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We explore the role played by the intrinsic decoherence in superconducting charge qubits in the
presence of a microwave field applied as a magnetic flux. We study how the delayed creation
of entanglement, which is opposite to the sudden death of entanglement, can be induced. We
compute the time evolution of the population inversion, total correlation and entanglement, taking
into account the junction mixed state and dissipation of the cavity field. We show that although
decoherence destroys the correlation of the junction and field, information of the initial state may
be obtained via quasi-probability distribution functions.

I. INTRODUCTION

Over the last decade, superconducting qubits have
gained substantial interest as devices for application in
quantum information processing1,2. Here, Josephson
qubits are recognized as being among the most promising
devices to implement solid state quantum computation3.
The manipulation of quantum states in individual and
coupled qubits (Cooper-pair box) has been demonstrated
experimentally in [4] and the behavior of charge oscilla-
tions in superconducting Cooper pair boxes weakly in-
teracting with an environment has been discussed in [5].
Superconducting circuits can behave like atoms and test
quantum mechanics at macroscopic scales and be used to
conduct atomic-physics experiments on a silicon chip1.
Furthermore, the quantum dynamics of a Cooper-pair
box with a superconducting loop in the presence of a non-
classical microwave field have been investigated in [6].

In order to utilize superconducting circuits as a re-
source for quantum information processing the problem
of engineering entangled states in coupled systems must
be addressed. One of the most important problems un-
der consideration is how to make a long-lived and easily
monitored entangled states within existing experimental
set-ups7. At present, one of the main obstacles in the de-
velopment of a larger-scale solid state quantum logic cir-
cuit is decoherence. It is therefore important to develop
strategies to minimize the effects of decoherence on the
dynamics of the qubit systems8,11. Much of the work that
has been done in this field focuses on decoherence due to
coupling to environmental degrees of freedom. However,
there exists another intriguing possible source of funda-
mental decoherence that was proposed by Milburn in [9].
This arises if, instead of being a continuum, time is con-
sidered to progress with some minimum, but finite, incre-
ment. Hence, the dynamics is not governed by a single
unitary evolution operator but rather some stochastic se-

quence of identical incremental unitary transformations.
Taking this into account results in an equation of motion
resembling that of master equations for Markovian open
quantum systems. In other words, introducing a des-
critization of time results in a fundamental decoherence
that affects any quantum system. It is therefore natural
to ask what limits such intrinsic decoherence would place
on applications in quantum information processing. Here
we build on other work in this field32 and study the de-
layed creation of entanglement in superconducting qubits
interacting with a microwave field.

The system that we study in this work closely resem-
bles that of a qubit coupled to a quantum field mode
which can be effectively represented using the Jaynes-
Cummings model21,22. A recent study has indicated that
this system can be used to understand the quantum to
classical transition of a field mode when a suitable model
of environmental decoherence is introduced10. Hence, by
observing the behaviour of the dynamics of the atomic in-
version, the qubit can be used as a probe to estimate the
amount of environmental dechorence to which the field
is subjected. Milburn’s model is slightly different in that
decoherence arises because time is taken to increment,
discontinuously, over short intervals. As the system does
not evolve continuously, but under a stochastic sequence
of identical unitary transformations, the associated deco-
herence effects the qubit and field equally. Nevertheless,
it is our suggestion that systems that exhibit collapse and
revival phenomena will provide a possible platform from
which to test Milburn’s proposal. The discontinuous evo-
lution that is central to this model is independent of the
system under consideration. Any test, or estimate of the
time increment, should be obtained from a number of
physically different sample systems which exhibit similar
dynamical properties. Hence, collapse and revival forms
good basis for testing intrinsic decoherence as this be-
haviour is seen in a number of different physical systems
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and is well understood. In this paper our objective is to
demonstrate proof of principal and show the effect that
intrinsic decoherence might have on a realistic system, a
cooper pair box coupled to a non-classical field (we have
used experimental parameters from [44]). We note that
due to the existence of other decohering effects it may not
be practically possible to establish the validity (or not)
of intrinsic decoherence if the time increments are too
small. Even so, we believe that studying collapse and re-
vival phenomena with carefully controlled environments
will provide an upper bound to the size of the interval.

Specifically, we study the junction-field dynamics and
their associated entanglement properties. We demon-
strate a protocol for entanglement engineering and char-
acterization by studying a special type of superconduct-
ing charge qubit, namely a single Cooper-pair box cou-
pled to a microwave field applied as a magnetic flux. We
pay careful attention to the crucial difference between
the strong or weak field regimes effect on the total corre-
lation of the junction-field system. In order to complete
our study from the perspective of a phase space approach
we discussed the Wigner quasi-probability distribution.
The present work is motivated by experimental results
on Josephson junction and normal metal flux qubits cou-
pled to the environment16. We note that some theoretical
discussions and analysis of special cases of the problem
at hand were given in Refs. 6,17,18 and experimental
results were predicted in Ref. 16.

The organization of this paper is as follows: in sec-
tion 2 we introduce the model and formulate the master
equation and present its time-dependent analytical so-
lution. In section 3, as an application, we employ the
analytical results obtained in section 2 to discuss the AC
Josephson effect and entanglement for different values of
the intrinsic decoherence. In section 4, we focus on the
Wigner function which corresponds to the final state of
the charge-qubit system. Finally, we summarize the re-
sults in section 5.

II. THE MODEL

We consider a superconducting box with a low-
capacitance Josephson junction with the capacitance CJ

and Josephson energy EJ , biased by a voltage source Vg

through a gate capacitance Cg which is externally con-
trolled and used to induce offset charges on the island.
The schematic picture of this single-qubit structure is
shown in figure 1. The total Hamiltonian of the system
can then be written as19

Ĥ =
(Q− CgVg)

2e

Cg + 2CJ
−2EJ0 cosφ cos

(
πΦ

Φ0

)
+~ω(a†a+

1

2
),

(1)
where a† and a are, respectively, the creation and an-
nihilation operator of the cavity mode. In this struc-
ture, the superconducting island with Cooper-pair charge
Q = 2Ne is coupled to a segment of a supercon-
ducting ring via two Josephson junctions, where e is

EJ , CJ

EJ , CJ
Vg

Cg

Φe

Φf (t)

FIG. 1: Schematic picture of the Cooper-pair box. The filled
circle denotes a superconducting island, the Cooper-pair box,
which is biased by a voltage Vg through the gate capacitance
Cg and coupled to the bulk superconductors by two identical
small Josephson junctions. The two Josephson junctions have
capacitance CJ and Josephson energy EJ . The total flux is
the summation of the static magnetic flux Φe, and microwave-
field-induced flux Φf (t) that applied via the superconducting-
quantum-interference-device loop.

the electron charge and N is the number of Cooper-
pairs. We denote by φ = 0.5(φ1 + φ2) the phase dif-
ference across the junction. The gauge-invariant phase
drops φ1 and φ2 across the junctions are related to
the total flux Φ through the superconducting-quantum-
interference-device (SQUID) loop by the constraint φ2 −
φ1 = 2πΦ/Φ0, where Φ0 = h/2e is the flux quantum.
Here, EJ = 2EJ0 cosφ cos(πΦ/Φ0) and self-inductance
effects on the single-qubit structure is ignored.

When a nonclassical microwave field is applied, the to-
tal flux is a quantum variable Φ = Φe + Φf (t), where
Φf is the microwave-field-induced flux. If we consider a
planar cavity and the SQUID loop of the charge qubit
is perpendicular to the cavity mirrors, the vector poten-
tial of the nonclassical microwave field can be written as
A(r) = |uλ(r)|(a† + a)A, where a single-qubit structure
is embedded in the microwave cavity with only a single
photon mode λ. Thus, the flux Φf can be written as
Φf = |Φλ|(a† + a), where Φλ =

∮
uλ.dl, where the con-

tour integration is over the interior of the SQUID loop.
We shift the gate voltage Vg (and/or vary Φe) to bring
the single-qubit system into resonance with k photons:
E ≈ k~ωλ, k = 1, 2, 3, .... It is to be noted that the charge
states are not the eigenstates of the Hamiltonian (2), so
that the Hamiltonian can be diagonalized yielding the
following two charge states |e〉 = cos ξ |1〉 − sin ξ |0〉 and
|g〉 = sin ξ |1〉+ cos ξ |0〉 with ξ = 1

2 tan−1(EJ/2ε), where

ε = 2Ec(CgVge
−1 − (2n + 1)). Employing these eigen-

states to represent the qubit, expanding the functions
cos(πΦe/Φ0) and using the rotating wave approximation,
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one can derive the total Hamiltonian of the system as20.

Ĥ = ~ω
(
n+ 1

2

)
+

{
1

2
E − EJ0 sin (2ξ) cos

(
πΦe

Φ0

)
f(n)

}
σz

+ cos(2ξ)EJ0

{
akg(k)(n)σ+ + a†kg∗(k)(n)σ−

}
.(2)

We denote by σ± and σz the Pauli matrices in the
pseudo-spin basis and gk(n) represents the k−photon-
mediated coupling between the charge qubit and
the microwave field, and are given by g(1)(n) =

sin
(

πΦe

Φ0

) (
φ− 1

2!φ
3n+ 1

4!φ
5(2n2 + 1) − .....

)
, g(2)(n) =

cos
(

πΦe

Φ0

)
( 1
2!φ

2 − 2
4!φ

4(2n − 1) +....., g(3)(n)) =

sin
(

πΦe

Φ0

) (
− 1

3!φ
3 + 5

5!φ
5(n− 1) − .....

)
, etc., f(n) =

1
2!φ

2(2n + 1) − 3
4!φ

4(2n2 + 2n + 1) + ....., n = a†a and

φ = π |Φλ|
Φ0

.
We note that this model is similar to that of the

Jaynes-Cummings Hamiltonian21,22, the difference aris-
ing in the coupling and intensity dependent term

EJ0 sin (2ξ) cos
(

πΦe

Φ0

)
f(n). It is well known that the

Jaynes-Cummings model exhibits collapse and revival
phenomena. That is, although the qubit initially ex-
hibits Rabi like oscillations these apparently disappear
and then subsequently revive22,23,24,25. This phenomena
is well understood both theoretically26,27,28 and exper-
imentally30,40. Hence, we might expect this system to
behave in a similar fashion. As we will see, this is indeed
the case.

A. Solution

The intrinsic decoherence approach9,31,33,34,35, is based
on the assumption that on sufficiently short-time steps
the system does not evolve continuously under unitary
evolution but rather in a stochastic sequence of iden-
tical unitary transformations. Under the Markovian

approximation9,31, the master equation governing the
time evolution for the system is given, to first order in
γ−1, by

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂] − γ

2~2
[Ĥ, [Ĥ, ρ̂]], (3)

where γ is the intrinsic decoherence parameter. The
first term on the right-hand side of equation (3) gen-
erates a coherent unitary evolution of the density ma-
trix, while the second term represents the decoherence
effect on the system and generates an incoherent dynam-
ics of the qubits system. In order to obtain an exact
solution for the density operator ρ̂(t) of the master equa-
tion (3), three auxiliary superoperators J, S and L can be

introduced9,31 as Jρ̂(t) = γĤρ̂(t)Ĥ , Sρ̂(t) = −i[Ĥ, ρ̂(t)]
and Lρ̂(t) = −(γ/2)(Ĥ2ρ̂(t) + ρ̂(t)Ĥ2).

Unlike state vectors, the density matrix can repre-
sent statistical mixtures of states. Hence, intrinsic deco-
herence implies that pure states may evolve into mixed
states. It is intriguing to ask a related question; if some
component of a system is initially in a mixed state is it
possible, in the presence of intrinsic decoherence, to use
this state to develop resources for quantum information
processing. In order to prepare such an initial state we
might consider the deliberate, and temporary, applica-
tion of an appropriate decohering environment. Alterna-
tively, it may be possible to apply some form of guidance
law37 to attain the desired state within the Bloch sphere.
Here, we suppose that the initial state of the Cooper pair
box is given by ρA(0) = ς1|e〉〈e| + ς2|g〉〈g|, where ςi ≥ 0,
and ς1 + ς2 = 1. In addition, we suppose that the ini-
tial state of the field is given by ρF (0) = |̟〉〈̟|, where

|̟〉 =
∞∑

n=0
bn|n〉, and b2n = |〈̟|n〉|2 being the probability

distribution of photon number for the initial state. It is
then straightforward to write down the formal solution
of the master equation (3) as follows

ρ̂(t) = exp(Jt) exp(St) exp(Lt)ρ̂(0)

=

∞∑

k=0

{
ς1M̂k(t)|e,̟〉〈̟, e|M̂ †

k(t) + ς2M̂k(t)|g,̟〉〈̟, g|M̂ †
k(t)

}
, (4)

where ρ̂(0) is the density operator of the initial state of
the system and

M̂k =
(γt)k/2

√
k!

Ĥk exp
(
−iĤt

)
exp

(
−γt

2
Ĥ2

)
. (5)

The so-called Kraus operators M̂k satisfy

∞∑
k=0

M̂k(t)M̂ †
k(t) = Î for all t.
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III. DYNAMICS

A. AC Josephson effect

The AC Josephson effect can be used to observe col-
lapse and revival in a condensed matter system. AC
Josephson effect involve interaction of the photons with
a junction which behaves like an atom undergoing tran-
sition between the quantum states of each side of the
junction as it adsorbs and emits radiation. To see this
phenomenon, we calculate the the time dependence of
the populations inversion 〈σ̂z(t)〉 for different values of
the decoherence parameter γ.

In Fig. 2, we plot the populations inversion and tangle
as a function of the scaled time λt where λ =

√
e2ω/~CF .

In this figure, we use the generalized mixed state form

of the tangle36 Sa = 2 minSi

∑
i(1 − Tr[(ρ

(i)
a )2]), where

ρ
(i)
a is the marginal state for the ith term in the en-

semble decomposition and Si is a convex combination
of the pure states. In the pure state case this defi-
nition will be reduced to the usual from of the tangle
Sa = 2(1 − Trρ2

a). Here we consider the single photon
process and Φe = Φ0/2 for all Josephson charge qubits,
and the gate voltage is adjusted to have the qubit on res-
onance with the cavity mode. It is interesting to show
collapse and revival of the populations inversion as the
system evolves, from an initial coherent state, for the mi-
crowave field. The interesting feature of the present case
is that the general state without decoherence effect is
host to entanglement between the junction and the field
and this provides an opportunity to study the dynam-
ics of such entanglement. To throw further light on the
matter we also show, in Fig. 2, the time evolution of the
mixed state tangle calculated from ρ̂(t) for the mixed ini-
tial state. Evidently, just as the occupation of the initial
qubit states collapses and revives, so does the tangle. In
close analogy with the Jaynes-Cummings model, the tan-
gle remains near zero for long periods between revivals.
The deterioration of revivals may be seen for γ/λ = 0.01
where the amplitude of oscillations is smaller than in the
case for larger γ/λwhere the revivales do not occur. Once
the initial state of the field is considered to be a thermal
state, the collapse-revival structure disappears. This ini-
tial atomic inversion collapses to the mid-level and does
not oscillate for some period of time, which is followed by
a quasichaotic behavior (in agreement with the standard
two-level system38).

It is evident that the effect of the mixed state param-
eter θ = π/3 leads to decreasing of 〈σ̂z(t)〉 amplitude
and increasing of the local maximum of the tangle with
small oscillations (see Fig. 2b). These small oscillations
will be observed even for a large interaction time. If we
consider θ = π/4, i.e. the initial state of the Cooper
pair box is given by ρA(0) = 0.5(|e〉〈e| + |g〉〈g|), we see
that 〈σ̂z(t)〉 = 0 and the tangle tends to its maximum
value. In this sense, the system has relatively high en-
tanglement. The smallest entanglement which is almost

25 50 75 100 125 150 175 200
lt

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

<
s
z
>
,
S
a

25 50 75 100 125 150 175 200
lt

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

<
s
z
>
,
S
a

25 50 75 100 125 150 175 200
lt

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

<
s
z
>
,
S
a

(c)

(b)

(a)

FIG. 2: (color online) Dynamics of the atomic inversion and
tangle as functions of the scaled time λt. The parameters are
ς1 = cos2θ and n̄ = 25. The other parameters are φ = 0.1;
ξ = π/2; EJ0 = 1 and k = 1. The three figures from above
have (a) θ = 0, γ = 0, (b) θ = π/3, γ = 0, and (c) θ = 0,
γ = 0.001.

zero is obtained only for initial pure state case. Similarly
to what we have seen in Fig. 2b, we observe how the
amplitude of 〈σ̂z(t)〉 decreases as the time goes on due
to the inclusion of intrinsic decoherence (see Fig. 2c).
Recall that, as time increases further, the intrinsic de-
coherence effect leads to zero inversion and maximum
entanglement.

It is interesting to mention here the fact that, in the ab-
sence of the decoherence, the final density matrix of the
system Eq. (4) can be rewritten as ρ̂(t) = |ψ(t)〉〈ψ(t)|
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where |ψ(t)〉 = |e〉⊗|Φe〉+|g〉⊗|Φg〉 and |Φj〉 are the field
states39. From our further calculations, we show that, at
a particular effective time the populations inversion and
the overlap of field states vanish simultaneously. That is,
the populations become equal and both the Cooper pair
box and field states are mutually orthogonal. Thereby,
the state equation |ψ(t)〉 becomes maximally entangled
at this particular effective time. We would like to remark
that the interest in studying the generation of maximally
entangled states in the short time region arises due to
the unavoidable presence of decoherence effects in ex-
periments performed at the high Q region due to cavity
dissipation. The experimental generation of entangled
states in the mesoscopic field regime has been reported
for fields with an average photon number of a few tens40.
In this regime, after the first collapse, the field splits into
two orthogonal humps in phase space. Thus, the field
behaves as an effective two-level system and the entan-
glement of the composite system is easily described in
terms of factorized states41,42.

B. Relative entropy

For the entangled states ρ̂(t) the quantum relative en-
tropy is defined as the distance between the entangled
state ρ̂(t) and disentangled state trAρ̂(t) ⊗ trBρ̂(t) ∈
S(H1 ⊗H2)

43

Iρ
(
ρAt , ρ

B
t

)
= trρ̂(t)(log ρ̂(t) − log(trAρ̂(t) ⊗ tr

B
ρ̂(t))),

(6)
where ρAt = trB (ρ̂(t)) and ρBt = trA (ρ̂(t)) , A(B) refers
to the first (second) qubit. Note that if the entan-
gled state ρ̂(t) is a pure state, S(ρ̂(t)) = 0 and then
S(trAρ̂(t)) = S(trBρ̂(t)), which means that we have
Iρ

(
ρA

t , ρ
B
t

)
= 2S(trBρ̂(t)).

Taking the partial trace over the junction system, we
obtain ρF

t = trAρ(t). The von Neumann entropy for the
reduced state S(ρF

t ) is computed as

S(ρF
t ) = −λF

1 (t) logλF
1 (t) − λF

2 (t) logλF
2 (t)

−λF
3 (t) logλF

3 (t) − λF
4 (t) logλF

4 (t), (7)

where λF
i (t) are the solutions of the following equation

det[ ˆρ(t)−λ(t) ˆN(t)] = 0, ˆρ(t) and ˆN(t) are 4×4 matrices
having the following elements

[
ˆρ(t)

]

ij
≡ 〈ψi(t)|ρF

t |ψj(t)〉, (i, j = 1, 2, 3, 4),

[
ˆN(t)

]

ij
≡ 〈ψi(t)|ψj(t)〉, (i, j = 1, 2, 3, 4), (8)

and |ψj(t)〉 are the eigenfunctions of the following eigen-
value problem ρF

t |ψi(t)〉 = λF
i (t)|ψi(t)〉.

On the other hand, the final state of the junction sys-
tem is given by taking the partial trace over the field
system ρJ

t ≡ trFρ(t). Then the von Neumann entropy
for the reduced state S(ρA

t ) is computed by

S(ρJ
t ) = −λJ

+(t) logλJ
+(t) − λJ

−(t) log λJ
−(t), (9)
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FIG. 3: (color online) Plot of Iρ

`

ρAt , ρ
B
t

´

as a function of the
scaled time λt. The Cooper pair box starts from a mixed state
with ς1 = 0.9 and the initial state of the field is a coherent
state with different values of the mean photon number, where
(a) n = 30 and (b) n = 0.5. The solid curve corresponds
to presence of the decoherence (γ = 0.1λ) and dotted curve
corresponds to absence of the decoherence (γ = 0).

where λJ
±(t) are the eigenvalues of the reduced junction

state ρJ
t .

Using equations (6), (7) and (9), we obtain the relative
entropy, which can be used to measure the total correla-
tion in the system under consideration. From the above
equations and the matrix elements which represent the
state of the field, we are able to determine under which
conditions we may attain reasonable correlations between
the junction and cavity field. Apart from the case rep-
resented above, in general there is no way to relate the
correlation dynamics exclusively to the initial field state.

In what follows, we shall analyze numerically whether
and how it would be possible to control the correlations
of the output state. In typical experiments, the Cooper-
pair box can be made from aluminum, with an energy
gap of 2.4K (about 50 GHz)44, the charge energy 149
GHz and the Josephson energy 13.0 GHz. The frequency
of the cavity field is taken as 40 GHz, corresponding to a
wavelength ∼ 0.75 cm. As a side remark, we note that,
the value Iρ

(
ρAt , ρ

B
t

)
= 2 ln(2) appears in analytical cri-

terion, based on an estimation of the composite system
entanglement. It will be worth analyzing this curious co-
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incidence in order to gain a deeper understanding of the
strengths and maximum points of the correlations. The
points of maximum correlation can be generated either
using equation (6) or, what seems more feasible, directly
from Fig. (3). In this figure, we plot Iρ

(
ρAt , ρ

B
t

)
as a

function of the scaled time and for different values of
the decoherence parameter γ, which is in agreement (at
t = 0) with the exact calculations for the Iρ

(
ρAt , ρ

B
t

)
.

This figure clearly shows that the correlations reaches a
local maximum before the first collapse time. Return-
ing to Fig. 3, after reaching its maximum the correla-
tion decays exponentially as a result of the dissipation
and/or the microwave field, attaining local minimum in
the asymptotic limit. Furthermore, the addition of in-
trinsic decoherence via the parameter γ leads to a drastic
change of the correlation properties, lowering the max-
imum values of the total correlations. It is interesting
to note that in this regime, the maximum correlations
occur at a time in which the two orthogonal states are
completely overlapped in phase space.

Since maximum correlation takes a finite time, it makes
sense to consider whether the small values of the mean
photon number can be used to change the process of cor-
relations. It is shown that, a similar effect of the decoher-
ence on the total correlation is seen in Fig. 3b for a small
value of the mean-photon number, but the number oscil-
lations is increased with decreasing the local minimum
Iρ

(
ρAt , ρ

B
t

)
≃ 0.2. We attribute our finding to the fact

that in the presence of decoherence it takes some time
for the junction to become entangled with the microwave
field. If during this entanglement buildup the system is
acted upon by an appropriately designed control, it be-
comes possible to channel back quantum coherence from
the field to the Cooper pair box. Our results thus re-
inforce the superconducting charge qubits as viable can-
didates for quantum-information processing devices, and
suggest that more refined control strategies might play
an important role in future of solid-state based quantum
information devices.

From the above results, one might now raise the fol-
lowing possibility: taking a strong decoherence regime
where γ ≫ 0.01λ, one can estimate the exact time in
which the total correlations will be vanished. Therefore,
if the intrinsic decoherence is substantially strong, no cor-
relations between the junction and the microwave field
will occur, suggesting that it might be possible to obtain
maximum entangled states using a weak decoherence. It
is straightforward to verify, however, that in order to do
so one would require a value of γ close to zero.

C. Concurrence

To measure the degree of entanglement for mixed
states of bipartite systems composed by two-level sub-
systems, one needs to consider a commonly used measure
such as the concurrence45 which has been proven to be a
reasonable entanglement measure or negativity46. Anal-

ysis of the entanglement decay rates under decoherence
for different models of the interaction between systems
of arbitrary dimensions with the environment has been
presented47. We write the standard basis of the product
space of the system as |00〉 = |g, n〉, |01〉 = |e, n〉, |10〉 =
|g, n + 1〉 and |11〉 = |e, n + 1〉. For the density matrix
ρ̂(t), which represents the state of a bipartite system,
concurrence is defined as

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4}, (10)

where the λi are the non-negative eigenvalues, in decreas-
ing order (λ1 ≥ λ2 ≥ λ3 ≥ λ4), of the Hermitian matrix

Υ ≡
√√

ρ̂ρ̃
√
ρ̂ and ρ̃ = (σy ⊗ σy) ρ̂∗ (σy ⊗ σy). Here, ρ̂∗

represents the complex conjugate of the density matrix
ρ̂ when it is expressed in a fixed basis and σy represents
the Pauli matrix in the same basis. The function C(ρ̂)
ranges from 0 for a separable state to 1 for a maximum
entanglement.

In figure (4), we plot the numerically evaluated results
for the concurrence C(ρ̂), as a function of the scaled
time λt and phase damping parameter γ in units of λ.
The overall picture coming from Fig. (4) is that the
recurrence dynamics due to large mean photon number
(n = 30) starts from zero, goes to a maximum and then
returns to zero. In an asymptotic limit the coupled sys-
tem reaches a pure state and stays in this pure state some
times (1 ≤ λt ≤ 5.3) then at some finite time weak entan-
glement is observed. Meanwhile, as shown in Fig. (4b),
due to small value of the mean photon number, no entan-
glement at earlier times, and suddenly at a certain time
entanglement starts to build up. This delayed creation
of entanglement, that has been called sudden birth of
entanglement13, is opposite to the currently extensively
discussed sudden death of entanglement15. We see that
C(ρ̂) falls off sharply as λt increases. The non-classical
character of the field for small values of the average pho-
ton number n, is reflected in larger entanglement between
the junction and the microwave field. As long as the time
is reasonably close to this threshold value and the mean
photon number takes small values, then the delayed cre-
ation of entanglement is still obtained. However, if we
start from a pure state, the asymptotic value of the con-
currence can be obtained when the phase damping is in-
creased. It is observed that, at later times decoherence
destroys such structures, in agreement with Fig. 3. We
have confirmed the predictions of this phenomenon us-
ing a systematic numerical analysis where a number of
relevant parameters has been varied. However, once the
initial state setting of the Cooper pair box is considered
as a mixed state, this feature no longer exists and entan-
glement vanishes in an asymptotic limit (see Fig. 4).

IV. PHASE SPACE APPROACH

To give a more detailed discussion, we are now going
to focus our attention on the field dynamics. The rep-
resentation of fields in phase space has been providing
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FIG. 4: (color online) Development of the concurrence C(ρ)
as a function of the scaled time λt and the decoherence pa-
rameter γ/λ. The other parameters are the same as figure
3.

new insights of the two-level system dynamics48. Per-
haps the most convenient quasiprobability to be used in
this kind of problem is the W−function. In this connec-
tion, it seems interesting to consider the Wigner function
corresponding to the final state of the present system.
Experimentally these functions can be measured via ho-
modyne tomography49. Since the quasi-probability dis-
tribution function is the Fourier transform of the char-
acteristic function, therefore the Wigner function can be
obtained from the direct evaluation of the integral

W (x, p) =
1

π

∞∫

−∞

〈x−x′|ρ(t)|x+x′〉 exp (2ipx′) dx′, (11)

According to Eq. (11) we have plotted in Fig. 5, the
Wigner function W (x, p) against the parameters x and

(a)

(b)

FIG. 5: Wigner distribution of the cavity field as function of
x and p. The parameters are α = 2.1, t = 0, θ = π/2 , (b) α =
2.1, t = 0, θ = 0. In this case we have assumed the initial state
of the junction is given by |ψ(0)〉J = cos(θ/2)|e〉+sin(θ/2)|g〉.

p for the initial state of the filed as coherent state. If
the Cooper pair box starts from a superposition state
(θ = π/2), we see that the Wigner function has nega-
tive values with a very little structure around the base,
see Fig. 11a. This in fact is a signature of the non-
classical effect. These negative values will not be seen if
the Cooper pair box starts from a pure state Fig. 11b.
From our further calculations, one may see that due to
the decoherence the quasiprobability distribution func-
tion is not as negative as in absence of the decoherence.
Of course, for greater values of the decadence parameter
the effect would be stronger. For t > 0 the two peaks
split into two sets of counter-rotating peaks during the
collapse. At longer times the W−function is spread out
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over an angular region in the xy−plane. If we combine
this observation with the fact that the entanglement de-
gree at this moment is almost maximum we can conclude
that the cavity field is in a pure state. As shown in48

although decoherence destroys the quantumness of the
field, information of the initial field may be obtained via
the reconstruction of quasiprobability distribution func-
tions.

V. CONCLUDING REMARKS

We have extended the exactly solvable model of a
single-Cooper-pair box with a nonclassical microwave
field, taking into account the decoherence effect. We
considered the charge-qubit with a superconducting-
quantum-interference-device loop and used the mi-
crowave field to change the flux through the loop. This
treatment puts the so far phenomenological description of
charge-qubit systems on a firm footing and paves the way
for a variety of future applications in particular because
the extension to an arbitrary number of charge qubits is
straightforward. Collapse and revival phenomenon have
been predicted via the Josephson effect that involve in-
teractions of the photons with the junction. The revivals
which may be seen in population inversion for small val-
ues of the decoherence parameter will not be occurred
for stronger decoherence. It is shown that, for certain
values of the initial average photon number, maximally
entangled state is generated.

We have presented a detailed analysis of the dynamics
of the process of the total correlation in a junction-field

system. For the weak-field region, the behavior is es-
sentially oscillatory, while for the strong-field region, the
correlation tends to be randomized in the evolution, al-
though showing collapses and revivals. To measure the
degree of entanglement for mixed states of junction-field
system, we have considered the concurrence which is a
commonly used measure. We have investigated numer-
ically results of the concurrence by considering the in-
fluences of the mean-photon number and intrinsic deco-
herence in the junction-field system. We have shown an
interesting phenomenon of delayed birth of entanglement
that initially separable junction and field become entan-
gled after a finite time. Similar to the correlation case,
the decoherence leads to lowering the maximum entan-
glement and further increase of the decoherence leads to
entanglement sudden death. Further analysis using the
evolution of the field W−function showed us that for a
given field coherent intensity n, there is an optimum value
of the decoherence parameters for which the quasiprob-
ability distribution has no negative values. Given the
general interest in superconducting qubits as a device for
quantum information processing, including the realiza-
tion of complex single-qubit manipulation schemes and
the generation of entangled states50, we feel these results
may find great utility in future applications.
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