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Abstract

We study a dissipative quantum mechanical model of the projective measurement of a qubit. We demonstrate how a correspondence
limit, damped quantum oscillator can realise chaotic-like or periodic trajectories that emerge in sympathy with the projection of the
qubit state, providing a model of the measurement process.

Keywords:
PACS:03.65.-w, 03.65.Ta, 03.65.Yz, 03.67.-a

1. Introduction

Given its general nature, plethora of applications and ability
to explain forces and the structure of matter, quantum mechan-
ics is considered to be amongst the most successful of physical
theories. Furthermore, the majority of today’s advanced tech-
nologies and their future growth, depends on quantum mechanics—
indirectly if not directly. Intuitively one might therefore expect
that everything about quantum mechanics would be well un-
derstood. Surprisingly, this is not the case. Not only does a
unique interpretation of the theory prove elusive, with individu-
als able to express preferences ranging from the Copenhagen
interpretation, many-worlds to objective reality; even funda-
mentals such as the“measurement”of “observable” quantities
are not fully understood. Indeed the debate as to exactly what is
meant by the measurement of a quantum object has continued
since Born’s paper in 1926 [1] until the present day (see, for
example, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). In this work
we illustrate how a classical record of a quantum measurement
can arise.

We propose a mechanism for the realisation of projective
measurements simply from the framework of Schrödinger evo-
lution, modified to allow for an environment. Our model com-
prises a qubit coupled to an open quantum mechanical measure-
ment device which is arranged to operate in its classical (corre-
spondence) limit. This is achieved by ensuring that the classical
action of the measurement device is large (and remains so) with
respect to a Planck cell, and introducing a dissipative environ-
ment to suppress quantum interference effects in this device (a
paradigm that is well studied and known to be rather effective –
see, for example, [6, 15, 16, 17, 18, 19, 11, 12, 20, 21]).

We note that there have been many different models of the
measurement process that usually involve introducing some kind
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of environmental decoherence (such as in quantum trajectories
methods). In these approaches the central strategy is to model
the process of measurement as the effect of external degrees of
freedom, as an environment, acting on the quantum object and
infer the measurement from this. In this work we model the
measurement device itself and introduce the environment cou-
pled to this device, simply to achieve its classical limit via deco-
herence. Here the measurement device comprises a single oscil-
lator that in its classical limit has only two degrees of freedom
(position and momentum). Furthermore, in its correspondence
limit this oscillator can exhibit dissipative chaos – such non-
linear dynamical behaviour is not realisable by the Schrödinger
equation for the isolated oscillator. Consequently, our system
is not Hamiltonian chaotic nor is it related to quantum chaos in
terms of random matrix theory. In this case the realisation of
chaotic like trajectories is a clear signature of classicality (see,
for example, [6, 15, 16, 17, 18, 19, 11, 12, 20, 21]). Hence,
our work is different in that the environment is just a tool to
render the measurement device classical. We do not infer any
associated measurement, this emerges from the dynamics.

2. The Model

Our strategy is to find a suitable system comprising a (quan-
tum) measurement device and a quantum object, such that (i)
the former projects the later into some state, (ii) the measure-
ment device has a discernibly different characteristic classical
like behaviour depending on the measured state and (iii) for
a “good” measurement the Born rule holds. Put simply, the
probabilities of projecting the quantum object follow from the
appropriate squared amplitudes in its initial state. We therefore
study a system of two components, the first being a quantum os-
cillator that has a well defined correspondence limit and whose
classical like dynamics is manifestly different depending on the
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Figure 1: (colour online) Effective potential for the Hamiltonian of Eq. (4)
whereβ = 0.1 and (a)〈σz〉 = 1 solid (red) line (b)〈σz〉 = −1 dashed (blue) line
and (c)〈σz〉 = 0 dotted line.

quantum state of the other component of the system. The sec-
ond component should be a simple quantum device, such as a
qubit, arranged so that there is no direct coupling between its
possible states. Our model Hamiltonian that satisfies this re-
quirement is a driven non-linear oscillator:

H =
3
4

p2 +
β2

4
q4 − 1

4
q2 +

g
β

cos(t)q− Hint. (1)

As we elect to measure thez-eigenvalue of the qubit we take a
cross-Kerr like interaction, that couples the oscillator to a de-
generate qubit,of the form

Hint =
1
4

(

p2 + q2
)

σz =
1
2

(

a†a+
1
2

)

σz. (2)

Hereq andp are the dimensionless position and conjugate mo-
mentum for the oscillator mode (i.e. defined such that the an-
nihilation operatora = (q + ip)/

√
2) andσz is the usual Pauli

operator for the qubit.
A cross-Kerr like interaction is a physically reasonable one

as it is well known [22] to emerge as the dispersive (far-detuned)
limit of the Jaynes-Cummings (JC) interaction Hamiltonian[23].
The JC interaction between a qubit and an oscillator field is
widely applicable, to systems such as Rydberg atoms [24], NMR
studies of nuclei [25, 26], Cooper pair boxes [27], Cavity Quan-
tum Electrodynamics [28] and trapped ions [29].

We note thatH is given in units of a characteristic oscil-
lator energy~ω and timet is rendered dimensionless with the
same characteristic frequencyω. In Fig. 1 we show the (non-
linear) potential of Eq. (4) as a dotted line. Intuitively, one can
associate the dashed and solid lines in Fig. 1 with an effective
oscillator potential associated with the coupling Eq. (2) and the
qubit being in the ground state|g〉 (with 〈σz〉 = −1) or excited
state|e〉 (with 〈σz〉 = 1) respectively. So we associate with the
ground state of the qubit a quartic potential and with the excited
state the potential energy of the Duffing oscillator.

In Eq. (4) β is a dimensionless parameter representing a
scaling of the classical action of the oscillator with respect to
a Planck cell andg is the strength of the applied driving term.
In this work we have choseng = 0.3 andβ = 0.1. For the Duff-

ing oscillator, these have been shown to produce Poincaré sec-
tions in good agreement with solutions to the equivalent clas-
sical equations of motion [15, 16], and so for these parame-
ters the measurement device is recognised to be classical. We
have chosen such a system deliberately, as the manifestation
of a chaotic-like trajectory is a very clear signature of thede-
vice operating on the classical side of the quantum to classical
transition. Obviously other (non-chaotic) systems could equally
well serve as a measurement device; however for these it must
be clear that the device is operating on the classical side of
the quantum to classical transition, otherwise one has to pro-
ceed further up the “von Neumann chain” of systems to find
a degree of freedom that is manifestly classical and thus capa-
ble of recording the measurement outcome. Our choice of a
non-linear oscillator can be used to clearly demonstrate that a
classical-like record has been achieved, without requiring fur-
ther verification or the need to move further up the chain and
consider the systems that measures or observes the oscillator.
We note that whilst smaller values ofβ would produce even
better matches with classical dynamics, some of the resultspre-
sented in this work are computationally very demanding and set
a practical limit for us ofβ = 0.1 at this time. We note that a
similar system was recently used to explore the decoherenceof
qubits coupled to a quantised Duffing oscillator [30].

In order to suppress quantum interference effects we cou-
ple the measurement device to an environment using a Lind-
blad [31] type master equation. Here, the evolution of the re-
duced density operator,ρ(t), of the quantum system of inter-
est is found by tracing out the environmental degrees of free-
dom that are responsible for dissipation. For our purposes,this
environment—a bath of quantum degrees of freedom—is as-
sumed to be Markovian. That is, there are no memory effects
and the evolution ofρ(t) depends only onρ(t), the Hamilto-
nian and operators representing interaction with the environ-
ment, termed Lindblad operators. The (non-unitary) dynamics
of this (reduced) density operator is then given by:

ρ̇ = −i
[

H, ρ
]

+
∑

m

(

LmρL†m −
1
2

L†mLmρ −
1
2
ρL†mLm

)

. (3)

Modelling a zero temperature dissipative environment requires
just one Lindblad operator,L =

√
2Γa wherea is the oscillator

annihilation operator.It is possible to model finite tempera-
ture using a second Lindblad proportional to the creation oper-
ator, with suitable temperature-dependentcoefficients, allowing
for stimulated excitation and emission in addition to the spon-
taneous emission that represents zero temperature dissipation.
However, we do not explore finite temperature here.Subject-
ing an oscillator to dissipation also requires the additionof a
term Γ (pq+ qp) /2 to the Hamiltonian Eq. (4). This term is
required to ensure that the (dissipative) classical-like dynamics
of the oscillator term are correctly recovered in the correspon-
dence limit [16, 15]. For a linear oscillator the term produces
the expected frequency shift. So that our effective Hamiltonian
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is:

H =
3
4

p2 +
β2

4
q4 − 1

4
q2 +

g
β

cos(t)q−

1
4

(

p2 + q2
)

σz +
Γ

2
(pq+ qp) (4)

3. Measurement in the ensemble average

Let us now consider how the qubit and oscillator system
evolves under Eq. (3), using Eq. (4) with the dissipative addi-
tion. We employ dissipation set byΓ = 0.125 and an initial pure
quantum state of1√

2
(|g〉 + |e〉) ⊗ |α ≈ 6.8〉. Here|α〉 denotes a

coherent state with average photon, or excitation, number|α|2
and is defined as usual by:

|α〉 = e−|α|
2/2

∞
∑

n=0

αn

√
n!
|n〉 .

We note that|α ≈ 6.8〉 corresponds in phase space to a Gaus-
sian bell centred at (q = 11, p = 0). This initial oscillator state
is chosen so as to minimize transient behaviour; however other
choices equally well enable the possibility of either measure-
ment result for the qubitz-value.Clearly in a “good” quantum
measurement experiment, the apparatus should not be primed
so as to exclude the possibility of registering certain possible
outcomes.

The Wigner function, which can be viewed as a pseudo
probability density function in the (q, p) phase space, if very
useful in gaining an good insight into the behaviour of dynam-
ical systems. It can be defined by:

W(q, p) =
1
2π

∫

dζ
〈

q+
ζ

2
|ρ|q− ζ

2

〉

exp (−iζp)

For a detailed discussion see, for example, [32]. In Fig. 2 we
show two snapshots of the Wigner function for the oscillator
mode – having traced out the qubit (see the on-line anima-
tion that accompanies this letter for a movie of the evolution
of Wigner function the snapshot shown in Fig. 2).Fig. 2(a) is
taken very early on in the system evolution att/2π = 0.1. Here
we see that the effect of the qubit on the measurement device is
to split the coherent state up into two coherent state-like lumps.
This is not surprising, as a very similar effect is seen in col-
lapse and revival phenomena of the Jaynes-Cummings model
of a qubit interacting with a harmonic oscillator. However,as
the system evolves we see in Fig. 2(b) (t/2π = 2.25) the distri-
bution becomes somewhat more interesting. One lump is still
quite small and is associated with the qubit’s ground state.The
second is much larger, arising from the chaotic-like behaviour
of the Duffing oscillator and is associated with the qubit’s ex-
cited state.

Let us now turn to the qubit and consider its reduced density
matrix

ρQ := Trfield(ρ) :=

(

ρgg ρge

ρeg ρee

)

. (5)

If we are indeed modelling a measurement process we would
expect that, as the system evolves,ρQ will diagonalise indicat-
ing that it has become a statistical mixture of the ground and

q

q

p

p

B

B

A

(a)

(b)

A

Figure 2: (colour online) Wigner function of the field for solutions to the mas-
ter equation where the initial density operator corresponds to the pure state

1√
2

(|g〉 + |e〉) ⊗ |α ≈ 6.8〉. (a) att/2π = 0.1 and (b) att/2π = 2.25. Here region

A and B corresponds to measuring the qubit in state|g〉 and|e〉 respectively.

excited state.Such behaviour is clearly seen in the results pre-
sented, for the initial state

|ψ(0)〉 =
1
√

2
(|g〉 + |e〉) ⊗ |α ≈ 6.8〉

in Fig. 3(a). Our measurement apparatus and interaction are
arranged to keep〈σz〉 fixed in time and thus yield the Born rule.
Our choice of initial state as an equal superposition of|g〉 and
|e〉 is rather special in that it is symmetric. In order to ensure
that our results are not just some special case associate with this
symmetric superposition, and the the Born rule holds, we show
in Fig. 3(b) the same data but for the initial state

|ψ(0)〉 =
(√

0.7 |g〉 +
√

0.3 |e〉
)

⊗ |α ≈ 6.8〉 .

Although the expected diagonalisation ofρQ must happen
in a measurement, this is clearly not a sufficient signature. The
measurement apparatus needs to demonstrate an outcome that

3



Figure 3: (colour online) Elements of the reduced density matrix for the qubit
found by solving Eq. (3) over one period of the external drivefield. In (a)
the initial state was 1√

2
(|g〉 + |e〉) ⊗ |α ≈ 6.8〉. Further confirmation of the

Born rule is shown in (b) with the same matrix elements for theinitial state
(√

0.7 |g〉 +
√

0.3 |e〉
)

⊗ |α ≈ 6.8〉.
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Figure 4: (colour online) The time evolution of the entropy of the qubit SQ

is shown in light grey (green), the oscillatorSO in dark grey (blue), the total
systemS as a dotted line (red) and the index of correlationSQ + SO − S as a
dashed line (magenta). The inset shows the Wigner function for the oscillator
at t/2π = 0.7.

correlates to the measured state of (in our case) the qubit. To see
that this is happening we examine the various entropies defined
through

S (ρ) = −Tr (ρ ln ρ)

in Fig. 4. It can be seen that the initial stage of the measurement
involves entanglement of the qubit and the oscillator, as the two
entropiesSQ andSO rise rapidly to ln 2 whilst the total entropy
S remains very close to zero.

The measurement can be deemed to be completed when the
oscillator and total entropies converge (and so the index ofcor-
relation I = SQ + SO − S settles to the qubit entropy value of
ln 2), at aroundt/2π = 0.2. We note two further points about
this figure. First, in general the oscillator (and thus total) en-
tropy continues to climb after the measurement is completed.
This is due to the continuing evolution of the oscillator, which
has a chaotic signature for one of the two measurement out-
comes. Second, there is actually a divergence betweenSO and

S located aroundt/2π = 0.7. This is nothing to do with quan-
tum erasure or anything like that. It is simply due to loss of
classical information. If we only look at our measurement ap-
paratus around this time, the signatures corresponding to the
two measurement outcomes are not completely distinct. To il-
lustrate this, Fig. 4 contains an inset of the Wigner function for
the oscillator at this time.We note that the classical records be-
come distinct again aftert/2π ≈ 0.9 until the Wigner functions
overlap once more – at the same point in every drive cycle.

4. Single Measurements

The master equation is very useful insofar as it tells us about
the behaviour of the ensemble averages. However, we wish to
gain some understanding about the way in which a single mea-
surement (or classical record) can emerge as a natural process.
Hence, we need to model the behaviour of individual realisa-
tions of the master equation. We therefore unravel the pure state
evolution equation for the system, that is equivalent to Eq.(3)
in the ensemble average over many realisations. The unravel-
ling we use here is quantum state diffusion (QSD) [33, 34, 15].
For QSD, the state evolves according to

|dψ〉 = −iH |ψ〉 dt+
∑

m

(

Lm− 〈Lm〉ψ
)

|ψ〉 dξm +

∑

m

(

〈L†m〉ψLm −
1
2

L†mLm −
1
2
〈L†m〉ψ〈Lm〉ψ

)

|ψ〉 dt

(6)

where the operators are defined as in Eq. (3) and thedξm are
independent complex differential random variables satisfying
dξm = dξmdξn = 0 anddξ∗mdξn = dtδmn (where the over-line
denotes mean over an ensemble). The evolution of Eq. (6)
is equivalent to that of Eq. (3) when the ensemble mean of
ρ = |ψ〉 〈ψ| over the noise is taken. Of course, one issue with un-
ravelling a master equation is that in general there is no unique
unravelling—many different approaches exist. However, in the
specific scenario we consider here, the non-linear oscillator is
made as classical as our computations permit. In this classical
limit the distinction between unravellings begins to go away, in
the sense that any unravelling of a dissipative and classically
chaotic system must start to show a characteristic of the appro-
priate classical chaotic trajectory. In Fig. 3 we plotted, amongst
other quantities, the ensemble average probability of being in
the ground state. In Fig. 5(a) we show the probability of be-
ing in the ground state for four solutions of Eq. (6). We clearly
see that in each run the qubit is quickly projected into either
|g〉 or |e〉. We would expect that for these dynamics to be mod-
elling a measurement, the oscillator initially entangles with the
qubit (the initial stage of the measurement) and then disentan-
gles (once the measurement has been completed). In Fig. 5(b)
we plot the entanglement entropy

S
(

ρQ
)

= −Tr
(

ρQ ln ρQ
)

for each trajectory. We have examined many more individual
realisations of the master equation than shown here and this
behaviour is reflected across the ensemble.
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Figure 5: (colour online) (a) Probability of the qubit beingin |g〉 for four pos-
sible realisations of the mater equation. Each trajectory was determined using
Eq. (6) with initial state 1√

2
(|g〉 + |e〉) ⊗ |α ≈ 6.8〉 with different random num-

ber seeds being used to generate each realisation. (b) The entropy of the qubit
associated with each trajectory.

We now have all the ingredients of a measurement process
apart from the most important one. We require that for each
individual run a distinct classical record of the measured qubit
value (corresponding to the state|e〉 or |g〉 to which the qubit
projects) be present in the oscillator dynamics. We have seen
in Fig. 5(a) that the qubit projects into either|e〉 or |g〉 in each
run and we recall that in Fig. 1 a different effective potential for
the oscillator is associated with each of these states. In Fig. 6
we demonstrate how this translates into a dynamical record of
the quantum measurement. Here we display two Poincaré sec-
tions, which arise with probabilities set by the Born rule. If
the qubit is projected to|g〉 then the dynamics become periodic
and we obtain the attractor shown with crosses. Here, all but
the first data point (due to transients) lie in the approximate re-
gion A. On the other hand, if the qubit is projected to the state
|e〉 the effective potential is that of the Duffing oscillator and
we obtain a chaotic-like attractor (shown with circular points).
The emergence of a chaotic-like solution gives a strong indi-
cation that the oscillator is sufficiently classical to perform a
good—correspondence limit—model of measurement appara-
tus. We note that, while it takes a long time for the Poincaré
section for a chaotic attractor to build up in order to measure
|e〉 it would be sufficient to demonstrate “not in A” after only
a few drive periods. It may therefore be possible to perform
the measurement on a much shorter time scale by examining
the individual phase portraits of the oscillator and establishing
some kind of clear classification criteria. In principle it ought to
be possible to determine the measurement outcome by around

〈q〉

〈p〉

A

−4

−2

 0

 2

 4

 6

 8

−15 −10 −5  0  5  10  15
−10

−6

−8

Figure 6: (colour online) Example Poincaré sections, taken at t/2π = n +
1/4, n ∈ N, found by solving Eq. (3). Circles denote a section where thequbit
state|e〉 is measured and crosses for|g〉. Note that, excluding the first data point,
all points of the periodic attractor measurement of|g〉 lie within the approxi-
mate region A and are distinct from the chaotic like attractor corresponding to
the qubit being in|e〉.

time t = 2/π = 0.2, as shown in the entropy plot of Fig. 4.
As stressed earlier, the chaotic trajectory is not a requirement
for any measurement device, but the ability to produce it here
demonstrates that the device is sufficiently classical to record
the measurement outcome, without the need to then consider
what observes this device.

5. Incompatible Observables

In the preceding discussion we have assumed that the qubit
has been arranged so that there is no direct coupling betweenits
possible states. It is natural to next consider what would happen
if this was not the case. Coupling between|g〉 and|e〉 will arise
if we add to the Hamiltonian Eq. (4) any operator that does not
commute withσz. As an example we choose to useσx. In order
to ensure that this addition will produce a significant effect we
make it comparable in magnitude to the cross-Kerr coupling
term. Hence, we choose to consider a new Hamiltonian of the
form:

H =
3
4

p2 +
β2

4
q4 − 1

4
q2 +

g
β

cos(t)q+
Γ

2
(pq+ qp)

−1
4

(

p2 + q2
)

σz +
σx

2
(7)

where we have addedσx/2 to Eq. (4).
In section 3 we verified that the Born rule held in the en-

semble average by solving Eq. (3) for the system and computing
the reduced density matrix according to Eq. (5). Let us consider
this situation and again solve Eq. (3) but now using the Hamilto-
nian of Eq. (7). Because we have introducedσx/2 to the Hamil-
tonian the dynamics will not be so trivial. Once more we choose
the initial state of the system to be1√

2
(|g〉 + |e〉) ⊗ |α ≈ 6.8〉.

In Fig. 7 we show the dynamics of the elements ofρQ for
comparison with Fig. 3(a). In order to get a good idea of the
long term effect of introducingσx/2 to the Hamiltonian, this
figure has been computed over a much longer time scale. Here
we see that, although not perfect, there is very good agreement
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Figure 7: (colour online) For comparison with Fig. 3(a) (butover a much larger
duration). Elements of the reduced density matrix for the qubit found by solv-
ing Eq. (3) over one period of the external drive field but now using the Hamil-
tonian Eq. (7)

.

Figure 8: (colour online) For comparison with Fig. 4 (but over a much larger
duration). The time evolution of the entropy of the qubit found by solv-
ing Eq. (3) over one period of the external drive field but now using the Hamil-
tonian Eq. (7). SQ is shown in light grey (green), the oscillatorSO in dark
grey (blue), the total systemS as a dotted line (red) and the index of correlation
SQ + SO − S as a dashed line (magenta).

between the two models and the Born rule is closely adhered to
until t/2π ≈ 1. From our previous arguments we observe that
this may well be sufficient evolution so as to be able to deter-
mine the state of the qubit from the dynamics of the oscillator
component. In which case, our set up of using a non-linear
oscillator in its correspondence limit to record the state of the
qubit is still capable of making a good projective measurement.
However, ast/2π increases beyondunity there is an increasing
deviation from the Born rule.

For comparison with Fig. 4 we show in Fig. 8 the entropic
quantities ofS, SO, SQ and the index of correlation. Although
it is not obvious from this figure we note that the qubit entropy,
although initially rapidly ascending to its maximum value of
ln 2, decreases slightly over time.

We have seen that introducingσx/2 results in the Born rule
being not well observed beyondt/2π ≈ 1 in the solution to the
master equation. However, in analogy with section 4, let us now
not consider a statistical ensemble and ask what happens in an
individual experiment. Once more we use the quantum state

Figure 9: (colour online) One possible realisations of the mater equation.
Each trajectory was determined using Eq. (6) with initial state 1√

2
(|g〉 + |e〉) ⊗

|α ≈ 6.8〉 but now using the Hamiltonian Eq. (7) (a) Probability of the qubit
being in |g〉 (b) expectation value of position〈q〉 (c) Entanglement entropy in
Nats. Here the grey region indicates the points where the qubit is - or very near
- to the state|g〉 and has been added to aid comparison between (a), (b) and (c).

diffusion unravelling of the master equation as given in Eq. (6).
Recall that it is via the introduction of the environment that we
localise the state vector and can recover classical-like trajecto-
ries. Furthermore, in unravelling the master equation we intro-
duce some stochastic behaviour that represents fluctuations due
to environmental degrees of freedom. The oscillator is effected
by a Brownian motion and theσx/2 term couples the eigen-
states of the qubit together. We might therefore expect, that
taking these two factors together with the cross-Kerr coupling
into account, to see some kind of switching behaviour in the
qubit. In Fig. 9(a) shows a typical trajectory and we see thatit
does indeed operate in this manner.

In our previous discussion and with reference to Fig. 6 we
established that if the qubit is projected to|g〉 or |e〉 then the dy-
namics of the expectation values of the oscillator become either
periodic or chaotic-like respectivly. In Fig. 9(b) we plot〈q〉 as
a function of time and by comparison with Fig. 9(a) we observe
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Dimensionless time t/2π
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Figure 10:(colour online) Illustration of the Zeno effect for the system in initial
state|g〉. Here〈σz〉 is plotted as a function of dimensionless time for (solid/red
line) qubit subjected to a measurement ofσz (dashed/blue line) free evolution
of the qubit.

that the same behaviour is still manifest despite the introduction
of σx/2 into the Hamiltonian.

That is, the oscillator closely monitors the state of the qubit,
exhibiting periodic or chaotic-like oscillations when thequbit is
in, or near to,|g〉 or |e〉 respectively. We know from our analysis
of the master equation, that this is not a“good” measurement
within the Born framework. Nevertheless, the classical like dy-
namics of the oscillator provide a clear record of the state of the
qubit. In this sense we could consider that effective measure-
ments are still being made. In addition, as we are generating
a classical like continuous monitor of the quantum state of the
qubit it may well be that quantum circuits constructed in this
way may find utility in quantum feedback and control problems
(see, for example, [35]).

In Fig. 9(a) we observe a certain spikiness in the probability
amplitude. An explanation for this can be found if we consider
the entanglement entropy which we show in Fig. 9(c). Here
we see that these spikes in probability are accompanied by con-
comitant spikes in the entropy. So, theσx term in the Hamilto-
nian is trying to take the qubit out of an eigenstate ofσz. But
the qubit is coupled to the oscillator mode via

(

p2 + q2
)

σz/4.
So accompanying this move to a superposition of the qubit is a
tendency for the qubit and the oscillator to entangle. Now, the
oscillator is subject to environmental decoherence which will
try to suppress this entanglement. Hence, we can understand
this spiky behaviour in terms of a competition between theseef-
fects. Furthermore we can see that it is when the entanglement
is very large that the qubit is most likely to switch between|g〉
and |e〉. So that this quantum jumping behaviour between the
eigenstates is a consequence of trying to projectively measure
the qubit into an eigenstate of an observable that is incompatible
with the qubit Hamiltonian.

Further illustration of the measurement effect of the oscilla-
tor on the qubit can be shown through the Zeno suppression of
coherent oscillation. If the qubit with Hamiltonian as in Eq. (7)
is alternatively started in state|g〉, we know that with no cou-
pling to the oscillator it exhibits coherent oscillation, for exam-
ple in 〈σz〉 as a function of time. If subjected to measurement
of σz, the expectation is that the (initially quadratic) evolution

in 〈σz〉 would be retarded through the Zeno effect. Fig. 10 il-
lustrates a very strong Zeno suppression of the qubit evolution
for our system when the oscillator couples to it, consistentwith
a strong measurement ofσz.

6. Conclusion

In this letter we have presented a fully quantum mechanical
model of a projective measurement process. The measurement
device comprises an oscillator circuit with a dissipative envi-
ronment, where the dynamics of expectation values, in the cor-
respondence limit, are either chaotic-like or periodic depending
on the measured value and projected state of a qubit. The de-
vice parameters are thus chosen so it is clear that this device
is on the classical side of its quantum to classical transition in
behaviour. Its “record” of the measurement outcome is there-
fore classical, and there is no need to go further up the chain
and consider what system might be used to observe this de-
vice. In our model no preferred basis was assumed to exista
priori , rather it emerged from the coupling between the mea-
surement device and the quantum object. In ensemble language
our measurement device and qubit attained the expected final
mixtures. However, we have further demonstrated that individ-
ual classical-like trajectories of an open quantum system can
act as a record of the measurement of an individual qubit, in
line with the Born rule. Even for the case of chaotic apparatus
it is possible to produce decent measurements.
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