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Abstract

We study a dissipative quantum mechanical model of the projective measurement of a qubit. We demonstrate how a corresponde
limit, damped quantum oscillator can realise chaotic-like or periodic trajectories that emerge in sympathy with the projection of th
qubit state, providing a model of the measurement process.

Keywords:
PACS:03.65.-w, 03.65.Ta, 03.65.Yz, 03.67.-a

1. Introduction of environmental decoherence (such as in quantum trajestori
. ] o _methods). In these approaches the central strategy is to model
Given its general nature, plethora of applications and ability,g process of measurement as thieet of external degrees of

to explain forces and the structure of matter, quantum mechagseedom, as an environment, acting on the quantum object and
ics is considered to be amongst the most successful of physiCger the measurement from this. In this work we model the
theories. Furthermore, the majority of today’s advanced techmeasurement device itself and introduce the environment cou-
nologies and their future growth, depends on quantum mechaniiggio this device, simply to achieve its classical limit via deco-
indirectly if not directly. Intuitively one mlght therefore expect perence. Here the measurement device comprises a single oscil-
that everything about quantum mechanics would be well Unaior that in its classical limit has only two degrees of freedom
derstood. Surprisingly, this is not the case. Not only does gyosition and momentum). Furthermore, in its correspondence
unique interpretation of the theory prove elusive, with individu-imit this oscillator can exhibit dissipative chaos — such non-
als able to express preferences ranging from the CopenhaggRear dynamical behaviour is not realisable by the Schrédinger
interpretation, many-worlds to OPle“Ct'Ve reahty',, even funda-gquation for the isolated oscillator. Consequently, our system
mentals such as theneasurementof “observable” quantities s not Hamiltonian chaotic nor is it related to quantum chaos in
are not fully understood. Indeed the debate as to exactly what {gmg of random matrix theory. In this case the realisation of
meant by the measurement of a quantum object has continugfaotic like trajectories is a clear signature of classicality (see,
since Born’s paper in _192(: [1] until the present day (§ee, fokgr example, [[6] 15, 16, 17, 118,110,]11] 12] 20, 21]). Hence,
example,|[2,3,/4,/5,6/ 7, 8,9.110,11) 12,15, 14]). In this workor work is diferent in that the environment is just a tool to
we illustrate how a classical record of a quantum measuremeptnder the measurement device classical. We do not infer any

Can arise. _ o ~ associated measurement, this emerges from the dynamics.
We propose a mechanism for the realisation of projective

measurements simply from the framework of Schrodinger evo-
lution, modified to allow for an environment. Our model com- 2. The Model

prises a qubit coupled to an open quantum mechanical measure- Our strategy is to find a suitable system comprising a (quan-
ment device which is arranged to operate in its classical (corre- 9y y P gaiq

spondence) limit. This is achieved by ensuring that the classic%m) measurement device and a quantum object, such that (i)
t

: L . .the former projects the later into some state, (ii) the measure-
action of the measurement device is large (and remains so) wi : . . . L .
ment device has a discerniblyfidirent characteristic classical

respect to a Planck cell, and introducing a dissipative environ- ; .
ment to suppress quantum interferenffeds in this device (a n||k“e beh"awour depending on the measured state apd (il for
a “good” measurement the Born rule holds. Put simply, the

paradigm that is well studied and known to be rattfésative ~ probabilities of projecting the quantum object follow from the

see, for example, [6, 15,116,117/ 18} 19,/11,[12/ 20, 21]). . . T
We note that there have been mangfaient models of the appropriate squared amplitudes in its initial state. We therefore
dy a system of two components, the first being a quantum os-

measurement process that usually involve introducing some i} X 2"
P y 9 cillator that has a well defined correspondence limit and whose

classical like dynamics is manifestlyftérent depending on the
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b \ ; o tions in good agreement with solutions to the equivalerg-cla
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\ 3 Y o sical equations of motlorEILEIl(S], and so for these parame-
wb / A ters the measurement device is recognised to be classiel. W
\ / have chosen such a system deliberately, as the manifestatio
201 | ’ ] of a chaotic-like trajectory is a very clear signature of thee

oL \ S vice operating on the classical side of the quantum to aaksi
T

Effective potential energy

| well serve as a measurement device; however for these it must
TET be clear that the device is operating on the classical side of
position ¢ the quantum to classical transition, otherwise one hasde pr
ceed further up the “von Neumann chain” of systems to find
a degree of freedom that is manifestly classical and thua-cap
Figure 1: (colour online) Eecti\(e poten_tial for the Hamiltonian of Ed:|(4) ble of recording the measurement outcome. Our choice of a
whereg = 0.1 and (a)o7) = 1 solid (red) line (bXo,) = —1 dashed (blue) line . .
and (c)(o) = 0 dotted line. non-linear oscillator can be used to clearly demonstraieah
classical-like record has been achieved, without reggiifim-
ther verification or the need to move further up the chain and
quantum state of the other component of the system. The segonsider the systems that measures or observes the ascillat
ond component should be a simple quantum device, such ase note that whilst smaller values gfwould produce even
qubit, arranged so that there is no direct coupling betwten i better matches with classical dynamics, some of the restgts
possible states. Our model Hamiltonian that satisfies #s r sented in this work are computationally very demanding ahd s

I
N
o

) transition. Obviously other (hon-chaotic) systems couajadadly
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quirement is a driven non-linear oscillator: a practical limit for us of8 = 0.1 at this time. We note that a
3 5 1 similar system was recently used to explore the decohexnce
H=2p*+ ﬂ_q‘l - P+ g cost)q — Hint. (1)  Qubits coupled to a quantised ﬂimg_oscillator[Eb].
4 4 4° B In order to suppress quantum interferenffiees we cou-

a ple the measurement device to an environment using a Lind-
blad Ei] type master equation. Here, the evolution of the re
duced density operatop(t), of the quantum system of inter-
est is found by tracing out the environmental degrees of free
1,5, o (. dom that are responsible for dissipation. For our purpdbeés,
Hint = 4 (p +q )O'Z -5 (a a+ Q)O'L (2)  environment—a bath of quantum degrees of freedom—is as-
sumed to be Markovian. That is, there are no memdigces
Hereq andp are the dimensionless position and conjugate moand the evolution op(t) depends only om(t), the Hamilto-
mentum for the oscillator mode (i.e. defined such that the annian and operators representing interaction with the envir
nihilation operatom = (q + ip)/ V2) ando is the usual Pauli ment, termed Lindblad operators. The (non-unitary) dymami

As we elect to measure tlzeeigenvalue of the qubit we take
cross-Kerr like interactionthat couples the oscillator to a de-
generate qubipf the form

operator for the qubit. of this (reduced) density operator is then given by:

A cross-Kerr Iikiinteraction is a physically reasonable on L L
asitis well known] to emerge as the dispersive (far-detl) 5= —i[H. ol + (L L — 2L Lo — ZpLiL ) 3
limit of the Jaynes-Cummings (JC) interaction Hamiltor{2j. p [H.r] Zm: mhm = 5bmkmo = 5pkalm). ()

The JC interaction between a qubit and an oscillator field is
widely applicable, to systems such as Rydberg atonms [24RNMModelling a zero temperature dissipative environmentiregu
studies of nucle[[25, 26], Cooper pair boxés|[27], Cavityg@u  just one Lindblad operatok, = V2rawherea is the oscillator
tum Electrodynamics [28] and trapped iohs [29]. annihilation operator.lt is possible to model finite tempera-
We note thatH is given in units of a characteristic oscil- ture using a second Lindblad proportional to the creaticerop
lator energyhiw and timet is rendered dimensionless with the ator, with suitable temperature-dependentitoents, allowing
same characteristic frequenay In F|gm we show the (non- for stimulated excitation and emission in addition to therEp
linear) potential of Eq[{4) as a dotted line. Intuitivelyeocan ~ taneous emission that represents zero temperature dissipa
associate the dashed and solid lines in Fig. 1 withféecéve =~ However, we do not explore finite temperature he®ubject-
oscillator potential associated with the coupling [Ed). (&) the  INg an oscillator to dissipation also requires the additbm
qubit being in the ground stafg) (with (o) = —1) or excited  termI'(pg+qp) /2 to the Hamiltonian EqL{4). This term is
statele) (with (o) = 1) respectively. So we associate with the required to ensure that the (dissipative) classical-ljweeaics
ground state of the qubit a quartic potential and with thetegc ~ Of the oscillator term are correctly recovered in the cqroes
state the potentia| energy of the ﬁug oscillator. dence limit ] For a linear oscillator the term prOdgc
In Eq @)ﬁ is a dimensionless parameter representing éhe expected frequency shift. So that offeetive Hamiltonian
scaling of the classical action of the oscillator with regpe
a Planck cell andj is the strength of the applied driving term.
In this work we have chosemn= 0.3 andgB = 0.1. For the Duf-
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3. Measurement in the ensemble average p er I
Let us now consider how the qubit and oscillator system n Q | "
evolves under Eg[3), using Eql (4) with the dissipativei-add o
tion. We employ dissipation set hy= 0.125 and an initial pure
gquantum state o% (lg) + &) ® |o ~ 6.8). Herela) denotes a o T ol B
coherent state with average photon, or excitation, nurjatjer A o
and is defined as usual by: " " , . " -
2 S a" a
lay = e—I<Y| /2 —In). 15 ‘ 10,16
Zo \a ) ||
We note thata ~ 6.8) corresponds in phase space to a Gaus- o A 7
sian bell centred ag(= 11, p = 0). This initial oscillator state P o
is chosen so as to minimize transient behaviour; howeveroth sl \ N ..
choices equally well enable the possibility of either measu ° '
ment result for the qubit-value. Clearly in a “good” quantum - N B
measurement experiment, the apparatus should not be primed
so as to exclude the possibility of registering certain iibss e
outcomes. K N ...
The Wigner function, which can be viewed as a pseudo T
probability density function in theq( p) phase space, if very o - B B o2
useful in gaining an good insight into the behaviour of dynam
ical systems. It can be defined by: . ‘ ‘ ‘ ‘ ‘ ’
B 1 g g . -15 10 -5 ; 5 10 15
W(q, p) = and_( <q+ 5lld 2>e><|c>( iZp)

For a detailed discussion see, for examdl—e" [32]. InHig. 2 WE&igure 2: (colour online) Wigner function of the field for atibns to the mas-
show two snapshots of the Wigner function for the oscillatorter equation where the initial density operator corresgotudthe pure state
mode — having traced out the qubit (see the on-line animasj; (9 + (&) ®la ~ 6.8). (a) att/2r = 0.1 and (b) at/2r = 2.25. Here region
tion that accompanies this letter for a movie of the evohutio A and B corresponds to measuring the qubit in sigitend|e) respectively.

of Wigner function the snapshot shown in Hi@. Eig.[2(a) is
taken very early on in the system evolutiortgr = 0.1. Here
we see that theffect of the qubit on the measurement device is
to split the coherent state up into two coherent state-likegs.
This is not surprising, as a very similaffect is seen in col- W(0)) = 1 (9) +16) ® |a ~ 6.8)
lapse and revival phenomena of the Jaynes-Cummings model \2

of a qubit interacting with a harmonic oscillator. Howevas, in Fig.[@(a). Our measurement apparatus and interaction are
the system evolves we see in Hif. 2(HRq = 2.25) the distri- ’ ’ . L .
y 9. 2( ) rranged to keefr,) fixed in time and thus yield the Born rule.

bution becomes somewhat more interesting. One lump is sti% hoi ¢ initial stat | i and
quite small and is associated with the qubit’'s ground siBite. Ur choice ot iniial stale as an equal Superposi lofgpan
le) is rather special in that it is symmetric. In order to ensure

second is much larger, arising from the chaotic-like betawvi that it tiust al it
of the Duting oscillator and is associated with the qubit’s ex- atour resufis are notJust Some special case assocl
symmetric superposition, and the the Born rule holds, wevsho

excited stateSuch behaviour is clearly seen in the results pre-
sented, for the initial state

cited state. g L
Let us now turn to the qubit and consider its reduced densin';1 Fig.[3(b) the same data but for the initial state
matrix P w(0)) = (VO.7Ig) + VO3le)) ® o ~ 6.8).
PQ = Trfewd(p) = ( 99 "9 ) (5)
Peg Pee

If we are indeed modelling a measurement process we would Although the expected diagonalisationgf must happen
expect that, as the system evolveg,will diagonalise indicat- in a measurement, this is clearly not dfstient signature. The
ing that it has become a statistical mixture of the ground ananeasurement apparatus needs to demonstrate an outcome that

3
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Figure 3: (colour online) Elements of the reduced densitjriméor the qubit
found by solving Eq.[{B) over one period of the external dfiedd. In (a)

the initial state Was\ir2 (lg) + 1)) ® |a ~ 6.8). Further confirmation of the

Born rule is shown in (b) with the same matrix elements foritiigal state

(V071g) + VO3le)) ® e ~ 6.8).
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Entropy in Nats
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Figure 4: (colour online) The time evolution of the entrodytlee qubitSq
is shown in light grey (green), the oscillat8gp in dark grey (blue), the total
systemS as a dotted line (red) and the index of correlatiify + So — S as a
dashed line (magenta). The inset shows the Wigner functiothé oscillator
att/2r = 0.7.

correlates to the measured state of (in our case) the qused

that this is happening we examine the various entropieseatkfin

through
S(p) =-Tr(plnp)

in Fig.[4. It can be seen that the initial stage of the measeném
involves entanglement of the qubit and the oscillator, agwo
entropiesSq andSo rise rapidly to In 2 whilst the total entropy
S remains very close to zero.

S located around/2z = 0.7. This is nothing to do with quan-
tum erasure or anything like that. It is simply due to loss of
classical information. If we only look at our measurement ap
paratus around this time, the signatures correspondingeto t
two measurement outcomes are not completely distinct.-To il
lustrate this, Fig.4 contains an inset of the Wigner funrcfir
the oscillator at this timeéWe note that the classical records be-
come distinct again aftef2r ~ 0.9 until the Wigner functions
overlap once more — at the same point in every drive cycle

4. Single M easurements

The master equation is very useful insofar as it tells us abou
the behaviour of the ensemble averages. However, we wish to
gain some understanding about the way in which a single mea-
surement (or classical record) can emerge as a naturalgzoce
Hence, we need to model the behaviour of individual realisa-
tions of the master equation. We therefore unravel the pgate s
evolution equation for the system, that is equivalent to @&}.
in the ensemble average over many realisations. The unravel
ling we use here is quantum statéfdsion (QSD)EBEHS].

For QSD, the state evolves according to

dyy = —iHdt+ Y (L= (L) ) Oéim +

. 1. 1, .
Z (<Lr‘n>¢ L — ELr‘an - §<Lr‘n>¢<Lm>¢) ) dt
(6)

where the operators are defined as in Ef. (3) andléheare
independent complex filerential random variables satisfying
dém = déndé, = 0 anddg:dé, = dtémn (Where the over-line
denotes mean over an ensemble). The evolution of [Hg. (6)
is equivalent to that of Eq[13) when the ensemble mean of
o = |y) (| over the noise is taken. Of course, one issue with un-
ravelling a master equation is that in general there is nqueni
unravelling—many diferent approaches exist. However, in the
specific scenario we consider here, the non-linear oswmiliat
made as classical as our computations permit. In this clssi
limit the distinction between unravellings begins to go gyia

the sense that any unravelling of a dissipative and cldsica
chaotic system must start to show a characteristic of theoapp
priate classical chaotic trajectory. In Hig. 3 we plottedpagst
other quantities, the ensemble average probability ofdo@in
the ground state. In Fif] 5(a) we show the probability of be-
ing in the ground state for four solutions of Elgl. (6). We digar
see that in each run the qubit is quickly projected into eithe
|g) or |e). We would expect that for these dynamics to be mod-

The measurement can be deemed to be completed when tRNG & measurement, the oscillator initially entanglathnhe

oscillator and total entropies converge (and so the indeonf

relationl = Sg + Sp — S settles to the qubit entropy value of

qubit (the initial stage of the measurement) and then disent
gles (once the measurement has been completed). 1h]Fig. 5(b)

In2), at around/2r = 0.2. We note two further points about & Plotthe entanglement entropy

this figure. First, in general the oscillator (and thus fo&ad-

S(pq) = =Tr(pqInpq)

tropy continues to climb after the measurement is completed

This is due to the continuing evolution of the oscillator,igrh

for each trajectory. We have examined many more individual

has a chaotic signature for one of the two measurement outealisations of the master equation than shown here and this

comes. Second, there is actually a divergence bet8geand

4

behaviour is reflected across the ensemble.
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Figure 6: (colour online) Example Poincaré sections, naliet/2r = n +
1/4,n € N, found by solving Eq[{3). Circles denote a section whereqtiiat

b statele) is measured and crosses [igr. Note that, excluding the first data point,
all points of the periodic attractor measurementgflie within the approxi-
mate region A and are distinct from the chaotic like attractrresponding to
the qubit being ine).

Entropy S(pg) in Nats

‘ L timet = 2/ = 0.2, as shown in the entropy plot of Figl. 4.

O D mensioness tme /2 As stressed earlier, the chaotic trajectory is not a reqére
for any measurement device, but the ability to produce ieher

demonstrates that the device idfatiently classical to record

Figure 5: (colour online) (a) Probability of the qubit beimgig) for four pos-  the measurement outcome, without the need to then consider
sible realisations of the mater equation. Each trajectay determined using what observes this device

Eqg. [@) with initial state\ir2 (19) + |&)) ® | ~ 6.8) with different random num- '

ber seeds being used to generate each realisation. (b) Topyenf the qubit

associated with each trajectory. 5 | ncompatible Observables

_ ) In the preceding discussion we have assumed that the qubit

We now have all t_he ingredients of a meas_urement ProCeS%ss been arranged so that there is no direct coupling befitgeen
.apz_irF from the m.os_t |mp0rtant one. We require that for- eaCrﬂ)ossible states. Itis natural to next consider what wouppka
individual run a dls_tlnct classical record of the.measurekilt_q if this was not the case. Coupling betweghand|e) will arise
value (corresponding to the stde or |g) to which the qubit ¢ \e 44 to the Hamiltonian EqCJ(4) any operator that does not
projects) be present in the oscillator dynamics. We havae S€€&ommute withr,. As an example we choose to usg In order
in Fig.[5(a) that the qL_Jbit _projects_ into eit”e}‘ or(g) in _each to ensure that this addition will produce a significafieet we
run and_we repall that in Fig] 1 aftizrent éfective potential for- make it comparable in magnitude to the cross-Kerr coupling
the oscillator is associated with each of these states. grig-i term. Hence. we choose to consider a new Hamiltonian of the
we demonstrate how this translates into a dynamical reciord %orm: ’
the quantum measurement. Here we display two Poincaré sec-
tions, which arise with probabilities set by the Born ruld. | _ 3 "
the qubit is projected tfg) then the dynamics become periodic T4 P
and we obtain the attractor shown with crosses. Here, all but 1,5, 5 Ox
the first data point (due to transients) lie in the approxemat 4 (p +q )‘TZ + 3 (7)
gion A. On the other hand, if the qubit is projected to theestat where we have addetl/2 to Eq. @)
le) the dfective potential is that of the Diing oscillator and In sectior(B we verified tha.t thé Born rule held in the en-
we obtain a chaotic-like attractor (shown with circularmis). semble average by solving E] (3) for the system and comgutin
The emergence of a chaotic-like solution gives a strong-indithe reduced density matrix according to &g. (5). Let us chensi

cation that the oscillator is fliciently classical to perform a this situation and again solve G (3) but now using the Harnil

good—correspondence limit—model of measurement appara- : 0
tus. We note that, while it takes a long time for the Poincaré o of Eq.[(7). Because we have introduogd? to the Hamil

. . : : Sonian the dynamics will not be so trivial. Once more we cl@os
section for a chaotic attractor to build up in order to measur -
the initial state of the system to b% (19) + &) ® la ~ 6.8).

le) it would be stificient to demonstrate “not in A’ after only n Fi h he d / fthe el &

a few drive periods. It may therefore be possible to perform n I_g.IZ w_ehstw; € {namécs ofthe e emegt;g@ orf h

the measurement on a much shorter time scale by examinifgfMmParison with Fid.13(a). In order to get a good idea of the
Idong term dfect of introducingoy/2 to the Hamiltonian, this

the individual phase portraits of the oscillator and esshiig ) .
figure has been computed over a much longer time scale. Here

some kind of clear classification criteria. In principle itght to h thouah » here i d
be possible to determine the measurement outcome by aroulftf Se€ that, aithough not periect, there is very good agreeme
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Figure 7: (colour online) For comparison with Fig. 3(a) (buér a much larger
duration). Elements of the reduced density matrix for thieitfiound by solv-

ing Eq. [3) over one period of the external drive field but n@ing the Hamil-
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Figure 8: (colour online) For comparison with Fig. 4 (but o@emuch larger
duration). The time evolution of the entropy of the qubit riduby solv-
ing Eq. [3) over one period of the external drive field but n@ing the Hamil- . . . o .
tonian Eq. [[¥). Sq is shown in light grey (green), the oscillatS in dark Figure 9 (colour online) Qne po_SS|bIe reallsa}tlop; _of thftem equation.
grey (blue), the total systeSias a dotted line (red) and the index of correlation Each trajectory was determined using Eg. (6) with initiaket7 (1g) + [€)) ®
Sq + So - S as a dashed line (magenta). la ~ 6.8) but now using the Hamiltonian Ed.](7) (a) Probability of thebi
being in|g) (b) expectation value of positiofg) (c) Entanglement entropy in
Nats. Here the grey region indicates the points where thé guor very near

between the two models and the Born rule is closely adhered t—oto the stateég) and has been added to aid comparison between (a), (b) and (c).
until t/2r ~ 1. From our previous arguments we observe that

this may well be sflicient evolution so as to be able to deter- gifusion unravelling of the master equation as given in Bq. (6).
mine the state of the qubit from the dynamics of the oscitlato Recall that it is via the introduction of the environmenttthe
component. In which case, our set up of using a non-lineapcalise the state vector and can recover classical-lajedto-
oscillator in its correspondence limit to record the stdtéhe  ies. Furthermore, in unravelling the master equation wm@in
qubitis still capable of making a good projective measureme duce some stochastic behaviour that represents fluctsation
However, ag/2r increases beyonahity there is an increasing  to environmental degrees of freedom. The oscillatoffisated
deviation from the Born rule. by a Brownian motion and the-,/2 term couples the eigen-

For comparison with Fid.]4 we show in F[g. 8 the entropicstates of the qubit together. We might therefore expect, tha
quantities ofS, So, Sq and the index of correlation. Although taking these two factors together with the cross-Kerr cogpl
itis not obvious from this figure we note that the qubit enytop jnto account, to see some kind of switching behaviour in the
although initially rapidly ascending to its maximum value o qupit. In Fig[3(a) shows a typical trajectory and we see ithat
In 2, decreases slightly over time. does indeed operate in this manner.

We have seen that introduciig/2 results in the Born rule In our previous discussion and with reference to Eig. 6 we
being not well observed beyon(@r ~ 1 in the solution to the  estaplished that if the qubit is projecteddpor |e) then the dy-
master equation. However, in analogy with sedfibn 4, et N namics of the expectation values of the oscillator becottheei
not consider a statistical ensemble and ask what happems in deriodic or chaotic-like respectivly. In Figl 9(b) we plap as
individual experiment. Once more we use the quantum statg fnction of time and by comparison with Fig. 9(a) we observe
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Figure 10:(colour online) lllustration of the Zendfect for the system in initial
state|g). Here(o,) is plotted as a function of dimensionless time for (sioéd
line) qubit subjected to a measuremenwgf(dashegblue line) free evolution
of the qubit.

that the same behaviour is still manifest despite the intctidn
of oy/2 into the Hamiltonian.

That is, the oscillator closely monitors the state of theigub
exhibiting periodic or chaotic-like oscillations when tipebit is
in, or near to|g) or |e) respectively. We know from our analysis
of the master equation, that this is notgmod” measurement
within the Born framework. Nevertheless, the classica tily-
namics of the oscillator provide a clear record of the statbe
qubit. In this sense we could consider thffeetive measure-

in {o,) would be retarded through the Zenffeet. Fig.[I0 il-
lustrates a very strong Zeno suppression of the qubit éeolut
for our system when the oscillator couples to it, consisietit

a strong measurement @f.

6. Conclusion

In this letter we have presented a fully quantum mechanical
model of a projective measurement process. The measurement
device comprises an oscillator circuit with a dissipativeie
ronment, where the dynamics of expectation values, in the co
respondence limit, are either chaotic-like or periodicateting
on the measured value and projected state of a qubit. The de-
vice parameters are thus chosen so it is clear that this elevic
is on the classical side of its quantum to classical tramsin
behaviour. Its “record” of the measurement outcome is there
fore classical, and there is no need to go further up the chain
and consider what system might be used to observe this de-
vice. In our model no preferred basis was assumed to exist
priori, rather it emerged from the coupling between the mea-
surement device and the quantum object. In ensemble larguag
our measurement device and qubit attained the expected final
mixtures. However, we have further demonstrated that ideiv
ual classical-like trajectories of an open quantum systam c
act as a record of the measurement of an individual qubit, in
line with the Born rule. Even for the case of chaotic apparatu

ments are still being made. In addition, as we are generatintjis Possible to produce decent measurements.

a classical like continuous monitor of the quantum staténef t
qubit it may well be that quantum circuits constructed irs thi

way may find utility in quantum feedback and control problems [

(see, for example, [35]).
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