

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288381804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Inferring Descriptive Generalisations of Formal
LanguagesI

Dominik D. Freydenbergera,∗, Daniel Reidenbachb

aInstitut für Informatik, Johann Wolfgang Goethe-Universität,
Postfach 111932, 60054 Frankfurt am Main, Germany

bDepartment of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

Abstract

In the present paper, we introduce a variant of Gold-style learners that is not
required to infer precise descriptions of the languages in a class, but that must
find descriptive patterns, i. e., optimal generalisations within a class of pattern
languages. Our first main result characterises those indexed families of recur-
sive languages that can be inferred by such learners, and we demonstrate that
this characterisation shows enlightening connections to Angluin’s correspond-
ing result for exact inference. Furthermore, this result reveals that our model
can be interpreted as an instance of a natural extension of Gold’s model of
language identification in the limit. Using a notion of descriptiveness that is
restricted to the natural subclass of terminal-free E-pattern languages, we in-
troduce a generic inference strategy, and our second main result characterises
those classes of languages that can be generalised by this strategy. This char-
acterisation demonstrates that there are major classes of languages that can be
generalised in our model, but not be inferred by a normal Gold-style learner.
Our corresponding technical considerations lead to insights of intrinsic interest
into combinatorial and algorithmic properties of pattern languages.

Keywords: Inductive inference, Descriptive generalisation, Pattern languages,
Descriptive patterns, Upper approximate identification from positive data

1. Introduction

In Gold’s intensively studied learning paradigm of language identification in
the limit from positive data (cf. Gold [12]), it is a requirement for the compu-
tational learner to infer, for any positive presentation of any language in some
class, an exact description of that language. While this maximum accuracy of

IA preliminary version of this work was presented at COLT 2010 [10].
∗Corresponding author.
Email addresses: freydenberger@em.uni-frankfurt.de (Dominik D. Freydenberger),

D.Reidenbach@lboro.ac.uk (Daniel Reidenbach)

Preprint submitted to Elsevier October 18, 2012

the output of the inference procedure is clearly a natural goal, it has a number
of downsides, the most obvious one being the fact that it can lead to significant
limitations to the learning power of the model. From a more applied point of
view, there is another important reason why one might wish to relax it and set-
tle for receiving an approximation of the language from the learner: depending
on the class of languages to be inferred, the corresponding grammars or accep-
tors might have undesirable properties, i. e., they might have computationally
hard decision problems or be incomprehensible to a (human) user. Thus, in
various settings it might be perfectly acceptable for an inference procedure to
output a compact and reasonably precise approximation of the language instead
of producing a precise yet arbitrarily complex grammar.

In the present paper, we introduce and study such a variant of Gold’s model,
where the requirement of exact language identification is dropped and replaced
with that of inference of easily interpretable approximations. More precisely, we
consider a learner that, for any language it reads, must converge to a consistent
pattern, i. e., a finite string that consists of variables and of terminal symbols
and that can be turned into any word of the language by substituting arbitrary
strings of terminal symbols for the variables. In addition to being seen as mere
descriptions of common features of words in a given language, such a pattern α
can also be interpreted as a generator of a formal language L(α), the so-called
pattern language (cf. Angluin [1]), which is simply the maximum set of words the
pattern is consistent with. Hence, referring to this terminology, we can state that
our learner has to output a pattern generating a language that is a superset of
the input language, which means that our approach does not yield an arbitrary
approximation of a language, but rather a generalisation. Even though many
classes of pattern languages have a number of NP-complete or undecidable basic
decision problems (see, e. g., Angluin [1], Jiang et al. [16], and Freydenberger
and Reidenbach [8]), patterns (or related concepts, such as regular expressions
and their various extensions implemented in today’s programming languages
and text editors, see Câmpeanu et al. [4]) are widely used when commonalities
of words are to be specified or interpreted by a human user, which demonstrates
that they are a worthwhile concept in the context of our paper.

When inferring consistent patterns instead of precise descriptions, it is of
course vital to develop and employ a notion of high-quality patterns, so that
the inference procedure does not lead to an overly imprecise result. Otherwise,
the learner could always output the pattern α := x1 (where x1 is a variable),
which is consistent with every language, and this approach would obviously nei-
ther lead to a rich theory nor to practically relevant results. In our model, the
inference procedure shall therefore be required to converge to a pattern δ that
is descriptive of the language L (with respect to a class PAT? of pattern lan-
guages). This means that δ must be consistent with L, L(δ) must be included in
PAT?, and there is no pattern δ′ satisfying L(δ′) ∈ PAT? and L ⊆ L(δ′) ⊂ L(δ);
in other words, a pattern is descriptive of a language if there is no other pat-
tern providing a closer match for the language. Since descriptiveness captures
a natural understanding of patterns providing a desirable generalisation of lan-
guages and, furthermore, descriptive patterns can be used to devise Gold-style

2

learners precisely identifying classes of pattern languages from positive data,
this concept has been thoroughly investigated (see, e. g., Angluin [1], Jiang et
al. [16], and Freydenberger and Reidenbach [9]), and the same holds for optimal
approximations of other types of languages (see, e. g., Arimura et al. [3]). While
established definitions of descriptiveness often restrict their view to patterns
covering finite languages and normally use the full class of E- or NE-pattern
languages (to be formally introduced in Section 2) as the class PAT? of admis-
sible pattern languages, we allow a descriptive pattern to cover a finite or an
infinite language, and we have a class PAT? that can be arbitrarily chosen. Both
of these extensions of the original definition are absolutely straightforward.

To summarise our model of inference, we consider a learner that reads a
positive presentation of a language and, after having seen a new input word,
outputs a pattern, the so-called hypothesis. We then say that, for a class L of
languages and a class PAT? of pattern languages, the learner PAT?-descriptively
generalises L if and only if, for every positive presentation of every language
L ∈ L, the sequence of hypotheses produced by the learner converges to a
pattern δ that is descriptive of L with respect to the class PAT?. A more formal
definition of our model is given in Section 4.1.

While the focus of research in inductive inference from positive data has been
on exact identification, there are quite a few of studies of paradigms where –
either directly or indirectly – approximations of languages are inferred; however,
the motivation for this research often differs substantially from ours as described
at the beginning of the present section. We now shall briefly summarise these
approaches in order to highlight the differences to our model. Mukouchi [23] in-
troduces the concept of strong-minimal inference and minimal inference, where
the learner needs to converge to a minimum generalisation for any language
(or, respectively, for any language where such a minimum generalisation exists
among the admissible hypotheses). Hence, the model does not support an ex-
plicit restriction to a specific class L of languages that need to be generalised
by the learner. The notion of upper approximate identification by Kobayashi
and Yokomori [19] considers the inferrability of minimum generalisations of lan-
guages and features an explicit split between a class L of languages to be gen-
eralised and a class of admissible hypotheses. Hence – apart from the fact that
our model, unlike upper approximate identification, is not restricted to indexed
families L, but rather restricts the nature of the hypotheses – this model is
virtually identical to our approach. However, the focus of the paper [19] (and
of subsequent studies; see, e. g., Kobayashi and Yokomori [20] and Fernau [6]) is
on a different inference paradigm, namely upper-best approximate identification,
where the topology of the class of hypotheses is restricted, as it needs to contain,
for every language to be generalised, a semantically unique minimal generali-
sations. Such a property does not hold for the classes of pattern languages we
shall use as a hypothesis space, and many of our technical results deal with ex-
actly this aspect of competing descriptive generalisations, i. e., the existence of
several descriptive patterns with incomparable languages for the language to be
inferred. Finally, Jain and Kinber [14] introduce the model of ResAllMWSubEx,
which does not directly draw its motivation from the wish of investigating the

3

inference of approximations of languages, but is nevertheless similar to upper
approximate identification studied by Kobayashi and Yokomori [19]. More pre-
cisely, this model again considers convergence to a minimal generalisation of
the language that is presented to the learner, but it allows hardly any control
over these languages, since they can be any sublanguage of any language in the
hypothesis space.

In summary, the main difference between our notion of descriptive generali-
sation and all related approaches described above is that we have a distinct split
between a class L of languages to be inferred and an arbitrary class PAT? of
pattern languages determining the set of admissible hypotheses. This leads to
a compact and powerful model that yields interesting insights into the question
of to which extent the generalisability of L depends on properties of L or of
PAT?. We discuss this topic in Section 4.2, and we demonstrate in Section 4.3
that descriptive generalisation can be interpreted as a natural instance of a very
general and simple inference model which, to the best of our knowledge, has not
been considered so far.

In Section 5, we investigate our model for a fixed and rich class PAT?, namely
the class of terminal-free E-pattern languages, i. e., the class of all pattern lan-
guages generated by patterns not containing any terminal symbols, where the
empty word may be substituted for the variables in the pattern. Our studies
reveal that, for this choice of PAT?, descriptive generalisation and inductive in-
ference from positive data are incomparable, and they show that there are major
and natural classes of formal languages that can be descriptively generalised ac-
cording to our model, but not precisely inferred in Gold’s model. Technically,
our decision to focus on terminal-free E-pattern languages leads to a number
of substantial combinatorial challenges for pattern languages, and we present
various respective insights and tools of intrinsic interest (see Sections 3 and 5.1).

2. Definitions

This paper is largely self-contained. For language theoretic and recursion
theoretic notations not explicitly defined, Rozenberg and Salomaa [30] and
Rogers [29] can be consulted, respectively.

Let N := {0, 1, 2, 3, . . .} and let ∞ denote infinity. The symbols ⊆, ⊂, ⊇
and ⊃ refer to subset, proper subset, superset and proper superset relation,
respectively. The symbols P and \ denote the power set and the set difference,
respectively. For an arbitrary alphabet A, a string (over A) is a finite sequence
of symbols from A, and λ stands for the empty string. The symbol A+ denotes
the set of all nonempty strings over A, and A∗ := A+ ∪ {λ}.

For any alphabet A, a language L (over A) is a set of strings over A, i. e.,
L ⊆ A∗. A language L is empty if L = ∅; otherwise, it is nonempty. A class L
of languages (over A) is a set of languages over A, i. e., L ⊆ P(A∗). Let FINA

denote the class of all finite languages over A.
For the concatenation of two strings w1, w2 we write w1 ·w2 or simply w1w2.

We say that a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗

4

such that w = u1vu2. The notation |K| stands for the size of a set K or the
length of a string K; the term |w|a refers to the number of occurrences of the
symbol a in the string w. For any w ∈ Σ∗ and any n ∈ N, wn denotes the
n-fold concatenation of w, with w0 := λ. Furthermore, we use · and the regular
operations ∗ and + on sets and strings in the usual way.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. Given morphisms g : A∗ → B∗ and
g : B∗ → C∗ (for alphabets A, B, C), their composition h ◦ g is defined by
h ◦ g(w) := h(g(w)) for all w ∈ A∗. For every morphism h : A∗ → B∗ and every
language L ⊆ A∗, we define h(L) :=

⋃
w∈L{h(w)}.

A morphism h : A∗ → B∗ is said to be nonerasing if h(a) 6= λ for all a ∈ A.
For any string w ∈ C∗, where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the
morphism h : A∗ → B∗ is called a renaming (of w) if h : C∗ → B∗ is injective
and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ∩X = ∅. We normally assume
{a, b, . . .} ⊆ Σ and {x1, x2, x3 . . .} ⊆ X. A pattern is a string over Σ ∪ X, a
terminal-free pattern is a string over X and a word is a string over Σ. The set
of all patterns over Σ ∪X is denoted by PatΣ. For any pattern α, we refer to
the set of variables in α as var(α), and to the set of terminal symbols in α as
symb(α).

A morphism σ : (Σ ∪X)
∗ → (Σ ∪X)

∗
is called terminal-preserving if σ(a) =

a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)
∗ → Σ∗ is called

a substitution.
The NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution},

and the E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution}.

If the correspondence is clear, we write L(α) instead of LE,Σ(α) or LNE,Σ(α).
Let ePATΣ denote the class of all E-pattern languages over Σ, and ePATtf,Σ the
class of all terminal-free E-pattern languages over Σ.

Let PAT?,Σ be a class of NE-pattern languages or a class of E-pattern lan-
guages over Σ. We say that a pattern δ ∈ (Σ ∪X)+ is PAT?,Σ-descriptive of a
language L ⊆ Σ∗ if and only if L(δ) ∈ PAT?,Σ, L(δ) ⊇ L, and there is no pattern
α with L(α) ∈ PAT?,Σ satisfying L ⊆ L(α) ⊂ L(δ). Furthermore, DPAT?,Σ

(L)
denotes the set of all patterns that are PAT?,Σ-descriptive of L.

Let L be a class of languages over some alphabet A. Then L is said to
be indexable provided that there exists an indexing (Li)i∈N of languages Li
such that, first, L = {Li | i ∈ N} and, second, there exists a total computable
function χ which uniformly decides the membership problem for (Li)i∈N – i. e.,
for every w ∈ A∗ and for every i ∈ N, χ(w, i) = 1 if and only if w ∈ Li . In
this case, we call L = (Li)i∈N an indexed family (of recursive languages). Of
course, in this notation for an indexed family (which conforms with the use in

5

the literature) the equality symbol “=” does not refer to an equality in the usual
sense, but is merely a symbol indicating that L contains all languages in (Li)i∈N
and vice versa.

3. Basic Results on Pattern Languages

Obviously, the definition of a descriptive pattern is based on the inclusion
of pattern languages, which is an undecidable problem for both the full class
of NE-pattern languages and the full class of E-pattern languages (cf. Jiang et
al. [17], Freydenberger and Reidenbach [8]). A significant part of our subse-
quent technical considerations, however, is restricted to terminal-free E-pattern
languages, where the inclusion problem is known to be decidable. This directly
results from the following characterisation:

Theorem 1 (Jiang et al. [17]). Let |Σ| ≥ 2. For every α, β ∈ X+, LE,Σ(α) ⊆
LE,Σ(β) holds if and only if there is a morphism φ : X∗ → X∗ with φ(β) = α.

Unfortunately, this problem is NP-complete:

Theorem 2 (Ehrenfeucht and Rozenberg [5]). Let Σ be an alphabet with |Σ| ≥
2. Then the inclusion problem for ePATtf,Σ is NP-complete.

On the other hand, in conjunction with Reidenbach and Schneider [27], a
recent result by Holub [13] demonstrates that the equivalence problem can be
decided in polynomial time:

Theorem 3. There is a polynomial-time algorithm deciding, for any pair of
terminal-free patterns α, β and for any alphabet Σ with |Σ| ≥ 2, on whether
LE,Σ(α) = LE,Σ(β).

Proof. As mentioned by Reidenbach and Schneider [27], LE,Σ(α) = LE,Σ(β)
holds if and only if the so-called morphic roots of α and β are identical up to a
renaming.

Thus, to decide whether LE,Σ(α) = LE,Σ(β) holds for patterns α, β ∈ X+,
one first computes the morphic roots αρ and βρ of α and β, respectively. Ac-
cording to Holub [13], this step can be executed in time that is polynomial in
the length of the input.

In the second step, one checks whether there is a renaming mapping αρ to
βρ. By definition of morphic roots, |αρ| ≤ |α| and |βρ| ≤ |β| hold; hence, this
step can also be executed in polynomial time.

As shown by Freydenberger and Reidenbach [9], not every language has an
ePATtf,Σ- or an ePATΣ-descriptive pattern:

Theorem 4. There is an infinite sequence (βn)n≥0 over X+ such that, for
every alphabet Σ with |Σ| ≥ 2, DePATtf,Σ

(LΣ) = DePATΣ
(LΣ) = ∅ holds for the

language LΣ :=
⋃
n≥0 LE,Σ(βn).

Proof. This follows immediately from the proof of Theorem 12 in [9].

6

Note that LΣ is an infinite language (and, in fact, an infinite union of lan-
guages from ePATtf,Σ). In contrast to this, Jiang et al. [16] show that every finite
language has an ePATΣ-descriptive pattern. This is also true when considering
ePATtf,Σ-descriptive patterns:

Proposition 5. For every Σ with |Σ| ≥ 2 and every finite nonempty S ∈ FINΣ,
DePATtf,Σ

(S) 6= ∅, and a δ ∈ DePATtf,Σ
(S) can be effectively computed.

Proof. This can be shown using the same reasoning as in the proof of Theo-
rem 8.1 in [16]. Let S = {w1, . . . , wn} ⊂ Σ∗ for some n ≥ 1 and denote

cS :=

n∑
i=1

|wi|.

Our claim is that for every α ∈ X+ with LE,Σ(α) ⊃ S, there is a β ∈ X+ with
LE,Σ(α) ⊇ LE,Σ(β) ⊇ S and |β| ≤ cS . If LE,Σ(α) ⊃ S, there are morphisms
φ1, . . . , φn : X∗ → Σ∗ with φi(α) = wi for i ∈ {1, . . . , n}. Let R := {x ∈
var(α) | φi(x) = λ for all i}, define the morphism ρ : X∗ → X∗ through

ρ(x) :=

{
λ if x ∈ R,
x if x /∈ R,

and let β := ρ(α). It is easily seen that |β| ≤ cS and φi(β) = (φi ◦ ρ)(α) =
φi(α) = wi for every i. Thus, LE,Σ(α) ⊇ LE,Σ(β) ⊃ S holds.

As there are only finitely many terminal-free patterns (modulo renaming) of
length at most cS , there must be a pattern δ ∈ X+ with |δ| ≤ cS , LE,Σ(α) ⊇
LE,Σ(δ) and δ ∈ DePATtf,Σ

(S).
This also leads to the desired effective procedure that returns a pattern

δ ∈ DePATtf,Σ
(S): As an initial value, choose α := x1. In every step, try to find

a pattern β ∈ X+ with LE,Σ(α) ⊃ LE,Σ(β) ⊇ S and |β| ≤ cS . If such a pattern is
found, let α := β, and search again. If no such pattern is found, δ ∈ DePATtf,Σ

(S)
must hold. As the search space is finite, and all involved inclusions problems
are decidable (cf. Theorem 1), the whole procedure is effective.

While Proposition 5 yields the existence of an ePATtf,Σ-descriptive pattern
for every finite nonempty set, its proof makes use of a procedure that computes a
descriptive pattern in a costly manner, since it solves the NP-complete inclusion
problem (cf. Theorem 2) for an exponential number of patterns. Indeed, there
is probably no algorithm that solves this problem in polynomial time:

Theorem 6. If P 6= NP, then there is no polynomial-time algorithm that, for
every alphabet Σ and every finite set S ⊂ Σ∗ of words, computes a pattern that
is ePATΣ-descriptive of S.

Proof. We prove the contraposition of the theorem. Thus, we assume that there
is an algorithm χδ computing, for every alphabet Σ and every finite set S ⊆ Σ∗

of words, a pattern that is ePATΣ-descriptive of S, and we shall use χδ to decide

7

the inclusion problem for terminal-free E-pattern languages in polynomial time.
Since this problem is NP-complete (see Theorem 2), we can conclude P = NP.

Let α, β ∈ X∗ be any patterns. W. l. o. g., we assume that var(α)∩ var(β) =
∅. Let Σ be an alphabet with |Σ| = | var(α)| + | var(β)|, and let the morphism
r : (var(α) ∪ var(β))∗ → Σ∗ be a renaming. This implies that there is an
inverse morphism r−1 with r−1(r(α)) = α and r−1(r(β)) = β, and symb(r(α))∩
symb(r(β)) = ∅. We define S := {r(α), r(β)}, and we use χδ to compute a
pattern δ that is ePATΣ-descriptive of S. Since symb(r(α))∩ symb(r(β)) = ∅, δ
is terminal-free. Furthermore, we can use the reasoning given by Jiang et al. [16]
for their Theorem 8.1 to verify that |δ| ≤ |r(α)|+ |r(β)|. We can therefore use a
polynomial-time algorithm χ= (the existence of which is ensured by Theorem 3)
to decide on whether LE,Π(β) = LE,Π(δ) for any alphabet Π with |Π| ≥ 2. Since
the question of whether LE,Π(β) equals LE,Π(δ) does not depend on the actual
size of Π and since |Σ| ≥ 2, we may, w. l. o. g., define Π := Σ.

We now show that LE,Σ(β) = LE,Σ(δ) if and only if LE,Σ(α) ⊆ LE,Σ(β):
If LE,Σ(α) 6⊆ LE,Σ(β), then, according to Theorem 1, there exists no mor-

phism φ : X∗ → X∗ satisfying φ(β) = α. Thus, there does not exist a substi-
tution σ with σ(β) = r(α), since otherwise the morphism φ := r−1 ◦ σ would
satisfy φ(β) = α. On the other hand, by definition, there exists a substitution
τ with τ(δ) = r(α), and therefore r(α) ∈ LE,Σ(δ) \ LE,Σ(β). This immediately
implies LE,Σ(β) 6= LE,Σ(δ).

If LE,Σ(α) ⊆ LE,Σ(β), then there exist substitutions σ, σ′ with σ(β) = r(α)
and σ′(β) = r(β). Hence, S ⊆ LE,Σ(β). Furthermore, since δ is ePATΣ-
descriptive of S, there exists a substitution τ with τ(δ) = r(β). Thus, r−1 ◦
τ(δ) = β, and therefore, according to Theorem 1, LE,Σ(β) ⊆ LE,Σ(δ). If we now
assume to the contrary that LE,Σ(β) 6= LE,Σ(δ), then this implies LE,Σ(β) ⊂
LE,Σ(δ). Consequently, LE,Σ(δ) ⊃ LE,Σ(β) ⊇ S. This is a contradiction to the
assumption that δ is ePATΣ-descriptive of S. Hence, LE,Σ(β) = LE,Σ(δ).

Consequently, since |r(α)|+ |r(β)| is polynomial in |α|+ |β| and the runtimes
of χδ and χ= are polynomial in |r(α)| + |r(β)|, we have a polynomial-time
algorithm deciding the inclusion problem for the class of terminal-free E-pattern
languages over any alphabet Σ with |Σ| ≥ 2. Due to our initial remarks, this
proves the theorem.

Theorem 6 addresses a problem left open by Jiang et al. [16], and it provides
a result that, apart from the fact that it depends on an unbounded terminal
alphabet, is stronger than the corresponding statement by Angluin [1] on NE-
descriptive patterns.

Since Theorem 6 can be proved using terminal-free patterns only, we can
strengthen the corresponding result as follows:

Corollary 7. If P 6= NP, then there is no polynomial-time algorithm that, for
every alphabet Σ and every finite set S ⊂ Σ∗ of words, computes a pattern that
is ePATtf,Σ-descriptive of S.

8

4. Inferring Descriptive generalisations

In the present section, we formally introduce our notion of inferring descrip-
tive generalisations, establish some of its basic properties (mainly by character-
ising, for any class of pattern languages determining the set of valid hypothe-
ses, those indexed families that can be generalised in our model) and, finally,
present a much more general inference paradigm that captures the essence of
our approach. If we wish to compare Gold’s well-known model of language iden-
tification in the limit from positive data (cf. Gold [12]) with our model, then
we refer to the former occasionally as LIM-TEXT. We use the same notation
for the class of all classes of languages that can be inferred in that model; the
meaning of this term shall therefore follow from the context.

4.1. The Inference Paradigm

We formalise our explanations of the model given in Section 1 as follows: For
any alphabet Σ and any nonempty language L ⊆ Σ∗, we call a total function
t : N → Σ∗ a text of L if and only if it satisfies {t(i) | i ∈ N} = L. Moreover,
for every text t and every n ∈ N, tn encodes the first n values of t in a single
string, i. e., tn := t(1)∇ t(2)∇ t(3)∇ · · · ∇ t(n) with ∇ 6∈ Σ; additionally, we
define t[n] := {t(i) | i ≤ n}. Finally, text(L) denotes the set of all (computable
and non-computable, repetitive and non-repetitive) texts of a language L.

Let L be a class of nonempty languages over an alphabet Σ, and let PAT?,Σ
be a class of NE-pattern languages or a class of E-pattern languages over Σ.
Then L is PAT?,Σ-descriptively generalisable (or, if PAT?,Σ is understood, (de-
scriptively) generalisable for short) if and only if there exists a computable
function S : (Σ ∪ {∇})∗ → (Σ ∪X)+ such that, for every L ∈ L and for every
t ∈ text(L), S(tn) is defined for every n ∈ N, and there is a δ ∈ (Σ ∪X)+ with
δ ∈ DPAT?,Σ

(L) and there is an m ∈ N with S(tn) = δ for every n ≥ m. We
call S a (generalisation) strategy and, for every n ∈ N, S(tn) a hypothesis of S.
The notation DGPAT?,Σ refers to the class of all classes of languages that are
PAT?,Σ-descriptively generalisable.

Consequently, and as already mentioned in Section 1, we have an inference
model where the class to be inferred and the hypothesis space (we shall use this
term in a rather informal manner for both the class PAT?,Σ and any set Pat?
of patterns satisfying PAT?,Σ = {LΣ(α) | α ∈ Pat?}) may be entirely different
objects. We feel that this feature precisely reflects our motivation as outlined
in Section 1, and it establishes the difference of our approach from a number of
related models.

4.2. Fundamental Insights into the Model

We now discuss some basic properties of descriptive generalisation without
considering a specific class of pattern languages determining the hypothesis
space. At first glance, the definitions of descriptive generalisation and of the
LIM-TEXT model are closely related, and our first observation states that they
are indeed equivalent if they are applied to any class of pattern languages:

9

Proposition 8. Let PAT?,Σ be a class of pattern languages. Then PAT?,Σ ∈
LIM-TEXT if and only if PAT?,Σ ∈ DGPAT?,Σ .

Proof. Directly from the definitions of LIM-TEXT and DGPAT?,Σ
.

Thus, in such a lineup, insights into our model can directly be derived from
the research on inductive inference of pattern languages (see, e. g., Angluin [1],
Shinohara [31], Lange and Wiehagen [21], Wiehagen and Zeugmann [32], Reis-
chuk and Zeugmann [28], Reidenbach [25, 26], Ng and Shinohara [24]).

While descriptive generalisation and inductive inference from positive data,
thus, seem to be very similar, there are major differences between these two
models. In fact, there are classes that can be descriptively generalised, although
neither the class nor the hypothesis space can be exactly inferred from positive
data:

Proposition 9. There exists a class L of languages and a class PAT?,Σ of
pattern languages satisfying L /∈ LIM-TEXT, PAT?,Σ /∈ LIM-TEXT, and L ∈
DGPAT?,Σ

.

Proof. The statement follows from our Corollaries 26 and 31 in Section 5 and
the fact that ePATtf,Σ /∈ LIM-TEXT for |Σ| = 2 (cf. Reidenbach [25]).

Since the definition of descriptive generalisation allows any class of pattern
languages to be chosen as a hypothesis space, we can even devise a maximally
powerful (yet utterly useless) generalisation strategy:

Proposition 10. Let Σ be an alphabet. There exists a class PAT?,Σ of pattern
languages such that every class L of languages over Σ satisfies L ∈ DGPAT?,Σ .

Proof. Let PAT?,Σ := {LE,Σ(x1)}. Since x1 is PAT?,Σ-descriptive of every lan-
guage L ⊆ Σ∗, a strategy S that constantly outputs x1 generalises L.

Obviously, the substantial gap between the LIM-TEXT model and descrip-
tive generalisation illustrated by Proposition 10 is based on a proof that uses a
trivial notion of descriptiveness. In Section 5, we shall demonstrate that there
are similarly deep differences between both models if a natural and nontrivial
class of pattern languages, namely ePATtf,Σ, is used as admissible hypotheses
for the generalisation process.

The main result of the present section is the following characterisation of
descriptively generalisable indexed families of recursive languages. While our
model as well as our studies in Section 5 consider descriptive generalisations of
arbitrary classes of languages, this restriction facilitates an interesting compar-
ison of our result to Angluin’s characterisation of those indexed families that
are inferable in the LIM-TEXT model (see [2]). It is also worth noting that the
following argument cannot be based on strong insights into the descriptiveness
of patterns, since we deal with arbitrary classes of pattern languages.

10

Theorem 11. Let Σ be an alphabet, let L = (Li)i∈N be an indexed family
of nonempty recursive languages over Σ, and let PAT?,Σ be a class of pattern
languages. L = (Li)i∈N ∈ DGPAT?,Σ

if and only if there are effective procedures
d and f satisfying the following conditions:

(i) For every i ∈ N, there exists a δd(i) ∈ DPAT?,Σ
(Li) such that procedure d,

on input i, enumerates a sequence of patterns di,0, di,1, di,2, . . . satisfying,
for all but finitely many j ∈ N, di,j = δd(i).

(ii) For every i ∈ N, procedure f , on input i, enumerates a finite set Fi ⊆ Li
such that, for every j ∈ N with Fi ⊆ Lj, if δd(i) /∈ DPAT?,Σ(Lj), then there
is a w ∈ Lj with w /∈ Li.

Before we give a proof of Theorem 11, we wish to point out that the index
d(i) of the pattern δd(i) does not refer to an enumeration of the patterns in
DPAT?,Σ(Li), but is merely used as an identifier of this particular pattern. Hence,
in other words, δd(i) is nothing but the pattern that d converges to when given
input i.

Proof. We begin with the if direction. In our proof, F
(m)
i refers to the subset

of Fi that is enumerated by f in m ∈ N steps of the computation.
We define a generalisation strategy S as follows: For any text t and for any

m ∈ N, when given tm as an input, S outputs the pattern di,m, where i ∈ N is
the smallest index satisfying:

(a) t[m] ⊆ Li and

(b) F
(m)
i ⊆ t[m].

If no such i exists, then S outputs d0,0.
Since L = (Li)i∈N is an indexed family, which means that the membership

problem is uniformly decidable for all i and for all w ∈ Σ∗, and d and f are
effective, it is obvious that S is computable and defined for every input tm.

We now demonstrate that S PAT?,Σ-descriptively generalises L = (Li)i∈N if
(i) and (ii) are satisfied. Thus, we choose an arbitrary n ∈ N and an arbitrary
text t of Ln, and we show that S, when reading t, converges to a pattern that is
PAT?,Σ-descriptive of Ln. Before we start our actual reasoning, we determine
a value m0 ∈ N such that a number of vital parameters for the computation of
S(tm0) have already stabilised:

Let m1 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n and
Lk 6⊇ Ln, t[m1] contains a word w satisfying w /∈ Lk. The value m1 must exist
since Lk 6⊇ Ln and t is a text of Ln.

Let m2 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n,
dk,m = δd(k) for every m ≥ m2. The value m2 must exist due to (i).

Let m3 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n,

F
(m3)
k = Fk. The value m3 must exist since, according to (ii), Fk is finite.

Let m4 ∈ N be sufficiently large such that Fn ⊆ t[m4]. The value m4 must
exist since t is a text of Ln and, according to (ii), Fn ⊆ Ln.

11

Then m0 := max{m1,m2,m3,m4, n}.
Referring to these definitions, our proof of the if direction is based on the

following Claims:

Claim 1. For every m ≥ m0, n satisfies t[m] ⊆ Ln, and F
(m)
n ⊆ t[m].

Proof (Claim 1). The first part of the statement holds since t is a text of Ln;
the second part holds because of m ≥ m0 ≥ m4. (Claim 1)

Claim 2. For every m ≥ m0, S(tm) ∈ DPAT?,Σ(Ln).

Proof (Claim 2). Let S(tm) = dk,m. By definition, S outputs the pattern dk,m
for the smallest index k ≤ m satisfying conditions (a) and (b), or it outputs the
auxiliary hypothesis d0,0 if such a k does not exist. Due to Claim 1, and since
m ≥ m0, we know that there exists at least one index (namely n) satisfying (a)
and (b) for tm. Thus, m ≥ m0 ≥ n implies that S does not choose to output
its auxiliary hypothesis. Therefore, the following statements hold true for k:

(1) k ≤ n (since S outputs dk,m for the smallest k satisfying conditions (a)
and (b) of the definition of S),

(2) dk,m = δd(k) (because of m ≥ m0 ≥ m2 in conjunction with statement
(1)),

(3) t[m] ⊆ Lk (because of condition (a)), and

(4) Fk ⊆ t[m] ⊆ Ln (because of m ≥ m0 ≥ m3 in conjunction with statement
(1), and due to condition (b)).

Now assume to the contrary that S(tm) = dk,m /∈ DPAT?,Σ
(Ln). Due to state-

ment (2), this means that δd(k) /∈ DPAT?,Σ
(Ln). Then statement (4) and condi-

tion (ii) of the Theorem imply that there exists a word w ∈ Ln \Lk which, due
to m ≥ m0 ≥ m1 in conjunction with statement (1), satisfies w ∈ t[m]. Hence,
t[m] 6⊆ Lk. This contradicts statement (3). (Claim 2)

Claim 3. There is a pattern δ and an m′ ≥ m0 such that, for every m ≥ m′,
S(tm) = δ.

Proof (Claim 3). Due to statement (1) in the proof of Claim 2 and m ≥ m0 ≥
m2, there is only a finite number of possible hypotheses – namely δd(0), δd(1), . . . ,
δd(n) – that S can output when reading tm. Therefore, it is sufficient to show
that a hypothesis, once it has been discarded, is not chosen by S anymore. More
precisely, we prove that if, for an l0 ≥ m, S(tl0) = δd(k) and S(tl0+1) 6= δd(k),

then, for every l ≥ l0 + 1, there exists a k′ 6= k with S(tl) = δd(k′).

Since l0 ≥ m ≥ m3, S(tl0) = δd(k) implies

(A) t[l0] ⊆ Lk and

(B) Fk ⊆ t[l0].

12

By definition, t[l0 + 1] ⊇ t[l0], and therefore (B) is satisfied for tl0+1, too. Thus,
the only event that can trigger a change of the hypothesis when extending tl0

to tl0+1 is t[l0 + 1] 6⊆ Lk; this implies M 6⊆ Lk for all supersets M of t[l0 + 1].
Hence, for every l ≥ l0+1, there is a k′ 6= k with S(tl) = δd(k′). (Claim 3)

To summarise, Claim 3 shows that S, when reading t, converges to a pattern δ,
and Claim 2 demonstrates that δ is PAT?,Σ-descriptive of Ln. This concludes
the proof of the if direction.

We continue with the only if direction. Hence, let S be a computable gen-
eralisation strategy that PAT?,Σ-descriptively generalises L = (Li)i∈N, i. e., for
every i and for every text t of Li, S converges to a pattern that is PAT?,Σ-
descriptive of Li. We show that this implies the existence of effective procedures
d and f satisfying conditions (i) and (ii).

Since L = (Li)i∈N is an indexed family, there is an effective procedure enu-
merating, for every i ∈ N, all words wi,0, wi,1, wi,2, . . . in Li. Furthermore, we
can use this to define a second effective procedure which enumerates, for every
i ∈ N, all finite sequences si,0, si,1, si,2, . . . of words in Li. Note that every se-
quence si,j , j ∈ N, may contain repetitions of words. Furthermore, if Li is finite,
we can nevertheless easily make sure that the output of the above procedures
is infinite for every i.

We now give a procedure that defines the behaviour of d and f :

Procedure SIM S
Let i ∈ N, and let wi,0, wi,1, wi,2, . . . and si,0, si,1, si,2, . . . be as given above. Go
to Stage 0.

Stage 0. Define t0 := wi,0, Fi := {wi,0}. Define x := 0 and di,x := S(t0). Go to
Stage 1.

Stage n (n ≥ 1). For every j = 0, 1, 2, . . . proceed as follows: Consider si,j =
(ŵj,0, ŵj,1, . . . , ŵj,y), y ∈ N, and define t′j := ŵj,0 ∇ ŵj,1 ∇ · · · ∇ ŵj,y. Define
x := x + 1 and di,x = S(tn−1 ∇ t′j). If S(tn−1 ∇ t′j) 6= S(tn−1), then define
tn := tn−1 ∇ t′j ∇ wi,n, Fi := Fi ∪ {ŵj,0, ŵj,1, . . . , ŵj,y, wi,n}, and go to Stage
n+ 1.

Since S and the procedures enumerating the wi,j and si,j , i, j ∈ N, are
computable, the same holds for SIM S. Consequently, effective procedures d
and f which, for all i ∈ N, uniformly produce sequences di,0, di,1, di,2, . . . and
enumerate Fi, respectively, can be directly derived from SIM S.

We now show that d and f satisfy conditions (i) and (ii). Our corresponding
reasoning makes use of the following fact:

Claim 4. For every i ∈ N there exists an n0 such that procedure SIM S, when
given input i, enters Stage n0, but it does not enter Stage n0 + 1.

Proof (Claim 4). Assume to the contrary that procedure SIM S enters an
infinite number of stages. This implies that S does not converge to a fixed

13

pattern, since SIM S goes to the next stage if and only if S changes its hypothesis
for the given input. However, since all considered words are contained in Li,
each transition from Stage n to Stage n + 1 adds the word wi,n to tn, and
{wi,j | j ∈ N} = Li, the string limn→∞ tn is an encoding of a text t of Li.
Since S PAT?,Σ-descriptively generalises L = (Li)i∈N, this means that S, when
reading t, must converge to a pattern. This is a contradiction. (Claim 4)

By definition, for every i ∈ N, SIM S produces an infinite sequence of patterns.
It outputs a pattern di,x+1 that differs from di,x only if it moves from one
stage to another. Thus, due to Claim 4 and for the corresponding x0 ∈ N, the
sequence of patterns di,x0 , di,x0+1, di,x0+2, . . . produced in Stage n0 satisfies, for
every j ∈ N, di,x0+j = di,x0

. Furthermore, due to fact that the constructed
input is a text of Li, S needs to converge to a PAT?,Σ-descriptive pattern of
Li. This implies that di,x0

= δd(i) for a δd(i) ∈ DPAT?,Σ
(Li). Consequently, the

sequence of patterns di,0, di,1, di,2, . . . satisfies condition (i).
SIM S adds a finite number of words to Fi if and only if it moves to the

next stage. Hence, Claim 4 shows that every Fi is finite. Now assume to the
contrary that, for an i ∈ N, Fi does not satisfy condition (ii), i. e., there exists
a j ∈ N with Fi ⊆ Lj , δd(i) /∈ DPAT?,Σ

(Lj) and Lj ⊆ Li. Let t<j> be an
arbitrary text of Lj . Since Fi ⊆ Lj and tn0−1 encodes the words in Fi, for every
m ∈ N, tn0−1 ∇ tm<j> is an encoding of initial values of a text of Lj . Thus,
for m→∞, S must, when reading tn0−1 ∇ tm<j>, converge to a pattern that is
PAT?,Σ-descriptive of Lj . According to Claim 4, when tn0−1 is continued with
the encoding of any finite sequence of words from Li, SIM S does not leave
Stage n0. Since Lj ⊆ Li, this implies that SIM S does not leave Stage n0 for
tn0−1 being continued with the encoding of any finite sequence of initial values
of t<j>. Therefore S converges, when given tn0−1 ∇ tm<j> for m = 0, 1, 2, . . .,
by definition to δd(i). This contradicts δd(i) /∈ DPAT?,Σ(Lj). Consequently, Fi
satisfies condition (ii), and this concludes the proof of the only if direction.

Hence, L = (Li)i∈N is PAT?,Σ-descriptively generalisable if and only if there
are effective procedures d and f satisfying conditions (i) and (ii).

As briefly mentioned above, Theorem 11 shows natural connections to the
seminal characterisation of learnable indexed families given by Angluin [2], and
therefore it is not surprising that some elements of our proof do not need to dif-
fer from hers. Most of these similarities result from the fact that each successful
inductive inference process requires the existence of so-called locking sequences
(see [22] for a detailed discussion), and this is reflected by Angluin’s telltale
Ti and our comparable concept Fi. Nevertheless, there are crucial differences
between the two characterisations. First, we need to define an enumeration of
an appropriate subset of our hypothesis space (this is done by the procedure
d), whereas this is automatically given in Angluin’s model. In this context, it is
important to note that we have to attune the set Fi to the pattern δd(i), i ∈ N,
which leads to d and f being defined by the same procedure SIM S. Second,
while Angluin’s Ti must, for every j with Lj ⊂ Li, contain a word from Li \Lj ,
our equivalent Fi only needs to do so if δd(i) is not an acceptable hypothesis

14

for Lj . This fits with the requirement of inductive inference from positive ex-
amples to distinguish between all languages Li and Lj with Li 6= Lj , whereas
descriptive generalisation only has to distinguish between some of them, and
this requisite might be asymmetric, i. e., a strategy S might have to discover
that a text of a language Li is not a text of a language Lj , but it might not
need to figure out that a text of Lj is not a text of Li. The explanation of
why descriptive generalisation, for many cases, is more powerful than induc-
tive inference from positive data directly follows from this observation; further
considerations on this topic are given in Section 4.3. Thirdly, and finally, the
strategy S we deploy in our proof is, in a sense, not optimal, as it might discard
a correct hypothesis – i. e. pattern δd(j) that incidentally is descriptive of the
language Li the text of which is read – simply because Li contains a word that
is not contained in Lj .

Our generic strategy S of course is not very efficient; furthermore, it has the
bothersome property described in the third point in the preceding paragraph.
However, it is worth mentioning that S does not test whether the given words
are contained in the language of the hypothesis pattern, and it does not check
the inclusion of pattern languages, either. Thus, it circumvents two decision
problems that, for many natural classes of pattern languages, are known to be
NP-complete or even undecidable (see, e. g., [1] and [8]), although these decision
problems are essential elements of the definition of descriptiveness. Instead, S
infers descriptive patterns purely based on membership tests for the languages
in the indexed family. Thus, if indexed families with a fast membership test
are to be generalised, then our strategy raises hope that it might be possible
to do this efficiently in spite of using a hypothesis space with an NP-complete
membership test. On the other hand, it might be difficult to find rich classes of
pattern languages where the procedure d introduced by Theorem 11 is efficient
(even though it should normally be possible to devise a d that, for every i ∈ N,
directly outputs the pattern δd(i) instead of enumerating the sequence di,j).
This expectation is substantiated by Theorem 4.2 in [1] and our Theorem 6 and
Corollary 7 given in Section 2.

4.3. A More General View

While an application of Theorem 11 might require profound knowledge of
the descriptiveness of patterns, a closer look confirms our above remark that the
actual characterisation and its proof do not at all. More precisely, neither the
Theorem nor our reasoning deal with the properties of the descriptive patterns
δd(i), i ∈ N, but they merely make use of a notion of the validity of a hypothesis
for a given language, i. e., a hypothesis is valid for a language if it is descriptive,
but we do not check for descriptiveness. This view is quite convenient to study
the difference between descriptive generalisation and inductive inference from
positive data. In the LIM-TEXT model when applied to indexed families, a
hypothesis i – i. e., the index of the language Li – is valid for a language Lj , j 6= i,
if and only if the hypothesis j is valid for the language Li (if and only if Li = Lj).
In our model, this symmetry does not necessarily exist, as demonstrated by the
following example:

15

Example 12. Let Σ := {a, b}. Let L1 := {a b a b a, b a b a b} and L2 :=
{a b a b a, b a b a b, a b a a b a}. We state without proof that δ1 := x1 a b a bx2

is ePATΣ-descriptive of L1 and δ2 := x1x2x1x2x1 is ePATΣ-descriptive of L2.
While δ2 is also ePATΣ-descriptive of L1, δ1 is not ePATΣ-descriptive of L2.
Hence, a strategy S that ePATΣ-descriptively generalises a class including L1

and L2 can output δ1 or δ2 when reading a text for L1, but it must not output
δ1 when reading a text for L2.

Referring to this phenomenon and restricted to indexed families, we can
now give a much more general model of inference than the one of descriptive
generalisation, and we can still characterise those indexed families that can be
inferred according to this model in exactly the same way as we have done in
Theorem 11. Hence, let L = (Li)i∈N be an indexed family. Furthermore, for
any i ∈ N, let HYP be a function that maps i to a subset of N that consists
of all valid hypotheses for Li. Here it is important to note that the numbers
in HYP(i) do normally not refer to indices of the indexed family L = (Li)i∈N;
e. g., in our model of descriptive generalisation they would stand for indices in
an arbitrary enumeration of a set of patterns. We then say that L = (Li)i∈N is
inductively inferable with hypotheses validity relation HYP if and only if there
exists a computable function S : (Σ∪{∇})∗ → N such that, for every i ∈ N and
for every t ∈ text(Li),

1. S(tn) is defined for every n ∈ N and

2. there is a j ∈ HYP(i) and there is an m ∈ N with S(tn) = j for every
n ≥ m.

Our notion of descriptive generalisation demonstrates that there are natural
instances of the model of inductive inference with hypotheses validity relation
HYP. Nevertheless, to the best of our knowledge, its properties have not been
explicitly studied so far.

As announced above, we now rephrase Theorem 11 so that it characterises
those indexed families that are inductively inferable with hypotheses validity
relation HYP:

Theorem 13. Let Σ be an alphabet, let L = (Li)i∈N be an indexed family
of nonempty languages over Σ, and let HYP : N → P(N) be a function. L =
(Li)i∈N is inductively inferable with hypotheses validity relation HYP if and only
if there are effective procedures h and f satisfying the following conditions:

(i) For every i ∈ N, there exists a ηi ∈ HYP(i) such that procedure h, on
input i, enumerates a sequence of natural numbers i0, i1, i2, . . . satisfying,
for all but finitely many k ∈ N, ik = ηi.

(ii) For every i ∈ N, procedure f , on input i, enumerates a finite set Fi ⊆ Li
such that, for every j ∈ N with Fi ⊆ Lj, if ηi /∈ HYP(j), then there is a
w ∈ Lj with w /∈ Li.

16

Proof. Minor and straightforward editing of the proof of Theorem 11 – mainly
substituting h for d, ik for di,k, ηi for δd(i), and HYP(i) for DPAT?,Σ(Li) – turns
it into a reasoning suitable for Theorem 13.

To conclude this section on basic properties of our model, we wish to men-
tion that descriptive generalisation can alternatively be interpreted as inductive
inference of classes of pattern languages from partial texts. Hence, we can un-
derstand any language Li as a tool to define texts that do not contain all words
in L(δd(i)), but nevertheless can be used to infer δd(i). Within the scope of
the present paper, we do not explicitly discuss such a view, but we expect that
it might be a worthwhile topic for further considerations. There exist some
studies of related approaches, for example by Fulk and Jain [11] and Jain and
Kinber [14]. However, the corresponding paradigm InaTxtExb in the paper [11]
uses the generic parameter of the number a of words of the target language
missing from the text given to the learner, and – as briefly described in Sec-
tion 1 – the model ResAllMWSubEx in the paper [14] postulates inferrability
for all sublanguages of the target language. Hence, unlike the motivation of
our inference paradigm, these models do not directly provide a strong control of
the nature of the languages to be inferred, and therefore we anticipate that the
interpretation of our model as inference from incomplete texts might involve
substantial conceptual challenges that cannot be solved using the established
approaches in the literature.

5. Inferring ePATtf ,Σ-Descriptive Patterns

We now study our model for a specific hypothesis space, namely the class
ePATtf,Σ. The decidability of the inclusion problem for this class (see Theo-
rem 1) allows us to develop a set of powerful tools.

This section is divided into three parts. In the first part, we consider some
questions on the existence of ePATtf,Σ-descriptive patterns for various classes of
languages and develop a set of basic concepts and insights in order to simplify
corresponding proofs.

The second part deals with a generalisation strategy that is based on the
procedure that is described in Proposition 5, which we deem so natural that
we call it the canonical strategy Canon for ePATtf,Σ-descriptive generalisations.
Most importantly, we give a characterisation of the class T SLΣ of languages
that can be descriptively generalised with Canon.

In the final part of this section, we examine the relationship of various classes
of languages to T SLΣ in order to gain further insights into DGePATtf,Σ

and the
power of Canon.

5.1. Basic tools

We begin the present part of Section 5 with a short remark illustrating that
there are finite classes of languages which are not contained in DGePATtf,Σ

:

17

Proposition 14. Let Σ be an alphabet, |Σ| ≥ 2. There exists a class L of
nonempty languages over Σ with

• |L| = 1 and

• L /∈ DGePATtf,Σ
.

Proof. As stated in Theorem 4, there is a language LΣ with DePATtf,Σ
(LΣ) = ∅.

If we choose L = {LΣ}, then |L| = 1 holds, and no strategy will be able to
compute any hypothesis that is ePATtf,Σ-descriptive of LΣ.

Before we proceed to a closer examination of ePATtf,Σ-descriptive generali-
sation in the next part of this section, we develop some tools and techniques that
simplify the work with ePATtf,Σ-descriptive patterns, and gather some results
on the existence and nonexistence of such patterns for some classes of languages.
We begin with the following result:

Lemma 15. Let Σ be an alphabet with |Σ| ≥ 2, and let L1, L2 ⊆ Σ∗ with L1 ⊇
L2. If there is a δ ∈ DePATtf,Σ

(L2) with LE,Σ(δ) ⊇ L1, then δ ∈ DePATtf,Σ
(L1).

Proof. Assume to the contrary that there is a γ ∈ X+ with LE,Σ(δ) ⊃ LE,Σ(γ) ⊇
L1. Due to L1 ⊇ L2, this would imply LE,Σ(δ) ⊃ LE,Σ(γ) ⊇ L2 and contradict
δ ∈ DePATtf,Σ

(L2). Therefore, δ is descriptive of L1.

This observation might seem to be elementary, but together with Lemma 18,
it forms the basis of the proofs of almost all results in this section. The technical
base of that Lemma derives from a phenomenon that often arises when dealing
with ePATtf,Σ-descriptive patterns. We consider the following example:

Example 16. Let Σ := {a, b} and let

L1 := {a2},
L2 := {(a b1 a a b2 a · · · a bn a)2 | n ≥ 2},
L3 := LE,Σ(x2

1) \ {a2, b2}.

It is easy to see that all three languages are included in LE,Σ(x2
1). However,

in addition to this, for every α ∈ X+ with LE,Σ(α) ⊇ Li (with 1 ≤ i ≤ 3),
LE,Σ(α) ⊇ LE,Σ(x2

1) holds as well. For L1, this is obvious. For L2, assume that
LE,Σ(α) ⊇ L2 for some α ∈ X+, let n := |α| and w := (a b1 a a b2 a · · · a bn a)2 ∈
L2, and choose any morphism φ with φ(α) = w. As w contains n distinct factors
of the form a b+ a, each occurring exactly twice, there must be an x ∈ var(α)
such that φ(x) contains at least one complete occurrence of such a segment,
which implies |α|x ∈ {1, 2}. In both cases, we can construct a morphism ψ with
ψ(α) = x2

1 (by mapping x to x1 or x2
1 and erasing all other variables), which

(according to Theorem 1) leads to LE,Σ(α) ⊇ LE,Σ(x2
1). Finally, as L3 ⊃ L2,

this also proves the claim for L3.
As LE,Σ(x2

1) and all three Li have exactly the same “superpatterns”, we are
able to conclude that, for every i ∈ {1, 2, 3}, DePATtf,Σ

(LE,Σ(x2
1)) = DePATtf,Σ

(Li).
In other words, although the four languages might seem rather different, they
have exactly the same set of ePATtf,Σ-descriptive patterns.

18

When generalising languages using ePATtf,Σ-descriptive patterns, every lan-
guage has a certain superset that is covered by every descriptive generalisation
of this language, and cannot be avoided. In order to formalise this line of reason-
ing (and in order to use this phenomenon), we introduce the set of superpatterns
Super(L), and the superpattern hulls S-HullΣ(L), which are defined as

Super(L) := {α ∈ X+ | for every w ∈ L, there is a morphism σ with σ(α) = w},

S-HullΣ(L) :=
⋂

α∈Super(L)

LE,Σ(α)

for all alphabets Σ,Π and any language L ⊆ (Π)∗. Note that, in order to acquire
a better understanding of these definitions, Example 19 can be consulted, which
describes the superpatterns and superpattern hulls of an example language.

By Theorem 1, for every pair of patterns α, β ∈ X+ and every Σ with Σ ≥ 2,
the following three conditions are equivalent:

1. LE,Σ(α) ⊆ LE,Σ(β),

2. β ∈ Super(LE,Σ(α)),

3. β ∈ Super({α}).

This allows us to state the following corollary:

Corollary 17. Let Σ,Π be alphabets with |Σ|, |Π| ≥ 2. Then DePATtf,Σ
(L) =

DePATtf,Π
(L) for every L ⊆ (Σ ∩Π)∗.

Although Super(L) and S-HullΣ(L) might appear to be rather simple con-
cepts, they can be used to establish most of the results in this section. Using
Lemma 15, we can develop one of our main tools:

Lemma 18. Let Σ be an alphabet with |Σ| ≥ 2. For every L ⊆ Σ∗, DePATtf,Σ
(L) =

DePATtf,Σ
(S-HullΣ(L)).

Proof. Let δ ∈ DePATtf,Σ
(L). Then LE,Σ(δ) ⊇ L, and LE,Σ(δ) ⊇ S-HullΣ(L)

by definition of S-HullΣ. Thus, LE,Σ(δ) ⊇ S-HullΣ(L) ⊇ L. By Lemma 15,
δ ∈ DePATtf,Σ

(S-HullΣ(L)) follows.
Assume to the contrary that δ ∈ DePATtf,Σ

(S-HullΣ(L)), and there is a γ ∈
X+ with LE,Σ(δ) ⊃ LE,Σ(γ) ⊇ L. Then, LE,Σ(γ) ⊇ S-HullΣ(L) holds (again by
definition of S-HullΣ), and this contradicts the initial assumption.

In a sense, S-HullΣ(L) captures the whole essence of L with respect to
ePATtf,Σ-descriptive patterns, as every pattern that is ePATtf,Σ-descriptive of
L is unable to distinguish between these two languages. This is illustrated by
the following example:

19

Example 19. Let |Σ| ≥ 2 and define L := LE,Σ(x2
1) ∪ LE,Σ(x3

1). Furthermore,
let

δ1 := x2
1x

3
2, δ2 := x1x2x1x

2
2, δ3 := x1x

2
2x1x2, δ4 := x1x

3
2x1,

δ5 := x1x
2
2x

2
1, δ6 := x1x2x1x2x1, δ7 := x1x2x

2
1x2, δ8 := x2

1x
2
2x1,

δ9 := x2
1x2x1x2, δ10 := x3

1x
2
2.

Recalling Theorem 1, it is easy to see that, for every α ∈ Super(L), there is
a δi, 1 ≤ i ≤ 10, with LE,Σ(α) ⊇ LE,Σ(δi) (as, for every α, there must be
morphisms mapping α to both x2

1 and x3
1). By a convention common in the

literature, all patterns are given in canonical form (cf. [27]), where variables
names are introduced in increasing lexicographic order.

This example illustrates two important phenomena. First, note that δi ∈
DePATtf,Σ

(L) for 1 ≤ i ≤ 10, and for every δ ∈ DePATtf,Σ
(L), there is a δi with

LE,Σ(δ) = LE,Σ(δi), but LE,Σ(δ) 6= LE,Σ(δj) for every j 6= i. Thus, L has ten
distinct ePATtf,Σ-descriptive patterns.

Second, the previous observation leads to S-HullΣ(L) =
⋂10
i=1 LE,Σ(δi). For

every n ≥ 2, there are j, k ≥ 0 with n = 2j + 3k, and therefore, S-HullΣ(L) ⊇⋃∞
n=2 LE,Σ(xn1). Thus, every ePATtf,Σ-descriptive generalisation of L is unable

to exclude any language LE,Σ(xn1) with n ≥ 2. In this sense, S-HullΣ(L) provides
information on the coarseness of all descriptive generalisations.

Observe that L in the previous example is a finite union of languages from
ePATtf,Σ that has a descriptive pattern, and recall that, according to Proposi-
tion 5, every finite set of words has an ePATtf,Σ-descriptive pattern, while (by
Theorem 4) there are infinite unions of languages from ePATtf,Σ that have no
descriptive pattern.

Using Lemma 18, we can extend Proposition 5 to show that not only every
finite set of words, but every finite union of languages from ePATtf,Σ has an
ePATtf,Σ-descriptive pattern:

Proposition 20. Let Σ be an alphabet with |Σ| ≥ 2, let A := {α1, . . . , αn} ⊂
X+ and let L :=

⋃n
i=1 LE,Σ(αi). Then DePATtf,Σ

(L) 6= ∅.

Proof. By Theorem 1, the equation Super({α}) = Super(LE,Σ(α)) holds for
every α ∈ X+. Thus,

Super({α1, . . . , αn}) = Super(LE,Σ(α1) ∪ · · · ∪ LE,Σ(αn)),

and therefore S-HullΣ(A) = S-HullΣ(L). By Lemma 18, this is equivalent to
DePATtf,Σ

(A) = DePATtf,Σ
(L).

As A is a finite set, according to Proposition 5, DePATtf,Σ
(A) is nonempty,

and thus, DePATtf,Σ
(L) is nonempty as well.

Basically, Example 19 and Proposition 20 are based on the fact that words
in languages from ePATtf,Σ and the generating patterns of these languages can
often be used interchangeably by defining a morphism that maps the words

20

back to their generating pattern. We proceed to develop this approach into
another tool that allows us to make further statements on the (non-)existence
of ePATtf,Σ-descriptive patterns. Let ν : Σ∗ → X∗ an arbitrary renaming. We
define

V-HullΣ(L) :=
⋃
w∈L

LE,Σ(ν(w)).

Note that, for every pair of renamings ν, ν′ : Σ∗ → X∗ and every w ∈ Σ∗,
LE,Σ(ν(w)) = LE,Σ(ν′(w)) holds by definition, which means that V-HullΣ(L)
does not depend on the choice of ν.

Like S-HullΣ(L), V-HullΣ(L) is equivalent to L with respect to Super and
DePATtf,Σ

:

Lemma 21. Let Σ be an alphabet, |Σ| ≥ 2. For every language L over Σ,
Super(L) = Super(V-HullΣ(L)), and DePATtf,Σ

(L) = DePATtf,Σ
(V-HullΣ(L)).

Proof. We first show Super(L) = Super(V-HullΣ(L)).
Let L ⊆ Σ∗ and let ν : Σ∗ → X∗ be a renaming. Naturally, there is an

inverse renaming ν−1 : (ν(Σ))∗ → Σ∗ with (ν−1 ◦ ν)(w) = w for every w ∈ L.
Thus, w ∈ LE,Σ(ν(w)) holds for every w ∈ L, which implies L ⊆ V-HullΣ(L),
and Super(L) ⊇ Super(V-HullΣ(L)).

For the other direction, consider any α ∈ Super(L). This is equivalent to
LE,Σ(α) ⊇ L, and thus, for every w ∈ L, there is a morphism σ : X∗ → Σ∗ with
σ(α) = w. Accordingly, (ν ◦ σ)(α) = ν(w), and thus, LE,Σ(α) ⊇ LE,Σ(ν(w)) for
every w ∈ L. This immediately implies LE,Σ(α) ⊇ V-HullΣ(L), and therefore,
α ∈ Super(V-HullΣ(L)).

As Super(L) = Super(V-HullΣ(L)), DePATtf,Σ
(L) = DePATtf,Σ

(V-HullΣ(L))
follows by definition of DePATtf,Σ

.

This leads us to the following insight into the existence of ePATtf,Σ-descriptive
patterns for infinite unions of languages from ePATtf,Σ:

Proposition 22. Let Σ be an alphabet, |Σ| ≥ 2. Then there is a set of pat-
terns A ⊂ {x1, x2}∗ such that no pattern in X+ is ePATtf,Σ-descriptive of⋃
α∈A LE,Σ(α).

Proof. Choose any alphabet Π ⊆ Σ with |Π| = 2. By Theorem 4, there ex-
ists a language L′ ⊂ (Π)∗ such that DePATtf,Π

(L′) = ∅. Furthermore, let
ν : (Π)∗ → {x1, x2}∗ be a renaming. We claim that A := ν(L′) fulfils the given
requirements. As A ⊂ {x1, x2}∗ holds by definition, we only need to show that
no pattern in X+ is ePATtf,Σ-descriptive of the language L :=

⋃
α∈A LE,Σ(α).

Assume to the contrary that DePATtf,Σ
(L) 6= ∅. Note that L = V-HullΣ(L′)

holds, which allows us to use Lemma 21 to concludeDePATtf,Σ
(L) = DePATtf,Σ

(L′).
Furthermore, Corollary 17 implies DePATtf,Σ

(L′) = DePATtf,Π
(L′). Combining

these two equations and the initial assumption of DePATtf,Σ
(L) 6= ∅, we arrive

at DePATtf,Π
(L′) 6= ∅, which contradicts our choice of L′.

21

Thus, unlike in the case of finite unions of languages from ePATtf,Σ (cf.
Proposition 20), even restricting the number of variables in the generating pat-
terns does not ensure that infinite unions of languages from ePATtf,Σ have a
descriptive pattern. The renaming ν that maps terminals to variables can also
be used to obtain the following technical result:

Lemma 23. Let Σ be an alphabet with |Σ| ≥ 2. For every nonempty language
L ⊆ Σ∗ with L 6= {λ}, S-HullΣ(L) is infinite.

Proof. Let ν : Σ+ → X+ be a nonerasing morphism and choose any w ∈ L such
that w 6= λ. For every α ∈ Super(L), there is a morphism σ : X+ → Σ∗ with
σ(α) = w. Thus, ν(σ(α)) = ν(w), which implies LE,Σ(α) ⊇ LE,Σ(ν(w)). As
this holds for every α ∈ Super(L), we conclude S-HullΣ(L) ⊇ LE,Σ(ν(w)); and
as ν(w) ∈ X+, this language is infinite.

This insight shall be used in Section 5.3.

5.2. The Canonical Strategy and Telling Sets

According to Proposition 5, every finite set has a computable ePATtf,Σ-
descriptive pattern. We consider it the canonical strategy of descriptive infer-
ence on any text t of a given language L to compute a descriptive pattern of every
initial segment tn, in the hope that the hypotheses will converge to a pattern
that is descriptive of L. As evidenced by the language L := LE,Σ(x2

1)∪LE,Σ(x3
1)

(cf. Example 19), there are languages with more than one descriptive pattern.
Furthermore, this applies also to finite languages, as for the set S := {a2, b3}
(for arbitrary letters a, b ∈ Σ), DePATtf,Σ

(S) = DePATtf,Σ
(L) holds. Although

S already contains all the information that is needed to compute a descriptive
generalisation of L, the ten distinct patterns δ1 to δ10 from Example 19 are
all valid hypotheses. In order to allow our strategy to converge to one single
hypothesis, we impose a total and well-founded order <LLO on X+ and let our
strategy return the <LLO-minimal hypothesis.

Let <LLO denote the length-lexicographic order on X+ (i. e., α <LLO β if
|α| < |β|, or if |α| = |β|, and α precedes β in the lexicographic order). Note
that <LLO is total and does not contain infinite decreasing chains. Thus, every
set has exactly one element that is minimal with respect to <LLO.

The strategy Canon : (Σ∪{∇})∗ → (Σ∪X)+ is defined by, for every text t,

Canon(tn) := δ,

such that δ ∈ DePATtf,Σ
(t[n]) and δ <LLO γ for every other γ ∈ DePATtf,Σ

(t[n]).
The computability of Canon follows immediately from the proof of Proposi-

tion 5, as all that remains is to sort the finite search space by <LLO. We say that
Canon converges on a text t ∈ text(L) (of some language L over some alphabet
Σ) if there is a pattern α ∈ X+ with Canon(tn) = α for all but finitely many
values of n. If, in addition to this, α ∈ DePATtf,Σ

(L), Canon is said to converge
correctly on t. Now, when considering the languages L and S given in the ex-
ample above, for every text t ∈ text(L), there is an n ≥ 0 with S ⊆ t[n]. From

22

this point onwards, Canon(t[n]) will return the pattern δ10 = x3
1x

2
2, as δ10 is an

element of (DePATtf,Σ
(S)∩DePATtf,Σ

(L)) and the <LLO-minimum of the canon-
ical forms of the patterns δ1 to δ10 (see Example 19). This phenomenon leads
to the definition of what we call telling sets, which are of crucial importance for
the study of descriptive generalisability with the strategy Canon:

Definition 24. Let L ⊆ Σ∗. A finite set S ⊆ L is a telling set for L if
(DePATtf,Σ

(S) ∩DePATtf,Σ
(L)) 6= ∅.

Note that telling sets have some similarity to the concept of telltales that is used
in the model of learning in the limit. For a comparison of telltales and telling
sets, see our comments after Corollary 32.

Using Lemma 15, we are now able to show that the existence of a telling set
is characteristic for the correct convergence of Canon on any text:

Theorem 25. Let Σ an alphabet with |Σ| ≥ 2. For every language L ⊆ Σ∗ and
every text t ∈ text(L), Canon converges correctly on t if and only if L has a
telling set.

Proof. We begin by proving the only if direction via its contraposition. As-
sume that L has no telling set. Then, for every text t of L and every n ≥ 0,
DePATtf,Σ

(t[n]) and DePATtf,Σ
(L), by definition, are disjoint, as otherwise t[n]

would be a telling set. Therefore, Canon(tn) /∈ DePATtf,Σ
(L), which means

that even if Canon converges on t to a pattern δ, this pattern is not ePATtf,Σ-
descriptive of L.

For the if direction, assume to the contrary that S is a telling set of L and
that there exists a text t of L such that Canon does not converge correctly on
t. We first show that if Canon converges, it always converges correctly. Assume
to the contrary that there exist some pattern δ and some n ≥ 0 such that
δ ∈ DePATtf,Σ

(t[m]) for every m ≥ n, but δ /∈ DePATtf,Σ
(L). As LE,Σ(δ) ⊇ t[m]

for every m ≥ n, it follows that

LE,Σ(δ) ⊇
⋃
m≥n

t[m]

= {t[i] | i ∈ N} = L.

As LE,Σ(δ) ⊇ L ⊇ t[n] and δ ∈ DePATtf,Σ
(t[n]), Lemma 15 gives δ ∈ DePATtf,Σ

(L),
which contradicts the initial assumption.

Next, assume that Canon does not converge on t; i. e., there is an infinite
sequence (δn)n≥0 over X+ with

1. δn = Canon(tn) for every n ≥ 0,

2. for every n ≥ 0, there is an m > n with δm 6= δn.

We first show that at most one pattern occurs at least twice in (δn)n≥0. Assume
that there are m1 < n1 < m2 < n2 with δm1

= δm2
6= δn1

= δn2
, and observe

that
t[m1] ⊆ t[n1] ⊆ t[m2] ⊆ t[n2]

23

holds. As δm1 is ePATtf,Σ-descriptive of t[m1], and

LE,Σ(δm1
) = LE,Σ(δm2

) ⊇ t[m2] ⊇ t[n1] ⊇ t[m1],

Lemma 15 implies δm1
∈ DePATtf,Σ

(t[n1]). However, due to Canon(t[n1]) =
δn1
6= δm1

, δn1
<LLO δm1

must hold. Analogously, one can use Lemma 15 and
LE,Σ(δn1) ⊇ t[n2] ⊇ t[m2] ⊇ t[n1] to conclude δm1 <LLO δn1 , which leads to the
contradictory statement δm1 <LLO δn1 <LLO δm1 .

We now consider two cases. First, assume there is some δ such that δn = δ for
infinitely many n ≥ 0 (as we have seen, there can be at most one such a δ). Then
LE,Σ(δ) ⊇ t[n] holds for infinitely many n ∈ N, which implies LE,Σ(δ) ⊇ t[m]
for every m ≥ 0. As above, this leads to

LE,Σ(δ) ⊇ {t(i) | i ∈ N} = L.

Especially, if δn = δ,
LE,Σ(δ) ⊇ L ⊇ t[n],

and the initial assumption δ ∈ DePATtf,Σ
(t[n]) allow us to use Lemma 15 to

conclude δ ∈ DePATtf,Σ
(L). But only a finite number of δm can satisfy δm <LLO

δ, which means that Canon converges to δ, and this contradicts our initial
assumption.

For the other case, assume that no pattern occurs infinitely often in (δn)n≥0.
Then for every δ ∈ X+, there is a k ≥ 0 such that δ <LLO δn for all n ≥ k.
This holds especially for that pattern δS ∈ (DePATtf,Σ

(S) ∩DePATtf,Σ
(L)) that

is minimal with respect to <LLO (such a pattern has to exist, as we required S
to be a telling set of L). Choose some k such that

1. δS <LLO δn for all n ≥ k, and

2. S ⊆ t[k],

and observe that, due to Lemma 15,

(DePATtf,Σ
(S) ∩DePATtf,Σ

(L)) ⊆ DePATtf,Σ
(t[n])

for every n ≥ k. Thus, Canon(t[n]) = δS for every n ≥ k. This contradicts our
initial assumption that Canon does not converge correctly on t.

In the final part of this section, we shall demonstrate that this is a strong
result, by investigating the existence and nonexistence of telling sets for various
languages.

5.3. Examination of the Class T SLΣ

As stated by Theorem 25, the existence of telling sets is a strong sufficient
criterion for ePATtf,Σ-descriptive generalisability. Furthermore, generalisability
of a class L ⊆ P(Σ∗) using Canon does not depend on the properties of the
whole class, but only on the existence of a telling set for every single language

24

L ∈ L. Thus, we consider the largest possible class that can be generalised by
Canon and define

T SLΣ := {L ⊆ Σ∗ | L has a telling set}.

Theorem 25 immediately leads to the following corollary:

Corollary 26. For every alphabet Σ with |Σ| ≥ 2, T SLΣ ∈ DGePATtf,Σ
.

Thus, by examining T SLΣ, we gain insights into the power of Canon and of
the whole model of descriptive generalisation. Before we proceed to an exam-
ination of the relation of various classes of languages to T SLΣ, we show that
it is not required to choose Σ as small as possible, a result that is similar to
Corollary 17, which states that DePATtf,Σ

(L) is largely independent of the choice
of Σ. The same holds for telling sets:

Corollary 27. Let Σ,Π be alphabets with |Σ|, |Π| ≥ 2. Then, for every L ⊆
(Σ ∩Π), L ∈ T SLΣ if and only if L ∈ T SLΠ.

Proof. As L ⊆ (Σ ∩Π)∗, the same holds for every telling set S ⊆ L. According
to Corollary 17, DePATtf,Σ

(S) = DePATtf,Π
(S).

This also implies that, for every Π ⊇ Σ, T SLΠ ⊇ T SLΣ. We begin our
examination of T SLΣ by expanding finite languages without losing their telling
set properties:

Lemma 28. Let Σ be an alphabet with |Σ| ≥ 2. Every nonempty S ∈ FINΣ is
a telling set of S-HullΣ(S) and of every L with S ⊆ L ⊆ S-HullΣ(S).

Proof. Due to Lemma 18, DePATtf,Σ
(S) = DePATtf,Σ

(S-HullΣ(S)) holds; there-
fore S is a telling set of S-HullΣ(S). Now choose any L with S ⊆ L ⊆ S-HullΣ(S)
and any δ ∈ DePATtf,Σ

(S). According to Lemma 15, δ ∈ DePATtf,Σ
(L), which

means that S is a telling set of L.

In addition to showing that FINΣ ⊆ T SLΣ, this result allows us to make
the following statement on the cardinality of T SLΣ:

Proposition 29. T SLΣ is uncountable for every alphabet Σ with |Σ| ≥ 2.

Proof. Select a finite nonempty language S ⊆ Σ+. Let

U :={L | S ⊆ L ⊆ S-HullΣ(S)}
= {L ∪ S | L ∈ P (S-HullΣ (S) \ S)} .

Due to Lemma 28, S is a telling set of every L ∈ U , and thus, U ⊆ T SLΣ.
As S is nonempty, S-HullΣ(S) must be infinite according to Lemma 23.

Therefore, U is uncountable, which means that T SLΣ is uncountable as well.

25

This is an uncommon property, as inference from positive data is normally
considered for classes consisting of countably many languages from some count-
able domain. Nonetheless, inferrability of uncountable classes has been studied
before, see [15].

Next, we shall see that T SLΣ contains a rich and natural class of languages,
the DTF0L languages. A DTF0L language L over Σ is defined through a finite
set of axioms w1, . . . , wm ∈ Σ∗ and a finite set of morphisms φ1, . . . , φn : Σ∗ →
Σ∗. Then L is the smallest language that satisfies these two conditions:

1. wi ∈ L for every i ∈ {1, . . . ,m},

2. if w ∈ L, then φi(w) ∈ L for every i ∈ {1, . . . , n}.

We denote the class of all DTF0L languages over Σ by DTF0LΣ. Apart from
FINΣ, the most prominent subclass of DTF0LΣ is the class of D0L languages,
where every language is defined through a single axiom and a single morphism
(i. e., m = n = 1). The class D0L has been widely studied, for details, see [18].

Theorem 30. Let Σ be an alphabet with |Σ| ≥ 2. Then DTF0LΣ ⊆ T SLΣ.

Proof. Let L ⊆ Σ∗ be a DTF0L-language, where F is a nonempty set of axioms
and Φ a nonempty set of morphisms generating L from F . It suffices to show
that Super(F) = Super(L), as this shall allow us to use Lemma 18 to obtain
the desired result.

First, observe that, by definition, F ⊆ L, and thus, Super(F) ⊇ Super(L).
For the other direction, consider any α ∈ Super(F). For every w ∈ L, there is a
v ∈ F and a finite sequence of morphisms in Φ that can be composed to a single
morphism φ with φ(v) = w. As v ∈ F and α ∈ Super(F), there is a morphism
σ with σ(α) = v. The composition of these morphisms leads to (φ ◦ σ)(α) = w,
and (as w was chosen arbitrarily) α ∈ Super(L).

Now, Super(F) = Super(L) results in S-HullΣ(F) = S-HullΣ(L) and, by
Lemma 18, in DePATtf,Σ

(F) = DePATtf,Σ
(L). As F is finite, it has at least one

ePATtf,Σ-descriptive pattern (according to Proposition 5), and is a telling set
of L.

Lemma 28 and Theorem 30 both imply that FINΣ ⊆ T SLΣ. Furthermore,
Proposition 29 and Theorem 30 both demonstrate that T SLΣ contains at least
one infinite language, which leads to the following observation:

Corollary 31. The class T SLΣ is superfinite for every alphabet Σ with |Σ| ≥ 2.

Together with Proposition 14, this allows us to describe the relation between
DGePATtf,Σ

and LIM-TEXT:

Corollary 32. Let Σ be an alphabet, |Σ| ≥ 2. Then DGePATtf,Σ
and LIM-TEXT

are incomparable.

Proof. Directly from Proposition 14 and Corollary 31, as LIM-TEXT contains
every finite class, but no superfinite classes (cf. [12]).

26

We now briefly discuss the relation between telling sets and the notion of
telltales. As already mentioned in Section 4.2, according to [2], an indexed
family L = (Li)i∈N of non-empty recursive languages is in LIM-TEXT if and
only if there exists an effective procedure which, for every j ≥ 0, enumerates a
set Tj such that

• Tj is finite,

• Tj ⊆ Lj , and

• there does not exist a j′ ≥ 0 with Tj ⊇ Lj′ ⊃ Lj .

If there exists a set Tj satisfying these conditions, it is called a telltale for Lj
with respect to L = (Li)i∈N. Thus, the concepts of telltales and telling sets are
incomparable, as the former refers to a language and the class of languages it is
contained in, whereas the latter relates to a language and certain properties of
the class ePATtf,Σ. Nevertheless, for every language L in ePATtf,Σ, a set S is a
telling set for L if and only if S is a telltale for L with respect to ePATtf,Σ (for
more details on the existence of telltales for languages in ePATtf,Σ, see [26]).

As Proposition 33 and Proposition 34 below show, Lemma 25 by [26] and
Lemma 7 by Reidenbach [25] on the existence and nonexistence of telltales lead
to the corresponding results for telling sets:

Proposition 33. Let Σ be an alphabet with |Σ| ≥ 2. For every α ∈ X+,
LE,Σ(α) has a telling set.

Proof. This follows immediately from Lemma 25 in [26].

On the other hand, it is impossible to encode the structure of comparatively
simple patterns in their languages with only two letters, which leads to the
following negative result:

Proposition 34. Let Σ be an alphabet with |Σ| ≥ 2, and let a, b be two distinct
letters from Σ. Then LE,{a,b}(x

2
1x

2
2x

2
3) /∈ T SLΣ.

Proof. This follows immediately from Lemma 7 by Reidenbach [25], which states
that, for every finite S ⊂ LE,{a,b}(x

2
1x

2
2x

2
3), there is a pattern α ∈ X+ with

LE,Σ(x2
1x

2
2x

2
3) ⊃ LE,Σ(α) ⊃ S.

In contrast to this, Lemma 21 can be used to show that restricting the
number of variables in the patterns leads to telling sets not only for languages
from ePATtf,Σ, but also for their finite unions:

Proposition 35. Let Σ be an alphabet with |Σ| ≥ 2, let α1, . . . , αn ∈ {x1, . . . , x|Σ|}+,
and let L :=

⋃n
i=1 LE,Σ(αi). Then L ∈ T SLΣ.

Proof. Let X|Σ| := {x1, . . . , x|Σ|} and let α1, . . . , αn ∈ X+
|Σ|. Choose any re-

naming ν : Σ∗ → X∗|Σ|, let ν−1 be the corresponding inverse renaming and
let

S := {ν−1(α1), . . . , ν−1(αn)}.

27

It is easily seen that V-HullΣ(S) = L holds. By Lemma 21, DePATtf,Σ
(S) =

DePATtf,Σ
(V-HullΣ(S)), and therefore DePATtf,Σ

(S) = DePATtf,Σ
(L). As S is

finite, Proposition 5 leads to DePATtf,Σ
(S) 6= ∅. Therefore, S is a telling set for

L.

Proposition 35 is especially interesting when compared to Proposition 22,
which tells us that infinite unions of languages from ePATtf,Σ might not only
have no telling set, but not even a descriptive pattern.

Furthermore, we state that the infinite sequence (βn)n≥0 that is used in the
definition of the languages LΣ for the proof of Theorem 4 describes an infinite
ascending chain of languages from ePATtf,Σ; i. e., LE,Σ(β) ⊂ LE,Σ(βn+1) for
every n ≥ 0. Although the presence of such a chain in S-HullΣ(L) for a language
L does not necessarily imply emptiness of DePATtf,Σ

(L), it is a sufficient criterion
for L /∈ T SLΣ:

Lemma 36. Let Σ be an alphabet with |Σ| ≥ 2 and let L ⊆ Σ∗. If there is an
infinite chain (βn)n≥0 over X+ with

• LE,Σ(βn) ⊆ S-HullΣ(L) for every n ≥ 0,

• LE,Σ(βn) ⊂ LE,Σ(βn+1) for every n ≥ 0, and

•
⋃
n≥0 LE,Σ(βn) ⊇ L,

then L has no telling set.

Proof. Let L ⊆ Σ∗ and (βn)n≥0 a strictly ascending infinite chain over X+ that
satisfies the above criteria. Assume to the contrary there are a finite set S ⊆ L
and a pattern δ ∈ DePATtf,Σ

(L) ∩DePATtf,Σ
(S).

As S ⊆ L ⊆
⋃
n≥0 LE,Σ(βn), there is an m ≥ 0 such that LE,Σ(βm) ⊇ S,

and therefore,
S-HullΣ(L) ⊇ LE,Σ(βm) ⊇ S.

As, due to Lemma 18, δ ∈ DePATtf,Σ
(S-HullΣ(L)), we conclude

LE,Σ(δ) ⊇ S-HullΣ(L) ⊇ LE,Σ(βm) ⊇ S.

By definition, βm is part of an infinite ascending chain, and therefore

S-HullΣ(L) ⊇ LE,Σ(βm+1) ⊃ LE,Σ(βm) ⊇ S

holds. This contradicts δ /∈ DePATtf,Σ
(S). Thus, L either has no ePATtf,Σ-

descriptive pattern, or it has an ePATtf,Σ-descriptive pattern, but still no telling
set.

As a direct application of this result, we can prove that there are regular
languages that have no telling set:

Theorem 37. For every alphabet Σ with |Σ| ≥ 2, there is a regular language
L ⊆ Σ∗ with L /∈ T SLΣ.

28

Proof. Let a, b two distinct letters from Σ and define L := {a a, b b}∗. Clearly,
L is regular. Next, we shall show that S-HullΣ(L) = Σ∗. For α ∈ Super(L), let
n := |α| and

w := a a b b a a a a(b b)2 a a · · · a a(b b)n+1 a a .

As w ∈ L, there is a morphism σ with σ(α) = w. Furthermore, as α has at
most n distinct variables, there is at least one variable x ∈ var(α) such that
σ(x) contains a factor a a(b b)i a a for some i with 1 ≤ i ≤ n+ 1. As this factor
occurs exactly once in w, x occurs exactly once in α, and thus, LE,Σ(α) = Σ∗.

Therefore, S-HullΣ(L) = Σ∗, and LE,Σ(δ) = Σ∗ for every δ ∈ DePATtf,Σ
(L).

The chain (βn)n≥0 with β1 := x2
1, β2 := x2

1x
2
2, . . ., βn := x2

1 · · ·x2
n satisfies the

criteria of Lemma 36, which implies that L has no telling set.

Note that the language {a a, b b}∗ considered in the above proof is not only
an example of a language that has no telling set, although it has a descriptive
pattern, but also an example of a language L that has no telling set, although
S-HullΣ(L) has a telling set.

6. Conclusion and Further Directions

In this paper, we have introduced a new inference paradigm, called descrip-
tive generalisation, and we have showed that the loss of precision (in comparison
to Gold’s model) that comes with the use of descriptive patterns as hypotheses
can lead to greater learning power. In particular, using the natural inference
strategy Canon, we have demonstrated that the well-known superfinite language
class DTF0L can be descriptively generalised. We have also provided a char-
acterisation of those indexed families that can be generalised in our model – a
result that employs a topological condition similar to Angluin’s telltales.

In Section 4.3, we have demonstrated that our model is a natural instance of
a generic paradigm of identification in the limit, which we refer to as inductive
inference with hypotheses validity relation HYP and which covers Gold’s model
as well. We consider this paradigm a worthwhile topic for further examination.
For example, one could study the impact of the choice of the relation HYP on
the inferrability of classes of languages; in other words, this might reveal the
nature of those learning tasks that can successfully be accomplished for a given
class. In a more applied approach, one could investigate the existence of natural
instances of this model that differ from standard Gold-style identification and
from our notion of descriptive generalisation.

Regarding the descriptive generalisation of terminal-free E-pattern languages,
we first note that the language L from the proof of Theorem 37 can be used to
define a class L ∈ (DGePATtf,Σ

\ T SLΣ), by L := {L}. While Canon does not
converge on any text of L, the trivial strategy that outputs x on every input
yields L ∈ DGePATtf,Σ

(analogously to Proposition 14). This answer might be
considered somewhat artificial, which leads to the following question: Are there
rich and natural classes in DGePATtf,Σ

that cannot be inferred with Canon?

29

Another question we consider worth studying is in what cases Canon can be
computed efficiently. In particular, the proof of Corollary 7 depends on the fact
that the alphabet Σ is unbounded. It remains open whether this Corollary still
holds if the alphabet Σ is fixed (and non-unary).

Furthermore, an alternative characterisation of T SLΣ or additional sufficient
criteria for the non-existence of telling sets as in Lemma 36 should be very
interesting.

Finally, another promising direction for further work is the use of hypotheses
other than pattern languages. One example is studied by Freydenberger and
Kötzing [7], who examine the canonical strategy using subclasses of regular
expressions as hypothesis space.

Acknowledgements

The authors wish to thank the anonymous referees for their helpful remarks
and suggestions. Furthermore the enlightening comments by Steffen Lange on
the inference model and on some results presented in this paper are gratefully
acknowledged.

References

[1] D. Angluin, Finding patterns common to a set of strings, Journal of Com-
puter and System Sciences 21 (1980) 46–62.

[2] D. Angluin, Inductive inference of formal languages from positive data,
Information and Control 45 (1980) 117–135.

[3] H. Arimura, T. Shinohara, S. Otsuki, Finding minimal generalizations for
unions of pattern languages and its application to inductive inference from
positive data, in: Proc. 11th Annual Symposium on Theoretical Aspects of
Computer Science, STACS 1994, volume 775 of LNCS, pp. 649–660.

[4] C. Câmpeanu, K. Salomaa, S. Yu, A formal study of practical regular
expressions, International Journal of Foundations of Computer Science 14
(2003) 1007–1018.

[5] A. Ehrenfeucht, G. Rozenberg, Finding a homomorphism between two
words is NP-complete, Information Processing Letters 9 (1979) 86–88.

[6] H. Fernau, Identification of function distinguishable languages, Theoretical
Computer Science 290 (2003) 1679–1711.

[7] D.D. Freydenberger, T. Kötzing, Fast learning of restricted regular expres-
sions and DTDs. Submitted.

[8] D.D. Freydenberger, D. Reidenbach, Bad news on decision problems for
patterns, Information and Computation 208 (2010) 83–96.

[9] D.D. Freydenberger, D. Reidenbach, Existence and nonexistence of descrip-
tive patterns, Theoretical Computer Science 411 (2010) 3274–3286.

30

[10] D.D. Freydenberger, D. Reidenbach, Inferring descriptive generalisations of
formal languages, in: Proc. 23rd Annual Conference on Learning Theory,
COLT 2010, pp. 194–206.

[11] M. Fulk, S. Jain, Learning in the presence of inaccurate information, The-
oretical Computer Science 161 (1996) 235–261.

[12] E. Gold, Language identification in the limit, Information and Control 10
(1967) 447–474.

[13] Š. Holub, Polynomial-time algorithm for fixed points of nontrivial mor-
phisms, Discrete Mathematics 309 (2009) 5069–5076.

[14] S. Jain, E. Kinber, Learning and extending sublanguages, Theoretical Com-
puter Science 397 (2008) 233–246.

[15] S. Jain, Q. Luo, P. Semukhin, F. Stephan, Uncountable automatic classes
and learning, in: Proc. 20th International Conference on Algorithmic
Learning Theory, ALT 2009, pp. 293–307.

[16] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, S. Yu, Pattern languages
with and without erasing, International Journal of Computer Mathematics
50 (1994) 147–163.

[17] T. Jiang, A. Salomaa, K. Salomaa, S. Yu, Decision problems for patterns,
Journal of Computer and System Sciences 50 (1995) 53–63.

[18] L. Kari, G. Rozenberg, A. Salomaa, L systems, in: G. Rozenberg, A. Sa-
lomaa (Eds.), Handbook of Formal Languages, volume 1, Springer, 1997,
pp. 253–328.

[19] S. Kobayashi, T. Yokomori, On approximately identifying concept classes
in the limit, in: Proc. 6th International Workshop on Algorithmic Learning
Theory, ALT 1995, volume 997 of LNAI, pp. 298–312.

[20] S. Kobayashi, T. Yokomori, Learning approximately regular languages with
reversible languages, Theoretical Computer Science 174 (1997) 251–257.

[21] S. Lange, R. Wiehagen, Polynomial-time inference of arbitrary pattern lan-
guages, New Generation Computing 8 (1991) 361–370.

[22] S. Lange, T. Zeugmann, S. Zilles, Learning indexed families of recursive
languages from positive data: A survey, Theoretical Computer Science 397
(2008) 194–232.

[23] Y. Mukouchi, Inductive inference of an approximate concept from posi-
tive data, in: Proc. 5th International Workshop on Algorithmic Learning
Theory, ALT 1994, volume 872 of LNAI, pp. 484–499.

31

[24] Y. Ng, T. Shinohara, Developments from enquiries into the learnability of
the pattern languages from positive data, Theoretical Computer Science
397 (2008) 150–165.

[25] D. Reidenbach, A non-learnable class of E-pattern languages, Theoretical
Computer Science 350 (2006) 91–102.

[26] D. Reidenbach, Discontinuities in pattern inference, Theoretical Computer
Science 397 (2008) 166–193.

[27] D. Reidenbach, J. Schneider, Morphically primitive words, Theoretical
Computer Science 410 (2009) 2148–2161.

[28] R. Reischuk, T. Zeugmann, An average-case optimal one-variable pattern
language learner, Journal of Computer and System Sciences 60 (2000) 302–
335.

[29] H. Rogers, Theory of Recursive Functions and Effective Computability,
MIT Press, Cambridge, MA, 1992. 3rd print.

[30] G. Rozenberg, A. Salomaa, Handbook of Formal Languages, volume 1,
Springer, Berlin, 1997.

[31] T. Shinohara, Polynomial time inference of extended regular pattern lan-
guages, in: Proc. RIMS Symposia on Software Science and Engineering,
Kyoto, volume 147 of LNCS, pp. 115–127.

[32] R. Wiehagen, T. Zeugmann, Ignoring data may be the only way to learn
efficiently, Journal of Experimental and Theoretical Artificial Intelligence
6 (1994) 131–144.

32

