N = 2π

√
n̄/gN .

We see that as the number of qubits increases, this
Schrödinger-cat-state-swapping time gets shorter so that the
field decoherence acts for a shorter time. This effect wins out
over the fact that the field is acting on a greater number of
qubits, meaning that overall we see less dephasing induced
on the Schrödinger-cat state in the relevant time, and thus
a higher fidelity F . These field decoherence considerations

have ignored independent direct dephasing acting on the qubit
systems. We have done this because in effect, direct qubit
dephasing is already known to be independent of N . If each
qubit has a dephasing rate given by γ , then with N qubits
the total dephasing rate will be N times greater. However,
it is already recognized in the literature [11] that the 1/N

scaling in the swap time offsets this factor of N in the total
decoherence rate that arises from coupling N qubits. This
cancelation effect leaves the qubit decoherence effectively
independent of N , so the important question is how the effect
of field decoherence scales with N , which is what we have
investigated here. Our results show that the effect of field
decoherence can diminish as a function of increasing N , with
the shortened swap time giving a genuine advantage, rather
than a mere cancelation against some multiplicative factor of
N as for direct qubit decoherence.

IV. CONCLUSIONS

To conclude, in this paper we have studied in detail the
transfer of quantum information between a quantum field and
an ensemble of qubits within the Tavis-Cummings model.
This information was encoded in terms of harmonic and
spin coherent states, as well as their macroscopically distinct
superpositions. A spin Schrödinger-cat state swaps to the field
mode and back again at a time determined by the single qubit
revival time and the number of qubits in the system according
to t = tr/N = 2π

√
n̄/gN . In our work we have shown that,

due to this 1/N scaling, as the number of qubits is increased the
effect of field decoherence on this swap process is reduced. We
also note that in order to maintain a good Schrödinger-cat state,
where the macroscopically distinct nature of the superposition
is clear, we need to set a practical lower bound on the field
n̄. Furthermore, experimental constraints will limit the range
by which the coupling constant g can be tuned. Hence our
observation that increasing the number of qubits in the system
may aid in overcoming the effects of decoherence may well be
of use in quantum information processing applications such as
metrology.
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