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ABSTRACT 

The main object of this thesis is a study of the numerical 

'solution of hyperbolic and parabolic partial differential equations. 

The introductory chapter deals with a general description and class

ification of partial differential equations. Some useful mathematical 

preliminaries and properties of matrices are outlined. 

Chapters Two and Three are concerned with a general survey of 

current numerical methods to solve these equations. By employing 

finite differences, the differential system is replaced by a large 

matrix system. Important concepts such as convergence, consistency, 

stability and accuracy are discussed with some detail. 

The group explicit (GE) methods as developed by Evans and Abdullah 

on parabolic equations are now applied to first and second order (wave 

equation) hyperbolic equations in Chapter 4. By coupling existing 

difference equations to approximate the given hyperbolic equations, new 

GE schemes are introduced. Their accuracies and truncation errors are 

studied and their stabilities established. 

Chapter 5 deals with the application of the GE techniques on some 

commonly occurring examples possessing variable coefficients such as 

the parabolic diffusion equations with cylindrical and spherical 

symmetry. A complicated stability analysiS is also carried out to 

verify the stability, consistency and convergence of the proposed scheme. 

In Chapter 6 a new iterative alternating group explicit (AGE) 

method with the fractional splitting strategy is proposed to solve 

various linear and non-linear hyperbolic and parabolic problems in one 

dimension. The AGE algorithm with its PR (Peaceman Rachford) and OR 



(Douglas Rachford) variants is implemented on tridiagonal systems of 

difference schemes and proved to be stable. Its rate of convergence 

is governed by the acceleration parameter and with an optimum choice 

of this parameter, it is found that the accuracy of this method, in 

general, is better if not comparable to that of the GE class of problems 

as well as other existing schemes. 

The work on the AGE algorithm is extended to parabolic problems of 

two and three space dimensions in Chapter 7. A number of examples are 

treated and the DR variant is used because of consideration of stability 

requirement. The thesis ends with a summary and recommendations for 

future work. 
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CHAPTER ONE 

INTRODUCTION AND MATHEMATICAL PRELIMINARIES 
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1.1 INTRODUCTION 

Most of the problems dealt with in physics and engineering fall 

into one of three physical categories: equilibrium problems, eigenvalue 

problems and propagation problems. 

Equilibrium problems are problems of steady state in which we 

determine the equilibrium configuration ~ in a domain D by solving 

the differential equation 

L[~l = f , (1.1.1) 

within D, subject to certain boundary conditions, 

(1.1.2) 

on the boundary of D. This is illustrated in Fig. 1.1.1 below in 

which the integration domain D is generally closed and bounded. 

FIGURE 1.1.1: Representation of the general equilibrium problem 

Such problems are known as boundary vaZue probZe~. Typical 

physical examples include steady viscous flow, steady temperature 

distributions, equilibrium stresses inelastic structures and steady 

voltage distributions. The governing equations for this category of 

problems are known to be eZliptia. 



As extensions to equilibrium problems we have another category 

known as eigenvalue problems wherein critical values of certain 

parameters are to be determined in addition to the corresponding 

steady-state configurations. Mathematically the problem is to find 

one or more constants (~) and the corresponding functions ($) such 

that the differential equation 

L[$) = ~[$) (1.1.3) 

is satisfied within D and the boundary conditions 

(1.1.4) 

3 

hold on the boundary of D. Typical physical examples include buckling 

and stability of structures, resonance in electric circuits and acoustics, 

natural frequency problems in vibrations and others. The operators L 

and ,M are again of elliptic type. 

Propagation problems are initial value problems that have an 

unsteady state or transient nature. One wishes to predict the 

subsequent behaviour of a system given the initial state. This is 

to be done by solving the differential equation 

L [$) = f 

within the domain D when the initial state is prescribed as 

Ii [$) = hi 

and subject to prescribed conditions 

Bi [$) = gi 

(1.1.5) 

(1.1.6) 

(1.1. 7) 

on the boundaries. The integration domain D is open. The general 

propagation problem is illustrated in Fig. 1.1.2 below. Such problems 

are called initia~ boundary va~ue prob~ems. Typical physical examples 

include the propagation of pressure waves in a fluid, propagation of 



stresses and displacements in elastic systems, propagation of heat 

and the development of self-excited vibrations. The governing 

equations for propagation problems are paraboZia or hyperboZia. 

1 Differential equation 
L[4>I=f 

Initial conditions Ii [4>1 =hi 

FIGURE 1.1.2: Representation of the general propagation ~roblem 

The differential equations mentioned above generally involve 

partial derivatives of the dependent variable with respect to the 

independent variables and they are therefore referred to as partiaZ 

4 

differentiaZ equations. As examples, we list below a few fundamentally 

important physical situations together with their corresponding equations: 

(1) The small transverse vibrations y of a tightly stretched string 

(Fig. 1.1.3). 

y 

o 

'lY 
I 

FIGURE 1.1.3 

(1.1.8) 

x 
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(2) The small vibrations z of a circular membrane with no twisting 

motion (Fig. 1.1.4). 

1 0 (r~) 
r or or 

x FIGURE 1.1.4 

(1.1. 9) 

(3) The motion in a vertical section of a wave surface in a bay open 

to the sea in the X direction (Fig. 1.1.5). 

2 
iJ. = 9:. .1..(hb ~) 
ot2 b ox ox' 

where b is breadth and h the depth of the bay. 

y 

b 
x~ 

FIGURE 1.1.5 

(1.1.10) 

(4) The distribut.ion of t.emperature V in a long narrow rectangular 

plate (one dimensional flow) (Fig. 1.1.6). 

a2v 1 av 
-:;2 = 2" at 
oX a 

(1.1.11) 
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FIGURE 1.1.6 

(5) The distribution of temperature V within a sphere (Fig. 1.1.7). 

1 a (rV) 
= 2" at (1.1.12) 

a 

FIGURE 1.1. 7 

(6) The distribution of temperature V in a cylinder (Fig. 1.1.8). 

a2v 1 aV 1 av --+--=--
a 

2 r ar 2 at 
r a 

(1.1.13) 

-+-("",--J-_-- -_-~_--_V-- _-- _-----J--)1---

FIGURE 1.1.8 
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All of the above differential equations may be derived 

mathematically. For the purpose of demonstration, however, we shall 

only attempt to derive the heat equation (1.1.11) and the vibration 

equation (1.1.8). 

(a) Derivation of eqn.(l.l.ll). We shall assume: 

(i) that heat flows from high to low temperatures, 

(H) that Q, the quantity of heat, is jointly proportional 

to the body mass and to its temperature V, 

(iH) that the rate at which heat flows across an area is 

jointly proportional to the area and to the rate av/ax 

of change of temperature measured perpendicular to the 

area. 

I I' , _______ J, " " 

Q ' '" , , ' 

x 

, , , 
, I , 

FIGURE 1.1. 9 

dx 

Consider the homogeneous bar (Fig. 1.1.9) with sectional area A 

whose sides are well insulated and whose uniform density is p. The 

mass of the differential section is 

pAdx. 

Thus, by assumption (ii) , 

Q ; k (pAdx) V ca1. 

and (taking derivative with respect to t) 

~ _ av 
at - k(pAdx)at cal./sec. (1.1.14) 
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This last expression is proportional to the rate at which heat 

flows into the differential volume minus the rate at which it flows 

out; that is, it is proportional to 

with the signs satisfying assumption (i). That is, with proportionality 

factor k
l

, 

(1.1.15) 

av NOW, by Taylor's series, (a;)x+dx is expanded in powers of dx and 

terms involving higher powers of dx are discarded. Accordingly, 

av av a2v kpAdx - = k A(- + - dx at 1 ax ax2 
av 2 a2v or - = a --at a} 

2 
where a represents the quantity kl/k

p
• 

(b) Derivation of eqn.(1.1.8). We consider a free body section of 

the string as shown in Fig. 1.1.10 below, 

y 

T 

x dx L-_______ -L __________ ~ ______________ ~x 

FIGURE 1.1.10 



Let F represent the sum of the forces acting in the y direction. 
y 

Then by Newton's law, 

F = (mdx) 
Y 

(1.1.16) 

where m is the mass per unit length of the string. In this it should 

be noted that since 2 
y' «1 then, 

ds = .{+y,2 dx = dx 

But for any section as shown, since assumptions provide that 9
1

,92 

are small enough to replace sinS by tanS , we have 

Fy = TSinS2 - TsinSl = T(tanS2-tanSl ) 

= T[ (2z) - (2z) I 
3x x+dx ax x 

The notation (~) dx stands for the slope of the curve at the point 
oX x+ 

whose abscissa is x+dx. 2z Let g(x,t) = ax' Then, 

(~)X+dx = g(x+dx,t) • 

Now by Taylor's series, a function g(x+dx) may be expanded in powers 

of dx; that is, 

1 2 
g (x+dx) = g (x) +g' (x) dx + 2i g" (x) dx + ••• 

(t being considered constant, we omit writing it explicitly here) • 

So here, 
dx + ••• 

With this, we may rewrite the last expression for Fy as 

2 
F = T [ (2z) + (U) dx + ••• - (]1.) I 

y 3x 2 3x 3x 
2 

or F : T U dx (1.1.17) 
y 2 

3x 

h 't '1' d
2

d
3 w ere~n erms ~nvo v1ng x, x, ... are discarded. Equating the 

two expressions (1.1.16) and (1.1.17) for F • 
Y 

9 



which is of the form (1.1.8). 

We shall now formally define a partial differential equation for 

a dependent variable u(x,y, ••• ) as a relation of the form 

au au 
F(x,y, ... ,u, 3x' ay'···' , ••• ) = 0 (1.1.18) 

where F is a given function of the independent variables x,y, ••• and 

the "unknown" function u and of a finite number of its partial 

derivatives. The order of the,equation is equal to the order of the 

10 

highest partial differential coefficient occurring in it. For example, 

the equations, 

(1.1.19) 

(1.1.20) 

(where f(x,y) is any given function) are typical partial differential 

equations of the first and second orders respectively, x and y being 

the independent variables, and u=u(x,y) being the dependent variable 

whose form is to be found by solving the appropriate equation. 

Likewise the equation, 

(1.1.21) 

(known as Laplace's equation in three variables) is an equation of 

second order for u(x,y,z) where x,y and z are independent variables. 

We note that equations (1.1.19), (1.1.20) and (1.1.21) are all Zineap. 

In the language of linear operators, we say that the operator L is 

linear when it satisfies the following relations: 



(1.1.22) 

L~rv;)-- (1.1.23) 

L[avl +bv
21 = aL[vll +bLJv21 , (1.1.24) 

where a and b are constants. a a2 
Differential operators such as at ' ---2 

ax 
and so on can be readily verified to be linear. To demonstrate the 

importance of this linearity assumption, let us consider the heat 

conduction equation, 

solutions 
2 a u

l 
ax2 = 

of equation (1.1.25), that is 
2· 

a u2 aU2 and ---- = It 
ax2 at 

By virtue of the linearity of the operators a2 a 
---2 and at ' 
ax 

(1.1.25) 

(1.1.26) 

it follows 

that u
l

+u
2 

(in fact au
l

+bu
2

, where a and b are arbitrary constants) 

is also a solution. 

Let us, on the other hand, consider the more general heat 

conduction equation, 

= c 
au 
at 

(1.1.27) 

where c is a constant and k depends upon the temperature u, k(u)=kOU 

say, where ko is a constant. Now equation (1.1.27) becomes 

a2
u 

u --- + 
dX

2 
(1.1.28) 
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Suppose u
l 

and u
2 

are solutions of equation (1.1.28). We wish to know 

whether u
l

+u
2 

is also a solution of the same equation. By substituting 

that, u
l

+u2 into equation (1.1.28) we find after some algebra 
2 2 

a ul aU
l 2 Caul a u2 [u - + (---) -- -I + [u ---- + 

1 ax 2 dX ko at 2 ax 2 



au 
2_1 

ax = 0 .. (1.1.29) 

The first two bracketed terms vanish by virtue of equation 

(1.1.28). The last three terms are not zero. Therefore u
l

+u
2 

is not 

a solution implying that equation (1.1.27) is not linear. 

12 

When a partial differential equation is not linear, it can either 

be quasiZinear or nonZinear. If the coefficients, such as k of 

equation (1.1.27) are functions only of the dependent variable and 

not of its derivatives, then the equation is quasilinear. Otherwise, 

the equations are nonlinear. 

A linear equation is said to be homogeneous if each term contains 

either the dependent variable or one of its derivatives. For example, 

Laplace's equation in two-dimensions (that is, two independent variables) , 

2 
V u = 0 , 

. 2 
where V is the two-dimensional Laplace 

2 a2 
cartesian coordinates (x,y) by V = ---2 

ax 
the two-dimensional Poisson equation, 

2 
V u = f(x,y) , 

(1.1.30) 

operator (defined in rectangular 

a2 
+ ---I is homogeneous. However, 

a/ 

(1.1. 31) 

where f(x,y) is any given (non-zero) function, is termed inhomogeneous 

(or non-homogeneous). If u l ,u2 , ••• ,u
n 

where n may be finite or non

finite, are n different solutions of a linear homogeneous partial 

differential equation in some given domain then, 

(1.1.32) 

is also a solution in the same domain, where the coefficients c l ,c2 , 

.•. ,e
n 

are arbitrary constants. 
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Whereas the general solution of a linear ordinary differential 

equation contains arbitrary constants of integration, the general 

solution of a linear partial differential equation contains arbitrary 

functions. To illustrate this point we consider the problem of the 

formation of partial differential equations from given functions. 

For example, if, 

u = yf(x) (1.1.33) 

where f(x) is an arbitrary function of x, then differentiating with 

respect to y we have, au 
- = f(x) • ay (1.1.34) 

On eliminating f(x) between (1.1.33) and (1.1.34) we find that, 

au 
y - = u ay (1.1.35) 

which is a first-order linear partial differential equation whose 

general solution is given by (1.1.33). The significant pcint here 

is that the solution of (1.1.35) as given by (1.1.33) contains an 

arbitrary function. 



1.2 CLASSIFICATION OF EQUATIONS AND BOUNDARY CONDITIONS 

The general two-dimensional second-order equation is given by 

2 2 2 
D au + E au + A..L!! + Bl...!!...+ c..L!!+ Fu + G = 0 (1.2.1) 

ax
2 axay ay2 ax ay 

where A,B,C,D,E,Fand G may be functions of the independent variables 

x and y and of the dependent variable u. Special cases of this 

equation occur more frequently than any other in fietd probtems 

(that is, problems in science and engineering involving partial 

differential equations). One such form is the quasilinear equation 

(1. 2 .2) 

where the coefficients 

a
2
u a

2
u a

2
u 

au au 
may be functions of x,y,u, ax and ay but not 

of --2 ' aa and --2 • 
ax x y ay 

Some examples serve to illustrate this: 

(1) The wave equation, 

a2
u 1 a2

u 
-2=22 
ax c at 

(1. 2 .3) 

is obtained by 1 
taking A=l, c=- 2 , B=G=O and associating the 

c 
variable y with the time variable t. 

(2) The Laplace equation in two variables, 

2 2 
l.J! + ..L!! = 0 

2 2 ax ay 
(1. 2 .4) 

is obtained from (1.2.2) by choosing A=l, C=l, B=G=O. 

(3) 
au Putting A=l, B=C=O and G= - k ~(where we associate y with t) 

we get the familiar heat equation, 

k au 
at 

(1.2.5) 

14 



It will be shown that at every point in the x-y plane there are 

two directions in which the integration of the partial differential 

equation reduces to the integration of an equation involving total 

differentials only. Furthermore it will be seen that this leads to a 

natural classification of partial differential equations. 

Let us denote the first and second derivatives by 

au au a
2
u a

2
u a

2
u t (1.2.6) -"= p, -= q, --= r, --= s and -- = 

ax ay ax 
2 axay al 

Let C be a curve in the x-y plane on which the values of U,p and 

q are such that they and the second-order derivatives r,s and t 

derivable from them, satisfy equation (1.2.2) • Therefore, the 

differentials of p and q in directions tangential to C satisfy the 

equations, 

dp = .£E. dx + .£E. dy = rdx + Sdy (1.2.7) 
ax ay 

and dq = .£s.dx + .£s. d = sdx + tdy (1.2.8) ax ay y 

where" 
Ar + Bs + Ct + G = 0 (1.2.9) 

and ~ is the slope of the tangent to C. Eliminating rand t from 

equation (1.2.9) by means of equations (1.2.7) and (1.2.8) gives us, 

A C 
dx (dp-sdy) + Bs + dy(dq-sdx) + G = 0, 

i.e. , 

(1.2.10) 

Now choose the curve C so that the slope of the tangent at every 

point on it is a root of the equation, 

dv 2 dv 
A (=) - B (=) + C = 0 • 

dx dx 
(1.2.11) 

so that s is also eliminated. By (1.2.10) it follows that in this 

direction, we have, 

\ 

15 
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A ~~+C~+G~=O dxdx dx dx • 
(1.2.12) 

This shows that at every point P(x,y) of the solution domain there are 

two directions, given by the roots of (1.2.11), along which there is 

a relationship, given by (1.2.12), between the total differentials dp 

and dq. 

The directions given by the roots of equation (1.2.11) are called 

the characteristic directions and the partial differential equation is 

said to be hyperbolic, parabolic or elliptic according to whether these 

roots are real and distinct, equal or complex respectively, that is, 

2 
according to whether D=B -4AC is positive, zero or negative. 

Returning to our examples above it is clear that the wave equation 

(1.2.3) is of hyperbolic type, the Laplace equation is of elliptic 

type and the heat equation is parabolic. It is also important to note 

that equations with variable coefficients may change their type on 

passing from one region of the xy-plane to another. For example, as 

shown in Fig. 1.2.1, the equation, 

(1.2.13) 

2 2 
is elliptic in the region where y -x >0, parabolic along the lines 

y2_x2=0, and hyperbolic in the region where y2_x2<0. 

A similar but more complicated classification can be carried out 

for equations in three or more independent variables. The classification 

of partial differential equations into these three categories is 

valuable because the basic analytical and numerical methods for treating 

field problems are inherently different for the three types of equations. 
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The partial differential equations encountered in practical 

problems are often very complicated. There is a need, therefore, for 

the problems to be correctly formulated and properly posed. In the 

sense of Hadamard, a problem is said to be well posed or properly posed 

provided two criteria are satisfied. Firstly, the solution should be 

unique. Secondly the solution obtained should be stable and depends 

continuously on the boundary data. In other words, a small change in 

the given boundary conditions should produce only a correspondingly 

small change in the solution. This is vital since, when the boundary 

conditions are arrived at by experiment, certain small observational 

errors in their values will always exist and these errors should not 

lead to large changes in the solution (a similar situation arises with 

sets of linear algebraic equations, where under certain circumstances 

the equations may be ill-conditioned - that is, small changes in the 

coefficients may produce large changes in the solutions). As a formal 

example, we consider Laplace's equation in two dimensions, 
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(1.2.14) 

We now search for a solution which satisfies the boundary conditions 

sin nx u(x,O) = =;;.:...= 
n 

(au) = ° , , ay y=o (1.2.15) 

where n is some parameter. Such a solution is easily verified to be 

1 u(x,y) = - sin nxcosh ny • 
n 

However, as n~ the boundary conditions converge to 

au 
u(x,O) = ° , (ay)y=o = ° , 

(1.2.16) 

(1.2.17) 

and these, together with (1.2.14) imply, by Taylor's series, u(x,y)=O. 

However, as n~, u(x,y) as given by (1.2.16) becomes infinitely large. 

The problem defined by (1.2.14) and (1.2.15) is not, therefore, well 

posed and could not be associated with a physical phenomenon. Much 

work has been carried out to determine the types of boundary conditions, 

which, when imposed on linear partial differential equations, lead to 

unique and stable solutions. There are several types of boundary 

conditions which arise frequently in the description of physical 

phenomena. If we wish to solve the equation L[u)=f over a region D 

whose boundary is denoted by B then the specifications along B are of 

the following types: 

(1) DirichZet condition or the first boundary condition. 

Here u satisfies the condition, 

u ;; g on B -, (1.2.18) 

with g being a prescribed continuous function on B. 

An example of a problem using Dirichlet conditions for its solution 

is the task of finding the temperature distribution in the interior of 



a plate when the temperature is prescribed at all points on the 

boundary of the plate. 

(2) Neumann aondition or the seaond boundary condition. 

au The normal derivative satisfies the condition 
an 

au -=gonB, an 
(1.2.19) 

where g is a prescribed function continuous on B. 
au 

The symbol an 
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denotes the directional derivative of u along the outward normal to B. 

We note that the boundary conditions of (1.2.18) and (1.2.19) are 

inhomogeneous. An inhomogeneous boundary condition can be further 

classified as time varying and time invariant. For example, boundary 

conditions such as, 

u(O,t) = 0, ~ ~~ (l,t) = 0 

are homogeneous, while, 
au -t 

u(O,t) = 3 ~ - (Lt) = e , ax 

are examples of inhomogeneous boundary conditions, the first being time 

invariant and the second time varying. 

(3) Combined or third boundary aonditions. 

The Dirichlet and Neumann types of boundary conditions are 

combined and a typical example is 

au u(xo,t) +~- (x ,t) = y(t) , cdo 
ax 0 

(4) Mixed or fourth boundary aondition. 

(1.2.20) 

Here, a Dirichlet type of boundary condition is required to be 

satisfied on a portion Bl of the boundary B, and a Neumann type of 

boundary condition on the rest B2 of B. That is, the boundary 

conditions take the form, 



(5) Cauchy condition. 

u = gl on Bl ' 

au 
an = g2 on B2 
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If one of the independent variables is t (time, say), and the 

au values of both u and at on a boundary t=Q (that is, the critical values 

au of u and at) are given, then the boundary conditions are of cauchy 

type with respect to the variable t. 

As an example, we consider the case of the one-dimensional wave 

equation, 

(1.2.21) 

representing, say, the transverse oscillations of a stretched string. 

The Cauchy conditions correspond to giving the initial values of both 

the transverse displacement u and the transverse velocity ~~ of the 

string, that is, 

and 

u(x,t
o

) = fIx) 

au 
at (x,to) = g(x) (1.2.22) 

These conditions can be shown to be necessary and sufficient for the 

existence of a unique solution. 

(6) Periodic boundary condition. 

In this case a solution is sought such 'that it satisfies the 

periodicity conditions like, 
ul x 

aul 
= an x+~ (1.2.23) 

where ~ is the period. 



21 

1.3 NUMERICAL APPROXIMATION METHODS OF SOLUTIONS 

As has been stated in the previous section, the partial differ-

ential equations encountered in practical problems are often very 

complicated. Usually, they have variable coefficients, non-linearities, 

irregular boundaries and occur in coupled systems of differing types 

(say, parabolic and hyperbolic). It is generally impossible to obtain 

analytical solutions to the characterising equations. Even if these 

solutions exist, their evaluations are often a laborious task, as can 

be seen by inspecting the solution by Fburier series of the torsion 

problem for a rectangular cross-section defined by x=±a, y=±b, namely, 

$ (x ,y) I 
n=O 

(-1) n 

(2n+l) 3 
h 

(2n+l)na (2n+l)nx 
sec 2b cosh 2b 

cos 
(2n+l) ny 

2b 

Numerical methods are therefore used almost exclusively to treat such 

problems. Prior to the 1960'S, analogue simulation methods were 

widely used. In recent years, however, these have been almost 

completely replaced by the high-speed, large-memory digital computer. 

A number of approaches to derive suitable digital computer algorithms 

have been developed. The most widely used of these are the finite 

difference method and the finite eZement method. 

The aim of both these methods is to reduce a given continuum 

problem into a discrete mathematical model sui table for computation. 

Toward this end various discretization schemes have been proposed both 

by engineers and mathematicians. Annng the various discretization 

strategies, the finite difference and the finite element methods are 

perhaps the most general and therefore the most popular. The finite 
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difference method, developed primarily by mathematicians, is a very 

general procedure and can be used directly if the governing differential 

equations of a: physical system are available. 

Early development of the finite element method, however, waS to 

a large extent contributed by engineers rather than mathematicians in 

the mid 1950s. As many physical systems of engineering interest can 

be viewed as interconnected components, the engineers attempted to 

create anologies between finite portions of a continuum with discrete 

conponents or "finite elements" of the physical system. Thus, in 

contrast with finite difference methods, the starting point of the 

traditional finite element method was the physical system itself, and 

the discretization process was intuitive and based on physical 

arguments. Nevertheless, the finite element method almost always led 

to acceptable numerical solutions. 

Both the finite difference and the finite'element methods are 

considered to be totaZ discretization schemes because derivatives no 

longer appear in the discretized IIDdel. In addition to these total 

discretization schemes, some semi -discretization methods also play an 

important role particularly in the development of general-purpose 

software packages for solving partial differential equations. These 

schemes, called the method of lines, discretize all but one independent 

variable converting a given partial differential equation into a system 

of ordinary differential equations. These equations take the form of 

initial or boundary value problems depending upon the type of the 

original partial differential equation and the manner in which time 

and space variables are treated. These ordinary differential equations 

are then solved using one of the standard methods of solution. 



Although finite element methods have been briefly introduced 

above the purpose of this thesis is to focus solely on finite 

difference methods and develop new strategies to improve them. 

23 
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1.4 REVIEW OF FUNDAMENTAL MATHEMATICAL RESULTS 

In this section we shall briefly include some basic mathematical 

results, mainly from the calculus and linear algebra, that are useful 

in the development and investigation of numerical procedures in 

subsequent chapters. 

(A) CALCULUS 

Theorem 1.1 - Taylor's Theorem 

If f(x) is a continuous, single-valued function of x with 

continuous derivatives f' (x) ,f" (x) , ••• up to and including f (n) (x) in 

a given interval a~x~b, and if f (n+l) (x) exists in O<x<b, then, 

(x-a) 2 n 
f (n) (a) f(x) = f (a) + f' (a) + 

(x-a) 
f"(a)+ ... + 

(x-a) 
+ E (x) 

11 2! nl n 

where, (1.4.1) 

(' )n+l ( 1) 
x-a f n+ (~) 

(n+l) I 
(1.4.2) 

and a<~<x. 

An alternative form of (1.4.1) may be obtained by changing x to 

a+x. Then, 

f(a+x) 
x 

= f (a) + 11 f' (a) 

2 
x +-
21 

n 
f"(a)+ ... + ~ fen) (a) + E (x), 

nl n 

where now from (1.4.2), 

and 0<8<1. 

n+l 
x 

E ( x ) = -i---=-=-7 
n (nt;l) ! 

f (n+l) (a+8x) 

Theorem 1.2 - Taylor' s Theorem for Functions of Two Independent 
Variables 

(1.4.3) 

(1.4.4) 

If f(x,y) is defined on a region R of the xy-plane and all its 

partial derivatives of orders up to and including the (n+l)th are 



25 

continuous in R, then for any point (a,b) in this region 

f(a+h,b+k) = f(a,b) + *Df(a,b) + 2~ *D
2
f(a,b)+ ••• + n~*df(a,b)+En' 

where *0 is the differential operator 

*D=h...2..+k...2.. 
ax ay 

r a a r 
and *0 f(a,b) means (h ax + k ay) f(x,y) 

(1.4.5) 

(1.4.6) 

(1.4.7) 

evaluated at the point (a,b). The Lagrange error term E is given by, 
n 

(1.4.8) 

where 0<8 <1. 

Theorem 1.3 - Fundamental Theorem of Algebra 

n n-l 
Let p (x) =anx +a

n
_

l 
x + ••• +a

l 
x+a

O 
be an nth degree polynomial 

with n~l, a 10. 
n 

n 
Then there exist uniquely n constants, {rj}j=l' 

("zero s of p (x)") such that 

where the rjs need not all be distinct or all real. 

A quadratic equation is of the form 

2 
(a) ax +bx+c = 0 (atO) or 

2 
(b) x +px+q = 0 (reduced form) 

Definition 1.4.1 

(1.4.9) 

2 
The discriminant of the equation (a) is the number D=b -4ac and 

that of the equation (b) is the number o=p2 -4q. 

Theorem 1.4 - Roots of a Quadratic Equation 

For 010, the equation has two distinct roots; 



for 0=0, the equation has one double root. 

If the coefficients of the equation are 

for 0>0, it has two distinct real roots; 

. 
for 0<0, it has two complex conjugate roots; 

for 0=0, it has only one real (double) root. 

The solution can be found by: 

1. Factorization into linear factors: 

2 
ax +bx+c = a{x-x

1
) (x-x

2
) 

a{x1+~) = -b 

a{x
1

x
2

) = c 

2 
or x +px+q = (x-xl) (x-x

2
) 

x +x =-p 1 2 

2. The formula, 
2 

-b±/{b -4ac) 
x = 

1,2 2a 

2 
for equation ax +bx+c = O. 

3. The formula, 

x = _ ~ ± l'{p2 _ q) 
1,2 2 / I 4 

2 
for equation x +px+q=O. 

A cubic equation is of the form, 

3 2 
ax +bx +cx+d = 0, a~. 
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real, then: 

(1.4.1O) 

By the substitution x=y-b/3a and dividing by a, the equation (1.4.10) 

be coma s , 
3 

Y +3py+2q = 0 , (1.4.11) 

where, 
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3p = 
2 

3ac-b 

3a
2 

, 2q 
be d 

- -- +-
3a2 a 

(1.4.12) 

Definition 1.4.2 

The discriminant of the equation (1.4.11) is the number 

3 2 
O=-p -q • 

Theorem 1.5 - Roots of a Cubic Equation 

FOr 0#0, equation (1.4.11) has three distinct roots; for 0=0, 

equation (1.4.11) has either a double root (if p3=-q
2#O) or a triple 

zero root (if p=q=O) . 

If the coefficients of equation (1.4.11) are real, then: 

for O~O, it has three real roots which are distinct if 0>0; 

for 0<0, it has one real and two complex conjugate roots. 

Methods of solution are: 

1. By factorization into linear factors: 

3 2 
ax +bx +cx+d = 0; a(x-x

l ) (x-~) (x-x3) = 0 

(x
l

'X2 'X3 are the roots); 

b c 
x l +x2+x3 = - a; xlx2+xlx3+~X3 = a; x l x2X3 = 

2. By solving algebraically. 

The roots Y
l

'Y2 'Y
3 

of equation (1.4.11) are, 

where, 

d 
a 

= -! ± i 
13 

2 
2 3 2 3 

= 3/[-q+ (q +p »), v = 3/[-q-/(q +p »); , u 

here "'" choose the cube roots so that uv=-p. (The cube roots are 

obtained by the method of solving the binomial equation (1.4.16) 

below). This mathod is not suitable if (1.4.11) has real coefficients 

and 0)0, since the real roots Y
l

'Y
2

'Y
3 

are expressed in terms of roots 

of complex numbers (the irreducible case). 
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3. By solving trigonometrica11y. 

Let the coefficients p,q of equation (1.4.11) be real and 

different from Zero. Denote the roots by Y1'Y2'Y3' Put r=e/lpl 

where E:=1 if q>o and E:=-1 if q<O. Then the roots can be determined by 

means of the trigonometric or hyperbolic functions according to Table 

1.4.1. 

If q=O in equation (1.4.11), then the equation has the cOlllIOCln 

factor y and can be solved easily. 

If p=O in equation (1.4.11), then (1.4.11) is a binomial equation 

of the form (1.4.16), 

p<O p>O 
Check 

3 2 
P +q ro p3+q2>o 

cos ~ = ~ cosh ~ = ~ sinh ~ = b
3 3 

r r r 

Y1=-2rcos~/3 Y1 =-2rcosh$/3 y 1 =-2rsinh$/3 

y =2rcos (60°- .p.) ~ il3 .tJ. il3 
2 3 y 2=rcosh)+ y2=rsl.n 3 + 

Y1+Y2+Y3=O 

rSin~ rcos~ 

Y =2rcos(600+ .p.) 
3 3 Y =rcostJ. -3 3 

il3 .tJ. Y3=rsl.n 3 -

rSin~ i13rcos4 

TABLE 1.4.1 

Note that ~ lies in the interval (0,90°). 

A quartic (or biquadratic) equation has the form 

4 3 2 
ax +bx +cx +dx+e = 0, a;iO·. (1.4.13) 

By the substitution x=y-b/4a and dividing by a, equation (1.11.1"3) becomes, 

4 2 Y +py +qy+r = 0 , (1.4.14) 



where, 
3b

2 
c 

p = - -'l'" + -, 
Sa2 a 

b
3 

bc d q=-----+-
Sa3 2a2 a 

, r = -
3b 

4 

256a
4 
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bd e 
-- +-
4a2 a 

(1.4.15) 

Meth:lds of solution are: 

1. By factorization into linear factors, 

432 
ax +bx +cx +dx+e = 0, a(x-x

l
) (x-x

2
) (x-x

3
) (x-x

4
) = 0 

(xl 'Xz,x3 ,x4 are the roots) 

c 
= -

a 

d e 
= -

a a 

2. By solving algebraically. 

y = -£ -rz: +rz:3 4 1 2 

where zl,z2,z3 are the roots of the equation (the reducing cubic) 

3 P 2 
z + 2" z + 

2 2 
p r q 
(- - -)z - - = 0 16 4 64 . 

Here the roots ;;1' rz;, rz3 sh:luld be ch:lsen (the roots are 

obtained by the method of solving the binomial equation (1.4.16) 

be low) such that, 

De finition 1. 4.3 

=_s. 
8 

An equation of the form, 

n 
X-Cl =0, (1.4.16) 

where et is a non-zero complex number is called a binomial equation. 
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Definition 1.4.4 

The roots of equation (1.4.16) are said to be the nth roots of 

the number a and are denoted by ~. Thus rc; stands for any of the 

n roots of equation (1.4.16). 

Theorem 1.6 - Roots of a Binomial Equation 

Equation (1.4.16) has n simple roots x , ••• ,x given by 
1 n 

= '7(;i (cos~+2k1T + isill~+2k1Ti (k=O,l, ••• ,n-l) where a=r (cos~+isin<j» 
n n 

is the trigonometric form of the number a, 11;;">0. 
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(B) LINEAR ALGEBRA 

The numerical solution of partial differential equations 

generally requires us: 

(i) to solve the matrix system, 

Au = ! ' (1.4.17) 

where A has m rows and columns with the elements a
ij 

(i ,j=l,2, ••• ,m) • The vectors u and f have m components. 

or 

(ii) to find all possible eigenvaZue-eigenveator ~,~ pairs of matrix 

A which satisfy the relation, 

(1. 4 .18) 

for some scalar ~ and a non-zero column vector v. 

A review of notation and properties for a square matrix A of order 

m which is relevant to the solution of equation (1.4.17) or (1.4.18) 

is now given. 

A=[a
ij

) 

a
ij 
-1 

A =[a
ij

) 

T A =[a
ji

) 

H -A =[a
ji

) 

det(A) 

p (A) 

I 

o 

u 

T 
u 

u 

The following notations are used: 

square matrix of order m. 

the element in the ith row and jth column of the matrix A. 

inverse 0 fA. 

transpose of A. 
e .(,~ ~.j II ~V:lj t. 
~tfan transpose 

determinant of A. 

of A. 

spectral radius of A. 

identity matrix of order m. 

null matrix. 

column vector with elements u. (i=1,2, •.. ,m). 
~ 

row vector with elements u
j 

(j=1,2, ••• ,m). 

complex conjugate of u. 
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norm of A. 

norm of u. 

1T permutation matrix which has entries of zeros and ones 

only, with one non-zero entry in each row and column. 

Definitions 1.4.5 

The matrix A is: 

non-singular if det (A);Io, 

symmetric if A=A
T

, 

-1 T 
orthogonal if A =A, 

null if ai{o (i ,j=l ,2, ••• ,m) , 

diagonal if a
ij 

=0 for i#j and a
U 

=et i (we usually write 

A=diag{a 1 ,a2 ,· •• ,am} =diag{a i} ) • 

diagonally dominant if laiil~ L lai.1 for all i. 
jfi J 

banded with band width w=2p+l if a .. =0 for I i-jl >p . (for p=l, A 
1J 

becomes tr idiagonal and for p=2, A is 

block diagonal if 

Bl 

B2 0 
A = 

, , , 
0 

, , , 
Bs 

upper triangular if aij=O, i>j. 

lower triangular if aij=O, j>i. 

~"adiagonal) • , 
tj.lN'''' 

where each Bk (k=l ,2, ••• ,s) 

is a square matrix, not 

necessarily of the same 

order. 

-1 
irreducible if there exists no permutation transformation 1TA1T 

which reduces A to the form 

where P and Q are square submatrices of order 

p and q respectively (p+q=m) and 0 is a pxq 

null matrix •. 
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1.5 EIGENVALUES AND EIGENVECTORS 

Definition 1.5.1 

The characteristic equation of A ,is det (A-~I) =0. The roots ~i 

(i=l ,2, ••• ,m) of this equation are the eigenvalues of A and they are 

related to the coefficients a
ij 

of A by 

(i) ~l+~+ •• ·+~m = a
U

+a22 +·· .+amm = trace (A); 

(11) ~1~2 •• ·~m = det (A). 

Definition 1.5.2 

'(1.5.1) 

(1.5.2 ) 

Two matrices A and B are similar if B=H -lAH for some non-singular 

matrix H. H -lAH is a similarity transformation of A. A and B commute 

Theorem 1.7 

If A is an mxm matrix, H is a non-singular matrix of the same 

order and B=H-1AH, then A and B have the same eigenvalues. If v is 

-1 
any eigenvector of A then B has a corresponding eigenvector w=H v. 

Proof: 

!et ~ be any eigenva1ue of A and v be the corresponding eigen-

vector. Then, 

But 

A.! = ~.! . 

B = H-1AH. 

-1 
Thus if ~=H .!' we obtain 

Bw = H-1AH(H-1.!) = 

-1 
= J..J,.H v::::: Il~ . 

-1 
H Av 

-1 
= H (~.!) 

Hence ~ is also an eigenvalue of B and ~ is the corresponding eigen-

vector. Conversely, we can easily prove that if y is an eigenvalue 
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of B. with corresponding eigenvector ~. then y is an eigenvalue of 

A corresponding to v=Hw. 

Definition 1.5.3 

Vectors E.l.E.2 ••••• Em are said to be linearly dependent if non-zero 

(1.5.3) 

If this equation holds only for c l =c
2= .•• =cm=O. however. the vectors 

.!:!1'.!:!2' •••• ~ are said to be linearly independent. 

Theorem 1.8 

If A has distinct eigenvalues 1l
1

.1l
2 

•..•• Il
m 

then the corresponding 

eigenvectors .!1'.!2' ••• ':!m are linearly independent. 

Proof: 

Suppose. if possible. that the eigenvectors .!1 • .!2 •..•• :!m are 

linearly dependent. Without loss of generality we may assume that .!l' 

linearly dependent set. Then for some constants a
l

.a2 ••••• a k we must 

have. 
k 

1: 
i=l 

a.v. 
~-~ 

Multiplying eqn. (1.5.4) by matrix A gives. 
k 

~+l.!k+l = ~k+l = 1: a.A.!i = 
i=l ~ 

Multiplying eqn. (1.5.4) by ~+l gives. 

k 

Ilk+l~k+l = L aillk+l.!i . 
i=l 

k 
1: a.ll.v. 

i=l ~ ~-~ 

(1.5.4) 

(1.5.5) 

(1.5.6) 



Subtracting (1.5.5) from (1.5.6) shows that 

k 

L a i (~k+l-~i)!i = ~ 
i=l 

Since ~ -~ito, for any i=l, ••• ,k and vI ,v2 ' ••• ,~. are independent, 
. k+l - - --". 

we must have ai=o for all i. Hence ~k+l=O which is impossible. 

Corollary 1. 8 

If an mxm matrix A has distinct eigenvalues ~1'~2""'~m then A 

is similar to the diagonal matrix diag{~1'~2""'~m}' 

Proof: 

Since A has distinct eigenvalues, it has a set ~l '~2 , •• "Ym of 

linearly independent eigenvectors. IBt H be the matrix whose column 
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vectors are vl'v , ••• ,v , i.e. H=(v
l

,v
2

, ••• ,v). Since the columns of 
-~ -m ---m 

H are linearly independent, H is a non-singular matrix and has an 

-1 
inverse H • 

. -1 -1 -1 
Now H AH=H A(v

l
,v

2
, ••• ,V)=H (AV

l
,AV

2
, ••• ,AV). But for each -- --m -- -m 

i, AVi=~' v.' 
- 1.-1. 

Hence, 

-1 
= H (!1'~2""'Ym) diag(~1'~2""'~m) 

= I diag(~1'~2""'~m) 

= diag(~1'~2""'~m) 

where I is the identity matrix of order m. 

Theorem 1.9 

T 
The matrices A and A always have the same eigenvalues. 

Proof: 

For any square matrix M, we have det (M) =det (MT) • Hence , 



det(A-J.LI) = det((A-J.LI)T) = det(AT-J.LI) 

T 
so that A and A have the same characteristic equation and therefore 

the same eigenvalues. 

T 
We note that although A and A have the same eigenvalues they 
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will not generally have the same eigenvectors. For any eigenvalue 11, 

the corresponding eigenvector of A is a solution' of 

Av = I!~ , 

T 
whereas the eigenvector of A is a solution of 

T 
AW=I!~. 

(1.5.7) 

(1.5.8) 

The eigenvectors of AT are sometimes referred to as the left-hand 

T T 
eigenvectors of A, since transposing equation (1.5.8) gives ~A=I1~ 

Theorem 1.10 

The eigenvalues of a real symmetric matrix are all real. 

Proof: 

Let I! be an eigenvalue and ~ an associated eigenvector of the 

symmetric matrix A. Since I! might be complex, we should assume that, 

in general, ~=~+il': where x and y. are real vectors and i=l-l, the 

imaginary number. 

Now, 

and so 

with 

A~=I!~, 

H H 
~ A~ = I!~ ~ 

H _ _ - T 
v v = (vl ,v2 '··· ,vm) (vl .v2 '·· •• vm) 

= 
m 2 
L IVil ,which is real and positive. 

i=l 

(1.5.9) 

(1.5.10) 

Taking the complex conjugate of eqn. (1.5.9), transposing, and post-

multiplying by ~ gives, 
H H - H 

(~A )~I!~ ~ 
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H 
But, since A is real and symnetric, A ~A and so 

H -H 
v Av ~ IJ.~ ~ (1.5.11) 

Comparing eqns. (1.5.10) and (1.5.11) shows that 

H -H 
IJ.~ ~ ~ IJ.~ ~ 

Since ~H~ro, we obtain imnediately IJ.~IJ.. .we note here that since all 

the eigenvalues of a real symmetric matrix are real it follows that 

the eigenvectors are also real. 

Theorem 1.11 - Ortoogonal Property 

If ~l and ~2 are eigenvectors of a real symmetric matrix A, 

T 
corresponding to distinct eigenvalues 1.11 and ~, then (~1'~2)~~1~2~O. 

Theorem 1.12 - Diagonalisation Theorem 

If A is a real symmetric matrix, then there exists a real 

ortoogonal matrix P such that pTAP~D is a diagonal matrix. 

Theorem 1.13 - Gerschgorin's First Theorem 

The largest of the mduli of the eigenvalues of the square matrix 

A cannot exceed the largest sum of the mduli of the elements along 

any row or any column. 

Proof: 

Let 1.1. be an eigenvalue of the (mxm) matrix A .and v. the 
L -L 

corresponding eigenvector with components v
l

,v
2

, ••• ,v
m

' Then, from 

the· equation Av. ~ 1.1. v. we have, 
-1 ~-l. 
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th 
Select the s 

equation and divide by vs' 

v 
Il

i 
= a

sl 
(vI) 

s 
Therefore, 

giving, 

v 2 
+a

2
(-) 

s v 
s 

+ ••• + 

11l·1 ~ la 11 + la 21+ .• , +Ial 
~ s s sm 

IV'j 
since I v: :; 1 for i=1,2 I ••• ,m. 

v 
m a (-) 

sm v 
s 

In particular this holds for I Il. I =maxi Il I , s=l,2, •.• ,m. Since 
1. s 

the eigenvalues of the transpose of A are the same as those of A the 

theorem is also true for columns. 

Theorem 1.14 - Gerschgorin' s Circle Theorem or Brauer' s Theorem 

Each eigenvalue of a matrix A satisfies at least one of the 

inequalities, 

i=1,2, ... ,m (1.5.12) 

where the prime indicates that the term i=j in the sum is omitted. 

In words, every eigenvalue of A lies in at least one of the circles 

with centre qii and radius r i in the complex Il-plane. 

Proof: 

If Il is an eigenvalue of A, and v the corresponding eigenvector, 

then A~=Il~, which implies, 

m{ L a .. v j j=l l.J 
, i=l, ... ,m (1.5.13) 

where the prime indicates that the term i=j in the sum has been omitted. 
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Suppose that v
k 

is the largest element of v. Then I :!! ~ I for all 

j, and, 

Since this is true for any eigenvalue, this proves the theorem. 

In practice, we often wish to use Gerschgorin's Circle Theorem 

to estimate the eigenvalues of a matrix C where the off-diagonal 

elenents of C are much smaller than the diagonal elenents. Instead of 

applying Gerschgorin' s theorem directly to C, much more accurate bounds 

can often be found by first applying· a simple similarity transformation 

Q-lCQ, where Q is diagonal. We illustrate the procedure in the 3X3 

case. If Q is the matrix obtained by multiplying the first row of the 

unit matrix by k, we have, 
c 12 c 13 

c
ll k k 

Q-lCQ = kCn c22 c
23 

(1.5.14) 

kCn c 32 
c

3 

The Gerschgorin circles are given by, 

Centres 

Radii 

Suppose that for k=l the three circles are disjoint. As k increases, 

the radius of the first circle will decrease, whereas the radii of 

the other two circles will increase. Clearly there will be an optimum 

value of k for which the radius of the first circle will be as small 

as possible, while still being disjoint from the others. 

As an exanple, we estimate the eigenvalues of, 
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1 _10-5 
2 xlO 

-5 

-5 -5 
C = 4XlO 0.5 -3x lO 

_10-5 
3xlO 

-5 
0.1 

Direct application of the Gerschgorin's circle theorem shows that 

the eigenvalues ~, of C satisfy 
1. 

I 0 .5-~ I ~7xlO -5, 

However, a much better bound on ~l can be obtained by taking k=104 

in (1.5.14), which is the largest power of 10 such that the Gerschgorin 

circle for ~l is disjoint from the other tw:>. (The nearest power of 10 

is chosen for convenience). This. gives, 

1 -10 
-9 2xlO-9 

Q-lCQ = 4xlO-1 
0.5 _3xlO-5 

_10-1 3x lO -5 0.1 

so that, 

Il-~ll ~3x 10-
9

, I 0 .5-~21 ~7xlO -9, 10 .1-~31 ~4xlO -9. 

A Note on Eigenvalues and Eigenvectors 

Let v be an eigenvector of the matrix A corresponding to the 

eigenvalue~. Then A~=~~. Hence A(A~)=A2~=~~=~2v, showing that the 

, A2 h ' 1 2 d' h' matrJ.x as an e1.genva ue ~ correspon l.ng to t e e1.genvector ~. 

Similar results hold for AP~=~P~, p=3,4, ••• 

(i) If f(A) = a AP+a lAP-l+ .•• +aoI is a polynomial in A with 
P p- . 

scalar coefficients ap "" ,aO' then f (A)~= (ap~p + ... +aO)~=f (~)~ 

showing that f(A) has an eigenvalue f(~) corresponding to the 

eigenvector v. 



(H) 

41 

-1 
The eigenvalue of [f

l 
(A)] f

2
(A) corresponding to, the eigen-

vector.'! is f2 (1.1) Ifl (1.1), where f 1 (A) and f2 (A) are polynomials 

in A. The proof is as follows: 

By (i) we have, 

fl (A).'! = fl (I!).'! and f2 (A).'! = f2 (I!).'!o 

-1 
Premultiply both equations by [f

l 
(A)] and write as 

-1 -1 -1 
[f

l 
(A)] .'! = .'!/fl (1.1) and [fl (A)] f2 (A).'! = f2 (1.1) [fl (A)] .'!. 

-1 ' 
Then the elimination of [f

l 
(A)] .'! between these two equations 

slx:lws that, 

which states, by the definition of an eigenvalue, that 

-1 
f2 (1.1) Ifl (1.1) is an eigenvalue of [f

l 
(A) ] f2 (A) corresponding 

to the eigenvector.'!. In a similar manner the eigenvalue 

of f
2

(A) [f
l 

(A)]-l corresponding to the eigenvector v is 

(iii) All m"m Hermitian matrices, which includes real symmetric 

matrices have m linearly independent eigenvectors. 

(iv) If the matrices A and B commute and have linear elementary 

divisOrs then they have a cOlllIOOn system of eigenvectors. 

In particular, all matrices with distinct eigenvalues, all 

Hermitian and therefore all real symmetric matrices, have 

linear elementary divisors. 

(v) Let A and B be matrices with a common system of eigenvectors. 

Let n and I! be the eigenvalues of A and B respectively 

corresponding to the coDllIDn eigenvector .'!. Then v is an 

eigenvector of AB and A -lB and the corresponding eigenvalues 

-1 
are nl! and n I! respectively. These results are easily proved. 

By hypothe sis P.'!=I!.'! and A.'!=n.'!. Therefore AB.'!=I!A.'!=l!n.'!. Also 

-1 -1 
A B.'!=I!A .'!=(l!/n).'!. 



1.6 EIGENVALUES OF SOME COMMONLY ARISING MATRICES 

The eigenvalues of the (mxm) tridiagona1 matrix A. 

a b 

c a b 

c b ... 
0 a , ... 

A 
, ... ... = ... .... ...... , .... , ... 

.... .... ... , 
0 ' ... .... ... .... ... 

c a b 

c a 

where a.b and c may be real or complex numbers are given by. 

2b ~/. (ill) 
~i = a+ vc/b cos m+1 • 

If A takes the cyclic tridiagonal form •. 

A = 

(a b c 

c a b 

cab ........... 
o 

b 

.... .... ' 
.... ' ' .... '" ... o .... "', .... 

.... ,'" 
cab 

c a 

then its eigenvalues are given by. 

i=1,2, ... ,m. 

~i = a+21.Cb COS(2;"). i=O.l ••••• m-l. 
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(1.6.1) 

(1.6.2 ) 

(1.6.3) 

(1.6.4) 
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1.7 POSITIVE DEFINITE MATRICES 

Definition 1.7.1 

The matrix A in this definition is always hermitian. (This means 

symmetric in the real case). The quadratic form (~,~) is said to be 

positive definite if (~~A~) >0 for all ~to, and non-negative if (.';!,A.';!) ~ 

for all u. The matrix A is said to be ~"~EY-El... or non-negative 

definite if the corresponding quadratic form is positive or non-negative 

definite. A quadratic form is said to be indefinite if it is positive 

for some .';!, negative for others. 

Definition 1. 7 .2 

A Stieltjes matrix is a real positive definite matrix with all 

its off-diagonal elements non-positive. If the properties of 

irreducibility and diagonal dominance are added, the matrix is often 

referred to as an S-matrix. An S-matrix has the following properties. 

(i) a
ij 

= a ji 

(ii) a
ij 

~O for itj 

(iii) 1 aii 1 ~ L 1 al.' ,I with strict inequality for at least one i, 
jti ] 

(iv) 

(v) 

(vi) 

s=la
ij

] is irreducible 

S is positive definite, and 

-1 
the elements of S are positive. 

Such matrices occur repeatedly in the finite difference solution of 

part"ial differential equations. 

Theorem 1.15 

H 
If (~,A~) is a positive definite quadratic form and B=S AS, 

where S is a non-singular square matrix, then (~,B~) is al.so a positive 

definite quadratic form. Similarly for non-negative definite form, etc. 
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Theorem 1.16 

(i) (~,A~) is positive definite if and only if every eigenvalue 

of A is positive. 

(H) (~,~) is non-negative definite if and only if all the 

eigenvalues of A are non-negative. 

(iii) (~,A~) is indefinite if A has both positive and negative 

eigenvalues and conversely. 

Theorem 1.17 

A real matrix is positive (non-negative) definite if and only if 

it is symmetric and all its eigenvalues are positive (non-negative). 

Theorem 1.18 

Necessary conditions for a hermitian matrix A to be positive 

definite are: 

(i) The diagonal elements of A must be positive. 

(ii) aiiajj>laijI2, i~j. 
(iii) The element of A of largest absolute value must lie on the 

diagonal. 

(iv) det (A) >0 (A is non-singular). 

Proof: 

In the quadratic form (u ,Au) choose all the u, to be zero except 
- - J 

2 
Then (u,Au) =a .. 1 uil i and since ui~O' we must have a" >0. To 

- - 1.1. 1.1. 

prove (il), choose all the u, to be zero except u, and u
k

. Then, 
J L 

aijujl2 
a
ii 

(1. 7 .1) 
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By choosing ui=-aijuj/aii. in this expression, we see that, since 

aii>o, a necessary condition for (~,A~) to be positive is that 

2 
aiiajj-I aijl. >0. To prove (Hi), suppose that for some i,j we have 

I aijl ~aii' I aij!>-ajj where from (i), aii>O, ajj>o. In this case 

2 
I aijl ~aii a jj which contradicts (U). To prove (iv) , we know from 

eqn. (1.5.2) of Definition 1.5.1. that det (A) is equal to the product of 

the eiqenvalues. From Theorem 1.16, the eiqenvalues of a positive 

definite matrix are all positive so that det(A)>O which proves (iv). 

Theorem 1.19 

Either of the following sets of conditions is necessary and 

sufficient for (~,A~) to be positive definite (A is hermitian): 

(i) Reduce A to row-echelon form working systematically along 

the main diagonal. Then all the pivots are positive. 

(H) The principal minors consisting of the determinants of the 

k"k matrices in the top left-hand corner of A (k=l to m) are 

all positive: 
all a

12 a13 

all > 0, an a
12 > 0, a2l 

a
22 a23 

> 0, ••• (1.7.2) 
a
2l 

a
22 a

31 
a

32 a 33 1 

As an example to demonstrate the application of Theorem 1.19, we 

consider the following quadratic form, 

2 2 2 
F = 2ul+u2+6u3+2ulu2+ulu3+4u2u3 

We write down the matrix of the quadratic form, and reduce it to an 

upper triangular form but not dividing the resulting rows by the 

pivots, so that the pivots appear on the diagonal of the final matrix, 
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2 1 D 2 1 t 

A = 1 1 ~ 
.... 0 t 1~ 

4 

t 2 0 0 
1 

The pivots are 2" and -1/4 and since one of them is negative, the 

quadratic form is not positive definite. 
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1. 8 VECl'OR AND MATRIX NORMS 

Definition 1. 8 .1 

The vector norm of u is a non-negative number denoted by I I!::.I I • 

associated with!::. satisfying: 

(a) II!::.II >0 for ~~. II~II =£.. implies ~=£.. 

(b) Ilk~II"'lkl II~II for any scalar k. 

(c) II~+~II~II~II+II~II (the triangle inequality). 

Definition 1.8.2 

Each of the following quantities defines a vector norm: 

11 ~lll = lUll + I u21 + .•• + I um I • 

11 !::.112 = (I ull2 + I u212 + ••• + I um 12) t 

11 ull = maxi u.1 • 
- co i ~ 

(1.8.1) 

(1.8.2) 

(1.8.3) 

We call the se the 1.2 and'" norms and they are special cases of the 

p-norm, 

Definition 1.8.3 

The matrix norm of a s:ruare matrix A is a non-negative number 

denoted by 11 A 11. associated with A such that: 

(a) IIAII>o for A;io.IIAII=o implies A=O. 

(b) IlkAll = Ikl IIAII for a scalar k. 

(c) IIA+BII~IIAII + IIBII. 

(d) IIABII~IIAII IIBII • 

A matrix norm is said to be compatible with a vector norm II!::.II if 
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Definition 1.8.4 

A matrix norm that is compatible with the vector norm II~II 

is defined as, 

(1.8.4) 

where sup denotes the least ul?per bound for all ~;l0. If we introduce 
u I1 Alii I 

~ = II~II' then 11~11=1 and II~II = IIA~II so that (1.8.4) is 

equivalent to, 

IIAII =suJi' IIAzl1 
11~11=1 -

(1.8.S) 

If the maximum is attained, then, 

IIAII = max IIAzl1 
11!11=1 -

Theorem 1.20 

The natural norms associated with the 1,2 and = vector norms are: 
m 

IIAlll = max L la .. 1 (maximum absolute column sum). 
j i=l 1.) 

IIAI12 = {maximumeigenvalue of AHA}! = [P(AHA»)t. 

m 

L 
j=l 

Theorem 1.21 

la .. 1 (maximum absolute row sum) . 
1.) 

If A is hermitian (symmetric), IIAI12=P (A). 

Proof: 

(l.8.6) 

(1.8.7) 

(1.8.8) 

Since A is hermitian (or symmetric in the real case) then AH=A 

and, 
II A II ~ = p (A HA) 

= p(A2) 
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2 
~ p (A) 

and hence the result follows. 

Theorem 1.22 

For any natural norm IIAII, 

Proof: 

Let v. be any normalised eigenvector corresponding to an eigen
-l. 

value Il.. Then, 
l. 

max IIAZII 
II~II ~l -

~ IIAv.11 
-l. 

~ 11\~ill 

~ 1\1 II~ill 

~ I A.I • 
l. 

This holds for any eigenvalue, so the theorem follows. 

Definition 1.8.5 

If/lAjldeootes any matrix norm then the convergence of a sequence 

of matrices in the sense of this norm is defined as follows: 

lim A(k)~A if and only if liml IA-A(k) I 1=0. Clearly, if lim A(k)~A 
k- k- k-

then limllA (k) II~IIAII. 
k-

Theorem 1.23 

If IIAII <1, then lim Ak=o. (We say that A is convergent). 
k~'" 

Proof: 



Theorem 1.24 

~ IIAII IIAk-lll by Definition 1.8.3(d) 

~ IIAI12 I IA
k

-
2

1 I 

~ IIAllk and the result follows. 
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In order that lim Ak=Q, it is necessary and sufficient that all 
k--

eigenvalues J.!. of the matrix A soould"be less than 1 in modulus. 
"" 

Proof: 

Sufficiency follows at once from Theorem 1.23 and Theorem 1.22. 

The proof for the necessity can be constructed along the following lines: 

When a matrix A has m distinct eigenvalues, then we know from 

Theorem 1.8 and its corollary that there always exists a similarity 

transformation which diagonalises A, 

-1 
A + H AH = diag(J.!i) • 

If A has multiple eigenvalues then while it may not be possible to 

find a similarity transformation which reduces it to a diagonal form, 

it is always possible to reduce it to the Jordan canonical form. 

First we factorise the characteristic polynomial of A: 
k m

i 
p(J.!) = 1T (J.!-J.!.) 

i=l "" 

where m. is the multiplicity of the eigenvalue of J.!.. A non-singular 
"" "" 

matrix M can then be found such that, 

J 1 I I 1 
- 1.. r. -1- - - L -J

2 
, 

--1~--T-

l 
I i', : 
I ' I 

----I ~I-
I I IJ 
1 • k 
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Here each of the blocks J i is an ml m
i 

Jordan sublTl2tri:c of the form, 

J
i 

Each of 

of J is 

= 

~i 

o 

0 

0 

the quantities 

either 0 or 1. 

0 

0 

0 _____ 0 

o 

o ~i 

0_ - - _ - 0 

e 

o 

o 

m -1 
i 

~i 

e 1 ,e2 ,··. ,em -1 appearing on the super diagonal 
i 

Without loss of generality, we may assume 

in the argument which follows that all the quantities e
l

,e
2

, etc. take 

the value 1 in a typical submatrix J i • 

and 

Now note that if 

J = M-lAM then 

A = MJM-l , 

Ak = MJkM-1. 

th k 
To obtain the k pcwer, J of the Jordan canonical form it is 

enough to examine the submatrices J
i

. Typically we get: 

2 
2~i 1 0-----0) ~i 

2 
2~i 1- ---0 I.!i 0 

i = 2 
i 0 0 I.!i 2~i- --- 0 

- - - - - - - - - - - -

3 2 
3~i 01 ~i 3~i 1 0------

3 2 
0 ~i 3~i 3~i 1- - - ---0 

3 2 
3~.-

J~ 
0 0 ~i 3~i - - -- 0 

= 1. 

1. 

- - - - - - - - - - - - - -
J 



and so on. It is then clear that Jk-+() (and so that Ak-+() as k+<" 

if and only if I~ 1<1 for all i. 
i 

Theorem 1.25 

52 

(a) 
---- 2 3-

A necessary and sufficient condition for the series I+A+A +A T ••• 

to converge is that lim Ak=o. 
k+<" 

(b) 
-1 

If A is convergent, then I-A is non-singular and (I-A) = 

2 3 
I+A+A +A + ••• 

Proof: 

A necessary condition for the series in part (a) to converge is 

that liro- Ak=O, _ i.e., that A be convergent. The sufficiency will follow 
k--

from part (b). 

Let A be convergent, where by Theorem 1.24 we know that p(A)<l. 

Since the eigenvalues of I-A are l-~, it follows that det(I-A)~ and 

hence this matrix is non-singular. Now consider the identity, 

- 2 k k+l 
(I-A) (I+A+A + •.• +A ) = I-A 

which is valid for all integers k. Since A is convergent, the limit 

as k-- of the right-hand side exists. The limit, after multiplying 

-1 
both sides on the left by (I-A) ,yields 

2 -1 
(I+A+A + ••• ) = (I-A) 

and part (b) fo llows • 

Corollary 1.25 

If in some natural norm, IIAII <1, then I±A is non-singular and 

1 .11 (I±A)-III~ 
1+IIAII 

1 

l-IIAII 
(1.8.9) 
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Proof of Cbrollary 1.25 

By Theorem 1.23 and Theorem 1.25, it follows that if IIA II <1 

then (I-A) is non-singular. For a natural norm we note that II III =1 

and so taking the norm of the identity 

yields, 

-1 
I = (I-A) (I-A) 

1 ~ II (I-A) 11.11 (I-A) -111 

~ (l+IIAII) /I (I_A)-l/l. 

Thus the left-hand side inequality is established. 

Now write the identity as 

(I_A)-l = I+A(I-A)-l 

and take the norm to get 

II (I-A)-ll1 ~ l+IIAII.11 (I_A)-lll· 

Since IIAII<l this yields, 

II (I-A) -111:> 
1 

1-IIA II 

It should be observed that if A is convergent, so is (-A) and 

IIAII=II-AII. Thus Theorem 1.25 and its corollary are immediately 

applicable to matrices of the form I+A. 

Theorem 1.26 

If IIAII <I, then, 

I I (I_A)-1_(I+A+A2+ •.• +Ak ) I I 

Proof: 

-1 k k+l k+2 
(I-A) -(I+A+ ••. +A ) = A + A + ,; .. 

which implies that, 

II (I-A) -1_ (I+A+ ••• +Ak
) II ~ 

= IIAllk+l 

l-IIAII 

I 
k+l k+2 

IAII +IIAII + ••• 

if IIAII <1 and 11 III =1. 

r , .... 



54 

1.9 NUMERICAL ALGORITHMS TO SOLVE SOME COMMONLY OCCURRING SYSTEMS OF 

EQUATIONS 

Let us consider the matrix system (1.4.17), A~ = f. 

(i) If A is tridiagonal then system (1.4.17) may be rewritten as, 

for l:;i~ and cl=bm=O, with 

(a 
1 

b
l 

c
2 

a
2 

b
2 

... ... ... ... ... ... 
.... .... 

..... ... 
A = ... ... ... 

0 .... , ... 

... ... ... ... ... .... 
.... ... 

c m-I 

0 

... ... ... , 
, 

a m-I 
... 

b m-I 
a 

m 

(1.9.1) 

To ensure stability of the non-pivoting elimination process, it 

is assumed that A is diagonally dominant. 

The algorithm to solve (1.9.1) is as follows, 

First compute, 

Si 

cibi _l 
with SI = a - = a l i Si-l 

fi -ciYi-l 
with Yl 

fl 
Yi = =-

Si a l 
and 

The values of the dependent variable computed from, 

This method to solve tridiagonal systems is called the Thomas algorithm. 

(ii) If A is cyclic tridiagonal then system (1.4.17) may be rewritten as, 

alul + bl u2 + c u = 1 m fl 

ciui _l 
+ aiui + biUi +1 

= fi , i=2,3, ... ,m-l (1.9.2) 

b mUl + c mUm_l + a u = f mm m 

with 



a
l 

b
l cl 

c2 
a

2 
b

2 
0 ... ... ... 

... ... .... 
... ... ..... 

... .... .... 
A = .... ... ... ... , ... "', • ... ... ... , ... 

0 c 
m-l 

a 
m-l 

b 
m-l 

b c a m m m 

TO ensure stability of the non-pivoting elimination process, it is 

assumed that A is diagonally dominant. 

Let, 

and 

The algorithm to solve (1.9.2) is as follows: 

= b 
m 

c 
m 

F = f 
1 m 

= h 
m 

a.-c i
g · 1 

~ ~-

c.h. 1 
~ ~-

h. = --=--=--=
~ a. -c i

g · 1 
~ ~-

= F 
m 

= G = 0 , 
m 

i=2 ,3, ••• ,m-l 

= H 1- (G l+c) (g l+h 1) m- m- m m- m-
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The components u
i 

of the solution vector u are then given recursively 

by, 
k 

m 
u =

m H 
m 



CHAPTER Two 

SURVEY OF CURRENT METHODS TO SOLVE HYPERBOLIC 

PARTIAL DIFFERENTIAL EQUATIONS 

56 
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2.1 FINITE DIFFERENCES AND COMPUTATIONAL MOLECULES 

The numerical solution of partial differential equations by 

finite differences refers to the process of replacing the partial 

derivatives by finite difference quotients and then obtaining solutions 

of the resulting system of algebraic equations. In this section we 

shall examine some first and second order difference quotients and 

determine the orders of aaau~ay for them. We shall do this for 

functions of two variables x and y. An extension of the discussion 

to. three-dimensional systems (and reduction to one-dimensional 

system) should be obvious. 

Let the problem under consideration be the boundary value 

problem, 
L[U] = f, U=U(x,y) (2.1.1) 

in a domain 0 subject to certain boundary conditions on the boundary 

of D. Let the points Pij form a discrete approximation for D with 

uniform spacing 6x,~y. A first derivative can be defined as a limit 

in several ways, as follows, 

aU U(x+~x,y)-U(x,y) 
ai«x,y) = lim 

~-+() 
~x 

(2.1.2) 

au U (x ,y) -U(~-Llx,y) 
ax(x,y) = lim 

~x-+() 
~x 

(2.1.3) 

and aU 
Hm 

U(x+Llx,y)- U(x-~x,y) 
ax(x,y) = 

~x-+() 
2~x 

(2.1.4) 

Now if we replace a derivative by a difference quotient, we 

are interested to know how good an approximation it is. For this, 

we use Taylor's Theorem 1.2. For example, 

U(x+~x,y) = U(x,y) + 

where x<x*<x+~x. Upon solving for ~~ leads to, 



au 
ax(x,y) 

; U(x+~x,y)-U(x,y) 
~x 

2 
~x ~(" ) 2 2 x ,y 

ax 
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(2.1.5) 

The first term on the right-hand side is called a forward-difference 

au quotient and it is a first-order replacement for the derivative ax 

because the error £ is of the order of ~x, i.e. £=O(~x). In the 

index notation, eqn.(2.l.5) would be written as, 

aul 
axl .. 

~,J 

(2.1.6) 

As an alternative to the forward difference approximation of 

(2.1.6) a backward difference is obtained in a similar manner. The 

Taylor series expansion for U(x-~x,y) about (x,y) is, 

U(x-~x,y) 
au 

; U (x ,y) -tlx ax (x ,y) + 
a2u 
--2-(x**,y); x-~x~x**~x. 
ax 

Therefore I 

dui ; 
dX . j 

~, 

(Uij-Ui_l,j) 

tlx 
+ O(~x) , (2.1.7) 

so that the backward difference quotient of (2.1.3) is also first 

order. 

On the other hand, eqn.(2.l.4) involves a centra~ difference 

quotient. To find its error, we need to use Taylor series expansions 

that are carried one term further as follows, 

dU 
U(x+tlx,y) ; U(x,y) +6x ax(x,y) + 

and 

U(x-~x,y) = U(x,y) 

where X~XI~X+D.X and x_l:lx~xll~X. 

2 2 
(tlx) d u( ) + 
2 ' 2 x ,y 

. dX 

(tlx) 3 

31 

(~x) 3 
31 

If we now subtract the two equations, we find that, 
3 3 3 3 . 

( , ) ( , ) 2' dU ( ) (!::.x) d U (' ) (~x) d U( 00 ) U x+tiX,y -U X-tiX,y = tiX ax x,y + 6 ---3 x ,y + 6 ---3 x ,y , 
ax dX 



That is, 

U(x+6x,y)~U(x-6x,y) 
au = 26x ax(x,y) + 

3 a U( ,. --x 
ax3 

where X";6X~X'f' ~x+~x. 
au 

On solving for ax we get, 

au = U(x+6x,y)-U(x-6x,y) 
ax 26x 

Hence at the points Pij , we have 

aul 
axl· j 1., 

U. 1 .-U. 1 j = ~+,] ~-! 

26x 

(X"' ,y) 
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,y) 

(2.1.8) 

Thus we see that the central difference is of higher order since 

the leading error term is O[(6x)2] instead of O(6x). However, as we 

shall see later, this does not mean that its application will always 

give rise to a more useful numerical technique than equation (2.1.6). 

Which form is preferable frequently depends on the particular problem. 

Second difference quotients can be obtained by expanding U(xT6x,y) 

a4u and U(x-6x,y) in Taylor series to remainders involving ~ and then 

adding the two expansions to obtain 

U(x+6x,y)-2U(x,y)+U(x-6x,y) _ 
2 

(6x) 

2 4 
(6x) a U( '" 
12 ~x ax 

ax 

,y) , 

where x-6x~x'" ~x+6x. At the points P ij' this central difference 

quotient becomes, 

2 a U

1 a} ij 

2 
(U. 1 .-2U .. +U. 1 .) + O[(6x) ]. 

1.+,J 1.] 1.-, J 
(2.1.9) 

There are other difference expressions for 
2 
~but 

2 
equation (2.1.9) 

ax 
is consistently used. 

All of the above difference' quotients at the points p .. may be 
1.) 

pictorially represented by their stenoils or oomputational moleoules. 
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Some examples are illustrated in Fig. 2.1.1. The numbers, in the 

various positions, represent the multipliers that are to be applied 

to the values of u at these stations. 

aUI - 2ix{ 2 
ax! i,j - 211x 

+ 0 [(lIx) ) 

i-l,j i,j i+l,j 

aUI 1 + o[ (lIy)2) = --
ay i,j 211y ij 

~,j-8 
a
2u 1 { } + O[(lIx)2) -2-1 = 

2 
ax li. (lIx) 

,J 

i-l,j ij i+l,j 

a
2
u I = _=..1..". 

axaY!i,j 4 (lIx) 2 

(lIx=lIy) 

r 

1 
= --"~ 

(lIx)2 

2 
+ 0 [(lIx) ) . 

l 

FIGURE 2.1.1 
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2.2 CHOICE OF DISCRETE NETWORK 

A regular spacing of the mesh points Pij=P(xi'Yj)=P(i6x,j~y) is 

generally favoured. This is because if irregular nets are used, the 

form of the approximating difference equations changes from zone to 

zone creating tedious programming details. Secondly, computers execute 

with great speed if simple net structures are used. The only regular 

networks which can completely fill the x-y plane are rectangles, 

triangles and hexagons as shown in Fig. 2.2.1. 

(a) Hexagons 

(b) Rectangles 

(c) Triangles 

FIGURE 2.2.1 
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Throughout the course of this thesis. however. the rectangular 

network will be used. The solution region shall consist of a rectangle 

which is divided up by a grid system as shown in Fig. 2.2.2. The mesh 

point Pij lies at the intersection of each grid line. There are m 

grid lines in the x-direction and n grid lines in the y-direction. 

The mesh or grid is therefore specified by the sequences xO.x1 •.••• xm_1 

and yO.yl ••••• yn-l. and 

(2.2.1) 

y 

i .j+l 
I I 

! -1-- -- ---1-
I I 1 I I P 1 

i-l.jl i,j I i +l.j 
I I 
1 1 

! -r- - - - - - 1-

i.j-l 

x 

FIGURE 2.2.2 
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2.3 CONSISTENCY, ACCURACY, EFFICIENCY AND STABILITY 

When a partial differential equation (say in one space dimension 

x and time t) is approximated by a finite difference analogue, one 

naturally expects that the difference scheme indeed represents the 

differential system in some sense. By this, we mean that a difference 

system is consistent with a differential system when the former 

becomes identical with the latter in the limit as 6x,6t~. Clearly, 

aonsistenay is a fundamental requirement. 

Aaauraay of a numerical solution depends on two major classes of 

errors, i.e. round-off and truncation errors. Round-off errors 

characterise the differences between the solution furnished by the 

computer and the exact solution of the difference equations. We would 

obtain the exact solution if it were possible to carry out all 

calculations to an infinite number of decimal places. In practice, 

however, each calculation is carried out to a finite number of decimal 

places or significant figures, a procedure that introduces a rounding 

error every time it is used. The real danger results from the fact 

that solutions obtained in one cycle of calculations are used as 

"initial conditions" for obtaining the values of u for the subsequent 

time increments. There therefore exists the danger of error propagation 

and error growth as the solution proceeds over a large number of steps. 

This phenomenon is closely related to computational stabiZity. 

Trunaation errors are caused by the approximations involved in 

representing differential equations. Truncation errors depend upon 

the spatial grid size (6x) and step size (6t). Intuitively, ·one 

would assume that the accuracy of any finite difference solution could 

be decreased by increasing the grid sizes, since, evidently, if the 
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grid spacing is reduced to zero, the discretized equivalent becomes 

identical to the continuous field. Magnitude of truncation errors can 

be estimated using Taylor series expansion, as was seen in Section 2.1. 

Efficiency refers to the amount of computational work done by the 

computer in solving a problem over unit time-length. In rpcommending 

a numerical method, we need to strike a balance between efficiency and 

accuracy. This is because a method might have incurred more work 

(particularly so in an iterative process) to attain accuracy. On the 

other hand, one may settle for a less accurate method in favour of 

its simplicity and computing cost effectiveness. 

The final concept to be studied is stability. If u(x,t) is the 

exact solution and uij is the solution of the finite difference 

equations, the error of the approximation at the point (i,j) is 

One is interested to know the behaviour of 

IUij-U(~X,j6t)1 as j+= for fixed 6x,6t. That is, whether the 

solution is bounded (stabZe) as the time index j~. Also of interest 

is the behaviour of lu .. -u(i6x,j6t) I as 6t,6x+o for a fixed value of 
1.) 

·36t." That is, whether the difference scheme is convergent. 
': 

It is clear in both cases that. as the number of cycles of 

calculations become large there is a possibility for unlimited 

amplification of errors. If errors are amplified from time step to 

time step, the total accumulated error will quickly swamp the solution 

rendering it worthless. It can therefore be said that a numerical 

method is stable if a small error at any stage produces a smaller 

cumulative error. 

In the important Lax equivaZence theorem below, is given a 

relation between consistency. stability and convergence of the 
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approximations of linear initial value problems by finite difference 

equations. 

Theorem 2.1: Lax Equivalence Theorem 

Given a properly posed initial boundary value problem and a 

finite difference approximation to it that satisfies the consistency 

condition, then stability is the necessary and sufficient condition 

for convergence. 

The concept of stability may be better understood by first 

considering a single ordinary differential equation. We now define 

an error E
j 

which occurs at time level j. In stability analysis, one 

is interested in the amplification of the error at time level j+l. 

This can be done by writing 

(2.3.1) 

where y is an ampZifiaation faator that is related to the integration 

scheme employed and therefore to the truncation errors of the scheme. 

To ensure there is no build up of errors, we must have for stability, 

IEj+ll ~ I Ejl 
and by virtue of (2.3.1), this implies 

or 

jyEj I ~ I Ej I 

Iyl ~ 1 

(2.3.2) 

(2.3.3) 

(2.3.4) 

This idea can obviously be generalised to a system of m first-

order ordinary differential equations. The corresponding equation is 

(2.3.5) 

where E. is an m-vector and r an ampZifiaation matrix of size (mxm). 
-) 

If equation (2.3.5) is diagonalised, we get 
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e: ; Y"e:
J
,," (2.3.6) 

j+l,~ .. ... 

where Y~ is an eigenvalue of r, and e:~ is the associated eigenvector. 

The condition for stability must now be applied separately to the 

amplitude of each error eigenvector which leads to 

or IY l:o 1 for all ~ • (2.3.7) 

The condition for stability, therefore, reduces to the requirement 

that the speatral radius of the ampZifiaation matrix r must be less 

than or equal to one. In general, the eigenvalues of the amplification 

matrix may be complex, in which case 

(2.3.8) 

where y is the complex conjugate of Y • 
~ ~ 

Various techniques are available for a quantitative treatment of 

stability of finite difference schemes. Among those commonly used are 

the linearised Fourier analysis method, the matrix method, the maximum 

principle and the energy method. In the Fourier analysis method, we 

examine the propagating effect of a single row of errors, say along 

the line t=o. These are represented.by a finite Fourier series in 

which the number of terms is equal to the number of mesh points on the 

line. Usually the effect of a single term is analysed and the complete 

effect is then obtained by linear superposition. This method is also 

known as the von Neumann ariterion for stability and it enables us to 

derive an expression for the amplification factor. The criterion 

ignores the boundary conditions, and hence would be truly valid only 

for pure initial value problems •. However, properly posed boundary 

conditions have little effect on stability. On the other hand, the 
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second technique called the matrix method for analysing stability 

will automatically include the effects of the boundaries. By 

incorporating the boundary values, the finite difference schemes 

generate a matrix form of equations. The eigenvalues of the 

amplification matrix are examined for stability in the same manner 

as was demcnstrated in the case of a system of ordinary differential 

equations above. In the maximum principte we define the difference 

between the exact solution and the discrete approximation at each of 

the mesh points. The boundedness of the solution can be established 

by using the maximum operation on both sides of this equation and 

assuming the positivity of the coefficients as well as the attainment 

of a maximum value of their sum. It is worth noting that the above 

procedure, in a slightly modified form, can be applied even if the 

coefficients of the differential equation are variable. The final 

method known as the energy method is a name given to a group of 

techniques based on the use of certain energy-like quantities. In 

some cases, the energy-like quantities, do, in fact correspond to 

the physical energy in the system. In mathematical terminology, these 

quantities are called norms. The key property that norms have in 

common with energy is that both are positive definite. The use of 

the energy method clearly depends mainly on one's ability to find a 

norm for a given difference scheme and then obtain a boundedness 

condition of the solution u. as j~ which in turn is the requirement 
) 

of stability. The above concepts of consistency, stability, convergence 

and accuracy will be dealt with in greater mathematical detail wherever 

appropriate throughout this thesis. 
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2.4 FIRST ORDER HYPERBOLIC DIFFERENTIAL EQUATIONS AND CHARACTERISTICS 

In this section, we examine, the solution of the first-order 

quasi-linear differential equation of the form, 

(2.4.1) 

where a,b and c are functions of U,x and y but do not involve the 

partial derivatives of U. 
au 

It is customary to use the notation ax = p 

au and -- = q and to write the above equation as ay 

ap + bq = c (2.4.2) 

Let us assume that values of U are prescribed on a certain curve C in 

the (x,y) plane. we would then be interested to find uniquely the 

solution values U elsewhere. In other words, we would expect to 

determine a surface U=U(x,y) on which the differential equation (2.4.1) 

or (2.4.2) is satisfied. This is analogous to finding the derivatives 

p and q on the curve C on which U is given in such a way that the 

differential equation is satisfied. For this purpose, we consider a 

parameter s which is the arc length on the curve C. The arc rate of 

change of U along C is known and is related to the values of p and q 

satisfying the differential equation by 

i.e. , 

dU = au dx + au ~ 
ds ax ds ay ds 

~+~q=dU 
ds ds ds 

(2.4.3) 

It is seen that (2.4.2) and (2.4.3) are two simultaneous equations 

in the two unknowns p and q given by, 

~p+~q= 
ds ds 

and ap+bq = c, 

dU 
ds 



69 

which will in general bear the unique solution given by, 

.l'...=.-s..= 1 (2.4.4) 
t.l t.2 t. 

where dx ~ 
ds ds 

t. = = (b dx - a dy) (2.4.5) ds ds 

la b 

dU 9z 
ds ds 

t.l = = (b ~ - c ~) (2.4.6) ds ds 

c b 

dx dU 
ds ds 

and dx dUI (2.4.7) t.2 = = (c - - a , 
ds ds 

a c 

provided t.to. However, when t.=O, the values of p and q will usually 

be infinite in which case the known values of U on C will not satisfy 

the differential equation. If t.l and t.2 also likewise vanish then p 

and q can be finite and satisfy equation (2.4.2). In such a case, we 

have from (2.4.5) 

ady -bdx = ° , (2.4.8) 

from (2.4.6) 

bdU-cdy = 0 (2.4.9) 

and from (2.4.7), cdx-adU = 0 (2.4.10) 

Equation (2.4.8) is a differential equation for the curve C and 

equations (2.4.9) and (2.4.10) are differential equations for the 

solution values of U on C. The curve C relating x and y is called a 

cha~cteristic curve or cha~cteristic. The three equations above may 

be written as, dx _ ~ _ dU 
a - b - c 

which are known as. the subsidiary equations. 

(2.4.11) 
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2.5 ROLE OF THE CHARACTERISTICS 

The characteristics play a very important role in developing 

solutions for hyperbolic equations. This is related to the extent to 

which initial and boundary conditions determine unique solutions in a 

certain region or regions. .Although our prime concern is on first 

order equations, ·the above idea is perhaps best illustrated by first 

examining the solution of a Cauchy problem involving differential 

equations of second order. We consider the well-known simple wave 

equation, 

o . (2.5.1) 

Our Cauchy problem for (2.5.1) will be in the form of an initial 

value problem in which we seek a function U(x,t) which is defined and 

continuous for -oo<x<~, t>.O; which satisfies equation (2.5.1) for 

-~<x<~, t>o and which satisfies the initial conditions, 

U(x,O) ~ fl(x) 

au 
(2.5.2a) 

and -at(x,O) ~ f2 (x) -co <x <co , (2.5.2b) 

where fl (x) and f 2 (x) are given functions of x. Obviously, this 

Cauchy problem is defined on a half-plane as is shown in the following 

figure, 
t 

~ 0 

x 

U(x,O)~fl (x); au 
at(X'O) ~ f 2 (x) 

FIGURE 2.5.1 
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The solution to the Cauchy problem is given by the D'Alembert formula, 
x+t 

U(x,t) = t{fl(x+t)+fl (x-t) + J f 2 (r)dr} 
x-t 

which may be derived in the following manner: 

The change to variables, 

/; = x+t ,n = x-t , 

changes equation (2.5.1) to 

a2u 
a/;an = 0 . 

On integrating this equation, gives us 

and 

aU - F «) 
~ - 1 ~ , 

/; 

U = Io Fl (r)dr + G2 (n) 

(2.5.3) 

(2.5.4) 

(2.5.5) 

where Fl and G2 are arbitrary differentiable functions. Setting 

rf. 

yields, 

Gl(f,,) = J Fl (r)dr 
o 

from which we find, 

aU aGl -=--at af" 

(2.5.6) 

(2.5.7) 

By using (2.5.6) and (2.5.7) together with equations (2.5.2a) ,(2.5.2b) 

and (2.5.4), it follows that, 

and 

U(x,O) = G
1

(x) + G2 (x) = flex) 

au at{x,O) = Gi (x)-G2{x) = f 2 (x) • 

On differentiating equation (2.5.8) gives us 

(2.5.8) 

(2.5.9) 

(2.5.l0) 

Hence, on solving equations (2.5.9) and (2.5.l0) for Gi (x) and G2{x) , 

leads us to, 
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This implies from integration that 

Gl (x) = !{fl (x)+ J: f 2 (r)dr}1 G2 (x) = !{f1 (x)- J: f 2 (r)dr}. 

(2.5.12) 

From equations (2.5.4), (2.5.6) and (2.5.12) we deduce that 

U(x,t) 
(x+t . Jx-t 

= Hfl (x+t)+J
o 

f2 (r)dr} + Hfl (x-t)- 0 f2 (r)dr} 

Le. U(x,t) = !{fl (x+t)+f
l 

(x-t) +Jx+tf2 (r)dr +[0 f2 (r)dr} 
o x-t 

or 
(x+t 

U(x,t) = ! { fl (x+t)+fl (x-t) +J f2 (r)dr} 
x-t 

which is known as the D'AZembert formuZa. 

A number of observations can be made from this formula. Let us 

suppose that we wish to solve the Cauchy problem at a point (xo,to ) 

as shown in Figure 2.5.2 below. 

t 

x 

FIGURE 2.5.2 
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It follows immediately from equation (2.5.3) that the solution at the 

particular point (xo,to ), i.e. U(xo,to ) is completely determined by the 

initial data on that segment of the x-axis cut out by the lines x-t= 

xo-to and x+t=xo+to (i.e. determined by a knowledge of fl and f2 only 

between the points (xo-to'O) and (xo+to'O) on the x-axis) as is shown 

in Fig. 2.5.2. This segment xo-to~x~xo+to is therefore called the 

intervaL of dependence of the point (xo,to )' The region R interior 

to the triangle with vertices (xo,tO)' (xO+to'O) and (xo-to'O) is 

called the region of dependence. The lines x-t=xo-to and x+t=xO+to 

are the characteristics of the wave equation through (xo,tO)' 

If, for example, the initial conditions are given only on O~x~a, 

then the solution is found in the region of dependence determined by 

a a 
the point (xo,to ) = (2'2)' that is the triangle bounded by the initial 

curve r (interval of dependence) and the characteristics t=x and t=-x+a 

-1 -1 
inclined at an angle of 61=tan 1 and 62=tan -1 respectively with the 

x-axis. It is clear that the solution U cannot be determined at 

points lying outside this region of dependence. Thus we see the 

importance of the characteristics in determining the solutions of 

hyperbolic equations. 
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2.6 DETERMINATION OF THE UNIQUE SOLUTION 

We demonstrate the importance of the characteristics in determining 

unique solutions of hyperbolic initial and boundary value problems by 

considering a system of two simultaneous first-order quasi-linear 

equations, 

au aU aV d aV al a; + bl ay + Cl -+ = fl , 
ax 1 ay 

(2.6.1) 
au au av av 

a2 -+ b2 ay + C2 -+ d2 ay = f2 ax aX 

There are three typical situations in which a unique soZution for the 

system may be found. It is assumed that in all cases, the hyperbolic 

system (2.6.1) gives rise to two families of characteristic curves 

which we identify as the a- and e-charaeteristies. The continuously 

differentiable values of U or V may be specified on one of the 

characteristics or on both of them or they may not be prescribed on 

either characteristics. 

(a) In'the first case (Fig. 2.6.1), the initial curve is given by 

the continuously differentiable non-characteristic curve CD on 

which values of U and V are prescribed. A unique solution would 

then lie in a region CDE bounded by CD, the a-characteristic (DE) 

and the e-characteristic (CE). 

(b) In the second situation (Fig. 2.6.2) we have CD as the non-

characteristic curve which is continuously differentiable and 

along which values of U or V are given. The values of U or V 

are also given along the a-characteristic (CF). To ensure 

continuity at C, U and v are known at this point and must be 

compatible with the a-, S-characteristics. The uniqueness region 

would then be CDEF. 



(c) In the last case (Fig. 2.6.3), a unique solution is determined 

in the region CDFE where EF and FD are characteristics (a- and 

8-characteristics). The values of U and V are known at C and 

continuously differentiable values of U or V are given along the 

characteristics CE and CD. The values at C must be compatible 

with the characteristics for continuity. 

s 

8r--:-----4 
uniqueness 

region 

FIGURE 2.6.1 

a-characteristic 

D 

U or 
V uniqueness 8-characteristic 

\J---'-c...;..:.:.=----4 

a-characteristic 

U or V 

FIGURE 2.6.2 
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S-characteristic 

ex-characteristic 
U or 

v 

c 

FIGURE 2.6.3 

Some simple examples may serve to demonstrate the underlying 

principle of uniqueness and the influence of characteristics to the 

solution of first-order hyperbolic equations. 

Example 2.1 

We consider the equation, 

aU au y-+-=2, ax ay (2.6.2) 

where the initial data U(xi,O)=Ui for U are specified on the non

characteristic line segment r defined by y=O, O~x~l. 

The subsidiary equations are given by, 

dx=~ 
y 1 

= dU 
2 

(2.6.3) 

From the first of equation (2.6.3), we find that the characteristics 

are the parabolas x=y2/2+U, a being a characteristic constant. Along 

76 



this family of characteristics, we have from the last equation of 

(2.6.3) U=2y+S. Since on the initial curve~ U(xi,O)=U
i

, y=O, O~x~l, 

then the value of U for y>O is obtained by integrating along the 

characteristics drawn from the points xi on r. Thus 

U(x,y) = 2y + U
i 

2 
on the parabolic curve y =2(x-x i ) for each xi' o~xi~l, i=1,2, ••• 

This solution is unique in the region bounded by, and including, the 

terminal characteristics y2=2x and y2=2(X_l) as is indicated by Fig. 

2.6.4. U(x,y.l cannot be determined at points off this region of 

dependence. 
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Now suppose that the initial curve happens to be a characteristic, 

2 
say the characteristic y =2x which passes through the origin. Clearly, 

we would have only one solution U=2y+U
o 

where U
o 

is the specified 

initial value of U(x,y) at the origin. This is in contrast with the 

original case when the initial curve r is a non-characteristic curve 

on which the initial values of U can be arbitrarily prescribed. Else-

where the solution is not unique since we can take, for example, 

2 
U = 2y + U

o 
+ A(y -2x) 

2 
which obviously gives us back the solution U=2y+U

o 
along y =2x for 

any value of A. However, it is also a solution for points not on 

y2=2x (i.e. y2~2x) since by direct differentiation it satisfies the 

differential equation (2.6.2) which we want to solve. Consequently, 

since A is arbitrary we can have an infinite number of solutions. The 

2 
solution is not defined uniquely at points off y =2x essentially 

because the termina~ characteristics are effectively coincidental. 
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y 

2 
Y =2x 

o l-~""':"~hirrm:TT"*,,-rT-:----------------. x 

FIGURE 2.6.4 

In general, when the curve on which initial values are given is 

uniqueness 
region 

itself a characteristic, the differential equation can have no solution 

unless the initial conditions fulfilled the necessary differential 

relationship for this characteristic. In the latter case, the solution 

will be unique along the initial curve and will not be so elsewhere. 

Example 2.2 

We now consider the initial-boundary value problem given by 

au -+ 
ax 

au 
at = 0, o<x<oo,t>o , (2.6.4) 
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with the initial conditions, 

U(x,O} = x(x-2} , ~x~2 
(2.6.Sa) 

U(x,O} = 2(x-2} , x32 

and the boundary condition, 

U(O,t} = 2t, t>o • (2.6.Sb) 

From the given differential equation (2.6.4), its associated 

subsidiary equations are, 

dt 
1 

dx 
= - = 

1 
dU 
o 

The first of these equations yields the characteristics, 

t = x+a 

(2.6.6) 

(2.6.7) 

which are in fact straight lines with a being a parameter which is a 

constant for each characteristic. The curve r along which values of U 

are known is made up of the x- and t-axes. On the x-axis we have the 

given initial values (2.6.Sa) whilst on the t-axis lies the known 

boundary values (2.6.Sb). Hence we find that the first family of 

characteristics are drawn from points x. on r. The second family of 
1. 

characteristics are in turn drawn from points t
j

• In the first case, 

(2.6.7) takes the form t=x-x. Similarly, we obtain t-t.=x for the 
i J 

second case. We note from the subsidiary equations (2.6.6) that U is 

constant along each of these families of characteristic lines. 

Therefore if we denote U(x,O}=$(x} and U(O,t}=~(t} then the solutions 

U(x,t} along the characteristics t=x-x drawn from the points x. are 
i 1. 

given by, 
U(x,t} = ~(x.) = $(x-t) 

1. 

= 

J (x-t) (x-t-2) , 

l2 (x-t-2); x.3 2 
1. 

i=l,2, ... 



In the same manner, we arrive at the solution 

= 2 (t-x) ; t.>o, j=l,2, •.• 
J 

along the characteristics t-tj=x extended from the points tj on r. 

The position of the characteristics and the solution domains of the 

problem are displayed in Fig. 2.6.5. 

t 
U=2 (t-x) 

r 

U=2t 

, , 
/ 

, 
, / 

/ 
, 

t. 
J 

, 
/ 

0 xi 

U=x(x-2) 

FIGURE 2.6.5 

, , , 

2 

I 

,'l-
~+ 

'" 

u=2 (x-2) 

-1 
8=tan 1 

r 
x 

It deserves our attention here to observe that the known values 
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of U on the initial line r are continuous at (0,0) and (2,0). Likewise, 

we also note that the derivatives ;~ and ~~ are continuous at the point 

(2,0). This question on the continuity of the initial values and 

derivatives has relevance to the discussion that is to follow in the 

subsequent sections of this chapter. 
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2.7 DISCONTINUITIES AND PROPAGATED DISCONTINUITIES 

(a) Discontinuous InitiaL VaLues 

An important point which we should take into account in dealing 

with hyperbolic problems is the possibility of discontinuous initiaL 

vaLues. we will illustrate the significance of this and its effect 

through an example. We consider the problem of solving the equation, 

(2.7.1) 

given that the data U are specified on the initial line r, y=O as 

follows, 
f(x); O<x<x!' 

U(x,O) = (2.7.2) 

g (x); xl <x<l 

and it is assumed that U is double-valued at x=x
l 

on r. 

From the associated subsidiary equations 

dx=~=dU 
2 1 1 

the characteristic curve passing through any point xi on r is, 

(2.7.3) 

By integrating along this characteristic using (2.7.3) again, we obtain 

the solution on this line as 

(2.7.4) 

where U.=U(x.,O), the initial data for U. Therefore, it is seen 
1. 1. 

that if o<xj<x
l 

on r, then the equation of the characteristic extended 

from x. is y=!(x-x.) and the corresponding solution along this 
J J 

characteristic is, from (2.7.4) and (2.7.2), 

U(x,y) = U = f (x.l + y . 
J 

(2.7.5) 

By the same argument, if there is another point to the right of xl' xk 



say then for xl<~<l, the characteristic passing through it is 

y=!(x-x
k

) and the solution is 

+ 
U(x,y) = U = g(~) + y (2.7.6) 

The position of the characteristics and the solutions along·them is 

shown in the following diagram. 

y 

0 x. '1t r ) 

( f (x) ) : ( 
I 

FIGURE 2.7.1 

x
k 

1 

g(x)--+ 

-1 
e=tan ! 

x 

We deduce from (2.7.5) and (2.7.6) that for any particular value 

of y, 

or 

U -f (x.) 
) 

+ 
U = U + 

+ 
= U -g(x

k
) 

{f(X
j

) -g(x
k
)}. 
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Now as Xj tends to xl and x
k 

tends to xl' f(X
j

) tends to f(x
l

) and 

g(x
k

) tends to g(x
l
). However U is double-valued at x:x

l 
on r meaning 

that U(x,O) is discontinuous at x=xl and f(xl)#g(x
l
). This implies 

that U + does not tend to U on the characteristic y=!(x-x
l
). The 

double valued nature of the initial values perpetuates all along the 

characteristic y=t(x-x
l
). The values of the solution to the left of 

this characteristic is determined by U(x,O)=f(x) and to the right by 

g(X). In short, a discontinuity of the initial values leads to a 
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discontinuity of the solution as well as along the specific characteristic. 

(b) Discontinuous InitiaZ Derivatives 

We shall now examine whether a similar phenomenon of discontinuity 

au au of U(x,yJ and/or the derivatives P-ax and q=ay also persist along the 

characteristic curves in the solution domain given that these 

derivatives are discontinuous at some point on the initial curve r. 

For this purpose, we consider again equation (2.7.1)" 

2 3U + au = l' • 
3x ay 

The initial conditions on r, y=O are now, however, changed to 

rx2 for O<x<t 

U(x,O) 
=l-x+t for t<x<l 

(2.7.7) 

As before, the equation of the characteristic passing through the point 

xl=! on r is y=i(x-!). By taking the points Xj to the left of Xl and 

the points x
k 

to the right we find that on r, 

aul 2x. p = = = p say 
ax x=x ) 

j 

aUI -1 
+ 

and p = = = p 
aXlx=~ 

in 1 1 3U. f . At these po ts, we are a so ab e to evaluate q=ay S1nce rom equat10n 

(2.7.1), q=1-2p. Hence the corresponding values of q at these points 

are, 

and 

q l-2p = l-4x. 
) 

+ + 
q = l-2p = 3. 

By allowing xj,xk to tend to xl=t results in p 

+ 

+ tending to 1, p =-1, 

q tending to -1 and q =3. Clearly, we see that both p and q are 

double valued at x=xl=t which give the implication that the derivatives 



dU dU 
p=ax and q=a:y are discontinuous at the point (1,0) on the initial 

curve r, y;O. 

By the same reasoning, it is also found that U is discontinuous 

at the point (1,0) on r since it is double valued there. 

We shall now investigate whether these discontinuities are 

propagated into the integration field. By integrating along the 

characteristics drawn from the points Xj and ~ on the initial line 

segment r, we obtain 
2 

U(x,y) ; Xj + Y , (2.7.8) 

as the solution of the differential equation on the line y;'(x-x.) 
J 

to the left of the characteristic y;,(x-,) and 

U (x, y) ; Hx-3x
k 

+1) , (2.7.9) 

as the solution on the line y;,(x-x
k

) to the right of y;, (x-l) • 

Following the same line of argument as before, again we observe that 

there are discontinuities in the solution U(x,y) and the derivatives 

au au 
dX ' ay along the characteristic y;,(x-,) in the solution domain. 

It is worth noting here that there are cases in which, given that 

the initial derivatives are discontinuous at some point on the initial 

curve r, the values of U (the solution) would still be continuous at 

the point of discontinuity and along the characteristic extended from 

that point into the solution domain. The initial discontinuities in 

the partial derivatives would, however, remain to be propagated 

undiminished along the characteristic across the solution domain. To 

illustrate this, let us take, for example, the differential equation 

dU aU 
- + = 1, y~O, -co<x<oo ax ay (2.7.10) 

with the initial conditions, 

(2.7.11) 
U(x,O) ; x, O<x<~ 

on r,y;o. 
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For this simple example, we find that from the initial conditions 

(2.7.11) and the relation p+q=l (from 2.7.10), the derivatives p_au 
. ax 

au 
and q=ay are discontinuous at the point (0,0) on r. It is also 

immediately evident that the initial data U are continuous at the same 

point. 

The associated subsidiary equations of the given differential 

equation (2.7.10) are, 

Hence, the equation of the characteristic passing through (x.,O) on!, 
l. 

is y=x-x
i 

and the solution along it U-Ui=y=x-x
i

• clearly, the 
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characteristic becomes y=x when x.=O. To the left of this characteristic, 
l. 

the solution along y=x-x
j 

drawn from the point (Xj'O) where Xj~O is 

U =y. 
+ 

Similarly, to the right we have the solution along y=x-~ as U =x. 

As Xj and x
k 

tend to 0, we see that the solution along y=x is 

continuous. But there are discontinuities of the derivatives p and q 

along the characteristic across the solution domain. Since the initial 

derivatives are themselves discontinuous at (0,0) we conclude that 

there is a persistent propagation of the discontinuities of the 

derivatives from the point of discontinuity along the characteristic 

which is drawn from it into the solution domain. 

TO exhibit numerically how the discontinuities in the derivatives 

propagate across the characteristics in the solution domain, we consider 

the following initial-boundary value problem, 

aU au + -- = 1, O~x<~, y>O , 
ax ay 

with the boundary condition U(O,y) = 0, O<y<~, 

and the initial conditions U(x,O) = 0 for O~x~3 

and U(x,O) = x-3 for 3~x<~. 

(2.7.12) 

(2.7.13) 
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The subsidiary equations of the above problem are 

dx -= 
1 

dy = dU 
1 1 

(2.7.14) 

Therefore, the equation of the characteristic from the point (O'Yj)' 

Y j>O is 
y = x+y. (2.7.15) 

J 

and the equation of the characteristic passing through (xi,O) with xi~O 

is 
y = x-xi • (2.7.16) 

Hence we have, for example, at (0,0), the characteristic 

y = x 

and at (3,0), the characteristic 

y = x-3. 

By using (2.7.14) and (2.7.13), the solutions across these character-

istics are worked out to be as follows: 

( i) U=x on the characteristics y=x+y. passing through (O,y j) , y.>O; 
J J 

(ii) U=y on the characteristics y=x-x. from (xi ,0) with xi E [0,3) and 
~ 

(iii) U=x-3 on the characteristics y=x-x
i 

from (xi ,0) , x.~3. 
~ 

We can easily infer from (2.7.13) that U is continuous at (0,0) and 

aU au aU (3,0). However, at points (O,y) , y>O, - =0 and --cl- --cl (from 
ay ax ay 

equation (2.7.12» whilst at points (X,O), 0~x~3, ~O and ~l dU_l • 
ax ay ax 

Also, at . t ( 0) >3 we find ~l and au_o au aU 
Therefore, ax and ay po~n s x, I x, ax ay' 

are discontinuous at (0,0) and (3,0). Furthermore, we note that the 

-solution Ul to the left of the characteristic y=x is ul=x and the 

+ + solution Ul to the right is ul=y. + -Thus Ul=U
l 

along the characteristic 

y=x implying that U is continuous along this characteristic. Similarly 

we obtain the solution to the left of y=x-3 as u;=y and U;=X-3 to the 
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right. - + Therefore U
2

=U2 across the characteristic y=x-3 and U is also 

continuous along this characteristic in the solution domain. on the 

other hand, it can be easily verified that the derivatives of these 

solutions are not continuous along each of these characteristics. 

The manner in which this propagation of discontinuity in the 

derivatives is reflected by the analytical solutions for x=0(1)8 and 

y=0(1)5 in the integration field is shown in Table 2.7.1 below. It is 

seen that the characteristics are the naturaZ boundaries between which 

lies the region where the discontinuities are propagated undiminished 

across it. 

) 
p=l 
q=O 

1 

y 

(0.5 0 1 

(0,4 0 1 

(0,3 ) 0 1 

(0,2 ) 0 1 

" (0,1 )~ A 

" 
1.0" 0 

Or (0,0) 
p=O 
q=l 

2 3 

2 3 

/ 
2 V3 

/ 

" A. 2 
, 

, 1 

0 ~ 

-1-+ , ,"> 
"\" .. +/ 

" "\" , 
" , , 

4 " " 5 5 5/ 
.r 

/ 14/ 4 4 4 5 

" 3 3 :y 4 5 

" 
2 J." 3 4 5 

/ 
!:( 

2 3 4 5 

1 2 3 4 5 
(6,0) (8,0) x 

p-l,q 0 

TABLE 2.7.1 
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2.8 THE METHOD OF CHARACTERISTICS FOR HYPERBOLIC EQUATIONS 

In the preceding sections, we discuss some analytical methods to 

solve a given hyperbolic equation and arrive at exact solutions. In 

many cases, the analytical solutions cannot be found and even if they 

do exist their evaluation is often a laborious.task. Thus, approximation 

methods which are normally numerical in character are the only means 

of solution. We would expect the solutions to be obtained, for example, 

by a process of numericaL integration. For this purpose we consider 

again the quasi-linear first order equations (2.4.1) or (2.4.2) 

'a au + b au = c 
ax ay 

or ap + bq = c. 

OUr aim is then to find the solutions of (2.4.2) by integrating in one 

direction only at each point of the x-y plane and that we are not 

concerned with derivatives in any other direction. Hence along this 

direction, the integration of (2.4.2) will transform to the integra,tion 

of an ordinary differential equation. If P(x,y) is a point on the 

curve C in the x-y plane then along the direction of the tangent at P 

to the curve C we have, 

dU = au dx + au dy 
ax ay 

Le. dU=pdx+qdy (2.8.1) 

d . 
where ~ is the slope of C at P. 

From the differential equation (2.4.2) we can eliminate p to produce 

adU - cdx + q(bdx-ady) = 0 (2.8.2) 

Obviously this equation is independent of p since a,b and care 

functions of x,y and U only .. We can also eliminate the effect of q 

by choosing the curve C so that its slope ~ satisfies 

bdx = ady . (2.8.3) 
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Therefore. equations (2.8.2) and (2.8.3) give us. 

the original subsidiary equations. Our next step is to perform 

approximate ·numerical integration and at the appropriate points 

determine simultaneously the characteristics and the solution. For 

this purpose. we denote as usual r as the non-characteristic initial 

curve along which values of U are specified and through a known point 

Q(xo•yo) on r passes the characteristic C. Let the adjacent point on 

Cbe P(x.y) such that x-xC is small as shown in Fig. 2.8.1 below. 

___ C 

r 

FIGURE 2.8.1 

By assuming that x is given and starting from Q(xo ' yo ) • we attempt to 

find simultaneously improved values or approximations of y and U at 

the point P. This necessitates us to employ differences using (2.8.3) 

for our first approximation and our second and subsequent approximations 

are effected by some iterative means. 
(1) (1) . 

Let Y .u be our f~rst 

(2) (2) 
approximations and y ,u ••.. for our second and subsequent 

approximations or iterates. Our process of approximation will now be 
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described as follows: 

First Approximation. 

Using equations (2.8.2) and (2.8.3) we have, 

= bO(x-x
o

) giving yell 

(1) = co(x-xo ) giving u 

(2.8.4) 

and (2.8.5) 

Second and Subsequent Approximations. 

AS the coefficients a,b and c are known, we now take their mean 

values over the arc PQ. Again using equations (2.8.2) and (2.8.3) we 

obtain, 

(1) (2) = !(bo+b ) (x-xo ) giving y (2.8.6) 

and 
(1) (2) = !(co+c ) (x-x

o
) giving u (2.8.7) 

Th · d i t d t' 1 i' say u (n) and ~s proce ure s repea e un ~ success ve ~terates, 

u(n-l) fulfils a certain termination criterion, i.e. 

I (n) (n-l) I 
u -u ~ £ 

where € is a preset tolerance. 

The values of y and u at other grid points on the characteristic 

C can be derived in a similar way. Starting with the point P(x,y) the 

above approximation process is re initiated and repeated to give us y 

and u at the next point R(~,y) and so on. The approximation of 

course improves as the interval in x gets smaller which is desirable 

in any case for the minimization of the truncation error in our finite 

difference approximations. 

The numerical application of the method of characteristics to 

the solution of a given first-order hyperbolic differential equation 

is illustrated in the following example. 

Consider the problem, 



(2.8.8) 

with the. initial condition U=l on r ={ (x ,y) :O<x<oo, y=O}. 

If we compare with the equation (2.4.1) we obtain the coefficients, 

(2.8.9) 

The subsidiary equations of (2.8.8) are 

from which we obtain the equation of the family of characteristics C 

passing through the point (x. ,0) on r as 
l. 
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1 1 
Y = - -

xi x 
(2.8.10) 

and the solution along it 

-y 
U = e . (2.8.11) 

We are interested .to find approximations to the solution and to the 

value of y at the point P(x,y)=P(l.l,y), y>O on C which passes through 

Q(xO'YO)=Q(l,O) on r. 
First Approxim:ztion for y (1) and u (1) 

From equation (2.8.9), we have at the point Q(xo'Yo)=Q(l,O) 

ao = I, bo = 1 and Co = -1. 

Therefore with x=l.l we obtain from equations (2.8.4) and (2.8.5), 

(1) 
y = 0.1 

and 
(1) 

u = 0.9 

Second Approximation for y(2) and u(2) 

By using the results in our first approximation, equations (2.8.9) 

yield the coefficients at the point Q(x,y(l»=Q(l.l,O.l) as 

(1) 2 (1) 
a = x u 

(1) 
= 1.089, bIll = e-y = 0.904837 and 
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Hence with x=l.l, equations (2.8.6) and (2.8.7) give us 

y(2) = 0.091184 and u(2) = 0.913356. 

Of course, these approximations can be further improved by successive 

iterations. As a comparison, the analytical values of.y and U from 

(2.8.10) and (2.8.11) worked out to be 

y = 0.090909 and U = 0.9131007. 

The method of characteristics can be readily extended to second-order 

quasi-linear equations and systems of first-order equations. We recall 

from Section 1.2 of Chapter One that the slopes of the characteristic 

directions associated with the second-order equation, 

2 2 
a

2
u a .L.!! + b~+ c -- + e = 0 , 

ax
2 axay 2 

ay 
(2.8.12) 

are given by the roots of the quadratic equation, 

(2.8.13) 

and along these characteristic directions the differentials dp and dq 

are related by the equation, 

(2.8.14) 

By assuming that equation (2.8.12) is hyperbolic, the roots of equation 

(2.8.13) will be real and distinct. Let these be 

~ = f and : = 'J (2.8.15) 

Let r be a non-characteristic curve along which initial values for U,p 

and q are known. Let P and Q be points on r that are close together 

and let the f-characteristic through P intersect the 1-characteristic 

through Q at the point R(xR'YR) as in Figure 2.8.2. 
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As a first approximation we may regard the arcs PR and QR as 

straight lines of slopes fp and gQ respectively. Then equation 

(2.8.15) can be approximated by 

(2.8.16) 

and 

(2.8.17) 

giving two equations for the two unknowns xR'YR' 

f-characteristic 

g-characteristic 

r 

FIGURE 2.8.2 

From equation (2.8.14) the differential relationships along the 

characteristics are 

afdp + cdq + edy o (2.8.18) 

and agdp + cdq + edy = 0 (2.8.19) 

The first one can be approximated along PR by the equation, 

apfp (PR-Pp) + c (q -q ) + p R P ep(YR-Yp) = 0 (2.8.20) 

and the second along QR by the equation, 

aQgQ(PR-PQ) + c (q -q ) 
Q R Q 

+ e (y -Y ) 
Q R Q 

= 0 . (2.8.21) 
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These are two equations for the two unknowns PR,qR as soon as xR'YR 

have been calculated from (2.8.16) and (2.8.17). The value of U at R 

can then be obtained from 

dU = a U dx + a U dy = pdx + qdy ax ay 

by replacing the values of p and q along PR by their average values 

and approximating the last equation by 

(2.8.22) 

This first approximation for u
R 

can now be improved by replacing 

the pivotal values of the various coefficients by their average values. 

Equations (2.8.16) and (2.8.17) for the improved values of xR and YR 

then become 

(2.8.23) 

and (2.8.24) 

and equations (2.8.20), (2.8.21) for improved values of PR,qR become 

and 

!(ap+aR)!(fp+fR) (PR-Pp) +! (cp+cR) (qR-qP) 

+t(ep+eR) (YR-yp) = 0 (2.8.25) 

(2.8.26) 

An improved value for u
R 

can then be found from equation (2.8.22). 

Repetition of this last cycle of operations will eventually yield uR 

to the accuracy warranted by these difference approximations. Provided 

Q is close to p the number of iterations will usually be small. In this 

way, we can calculate solution values at the grid points Rand S (see 



Fig. 2.8.2), and then proceed to the grid point T and so on. 

As an ~xample, we consider the quasi-linear equation, 

2 o U 
-2 -
oX 

o • 
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We shall use the method of characteristics to derive a solution at the 

first characteristic grid point between x=0.2 and 0.3,y>0 with U 

satisfying the conditions, 

U = 0.2 + 5x
2 

and 

along the initial line y=O, for O~x~l. 

aU 
- -= 3x, ay 

Since U is given as a continuous function of X along Ox (the x-axis) 

aU p=;;- is lOx. 
oX . 

The slopes of the characteristics the initial value of 

are the roots of the equation m2
_U

2=0 ~ where m dx. Hence, 

f = U = -g 

In this example the characteristics depend on the solution and 

so the network of characteristics can be built up only as the solution 

has been worked out. 

y 

f 

o x 
0.2 0.3 

FIGURE 2.8.3 



Initially, 
2 

u = 0.2 + 5x = f 

= -g 

p = lOx and q = 3x. 

2 
Also a=l, b=e=O, c=-u. Hence from Fig. 2.8.3, we have 

fp = 0.4, gQ = -0.65, Pp = 2.0, PQ = 3.0, up = 0.4, 

u
Q 

= 0.65, gp = 0.6, gQ = 0.9, cp = -0.16, c
Q 

= -0.4225. 

From equations (2.8.16) and (2.8.17), we find that, 

and 

YR = 0.4(xR-0.2) 

Y
R 

= -0. 65!x
R

-O.3) 

giving as a first approximation 

XR = 0.26190, YR = 0.024762 

to five significant figures. 
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The difference relationships along the characteristics are, from 

equations (2.8.20) and (2.8.21), 

0.4 (PR-2.0)-0.16 (qR-o.6) = 0 

and 

Their solution is, 

PR = 2.45524; qR = 1.73810. 

By virtue of equation (2.8.22), we obtain, 

uR = 0.4+! (2 .0+2 .45524) (0.0619)+! (1.73810+0.6) (0.024762) 

= 0.56684. 

For the second approximation, we have 

. 2 
fR = -gR = uR = 0.56684; cR = -uR = -0.32131. 

From equations (2.8.23) and (2.8.24), more accurate values for xR'YR 

are given by 

YR = !(0.4+0.56684) (xR-0.2) 



and YR = -t(0.65+0.56684) (x
R

-o·3) 

from which 

x
R 

= 0.25572 and YR = 0.026938. 

By using equations (2.8.25) and (2.8.26) leads to 

t(0.4+0.56684) (PR-2.0)-t(0.16+0.32l3l) (qR-o.6) = 0 , 

-t(0.65+0.56684) (PR-3.0)-t(0.4225+0.32131) (qR-o.9) = 0 • 

These equations give the improved values, 

PR = 2.53117 and qR = 1.66700. 

Hence, the second approximation to ~, by means of equation (2.8.22) 

is u
R 

= 0.4+1 {(2+2 .53117) (0.05572)+(0.6+1.6670) (0.026938) } 

= 0.55677 • 

We find that, for the next solution, 

xR 
= 0.25578, YR = 0.02668 

PR = 2.52876, qR = 1.67637 

and u
R 

= 0.55667. Since to four decimal places, 

U~l) = 0.5668, u~2) = 0.5568 and u~3) = 0.5567 

it is obvious that the solution of the difference equations for uR is 
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0.5567, to this degree of accuracy. A fourth iteration does, in fact, 

give ~=0.55666 to five decimal places. 

Finally we mention the case of simUltaneous first-order equations 

of the form, au b au + av av a- + e - + f - = g (2.8.27a) 
ax ay ax ay 

Aau + B au + E 
av F av = G (2.8.27b) -+ 

ax ay ax ay 

where the coefficients are functions of x,y and U but not of the 

derivatives, and for which U and V are given on the initial line. 

Following our standard procedure we look for the characteristics by 

examining the linear equations given by (2.8.27) and, 
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~dx aU 
dU = + - dy 

ax ay (2.8.28a) 

av dx av 
dV = + - dy 

ax ay 
(2.8.28b) 

for the determination of the four derivatives. The solutions are 

unique unless the determinant, 

dx dy o 

o o dx dy 
~ 0 I (2.8.29) 

a b e f 

A B E F 

the equation which defines the characteristics. On expanding this 

determinant, gives, 

2 2 
(dy) (eA-aE)+(dx) (dy) (bE-eB+aF-fA) + (dx) (fB-bF) = 0 (2.8.30) 

and the equations form a hyperbolic system if the roots are real. 

We also have the relation, 

dU dx dy 0 

dV 0 0 dx 
= 0 , (2.8.31) 

g a b e 

G A B E 

between U,V,x and y along the characteristics, which we can use in 

the hyperbolic case to obtain a solution by integration along the 

characteristics. Two characteristics pass through every point and 

the computation is almost identical with that of the second-order case. 
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2.9 FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS 

A question that one would naturally ask is whether we could 

develop discrete approximations to the solution of a given hyperbolic 

differential equation using finite differences which are suitable to 

the higher speed computer. It is known that finite difference methods 

have been widely used with great success in parabolic and elliptic 

problems. However, use of these methods in hyperbolic equations are 

in a sense quite restricted. 

In previous sections of this chapter we have seen the segmenting 

of the solution domain by the characteristics. In other words, these 

characteristics play the role of natural boundaries in the solution 

domain. If, for example, there are more than one family of characteristics 

then the partition of the solution domain is influenced by the boundary 

conditions of these characteristics. We have also noted how the 

existence of discontinuities in the initial values and initial 

derivatives leads to discontinuities across the characteristic along 

its entire length from the point of discontinuity. 

Finite difference methods, on the other hand, do not accommodate 

these possibilities. The central feature of these methods is the 

replacement or approximation of derivatives at a grid point of the 

finite difference network, say the rectangular (square) grid by some 

difference quotients over a small interval. This process of approxi

mation is extended to all other grid points in the network over the 

area of integration of interest without taking into consideration 

such features as the role of the characteristics. Further difficulties 

arise if these characteristics are not straight lines or are dependent 

on the solution. 



As an illustration we refer to the following problem, 

aU 
U - + 

ax 
aU 

y a = 1 
Y 

with u=o on r = {(x,y) :O<x<a, y=l}. 

The subsidiary equations are 

dx = ~ = dU 
U Y 1 

from which we obtain the solution, 

U = 12 (x-x. ) 
1 
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U /2 (x-x.) 
along the charactersitic y=e =e 1 that passes through the point 

(x. ,1) on r, O<X.<a. The graph of these characteristics is shown in 
1 1 

the following figure. 

y 

y=l 
L-__ J-__ -L __ -L ____ ~ __ ~ ____________ ~x 

o X. 
1 

a 

FIGURE 2.9.1 

We note that the characteristics are dependent on the solution 

and they are not straight lines. Hence we see that if a rectangular 

grid is used in our finite difference method then the above characteristics 

do not pass through many of the grid points in which case the method may 



101 

not be truly representative of the given problem. Should there be 

any propagated discontinuities along the characteristic then this 

would lead to further computational problems and inaccuracies. 

With these inadequacies on finite difference approximations it is 

to be anticipated that the method of characteristics provide more 

accurate results. This is because solutions are progressed from the 

initial point along a characteristic that does not intersect the 

characteristic drawn from a point of discontinuity. Its programming 

for numerical evaluation on the digital computers, however, may prove 

to be difficult and bothersome, more so when it involves a set of 

simultaneous first-order equations. Therefore, if the differential 

equations that we are dealing with are of no great complexity and are 

known to possess well-behaved solutions, finite difference methods may 

still prove viable as a method of discrete approximation. We are then 

interested in the questions of accuracy, convergence and stability. 

These considerations may be directly linked with the limitations imposed 

by the characteristics themselves. A case in point is the expZiait 

finite difference schemes which are of the form, 

ui ' = au, 1 j + bUij + cu, 1 ' , ,J+1 1.- , . 1.+ ,J 

The computational molecule of the above difference scheme in the 

rectangular grid is, p 
_ (j+l)th Hne 

- _ _ _ - - j th line 

A B c 
i-l i i+l 

The spacing used by the grid points in the x and y direction is 6x 
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and ~y and using known values of u at the preceding y level at the 

points A,a and C enables us to determine the solution at the present 

y level at the point P. Let r denote the initial line segment on 

which values of u are known. If the points A,a and C are on r then 

the solution u at P is determined by the values of u at these points. 
p 

Hence up will change if changes are made on u
A

,u
8 

and uc • However 

the solution U of the differential equation at P is not affected by 
p 

these changes since it lies on the characteristic drawn from the point 

o on r as depicted in the following figure: 

P 

Ay 

o A a C r 

FIGURE 2.9.2 

Hence the finite difference soZution up will not converge to the 

soZution of the differential equation U as ~x,~y tend to o. 
p 

Convergence is only assured. if 0 lies between A and C. This is known 

as the C.F.L. (Courant-Friedrichs-Lew,y) condition for convergence of 

the solution of difference equation to the solution of differential 

equation. Since we have a family of characteristics then this 

condition applies to all other pOints in the rectangular grid. In 

particular, if the characteristic PO is a straight line then for 

convergence, the slope of PO must be greater than or equal to the 
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slope of PA. In some finite difference schemes, this also provides 

the stability condition as we march our solutions across its solution 

domain. 

We shall now attempt to derive a generalised two-time level finite 

difference approximation to the convection equation in one space 

dimension of the form, 

au aU 
-aax = at (2.9.1) 

where a>O and is constant. We shall also examine the stability and 

truncation errors of these approximations. 

The space derivative ~ may be approximated 
ax 

U 
(u. ,-u. ,) 

~ = ~+, ~-, 

ax 

by 

(2.9.2) 

ui +! may be chosen in a number of ways. The simplest option is the 

arithmetic averaging given by 

(2.9.3) 

Another option which is more commonly used is 

(2.9.4) 

A "distance-weighting" parameter w can therefore be used to characterise 

these options as follows: 

backward-in-distance weighting: w=l, 

centred-in-distance weighting: w=i, 

forward-in-distance weighting: w=O, 

and clearly equations (2.9.3) and (2.9.4) can be combined into the 

general equation, 

(2.9.5) 
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Similarly, we have 

(2.9.6) 

We can use a similar parametric approach to the differentials, 

for example, the expZiait ,impZiait and aentred-in-time difference 

equations, wherein the spatial derivatives are evaluated, respectively, 

at t j , tj+l or t j +!. If we use 8 as the "time-weighting" parameter 

and prescribing the values, 

implicit: 
8=1, 

(backward-in-time) 

centred-in-time: 8=!, 

explicit: 

(forward-in-time) 

then equation (2.9.1) can be replaced by the difference analogue, 

(2.9.7) 

where we have employed the usual forward difference approximation 

au 
for at • 

By substituting equations (2.9.5) and (2.9.6) into equation 

(2.9.7), we arrive at the final, generalised difference analogue for 

the hyperbolic equation (2.9.1) as: 

-A [8{ (l-w)u. 1 . 1+(2w-l)u .. l-wu. 1 . l}+(1-8){ (l-w)u. 1 .+ 
1.+ ,J+ 1.,J+ 1.- ,J+ 1.+ ,) 

(2.9.8) 

h a/lt. h . f h 11 k d d were A = -- 1S t e mesh rat1-o. Most 0 t e we - nown stan ar /lX 

methods may be obtained from formula (2.9.8). For example, by putting 

8=0 and ~=(1+A)/2~1 gives us, 
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u = i,j+l 
(2.9.9) 

which is called the Lax-wendroff explicit formula. This is probably 

the most well known method for first-order hyperbolic equations and 

.as We shall see later is second-order accurate. For 6=! and w=!, we 

get the implicit centred-in-distance and centred-in-time formula, 

A A 
~i-l,j+l-Ui,j+l- ~i+l,j+l = 

A A 
- ~i-l,j-Ui,j+ ~i+l,j 

(2.9.l0) 

which is also second-order accurate in both space and time. Equation 

(2.9.10) is of the Crank-Nicolson type that is frequently encountered 

in parabolic problems and can be expressed as, 

(2.9.11) 

or (2.9.12) 

where 6xu i ,j = ui+l,j-Uij 

and "xUi,j = Ui,j-Ui_l,j 
Other schemes of interest are displayed in Table 2.9.1 below together 

with their computational molecules and stability conditions and 

truncation errors, both of which will be derived in the next two 

sections. 



Backward-in-timc 
8=1 
(implicit) 

Centred-in-time 
8=1 

Forward-in-tirne 
8=0 
(explicit) 

Backward-in-distance 
w=l 

j+l 

j 

i-1 i 
Always stable. 

T=O(lIx)+O(lIt) 

j+l 

j 0-0 
i-l i 

Always stable 2 
T = 0 (lIx)tO( [lit] ) 

j+l 

j 

A~l. 

T = O(lIx )+O(l\t) 

Centred-in-distance 
w=t 

j+l 

j 

i-l i i+1 
Always stable. 

T = 0([ lIxj 2)+0(lIt) 

j+l 

j 

i-l i i+l 
Always (ne~trallY)2stable. 
T = O( [lIx] +O( [lit] ) 

j+l 

j 

i-
Always uns~bf€'. 

T = 0([lIx]2)+0 1I 

TABLE 2.9.1 

Forward-in-distance 
w=O 

j+l 

j 

i i+l 
Stable if A >,l. 

T = O(llx) +0 (lit) 

j+l 

j 

"i i+l 
Always unstable' 2 
T = 

j+l 

j 

i· . i+1 
un5tabe~ . f-' 

0 

'" 
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2.10 STABILITY ANALYSIS OF THE GENERALISED FINITE DIFFERENCE METHODS 

An analysis using the von Neumann oriterionwill be carried out 

to investigate the stability of (2.9.8). We shall assume that if U
ij 

is a solution to the difference equation at the point (x. ,t.) then its 
l. ) 

perturbation Uij+E
ij 

also satisfies the difference equation and we 

examine the possible growth of E
ij

• Specifically, if u
ij 

satisfies 

equation (2.9.8) then, 

-A [e{ (l-w) (ui+l,j+l +Ei+l,j+l) +(2w-l) (ui,j+l +Ei,j+l) -W(ui_l,j+l + 

E' l . l)}+(l-e){(l-w) (u. 1 j+E. 1 .)+(2w-l) (u .. +E .. )-w(u. 1 j+E:. 1 .)}] 
~- ,J+ ~+, 1.+,J 1.J l.J 1.-, 1.-,) 

(2.10.1) 

On subtracting equation (2.9.8) from (2.10.1) we get 

-).. [e{ (l-w) Ei+l,j+l + (2w-l) E:i,j+l-WE: i _l ,j+l}+ (l-e) {(l-w) E: i +1 ,j + 

(2w-l)E .. -WE:. 1 j}] = 1.J 1.-, 
(2.10.2) 

We see that the error equation (2.10.2) has exactly the same form as 

the original difference equation (2.9.8). It will generally be true 

that a difference equation and its error equation will be identical 

when the difference equation is linear and homogeneous. 

The von Neumann stability analysis consists of expanding the 

error Eij in a Fourier series of the form 

e: = L ~j exp(i ex.) 
ij e e c l. 

(2.10.3) 

where i =;:I. This is followed by substituting the series into the 
c 

error equation and solving for the amplification factor YQ=~j+l/~j 
. ~ 6 6 

for each component. For stability (as was seen in Section 2.3), the 

modulus of the amplifioation factor must be less than or equal to one 



for all the components. The analysis is somewhat simplified by 

omitting the subscript a and by taking xi=i~x. Equation (2.10.3) 

will then take the form. 
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= E;jexp(i ait.x) 
c 

(2.10.4) 

and substituting this directly into the difference equation and 

cancelling the resulting common factor. ~jexp(i ai~x). leads to an 
c 

equation that must be satisfied by the parameters y.a. ~x and ~t. 

We now apply the criterion to equation (2.9.8). By substituting 

the error (2.10.4) into (2.9.8) and cancelling the common factor 

exp(i ait.x). we obtain 
c 

j+l 
-A[9~ {(l-w)exp(i a~x)+(2w-l)-wexp(-i s~x)} 

c c 

+(1-9)~j{(1-w)exp(i at.x)+(2w-l)-wexp(-i a~x)}l = ~j+l_~j • 
c c 

By using the identity, 

exp(±i at.x) = cos(a~x) ± i sin(a~x) , c c 

we get, 

Hence, 

j+l 
L-= y 
~j 

= 
1-1.(1-9) (2w-l){1-cos(S~x)}-i X(1-9)sin(St.x) 

c 
l+X9 (2w-l) {l-cos (St.x) }+i A9sin(St.x) 

c . 
(2.10.5) 

the amplification factor which is complex. Clearly, by taking the 

square of the modulus of A we obtain, 

2 hi = 

2 2 2 2 
[1-1. (1-9) (2w-l) {l-cos (S~x)} 1 +1. (1-9) sin (St.x) 

222 . 2 
[l+A9(2w-l){1-cos(s~x)}1 +1. 9 S1n (S~x) 

We now proceed to analyse, separately, the stability of 

(2.10.6) 
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(a) the Lax-Wendroff equation (b) centred-in-distance equations 

(c) backward-in-distance equations and (d) forward-in-distance equations. 

(a) Stability of the Lax-Wendroff Equation. 

With w=(1+A)/2 and 8=0. we have from (2.10.6) 

2 2 2 2.2 hi = [l-A (l-cos (allx»] + A Sl.n (allx) 

2 2(S6x)]2 2. 2( ) = [1-2A sin --2- + A Sl.n allx 

1 4,2 . 2(a6x) 4,4 . 4(a6x) ,2. 2(0' ) = - 1\ Sill 2 + 1\ s~n --2- + 1\ Sl.n puX. 

. Sllx allx Since sin(SlIx) = 2sl.n(--2-)cos(--2--) we have 

A2Sin
2

(allx) = 4A2Sin2(S~x)coS2(a~x) 

= 4A2Sin2(allx )_4A2sin4(allx ) 
2 2 

Hence, 

11 
22.4allx! 

y = [1-4A (l-A )sl.n --2-] • 

and for stability. 

IYI~l implies 0~4A2(1-A2) giving O<A~l. 

(2.10.7) 

Therefore the Lax-Wendroff method is conditionally stable for O<A~l. 

(b) StabUity of the Centred-In-Distance Equations. 

For w=!. equation (2.10.6) reduces to 

2 2 2 
l+A (1-6) sin (allx) 

2 2 2 
l+A 8 sin (allx) 

2 hi = 

The stability requirement ly12~1 leads to 

which simplifies to 
(1_6)2 ~ 82 • 

For 8=t. Iyl is exactly.one. 

For 8>!. inequality (2.10.9) is always satisfied. 

For 8<t. inequality (2.10.9) is never satisfied. 

(2.10.8) 

(2.10.9) 

J 
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We conclude that the centred-in-distance, centred-in-time difference 

equation is neutrally stable, the centred-in-distance, backward-in-

time equation is unconditionally stable while the centred-in-distance 

forward-in-time equation is always unstable. 

(c) StabiZity of the Backward-in-Distance Equations. 

For w=l, equation (2.10.6) reduces to 

2 2 2 2 
= [l->'(l-a){l-cos(Sllx)}] +>. (l-a) sin (Sllx) 

222 . 2 
[l+>.a{l-cos(SllX)}] +>. a s~n (SllX) 

(2.10.10) 

It is immediately evident that for a=l, the numerator takes on exactly 

the value of one while the denominator is larger than one. Therefore, 

for this particular case,[y[<l and satisfies the stability requirement. 

2 
For the more general case, in order that [y[ ~l, the numerator 

of equation (2.10.10) must be less than or equal to the denominator. 

On expanding and after some manipulation, this leads to 

2 2 2 . 2 
-2>.{1-cos(SllX)}+>' (1-2a){1-cos(SllX)} +>. (1-2a)s~n (Sllx)~O, which 

reduces to, 

-2>.{1-cos(Sllx)}[1-A(1-2e)] ~ o. 

Since >.>0 and cOS(Sllx)~l, then we must have 

1-A (1-2a) ~ 0 , (2.10.11) 

which is automatically satisfied for a~! and for all >'>0. However, 

when a<! we now have a restriction on >. for stability. That is, the 

1 
equations are stable for A~ 1-2a and they are unstable otherwise 

1 
(>')1-2a)' In particular, for a=O, the stability requirement is >.~1. 

We conclude that both the backward-in-distance, backward-in-time and 

the backward-in-distance, centred-in-time formulae are always stable 

while the backward-in-distance, forward-in-time equation is conditionally 

stable for >.:;1. 
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(d) StabiZity of the Forward-In-Distanae Equations. 

For w=O, equation (2.10.6) becomes 

2 2 2 2 
[1+A (1-8) {l-cos(St.x)}] +A (1-6) sin (St.x) 

2 2 2 2 
[1-A6{l-cos(St.x)}] +A 8 sin (St.x) 

(2.10 .12) 

Again, the condition for stability is that the numerator be less than 

the denominator. This leads to 

. 2 2 2 . 2 
2A{l-cos(St.x)}+A (l-28)fl-cos(St.x)} +A (1-26)Hn (St.x)~O 

which reduces to 

2A{1-cos(St.x)} [l+A(1-26)] ~ o. 

Stability then requires that, 

1+A (1-28) ~ 0 , (2.10.13) 

which is never satisfied for any 8~!. 

When 8>!, inequality (2.10.13) leads to the following restriction 

on A, 
'> 1 
" '28-1 • 

In particular, for 8=1 (corresponding to the forward-in-distance, 

backward-in-time equation), the stability requirement is A~l or 

t.t a- > 1 t.x ' (2.10.14) 

In practice, it is difficult to satisfy the above stability condition 

at all mesh points as it entails excessively large time steps. We 

therefore conclude that none of the forward-in-distance equations is 

useful, either because of their unconditional instability (when 8=0 

or 8=,), or because of the difficult stability restriction (when 8>,). 
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2.11 TRUNCATION ERROR ANALYSIS OF THE GENERALISED FINITE DIFFERENCE 

METHODS 

Let us consider the differential equation at the point (~x,j~t), 

L(U
ij

) = 0 (2.11.1) 

where U is the exaat solution of the differential equation at that 

point. For example, for equation (2.9.1) we have 

(2.11.2) 

The derivatives in this equation may be replaced exactly at the point 

(i~x,j~t) by an appropriate infinite (difference) series. To derive 

a finite-difference equation approximating the differential equation, 

however, each series is truncated after a certain number of terms. 

Let us denote this approximating difference equation by 

(2.11.3) 

where u is the exaat solution of the differenae equation at the point 

(i~x,j~t) • 

The amount by which the exact solution U of the partial 

differential equation does not satisfy the differential equation at 

the point (i~x,j~t) is called the loaal trunaation error T
ij

• 

Clearly, 
(2.11.4) 

By means of a Taylor series expansion we will be able to find the 

principal part of the local truncation error and hence deduce the order 

of accuracy of the difference equation. 

To study the accuracy of the generalised finite difference 

methods, we use equation (2.9.8), 

- .~[e{ (l-w)u. 1 . 1+(2w-l)u .. l-wu. 1 . l}+ (l-eH (l-w)u. 1 .+ 
LlX ~+ ,J+ 1.,J+ 1.- ,J+ 1.+ ,] 

(2w-l)u .. -wu. 1 .} 1 -
l.J l.- ,J 

u .. l-u .. 
1.,]+ 1.J 

t.t 
(2.11.5) 



We note that the expression, 

(1-w)u
i

+
1 

+ (2w-1)u
i 

- wU
i

_
1 

can also be written as 

!(u. 1-ui l)+(!-w) (u. 1-2u .+ui 1) 1.+ - 1.+ 1. -
(2.11.6) 

Hence, using equations (2.11.4), (2.11.5) and (2.11.6) we can now 

write an expression for the local truncation error as, 

U. 1 . 1-U, 1 . 1 T = _ [e{ ~+ ,)+ 1- ,)+ U. 1 . 1-2U . j l+U' 1 . 1 +llx(!-w) ~+ ,)+ ~,+ ~- ,)+ } 
a 211x 

(llx) 2 

Ui 1 .-2U. ,+Ui 1 . 
+ ,) ~) -,)}) 

2 
(llx) 

From equations (2.1.8) and (2.1.9), we have 

U -U 
i+1 i-I 

211x 

and 
2 

= (a ~). 
ax ~ 

2 
+ O([llx) ) • 

Substituting these into equation (2.11.7) gives us 

2 . a U 
+(l-e)lIx(!-w) (-) .. 1 -a 2 1,) 

X 

au + (1-6) (,) .. 
oX 1.,J 

U .. 1-U' . 
1.,J+ 1.,) + 

lit 
2 

o ( [lIx 1 ) • 

(2.11.7) 

(2.11.8) 

We can now apply Tay1or's series expansions on U .. 1 and U,). about 
1. ,]+ .... 

the point (illx,(j+6)lIt) using the obvious relations 
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j+1 = (j+6)+(1-6) (2.1109a) 

and j = (j+6)-6 (2.1109b) 

to give us, 
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2 

Ui ,j+l = Ui,j+8+(l-8)t.t(~~)i,j+8+ 2~(l-8)2[t.tI2(:3)i,j+8+ 

o ([t.tl 3) 

and 

Hence, 

(2.11.10) 

In addition, 

au 
(ax) i,j+l 

and 

Using these two equations, we obtain 

au au 
8(ax)i,j+l +(1-8) (ax)i,j = (2.11.11) 

and similarly, 

(2.11.12) 

Substituting equations (2.11.10), (2.11.11) and (2.11.12) into 

equation (2.11.8) we get, 

From the differential equation (2.9.1) the first term in braces is 

zero and we also find by differentiating (2.9.1) with respect to t 

and x that, 

Hence, we have the final form of the local truncation error as, 



2 a2u 2 2 
+(8-~)lIta (-2)' j +O([lIx) )+O([lIt) ) ax l.. +8 
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(2.11.13) 

Le .• 

T = allx[(w-~)+A(8-!)) 

The principal part of the local truncation error is therefore 

a2u 
allx[(w-!)+A(8-!)) (-2)i '+8 

ax .J 

For the Lax-wendroff formula (2.9.9). we find that with 8=0 and 

w=~(l+A). T=0([lIx)2+0 ([lIt)2) confirming that the method is second-

order accurate in both space and time. The local truncation errors 

of the other formulae are described in Table 2.9.1. 



2.12 OTHER APPROXIMATIONS FOR THE CONVECTION EQUATION 

other methods can be developed in much the same way as for the 

generalised schemes to approximate the convection equation (2.9.1). 

(i) Leapfrog method. au aU 
If we discretize ax and at by their second 

order centred analogues as in equation (2.1.8) then we are led to 

the three-time tevet formuta, 

u, j l-u, j 1 
~,+ 1.,-

2t.t 
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or Ui,j+l = U i ,j_l-A(ui +1,j'·Ui _l ,j) , (2.12.1) 

which is known as the explicit leapfrog scheme. We shall now 

establish the stability condition of this scheme. By substituting 

the error, 
~ij = ~jeXp(icSit.X) 

into equation (2.12.1) results in 

or 

'+1 
!;J exp (i Sit.x) 

c 
= !;j-lexp(i Bit.x)-A!;j(exp(i B(i+l)t.x)-

c c 

exp(i S(i-l)t.x» 
c 

But we know from the identity, 

exp(i St.x)-exp(-i St.x) = 2i sin (St.x) • c c c 

Hence equation (2.12.2) becomes, 

y2+(2Ai sin(St.x»y-l = 0 • 
c 

The roots of this equation (the amplification factors) are 

y ~ icAsin(St.x) ± ~-A2Sin18t.1. 

(2.12.2) 

If Asin(St.x»l, then the absolute value of one of these roots exceeds 

unity; if Asin(St.x)sl then both roots satisfy iyi:l. Thus, assuming 

that the maximum value for sin(St.x) must be considered possible, then 

the stability condition is ASl. 
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From equation (2.12.1l we observe that 

An expression for the local truncation error is 

1 
- .- a(Ui 1 j-U, 1 ,l. 

uX +, ~-, J 

On applying Taylor's theorem on this expression at the point (il::.x,jt::.tl 

we find that, 

1 au 3 
T = M:(2t::.t (atl ij + 0 ([t::.t] II 

1 aU 3 
- t;X a (2t::.x (ax) ij + 0 ([t::.x] » 

au au 
= 2 (at) ij - 2a (ax\j 

au . au 
= 2{(at)ij -a(ax)ij} 

Hence T = 
2 2 

O( [t::.x] l+o( [t::.t] ) for the leapfrog scheme. 

(H) Wendroff implicit method. The algorithm due to wendroff may be 

au obtained by representing ax at the (j+tl level as the average of the 

au 
derivatives at j and j+l and by representing at at the (i+!) level 

as the average of the derivatives at i and i+l. Thus, 

and 

au 
(at l i+t ,j+! 

au 
(aX)i+!,j+! 

u, 1 ' l-u, 1 j ui ' l-u" z t( L+ ,J+ L+ , + ,J+ LJ l t::.t t::.t 

·The Wendroff algorithm then assumes the form, 

(l+)')u, 1 '+l+(l-).)u, '+1 = (l+).)u" + (l-)')u, l' (2.12.3) 
.1.+ ,] 1.,) 1.] 1.+ IJ 

It cannot be used for pure initial-value problems, that is, conditions 

on t=O only because it would give an infinite number of simultaneous 

equations. If, however, initial values are known on the x-axis, x~O, 
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and boundary values on the t-axis, t~O, the equation can be used 

explicitly by writing it as 

To analyse its stability, we again insert the error ~ .. =~jexp(i aiAx) 
l.J c 

into (2.12.3). This provides us 

(l+A)~j+lexp(i a(i+l)Ax)+(l-A)~j+lexp(i S~x) = 
. c c 

i.e. , 

y = 

+(l-1.)~jexp(i a (i+l)lIx) , 
c 

(1+1.) + (l-1.)exp (i allx) 
c 

(l-1.)+(l+1.)exp(i allx) c 

the amplification factor. 

This can be written as, 

Hence, 

y = 

= 

[(l+1.)+(l-1.)cos(allx»)+i (1-1.) sin (allx) 
c 

[(l-1.)+(l+1.)cos(allx»)+i (1+1.) sin (allx) 
c 

2 2 2 
(1+1.) +(1-1.) +2(1-1. )cos(allx) 

2 2 2 
(1+1.) +(1-1.) +2(1-1. )cos(allx) 

= 1. 

Therefore, the Wendroff scheme is unconditionally stable for all values 

of A. 

We proceed now to investigate the truncation errors of the method. 

Using equation (2.12.3) we have, 

Uij , Ui,j+l' Ui+l,j and Ui+l,j+l are expanded about the point 

«i+tll~,(j+t)lIt) by means of Taylor's series for multi-variables. 

After some extensive manipulations and cancellations of terms we 

obtain, 



T = 2 

+ 
2 

{ (/\x) 
12 

h . d· ff . 1 . a (au) . 1 + (au) 0 From t e g~ven ~ erent~a equat~on, ox i+!.J+' at i+!.j+!= • 

Therefore, 

showing that the wendroff scheme is second-order accurate in both 

space and time. 
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2.13 FINITE DIFFERENCE APPROXIMATIONS FOR SECOND ORDER HYPERBOLIC 

EQUATIONS 

A natural extension to first-order hyperbolic equations is to 

employ finite difference procedures to second-order equations. In the 

process of developing these methods, we will, of course, bear in mind, 

as we did with first-order equations, the limitations imposed by the 

characteristics. 

(a) ExpZicit Methods. 

Let us consider the simplest of the second-order hyperbolic 

equations called the wave equation given by, 

(2.13.1) 

and the Cauchy condition, 

au 
u (x,O) = f (x) , at"(x,O) = g (x) • (2.13.2) 

As before, we take a rectangular net with constant space and time 

intervals given by 6x and 6t respectively and we write u, ,=u(i6x,j6t), 
~J 

~<i<~, O~j~~. Both second partial derivatives are approximated by 

central difference expressions given by (2.1.9) whose truncation error 

is O([6x)2). Thus equation (2.13.1) is approximated by the explicit 

formula 
2 2 

u',J'+l = A (u, 1 ,+u, 1 ,)+2(1-A )u, ,-u, , 1 
.... 1- IJ 1+,] 1J 1.,J-

(2.13 .3) 

6t 
where A = 6x. The first initial condition of (2.13.2), specifies u, ° 

~, 

on the line t=o. We can use the second condition to find values on 

the line t=6t by employing a 'false' boundary and the second-order 

central difference formula, 

auj _ ui ,l-u i ,_l 
atj, 0 - 2,;t 

~, 

2 
+O([';t)). (2.13.4) 



Writing g(iaK)=g., we have the approximation, 
~ 
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ui,l-ui,_l = 2t.tgi • 

From equation (2.13.3) with j=O, we have 

(2.13.5) 

Upon replacing ui,_l with its value, from equation (2.13.5), and 

solving for u. 1 we find 
~, 

(2.13.6) 

The computational molecule for equation (2.13.3) is shown in 

Figure (2.13.1). Superimposed on this figure are the characteristics 

of the wave equation, namely t=±x+ constant, whose slopes are ±l, 

represented by the lines AC and BC. As we have seen from Section 2.6, 

the solution is uniquely determined in the triangle ACB, provided the 

solution up to AB is known. If the absolute value of A (i.e. the slope) 

exceeds 1, then equation (2.13.3) would provide a ~olution' in a region 

'not reached' by the continuous solution. In such a case we would 

expect the result to be quite incorrect. 
t 

D 

/ , , 
f:\ 

,\ V C , 
t' kt" b.0 ~ , 
t" V I-' 1"'- \ 

A 
~ ~ , I-' 

I fiX 

i- i i+1 

j+l 

t.t 

j 

B 
j-l 

x 

FIGURE 2.13.1: Comparison of the finite difference characteristics 
AD and DB with the true characteristics AC and BC. 
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If IA:~l, however, it can be shown that the method will converge 

under the usual assumption that certain higher derivatives exist. 

Convergence of the solution of equations (2.13.3) and (2.13.4) to that 

of the differential problem, equations (2.13.1) and (2.13.2) as ~x+o 

and ~t+O, was first examined by Courant, Friedrichs, and Lewy (1928), 

by Lowan (1957) using operator methods, and by Collatz (1960). 

The proof of convergence is somewhat complicated for A<l but is 

much simpler if the special mesh ratio condition A=l holds. We shall 

provide the proof for the latter when the derivative initial condition 

is approximated by forward differences and ~t=~. 

Let U .. be the exact solution of the differential (wave) equation 
lo] 

at the point (xi,t
j

) and u
ij 

the exact solution of the explicit 

difference equation. From the initial conditions (2.13.2) we obtain 

g. = (u. l-u. )/~ 
1. 1., 1.,0 

giving (2.13.7) 

By the Taylor's expansion about the point (i~,O), we have 

i.e. 

u. 1 lo, 

u = f.+~g. + ~(~x)2 
i,l lo lo 21 

1 2 a2u 
+ 21(~) (-2)· 6 . at lo, 

, (0<6<1) 

(2.13.8) 

Hence, from equations (2.13.7) and (2.13.8) we get the discretization 

error, 
ie. 11 

lo, 
Iu. l-u. 11 

1., 1., 

2 
!(~) M2 ' 

where M2 is the modulus of the largest value of 
2 a u . 

-- lon 
at2 

(2.13.9) 

the first time 

interval. Substitution of Uij=uij-eij into the finite difference 

equation (2.13.3) and expansion in terms of U .. by the Taylor's 
lo] 

theorem gives, 



e, , 1 
.1., ]+ 

a4 

+ ( ~) i j+e 
at ' 2 

where le~l<l, (s=1,2,3,4). Hence, if M4 is the modulus of the 

a4u a4u 
largest of --4- and ~ throughout the solution domain and Inl~ ~ then 

at ax 
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1 4 
el.' ,J' +1 = e, 1 ,+e, 1 ,-e, , 1+ -6 (Llx) nM

4 .1.+ IJ 1-,J ~,J-
(2.13 .10) 

Draw the straight line characteristics through the point (i,j+l) 

at ±45° to the x-axis Ox until they meet the line j=l, and mark the 

points within this triangle contributing terms to e, , 1 when working 
.1., J+ 

backwards using the last equation so as to express e, , 1 entirely·in 
1,]+ 

terms of the errors along j=l. It will be seen that there is one 

point at (i,j+l), two points along t=j~x, three points along t=(j-l)~x 

and following the same manner (j+l) points along t=~x. As the (j+l) 

points along t=~x each contribute an error bounded by !(~)2M2 as in 

(2.13.9) and I k=!j(j+l) points between t=2~ and t=(j+l)~x each 
k=l 1 4 

contribute an error bounded by 6(~) M
4

, it follows that 

1 e, '+11 l.,J 
2 1 4 

~ !(j+l) (~) M2 + 12 j(j+l) (~x) M4 (2.13 .11) 

Changing j into (j-l) completes the proof. Since j~x=t, we have 

1 
1 2 2 

eijl ~ !t~XM2 + ut (~x) M4 (2.13 .12) 

As ~x tends to zero, this error tends to zero for finite values of t. 

Hence convergence is established. The proof for the case A<l is given 

by Forsythe and Wasow (1960) and Lowan (1957). 

(b) Imp~ioit Methods. 

With the expectation of gaining stability advantages, we shall 



now attempt to derive imPlicit methods for second-order equations. 

For the wave equation (2.13.1), the simplest implicit system is 
2 

obtained by approximating a ~, as before, by a second central 
at 2 

difference centred at (i,j) while a ~ is approximated by the average 
ax 

of two second central differences, one centred at (i,j+1) and the 

other at (i,j-1). Thus, one simple implicit approximation takes the 

form, 

u. . 1-2ui' +u. . 1 
l.,]+ ] l.,]-
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2u. . l+ui 1 . 1)}· (2.13.13) 
1.,J- - ,]-

The implicit nature of this formula is obvious by rewriting the 

expression to be solved on the (j+1) line in terms of the values on 

the two preceding lines. Thus one finds the equation, 

,2 2 (1 2 2 
-~ u i 1 . 1+ +).) u. . 1-). u i 1 j 1 + ,J+ 1.,J+ - I + 

2 2 2 
= 4uij+). u. 1 . 1-2 (1+>' )u .. 1+). u. 1 . 1 

1.+ ,]- 1.,J- 1- ,J-
(2.13.14) 

Another implicit method discussed by Richtmyer and Morton (1967) 

to approximate (2.13.1) is given by, 

1 2 ).2 
-4" u. 1 . 1+(1+ -2 )u .. 1 

1.- ,J+ 1.,J+ 

,2 
- -u 

4 i+1, j+1 
2 2 

= lA u. 1 .+(2-). )u .. + 
l.- ,] l.] 

, 2 ). 2 
+ (-l--)u +-u 

2 i,j-1 4 i+1,j-1 

).2 
+ -u 

4 i-1,j-1 

(2.13.15) 

By assuming that there are m mesh values to be determined, then 

upon writing equations (2.13.14) and (2.13.15) for each i, i=1,2, ••• ,m 

and inserting the discretized boundary conditions, the tridiagona~ 

nature of the system becomes clear. Thus the Thomas a~gorithm of 

Section 1.9 may be applied to find a non-iterative solution. 

Equations (2.13.3). (2.13.14) and (2.13.15) are special cases of 



a generaZ three-ZeveZ impZicit form obtained by approximating 
2 2 au 1 2 ,au 

(--2) i ' by 20 U,' and approx~mating (-2-)" with 
at ,J (lit) t ~J ax ~J 

Hence, 

1 2 1 
--='--,;<2 0 U , =--=:......". 
(lit) t iJ (lIx) 2 

2 2 2 
[ao u, , 1+ (1-2a) 0 U, ,+ao u

i 
' 11 

x 1.,J+ x l.J x ,)-

2 
where a is a weighting factor and 0 is the operator defined by 

u, 1 ,-2u, ,+U, 1 ' 
1.+,J 1.J 1.-,J 

Note that a=o gives the explicit method (2.13.3), a=! gives the 

implicit method (2.13.14) and for a~ we obtain the implicit 

equation (2.13 .15) • 
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(2.13.16) 
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2.14 STABILITY ANALYSIS OF THE GENERAL THREE-LEVEL FORMULA 

To determine the conditions of stability of the general three 

level implicit method, we perform a Fourier series analysis on 

equation (2.13 .16) by inserting the error, 

= ~jexp (i 8il1x) 
c 

This leads to, 

2 2 2 
[acS £. . 1+ (1-2a) cS £ .. +ao £i j 1] x 1,J+ x 1) X ,-

or 

~j-1exp(i 8i~x) (1_2y+y2) = A2[a~j+1exp(i 8i~){exp(i 8~x)+ 
c c c 

exp(-i 8~x) -2}+(1-2a) ~jexp(i 8i~x){exp(i 8~) +{exp(-i 8~x) -2} 
c c c c 

+a~j-lexp(i 8i~x){exp(i 8~x)+exp(-i 8~)-2}]. 
c c c 

After the cancellation and grouping of terms, we get, 

But, 

2 
Y -2y+l 

2 2 
= A (exp(i 8~x)+exp(-i 8~x)-2) (ay +(1-2a)y+a) 

c c 
2 2 

= A [2(cos(8~x)-I){ay +(1-2a)Y+a}] 

. 2 8~x 
cos(8~x)-1 = -2s~ (--2-) . 

Hence (2.14.1) reduces to the quadratic, 

(2 .14 .1) 

2 . 2 8~x 2 2 . 2 8~x 2 2 8~ 
(1+4aA S1n (--2-»Y +2(2(1-2a)A s~ (--2-)-I)y+(1+4aA sin (--2-» = o. 

(.2.14.2) 

The roots of this quadratic are given by 

y 

2 2 811x . Mx /2 . 2 811" 
-[2(1-2a)A sin (--2-)-I]±2As1n(--2-)/A S1n (--2-) [1-4a]-1 

2 . 2 Sllx 
(1+4aA sm (--2-) 

(2.14.3) 

We now discuss the stability requirement of the explicit formula 

(2.13.3). Putting a=O into equations (2.14.2) and (2.14.3) we obtain 

2 2.2Bllx 
Y -2(1-21. S1n (--2-»y+l = 0 , (2.14.4) 

and 
2 . 2 B~x . B~x /2 . 2 Bllx 

Y = -[21. S1n (--2--)-1]±2AS1n(--2-)/A S1n (--2-)-1 

or y = (1_2A2Sin2(B~X)± ~A4Sin~(B~X)_4A2Sin2(B~X) (2.14.5) 
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Letting 2 . 2 Bt.x 
A = 1-21. sm (-2-) , (2.14.6) 

equation (2.14.4) becomes, 

2 
Y -2Ay+l = 0 , (2.14.7) 

and using (2.14.5), the values of Y are 

. /"2"" 
Y

l 
= A+/A--l and Y

2 
= A_.{2_1 • 

As I.,B and 6x are real, then by (2.14.6), A:::L When A<-l, h2i >1 

giving instability. 

When, -l:::A:::l, A2:::1, Y
l

=A+i
c

v'i-A2 and Y
2

=A-i
c

h-A2 • 

It is clear that Iyll =ly
2

1=1 proving that the explicit method is 

stable for -l:::A:::l. From equation (2.14.6), we then have 

2 . 2 B6x 
-1:::1-21. sm (-2-) ::: 1. 

The only useful inequality is -1:::1-21.2 sin 
2 (B~X), giving 1.:::1. Hence. 

(2.13.3) is conditionally stable for 1.:::1. 

For a>O, the stability equation is, from (2.14.2), 

2 
Y -2BY +1 = 0 , (2.14.8) 

2 . 2 B6x where B=1-[2A'/(1+4A'a)] and A'=1. SJ.Il (-2-). We note that (2.14.8) 

is of the same form as (2.14.7) implying that ly
l

l:::1 and ly21:::1 if 

and only if -l:::B:::l. Thus, -1:::1-2A'/(1+4A'a):::1 or 

1 >- A'/(1+4A'a) >- O. 

Since A' and a are non-negative, the right inequality is trivial. The 

left inequality yields the two inequalities 

A' < _1_ a < ~ and A'> __ 1_ 1 
, 1-4a' '4 1-4a ' a~ 

I 2 . 2 Bt.>< 
The second inequality is trivial since A=1. S1n (-Z-)>-O always. If we 

. 2 Sllx allow S1n (-2-) to take on its largest possible value, we obtain from 

the first inequality, 

1 a<-
4 
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For stability A must satisfy the above condition. 1 
If a~, stability 

is obtained for all values of A. 

The implicit methods above clearly need some extra boundary 

conditions, for example along two lines x=constant, since otherwise 

we have more unknowns than equations along the new line. We can then 

use a matrix method for analysing stability which will automatically 

include the effects of the boundaries. 

The application of the matrix method can, perhaps, be better 

illustrated by first considering a general two-level finite difference 

scheme approximating a given first-order hyperbolic differential 

equation with which the initial and boundary values are specified for 

example at x=xO and x=xm. In particular if the boundary values are 

zero then the tridiagonal system of equations generated by the finite 

difference approximation can be written in the matrix form, 

(2.14.9) 

where A and B are square matrices of order (m-l) and u. is a column 
-J 

vector consisting of the u-values along the j-line, that is, 

T 
u.=(u

t 
.,u2 ., .•. ,u 1 .) . The equation governing stability is 

-J , J , J. m-, J 

(2.14.9); with other than zero boundary conditions a vector will be 

added to equation (2.14.9) which can, at most, depend upon i, i.e., 

Au. 1 = Bu. + C • 
-J+ -J 

The non-singular nature of A allows us to rewrite equation (2.14.9) 

as, 
U - Pu P = A-IB • . 1 - . , --J+ -J 

(2.14.10) 

Upon repeated application of equation (2.14.10) leads to 

where ~ is the vector of initial values. Now suppose we introduce 
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errors at every mesh point along t=o and start the computation with 

the vector of values ~ instead of~. We shall then calculate 

u* 
-1 = ~, u* 

~ -2 " Pu* -1 
2 * * = P -oll , ••• ,U, = 

-) 

where we assume that no further errors are introduced. 

If we define the error vector ~ by 

e: = ~-~* , 

then £, = u,-u~ = pj(u -u*) = pj£ 
-) -) -) .::0 .::0 .::0 

The finite difference scheme will be stable when £, remains 
-) 

bounded as j increases' indefinitely. This can always be investigated 

by expressing the initial error vector in terms of the eigenvectors of 

P. We assume that the matrix P has (m-I) linearly independent eigen-

vectors v , which will always be so if the eigenvalues ~ of P are all 
~ s 

distinct or P is real and symmetric (Hermitian). Then these eigen-

vectors can be used as a basis for our (m-l)-dimensional vector space 

and the error vector ~, with its (m-I) components, can be expressed 

uniquely as a linear combination of them, namely, 

m-I 
L c v 

s=l S-S 
where the cs' s=l, ... ,m-l 

are known scalars. 

The errors along the time-level t=~t, resulting from the initial 

perturbations ~, will be given by, 

m-I 

L 
s=l 

~l = P~ = P c v 
s~ 

= 
m-I 
L c Pv 

s=l s ~ 

But Pv =~ v by the definition of an eigenvalue. Therefore, 
-s s-s 

.£1 
m-I 

= ~c~v • 
s=1 s s-s 



Similarly, 
= 

m-l 
L c ~jv 

s s-s s=l 

This shows that the errors will not increase exponentially with 
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j provided the eigenvalue with the largest modulus (the spectral radius 

of P) has a modulus less than or equal to unity. We call P the 

amplification matrix. 

Before we proceed to establish stability, we state the following 

theorem which is useful for the analysis of three or more time-level 

difference equations. 

Theorem 2.1 Stability of Three or More Time-Level Difference Equations 

If the matrix P can be written as 

Pl,l Pl ,2---- P l,m 

P2 ,1 P2 ,2---- P 2,m 
I I 

P = I 
I 

I 
I I 

P P 2 - -- _P 
m,l m, m,m 

where each Pi . is an nxn matrix, and all the p . . have a common set of 
,J l.J 

n linearly independent eigenvectors, then the eigenvalues of P are given 

by the eigenvalues of the matrices 

(k) (k) (k 
''1,1 nl ,2 ---- nl,m 

(k) 
n2 ,1 , 

I 
I 
I 
(k) 

nm,l 

(k) (k) 
n2 ,2-- -- n2 . ,m 

(k) 
n - --m,2 

(k) 
n m,m 

,k=l,···,n· 

(k) th th 
where ni,j is the k eigenvalue of Pij corresponding to the k 

eigenvector .Y-k cOmmOn to all the P ~ , s. 
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Proof 

Let ~ be an eigenvector common to all the submatrices Pij • 

i.j=1.2 ••••• m and denote the corresponding eigenvalues of Pl •l ••••• P2 •l • 

(k) (k) 
by n l •l .n 2 •l •••• respectively. For simplicity. consider i.j=1.2 

(k) 
and denote v,_ by v. n.. by n. j' Then. ...... - l.a 1., 

We multiply these equations respectively by the non-zero constants 

~l and ~2 and write them as 

(2.14.11) 

Let us assume that 

P = 

has an eigenvalue U corresponding to the eigenvector 

l'~ ~2:::: 

so that 

~'" "'J ~'~ - ~'~ U (2.14.12) 

P2 •l P2 •2 Cl 2:::: Cl 2:::: 

By the right-hand sides of equations (2.14.11) and (2.14.12). 

and n2.1Cll+(n2.2-u)Cl2 o. 

These two equations will have a non-trivial solution for Cl l and Cl2 

if and only if 
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(nl,l-U) n l ,2 

det = o , 

n2 ,1 (n 2 ,2 -U) 

i.e. if and only if U is an eigenvalue of the matrix 

~'" 
nl 2 , 

n2 ,1 n2 ,2 

We are now in a position to investigate the stability conditions 

that equation (2.13.16) has to fulfil. In matrix form, (2.13.16) may 

be written as, 

Au. 1 = Bu + Cu. 1 + b. , 
-]+ -j -]- -] 

(2.14.13) 

:2 2 
A = (l+2aA )1-aA E 

where, 

2 2 
B = 2(l-(1-2a)A )1 + (1-2a)A E (2.14.14) 

and C = 
2 2 

(-1-2aA )1+aA E. 

E is the matrix with l's along each diagonal immediately above and 

below the main diagonal and zeros elsewhere, and b. is a column vector 
-] 

of known constants (boundary values). From (2.14.13) we have 

-1 -1 -1 
u . = A B_u

j 
+ A Cu . + Ab. 

~+l ~-l ~ 

Therefore, a perturbation £0 of the initial values will satisfy 

-1 -1 
E. 1 = A BE. + A Cs. 1 -]+ -] -]-

Hence, 

(2.14.15) 

i.e. v. 1 = PV .. The matrices A,B and C have the same system of 
-]+ -] 

-1 
linearly independent eigenvectors as E •. So have the matrices A Band 

-1 
A C. Therefore, applying Theorem 2.1, the eigenvalues U of Pare 

given by, 
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det = O. k=1.2 ••••• (m-l). (2.14.16) 

1 

where ak.bk and ck are the eigenvalues of A.B.C respectively. We 

note from (2.14.14) that each of the matrices A.B and C is of a common 

tridiagonal form and therefore from Section 1.6. we find that. 

2 . 2 krr 
ak = 1+4aA SLn (2m) 

2 . 2 krr 
bk = 2-4(1-2a)A SLn (2m) 

2 2 krr 
ck = -1-4aA sin (2m) 

Using equation (2.14.16). we have. 

2 
akli -bkli-ck = 0 or 

k=1,2, . . . ,m-l 

2 . 2 krr 2 2 2 krr 2 . 2 krr 
(1+4aA SLn (2m»1i +2(2(1-2a)A sin (2m)-1)1i+(1+4aA SLn (2m» = 0 

(2.14.17) 

which is exactly of the form (2.14.2). To avoid repetition of the 

mathematics involved to solve (2.14.17); we conclude that Ii =1 if 

a~1/4 and for all values of A =~t/~x. Hence the implicit equation 

(2.13.16) is aZways stabZe. We observe that the stability criterion 

has not been changed by the incorporation of the boundary values. and 

in general different types of boundary conditioris have only negligible 

effect. 

/ 



2.15 TRUNCATION ERROR ANALYSIS OF THE GENERAL THREE-LEVEL FORMULA 

As before, by virtue of equation (2.13.16), we have, 

and 

If we ·expand Ui _1 ,j_1,Ui _1 ,j 'Ui _1 ,j+l 'Ui ,j_1,Ui ,j+1 'Ui +1 ,j_1' 

U. 1 . and 
1.+ ,] 

Ui 1 . 1 about + ,J+ 
the point 

(a) 

(b) 

(c) 

(d) 

2 
,\Uij 

= 

2 
Cl U .. 1 x 1.,)-

2 a
2u 2 (lIt)4 

(lit) (-2) .. + 
at l.,J 41 

Hence, 

2 a2u 
T = (lit) (-2) .. + 

at l.,J 

22 a2u 
-A {(lIx) (-2) .. 

ax l.,J 
2 4 

( ' )2(~) + (lit) 
= ut 2 i' 12 

at ,J 

2 
2 3 U 

(lit) {(---). . 
at 2 l., J 

(xi,t j ) , 

4 
(a U). . 
at4 l.,J 

we find that 

+ 
2 (lit) 6 6 

(Ll!) + 
61 at

6 
... 

1 4 a4u 
+ 12 (lIx) (-4)· . 

ax l. ,J 

1 4 a4u 
+ 12 (lIx) (-4)· . 

ax l.,J 

+ ••• 

4 
-a (lit) 

134 
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From the given differential equation, o and 

Therefore I 

T = 
2 . 2 

(l\t) {(l\x) 
12 

from which the principal part is 

We deduce that for a=o, 1/4 and 1/2, 

T = O([l\xJ
2

) + O([l\tJ
2

) 

In fact, for the explicit formula (with a=o) the truncation error is 

T = 
1 2 4 a6u 

+-3 (l\x) (1-1.. )(-6)' .+ ••• J 
o ax 1., J 

It vanishes completely when 1..=1, and so the difference formula 

u. . 1 = u. 1 . +u. 1 . -u. . 1 3.,J+ 3.+,] 3.-,J 3.,.)-

is an exaot differenae representation of the wave equation. 
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2.16 OTHER APPROXIMATIONS FOR THE WAVE EQUATION 

Mitchell (1969) uses the following method for deriving implicit 

approximations to the wave equation (2.13.1) that are accurate to 

fourth-order differences. If Ui,j+l and Ui,j_l are expanded about the 

point (xi,t j ) by Taylor's series, we get 

IfU is a 

Hence, 

2 a2u 
Ui j 1-2U. j+U. ·-1 = (At) (-2)· j 

, + 1., 1.,) at. 1., 

solution of the wave equation, then 

a 4u 4 a6u 6 
(-4) i j = (Lt:!.) , (6)i' = (a U) 

at 4 i ,j at6 i,j ax ' 

Ui j 1-2U .. +U. j-l , + 1.) 1., 

ax ,J 

2 a2u 
= (t~t) (--2)' . 

ax l. ,J 

1 
+ -12 

, ... . 

From the central difference formula (cf. Hildebrand (1956», 

__ 1,4 + ...!.. ,6 ) 
l2"x 90 U x + ••• U • 

it follows that for fourth-order differences, 

and 
2 2 

= _a _(.2..J!) = 
2 2 

ax ax 
1 4 15

4 
U. 

(Ax) x 

(2.16.1) 

By substituting these approximations into equation (2.16.1), we find 

that to this order of accuracy, 

(2.16.2) 

At 
where A = Ax. Now, if we operate on both sides of this equation with 

1 2 2 -t 4 
{l+ 12(A -l)Qx} and expand each operator up to terms in Ox by the 

binomial expansion, we arrive at the following implicit difference 

approximation, 
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(2.16.3) 

Similarly, if both sides of (2.16.2) are operated on by {1~(A2_l)02}-1 
12 x'· 

the corresponding difference equation is, 

u .. l-2u .. +U .. 1 
1.,J+ 1J 1,J-

122 2 122 
= -12 (A -1) (0 u i . 1+0 U. . 1) +-6 (SA +1) 0 u .. 

X ,J+ x 1.,J- x 1.J 

1 2 2 4 4 4 
+ -44(A -1) {20 u .. -(0 u .. 1+0 U .. l)}. (2.16.4) 
1. x l.J x l.,J+ x l.,J-

These high-order difference approximations would be difficult to 

implement in practice because of the problems associated with the 

boundary conditions. 

von Neumann (cf. O'Brien et al. (1951» introduced the difference 

equation, 
2 o u . 
t i,] :::: 

2 
(lit) 

w[ 1 

(lIx) 
2 

(lit) 
2 

2 2 
0tO u i .1 x ,J 

(2.16.5) 

to solve the wave equation (2.13.1). Except for w=O, (2.16.5) is an 

implicit equation whose solution at each time step is obtained by 

solving a tridiagonal system of linear equations. For w=O, the equation 

reduces to the classical explicit method (2.13.3). von Neumann proved 

that (2.16.5) is unconditionally stable if w>1/4 and is conditionally 

stable if w~1/4, the stability condition in the latter case being 

A< 1 , ! 
(1-4w) 

Friberg (1961) and Lees (1960) generalised this result to quasi-

linear hyperbolic equations of the form, 

a(x,t) au ~) F(x,t,U,-, ax at (2.16.6) 



The same result can even be extended to certain linear multi

dimensional systems. However, the linear equations that arise are 
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no longer tridiagonal. To overcome this problem, Lees (1962) proposed 

modifications to equation (2.16.5) by applying an alternating direction 

procedure and employing the energy method, he showed that the modified 

schemes are unconditionally stable if w>1/4. 
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2.17 SIMULTANEOUS FIRST-ORDER EQUATIONS 

All partial differential equations of second and higher order in 

the independent variable, t, say, can be reduced to a system of 

simultaneous equations .of first order in t which may then be approxi-

mated by stable and convergent difference schemes. Convergence is 

usually satisfied, as in the second-order problem, if the mesh ratio 

is chosen such that the region of finite difference determination lies 

completely within that of the differential equation. Stability can be 

examined by either the Fourier or the matrix method. 

Let us consider the wave equation (2.13.1), 

a2u a2u 
-2 ~-2 
ax at 

au au 
If we put P-ax and q-at' then 

is. ~ .££ and .££ ~ is. 
at ax at ax 

(2.17.1) 

SUppose that the initial conditions specify p and q on the segment 

O<x<l of the initial line t~o and that we seek to find p and q at other 

points in the region of deterrrrinaCJ!j. The characteristics are x-t~ 

constant, x+t~constant and the region of determinacy in the region of 

positive t is bounded by the lines t~O, x-t~o, x+t~l (Fig. 2.17.1). 

t 

x o I 

FIGURE 2.17.1: Region of determinacy of initial conditions 
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Now, to develop a simple explicit method, for example, we can 

approximate the t-derivatives by the first forward difference in the 

t-direction. In the x-direction, however, we have a choice between 

forward, backward and central differences. To remain within the region 

of determinacy, a backward difference must not be employed near the 

line x=t, nor a forward difference near x+t=l. On the other hand, 

central differences are apparentZy satisfactory everywhere inside the 

region of determinacy. To continue the solution, as t increases, 

boundary values of p or q have to be specified on the lines x=O and 

x=l, for t>o. 

One explicit method to approximate (2.17.1) is 

and (2.17.2) 

Here the x-derivatives are approximated by central differences and the 

t-derivatives by forward differences. We now investigate the stability 

of this method using the von Neumann criterion. Let the initial 

perturbations in p and q along t=o be Aexp(i ex) and Bexp(i ex) 
. c c 

respectively, where A and B are different constants, x=i~x and i =1-1. 
c 

Then we can assume that the perturbations e:,). in p',)' and n .. in q .. 
... ..... ~,J 1.,J 

are given by, 

and 

E. . 
1,) 

n .. 
1,) 

Aexp (i ei~) i;j 
c 

= Bexp(i ei~x)i;j 
c 

If we substitute these into (2.17.2), we get, 

2B (y-l) = AA(exp(i e~x)-exp(-i e~x) 
c c 

and 2A (y-l) AB(exp(i e~x} -exp(-i e~x}} • 
c c 

(2.17.3) 



By eliminating A and B leads us to the quadratic, 

Hence, 

and 

2 . 2 2 
(y-l) = -A sin (e~x) 

y 

Iyl 

= l±i Asin(e~) 
c 

= (1+A2sin2(e~x))!. 
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It is clear that we cannot have stability for any non~zero value of A. 

This demonstrates that care must be taken in adopting apparently 

reasonable schemes for first-order equations. 

A modification of (2.17.2) is the following explicit formula, 

and (2.17.4) 

A similar in which gi,j is replaced by the mean of gi+l,j an·d gi-l,j· 

replacement is made for p .. in the second equation. To examine its 
~J 

stability, we substitute £ij and n
ij 

of (2.17.3) into (2.17.4). 

eliminating A and B from these two equations results in 

Hence, 

y = cos(e~x)±i Asin(e~x). 
c 

lyl
2 2 2 2 

= cos (e~X)+A sin (B~x) 

~ 1 for A~l, 

which implies that (2.17.4) is conditionally stable for A~l. 

On 

If we use central differences in the t-direction, then (2.17.2) 

can be replaced by, 

and 

g. ·+l-g· . 1 
~,J ~,J-

2~t 

P .. I-P .. 1 1.,J+ 1.,J-
2~t 

P·+l .-P. 1 . = 1. , ] 1.-, J 
2~x 

g. 1 .-g. 1 . 1.+,J 1.- ,) 

2~x 

The governing equation for stability is 

1 2 2 2 
(y- -) = -4A sin (B~x) 

y 

(2.17.5) 
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and as above, we again have conditional stability for A~l. 

To avoid difference quotients over the double interval 2~x, the 

use of midpoints of the interval is recommended for one of the functions. 

Thus, for example, the scheme of Courant, Friedrichs and Lewy, 

and 
(2.17.6) 

1 1 
't(P' > ·+l-P. > .) = ,.Jq. ·+l-q· 1 '+1) 
Ll 1-"11J 1-'%,] LlA 1.,) 1.-,J 

is equivaLent to the usual explicit scheme (2.13.3), if one identifies 

p. > . = (u .. -u
i 

1 .)/~x 
l.-, ,J l.J -, J 

and q .. = (u .. -u
i 

." l)/~t • 
l.J l.J, J-

Equation (2.17.6) is recognised as a central divided difference 

approximation for ;~ at a midpoint while (2.17.8) is a backward 

aU 
divided difference for at at a mesh point. 

(2.17.7) 

(2.17.8) 

If we insert the perturbations e. : and Ill.' J' of (2.17.3) into 
l.,J 

(2.17.6), we get the following set of equations, 

B(y-l) = AA[eic (!B~x) _ e -ic (!B~x) 1 

and A (y-l) 

(2.17.9) 

(2.17.10) 

By eliminating A and B from these two equations, we finally obtain 

2 2 2 
(y-l) =-4A sin (!Mx)y, Le., 

2 2 2 
y +(4A sin (!B~x)-2)y+l O. 

On solving this quadratic, we get, 

2 . 2 1.2 2 y = 1-2A Sl.n (!B~x)±2Asin(!B~x) A sin (!B~x)-l (2.17.11) 

We note that (2.17.11) is of the same form as (2.14.4). 

Therefore, following the same line of argument as before, we get 

restricted stability for A~l as we should expect due to the equivalence 

of (2.17.6) to (2.13.3). 
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other explicit methods have been employed to produce stability 

for larger values of A. In particular, we have 

(2.17.12) 

222 
The stability equation is (y-l) +A sin (S~x)y=o which simplifies to, 

y2+(A2Sin2(S~x)_2)Y+l=O whose roots are given by, 

-(A2sin2(S~~-2)ASin(8~x)/(Asin(8~x)-2) (Asin(8~x)+2) 
2 

y = 

We note that Asin(8~x)+2~O and if 

Asin (86x) ~ 2 , (2.l7.l2a) 

then, 

y = 
- (A 

2 
sin 

2 
(86x) -2) ±i ASin (8~x) 1(2 '->Sin (8~x) (2+Asin (8 6x) ) 

c 
2 

and Iy~l giving stability. From equation (2.l7.l2a), we deduce that 

the method is stable for A~2. 

An implicit scheme to approximate the first-order equations of 

the wave equation is given by 

p, ~ , l-P, ~ , 1 1.-"1/J+ 1.-2,J- = A(q, '+l-q, 1 ' l+q, ,-q, 1 j) 1.,J 1.- ,J+ 1.) 1.- I 

If we identify, 

= (uij-ui_l,j) 
6x and 

(u, ,-u, , 1) 
1.J 1., ]-

(2.17.13) 

then (2.17.13) is 'equivalent to (2.13.14) and we therefore expect 

stability for all values of A. 

We might also use an implicit scheme such as 

A q -q = -(p -p +p -p ) 
i,j+l ij 4 i+l,j+l i-l,j+l i+l,j i-l,j 

(2.17.14) 
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The equation governing stability is, 

2 12 2 2 . 
(y-l) = -"41. (y+l) sin (S6x) 

or 12 2 2 2 2 12 2 
(l~A sin (S6x))y +(iA sin (S6x)-2)y+(1~A sin (S6x)) = o. 

Hence, 
1 2 2 . 

-2(1+-1. sin (S6x))±i 2Asin(S6x) 
4 c 

y= 12,2 
2(1~A S1n (S6x)) 

and !y!2=1 giving stability for all A. 

A system of first-order equations can also be written in the more 

general form as 
au au 
at + A ax = 0 , (2.17 .15) 

where A is an (mxm) real matrix and Q is an m-component column vector. 

Initially A is assumed to be constant. We consider the case where A 

has all real eigenvalues and m linearly independent eigenvectors, so 

that the system is hyperbolic. A is not necessarily a symmetric matrix. 

The explicit and implicit finite difference approximations 

developed in the previous sections for the case of a scaZar coefficient 

carry over in an obvious manner when A is a constant matrix. For 

example, the Lax-Wendroff method is now 

2 2 
u

i 
' 1 = [I-iAA(6 +V ) + iA A (t, -V )lu

i 
' 

- ,J+ X X X X -,J 

and the Wendroff's implicit formula is 

where 

[I+i(I+AA)t,ju, , 1 = [I+t (I-AA) t, lu, , 
x -1.,J+ x -1.,J 

VU,,=u -u 
X-1,) -i,j -i-l,j 

and I is the unit matrix of order m. 

(2.17.16) 

(2.17.17) 

If A, however, depends on x or x and t then equations (2.17.16) 

and (2.17.17) require modification to maintain second-order. accuracy. 
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We shall consider two cases of variable coefficients: 

(i) A Depending on x. 

The Lax-wendroff and Wendroff formulae are written in the forms, 

1 2 
u· = [I+!AA. fl':. +V )+-41. (A. ,1':. Ai ,V +Ai ,V A. ,)Ju. j -i,j+l 1+F x x 1.+-: x +"1 X +z X 1.+"2" -1., 

(2.l7.l6a) 

and 
[I+!(I-AA. ,)1':. Ju .. 1 = [I+!(I+AAi ,)1':. JU i j 

1.+% x -1.,J+ +z X - , 
(2.17.17a) 

respectively, where A. , implies that A is evaluated at x=(i+t)t:.x. 
l.+z 

(11) A Depending on x and t. 

and 

The required forms of the Lax-Wendroff and Wendroff formulae are 

1 2 
u .. 1 = [I+!AA .. ,(I':. +V )+-4" (Ai' ,1':. A .. ,V +A .. , -1.,J+ l.,J+l" X X ,J+-z X 1.,J+z X 1.,J+z 

V A. . ,I':. ) JU
i 

. x J.,J+'2" X -,] 
(2.17.16b) 

[I+! (I+AAi ' . ,)lI J u. . (2.17 .17b) 
+%,J+'2" x -J..,J 

respectively, where Ai . , denotes the evaluation of A at x=illx, 
, J+z 

t=(j+!)l':.t and A. , . , implies A is evaluated at x=(i+!)l':.x, t=(j+!)lIt. 
1.+'2",J+'% 

It is also interesting to see that the centred-in-distance and 

centred-in-time equation (the Crank-Nico1son type) takes the form, 

1 
[I-

4
"A .. , (I':. +V )Ju .. 1 = 

1.,J+z X X -1.,J+ 
1 

[I+-4"A .. , (I':. +'V ) Ju. j , 
l.,J+z X X -1., 

which can be shown to possess second-order accuracy. Its local 

truncation error is given by, 

T F (U. .) 
-1., J 

(2.17.18) 

1 1 
= [I-4AA .. ,(6 +'V )JU .. 1-[I+-4AA .. ,(6 +"1 )JU i . 

1.,J+"2" x x -1.,J+ 1.,J+2 x x -,] 

l' 
[U i . 1-U' .J-4AA .. , (6 +V ) [U .. l+u, .1 
- , J + -1., J 1., ] +z x x -.1, J+ -1., J 
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By using the Taylor' s expansion about the point (H.x, jllt) , we find 

that au 

and 

(1I +"/ )U, , 1 = 2(lIx) (,-) , '+1 
x x .-1.,J+ oX 1.,) 

au a
2

u 
• 2 (lIx) U,), , + lIt(, :t)' jl + ••. 

oX 1.,) aXo 1, 

aA 1 2 a
2
A 

Ai,J,+t • Ai,J' + tllt(at) i,J' + a(lIt) (--2)' , + ••• 
. at ~,J 

Therefore, 

and 

1 
-AA , (1I +'1 )U 
4 i,J+1 x x -i,j+l 

1 
-4AA, . ~ (1I +"/ )U, , 

1,)+2 X X -1.,) 

au 
= tllt(Aa~ + 

If we add the two equations, we get, 

dA a~ 
tllt't -,-) , , + 

(] oX 1.,) 

aA a~ 
tllt at ax) i,j 

au 

+ ••• 

1 --4 AA , '+.L (1I +"/ ) [U, , l+U' ,1 • (lItA, + 
1.,) z x x -1.,J+ -1,) oX 

2aA a~ 
t (lit) 't ,), , 

a oX 1.,) 

Also, 
U, , l-U, , -1.,J+ -1.,] 

aU 
• (lIta~+ 

2 a U 
t (lit) 2 ;-) + ••• 

at 
au 2 aA a~ 

• ((lIt)Aax + t (lit) at ax + 

+ 

2 
2 a E. 

t(lIt) A axat)i,j + ••• 

Hence, using the last two equations, we find that !.Q to second-order 

accuracy. The accuracy of the Lax-wendroff and the Wendroff schemes 

can also be established in the same manner. 

The von Neumann criterion analogous to the scalar case can be used 

to examine the stability of the difference schemes approximating the 

given system of first-order equations_ 

If a typical Fourier term, 

u • u exp (i Sx) , 
- -0 c 



where u is a constant vector and i =1::1 is substituted into the 
~ c 

difference equation for u. j it -l., 
form but with r~ replacing ~. 

is found that u
i 

. 1 is of the same 
- ,J+ 

The matrix r is the amplification 

matrix. For example, for the Lax-Wendroff method (2.17.16), the 

amplification matrix is, 
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r = I-tAA(exp(i Sax)-exp(-i sax»+tA
2
A

2
(exP(i Sax)+exp(-i S~x)-2) 

c c c c 

(2.17.16c) 

where 6=Sax. For the Wendroff scheme (2.17.17), the amplification 

matrix is given implicitly by, 

[(I-AAtan
2

(!8»+i (I+AA)tan(t8)]r 
c 

= [(I+AAtan
2

(!S»+i (I-AA)tan(!8») 
c 

(2.17.17c) 

The von Neumann necessary condition for the stability of a system is 

(2.17.19) 

where ~j (j=1,2, ••. ,m) are the eigenvalues of r. It can be shown 

that condition (2.17.19) is satisfied for the Lax-Wendroff amplification 

matrix r if 
Aln.1 ~ 1 (j=1,2, ••• ,m), 

) 

where n. are the eigenvalues of A. This is evident from (2.17.l6c) in 
) 

which r is a rational function of A and so has the same eigenvectors 

as A. Hence, 

~J' = l-A2n~(l-cos(8»-i An.sin(S) 
) c J 

(j=l,2, •.• ,m) • 

AS 6 varies from 0 to 2rr, ~. describes an ellipse in the complex plane. 
J 

This ellipse lies inside the unit circle of 

Alnjl~l, 

and the result follows. It can also be established that the Wendroff 

scheme is unconditionally stable. 
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2.18 NON-LINEAR HYPERBOLIC EQUATIONS OF FIRST ORDER 

The general quasi-linear hyperbolic equation of first order is 

a(U)aU + b(U)au = c(u) • 
ax at 

(2.18.1) 

Finite difference methods which are centred midway between the previous 

and the present time levels are generally used to solve (2.18.1). One 

such method is the centred-in-distanae, aentred-in-time formuZa (the 

Crank-NiaoZson type). In conjunction with this method, the non-linear 

coefficients are treated in a number of ways as we shall see later. 

For this purpose, we consider the simplest form of equation (2.18.1) 

that is, 
aU 

-a(U)
ax 

au 
=-

at 
(2.18.1a) 

The centred-in-distance, centred-in-time (henceforth, CD-CT) 

analogues to the derivatives are centred about the time level tj+t. 

An analogue to the non-linear coefficient a(U) is required at this 

time level. Obviously, if the resulting finite difference equations 

are ,to be linear then this analogue must not contain values of u at 

the time level t, 1 ,The simplest way is to evaluate a(U) at the old 
J+ 

time level and using a(u
j

) for a(u
j

+
t
). These values can then be 

) [( + (1) / (1) improved by next evaluating a(u
j
+
t 

as a u
j 

u
j

+
l

) 2], where u
j

+
l 

is 

the value obtained when a(u,) was used for a(u, ,). By means of 
J J+, 

equation (2.9.12), our iterative procedure is described by the following 

equations, 

4
:X [(t. +"1 ) (u ~P:ll) +u ,,)] 
u x x 1.,J+ 1.J 

(0) 
and ui , j+l =uij · 

(p+l) 
= Ui,j+l-u ij 

t.t 
(2.18.2) 

Convergence of the iterative process is achieved when lu(p+l)-u(p) 1<£ 
i,j+l i,j+l' 
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where E is a preset tolerance or accuracy. The resulting finite 

difference equations are linear in U~Pj+l)l with a tridiagonal coefficient 
l., + 

matrix so that the Thomas aZgorithncan be used for the solution. This 

method, however; may suffer some restrictions on the time-step size 

for stability and the rate of convergence. The following Zinearisation 

techniques are employed to overcome these problems. 

By using a truncated forward TayZor' series expanSion, we obtain 

U - U(x.,t.+!lIt) i,j+t - l. J 

= Ui,j + !(lIt)(~~) i,j + 2\ (lI2t) 2 

(2.18.3) 

The series in (2.18.3) is truncated after the second term to obtain a 

second-order-correct formula for u .. l' that is, 
1, J +"2" 

au 
Ui,j+! = Ui,j +! (lit) (at) i,j (2.18.4) 

aU 
The time derivative (at)i,j is then obtained from (2.l8.la). Hence, 

= u. j + (lit) [-a(u .. ) J [(lI +"1 )(u .. ) J. 
Ui,j+t l., 4l1x l.,J x x l.J 

(2.18.5) 

This value is then used in evaluating a(u) for use in the CD-CT 

approximation for (2.l8.la). Hence, we arrive at the resulting finite 

difference equation, 

{ _ lit) ) } 1 ( )] -a[u.. 4 a(u .. (lI +"1 ) (u .. J 4 [(lI +"1 ) u .. l+u .. 
l.,) llx l.J X X 1, J lIX x X 1,)+ l.J 

= 
u -u 

i,j+l i,j 
lit 

(2.18.6 ) 

We see that the actual application of (2.18.6) is performed in two steps. 

An iteration procedure similar to the above may be used, if desired, 

to improve the values of u.. although this is usually found to be 
1., ]+1 

.. 



unnecessary for small ~t. 

from (2.18.5) and are then 

of the coefficient matrix 

Thomas algorithm applied. 

In the first step, u, , , are determined 
1.,J+"1" 

used to evaluate a (u, 'j ,). The elements 
1., +2 

for (2.18. 6) are then computed and the 

On the other hand, an analogue to u, , , for use in the non-
1., J +2 

linear coefficients can also be obtained from a truncated Taylor 

series expanded about the time level tj+!' In this case, we have 

U, , 
1.,J 

= U (x t ~t) 
i' j+! - 2 

~t au 
= Ui,j+! - 2 (at) i,j+! 
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+ ••• (2.18.7) 

Again, this backward TayZor series is truncated after the second term 

to obtain a second-order-correct analogue, 

(2.18.8) 

and as before, the time derivative is obtained from (2.l8.la). 

However, if the time derivative is evaluated at t, , then this would 
J+z 

lead to non-linear equations thus complicating the solution process. 

As an alternative, we evaluate the space derivative at t, , and the 
J+z 

non-linear coefficient is computed at t
j

• 

implicit equation, 

We therefore obtain the 

u, j t-U , , 
= 1., + 1.J 

~t/2 
(2.18.9) 

The resulting tridiagonal system is solved for u, , , which is then 
1., J +z 

utilised in the CD-CT approximation to (2.l8.la) given by 

1 
[-a(u, , ,) 1 -4' (~ +'V ) (u, ,+u, , 1) = 

1., J+z uX X X 1.J 1., J+ 

u -u 
i, j+l ij 

~t 

The values of u, , 1 may again be improved by using the same 
1.,J+ 

iteration technique as before if required. 

(2.18.10) 
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Finally, the centred Taylor series expansion for the analogue 

of u, j 1 can be obtained from U, , , and U, j which are wr itten about 
~, +]" '~,J+'l" 1. 

t j +l / 4 , that is, 

+ 

+ ••• 

If we now subtract the two equations, we get the required second-order-

correct analogue, 

(2.18.11) 

By the same reasoning as above, a (u, j) is now used for a (u, , .L) 
J., J.')+4 

and the resulting finite difference equation is 

1 [-a(ui ,)] 4' (f!, +'V ) (u, ,+U, j ,) = 
,J uX K x 1.,J 1., +'I 

u
i 

' ,-u
i

, 
,)+z ) 
f!,t/2 

(2.18.12) 

The values of u, j , obtained from this implicit equation are then 
1., +z 

used in (2.18.,10) to obtain the values of u
i 

' 1 
,J+ 

The basic difference 

between this method and that which employs the backward Taylor series 

expansion is that now a(u ij ) is used for a(u i ,j+l/4), in the latter, 

however, a (u, ,) replaces a (u, ' ,). Both methods are in the class of 
1.J 1, J+-z 

the predictor-corrector schemes, 

Non-linear first-order systems may be written in the more general 

form as, 
aU af 

+ - = 0 I at ax (2.18.13) 

where f is a function of u and 



and 

T 
f = (f1 .f2 ••• •• f m) • 

f1.' = f. (U) • i=1.2, •.•• m 1. -
T 

U = (U
1

(x't)'U
2
(x,t), .••• U

m
(x,t)) • 
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Equation (2.18.13) is said to be in conservation form. To derive 

difference analogues to (2.18.13). it is instructive to rewrite it in 

the form. au au 
- + A(U)-= = 0 , 
at - ax 

(2.18.14) 

af 
where A(~) = aU • the Jaaobian matrix of f with respect to U and is 

defined by 

As an example. we may proceed with the formal development of the Lax-

Wendroff approximation to (2.18.13) as follows. From the Tay1or's 

series expansion of ~i.j+1 about the point (xi.t
j
). we get 

+ ••• 

By virtue of (2.8.13). it follows that. 

But, 

where 

U" l =U' j -1.,)+ -1., 

a a~J~) a 
at (ax ) =-

ax 

a =-
ax 

= 

af(U) 

au = A(~) • 

+ ••• 

a!(~) 
( 

at 
) 

af(U) au 
{ 
a~ a~} 

Therefore. equation (2.18.15) can be written as. 

af(U) 
- tit ( -:- - ). . + ox 1.. J 

2 a a!(~) 
! (tit) -;;- (A(U) -,-} .. + 

oX - oX 1., J 

(2.18.15) 

(2.18.16) 



By using the central difference approximation, we obtain, 

and 

where, 

Hence, 

a!.(!!) 
( ax ) i, j : 

1 
2 '- [f(U1 1 ,) -f(u, 1 .l] "" - - + ,) - -1.- ,) 

1 1 ,_ Ii [A(U
i 

,) -;:- Ii {f(u, ,)}] 
ilA. x -, J L.lX X - -~, J 

Ii u i ' = u
i 

> ,-u i > " x- , J - +"2", J - -l, J 

af(U) 
--} 
ax 

i, j 

1 
--=""'2",",0 [A(u, ,) {f(u, > ,) -f(u

i 
> ,)}] 

(/'.x) x -1.,) - -1.+,,) - - -,,) 
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1 
= --=";'2'{A(U, > ,) [f(u, 1 )'f(u, ,)]-A(u. > ,) [f(u, ,)-f(u

i 
1 ,)]}. 

([.x) -1.+,,) - -:L+ ,J - -1.,) -1.-,,) - -:L,) - - - ,) 

If we denote A, ,=A(u, ,) and f, ,=f(u, j) then the difference 
~,J -~,J -~,J - -1., 

analogue for (2.18.16) is, 

2 
u, , 1 = u, , - H(f, 1 ,-f

i 
1 .l+H [A,+> ,(f, 1 ,-f, j)-A, > ' -1.,J+ -1.,J -1.+ ,] - - ,] 1. l,) -1.+ ,J -1., 1.--:,) 

(2.18.17) 

Evaluations at the mid-points can be avoided by replacing A, > ' by 
1.+'%,J 

!(A, ,+A
i 

1 j) and Ai> ' by !(A, 1 ,+A,.l. Equation (2.18.17) then 
1.,J +, -"I,] 1.-,) 1.) 

becomes, 

where, 

and 

.2., , = ! (A, 1 ,+A, ,)( f, 1 ,-f, ,) 
1.,J 1.+,) 1.,J -1.+,J -1.,J 

.2.1.'-l,j = ! (A, ,+Ai 1 .l (f, ,-f, 1 ,) 1.,) - ,J -1.,) -1.- ,] 

(2.18.18) 

Finally, we present a procedure known as the ~o-step Lax-Wendroff 

process, which also has second-order accuracy and which is slightly 

simpler to use because of the absence of the coefficient matrix A. 



154 

This generalisation of the Lax-Wendroff scheme takes on a Runge-Kutta 

form with intermediate approximate values. For an So scheme, these p,a 

intermediate values approximate ~ at the points (xi+S,t
j

+
a
). The 

following difference operators will be used, 

t. u. = ui+1-u i x l. 

V xUi = u i 
-u

i
_

l 
(2.18.19) 

°Xui = u. t-u., 
~+ 1-

H u. = u. l-u. 1 x l. 1.+ 1.-

I.L u. = t(u. t+u . t) . x l. 1+ 1.-

The usual St" scheme due to Ritchmyer (1963), consists of a Lax type 

step followed by a leap-frog step and is given by, 

U
i 

1. • 1. = I.L U. 1. • -t A 0 f. 1. • 
- +-z, J+2 X-l. +z,] X-l. +z , J 

u i . 1 = u .. -Ao fi . 1. • - ,J+ -1,J x- ,J+-z 
(2.18.20) 

MacCormack (1971) introduced the very popular and successful 5
1

,1 and 

5 schemes given by, 
0,1 

and 

~i,]'+l = u .. -AV f .. -1.,J X-l.,J 

~i,J'+l = t(u. j+il .. l)-tAt. f .. 1 -1, -1.,J+ X-l.,J+ 

~i,J'+l = u . . -At. fi . -1.,J x- IJ 

~l.',J'+l = t(u .. +u .. l)-HV f .. 1 -l.,] -1.,J+ X-l.,J+ 

(2.18.21) 

(2.18.22) 

respectively. The advantage of the 5
0

,1 and 5
1

,1 schemes over the St" 

approximations lies in the ease ef adding a dissipative term 

a2u a~ (2.) 
-b -- to -;;---

ox2 ox 
of (2.18.13) with suitable differences of u and u. 

-] 

being added to f and f. (Morten, 1977). If in schemes (2.18.20), 
-J 

(2.18.21) and (2.18.22) we put, 
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f = A~ , A a constant matrix 

at the mesh points and eliminate the intermediate va1ue~, we get in 

all cases the Lax-Wendroff formula (2.17.16). 

McGuire and Morris (1974) generalised the S,,' form of (2.18.20) 

to give the S, two-step procedure , ,Cl 

~l.'+',j+~ = ~ u i ' ,-ClA8 f, , , , ~ x- +,,) X-l.+,,) 

"[(1 l)H f .!.8 f, ,'1 u, , 1 = u, , -, A - -2 " + 
-~/]+ -1.,J a. X-l.,J et. X-l.,J+a 

(2.18.23) 

with O<Cl~l. For Cl=, we get back the S;,; form and when Cl=l, (2.18.23) 

reduces to the scheme devised by Rubin and Burstein (1967). Again, as 

above, the procedure (2.18.23) can be reduced to the Lax-Wendroff 

formula (2.17.16). 

Further work on the Ss form has been done by Shankar and 
,Cl 

Anderson (1975) and Lerat and Peyret (1975). The method has also been 

extended to third order by Warming, Kut1er and Lomax (1973). The 

generalisation of the basic Lax-wendroff method to two space dimensions 

leads to a wide variety of different methods which usually involve 

nine space points. For a survey of these schemes, the reader may 

refer to the works of Turkel (1974) and Gour1ayand Morris (1968). 



2.19 NON-LINEAR HYPERBOLIC EQUATIONS OF SECOND ORDER 

Explicit methods have the disadvantage that they suffer from 

severe stability restrictions when employed to solve non-linear 

second-order hyperbolic equations. As an example, we consider the 

non-linear vibrations of a string fixed at both ends. The governing 

equations, due to Carrier (1945), for the simplified system are, 

a: [T' sinel 
a2u' = pA--
at

2 
-1 au' 

, e = tan (ax) 

By introducing the dimensionless variables, 

U' 
U = 

L 

x 
, X = L 

t 
, T = ---=-.,-

L[PA/TOI t 

and by setting B=EA/TO we obtain the dimens!onless equation, 

subject to the initial-boundary conditions, 

U(O,T) = U(l,T) = 0, 
au 
aT (X ,0) = 0 , U (X,O) = 4X (l-X) • 

(2.19.1) 

(2.19.2) 

When (2.19.2) is approximated by the same second-order central 

differences employed to obtain the explicit equation (2.13.3) and a 

first-order forward difference is used for ~~, Ames (1965) discovered 

that the stability threshold is approximately A=0.55, beyond which 

instability occurs. 

In many cases, the algebraic equations which result from the use 

of implicit methods are non-linear. However, for a class of time 

quasi-Zinear problems, sets of linear equations are generated. The 
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general form of second-order non-linear equations in this class of 

problems is given by, 

2 . 
a U + 

2 
at 

au a2u 
f(x,t'U'-a '-2-) 

x ax 

2 
.2...!!. + 
axat 
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(2.19.3) 

subject to the initial-boundary conditions, 

au 
U(O,t) = F(t), U(l,t) = G(t), U(x,O) = H(x), a-t(x,O) = J(x). 

The finite-difference analogue to (2.19.3) is obtained in the following 

manner: 

All first derivatives are approximated by the second-order formula 

(2.1.8). For example, we use, 

au 
(at)i,j 

U, j l-U' j 1 = ~, + 1.,-

211t 
+ O( [lit] 2) • 

2 2 
Second-derivatives (a ~ and a ~) are approximated by the central 

ax at 

difference equation (2.1.9). Hence, we have, 

and 

Ui 1 ,-2Ui ,+U, 1 ' 
+ , ] ] 1.- I J + 

a2u 
similarly for (--2)' j. 

(lIx) 
2 

2 at~' 
Finally, ~x~t is approximated at the point (xi,t j ) by 

Ui+l,j+l-Ui+l,j-l-Ui_l,j+l+Ui_l,j_l 
4 (lIx)C"t) 

The result of these approximations leads to the algebraic equation 

a,u. 1 ' l+b ,u, , l+c .u , 1 ' 1 = d, ' 
1. 1- ,J+ 1. 1.,J+ 1. 1.+ ,)+ ~ 

(2.19.4) 

where, 

i 
_=.1..."._ + g i j 

(lit) 2 2 (lit) , 
c =-a 

i i' 4 (lIx) (lit) 
b 

1 1 
di = Pi,j + 4 (lit) (lIx) (U i +l,j_1-Ui_l,j_1)fi / 2(lIt) Ui ,j_1gij 

1 



and the notation f, , means 
1) 

2 
, au a u 

f, , = f [iill<,)lIt,ui "(-a ), j'(--2)' ,1 
1.,J J x 1., ax 1.,J 
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Equation (2.19.4) generates an implicit Zinear tridiagonal system which 

can be solved for values at the mesh points in the (j+l) time row by 

the Thol1r::ls a Zgori thm 



CHAPTER THREE 

SURVEY OF CURRENT METHODS TO SOLVE 

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 

159 
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3.1 PARABOLIC EQUATIONS IN ONE SPACE DIMENSION 

A linear parabolic partial differential equation takes the 

general form, 

au a au au 
O(x,t)a-t = ax(a(~,t)ax) +b(x,t)ax - c(x,t)U , (3.1.1) 

which is defined within some prescribed domain D of the (x,t) space. 

Within this domain, the functions a(x,t) ,a(x,t) are strictly positive 

and c(x,t} is non-negative. 

As in hyperbolic equations, we shall nOW focus our attention to 

developing finite difference methods for parabolic equations. A 

simplified form of (3.1.1), that is, the diffusion (heat) equation 

with constant coefficients (o(x,t)=a(x,t)=l, b(x,t)=c(x,t)=O) , 

au a2u 
at = --2 ' O<x<l,O<tlfT , 

ax 

subject to the initial-boundary conditions, 

U(x,O) = f(x) O<x<l 

U(O,t) = g(t) O<tlfT 

U(l,t) = h(t) O<t";T , 

(3.1.2) 

(3.1.2a) 

will be used. For this purpose, a uniformly-spaced network whose 

mesh points are x.=iAx, t.=jAt for 
J. J 

i=O,1,2, ... ,m-l,m and j=O,l, .•. ,n-l,n 

with 
1 T 

Ax~ and At~ being utilised. m n 



3.2 EXPLICIT METHODS 

If the space derivative is approximated by the central second 

difference (2.1.9) and the time derivative by the forward difference 

(2.1.6), then the resulting approximation is, 

(3.2.1) 

Upon solving this equation for u. . 1 we obtain the explicit formula, 1.,J+ -

ul.' ,J'+l ~ )..u. 1 .+(l-2A)u .. +)..u. 1 j 1.- ,J 1.].1.+ , 

~ Uij+)..(ui_1,j-2Uij+ui+1,j) (3.2.1a) 

lit ).. ~ is the mesh ratio. 
(lIx)2 

where 

The loaal trunaation error of (3.2.1) can be obtained as usual by the 

Tay1or's series expansion about the point (xi,t
j
). Hence, we have, 

T ~ U .. l-)..U, 1 .-(1-2)..)Ui ·-)..U. 1 . , 
1.,J+ 1.-,J J.1.+ ,J 

which on expansion gives us, 

That is, 

(lIx) 2 
6 

T ~ 0([lIt])+0([lIx]2) • 

(lIx)4 a6u + 
360 (ax6)i,j ••• 

0.2.2) 

(3.2.3) 

We now study the stability of equation (3.2.1) by means of the 

four methods mentioned in Section 2.3. 

(a) The Maximum Principle 

From (3.2.1a) and (3.2.2), we have 

U .. 1 ~ Aa. 1 .+(l-2)..)U .. + Aa. 1 . + O(lIt) 
.1.,J+ 1- IJ 1.] 1.+,J 

2 
+ O([lIxj ). (3.2.4) 

At the mesh point, we have 

E. . = U .. -u .. 
1., J l.J l.J 

(3.2.5) 

Therefore, by subtracting equation (3.2.1a) from (3.2.4) leads to 
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Ei,j+l = I-Ei_l,j+(1-21-)Ei,j+I-Ei+l,/0(t:.t) + O( [t:..X]2) 

i=l ,2, ••• ,m-l. (3.2.6) 

Since U agrees with u initially and on· the boundary, then, 

Ei,O = 0, i=O,l, .•. ,m, 

e:. = E: • = 0, j=O,l, ... ,n. 
O,j m,] 

We note that the sum of the coefficients in A in (3.2.6) is unity and 

if, 
I- If ! (3.2.7) 

then they are all non-negative. Let Ej denote the maximum value of 

IEi .1 along the jth time roW. From (3.2.6), we find that if (3.2.7) 
,] 

holds then, 

2 
lE .. Illf~E. 1 ·1 +(1-21-)IE .. IHIE. 1 .I+o(t:.t+[t:.x] ) 1.,J+, 1-,J 1J 1+ ,J 

2 
lfAEj + (l-21-)Ej + AE j + M(t:.t+[t:.x] ) 

= E
j 

+ M(t:.t+[t:.x]2) 

As this is true for all values of i, it is also true for max lE. . 1 1 . 
i ~,J+ 

Hence, 
E

j 
+ M(At+[AX]2) Ej +l 

:; , 
2 

i.e .. Ej+l :; E
j

_
l

+2M(t:.t+[t:.x] ) 

and so on, from which it follows that, 

i.e .. 

since 

Ej If EO + jM(t:.t+[t:.x]2) , 

:; nM(t:.t+(t:.x)2) , 

E
j 

:; N(t:.t+(t:.x)2) 

EO = 0, j:;n and N = nM 

2 
can be expressed as Ej = O([t:.x] ). 

But A = t:.t 
2 

(AX) 

(3.2.8) 

and so (3.2.8) 

The inequality (3.2.8) means that the finite difference analogue 

converges to the solution of the differential equation as t:.x and At 

tend uniformly to zero. The above boundedness condition also implies 

stability and thus the stability condition is I-:;!. 
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(b) The Energy Method 

For convenience, we specify the boundary conditions in (3.1.2a) 

as, 

U(O,t) = U(l,t) , O<t:;:T • (3.l.2b) 

We first observe that if we multiply the differential equation (3.1.2) 

by U and integrating with respect to x, we obtain 

J
l au 

U -dx = 
o at dx , 

which on integration by parts of the right hand side gives, 

a [1 2 (1 au 2 
- Udx=-J (-) at 0 0 ax 

We deduce from this, that, 

dx ~ o . 

(1 2 
J U (x,t)dx 
o 

2 
U (x,O)dx J

l 2 
= 0 f (x)dx , 

and therefore the quantity J
l 2 
oU (x,t)dx remains bounded as t~ • 

When the explicit scheme (3.2.1a) is used, the 

may be employed to show that the analogous quantity 

remains bounded as j~. 

energy method 
m-I 

(ax) L (E
i

,) 2 
i=l J 

As before, the perturbations at the mesh points satisfy the 

difference equation 

E, '+l-E]", = A(E, 1 ,+E i _l j-2Ei ,) , 
1., J J 1.+ , J I J 

(3.2.9) 

and the boundary conditions give, 

EO,j = Em,j = 0 , for all j. 

Equation (3.2.9) is multiplied by (Ei,j+l+Eij ) and the result summed 

over i=1,2 I ••• ,m-l to give, 
m-I 
L (E, j l+E, ,) (E i 1 ,+E. 1 ,-2E i ,) 

i=l 1., + 1.,) +,J 1.-,J . ,J 

(3.2.10) 
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m-I 

where L (e:, ,)2, 
i=l 1.) 

We shall now use the following identities 

m-I m-I 
Le, (e:, l-e:i ) = L e:, (e'+l-ei) 

i=l 1. . 1- i=l 1. 1. 

and, 
m-I 

L 
i=l 

if e: =e =0 
Om' 

The right hand side of (3.2.10) can be rearranged to read, 

m-I 
ALe i I (E:. 1 ' -Eo , , ) - (e:, ,-e:, 1 ,) 1 
i=l ~+,J 1.,) 1.J 1- ,] 

with e i = e:, , l+e:, ,. Remembering that, 
l.,J+ . l.J 

e: -e:. -e:: =e: =0, O,j - O,j+l - m,j m,j+l 

(3.2.11a) 

(3.2.11b) 

(3.2.12) 

then after substituting (3.2.11a) and (3.2.l1b) into (3.2.12) we find 

that equation (3.2.10) 

2 2 
II.£j+lll -11.£jll 

If we define, 

becomes, 
m-I 

= -AI L {(e:'+l ,-8.,)2+(e:'+1 '+1-e:. '+1) 
1=0 1. ,] 1) 1.,J 1,J 

(e:
i

+
l 

,-e:.. ,)} 1 
,] 1,] 

E,=IIe:,11
2

_!A 
) -) 

m~l 2 
L (8'+1 ,-e: i ),) ,j=O,l,2, ••• 

i=O 1 ,) 

it follows that, 

and 

(3.2 13) 

2 2 m-I 2 
= II.£j+lll -11.£j 11 -!>, i~O {(.£i+l,j+l-.£i,j+l) -('£i+l,j 

2 
~i, j) }. 

By using (3.2.12), we get, 
m-I 2 

E. l-E, = -!A L (e:. 1 ' l-e:, , 1+8 , 1 ,-e:, .) ,,0. 
J+] 1=0 1.+ ,J+ 1.,J+ 1.+,J 1.,J 

We conclude therefore that E, is a monotonic decreasing function of 
J 

j. By summing the inequalities, 
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:1 :1 2 
(e. 1 .-e

i 
.) ~(e. 1 .-e .. ) +(e. 1 .+e i .) 

2 2 
= 2(£i 1 .> +2(e: .. ) 1.+,J,J 1.+,J 1.,J 1.+,J,J + ,J 1.,J 

for i=0,1, ••• ,m-1, leads to, 

m-l 2 
L (£·+1 .-e .. ) 0 

i=O ~ ,) ~,) 

m-l 2 2 
L [(e. 1 j) +(e

i 
.) I 

i=O ~+, ,) 

and so from the definition of E
j

, 

Now, if, 

E. '1: (1-2A) 1 le:.I 12 
) -) 

0<A<1, 

2 1 
II~j 11 ~ (1-2A) E. , 

) 

we get, 

and in view of the following inequalities, 

Ej ~ Ej_l~ ••• ~ EO ~ 11~112, 
we have, 

m-l 
= 4 L (e. .) 2 = 

i=O ~,) 

(3.2.14) 

The vectors ~j' j=o,l, ••. are therefore bounded provided 0<A<1 and 

stability results. 

(c) The Matrix Analysis 

By taking account of the boundary conditions (3.1.2b), the 

explicit scheme, (3.2.1a) can be written in matrix form as, 

u. 1 = ru. (3.2.15) 
J+ -J 

where u. 
-) 

T 
= (ul . ,u

2 
..... ,u 1 .) and r is a square tridiagonal 

,J,J m-,] 

matrix of order (m-l) given by, 

(1-2A) A 

(1-2A) 0 
r = , , 

I< (1-21<) I< , , - , , ... , ... - ... -- , 
0 ... --... ... 

(1-2A) A 

(l-n)J (m-l) x (m-l) I< 

I< 
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1 0 0 -2 1 

0 1 0 0 1 -2 1 ,. , , 
" 

o 
" ..... 

" ... 
"" 1 -2 1 

, , " ... , , 
= , , 

+ A , , , 
0 '1 

, 0 
0 

0 1 (m-l) x (m-l) 
1 -2 (m-l) x (m-l) 

That is, 

r = I + AT . (3.2.16) 

Since the matrix T is of a aommon tl'idiagonaZ form then we know 

from Section 1.6 that the eigenvalues of T are given by, 

n. = -4sin2 (2i ") , i=1,2, ••• ,m-L 
l. m 

Hence, from (3.2.16), the eigenvalues of the ampZifiaation matrix r 

are ~i=1+A{-4 Sin2(~:}} and the condition for stability is 11-4ASin2(~:) I~l. 
2i1T 

The only useful inequality is -1~1-4Asin (2m) giving 

1 
A ~ --7--:--

2sin 2 
(i1T) 
2m 

which proves that the scheme is stable for A~!. 

(d) The von Neumann Criterion (Fourier Series Analysis) 

The substitution of the perturbation (equation (2.10.4» 

E
i

. = ~jexp(i 8iax) into equation (3.2.la) 
J c 

results in the stability equation, 

y = l+A(exp(-i 8ax)+exp(i pax)-2) 
c c 

= 1+A(2cos(86x)-2) 

= l-2A(1-cos(84xB 

= l_4ASin2(8~) • 

The condition for stability, IYI~l, leads to, 

I . 2 S4x I l-4Asl.n (--2-) ~ 1. 

By the same argument as above, we obtain conditional stability for A~!. 
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3.3 IMPROVING THE ACCURACY OF EXPLICIT METHODS 

Richardson (1910) proposed the following explicit method to 

solve (3.1.2), 

1 
--=:""""2 (u, 1 ,-2u, , +u, 1 ,) • 
(t.x) l.+, J l.J l.-, J 

(3.3.1) 

By using the familiar Taylor series expansion about the point (x"t,), 
l. J 

the local truncation error of (3.3.1) is found to be, 

Le. , 
2 2 

T ~ O( [t.t) ) +O( [t.x) ) , 

(t.x) 
2 

12 

(3.3.2) 

since the terms in braces satisfy (3.1.2) at the mesh point. It is 

obvious that by comparing (3.3.2) and (3.2.3), equation (3.3.1) is of 

one order higher in time than equation (3.2.1). Nevertheless the 

difference equation (3.3.1) is cbmpletely unstable for all choices 

of the mesh ratio A. By applying the von Neumann criterion, the 

stability equation is, 

y 1 ~ -SAsin2 (St.x) 
y 2 

(3.3.3) 

or 
2 2 St." y +SAsin (-Z-)y-l ~ 0 • (3.3.4) 

It is clear that the roots of this equation are negative reciprocals. 

The sum of the roots is Y+(- !). From (3.3.3), we see that unless 
Y 

S~O, y- ~O and either y or ~ ! is less than -1. Since ymust be 
y y 

assumed to be any real number, we conclude that the Richardson's 

representation is unconditionally unstable. 

The accuracy of the explicit method (3.2.1) can be further 

improved and yet still maintaining its stability by considering the 

truncation error (3.2.2). Let us assume that U(x,t) possesses 
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continuous bounded derivatives up to order six in x and order three 

<- . U E c6 ,3. 
.I .. .u t, 1..e. Hence, from the given diffusion equation 

, we get, 

= 

and equation (3.2.2) becomes, 
2 4 

T = t[at - (ax) I (~) + 
6 ax4 i,j 

(at) 2 
6 

(ax)4 
360 

Therefore, if at and ax go to zero in such a way that 

A = 

then the truncation error will be, 

or 

T=0([atI 2) , 

T = o( [ax1
4

) 

and the bound (3.2.8) will be replaced by, 

E
j 

= maxlui .-u .. 1 If Nl([~t12 +[axI
4

) 
,J 1.,J 

(3.3.5) 

(3.3.6a) 

(3.3.6b) 

(3.3.7) 

We see that the difference equation converges to the solution of 

the differential equation at a rate much faster than that exhibited 

by (3.2.8). 

Another attempt to gain better accuracy is to expand U .. 1 
1., J+ 

by the Taylor's series about the point (x.,t.), i.e., 
21. 2J 

au (at) a u 
U1.. ,J·+l = U .. +(at) ('t)i . + 2 (--2)· . + .•• 1.J 0'] at 1.,J 

a2u (at)2 a4u 
=u .. +(at)(-2)··+ 2 (4) .. + •.• (3.3.8) 

1.J ox 1.,] ax 1.,J 
2 4 

. 0 U 0 U by virtue of (3.3.5). If we approx1.mate --2 and -4- at the mesh 
ox ox 

points by second and fourth differences respectively, i.e., 

" 1 ,2 --2 u U .. 
(ax) x 1.,) 
1 

= --2[Ui 1 .-2Ui ·+U. 1 .1 , 
(ax) + ,J J 1.- ,J 



and 

then, the difference 

1 
--=:"""'4 [U, -2 j-4U. -1 j+6Ui . -4Ui 1 j+Ui 2 .] (lIx) ~, ~, , J +, +, J 

analogue to (3.3.8) is 
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lit 62 !(lIt)2 
6

4 
(3.3.9) Ui,j+l = Ui,j + 

(lIx) 
2 

u, , + u
i 

. 
(lIx) 

4 x ~J x , J 

with a local truncation error, 

(3.3~10) 

we also find that the stability requirement of (3.3.9) is the same 

as that of (3.2.1), i.e., A~t and the boundedness condition (3.2.8) 

is replaced by, 

Since A= 
fit 

(fix) 

2 2 
E

j 
= max I U

i 
,-u. ,I ~ N2 ([ fix] + [fI t] ) 

I J 1, J 
(3.3.11) 

2' (3.3.11) can also be 
2 

written as Ej=O([flX] ) which 

is the same as before. We observe from (3.3.10) or (3.3.11) that 

although the error in the t-direction is one order higher, the error 

in the x-direction remains the same as that of the original explicit 

method. In fact, no overall improvement is obtained because the rate 

of convergence of the difference equation to the solution of the 

differential equation is of the same magnitude as before. 

This can be rectified if we utilise that 

a2u 1 2 1 2 
(-2)' , ~ --=:"""'2 6xU i, J' - 12 (fix) 
ax ~,J (fix) 

1 2· 
2 6 u. , 

(fix) X~,J 

1 1 4 
2 <5 u .. (3.3.12) = 

12 (fix) x ~,J 

. When (3.3.12) is used in (3.3.8), we obtain the approximation, 

= u" + 
~J 

fit 
2 

(lIx) 

1 
[

1 ('t) 2 _ 1 2 4 ~ u 12 (fix) fit] <5 u, ' 
X ~, J 

. (3.3.13) 
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with a local truncation error, 

4 2 2 
T;O(["'xj) +O(["'xj "'t) +O(["'tj), (3.3.14) 

2 
and a stability ratio A~3. If the maximum analysis is employed, 

it is found that, 

. 4 2 2 
Ej ~ N3 (["'xj +["'xj "'t+["'tj ) , (3.3.15) 

and for A =-'''',,-t'::''''2''' 
("'x) 

E >O( ("'x) 4). 
J 

Hence, we obtain improved accuracy 

and rate of convergence as well as a slightly better stability 

condition. 

An adaptation of the Richardson's equation (3.3.1) is the 

formula of Dufort and Frankel (1953) which is both explicit and 

unconditionally stable. As we shall see, however, these two desirable 

properties are achieved at the expense of consistency. Dufort and 

Frankel replace the term 2u
i
,j 

the three-level formula. 

by u. . l+u. . l' thereby generating 
l.,J- 1,J+ 

(U .. +l-ui ·-1) (u·+l .-(u. ·_l+ui ·+l)+ui _l j) 
_.::l.c:.' .... J -::o-:-:-=-' ,,-J -"-_ = 1. , J 1., J , ] , 

2"'t ("'x) 2 

which may be written as, 

where A; 

(1+2A)u.. ; 2A(u. 1 .+U. 1 .l+(1-2A)u .. 1 ' 
1. / )+1 1.- IJ 1.+,3 1.,J-

"'t --2 
(",x) 

For known boundary values with mt.x;l, these 

equations in matrix form are, 

Ul , j+l l 0 1 l U
lj 1 

U2, j+l I 1 0 1 u2j 
I 

(1+2A) 
u 2A 1 0 1 0 u

3j +(l-ZA) 3,j+l , , 
I , 
I , 

~: I , 

~' 
, 

~ 
0 , 

U~_l'j 
I , 

u I 1 
m-l,j+l 

(3.3.16) 

(3.3.17) 

Ul,j_l l 
I U2 ,j_l 

U3 ,j_l 
I 
I 

"Lj-J 

+2 

u . 
0, J 

0 

O· 
I 
I 
I 

~m.J 
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giving 

2X (l-2X) 
~+l = (l+2X) A~j + (l+2X) ~-l + ~ • (3.3.18) 

where A is the matrix (of order (m-I» as displayed and £j is a 

vector of known values. If we put. 

v. = (u .• ~ 1) • 
J -J J-

then equation (3.3.18) can be written in the partitioned matrix 

form, 

i.e. , 

= 

2X I 
(l+2X) A I 

I 

- - - - -:
I 
I I 
I 

v. 1 = Pv. + ~ -J+ -J J 

(l-2X)I 
(l+2X) 

- - - -
0 

u. c. 
-J J 

- --- + • 
u. 1 0 
-J-

(3.3.19) 

where I is the unit matrix of order (m-I). P is the matrix shown 

and d. a column vector of known constants. The reduced. two-level 
-J 

equations (3.3.19) will be stable when the eigenvalues of Pare 

less than or equal to one in modulus. The matrix A has (m-l) 

different eigenvalues and so·it has (m-I) linearly independent eigen-

vectors v • s=1.2 ••••• m-l. Although I has (m-I) eigenvalues. each 
-s 

equal to 1. it has (m-i) linearly independent eigenvectors which may 

be taken as v since Iv =l.v. Hence. the eigenvalues ~ of Pare 
-s -s-s 

the eigenvalues of the matrix. 

1 

(1-2A) 

(1+2X) 

o 

where n
k 

is the kth eigenvalue of A given by. 

kTf n = 2 cos(--) • k=1.2 ••..• m-l. 
k m 
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From, 

2).n
k - ~} 

(1-2), ) 
~+2)' (1+2),) 

det = o , 

1 -jI.. 

we get, 

2 2A'lk (1-2),) 
~ - (1+2),) ~ - (1+2),) 

= 0 , 

the roots of which are obtained from, 

kll (1_4).2sin2(kll))1}/(1+2).) ~ = {2).cos (-) ± 
m m 

(3.3.20) 

Case (i) 

If 4).2sin2(kll)~1, which corresponds to small values of ~t, then 
m 

Case (U) 

(2),+1) 
(1+2>-) = 1 I 

If 4).2sin2(kll»1 which corresponds to large time steps (~t), 
m ' 

then, 2 kll 2 2 2 kll 2 
I~I = {(2)'cos(-)) + 4). sin (-)-1}/(1+2A) , 

= 

m m 

(4). 
2 
-1) 

2 
. (4). +4).+1) 

< 1 since ).>0. 

Therefore, the equations are unconditionally stable for all positive ).. 

By the usual Taylor series expansion, we find that the local 

truncation error of the Dufort-Frankel scheme is 

Hence, 

(~t) 2 
+ 2 

(~x) 

2 
+o([~tl) 

[~x12 

a2u [~t14) 
(-2)· .+O( 2 
at ~,J [~xl 

(3.3.21) 

(3.3.22) 

~t 
Consistency requires that - + 0 as t~. This means that the Dufort

~x 

Frankel scheme (3.3.16) or (3.3.17) is consistent with the heat equation 
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fixed, 
2 

a2~ 
at2 ' 

rather than to zero. Equation (3.3.16) or (3.3.17) would therefore 

(3.1.2) if and only if 6t+Q faster than 6x+o. If :~ is kept 

say equal to a, then the third term of (3.3.21) would tend to 

be consistent with the hyperbolic equation 

and not with the parabolic equation (3.1.2). 

There are other explicit three-level schemes of high-order 

accuracy introduced by Russian mathematicians. An example is given 

by Miteladze and takes the form, 

1 
Ui,j+l = -40[2u. j 1+32u, ,+3(u, 1 ' l+ui 1 ' 1)] 1., - 1.,) 1- ,]- + ,]-

Another formula is due to Yushkov and is given by, 

as well as, 

(3.3.23) 

(3.3.24) 

(3.3.25) 

Equations (3.3.23)-(3.3.25) must take on specific values of A, i.e., 

,11 d l '1 A'16' '4 an 36 respectl.ve y and all have local truncation errors of 

2 4 
order 0 ([6t] ) +0 ([6x] ). 

Following the argument of Jain (19~~) the general three-level 

expZicit difference schemes for (3.1.2) involves seven points and can 

be written as, 

(l+T
l

) u, , 1 
1,]+ 

2 2 
:::: [1+2T l +/dl-Yl)o ]u . . - (TI-AYlo )u . . 1 x l.,J x 1.,J-

(3.3.26) 

where Tl and Y
l 

are arbitrary parameters. The truncation error of 

(3.3.26) is of order: 

(i) (6t+[6x]2) if Y
l 

and Tl are arbitrary, 
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(ii) 

(iii) 

([~t12+[~x12) if T1+Y1+!=O and either Y
1 

or Tl is arbitrary, 

([~x14) if T1+Y1+!- l;A = 0 and either Y
l 

or Tl is arbitrary. 

(3.3.27) 

The necessary and sufficient conditions for (3.3.26) to be stable are: 

(i) 1+2T
l
-2(1-2Y

l
)X>,O and 

(3.3.28) 
(ii) 1-4y 1 X>,O , 

We find that for, 

(i) Yl~O, the conditions (3.3.28) are satisfied if, 

o < X ~ and 

(ii) Y
l
<!, the stability condition is obtained as O<A<X . ,where ml.n 

1+2T
l

>O and 

The above conditions are shown 
Tl 

// 
(1+2T 1) / 

X < 2 (1-2y ) 
1 

Unstable 

(1+2T
l

) 

, 2 (1-2y )1 
1 

in Figure 3.3.1 below. 

O<X<X i m n 

FIGURE 3.3.1 

(3.3.29) 

Stable 
O<A<X . 

ml.n 

We now demonstrate the derivation of some well-known methods from 

equation (3.3.26). For Yl=O and Tl=-!+X, we are led to the Dufort-

2 2 2 
Frankel formula (I]t-!l]t+Xl]t)u .. 1 Xc u. .' 

1.,J+ x 1.,J 
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For Yl=O and T
l
=-! the unstable Richardson formula is obtained. 

If we prescribe Yl and Tl to satisfy (3.3.27) (iii) , such as Y1=O, 

1 
Tl =-!+ 12A ' we get, 

1 
! (1+ 6A)ui ,j+l 

1 1 
= A(Ui _l ,j+ui +l ,j)-(2A- 6A)ui ,j+!(1- 6A)ui ,j-l· 

(3.3.30) 

1 
On the other hand, if Tl=O and Yl =-!+ 12A ' equation (3.3.26) yields, 

ul.' ,j+l = (-6
7 

-3A)U .. + ! (3A- -6
1

) (u. 1 .+U. 1 .) 1.,J 1.-,] 1.+,J 

(3.3.31) 

1 6 
which is stable for A~3. The local truncation error is T=o([~xl ) 

if A= ..!.-
10 
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3.4 IMPLICIT METHODS 

. The simplest implicit method is that which was first suggested 

by O'Brien et aZ (1951). a2 
Upon approximating ~ of equations (3.1.2) 

ax 
in the (j+1) row instead of in the j row, we obtain, 

(u. . 1-ui .) 
~,J+ ,] 

t.t 
1 

= -=-2~(ui 1 . -2u. . +ui . ) 
(t.x) + ,J+1 ~,J+1 -l,J+1 

(3.4.1) 

or -~u. 1 . 1+ (1+2A)U .. 1-Aui 1 . 1 = Ui,j • 
~- ,J+ 1.,)+ + ,J+ 

(3.4.2) 

Crank and Nico1son (1947) used an average of the approximations in 

the j and (j+1) row. More generally, one can introduce a weighting 

parameter 6 and replace equation (3.4.1) by 

2u. .+ui 1 .l} 
1.,) +,] (3.4.3) 

with 0~6~1. A single application of equation (3.4.3) equates a 

linear combination of three unknowns in the (j+1J row to a linear 

combination of the three known values in the j row and can be solved 

by the usual Thomas algorithm. Thus, we obtain, 

-~6u. 1 . 1+(1+2~6)ui . 1-~6u. 1 . 1 
~- .,J+ ,J+ ~+ ,J+ 

= A(1-6)ui _
1 

.+[1-2A(1-6)lui .+A(l-6)u. 1 j' 
I J , J 1.+ , 

(3.4.4) 

·If 6=1, equation (3.4.4) becomes the fully implicit O'Brien et aZ 

form of (3.4.2). If 6=1, we obtain the Crank-Nico1son formula. On 

the other hand, if 6=0 the explicit relation (3.2.1a) is recovered. 

We now examine the stability of (3.4.4) by the matrix method. We 

assume that the boundary values are zero and the initial values are 

UO,j=Um,j=O, equation (3.4.4), can be written in the 

matr ix form as, 

known. With 



(1+2A6 ) -A6 rU
l 1 

-A6 (1+2A6 ) -A6 U
2 .... , , 0 .... , , , , , 

..... , .... , 
" .... ..... 

" .... ..... 

0 
., ... ..... , .... .... 

.... -A6 (1+2A6 ) -A6 U
m

_
2 

- A6 (1+2A6) u m-
j+l 

(1-2A (1-6)) A (1-6) 

A (1-6) (1-2A (1-6)) A (1-6) ... ... , 
" ..... 

... ... , ... o 
= ..... ... 

... 
... ... ... 

... ..... 
... ... 

.... , , ... ... ... ... ... ... ... 
o A (1-6) (1-2A (1-6)) A (1-6) 

A (1-6) (1-2A (1-6)) 

Le. (I-A6T)u. 1 = (I+A(1-6)T)u. , 
-J+ -J 

u 
m-

177 

j 

(3.4.5) 

where I is the identity matrix of order (m-l) and T is as given in 

(3.2.16). From (3.4.5), we have, 

u. 1 = ru. , 
-J+ -J 

(3.4.6) 

where r = (I-A6T)-1(I+A(1-6)T) , (3.4.7) 

the amplification matrix. As before, the eigenvalues of T are given 

by, 
4 ·2(i1T) ni = - S1n 2m I i=1,2 I ••• ,m-l. 

Hence, from equation (3.4.7), the eigenvalues of rare 

(1-4A (1-6)sin
2 

(*)) 
= 2 i1T 

(1+4A6sin (2m)) 

and the condition for stability is, 

(3.4.8) 
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-1 ~ ~ 1 . (3.4.9) 

The upper inequality is automatically satisfied for A>O. The lower 

inequality gives, 

2 i1r 
(8Ae-4A)sin (2m) ~ -2. 

Hence, 2A(1-2e)~1. We conclude that the equation (3.4.4) is 

conditionally stable for A~ 2(1:2e) when o~e<t 

and is 

unconditionally stable for all bO when t,;e~l.. 

(3.4.10) 

(3.4.11) 

To analyse the local truncation error of the general method, we 

have from (3.4.4), 

-(1-2A(1-e»u. j • 
lo, 

(3.4.12) 

On expanding the terms Ui,j+l' Ui_l,j' Ui+l,j' Ui-l,j+l and Ui+l,j+l 

about the mesh points (xi,t j ) by the Taylor's series and on 

recognising that, 

2 3 a4u (~) = ( a U ) = (4)i . (3.4.13) 
at2 i ,j ax2at i,j ax ,] 

3 4 5 
(~) .. = ( a U ) = ( a U ). . 
at 3 lo,] a/at2 i,j ax4at lo,] 

and 4 5 
(~) .. = ( a U ) 
at4 lo,] ax2at3 i,j 

Ae 
12 



lit But A = --=-;:-
(lIx) 2 

T = «lIt)2 
2 
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(3.4.14) 

Therefore, we obtain, 

4 4 
+ «lit) _ l(lIt) 46) (~) 

24 6 at4 i,j 

aSu 
(-5)' .+ ... 
at ~ ,J 

i.e. , 

T = lIt{[lIt(l-6)-
2 2 

(lIx) ] (~) 
12 at2 i,j 

3 4 
+ (lit) (l -6) (~). . + 

6 4 at 4 ~,J 

2 
+ [(lit) (l -6) 

2 3 

+ ... } = o. 

Hence, an expression for the local truncation error is, 

T = 
2 2 

[lit (l-6) - (lIx) ] (.L!!.). . 
12 at2 ~,J 

(lit) 3 
+ 6 

2 
+ [(lit) (l -6) 

2 3 
(lit) ---12 

+ ••• 

We find that for 6=0 (the explicit scheme (3.2.1», 

2 
Tl = O(lIt)+O([lIx] ) , 

for 6=l (the Crank-Nicolson scheme) , 

T2 = 0([lIx]2)+0([lIt]2) , 

and for 6=1 (the fully implicit scheme (3.4.4», 

2 
T3 = O(lIt)+([lIx] ) • 

(3.4.15) 

(3.4.16) 

(3.4.17) 

(3.4.18) 

(3.4.19) 
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3.5 PARABOLIC PROBLEMS WITH DERIVATIVE BOUNDARY CONDITIONS 

Boundary conditions which are expressed in terms of derivatives 

occur very frequently in practice. To solve (3.1.2), the boundary 

conditions (3.1.2a) are replaced by, 

au 
ax = hl (U-vl ) at x=O, O<t~T 

(3.5.1) 
aU ax =-h2 (U-v2) at x=l, O<t~T , 

where hl ,h2 ,vl and v2 are constants with hl~O' h2~O. The boundary 

conditions may be approximated in a number of ways. For example, 

they may be approximated by central differences and an explicit scheme 

is used to approximate the differential equation. Alternatively, they 

can be replaced by forward differences at x=O and backward differences 

at x=l and an explicit scheme is employed for the solution. 

When the boundary conditions are approximated by the central 

difference equations, 

(u
l 

. -u 1 .) 
,J - ,] h ( ) 
26x = 1 UO,j-Vl 

(u 1 . -u 1 .) 
m+ , ] m-,] = -h (u . -v ) 

26x 2 m,] 2 

with m6x=l, and the differential equation by the Crank-Nicolson 

scheme (3.4.3) with 8=1, i.e., 

A A 
- ~i_l,j+l+(l+A)Ui,j+l - ~i+l,j+l 

the elimination of U 1 . and u 1 . leads to the equation, 
- , J m+ tJ 

where 

and 

Au. 1 = Bu. + b. , 
._]+ -]-] 

T u
j 

= (uO .,u
1 

., .•• ,u .) , 
- ,],] m,] 

A = I-!AQ 

B I+!AQ 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 



where Q is a matrix of order (m+1) given by. 

-2 (1+.!Ixh
1

) 2 

1 -2 1 0 , , , , , , , , , 
Q = , , , , , 

0 1 -2 1 

and E.~ = (2AV
1
.!lxh

1
.O ••••• O.2AV2.!1Xh2 )T 

i.e. 

For the analysis of stability we write (3.5.3) as 

-1 -1 
~j+l = A B~j + A E.j 

u. 1 = (I-!AQ) -1 (I+!AQ) u
j -)+ -

"" + b. , 
-) 
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(3.5.6) 

(3.5.7) 

b. = (I-!AQ)-lb. and it 
-) -) 

where is assumed that det (I-!AQ);lo. 

We note that Q is unsymmetric. Therefore. we introduce the 

diagonal matrix. 

1 0 , , 
D = , (3.5.8) , 

0 
, 

1 

(m+l)X (m+l) 

of order (m+l) such that Q is similar to the symmetric matrix. 

Then, 

....., 
(A-1B) = D-l (I-tAQ)-l(I+tAQ)D 

= [D -1 (I-li.Q) -lD) [D -1 (I+!i.Q) D) 

=[D-l(I-tAQ)D]-l[D-l(I+tAQ)D) 

'" ~ = [I-tAQl [I+!AQl . 

(3.5.9) 

(3.5.10) 

However. the matrices (I-!AQ) and (I+tAQ) are symmetric and commute. 



":'1 
and so (A B) is 

symmetric matrix 

symmetric. 

"::"1 
(A B) and 
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-1 
Therefore, A B is similar to the 

P(A-lB) (3.5.11) 

is a necessary and sufficient condition for stability, where P denotes 

the spectral radius. 

-1 
The eigenvalues nj (j=O,l, .•• ,m) of A B are given by, 

(l+tA~. ) 
J = (3.5.12) 

where ~. are the eigenvalues of the matrix Q. Since nand pare 
J 

related by, 

P(A-lB) = max In.l, 
j J 

the condition for stability (3.5.11) together with (3.5.12) gives, 

~j ~ 0 for all j. 

By means of the Gerschgorin's Circle Theorem, it is easily seen that 

~j lies on the negative line for all j. Hence, equation (3.5.3) is 

unconditionally stable. 
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3.6 IMPROVING THE ACCURACY OF IMPLICIT METHODS 

(a) Reduction of the Local Truncation Error 

As· we have seen from Section 2.16 on hyperbolic equations, all 

derivatives of U(x,t) can be expressed exactly in terms of the 

infinite series of forward, backward or central differences. For 

example, in our previous analysis, we used 

- ~2 4u + ~6u + ••• ) • 
1 x 90 x (3.6.1) 

When the diffusion equation (3.1.2) is approximated at the point 

(xi,t j +!) by 

1 
lit (ui,j+l-Uij ) 

1 
=-~ 

2 (llx) 
2 

(,2 _ -1- 04 + ~6 + ) ( ) 
U x 12 x 90' •• , Ui ,j+1+uij , 

(3.6.2) 

then the terms involving 0
4 

can be eliminated by operating on both 
x 

1 2 
sides with (1+ ~x). This gives us, 

1 2 1 2 2 
(1+ 12 0) (ui;j+l-Uij ) = "2A(OxUi,j+l+OxUij) , (3.6.3) 

6 
where we have neglected the terms of order Ox 

Equation (3.6.3) can be rearranged as, 

[1+(;2 - !A)0~lUi,j+1 = [1+(;2 + !A)O~lUij 

which on expanding leads to the Douglas equation, 

(1-6A)U. 1 . 1+ (lO+lZA)u .. 1+(1-6A)u. 1 . 1 
1.- rJ+ 1.,J+ 1.+ ,J+ 

(3.6.4) 

We note that the Douglas equation (3.6.4) can be considered as a 

1 
special case of the weighted equation (3.4.3) by putting 8=1 - 12A 
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By substituting this value of e into (3.4.8), we find that 

1 .2i1r 
(1~(6A+l)s~n (2;)) 

1 . 2 i1l 
(1~(6A+l)s~n (2m)) 

).1i = , i=1,2, ... ,m-l, 

and it is clear that I~il~l for all values of A>O. Hence, the 

Douglas equation has unrestricted stability. Furthermore, with the 

same value of e, the expression for the truncation error, i.e. 

equation (3.4.16) becomes, 

1 2 
T = 12 [-(lit) 

1 4 a3u 
+ -12 (lIx) ) (-3)· . at ~ ,) 

i.e. 

(lit) 4 
+ 120 

2 4 2 2 
T = O([lIt) )+O([lIx) ) as opposed to T=O([lIt) )+O([lIx) ) 

for the Crank-Nicolson method. We note that the resulting tridiagonal 

system of equations for the Douglas scheme can be solved by the 

Thomas algorithm and it requires the same amount of arithmetic as 

the Crank-Nicolson method. 

(b) Use of Three-LeveL Difference Equations 

In the construction of difference equations of high accuracy, 

or, occasionally, improved stability, one often uses more time levels 

than the minimum number required by the given differential equations. 

AS an example, a fully implicit two-level approximation to the heat 

equation (3.1.2) is, from (3.4.1), 

(u .. +l-u. j) .1.,] ~, = (ui+l,j+1-2ui,j+l+ui_l,j+l) 

(lIx) 2 lit 

and from (3.4.19), this has a local truncation error, 

T = O(lIt) + 0([lIx)2) • 
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au 
When the analogue for at is replaced by 

we obtain a three-level equation given by. 

1 3 1 1 
't (-::-1.12 1.' ,J·+1-2u . '+=2 i . 1) = 2 (u. 1 . l-2ui . l+ui 1 . 1) u l.J .J- (Ax) 1.+ ,J+ ,J+ - ,J+ 

(3.6.5) 

which has a local truncation error of.the order. 

(3.6.6) 

As with the wave equation in Chapter 2, initial data are required at 

t=o and t=At to start the calculation. The data at t=o are given 

whilst the data at t=At are calculated from a two-level difference 

formula or by using a power series expansion. The data calculated 

at t=at should be of an accuracy comparable with that of the three-

level scheme. 

Equation (3.6.5) can be written as, 

-2Aui 1 j 1+(3+4A)u .. 1-2Au. 1 j 1 = -,+ 1.,J+ 1.+,+ 4u. j-u. j-l • 1., 1., 

In matrix form, this becomes. 

-1 -1 -1 _u
J
'+

l 
= 4A u.-A u. l+A c. 1 • -J -J- -J+ 

where c. 1 is a vector of known boundary values and 
-J+ 

(3+41.) -21. 

-21. (3+41. ) -n 
.... 

0 A = .... of order ... ... .... .... 

0 
... ... .... 

-21. (3+41.) 

Equation (3.6.7) can be written as, 

(m-l) • 

(3.6.7) 

i.e. v. 1 = Pv. + c'. As before, the eigenva1ues ~ of P are the 
-J+ -J 

eigenvalues of, 

• 



where nk 
is 

4 

-:J nk 

1 

the kth eigenvalue 

. 2 k1T 
nk = 3+8As~n (2m) 

of A given by, 

k=l ,2, ••• ,m-l. 

As det(P-l!I)=O 

2 4 1 
= 11 -(--)11 + (--) 

nk nk 

then 11 = [2±/(4-nk »)/nk 

I . 2 k1T 1 2 k1T 
= [29 (1-8Asl.n (2m») (3+8Asin (2m» 

When the roots are real, 1111«2+1)/(3+0),0>0, Hence 1111<1. 
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When the roots are complex, 1111 =i/rn: <1. Therefore, the approximation 
.'Lk 

(3.6.7) is Unconditionally stable. 

We note that the truncation error of (3.6.5) is of the same order 

as the Crank-Nicolson method and is often used when the initial data 

are discontinuous or varies rapidly with x since it damps the short-

wavelength components (components with ~~XZ1T) more rapidly. 

The Crank-Nicolson approximation should be used when the initial 

data and its derivatives are continuous. This is because the 

coefficient of (~t)2 in its truncation error is smaller. A three-

level variation of the Douglas equation is, 

= 

-i(u 1 .-u. 1 . 1)} u-,J ~- ,]-
1 

-=-~2 (u. 1 . 1-2u .. 1+u . . 1) 
(~x) 3.+.)+ 3.,)+ ~-1,)+ 

(3.6.8) 



and like the Douglas equation, is stable and has a truncation error 

Let us now consider another method which is second-order 

a2
u 

accurate in both space and time. If we replace --2- by the average 
ax au 

of the second differences at t j _
1

, tj and tj+l and at by a central 

first difference, we obtain 
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(u. j+l-u .. 1) 1., 1.,]-

2 (,;t) 

0
2 

1 x 
= 3 2(u. j +u .. +u .. 1) 

(,;x) ~,+1~) ~,)-
(3.6.9) 

2 2 2 
where 0 ui.=ui 1 .-2u .. +u. 1 j and T = O([,;t) )+O([';x) ). The method 

X] +,] 1.J 1.-, 

(3.6.9) can now be improved to attain a higher order accuracy. As 

then, 

02 
1 x 

= 3 2 (U. . +U. j+U. . 1) 
(,;x) ~,)+1 ~ ~,)-

(3.6.10) 

a2u 
(-2)· . 
ax ~,) 

02 
1 x 

= -3 --=-=-=-2 (U. j l+U. . +Ui . 1)
(,;x) ~,+ ~,) ,)-

2 2 
(,;x) (~) 
12 at2 i,j 

+0 ([,;t)2) +0 ([,;x)4) 

0
2 

2 
x (U. +U +U.. ) _ (,;x) 

(,;x) 2 ~,j+l i,j ~,)-1 12 

(3.6.11) 

Thus, we obtain the difference equation, 

(u .. l-ui . 1) 1 0
2 

1.,J+ ,]- x ) 
---'--"--::""2::-';-:t'4-oC:- = -3 ~'---;,-2 (u . . 1 +u . . +u . . 1 

" (,;x) ~,)+ ~,) ~,)-

_ -',;x) 2 
12 

02 

(,;t) 2
u

i ,j 

(3.6.12) 

with a local truncation error T = 0 ( [,;tl 2) +0 ( [,;xl 4) . 

a4u. a3u 
An alternative substitute for ---4 1S 2 • This substitution 

ax ox at 
leads to the difference equation, 

(u. . l-u . . 1) 1 0
2 

_-=1.!C'~)-;.+:=.-....::.1.!C, .1..) _-:=.- _...;;.x--,.( ) 
2't = -3 2 u. . +u .. +u .. 1 -

" (,;x) ~,)+1 1,) 1,)-

1 02 
24(,;t) x 

(u .. l-u .. 1) 1.,J+ 1.,)-
(3.6.13) 
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which is also fourth-order correct in space and second-order in time 

for a fixed A • 

The general three-level impliait formulae based upon nine points 

for approximating (3.1.2) is given by (see Jain (19a~}), 

2 
1(1 +T l) +{a (1 +T l) -A (l-y 1 +y 2) I cS) ui , j +l 

2 2 
= I (1+2T l}+{a (l+2T l) +A (y 1-2y 2) IcS x]ui ,j -IT 1+ (aT l-AY 2 }cS)ui,j_l 

(3.6.14) 

where T 1 ,y 1 ,y 2 and a are arbitrary constants. The truncation error 

for this class of methods is given by, 

1 2 a4u 
T = lItl(a- 12)+A(T l +Yl-t}] (lIx) (-4}i . 

ax ,) 
1 2 

+lIt I h l-Y 23'}A 

(3.6.1S) 

and the necessary and sufficient conditions for stability, as. given 

by Jain (1979), are, 

. 2 811x . 2 811x 
(T l +!) (1-4as1n (--2-}}+As1n (~) (1-2Y l +4Y 2 ) > 0 

and 1 . 2 811x . 2 811x 
4(1-4aS1n (--2--}}+As1n (--2--) (l-Y l ) > 0 (3.6.16) 

h 
1 . 

were a<4 1S taken. 

Finally, it is worth noting that more than three time levels can 

also be For instance, the difference equation, 

1 (u . . l-u. . l) 
1.,]+ 1.,J-

-3 (u . . +u . . l+ui . 2)] = -="-""27-'t--'=--'-'L..:=-. 
~,J 1.,]- ,J- U 

{3.6.l7} 

is a stable, second-order analogue of the Heat Equation. The 

determination of stability for more than three levels, however, can 

be very complicated. The works of Jain (l9S4), Ritchmyer and Marton 

(l967) and Saulev (l964) may be consulted for further discussion on 

multi-level schemes. 
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(c) The Deferred Correction Method 

In this method, the finite difference equations approximating 

the given differential equation are solved as usual and their solution 

is then used to calculate a correction term at each mesh point, of the 

solution domain. This term is added to the approximating difference 

equation which in turn is solved again and the process is repeated if 

necessary. The correction terms are numbers obtained by differencing 

the numerical solution in either the x- or the t-direction or both. 

To derive the correction term, we will be using the following operators 

(c.f. Hildebrand (1956», 

operator ~ defined by ~fj+! = !(fj+fj +l ) 

operator ° defined by Ofj+! = fj+l-f j 

and the following results, 

and 

Now, 

a -1 
lit - = 2sinh "Ot) at 

au au 
!llt{ (at\,/(at) i,j+l} = 

from (3.6.18a). 

(3.6.18a) 

(3.6.18b) 

(3.6.19) 

(3.6.20) 

Then by using (3.6.19) and (3.6.20), this becomes {(1~~)!2sinh-l 

(!Ot)}Ui,j+!' We find that when this expression is expanded into 

positive powers of et' 

au au 
!llt{('t)' '+('t)' . l} = () 1.,J () .1.,J+ 

1 3 1 5 
(Ot + lZ'lt - 120'\+···) Ui ,j+! 

which can be rearranged as, 

o = 1 {au) + (au) }+ 
t U .. > ,lit ('t .. 't 1 Ctu .. > • 

1.')+"2" () 1.,) () 1.,)+. 1.,)+2" 

This gives, 

a 
!llt't(U, .+u .. 1) + CtU .. > ' 

a 1.,) 1.,J+ 1.,)+2" 
(3.6.21) 

\ 

\ 



where, =_~3+~5+ ••• 
Ct 12 t 120 t 

From the differential equation, 

aU a2u 
at = ax2 

, 

it follows that, 

Hence, equation (3.6.21) can be written as, 

a2 
Ul.' ,)' +l-Ul.')' = !ll t --2 (U, ,+U, , ,\+CtU, , 1 ax l.) l.,)+ll l.,)+~ 

By virtue of (3.6.1), this becomes, 

U -U =! t.t (0 2 _ ~4 
i,j+l ij (t.x) 2 x 12 x 

2 2 
= lido u, , 1+0 U, ,)+C x 1.,J+ x 1,) 

where, 
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(3.6.22) 

(3.6.23) 

14 16 13 15 
+(- l20 X

Ui,j+ 90oxUi,/''') }+(- lZ'\Ui,j+!+ l200t Ui,j+!) 

(3.6.24) 

In our first approximation, the correction term C is obviously 0 

and the resulting Crank-Nicolson equation, 

is solved in the usual manner as before. In the next step, the 

correction term must now be ca1cul~ted from a truncated approximation 

to C of equation (3.6.24). An example of such a truncation at the 

mesh point is, 
A 4 4 1 3 

C = - 24(0 u, , 1+0 u, j) - 12:-0 u, , 1 x ~,J+ X 1., t 1.,)+7 
(3,6.25) 

and equation (3.6,23) is solved again. We observe that this method, 

effectively, includes higher-order difference terms in the approximations 
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to the derivatives. It is therefore essential that during computation, 

double precision arithmetic is used in evaluating these terms. The 

tridiagonal nature of the resulting system is retained and solved using 

the Thomas elimination process. 

(d) Richardson's ExtrapoZation to the Limit 

It is well known (see, for example, Henrici (1962», that if, 

then the linear combination, 

Y(x) = 2Y2(x)-Yl (x) , x=k~x, k=O,l, ••• 

is a second-order approximation to the solution of 

dU 
dx 

= f(x,U) 

even though Yl (x) and Y2 (x) are only first-order correct. This is an 

example of a technique known as the Richardson's extrapolation to the 

limit which can be extended to difference analogues of parabolic 

equations. Let us consider the backward difference equation as an 

example. Then, 

where 

1 2 
--':'-"2 <I u. . 1 
(6x) x ~ ,)+ 

(3.6.26) 

for a sufficiently smooth U. It is clear that the difference analogue 

for equation (3.6.26) to approximate (3.1.2) is, 

1 2 (u .. l-u . .l 
<I u .. 1 = .1,J+ .1,J 0.6.27) 

(6x)2 x 1., J+ ~t 

with a truncation error ° ( [~x J 
2 
}!-o [~tJ 

As previously, if we let "ij be the discretisation error at the 
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mesh point, i.e. Eij=Uij-Uij' then from equations (3.6.26) and 

(3.6.27) we have, 

(3.6.28) 

with E=O on B (the boundary) • 

Now, we consider the effects of the two error terms separately 

as follows. Let E(x,t) be the solution of 

with E(x,t) = 0 on B • (3.6.29) 

Then, 
E(x,t) = 0(1) , (3.6.30) 

and, 

1 2 
20 E. j 

(lIx) x ~, +1 
= (Ei,j+l-Eij ) 

lit 
a2u 2 

1(-2) .. l+O([lIx] ) +0 (lit) • 
, ~,J+ 

at (3.6.31) 

If we multiply equation (3.6.31) with lit, we get, 

1 2 a2u 2 2 
--20 E .. Illt = (Ei . I-E .. )-1<-2) .. 1It+0({lIt) [lIx] )+O([lIt] ) • 
(lIx) x ~,J+ ,J+ 1,J at 1,J 

(3.6.32) 

By subtracting equation (3.6.32) from (3.6.28) yields, 

1 2 (E. j I-E .. Illt)-(Ei·-E .. lIt) 
, ( _~1~,~+~~1~,~J~+~ ____ ~JL-~~~J~_ 

2" E •• I-E .. Illt) = At 
(lIx) x 1,J+ 1,J+ il 

+ 

2 2 
o ([lit] )+O([lIx] ) , 

i.e. , 
2 2 

+ O([lIt] )+O([lIx] ) 

with e ij o on B , (3.6.33) 

where e ij 
= Eij-Eijllt (3.6.34) 

It is clear that, 



II~j 11 = max le
ij 

1 = Q( [lIt]2)+O[lIx]2) 
i 
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and Eij = Eijllt + O([lIx]2)+O([lIt]2) (3.6.35) 

with this relation, we are now in a position to improve the convergence 

rate. Let u
l 

(x,t) denote the solution of the difference equation 

corresponding to (lIx,lIt) and similarly for u2 (x,t) corresponding to 

llt 
(lIx, :2). Both u

l 
(x,t) and u2 (x,t), as we know, have an order of 

2 
accuracy of O( [lIx] )+O(llt). Let us now take the linear combination 

v(x,t) = 2U2 (x,t)-uix ,t), x=illx, t=jllt. If we denote the discretization 

errors for u
l 

(x,t),u2 (x,t) and v(x,t) by E
l

(X,t),E2 (X,t) and E(X,t) 

respectively, then, 

E(X,t) = 2E2 (X,t)-E
l 

(x,t) and from (3.6.35), 

= 2[E(X,t)~t + O([lIx]2)+O([lIt]2)] 

2 2 
-[E(x,t)llt+O([lIx] )+O([lIt] )] 

= O( [llx]2)+O( [llt]2) • 

Hence, we see that the extrapolation strategy leads to an increase 

in the order of accuracy. The above argument remains valid for the 

general linear differential equation of the form, 

au 
- = a(x) at 

a2u --+ 
a/ 

au 
b(x) ax + c(x)U + d(x,t) 

A proper linear combination of several solutions should lead to the 

elimination of several leading error terms and therefore increase the 

accuracy in both the space and time directions; The ideas can also 

be extended to several space variables. 
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3.7 OTHER METHODS TO SOLVE THE DIFFUSION EQUATION 

Some of the well-known finite-difference methods that are 

available for the treatment of parabolic equations are summarised 

in Table 3.7.1 below. The truncation error and the stability 

requirement of each method are also included. 



Finite Difference Form 

1. u. . l=u .. +A (ui 1 . -2ui · +u. 1 .) 
1.,)+ 1.) + ,) J 1.- ,J 

(Classical explicit method) 

A A) A A -J.. A 
2. ~i+l,j+l-(l+ Ui,j+l~i-l,j+l=:ZUi+l,j-(l ) uij:ZUi-l,j 

3. 

4. 

5. 

(Crank-Nicolson method) 

-Au. 1 ·+1+ (l+2A)ui . l-Au. 1 . l=U .. 
1+ ,] ,J+ ~- ,J+ ~J 

(Fully implicit method) 

1 
u .. l=u. ·+-6(u. 1 .-2u . . +u. 1 j) 

1. ,J+ 1.J 1.+,] 1.J 1.-, 

(Special explicit method) 

1Bu. 1 . 1-(1+21B)u .. l+lBu. 1 . 1 
1+ ,J+ 1,]+ 1.- ,J+ 

=-l(l-B)Ui+l,j-(l-2A(l-8)Nij-1(l-8)ui_l,j 

(Weighted formula (O~BH)) 

TABLE 3.7.1: Finite-difference approximations 
a u a ~u 

to - =--
a t a x2 

Equation 

(3.2.1) 

Explicit 

(3.4.4) 

with 8 =t 

Implicit 

(3.4.4) 

with 8=1 

Implicit 

(3.2.1) 
1 

with 16 

Explicit 

(3.4.4) 

Implicit 

Stability 
Condition Truncation Error 

Always stable T=O (lit) +0 ( [lIxj2) 

Stable 

1 
A~ (2 -4il) for 

o:(Bn 

Always stable 
for t:(Bn 

· 

Computational 
Molecule 

o 

10 ..r 

le 

-0 

... -0 

-0 

f

'" U1 



Stability Computational 
Finite Difference Form Equation Condition Truncation Error Molecule 

6. As in 5. 
1 T=O( [llt)2)+0( [lIx)4) 0 

,.. 
with 9=!- - (3.6.3) Always stable 

12A .... 
(Douglas Method) 

Implicit 

0 
,.. .... 

7. u .. l=ui . 1+2A(u. 1 j-2ui .+U. 1 .) 1.,J+ ,)- 1.+ , J 1.- ,] 
(3.3.1) Always unstable T=O ( [lItr) +0 ( [lIx] ~) ~ 

(Richard son metho~) 
Explicit, 0 ..... """ 3-Level 

.... 
C 

1 2 2 

!~ t>-o 
8. u .. 1= U2A){2A(U. 1 .+u·_l .)+(1-2A)Ui j-l} (3.3.16) Always stable T=O([lIt) )+O([lIx)+ 

1.,)+ + 1.+ ,] 1. ,] , 

(Dufort-Frankel method) 
Explicit, 0([lIt)2) 
3-Level lI~x 

with ~ as lIt,lIx~ 

9. AU'+l . 1-!(3+4A)U .. l+AU. 1 . !-2u .. +!u .. 1 (3.6.5) Always stable T-O ( (lit) 2) +0 ([lIx/) 0 .... 
1. ,J+ 1.,J+ 1.- ,J+ 1.J 1.,J-

Implicit, 

~ 3-Level 

10. AU. 1 . 1-(l+9+2A)u .. l+Au. 1 j--(l+29)uij+ u i . 1 Implicit, Always stable j""'" "~I [Od 'I 
0 

% 

"V 
1.+ ,J+ 1.,]+1.- I ,J- 3-Level for 6=! 

where 6~0 T= 

o (lit) +0 ( [lIx] 
2 

) 

TABLE 3.7.1; (continued). 



Finite Difference Form 

11. As in 10. with 6=t + l~A 

12. 
1 A 5 1 A 

(1i:2)ui+l,j+l+(~A)ui,j+l+(12 2)ui - l ,j+l 

1 A 5 1 A 
=(12 + 2)Ui+l,j+(~A)uij+(l2'2)ui-l,j 

(Douglas method) 

1 5 1 
13. (-8 A)U. 1 . 1+(-'-+4 2A)U .. 1+(-8 A)U. 1 . 1 

1+ ,J+ 1,)+ 1.- ,J+ 

1 5 1 1 5 1 
~i+l,j+JUij~i-l,j- zrui+l,j-l- ~i,j-l~i-l,j-l 

(Variation of Douglas Equation) 

14 

(b) u .. 2-u .. 1=A(U. 1 . 2-u .. 2-ui j l+u . ) 1,)+ 1,)+ 1+ ,)+ 1,)+ ,+ 1-1,j+l 

(Saulev's alternating method) 

TABLE 3.7.1: continued 

Equation 

Implicit, 
3-Level 

(3.6.4) 

Implicit 

(3.6.8) 

Implicit, 
3-Level 

Semi
implicit 

stability 
Condition 

Always stable 

Always stable 

Truncation Error 
Computational 
Molecule 

. 2 4 6 
T=O ([lit] ) =0 ([lIx] ) 

() 

() 

Always stable T=0([lIt]2)+0([lIx]4) 'O---1 ..... o--_f'U) 

Always stable T=O (lit) =0 ( [lIx]2) 

for fixed A 

() 

() () () 

""-""0 
o (b) J 
o Q 

(a) L 
o 
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We note that each of the equations in entry 14. of Table 3.7.1 

belongs to a class of asymmetric finite difference equations of order 

O(6x) introduced by Saulev (1964) of the form, 

(l+aA)u. j l-aAu. 1 . 1 = (l-a)Au. 1 j+[1+(a-2)A]u .. +AU. 1 ., 
1., + 1.- ,J+ 1.- , 1.J 1.+,J 

(3.7.1) 

and (l+a/..)u. '+l-aAu'+l . 1 = ).u. 1 .+[l+(a-2)Aju .. +(l-a).u. 1 .' 
1.,) 1. ,J+ 1.- ,) 1.,) 1.+ ,J 

(3.7.2) 

where O~a~l. The computational molecules of these equations are 

given by Figure 3.7.1 below. 

(l-al'. 1+(a-2)' (l-a). 

Equation (3.7.1) Equation (3.7.2) 

FIGURE 3.7.1 

For a=O, both formulae reduce to the classical explicit form of 

(3.2.la). When a=l, we obtain, 

(l+A)u. j l-Aui _l . 1 .1.,+ ,J+ 
= (l-~)u. ,+Au. 1 . 1.,J 1.+,] 

(3.7.3) 

and (l+A)u .. l-Au. 1 . 1 = AU. 1 .+(l-A)u .. 1.,J+ 1.+ ,J+ 1- ,] 1.,] 
(3.7.4) 

whose computational molecules are given in Figure 3.7.2. 
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Equation (3.7.3) Equation (3.7.4) 

FIGURE 3.7.2 

For an initial-boundary value problem, equations (3.7.3) and 

(3.7.4) are both implicit-explicit if the computations proceed in the 

positive (LR) and negative (RL) directions respectively. Hence, 

equations (3.7.1) and (3.7.2) may be considered as generalisations of 

the classical explicit equation. 

The stability of the asymmetric formulae (3.7.1) and (3.7.2) for 

the case ~=l is now investigated by using the von Neumann criterion. 

The equation governing the stability of equation (3.7.1) is found 

to be 

_~Ai;j+lexp(i S(i-l)lIx)+(l+~A)i;j+lexp(i Sillx) = (l-alAi;jexp(i S(i-l)lIx) 
c c c 

+(1+(~-2)A)i;jexp(i 8illx)+Ai; j exp(i S(i+l)lIx) 
c c 

which reduces to, 

y = 
(l-a)Aexp(-i 8I1x)+Aexp(i Sllx)+[l+(~-2)A) 

c c 
(l+~A)-~Aexp(-i Sllx) 

c 

where y=i;j+l/i;j. For ~=l, we get, 

l-A[l-exp(i SlIx) c 
y = l+A[l-exp(-i SlIx») 

c 
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i.e. , 2 2 2 (1+2A cos (SD.x) -2X cos (SD.x» +1 Xs1n (SD.x) [2X-2Acos (SD.x)] 
c y = 

2 
l+2X(1-cos(SD.x»+2X (I-cos (SD.x) ) 

2 . 2 SD.x . 2 Silx l 2. 2 SD.x . 2 SD.x l 
[1+4A S1n (~)+4As1n (-2--)] [1+4X S1n (--2-)-4Xs1n (--2-)] 

= 
[l+4Asin2 (S~x)+4A2sin2 (S~x)] 

[1+4A2S1n2(Silx)_4Asin2(Silx)]l 
= __ -;;---;;--;;';2::---__ -;;-...,,-72_-;-

[1+4A2sin2 (Silx)+4Xsin2 (Silx)]l 
2 2 

Therefore, iyi ~ 1 for all X>O. 

In the same manner, it can also be shown that iYi~l for 

equation (3.7.2) with a=l. We conclude that both asymmetric equations 

(3.7.3) and (3.7.4) are always stable. More generally, it was 

mentioned by A.F. Filipov (Saulev (1964» that in the case of the 

Cauchy's problem, a necessary and sufficient condition for the 

stability of the equations (3.7.1) and (3.7.2) is, 

I O~cx~l. (3.7.5) 

Due to their low accuracy, the asymmetric formulae (3.7.1) and 

(3.7.2) are not highly recommended for use in the numerical integration 

of the heat equation. In the method of Saulev, however, different 

equations are used onaZternate time steps, that is, 

1 
Ui,j+l = (l+aX) {aXui_l,j+l+(1-a)Xui_l,j+[1+(a-2)X]uij+Xui+l,j} 

(3.7.6) 
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and 
1 " 

u i ,j+2 = (l-+a\) (ex\ u i +Lj +l +\ ui _l , j-ii [1+ (a -2)\ 1 ui ,j+'i (l-a )\ ui +l ;j!' 

(3.7.7) 

The first system of equations (3.7.6) can be solved in the order 

i=1,2, ••• ,m-l and the second system of equations (3.7.7) takes the 

order i=m-l,m-2, ••• ,2,1 in turn for j=O,2,4, •••• In particular, 

for ex=l, equations (3.7.6) and (3.7.7) reduce to the equations given 

in entry 14. of Table 3.7.1, that is, 

ul.' ,)'+l-ul.')' = \ (u, 1 ,-U'j-U, , l+u, 1 ' 1) , 
~+,J 1 1,J+ 1- ,J+ 

(3.7.8) 

and 
Ul.' ,)'+2-ul.' ,)'+1 = \ (u, 1 ' 2-u , j 2-ui' +u, 1 ' 1)' (3.7.9) 1.+ ,J+ 1, +. ,J+1 1- ,J+ 

A stability analysis and an estimate of the accuracy can be 

obtained by eliminating the u, , 1 from the two equations. From the 1.,J+ 

equations (3.7.8) and (3.7.9), we have, respectively, 

(1+\)U, , l-\Ui" 1 ' 1 = (l-\)u, ,+\Ui 1 ' , l.,)+ - ,)+ l.,) +,) 

and (l-\)u, , l+\Ui 1 ' 1 = (1+Alui ' 2-\Ui 1 ' 2 
1,]+ - ,J+ ,J+ + ,J+ 

If we add the two equations, we get 

Ui,j+l = !{(1-\)uij+(1+\)ui,j+2+\(Ui+l,j-ui+l,j+2)} 

and similarly, 

(3.7.8a) 

(3.7.9a) 

Ui-l,j+l = H (1-\)ui_l,j+(1+\)ui_Lj+2+\ (ui ,j-Ui ,j+2)}' 

By substituting these equations into equation (3.7.9) and after some 

manipulation of terms, leads to the impZicit scheme, 

2 2 
u, , 2-(\+\ )" u l ' 2 1,J+ X ,)+ 

2 2 
;:: U, .+(A-X )e; u . . 

1.,J x 1.,J 
0.7.10) 

If the stability analysis is carried out by means of the von Neumann 

criterion, we arrive at the overall stability polynomial, 

/(l_O,+\2) [exp(i st.x)+exp(-i St.x)-21} = 1+(\_\2) [exp(i St.x)+ 
c c c 

exp(-i St.x)-21. 
c 



, 

Therefore, 

2 
{1+(A-A2) [exp(i S/lx)+exp(-i SlIx)-2]} 

c c 
Y = 

{1-(A+A2 ) [exp(i SlIx)+exp(-i SlI,,)-2]} 
c c 

which, upon simplification, becomes, 

Hence, 

2 
Y 

Iyl 

2 1+2 (A-A ) [cos (S6,,) -1] 
2 l-2(A+A ) [cos (S6x)-1] 

It is clear that since l-cos(S6x)>-0, IYI~l which implies that the 

SauLev's aLternating method has unrestricted stability. 

Let us now consider equation (3.7.10), i.e., 

2 2 
u, j 2-(A+A )5 u, , 2 
~, + x ~,J+ 

2 2 
= u .. +(A-A )6 u .. 

1.,J x 1.,) 

2 
If the terms A were absent then this equation would be the Crank-

2 2 Nicolson scheme whose truncation error is 0 ( [lit] ) +0 ([lIx] ). With 
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2 
the presence of the A terms, however, their contribution to (ui ,j+2-

u, ,) /2l1t 
~,] 

is, 
3 

o u ) = 
2 a" at 

2 
o ( [lit] 

[6x]2 

3 a u ) 
2 ox at 

For any fixed A, the truncation error is 0(lIt)=0([lIx]2). If 6t and 

t.x are regarded as being independent, then, just as we have seen for 

the Dufort-Frankel scheme, the Saulev's scheme will be consistent 

with the heat flow equation only if 6t + 0 as the net is refined. lIx 
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3.8 PARABOLIC EQUATIONS WITH VARIABLE COEFFICIENTS 

The general, linear parabolic equation (3.1.1) may be written 

in the form, 

au 
at: 

2 
L (x,t,D ,0 )U x x ·(3.8.1) 

or 2 DtU : L(x,t,D ,0 )U x x (3.8.1a) 

a a 
where the operator L is linear, Ox : ax and Dt : at we shall 

continue to use· the Taylor series· expansion, 

a 2 a2 
U(x,t+~t) : (l+(~t)a- + t(~t) --2- + ••• )U(x,t) 

t at a 
: exp(~t at)U(x,t) , (3.8.2) 

to derive two-level schemes approximating (3.8.1). At the point 

(xi,t j ), equation (3.8.2) becomes, 

U : exp«~t)L)U .. , 
i,j+l l.,J 

(3.8.3) 

where L is assumed to be independent of t. We recall that, 

1 : --(0 
~x X 

+ ••• ) • 

If equation (3.8.4) is used to eliminate Ox in terms of Ox in 

equation (3.8.3), the exact difference replacement, 

(3.8.4) 

° ° Ui,j+l: exp{(~t)L[i~X,jllt,~2x Sinh-l(2x)'(lI~ sinh-
l

(2
x
»]}ui ,j' 

(3.8.5) 

is obtained. 

Differential equations with various cases of variabZe ooeffioients 

will be treated and both explicit and implicit finite difference 

methods will be derived. 
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3.9 EXPLICIT METHOOS 

(a) Coefficients Depending On x. 

The simplest differential equation in this case is 

au a2 u 
at ~ a(x) ax2 (3.9.1) 

where a(x)to for all x. Here L=a0
2 

and equation (3.B.3) becomes, x 
2 

~ exp( (lIt)aO )U .. x 1.,] 

2 2 2 2 
= [1+ (lIt)aO +!(lIt) aO (aO )+ ••• )U. j x x X 1., 

. 2 2 2 3 4 
[l+(lIt)aD +!(llt) a(a"O +2a'O +aD )+ ••• )U .. 

x x x x 1.,J 

where the prime(') notation means differentiation with respect to x. 

The differential operators 02 ,03 , ••. are now replaced by difference 
x x 

operators using equation (3.B.4). An explicit difference formula that 

is commonly used is, 

(3.9.2) 

To find its local truncation error, we have, on expanding the U terms by 

means of the Taylor series about the point (x. ,t.) yields, 
1. J 

au a2u a2u a i 2 a4u 
T ~ ((at)· .-ai (-2)i .}+t(lIt) (-2)' . - 12 [lIx) (4)' .+ ••• 

l.,J ax,J at l.,J ax l.,J 

a2u a i 2 a4u 
= t (lit) (-2)' . - 12 [lIx) (-4)' . + ••• 

at 1.,J ax l.,J 

Hence, the local truncation error of the formula (3.9.2) is given by 

(3.9.3) 

(b) The Self-Adjoint Form. 

We consider the case, 

(3.9.4) 

where a(x)tO for all x. Differentiation of the right-hand side term 

gives, 
L 

2 
_ aD +a'O 

x x 



and so, 

2 
= exp(lIt(aD +a'D »U .. x x 1.,J 

= [l+~t(aD2+a'D )+ ... ]U ..• 
x x 1.,) 

2 2 
If all the terms of order (lit) and above are neglected and D ui . 

x ,J 

and D u. j are replaced by ( .1 2)o2u .. 
x lo, (lIx) lo ,J 

1 
and (---2 A ) (u. 1 .-u. 1 .) 

I.lX 1.+,J 1.-,J 

respectively, the difference analogue, 
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ulo· ,j+1 = (1-2a.A)ui .+(a.+!(6x)a~)Aui 1 .+(a.-!(lIx)a~)Au. 1 j 
~ ,J 1. 1. +,J 1. 1. 1.-, 

(3.9.5) 

is obtained. An expression for the local truncation error of this 

explicit scheme is, 

Hence, we find that, 

(3.9.6) 

Alternatively, difference approximations to equation (3.9.4) can 

be obtained without differentiating the right-hand side term and 

destroying the se1f-adjoint nature of the operator. The following 

method is due to Tikhonnov and Smarskii (1961). Equation (3.9.4) can 

be written in conservation form as, 

au aw 
-+-=::O I at ax (3.~.7) 

where 

or 

By integrating this equation with respect to x over the interval 

[(i-l)lIx,illx] of the x-axis and assuming that W=Wi _!' we obtain, 

W. 1 
lo-, J

illX ~ = 

a (x) 

(i-llllx 

u. 1-u. • lo - lo 



Similarly, if the interval [i6x,(i+1)6xl is considered, we get 

(i+1)t.x 
r dx 
J a (x) = 

it.x 

u, -U, 1 • 1. 1.+ 

Now from equation (3.9.7) we have, 

au aW 
= at ax 

= - ~6xW+O([6x12) (from equation (3.8.4» 

1 2 
= 6x(Wi _!-Wi +!)+O([ 6xl ) 

where 
i6x 

A = -[ --1 1 J dx -1 
i 6x (i_l)6xa(x) 

Since B
i

=A
i
+

1
, equation (3.9.8) can be written as, 

au 2 
(at)i,j = Ai+1Ui+1-(Ai+l+Ai)Ui+Aiui_1+O([6xl ), 

and using the formula, 

we obtain, 
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(3.9.8) 

(3.9.9) 

u1.' ,)'+1 = [l-(t.t) (A, l+A,)lu, ,+t.t[A, 1u , 1 ,+A,Ui 1 ,1. (3.9.10) 
~+ .1 1.,J .1+ 1.+,J 1. -,) 

A more standard method of approximating equation (3.9.4) is to 

consider the central difference approximation to the self-adjoint 

operator, i~.e~, 
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This leads to the explicit formula, 

We note that if a(x) is replaced by a(x,t), formulae (3.9.2),(3.9.5), 

(3.9.10) and (3.9.11) still hold with the same degree of accuracy. 
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3.10 IMPLICIT METHODS 

Implicit formulae can often be obtained from equation (3.8.3) 

written in the central form: 

exp(-t(,~t)L)U .. 1 = exp(tU;t)L)U .. 
1.,J+ 1.,) 

(3.10.1) 

(a) Coefficients Depending on x and t. 

We consider equations of the form 

au at = a(x,t) (3.10.2) 

When the Crank-Nico1son averaging concept is applied to this equation, 

we get, 

= !a. j+,5
2 

(ui . +l+u .. ,/(/jX) I 
1, ~ x ,J 1.J 

(3.10.3) 

2 2 
with a local truncation error equal to T=O([~xl )+O([~tl ). 

A higher-order accuracy method equivalent to the Douglas formula 

can be derived in the same way as before. By meanS of the Tay10r 

series expansions, we have, 

1 2 a4
U4 

+ -12(~x) (--4)· . ,+o([~xl )+ 
l.,·J+z 

3x 

(3.10.4) 

where we have used equation (3.10.2). 

It can also be shown that, 

2 
_3 _(l 3U) 
3x2 a at i,j+! 

= 1 52 [1 (U .. 1-U. j) 1 +O( [~x12) +O([~t12) . 
2 x a 1 1,)+ l. 

(~x) ~t i,j+, . 

The substitution of this into equation (3.10.4) gives, 



1 2 1 o (u. . l+Ui .) = ---'~("""'t"") (U. . l-Ui .) + 
x 1.,]+ ,] ai,j+; f1 1.,]+ ,] 

1 4 2 
[ (Ui j l-U, j)]+O([f1x] )+o([f1t] ) 
a

i 
.• ,+ 1., 

')+'7 

which leads to the difference equation, 
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1 
, (u. . l-u. .) 

1 2 1 
6 ' ]ui . l+to [1+ -=6-:-'-=---]u .. , Aa. . 1 1.,]+ 1.,] 

1, J+z 
Aa. j. ,] + x Aai .• 1.,] 

1, +'2" ,J+z 

(3.10.5) 

with a local truncation error T=0([f1x]4)=0([f1t]2) when A is kept 

fixed. Formula (3.10.5) can be rewritten in the more convenient 

form, 

1 2 -1 2 
= [1+ -12 a ..• 0 (a. j 1) +;Aai · 10 ]Ui . 

1., J +"2" X 1., +"'2" , J +'2" X , J 
(3.10.6) 

A three-ZeveZ scheme similar to the one introduced 
2 

in (3.6.13) 

can also be developed to approximate a ~ = a(x,t)~~. The 
ax 

can be replaced as follows: 

a4u a2 au 
~ --z(a(x,t)at). Then (3.6.13) would become, 
ax ax 

a .. 1.,] 

[ai,(ui ·+l-u . '_1)] , ] ,] 1.,] 

. a4u 
term --4-

ax 

(3.10.7) 

which is again fourth-order correct in space and second-order in time 

for a fixed A. 

(b) The More GeneraZ Form 

We consider the equation, 

au a au au at = ax(a(x,t)~) + b(x,t)ax + c(x,t)U (3.10.8) 

At the point x.=if1x and t .• =(j+t)f1t, we have, 1. . ]+, 
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(3.10.9) 

Now, by using equation (3.9.9) we have, at any fixed time, 

where, 

and 

.l...(a dU) = 
dX dX 

2 
A, lUi l-(Ai l+A,)U,+A,Ui l+O([6xl ) 
~+ + + 1. 1. 1. -

dx -1 
a (x) 1 , 

(i-l)llx 

1 2 
= b i 21lx (U i+1-U i-I) +0 ([Ilxl ) 

The ,substitution of these values into equation (3.10.9) leads to 

the implicit difference scheme, 

[1+! (Ilt) (Ai 1 ' l+Ai ' 1) -! (Ilt)c i ' llui ' 1 + ,J+ ,J+ ,J+ ,J+ 

+ [l-!(Ilt) (Ai 1 ,+A, ,)+l(llt)c, ,lu
i 

' 
+,J 1.,J 1.,],J 

(3.10.10) 

If b is large in modulus, we put, 

dU 1 
~ = b i (Ilx) (Vi-Ui _l ) + 0(6x) , if b<O , 

and equation, (3.10.10) is changed accordingly. 

Another class of implicit formulae approximating particular cases 

of equation (3.1.1) are the backward difference schemes. As we have 

already seen, equation (3.6.27) is an example in this class. Most of 

these formulae can be derived from (3.8.3) when written in the form, 
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exp(-(llt)L)U, , 1 = U
i

), 
1.,J+ 

(3.10.11) 

For example, when 

122 
2 0 +0 ([llxl) 

(llx) x 

then expansion of (3.10.11) leads to the formula, 

2 
(1-\0 )u, , 1 = u, , 

X 1.,J+ 1.,J 

which is just (3.6.27). Formulae (3.8.3) and (3.10.11) are the 

special cases 9=0 and 1 respectively of the general 9 formula, 

exp(-9(llt)L)U, ' 1 = exp«1-9) (llt)L)U
i 

' , 0~9~1. 
l.,)+ ,) 

(3.10.12) 

The central form with 9=t (Crank Nicolson) is very widely used • 



3.11 THE DIFFUSION-CONVECTION EQUATION 

The general form of the diffusion-convection equation in one 

space dimension is given by, 

au -= 
at 

2 
K1.J!.-

3><2 
V~ 

3><' 
(3.11.1) 

where U describes the concentration of a suspension being convected 

with a velocity V and is diffused according to the diffusion 

coefficient K. If we put a=K and a' ~V in equation (3.9.5), we get 

the explicit approximation, 

u, j 1 = (1-2)..K)u, j+A<K-W)Ui 1 j+)..(K+W)U'_l ' , 
1., + ~, + , ~ ,J 

(3.11.2) 

where W = t(6x)V. By employing the von Neumann criterion, the 

equation governing stability is, 

Hence, 

y = [1+2AK(cos(St.x)-l)]-il)..wsin(st.x) 
c 

2 2 22,2 Iyl 7 [1+2)..K(cos(St.x)-1)] +4).. WS1n (St.x) 

2K~t 2 v~t 2 2 = [1+ 2 (cos (at.x) -1)] + (-) (l-cos (S~x» (3.11. 3) 
(t.x) t.x 

and for stability, we must have the conditions, 
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V~t 1 t.x ~ , (3.11.4a) 

K~t 
l: t 

(~x)2 
(3.11.4b) 

Inequality (3.11,4a) is the requirement associated with convective 

stability whilst (3.11.4b) contributes to the condition for diffusive 

stability. 

The solution to equation (3.11.1), which is given by (3.11.2) 

oscillates for W>K (Siemieniuch and G1adwe11 (1978» and so for 

large values of v, it is customary to replace central differences for 

... 



the first space derivative by backward differences. In this way, 

the oscillations are minimised although the local accuracy of the 

difference scheme is reduced from second to first order. The 

difference 

is replaced 

formula where D , 
x 

1 
by t::X I] x with, 

is given by, 

the differential operator in (3.8.1), 
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Ui,j+l = 11-2A(K+W)]Uij + AKUi +l ,j+A(K+2W)ui _l ,j • (3.11.5) 

As we have seen the explicit equations (3.11.2) and (3.11.5) 

(3.l1.2a) 

(3.11.Sa) 

respectively. Formula (3.ll.Sa) is known as the expLiait method with 

upwinding approximating the diffusion-convection equation (3.11.1). 

A more general method to (3.ll.Sa) can be developed by considering an 

approximation involving a a-weighted type of upwinding for the first 

spatial derivative in (3.11.1) at two time levels, i.e., 

(oU) : " , oX ~#J 
~I] u + (l-a) I] 
~x x i,j+1 ~x xUij' 

where o:,;a:,;1. Therefore, equation (3.11. Sa) is replaced by the more 

generaL, exaat expLiait type of method with upwinding, 

(l+2Aaw)u, , 1-nawu , 1 ' 1 = AKU, 1 ,+{l-2A(K+(l-a)W)}u, j 
1.,J+ 1.- ,J+ 1.+ ,J 1., 

+A{K+2 (l-a)w}u, 1 ,+~tTi " (3.11.6) 
l,- ,] ,J 

and the finite-difference analogue to (3.11.6) is, 
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(1+2A9W)u .. I-n9Wu . 1 . 1 = AKui 1 .+{ 1-n (K+(l-9 )W}u .. 
~,J+ 1.- ,]+ + ,J . l.,J 

+A{K+2(1-9)wlu. 1 j , (3.11.7) 
~- , 

with a local truncation error, 

(3.11.8) 

implying that T=O(at)+O(ax). It is evident from (3.11.8) that 

'numerical diffusion' gradually builds up when V becomes significantly 

large. As for stability, the following conditions are obtained, 

(i) 0 "< (l+W) f 9 > 
<.A, 2 or ~ lE, , 

2 (l+2W(l-B)+W (1-29» 
(3.11.9) 

(ii) O<A~ (l+W) 2 
2 (1+2W(1-6)-W (29-1)) 

f 1.-9 1 O<W< 1 or ~ ~ , ...... 26-1 '. (3.11.10) 

and A is unrestricted for ~2!-1' The effect of the numerical 

diffusion may be reduced by rewriting equation (3.11.6) as 

(1+2A9W)U .. 1-2A6WU. 1 . 1 = AKU. 1 .+{1-2A (K+(1-9)W}U .. 
1.,J+ 1.-. ,J+ 1.+ ,J 1.,J 

o2u 
+ A{K+2 (l-6)W}Ui 1 .-! (at) (ax)V(-2)' . +atT~ ., 

- ,J ox ~,J ~,J 

(3.11.11) 

2 
The second spatial derivative ~ is then discretised at the mesh 

OX 
point by means of the second central difference to give, 

(U. 1 .-2U .. +U. 1 .) 
= 1.+,J 1.,J 1.- ,) 

2 
(ax) 

By substituting this expression into (3.11.11) yields, 

. - -, 
(l+2A6W)U .. 1-2A6WU. 1 . ·1 = A(K-W)U. 1 .+{1-2A(K-6)W}U .. 

1.,J+ 1.- ,J+ 1.+ ,J 1.,J 

+A{K+(1-6)W}U. 1 .+atT~ . , 
1.-,] 1.,J 

(3.11.12 ) 

(3.11.13) 
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and the finite-difference analogue to (3.11.13) is, 

+A{K+(I-,l)W}ui _l ,j , (3.11.14) 

with a local truncation error, 

a
2

u a
2

u a 3u = -!(6tj{-(-), ,-2Ve (--) , ,+V6 ( 2 )i J+ ••• 
at2 1.,J axat 1.,J ax at ,J 

(3.11.15) 

Similarly,' we can get rid of the effect of the mixed-derivatives such 
2 

as ~x~t by discretising it as, 

(U, , l+U' 1 ,-u, 1 ' l-U' ,J/(6x1lt) 1,J+ 1-,J 1- ,J+ 1J 

and this gives us, 

Ui,j+l = {1-2A(K+W)}Uij+A{KUi+l,j+(K+2W)Ui_l,j}+6tTij 

whose finite-difference analogue is, 

(3.11.16) 

Another explicit scheme can also be derived by first considering 

the hyperbolic part of the equation (3.11.1), i.e., 

au -= 
at -~ . 

ax 

This equation is of the form (2.17.15) with A=V. Hence the Lax-

Wendroff formula of (2.17.16) gives us, 

6t 2 6t 2 
u1.' ,)'+1 = u. ,+tV(,) (6 +'J )u .. +tv (,) (6 -'J )u .. 1.J uX X X 1.) uX X X 1.J 

6t 2 6t 2 
= u .. +tV(,x) (u. 1 ,-u. 1 .)+tv (,) (u. 1 .-2u, .+U, 1 .). 

1J u 1+ ,J 1- ,J uX 1+ ,J 1J 1- ,J 

(3.11.17) 

After having established the difference analogue for the 'convective 

part' 

part' 

of (3.11.1), we are now left with approximating the 'diffusive 

a2u 
---2 by the usual 'central difference formula, 
oX 



= 

1 
2 

(6x) 

2 
8 u. j x ~, 

1 2 ~u'+l j-2U. j +U'_1 j) ; 
(6x) l.. ~ ~ , 
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(3.11.18) 

By combining equations (3.11.17) and (3.11.18), we obtain the final 

approximation to the diffusion-convection equation (3.11.1). i.e., 

u = 
i ,j+l 

2 
{l-2A (K+2W A) }u .. +A{ [K+W(1+2WA) lu. 1 .+[K-W(1-2WA) lu. 1 j 

1.,J 1.- ,J 1.+ , 

with a local truncation error, 

2 3 
(6t) (a u) 

6 at3 i,j 

(3.11.19) 

(3.11.20) 

The stability condition for (3.11.19) is found to be (Siemieniuch and 

Gladwel1 (1976», 

o < A ~ (3.11.21) 

A fully implicit scheme with upwinding to solve (3.11.1) takes 

the form, 

and its analogue is, 

with a local 

T .. 
~J 

truncation error 

a2u 
= -tV(lIX) (-2)' . 

oX ~,J 

+6tT.. , 
~J 

+ .••• 

(3.11.22) 

(3.11.23) 

( 

(3.11.24) 
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As before, the effect of numerical diffusion is minimised by 

replacing the second space derivative in (3.11.24) by the central 

difference (3.11.12). By substituting this into equation (3.11.24), 

formula (3.11.22) is changed to 

+i(u. 1 .-2U .. +U. 1 .)}+ lit Tl.!]' 
~+,J ~/J 1-,J 

(3.11.25) 

While the original equation (3.11.22) is first-order accurate in 

both space and time, equation (3.11.25) is accurate to second order 

spatially. 

The Crank-Nicolson scheme can be derived in exactly the same 

manner as we did by employing the 'averaging' concept for the heat 

equation (3.1.2). We shall need the following equations: 

au 
(~). '+1 
oX 1.,) "% 

(U. . 1-U' j) 
:::: 1.,]+ 1,_ 

lit 

(U. 1 '-12Ui . l+U' 1 . 1) = ! [ 1.+ ,]t ,]+ 1.- ,]+ 
2 

(lIx) 

2 
+O([lIx] ) , 

(3.11.26) 

2 
+0 ([lIx] ) 

(3.11.27) 
(Ui 1 j-2U. '+U'_l j) + + ,_ 1,) 1. , ] 

(lIx) 2 

(3.11.28) 

By substituting these derivatives into equation (3.11.1) yields 

the approximation, 

-0<1 Aui_1 ·+l+(l+AK)u .. l-O<ZAu. 1 . 1 = O<lAu . 1 .+(l-AK)u. ·+O<zAui 1 ., ,J 1.,J+ 1.+ ,J+ 1.- ,J 1.,J + ,) 

(3.11.29) 

where O<l=!(K+W) and 0<2=!(K-W). The truncation error is T=0([lIt]2)+ 

2 
O( [lIx] ). A more general equation than (3.11.29) is given by Peaceman 

and Rachford (1962) and takes the form, 
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(ui . 1-u 'j) K 
,J+ l.~ = -~-[(u. .-2u .+U )+(u . -2u . + 
lit 2 (Ax)2 l.-l,J iJ 1+1,j . i-1,J+1 i,J+1 

V u )) - [u* +u* -u* -u* ) 
1+1,j+1 2 (lIx) 1+! ,j i+! ,j+l i-! ,j i-! ,j+l 

(3.11.30) 

If we choose u~ ,=t(ui l+u.), we retrieve the Crank-Nico1son scheme 
1.+z + 1. 

(3.11.29). If, on the other hand, we take ui+t=ui , then (3.11.30) 

reduces to the 'upwinding' or 'backward-in-distance' formula. The 

upwinding scheme has a truncation error of first order in space. 

However, the method is capable of suppressing oscillations of the 

solution for small Ax. 

Another general formula due to Stone and Brian (1963) is given by, 

1 e 
lit [g(ui ,j+1-Uij)+ T(ui_1,j+1-ui_1,j)+m(ui+1,j+1-ui+1,j)) 

. 2 V E 
=K[tAx (ui ,j+ui ,j+1)) - Ax[a(ui +1 ,j-uij )+ T(ui ,j-Ui _1 ,j) 

(3.11.31) 

The weighting coefficients a,£,c,d,g,e and m have to satisfy the 

following restrictions: 

a + f. + c + d = 1 , 2 
e 

1 g + - + m = . 2 

(3.11.32) 

In approximating (3.11.1), the method devised by Price, Varga 

and Warren (1966) maintains equations (3.11.26) and (3.11.28) but 

replaces (3.11.27) by, 

au (3u .. 1-4u . 1 . l+u . 2 . 1) (_) ~ H. l.,J+ l.- ,J+ l.- ,J+ 
ax i,j+t 2L\x + 

(3u .. -4u. 1 .+u. 2 j) 1.,J 1.-,J 1.-, ] 

2L\x 

(3.11.33) 

This method greatly suppresses unwarranted oscillations of the 

solution and permits the use of a coarse~ spatial grid. However, it 

requires the solution of a pentadiagona1 system which can be time 

consuming. 
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3.12 THE DIFFUSION EQUATION IN CYLINDRICAL AND SPHERICAL POLAR 

CO-ORDINATES 

The non-dimensional form of the equation for heat conduction· 

in three dimensions is ~~ = v2u, which in cylindrical polar co

ordinates (r,e,z) is expressed as, 

au 
at 

(3.12.1) 

If, for simplicity, we assume that U is independent of z, then 

(3.12.1) reduces to the two-dimensional equation, 

au a2u 1 au 1 a2u -=--+--+---
at ar2 r ar r2 ae2 

= 1:. {.1..(~) + .1..(1:. au)} 
r ar ar ae r ae 

(3.12.2) 

with U=U(r,e,t). Finite-difference approximations in polar co-

ordinates analogous to the familiar Cartesian system may be used to 

solve (3.12.2) on the cylinder Rx[":::t~TI, where t denotes time and 

the region R consists either of the unit circle (O:::r~l) or the ring 

(a~r~l). The solution to (3.12.2) satisfies the initial condition, 

U(r,e,O) = f(r,e) , (3.l2.3a) 

where f(r,e) is given for all (r,e) E [, and the boundary condition 

U(l,e,t) = hI (e,t), O~t~T , 

and it also fulfils the additional condition, 

U(a,e,t) = h (e,t), O~tST , a 

(3.l2.3b) 

(3.12.3c) 

in the case of the ring a~rsl. The functions hI (e,t) and ha(e,t) 

are prescribed for all OStST, o~eS2rr. 

We shall first consider the solution of (3.12.2) when R is 

the ring. A polar grid in the re plane is defined by the ooncentric 
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circles r=iAr and the rudial lines 6=jM.~ The peripheral ordering 

of the mesh points is illustrated in Figure 3.12.1. 

We shall call the peripheral of unknown grid points adjacent 

to the boundary r=a. as the first peripheral. and number the remaining 

peripherals in the direction of increasing r. The mesh points are 

the points of intersection of the circles (peripherals) r.=i~r for l. 

i=i i • i i +1 ••.•• i . +(m-l) (=i ). where 
mn mn ml.n max 

and 

(i . -l)~r = a ml.n 

(i +l)~r = 1 max 

(3.12.4) 

(i.e. the radius of the first and last peripherals are i i ~r and m n 

i ~r. respectively) and the straight lines e.=j~e. j=O.l ••••• n-l max J 

where, 
211 

M = 
n 

(3.12.5) 

Hence for Figure 3.12.1. we have m=3. n=8 and ~r=(l-a)/(m+l). 

In the same manner as before. we can derive an explicit finite 

difference analogue of (3.12.2) by using central difference 

approximations for the spatial derivatives and a forward difference 

formula for ~~ at the mesh point (ri.ej.tk)=(i~r.jlf).k~t) to give. 

1 1 
_(_u~i~.~j~.~k7+~1_-u_l.~·~.j~.k~) = {(1-zI)Ui_l.j.k-2Ui.j.k+(1+zi)Ui+l.j.k} 

~t (~r)2 

If we put A = 

{
u .. 1 k-2u .. k+ui . 1 k} + 1.,J-, 1./J'2 ,J+ I 

(riM) 
(3.12.6) 

~t and A' = 
(~r)2 

At 
--~--~2 then equation (3.12.6) becomes. 
(riM) 

1 1 
u .. k 1 = [l-2A+2A')]u .. k+A(l--2·)u. l' k+A(1~2·)u. l' k 1.,J, + 1.,), 1. 1.- ,J, 1. 1.+ ,), 

+A' u .. 1 k+ A 'u .. 1 k; i . ~i~i • O~j~n-l. (3.12.7) 
1.,)- , 1.,)+, ml.n max 
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This can be written in the more compact form as, 

~+l = (I-A)~k + ~ , (3.l2.B) 

where ~ is independent of the ~'s, ~ (k>O) is the vector 

consisting of the values ui . k and, 
,J, 

Di E. 
min 

1. 
min 

Ci D. Ei 
min+l l.min+l min+l 

.... " " .... " " .... '- .... 
= " 

0 

A ..... '- " 

Di = 

E. = 
1. 

and 

0 

2(X+X') 
... 

-X' 
..... 

..... 
" ..... .. 
0 

... 

-X' 

o 

-A (1- .2:..) 
2i 

o 

" 

-X, ... .. .... 
..... 

" .. ... .. 
" ... .. 

-X' 

... 

" ... 
" "- ... 

'- " , '-
.. 

..... ..... E . 
.... "- 1. 

max-l 
"- .... 

Ci D. 
1. 

max max (nmXnm) 

-X' 

0 
• 

" i=i i ,1 . +1, ... ,1 
" m n ml.O max 

" -X' 
"- .. (=i +m-l) . 

min ' 2 (X+X') 

o 
, i=i . ,1 . "+1, ... ,1 -1 

IDl.n ml.n max 

o 
i=1. +1, ... ,i .. 

ffil.n max 

... .. (3.12.Ba) 
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FIGURE 3.12.1 
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Let us now consider the case when R is the unit circle. As 

can be seen from Figure 3.12.2, the nllr mesh lengths n , are arranged 

along each 'diameter such that the centre point of the circle lies 

at the midpoint of a nllr mesh lengthn• This means that if m is the 

number of internal peripherals, then Ilr 2 
= (2m+l) • For this region, 

the first peripheral is of radius 1l2r , so that since r. =i. Ilr 
l.min ml.n 

we get i i =t. Hence, when the explicit formula (3.12.7) is applied m n 

on this peripheral, we find that the coefficient of Ui-l,j,k' i.e., 

1 
(1 -"::"2 i-:-=--) =0. 

min 
If the grid points (in Figure 3.12.2) are ordered 

in the same way as in Figure 3.12.1, then we obtain an analogous 

system of equations to (3.12.8) where in this case, i i =! (which mn 

from (3.12.4) is equivalent to defining a - 1l2
r ). Hence for the 

, 11 t , ___ -",Il:.:t,-=- __ 11 t 
circle, we have 1\ = and 1\' = 

(Ilr)2 (r. M)2 (!(llr)(M»2· 
1. 

min 

For the stability of the explicit formula (3.12.7), we must 

have from (3.12.8), the condition, 

!!(I-A)!!lfl, (3.12.9) 

where I-A is the amplification matrix. In the L~ norm, this 

becomes, 

!!I-A!! = max{!1-2(A+A') !+2(A+A')} If 1 
i 

if 

Now, 

where A" :::: 

max{4(A+A')} ~ 2. 

maXA' 
i 

i 

Ilt. 

max { 
i 

Hence, the stability condition is, 

A + An ~ t . 

An 

(3.12.10) 
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FIGURE 3.12.2 
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When R is the ring (a" r~ 1), condition (3.12.10) is equivalent to 

6t 6t 
2 

+ 2 ~ 0.5 , 
(6 t) [(a+6r)6a) 

(3.12.11) 

and when R is the circle (~r~ 1) , (3.12.10) becomes I 

6t + 46t 
~O.S 2 [6r68 )2 

. 
(6r) 

(3.12.12 ) 

By meanS of the Taylor series approximation, the local 

truncation error of the explicit approximation (3.12.7) is given by 

T .. k = Mt 
1,) , 

(68)2 

2 
l2ri 

+ ••• (3.12.13) 

Due to the poor stability of the above method, a natural 

recourse .is to develop implicit schemes for two dimensional problems. 

The reader may consult, for example, the work of Gane (1974), in 

which the two-step Peaceman-Rachford process and the hopscotch scheme 

were applied to solve the heat conduction equation (3.12.2). 

The heat conduction equation ;~ = v2u in spherical polar co

ordinates (r,$,8) is given by, 

au 
at 

= .l.[.l.-(r2 au) + ---=l~ 
2 ar ar . 2a 

r S1n 

(3.12.14) 

1 a au 
sine a-e (sine a-e») • (3.12.15) 

It is of interest to note that when the cylindrical problem (3.12.2) 

is symmetrical with respect to the origin, then the equation reduces 

to au a2 u 1 au 
- = -- + --. 
at 2 r Or or 

(3.12.16) 



with 
au 

= 0 at r=O • 
ar 
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(3.12.l6a) 

Similarly, the spherical symmetry of the heat problem (3.12.14) 

leads to, 

and 

2 aU 
rar' 

au 
ar = 0 at r=O • 

(3.12.17) 

(3.l2.17a) 

By an appropriate change of variable that exaZudes r=O, the above 

problems can be solved by simpler equations. The change of the 

independent variable defined by R=log r, transforms the cylindrical 

. 2R aU a
2u 

equat~on (3.12.16) to e at = -:2 
aR 

o~ the dependent variable given by 

aw a2w 
equation (3.12.17) to o-t = ---

o ar2 

By the same token, the change 

w . 
U = - , transforms the spherical 

r 
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3.13 EXPLICIT METHODS FOR SPECIAL GEOMETRIES 

We now consider the following one-dimensiona1 problem 

O<r<l, 0< tlOT , (3.13.18) 

, (3.13.19) 

subject to, 

U(r,O) = f(r), OlOrlOl , 
(3.13.19a) 

and aU(O,t) = ° U(l t) =0 ar " , O~t~T • 

For a=O (the Cartesian plane case), equation (3.13.18) reduces to 

the aforementioned equation (3.1.2). For a=l, we get equation 

(3.12 .16) whilst a=2 gives us (3.12.17). We note that, if the 

variation of the function U along the cylinder (a=l) cannot be 

neglected (this happens when the height of the cylinder is not very 

large in comparison with the diameter), then instead of the one-

dimensional equation (3.13.18), the two-dimensional equation, 

au = 1:. ~(r~) + a
2

u 
at r ar ar a 2 

2 z 
_ a U 1 au a2u 
---+--+--

ar2 r ar az2 

(3.13.20) 

(3.13 .21) 

is used, with the condition, 

au . 
a;(O,z,t) = ° . (3.13 .22) 

An explicit finite-difference approximation to (3.13 .19) is 

given by 

i.e. I 

a u, . +-
1.,) r

i 
for i~1,2, ..• /m-l 

(u. 1 .-2u .. +u. 1 .) 
1-,J 1.) 1.+ ,) a 

2 + 
(l1r) r 1 

(3.13.23) 

(u. 1 .-u. 1 .) 
1.+,] 1.- ,] 

211r 

for 1=1,2, ••• ,m-I. (3.13 .24) 



228 

After rearrangement of terms. this becomes. 

= A [ (1 
at.r 

- --)u . + 
2ri i-I.) 

at.r . 
(1+ -2 -)ui 1 .1+(1-2A)u. j' r. +,J 1., 

~ 

for i=1.2 ••••• m-l. (3.13.25) 

Another explicit approximation takes the form. 

t.r a Ilr a t.r a t.r a 
(r. - -2) u. 1 j - [ (r. - -2) + (r . + -2) 1 u .. + (r . + -2) ui 1 . 

= 1. 1.- ,_ 1. 1. 1.J 1. + ,] 
a 2 

r i (t.r) 

for i=1.2 ••••• m-l. (3.13.26) 

which on simplification reduces to. 

t.r a 
(r i + 2) } 1 u ij ' for i=1.2 .... m-l. 

Now. in view of the condition ~~(O.t)=O at the axis 

r=Q, we have, 

auj' l' - = = at r=O r-+O 

2 
(~.;. ~~) 

2 r ar ar 
lim 
r-+O 

aU/ar 
r 

and accordingly. for i=O. we use the approximation. 

(u 1 .-2uo .+ul .) 
- ,] ,) ,J 

(t.r) 2 

(3.13.27) 

(3.13.28) 

(3.13 .29) 

The fictituous value u 1 . is eliminated by using the approximation 
- • J 

at the axis r=O, i.e., 

o . 

This gives us u_l •
j 

= ulj and with this value. equation (3.13.28) 

is simplified to 
(3.13.30) 
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Equations (3.13.30) and (3.13.25) can be combined and written in 

the matrix form as, 

(3.13.31) 

T 
where ~j=(uOj,Ulj,U2j, .•• ,um_l,j) and r is the (mxm) amplification 

matrix given by, 

1-2 (l+a lA 

r = 

When, 

2 (l+a lA 

(1-2).) 

a ). (1- -) 
4 

o 

).(1+ ~) 

(1-2).) 

..... 
..... 

.... 

..... 

1 
). ~ 2 (1+a) 

). (1+ ~) o .... 
..... 

..... .... 

(3.13.32) 

the sum of the moduli of the terms along each row of r is less than 

or equal to 1. Therefore, by Gerschgorin's fir8t theorem, the 

spectral radius, p(r)~l, giving stability. We note that the 

condition (3.13.32) is in fact the stability requirement of the 

equation (3.13.30) for the left boundary whilst the stability 

condition for (3.13.25) turns out to be 

(3.13.32a) 

for a=O ,1 ,2. It is clear that it is possible to achieve a better 

overall stability bound by improving the stability range of 

(3.13.30). Instead of the explicit equation (3.13.30), we shall 

use the following implicit approximation for the left boundary, i.e., 

(ul . +l-uO . +1) ,) ,J (3.13.33) 
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This formula may be used explicitly. To do so, it is only necessary 

to arrive first at the value of u
l 

. 1 by the formula (3.13.25). 
,J+ 

Equation (3.13.33) can then be readily rewritten as 

= 
(u . +2 (1+,,) AU

l 
. 1) 

OJ , J+ 
(1+2 (1+,,) A) 

(3.13.34) 

which is stable for all values of A. 

From Taylor's series expansion, it can be easily ascertained 

that the truncation error of 

TO . 
,J 

(3.13.33) or (3.13.34) is, 

(1+,,) 2 a4u 
12 (t.r) (4) .+ ••• ar O,J 

It can be similarly derived that the local truncation error of 

4 3 

(3.13.35) 

(3.13.25) is given by, 

a2u 
= !L'lt(-2) i . 

at ' J 

2 " a u 
- (L'lr) {24 (4)' . ar ~,J 

+6" (_a_~)i .}+ ••• (3.13.36) 
r i ar ,J 

Hence, from (3.13.35) and (3.13.36), we find that the local 

truncation error of the explicit method (3.13.25) when applied to 

the aartesian pZane ("=0), ayZindriaaZ (,,=1) and spheriaaZ (,,=2) 

problem is, 
T = O(L'lt) + 0([L'lr]2) • 

Let us now return to the second explicit formula (3.13.27). 

As before, the left boundary at the axis is determined either by 

equation (3.13.30) or equation (3.13.33). The latter, however, is 

the best choice because of stability. It can also be shown by the 

application of Gerschgorin's theorem that the conditions for stability 

of (3.13.27) are, ri if ,,=0 or I, 

A S li (3.13.37) 
if ,,=2 
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An expression for the local truncation error at the mesh point 

2 
Again, we find that T=0(6t)+0([6rl ). 

+ ••• (3.13 .38) 

We now proceed to discuss briefly the numerical solution of the 

cylindrical heat conduction equation in two dimensions given by 

(3.13.21). Instead of equation (3.13.27), for example, we have the 

equation (with ~=1 and for simplicity, we assume 6r=6z), 

6r 6r 
(u .. k l-u . j k) [(1- -2-)u. 1 . k-2u .. k+(l+ -2-)u. 1 . kl l., ), + l." r l.-) l. ) r l.+ ) - - i It I' i I' 

6t = ---=-----0------=-----2 
(6r) 

[u. j 1,k -2u .. k+ui . 1 kl + l., - l.,), ,)+, (3.13.39) 
(6r)2 

This can be rearranged as, 

u .. k 1 1, J, + 
{ 6r· 6r 

= (1-41.)u .. k+1. (1- -2-)ui 1 . k+ui j 1 k+(l+ -2-)u. 1 . k 
1, J, r i-' J, , - , r i 1+, J, 

+U i . 1 k} , , J+ , 
(3.13 .40) 

with the stability ratio 1.~1/4. At the axis r=O, equation (3.13.21) 

transforms to the equation, 

au 
-= at 

and accordingly, equation (3.13.39) is replaced by, 

(u. -u.) 
o,),k+l O,),k 

6t = 2 
(u . -2u . +u ) 

-l,),k O,),k 1,j,k + 

(6r)2 

(u . 1 k-2u . k+u . 1 k) O,J-, O,J, O,J+, 
2 

(6r) 

In view of the condition (3.13.22), we have u 1 . k=U1 . k' 
- ,J, I]' 

(3.13.41) 
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Thus, equation (3.13.41) becomes, 

u 'k 1 ~ (l-6A)u j k+A(U '-1 k+u '1 k+4Aul ' k) O,J, + 0, I 0,], O,J+, ,], 

(3.13.42) 

which is stable only forA~1/6. This, inevitably, affects the 

overall stability of the explicit scheme which approximates the heat 

conduction equation. An implicit approximation is therefore employed 

by "shifting" the first term on the right-hand side in (3.13.41) from 

the kth level to the (k+l)th level to give, 

(u, -u,) 
0,] ,k+l 0, J ,k 

fit 

4 (u, -u, ) (u, -2u, +u ) 
~ _.....;l:.!,~J'-',,,k=-+-;l ..... ...;O:.,""J<.!..:, k:.:,+.;.l=- + 0, J -1 ,k 0, J , kO, j +1 , k 

(IIr) 2 (IIr) 2 

(3.13 .43) 

or, 
1 

UO,j,k+l ~ (l+4A) {4AU1,j,k+l+(l-2A)UO,j,k+A(uO,j_1,k+uO,j+1,k)} 

(3.13 .44) 

The values 9f u
l 

' k 1 are first obtained by the explicit formula 
, J, + 

(3.13.40). FormUla (3.13.44) is stable even for A~! and the stability 

of the fundamental scheme (3.13.40) is therefore not dominated by this 

ratio. We observe that rather than approximating equation (3.13.21) 

at the axis, we could have simply used UO,j,k~Ul,j,k by virtue of 

the condition (3.13.22). In doing so, however, the local truncation 

error of the approximation at the axis (r~O) is T~O(fir) whereas the 

local truncation error of the difference analogue (3.13.40) at mesh 

points away from the axis (r>O) is T=O(fit)+O([ firj 2). 
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3.14 IMPLICIT METHODS FOR SPECIAL GEOMETRIES 

A fuZZy impZiait saheme to approximate (3.13.19) at the mesh 

points not on the axis (r)O) can be derived by using central 

difference analogues for the spatial derivatives and the usual 

au forward difference for -at Our approximation, therefore, takes the 

form, 

_1_(0 u-o u ) + 
(ar)2 ri+t,j+l r i-t,j+l 

a 1 
(iar) (211r) 

(1I u i ' 1+"1 u, , 1) r ,J+ r 1.,J+ 
(3.14.1) 

which on expansion becomes, 

or, 

-PiU' 1 ' l+(l+2A)u, j l-q ,u, 1 ' 1 = ul.')' , 1.- ,J+ 1., + .1 1.+ ,J+ 
(3.14.1a) 

for i=l,2, .•. ,m-l, 

where (3.14.2) 

At the axis, the equation yielding the boundary values on the left is 

given by (3.13.34), i.e., 

[1+2 (l+a) AJ u '1-2 (Ha) AU1 ' 1 = 
0,)+ ,)+ 

(3.14.3) 

Bearing in mind that u ,=0 from 
m,) 

(3.13.19a) , equations (3.14.3) and 

(3.14.1) can be combined in matrix form as, 

fl+2 (Ha) >- -2 (1+a)>- U
o 

U
o 

-Pl (1+21.) -q u1 
u

1 1 
0 

-P2 (1+21.) -q2 u 2 u2 ... , = ..... ..... , , .... ... ..... ... .... ... .... , ..... I .... ... ..... , ..... I I 

l 
, ... .... , u u 

0 
-p (1+21.) -qm-2 m-2 m-2 
~ m-l 

-Pm- 1 (1+2A~ ~m-1 u 
j m-l 1 j 



i.e. AU = u 
-j+l -j 

or u = ru 
-j+l ""1 

-1 
where r=A ,the amplification matrix of order (mxm). 

NOW, the matrix A of order (mXm) can be split as 

A = I+AC 

where, 

C = 

and 

2 (a+l) -2 (a+l) 

-c 
1 

2 -d 1 

-c 2 -d 2 " 2 
" " 

" " , " " .... 
" .... 

" 

" " " 
" " .... 
-c m-2 

" 
" 
" " " " , 2 

-c m-I 

a a 
c i = 1 - 2i and di = 1 + 2i ' for i=1,2, ••• ,m-l. 

For our special geometrical problem, a=l or 2. 

that for these values of a, C is positive definite. 
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(3.14.4) 

(3.14.5) 

(3.l4.6) 

l 

-d 
m-2 

2 (mxm) 

It is clear 

If we let T). 
1. 

to be the eigenvalues of C, then this implies that Tl
i 

are all real 

and positive. Hence, from equation (3.14.6), 

1 
~i = (l+AT).} 

1. 

i=O,l, ... ,m-l 

-1 
Where ~i are the eigenvalues of A It is obvious that 1~.1<1 for 

1. 

all positive A. Thus, the jUtty imptiait saheme is unconditionally 

stable. 

The local truncation error of (3.14.3) at points on the axis is 

given by (3.l3.35), i.e., 
2 

T . = !llt(a ~} . 
0,] at 0,] 

(l+a) (' ) 2 
+ 12 ur (3.l4.7) 

The Taylor series expansion for (3.14.1a) at the mesh point (r.,t.) 
1. ) 



for r,>O also yields, 
1. 
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au aU 
= (2A-(Pi+q i) )Ui,j+lIdPi-qi) (ar) i,j +lIt(l+(2A-(Pi +qi») (at) i,j 

2 a
2

u a
2

u 
-HlIr) (Pi+qi) (ar2 ) i,j+(lIr) (lit) (Pi-qi) (arat) i,j 

2 
+!(lIt) (l+(2A-(p,+q,») 

1. 1. 

1 3 a3u . 
+ -6 (lIr) (pi-q,) (-3)' , 

l. ar l.,J 

2 a3u 
-!(lIr) lIt(pi+q,)( 2 ), , 

1. ar at 1.,) 

2 a3u 
+ !l\r(lIt) (P,-qi) ( 2)' j 

l. arat l., 

1 3 a3u 
+ -6 (lit) (l+(2A-(p,+q,») (-3)i ' + ..• 

l. l. at ,) 

au a
2

u au a 2 a
2

u (lit) 2 
= lIt{ ('t)" - (-2)' , + .. ~.+:;-) i ,}+ - (lit) (-) +-

o l.,) ar l.,) r
i 

or ,J r
i 

arat i,j 2 

Therefore, 

3 
2a au 2 " 0 u 

lItF(-:;-), j) + (lIr) -6 (-3) i ' 
r i or l., r i or ,J 

+ (lIt)2 

a 2 
+ -2 -(lit) 

r
i 

2 2 "ou au 
(-(O-;;-t) i ,+H-2), ' 

r i oro ,J at l.,) 

(3.14.8) 

2 
we see from (3.14.7) and (3.14.8) that T=O(t)+O([lIr] ) for the 

fully implicit scheme. 

By averaging the central difference approximations for the 

spatial derivatives at the jth time level and the (j+l)th level, 

we obtain the following Crank-NicoZson anaZogue of the differential 

equation (3,3.19), 

1 1 2 2 " 
-"-t6t u l.' J' = ! -""""2""( 6 u, , 1+6 u, , } + (7;""') 

(6r) r l.,J+ r l.J . l.ur 

(lI u, , 1+'1 u, , l)+(lI u, ,+'1 u, ,) H r l.,J+ r l..)+ r l.J r l.J 
2l1r 

(3.14.9) 
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1 
= --=-'2{(ui 1 ' 1-2u , , l+u , 1 j l)+(u, 1 ,-2u ,+U, 1 ,)} 

2 (llr) + ,J+ ~,J+ ~-, + ~+ ,J iJ ~- ,J 

for i=1,2, •.. ,m-l. (3.14.9a) 

This leads to the tridiagona1 system, 

!P,u'_l '+l-(l+A)u, '+l+!Qiu , 1 j 1 
~ 1. ,] ~/J 1+ , + 

where, as before, 

Pi = (1 - 2(>i) A, qi = (1+ 2(>i)A , i=1,2, ••• ,m-1, (3.14.11) 

By virtue of equation (3.13.28), the approximations for points on the 

axis are given by, 

1 
-ll u = (1+(» ! 
lit t O,j 

(uo '+l-uO.l (1) 
--~'~J~'=t~~J- = +(> {u , -2u ,+U , +u ,-2u ,+U ,} 

u 2(llr)2 1,J+1 0,J+1 -1,J+1 1J OJ -l,J 

which leads to (with u 1 j=u1 ,), 
- I , J 

[1+ (l+a) Al u '1- (l+a) AU
1 

' 1 
O,J+ ,J+ 

(3.14.12) 

In matrix notation, equations (3.14.12) and (3.14.10) can be written 

as, 
(3.14.13) 

where, 



A = 

B = 

and 

-l-(l+ex }A 

1 
~1 

-1+ (l+ex}A 

1 
-zPl 

(l+ex) A 

-(1+A) 1 
Z'l1 

1 
- (l+A) ~2 

" , , , , 
" , 

o , 
" 

-(l+ex}A 

-(1-A) 1 
'2'l1 

1 -(I-A) -zP2 
" 

1 
Z'l2 , 

, , , , , 
" " 

" 1 
~m-2 

1 --rr2 

o 

" " " " , 
" " '1 
-(l+A) = 

2 ""tn-2 

1 
zi'm-1 

0 

-(l+A) 

, , " , 

o 

" " , , 
" 

" 

" 

, 
" , " , , , 

" , , 
1 

-2Pm-2 -(l-A) 

, 
1 

-i"m-2 
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(mXm) 

(3.14.14) 

1 ·-(1-A) -zPm-l (mxm) 

T 
u. = (uO j' u1 .••••• U -1 .) • -] , ,J m,J 

If we let. 

2 (l+ex) 

c = 

-2 (l+ex) 

o 

2 -d 
1 

-c 2 
2, " 

" " 

-d 
2 

" " " 
" " " -c 

l 
0 

" " " " (3.14.15) 

" " " " , 
" " 

m-2 
2 -d 

m-2 

-c m-I 
2 J (mXm) 
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then A 
A = -(I+ ZC)' B = k-r 

2 
(3.14.16) 

From equation (3.14.13), we have 

-1 
u, 1 = A Bu, , 
-J+ -J 

= ru. 
-J 

(3.14.17) 

(3.14.18) 

where r is the amplification matrix of the Crank-Nicolson scheme. 

Now, if the ~, are the eigenva1ues of A-IB corresponding to the 
~ 

eigenvectors v,, then the equation defining ~. and vi is 
-1. 1. -

-1 
(A B-~.r)vi = 0 , 

~ -
or equivalently, 

(B-~.A)v, = 0 • 
~ -~ 

On using the relation (3.14.16), we obtain, 

{~2(l+~,)C+(~.-1)r}vi = 0 , 
~ ~ -

(3.14.19) 

(3.14.20) 

which shows that A(l+~,) are 
~ 

the eigenvalues of C. Hence, if we 

denote n. as the eigenva1ues of C, then 
~ 

or 
(2-AI1

i
) 

~i = (2+>-11,) 
~ 

(3.14.21) 

We observe from (3.14.15) that the matrix C is positive definite 

for the values of a equal to 1 or 2. This implies that n., the 
~ 

eigenvalues of C are all real and positive and we deduce from 

(3.14.21) that 1~,1<1 for all values of A. Therefore, the Crank
~ 

Nicolson formula possesses unrestricted stability. 

To determine the order of accuracy of this scheme, we again 

resort to Taylor's series expansion for equation (3.14.10). Hence, 
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a aU aU 
= [-(-;;-). . - (at)' j r. or 1.,J .1., 

1. 

3 
a 2 a u 

+ -6 (6r) (-3)' j 
r i at 1., 

+ ...... , 

which reduces to, 

a =--
6r

i 

(3.14.22) 

2 2 
Therefore, T .. =O( [t.r] )+O( [t.t] ). In the same manner, we also 

l.J 

find from (3.14.12) that TOj = O([t.r]2)+O([t.t]2). We conclude 

that the Crank-Nicolson approximation to solve our special geometrical 

parabolic problem (a=l and a=2) is second-order accurate in both 

radial space and time. 
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3.15 IMPROVING THE ACCURACY OF FINITE DIFFERENCE SCHEMES FOR DIFFUSION 

EQUATIONS IN CYLINDRICAL COORDINATES 

We shall restrict ourselves to solving the cylindrical problem, 

aU a2u 1 au -=--+--
at ar2 r ar 

(3.15.1) 

and develop methods (due to Po1ak (1974» to improve the accuracy of 

the solution. 

In conformity with the convention of Section 3.8, equation (3.15.1) 

can also be written in the form, 

2 
DtU = L (D ,D ) U • t: r 

(3.15.2) 

The a-weighted schemes of (3.10.12) may be employed to approximate 

the solution of (3.15.2), i.e., 

2 
exp«9-1) (&)L(D ,D »Ui j 1 

r r , + 
2 

exp(9(~t)L(D ,D )U, , 
r r 1,J 

(3.15.3) 

As we have seen in the last section (cf. equation (3.14.1) aentrat 

difference approximations are again used for the derivatives in 

(3.15.3) • 
1 2 

Hence Dr is replaced by 2~r02r and Dr by 

we note that, 

and 

O
2 

U, j = (~ +V )Ui j r 1, r r , 

1 2 1 
---=~20 U, , = --=~2(0 U, 1 ,-0 U, 1 ,) 
(~r) r 1,) (~r) r 1+z,) r 1-z,) 

where 

(3.15.4) 

If we neglect the higher order terms of the Tay1or's development of 

the exponential of equation (3.15.3), we obtain the following 

approximation to (3.15.2), 

(1+ (9-1) (~t) L ( 1 202, 
(~r) r 

1 
~ »u, , 
2~r 2r 1,)+1 

1 --=-0
2 

• 2» u , ,. ur r 1.,) 

(3.15.5) 
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Equation (3.15.5) gives us (with a=l), 

the classical explicit scheme (3.13.23) for 6=0, 

the Crank-Nicolson scheme (3.14.9) for 6=!, 

and the classical (fully) implicit scheme (3.14.1) for 6=1. 

We shall now demonstrate the strategy of reducing the truncation 

error of (3.15.3) and hence improve its accuracy by first considering 

the parabolic equation on the plane, 

2 
DtU = DrU • (3.15.6) 

As stated above, by setting 6=! in (3.15.5) we obtain the crank

Nicolson scheme whose local truncation error is T
CN

=0([At]2)+0([Ll.r]2). 

This can be further reduced if 1 2 on the left hand side of (3.15.5) 

1 1 At (Ar) 1 1 1 1 
is replaced by At (6 + 2) (Le. At (6 +;\» and by f;t(6 -;\) on the 

(Ar) 
right. The result is, 

(3.15.7) 

which, in fact, corresponds with the Douglas equation (3.6.4) whose 

truncation error is known to be To=0([At]2)+0([Ar]4). By the same 

token, to investigate the local truncation error of the general 

equation (3.15.5), let uS set, 

1 
a

2 
= -~""2 and 

(Ar) 

1 
S~ = 2Ar ' 

in the left hand side of (3.15.5) and similarly, 

1 
", = -~2"" and 

(Ar) 

1 
S, = 2ir 

in the right hand side of the same equation. This yields, 

(3.15.S) 

(3.15.Sa) 

(1+ (6-1lL<At) ("20;,B202r) lUi,j+l = (l+6 (At)L(a l o;,i\02r) )ui,j 

(3.15.9) 

A judicious choice of the parameters "1,Sl'''2 and S2 will then minimise 

the truncation error. 
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Let us return to the formula (3.15.7) to determine its truncation 

error. From the relation, 

(3.15.10) 

where E is the shifting operator, defined by, 

s s 
ErUij 

= ErU(ri,t j ) 

= U(ri+sllr,t j ) 

au 
2 2 3 a

3
u (sllr) (~) + (sllr) 

= U(ri,tj)+sllr(ar)i,j + (-3)' .+ ... 
2! ar2 i,j 31 ar 1.,] 

i.e. ES 
r = exp(sllrOr) (3.15.11) 

we have, 

6
2 -1 

= E +E -2 r r r 

= exp(lIrO )+exp(-lIrO )-2 (from (3.15.11» , 
r r 

i .. e. 6
2 22 1 44 1 66 

= (lIr) 0r+ 12(lIr) Or + 360(lIr) Or + .. , 
r 

(3.15.12) 

If we put 8=1, in (3.15.3), we find that, 

2 
= exp( (lIt)L(O ,0 ) )U. j 

r r 1, 

2 
= exp ((lIt)Or)Uij (from (3.15.6» (3.15.13) 

= (l+(lIt)02+ 2\ (lIt)2 04 + 31, (lIt)306+ ... )u .. 
r. r . r 1.] 

(3.15.13a) 

The substitution of the truncated series of (3.15.12) and (3.15.13a) 

into (3.15.7) yields, 

1 2 2 1 4 4 1 2 2 '1 4 4 
(l+! (6+A) [(lIr) Or + 12 (lIr) Or] )Ui,j = (1+! (6-A) [(lIr) Or + 12(lIr) Or]) 

2 2 4 
(l+(lIt)O + !(lIt) ° )U .. +To ' 

r r 1.,] 

Hence the local truncation error is given by, 
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141141 21 24 
+{12(t.r) (!("6+A»-1 12 (t.r) (!(i(),»+!(t.t) +Hi5-A)t.t(t.r) ]}Or(Ui,j) 

+t.t{1 41(t.t)2 + (t.r)4)06 + ~(! _ ~t.~t~2) (t.r)408+",}U
i 

0 

144 r 48 6 (t.r) r ,J 

The coefficients of the differential operators 0
2 

and 0 4 are all 
r r 

equal to zero, i.e., 

2 
for Or' 

!(i+A) (t.r) 
2 

= !(~ A)+t.t 

and for 04 
r' 

141 141 21 2 
12 (t.r) (!(G'A» = 12(t.r) (!(6'A»+!(t.t) +!(6'A)t.t(t.r) _. 

Hence, the truncation error is 0 ( It. t)2) +0 ( It.r)4) • 

We are now in a position to construct an analogous higher 

order approximation to the differential equation (3.15.1). As a 

solution to (3.15.1), equation (3.15.5) 

0
2 ° 

(1+(8-1) (t.t) ( r 2 + 2r~~r»Ui,j+l = 
(t.r) l. 

can be written as, 

0
2 

(l+8(t.t)( r
2 

(Ar) 

°2r 
+ 2 A »Ui o' r our ,J 

l. 

(3.15.14) 

In particular, with 8=!, the Crank-Nicolson formula is, 

0
2 

1 r 
(1-!t.t(2r

i 
(t.r) °2r + -(t.~r~)~2»Ui,j+l = 

(3.15.15) 

which has a truncation error O(It.t)2)+O(It.r)2). The corresponding 

form of (3.15.9) for equation (3.15.1) is 

2 1 2 1 
(1+(8-1)t.tla20 + - S2 02 ) )uo 0 1 = (l+8t.tla10 + - Sl02 ))ui o· 

r r i r 1., J+ r r i r , J 

(3.15.16) 

If we set, 
(8-1) (t.t) S2 
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equation (3.15.16) becomes, 

(3.15.17) 

If we put 6=1 in (3.15.3), we get, 

exp(lItD )U .. 
1 2 

Ui ,j+l = = exp(lIt(-- D +D ))U. j (3.15.18) 
t ~,J r. r r 1, 

~ 

(1+ lit D + (IIt+ (lit) 2) 0 2 + (lit) 2 3 . 2 4 
= D +i(lIt) D )U .. ' (3.15.18a) 

r. r 2 2 r r. r r 1,J 
~ r. ~ 

~ 

We also have, 

IIrD -lIrD 
=e r-e r 

i.e. (3.15.19) 

The substitution of the truncated series of (3.15.12), (3.15.18a) and 

(3.15.19) into (3.15.17) leads to, 

lit x (1+ -- D +(lIt+ 
IIr r 

(ilt)2)D2+ (IIt)2 3 1 2 4 
2 r '==--D +-2(lIt)D)]U .. +T, 

2 
r..; r r 1,J 

r
i 

~ 

(3.15.20) 

where T is the truncation error. By multiplying the terms of the 

right hand side in (3.15.20), we obtain, 

lit 2 
+ --)D +(b

2
. (IIr) +lIt+ 

r. r l. 
~ 
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1 3 (lit) 2 
(lIt)2) 

2 
lItb

2 
. (lIr) 3 + (J'i2i (lIr) + + 2a

2i
llr(lIt + 1. ) 0 r

i 
+ 2 r. r 

2r. 1. 
1. 

1 4 (lIr) (lit) 2 1 (lIr)3 l1t 2 (lit) 2 
+ (12P2i(lIr) +2a2i + J'i2i + b

2
. (lIr) (lit I 2) 

r
i 

r
i 1. 2 (lIr) 

1 2 4 b 2i 4 
+z(lIt) )Or +(12r

i
(lIr) lit 

2 2 
b 2 (lIr) (lit) 5 1 2 2 1 3 2 1 4 

I )Or+(2I'2i (lIr) (lit) + 3r a 2i (lIr) (lit) + 1?2i (lIr) 
r i i 

(lIt+ 
(lit) 2 6 1 3 2 1 4 2 7 

2 })O +(""'6 2' (lIr) (lit) + -12 b 2 · (lIr) (lit) )0 + 
2 r 1. r i 1. r r

i 
1 4 2 8 

z:4b2i (lIr) (lit) 0r]Ui,j+T. (3.15.21) 

By equating the coefficients of the differential operators of each 

side, we find that, 

for 0 , 
r 

2 
for 0 , 

r 

3 
for 0 , 

r 
1 3 Jdli (lIr) 

4 
and for 0 , 

r 

2 
= b

2i
(lIr) +lIt+ 

_.!: (,)3 (lit) 
- 3a2' ur I 

1. r. 
1. 

2 

(lit) (lIr) 
+ 2a

2i 

+2a
2i 

(lIr) (lit + 
(lit) 2) 

2 + 
2r

i 

(3.15.22) . 

(3.15'.23) 

(3.15.24) 

1 4 l¥'li (lIr) 

2 
1 4 2a

2i 
(lIr) (lit) 

= 1?2i(lIr) + 
1 (lIr) 3 (lit) 

+ 3""2i + 

2 
+b

2i 
(lIr) (lIt+ 

From equation (3.15.22), we introduce, 

lit 
a1i = F + 4(lIr)r. 

1. 

and from (3.15.23), 

(lit) 2 1 2 
2 )+ 2'(lIt) • 

2r. 
1. 

lit F _ ..,...,..,.=-:o..-
4(lIr)r. 

1. 

r
i 

(3.15.25) 

(3.15.26) 
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F (lIr)r, ' 

l. 

; B- lit 
2 (lIr) 2 
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(3.1S.26a) 

for some F and B. If we substitute (3.15.26) and (3.1S.26a) into 

(3.15.24) and neglect terms of order 0([lIt)3), we find that, 

(3.15.27) 

A further substitution of (3.15.27) into (3.15.25) results in 

1 B ;-
12 

(3.15.28) 

3 4 
where, here, we have ignored terms of order O([lIt) +(lIt) (lIr] ). 

Thus, since r.=i6r, we obtain, 
l. 

1 1 1 
b
li 

; 2(~(1 + --2)1.) , 
12i 

(3.15.29) 

1 1 1 ; -(- - (1+ --) A) 
2 6 12i2 

(3.1S.29a) 

With these values our truncation error in (3.15.21) will then be, 

1 4 1 
T; {72(lIr) (1+ 2r,) 

l. 

Hence, 

3 2 
- -(lit) + 

4r
i 

(lit) 2 (lIr) 2 
24r

i 

4 
(lit) (lIr) (1 

144r
i 

Po1ak (1974) also showed that the aforementioned scheme (3.15./7) 

with the values in (3.15.29) and (3.1S.29a) is always stable. The 

ampZification factor is given by, 

2 2 2 
(1+2b

1i
(x-1» +4a

1i
(1-x ) 

2 2 2 
(1+2b

2i
(x-l» +4a

2i
(1-x ) 

jy I ; (3.15.30) 

To prove that IYI~l for all positive integer i and stability ratio A, 
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1 
and b

2
. =b

1
. - (1+(--2) lA. 

l. l. 12i 
Then, 

2 2 2 
(1+2b

li 
(x-l» +4a

li 
(l-x ) 

2 2 2 
(3.15.31) 

(1+2b
li 

(x-l» +4a
li 

(l-x ) +h (x) 

where h(x) = -4(x-l)Af(x) (3.15.32) 

and 

f(x) 
1 1 2 ali 1 

= (1+2b . (x-l» (1+ --2) - (1+ --2) (x-l) A- -.-(l+x) + -2 (l+x) A-
ll. 12i 12i l. 4i 

(3.15.33) 

It is clear that f(x) is a linear function of x. Hence, for Ixl~l 

or -l~x~l, the values of f(x) must lie between f(l) and f(-l) because 

of the linearity. Furthermore, for the same values of x (i.e. for 

-l~x~l), the factor -4(x-1)A in (3.15.32) is non-negative and from 

2 / 
(3.15.33), f(l)=l and f(-1)-3(1+ 12) which implies that h(x) is non-

negative for Ixl~l. Therefore, from (3.15.31), IYI~l proving that 

the scheme is unconditionally stable. 

It is observed that when the cylindrical equation (3.15.1) is 

approximated by its finite difference analogues as we did in the 

previous sections, the truncation error contains D U and D
2

U. This 
r r 

s 
can be seen by obtaining the time derivatives DtU from (3.15.1) in 

the form, 

= .!.o U+D
2
U 

r r r 

=~U 
3 r 

r 

~U 
5 r 

r 

1 2 
- - DU 

2 r 
r 

2 3 4 
+-DU+DU 

r r r 

3 5 6 + "'D U+D U 
r r r 

(3.15.34) 

2 
and noticing that the terms DU and D U occur in all the time derivatives. 

r r 
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Thus, no matter how accurately DtU is replaced by finite differences, 

the error always contains the lo~ order derivatives of U with respect 

to r. 

To avoid the occurrence of this type of derivatives, Mitchell 

and Pearce (1963) suggested the following transformation, 

(3.15.35) 

which converts (3.15.1) to 

(3.15.36) 

The higher time derivatives of U are given by, 

2 
2D

2
U + 4XD

3
U 

2 4 
DtU = + x D U 

x x x 

3 6D3u + l8xD
4

U 
. 2 5 3 6 

DtU = + 9x D U + x DU 
x x x x (3.15.37) 

and we see that these expressions no longer contain the low order 

derivatives of u with respect to x. 

It is also of significance to note that when finite differences 

are employed to solve (3.15.1) on a rectangular net equally spaced in 

the r-direction, the solution is less accurate in the vicinity of the 

cylinder axis than in the remainder of the field. This is presumably 

due to the term!o U in (3.15.1), which for adeauate representation r r • 

by finite differences, requires points closer together in the r-

direction when r is small. As we have seen, on the axis where r=O, 

2 
the term becomes DU. This difficulty in the neighbourhood of the 

r 

axis may be avoided to some extent by considering a rectangular net 

which is uniformly spacedin the t-direction given by t=j~t (j=1,2, •.• ) 

and unequally spaced in the x-direction indicated by x=i2(~x) 

(i=1,2 •... ). The latter is consistent with equal spacing in the 
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original r-direction. Mitchell and Pearce (1963) proposed the 

following procedure to derive four and five point explicit and implicit 

replacements of (3.l5.36). 

(a) ExpZicit FormuZae 

We consider initially the points P,Q,R and S in Figure 3.15.1, 

where RP=~t, QR={2i-l)~x and RS={2i+l)~x. 

i+1 Q 

i 
'T' R P 

i-l S 

j-l j j+l 

~~---------------------------+ t 

o 

FIGURE 3.15.1 

If equations (3.l5.36) and (3.l5.37) are used to eliminate the time 

derivatives of U{x,t), the Taylor's expansions of U at P,Q and S are 

given by, 

U i+1, j = U. .+(2i+l)A+t{2i+l)2B + t{2i+l) 3c + ... 
1,J 

U. 1 . = u. .-(2i-l)A+t{2i-l)2S _ l{2i-l) 3C + ... 
1.- ,J 1,] 6 

2 2 3 3 
where U .. ,A,B,C ... are the values of U{x,t),~xD U, (~x) D U, (~x) DU, ... 

~/J x x x 

t th . t ( t) d' = ~t. Th l' rob' t' f th a e POill R Xi' j an AT ~x e 1near co illa 10n 0 e 

values of U at the points P,Q,R and S which eliminates A and B results in 
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the four point explicit analogue 

2A (i
2

+A -I) 
T T 1. + 2 u i . 
4i -1 ,J 

= [1 -

2 
A

T
(2i +2i+2A

T
-l} 

4i(2i-l} ui+l,j 

+ 
A (2/ -2i+2A -I) 
T T 

--~4~i~(~2~i-_~17}--=---ui_l,j' i=1,2, ... (3.lS.38) 

and the principal part of the local truncation error is, 

(3.lS.38a) 

The error reduces to - ~ at all points in the field when A
T
=2/3. 

By the Gerschgorin's theorem, it can also be shown that the above 

scheme is stable for AT~/f- A modified formula is used to deal with 

points on the axis. It is 

1 2 2 
uO,J'+l = -4 (4-SA +2A}U j- -3A (A -2}ul . T T 0, TT,] 

AT . 
+ -(2A -l}u 

12 T 2,j 
(3.lS.39) 

AT 2 
with a truncation error of - 31 (3AT-SAT+2}C. This is derived by 

expanding Uo . l'U
l 

"U
2 

. in terms of U and its derivatives at the 
,]+ ,J ,J 

point (O,j) and eliminating the time derivatives of U by using (3.lS.36) 

and (3.lS.37). 

If greater accuracy is required, a fifth point T, where TR=~t can 

be introduced. By proceeding as before, the five point, three-level 

explicit formula is 

+ 

+ 

A~ [12i
4
+l2i

3 
_2i

2 -4i+l-6A~1 
i (2i+l}X 

x u .. l' 1.,J-
i=1,2, a •• (3.lS.40) 
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where (3.15.41) 

The coefficients sum to unity and are positive for all values of i 

if ~).T~. Therefore, by Gerschgorin's theorem, this also 

constitutes the stability condition. The principal part of the 

truncation error in the scheme (3.15.40) is 

where, 

4 4 
o = (fix) (0 U) .. , (3.15.42) 

r ~/J 

and X is as given in (3.15.41). The modified formula used to deal 

with points on the axis is 

= 
- (2-5).T +3A~) 

2 
(2+5).T +3A

T
) 

4)'~ (8-3).;) 
+ -=-----=:....,2;- u l . -

3 (2+5).T+3AT) ,J 

with a truncation error of 

).2 

__ -=-T_-.,._( 24 -11 n; +108)'~) 0 

18 (2+5A
T 

+3),;) 

(3.15.43) 

This is derived in a similar manner to (3.15.39), with the incorporation 

of the additional mesh point (0,j-1). 

(b) Implicit formulae 

From Figure 3.15.1, the optimum four point implicit formula 

involving the values of u at the points Q,R,S, and T is 

[1+ 
2A (i

2
_A -1) 

T T + 2 1 u. . 
4i -1 ~,J 

A
T

(-2i
2

-2i+2A
T

+1) 

4i(2i+1) ui+l,j + 

AT h2i 
2 

+2i+2AT +1) 

4i(2i-l) 
Ui_l,j = Ui,j_l • (3.15.44) + 
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This is obtained in a similar manner to (3.15.38) and the principal 

part of the truncation error is, 

(3.15.44a) 

The values of u at points on the axis are obtained from (3.15.39) 

with the index (j-l) replacing j. The scheme (3.15.44) generates 

a tridiagonal system of equations and is stable if the eigenvaZue of 

minimum moduZus of .the matrix, 

n 2 
T (1- -) 

3 

A (n -3) 2AT (3-AT) AT (2A
T 

-11) T T 1 + 
24 

"-
"-

15 40 ... 
"-

"-..... ..... 

A
T

(-2i
2

+2i+2A
T

+l) 

4i(2i-1) 

... 

"-
2A (i

2
_A -1) 

1 + _T'--,.-_T=--_ 

4i
2 
-1 

2 A
T

(-2m +2m+l+2A
T

) 

4m(2m-l) 

,. 
A (-2i

2
-2i+2A +1) 

T T 
4i(2i+1) 

1 + 

2 
21. (m -I-A ) 

T T 
2 

(4m -1) 

2 
exceeds unity, where m 

1 
4~x (from equations (3.13.18), (3.13.1'ia) 

and (3.15.35». The above implicit scheme has the same order of 

accuracy as the four point explicit formula (3.15.38) but has the 

advantage that if the tridiagonal system is solved by means of the 

simple Thomas algorithm, it is always stable for all positive values 
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3.16 MULTI-DIMENSIONAL SPHERICALLY SYMMETRIC DIFFUSION EQUATION 

Eisen (1966) extended the special geometrical problem of 

(3.13.18/19) to the n-dimensionaL sphericaLLy symmetric diffusion 

equation, 
~ = a 2u + (n-l) a U 
at ai r ar 

(3.16.1) 

subject to the initial and boundary conditions of the form, 

(3.16 .1a), 

where the domain is an n-sphere of-radius Rand 8
1

, 82 are constants. 

By using a similar explicit approach to derive (3.13.24) but with a 

replaced by (n-1) , the corresponding formula to solve (3.16.1) is 

This time, however, we avoid having to approximate U at the axis by 

defining U_t,j=Ut,j' setting i~,%, ••• ,m~ and taking um+t,j=O as the 

boundary condition. When written in matrix form, equation (3.16.2) 

takes the form 

~j+1 = r~ (3.16.3) 

where 

and r, the amplification matrix of order (mxm) is given by, 

(l-nA) rV. 

(1- n-1)A 
3 

(l-2A) 

r = 
(1- n-1)A 

5 ..... 

0 

(1+ ~)A 
3 

(l-ZA) ... 
..... ... 

....... ... 
...... 

o 
..... 

..... 
....... ....... ..... 

n-1 
(1- 2iii=i) A 

(3.16.4) 

..... 
(1-2;\) (mXm) 



We note immediately that, for 

2~n~4 and 
1 

A~- , 
n 

m 
in the L", norm, Ilrll",= max 2 Irjkl = 1 

l:Sj:Sm k=l 
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(3.16.5) 

which implies stability of the scheme for the indicated range of A. 

Eisen (1966) was also able to derive the stability condition of 

equation (3.16.2) for the case n even and n>2. By assuming that r 

of order (mxm) can be partitioned to 

r 
o 

then, 

~l,j+l 
= 

~2 ,j+l 

E.l,j+l 
= 

and E.2,j+l = 

I 

I r 12 
I 
-~---

I 
22 

rll 
I 
I 
I 

(mXm) 

r 12 

_1-
I 

0 
I r

22 I 
I 

rll~l,j + r 12E.2, j 

r 22E.2 ,j 

u l . 
- ,J 

i.e .. , 

~2,j 

where r
ll 

is a pxp submatrix, r
12 

is a submatrix of order pX(m-p) 

and r22 a submatrix of order (m-p) x (m-p) and 

(3.16.6) . 

(3.16.7) 

u
l 

. 
- ,J 

= (u2 ,uz 3 ••• , 
p+l. ~. 

-2-,J Z ,J 

T 
u 1 .) m-z , J 

Eisen then established (the reader is referred to his paper for 

details) that with respect to the L norm, the difference equation 
'" 

(3.16.3) is stable for some range of A if the following conditions are 

satisfied: 
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(i) Equation (3.16.7) is stable for a certain range of A, 

(11) {r12 } is uniformly bounded in the corresponding norm (3.16.8) 

and 

(iii) the spectral'radius, p(rll)<l. 

We shall now attempt to derive the condition of stability for 

equation (3.16.3) for the case n>2. Since n is even, we set n=2(p+l) 

and note that the subdiagonal element in the (p+l)st row of (3.16.4) 

must vanish (we actually have (1- n-l )A and with n=2(p+l), this 
2p+l 

reduces to zero) and that the superdiagonal element in the pth row 

is (1+ ~~:~)A which, in fact, is the only entry of r 12 • Hence 

I Ir121 I~=(l+ ~~:~)A' which readily satisfies condition (ii) of (3.16.8). 

We also have, 

r22 = 

where 

Now, 

if, 

(1-2A) 2A 

" (1-2A) PI " ql 

" P2 (1-2A) 
.... 

" , o 

~ = [1- (2p+l) lA 
Pi 2 (p+i)+l 

max 
l~j~m 

, 

.... 

" 0 
q2 (3.16.9) 

, , .... ........ , 
" 

.... 
" " A 

Pm-p-l (1-2A) (m-pp (m-p) 

and 
.. (2p+l) 
qi = [112(p+i)+11J.. , i=1,2, ... , (m-p-l) • 

(3.16.10) 

This implies that the difference formula (3.16.7) is stable for A~t 

thus fulfilling condition (i). Finally, the matrix r 11 is of the 

form, 



1-2 (p+l) 1- 2 (p+1) 1-

(1-21- ) 

.... .... o 
.... ..... .... " ...... " ..... .... 

o ..... " ... 
.... ... 

... .... ... ... -
PP-1 (1-21-) 

(pXp) 

It is found that r
11 

has an eigenva1ue 1-41- of multiplicity p. 

Therefore p(r
11

) =11-41-1<1 if 

1- < t 
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(3.16.11) 

(3.16.12) 

From (3.16.10) and (3.16.12), we conclude that the explicit method 

(3.16.2) to solve the differential equation (3.16.1) is conditionally 

stable when n is even and 1-<t. 
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3.17 NON-LINEAR PARABOLIC EQUATIONS 

The general case of the non-linear parabolic equation is given 

by 

o , (3.17.1) 

which is defined on D={(x,t)/O<x<l, O<t~T} and with the conditions, 

U(x,O) = f(x), ~x~l 

U(O,t) = g(t) , O<t~T (3.17 .la) 

U(l,t) = h(t), O<t~T 

E . (3 17 1) ( ) J.' f' a U quatJ.on • • becomes F x,t,z,p,q,s =0 we wrJ.te z=U, P-at' 

au a2u 
q~ and s= --2' F is assumed continuous for ·(x, t) E i5 and the oX 

oX aF aF aF aF 
derivatives az' ap' aq and as are bounded in absolute magnitude. 

The following inequalities also hold, 

of a > 0 -> , 
ap -

(3.17.2) 

and aF b < 0 -< 
as ' (3.17.3) 

We shall investigate briefly the c~assicaZ exp~icit difference 

equation for (3.17.1). The corresponding analogue is, 

lltUi j 
F(xi,t. ,u .. , llt ' , ] J.,] 

O2 u .. x ~,J 
2 o u .. 

2llx ' 
x J.,]) 0 2 = , 
(llx) 

and since ~: ~ 0, this can be written as, 

(u .. l-u .. ) 
~/J+ ~,J _ 

't - <I> (x. ,t . ,u i ., 
. u J.] ,] 

O2 u
i 

. x ,] 
211x 

2 o u .. 
X J.,]) 

2 
(llx) 

(3.17.4) 

(3.17.5) 

To derive the local truncation error of (3.17.5), we have, for a 

sufficiently smooth function U, 2 
au. . au. . a u .. 

( U 1,] 1,] ~,J) 
F xi,t j , i,j' at ax ~ ax2 

lltU.. 't a u. . O2 U. . 
1.,J + _u_ 1.,J x 1.,] 

6t 2 at2 26x 

(llx)2 
12 

~ 

3 a U. . 
J.,' (6x)2 

6 
--'-"-, 

""-' a 3 4 x 
a u. . 

J.,]) 

2 o U. . 
2...2:.~ -

(llx) 
2 



05 U • 
2x i,) 

211x 

"'-' 
3 a Ui ,j 

ax3 

Hence, the local truncation error 
............ ....., 2 

(lit) aF a Ui,j (lIx) 2 
Ti . = 

ap -
,) 2 

at
2 6 

is, 

"-' 
aF 
aq 

(lIx) 2 

12 

........., 
a 3u. 

1. I j 

ax 
3 

(lIx) 2 - 12 

"'J 

aF (lIx) 2 
- aq 6 

""-' ....., 4 
aF a U

i 
. 

as 
,) 

ax 
4 
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(3.17.6) 

or T=O(lIt)+O«lIx)2) where the tilde sign indicates that the given 

quantity is evaluated at an appropriate intermediate point. The 

condition of stability for the explicit equation (3.17.4/5) is 

(Saul'yev (1964)), 

aF 
min (ap) 

).. ~ ---:1 a=F"-1 ~-""'2-""'1 a=F 1 
2max as + (lIx) max az 

(3.17.7) 

In the case of the linear parabolic equation, in which of =: 1 of =: -1 
ap 'as 

of 
and az ~O, (3.17.7) reduces to )..~1 which corresponds to the stability 

condition of the classical explicit equation (3.2.1). 

There are other variants arising from the general equation 

(3.17.1) and extensive research has been carried out to construct 

implicit methods to solve them. A full discussion on some of these 

will be deferred to a later chapter as the author feels that it is 

more appropriate to treat them in conjunction with the development 

of a new iterative method. 



3.18 MULTI-DIMENSIONAL PROBLEMS: PARABOLIC EQUATIONS IN SEVERAL 

SPACE VARIABLES 

Finite-difference methods for parabolic equations in several 

space variables can be separated into two categories, namely, as 
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extensions of the difference schemes which have been described before 

and as the alternating direotion implioit (A.D.I.) methods which 

have no analogue in one space dimension at the present time. We will 

confine our attention to discuss methods in two and three space 

variables as they typify the general multi-dimensional problem. 

Let us first consider the two-dimensional heat flow equation, 

au 
at 

(3.18.1l 

in the semi-infinite cylinder O~x~Nl' O~y~N2' t>o with the initial 

condition, 
U(x,y,O) = F(X,y) , 

and the boundary conditions, 

and 

U(O,y,t) = fl (y,t) , 

U(Nl,y,t) = f 2 (y·t) , 

U(x,O.t) = f
3

(x,t) , 

U(X.N
2

.t) = f 4 (x,t). 

(3.18.1a) 

(3.18.1b) 

It is obvious that the region R of the xy-plane is a rectangle. The 

value of U(x.y,t) at the point P(x. ,y .• t
k

) in the solution domain is 
J. J 

denoted by 
NI 

U where x.=iax, y.=jay for O~i~(m+l). O~j"(ml+l) and 
i.j.k J. J 

ax= (m+l) , 
N2 

The increment in t. at is chosen such that 

tk=kat for k=O,1.2 ••.. 

The cZassioaZ explicit equation (3.2.1) generalises to 

Ui,j,k+l = Ui,j,k + (3.18.2) 
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where, as before, we use, 

2 
6 u. j k = X 1., , (u. 1 . -2ui j k+ui 1 . k) 1+,J,k '" -,J, 

and 

To analyse the stability of- (3.18.2), we employ the von Neumann 

criterion by assuming an error of the form, 

€ = ~kexp(ical~x)exp(icB2j6y) 
i, j ,k 

(3.18.3) 

The substitution of (3.18.3) into (3.18.2) and after the cancellation 

of common factors, leads to the amplification factor, 

y = ~k+l /~k 

= 1-4« 6t 2)Sin
2

(B
1
6x/2) 

[6xl 

For stability, we require -l~y~l. By using (3.18.4), the only 

useful inequality is for the left-hand side which gives, 

2 . 2 2 2 
-2~-4«6t/[6xl )s1n (B16x/2)-(6t/[6yl )sin (B 26y/2)) 

and this leads to the condition, 

6t ( 1 2 + 
[6xl 

(3.18.4) 

(3.18.5) 

In particular, for a square region R where 6x=6y=h and N
l

=N2 , this 

condition becomes 

6t 
A = 2" ~ 1/4 

h 

which is even more restrictive than that for the one-dimensional 

problem (A~t). The local truncation error can be easily derived 

using the Taylor's series expansion. From equation (3.18.2), 

T .. k 1,J, 

62 6
2 

U.. l-U" k-6t [ x 2U' . k + .......:..<..Y--;;-I2u . . kl 
1,),k+ 1,), (6x) 1,), (6y) 1,], 

.a£ a2u a2 u 
= ("t)' . k - [(-2")' . k+ (--2)' . kl 

a 1,J, ax L,J, ay 1,), 

(3.18.6) 
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Hence, 
2 2 

TE = O(lIt)+O([lIx] ) + O([lIy] ) (3.18.7) 

To achieve unconditional stability, we may use the following 

backward-difference fuZZy impZicit formuta which is a generalisation 

of equation (3.4.1), i.e., 

(Ui ,j,k+l-Ui,j,0_ 1 2 1 2 
A t - ---"'-;;-2 <5 u. + ---"'-;;-2 <5 u . • 
" (Llx) x l.,j ,k+! (lIy) y l.,j ,k+! 

As above, the amplification factor is found to be, 

1 
y = 2 . 2 2 . 2 

1+4 (lIt/[lIx] )sl.n (8
l
llx/2)+4 (lIt/[lIy] )Sl.n (8

2
l1y/2) 

which is always less than one in magnitude. The local truncation 

error is 

The Crank-NicoZson anaZogue of (3.18.1) is 

(u . . k l-ui . k) 
1,], + ,], = H 1 

(lIx) 2 lit 

The amplification factor works out to be, 

y = 
1- [2 (lIt/ [lIx]2) sin 

2 
(8

1 
lIx/2) +2 (lItAlIy]

2 
) sin 2 

(8
2

l1y /2 )] 

1+[2(lIt/[lIx]2)Sin
2

(8
l
llx/2)+2(lIt/[lIy]2)Sin2

(8
2

l1Y/2)] 

(3.18.8) 

(3.18.9) 

(3.18.10) 

(3.18.11) 

(3.18.12) 

which is clearly less than one in magnitude. Therefore, the Crank-

Nicolson-formula is always stable with a local truncation error given 

by, 2 2 2 
TCN = O([lIt] ) +O([lIx] )+O([lIy] ) (3.18.13) 

Although the implicit equations (3.18.8) and (3.18.11) are 
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unconditionally stable, they are much more difficult to solve than 

their one-dimensional equivalents. The Crank-Nicolson equation, 

for example, requires the solution of an [mnxmn) linear system of 

equations to advance to level t=tk+
l 

from level t=tk • Each equation 

of (3.~.11) involves five unknowns (ui _l ' k l,ui '-I k,ui ' k l' 
, J, + ,]., , J I :+-

u, 1 ' k l,ui ' 1 k 1)' and hence the system is no Zonger tridiagonaZ 
~+ I J, + , J + I + 

and can lead to labcrious computation. This drawback is countered by 

introducing the A.D.I. methods which are intended to simplify the 

solution of the algebraic equations and to preserve unconditional 

stability and reasonable accuracy. 

Let us first consider the heat equation (3.18.1) on the unit 

square, with ax=ay. For arithmetic simplicity, we wish to retain 

the tridiagonal nature of the resulting equations of our approximation 

to (3.18.1). This can be achieved by allowing only one of the spatial 

derivatives to be evaluated at t k+
l

• This leads to the difference 

equation, 

1 2 
--'"-;;2 6 u, , k 1 
(ax) Xl., J, + 

(3.18.14) 

Unfortunately, this does not result in unlimited stability. Avon 

Neumann analysis shows that the equation governing stability is 

k+l , Z k 2 
t; [l+4As1n (Slt.x/2) I = ~ [l-4Asin (S2ay/2) I (3.18.15) 

or l+l 1-4Asin
2 

(SZt.y/Z) 
Y =-- = 

t;k 1+4Asin
2

(Slt.x/2) 
(3.18.16) 

where A= 
at 

Z· 
(t.y) 

If A>l, Sl=l and 8z=J-l, then [Y[>l, so that 

the scheme (3.18.14) is unstable, at least for A>l. 
02 

On the other hand, if y u instead of 
(ay) Z 

02u is evaluated 
x 
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at the advanced time level, then the scheme, 

= 
(u -u ) 

i,j,k+l i,j,k 
6t 

(3.18.17) 

would lead to a stability ratio in which the positions of 8
1 

and 82 

are interchanged. Again, this scheme does not possess unrestricted 

stability. 

The A.D.I. method of Peaaeman and Raahford (P.R.) (1955) amounts 

to taking one time step using the backward-difference approximation 

(3.18.14) that is implicit in only the x-direction. The governing 

equation for stability at this step remains the same as (3.18.16). 

The next step of the A.D.I. counters the bias introduced above by 

using (3.18.17) that is implicit in only the y-direction. This time, 

the governing equation for stability is, 

r;k+2 = 

E;k+l 

1-4ASin
2

(8
1

6X/2) 

2 
1+4Asin (826x/2) 

(3.18.18) 

The overall stability ratio for the double step, is therefore, given 

by, 1-4ASin
2 (8

1
6x/2) 

1+4Asin
2

(8
1
6X/2) 

2 
l-4Asin (8

2
6y/2) 

2 
1+4Asin (826y/2) 

(3.18.19) 

which is bounded in magnitude by unity for any size time step. Thus, 

the effect of using two possibly unstable difference equations alternately 

is to produce a stable equation. Since we are interested in the 

solution only after the double step, let us alter 6t to be the double 

step and introduce an intermediate value notation (u .. k ,) for the 
1.,J, +'% 

solution at the end of one time step. Then, the P.R. proaedure 

becomes, 
1 

2 
(6x) 

2 
<I u .. k ,+ x 1.,J, +"1 

(u .. k ,-u .. k) = 1.,], +z 1.,), 

6t/2 
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1 2 
2° u.. 1 

(lly) Y ~,J ,k+ (3.18.20) 

TO investigate the accuracy of the method, an overall equation can 

be obtained by eliminating u .. k l' The elimination process leads 
J.,], +z 

to, 

1 2 
26 ) (u. . k+ui . k 1) = 

(lly) y ~,J, ,J, + 

2 
(llx) 

2 (u. . k l-u. j k)' 
(lly) ~,J, + ~" 

(3.18.21) 

which appears to be very similar with the Crank-Nicolson equation 
62 02 

(3.18.11) with the 'pertUrbation term' _(ll4t) x 2 y 2(u .. k l-u .. k)' 
(llx) (lly) ~,J, + ~,J, 

It can be shown, as before, that 

(3.18.22) 

Although the P.R. method has second-order accuracy, it is, 

however, not unconditionally stable when extended to three dimensions. 

The three-dimensional parabolic equation is given by, 

au a
2

u a
2

u a
2

u (x,y,z,t) E Rx(O,Tj, (3.18.23) -= --+ --+ -2-' at a/ a/ az 
with the initial condition, 

U(x,y,z,O) = f(x,y,z), (x,y,z,t) ER x {o}, (3.18.23a) 

and the boundary conditions, 

U(x,y,z,t) = g(x,y,z,t), (x,y,z,t) E aRX(O,Tj , (3.18.23b) 

where R is the cube o<x,y,z<l and oR its boundary. If we let i,j,k 

and N be the indices in the x,y,z and t-direction respectively with 

increments llx,lly,llz and llt (for a cube, O~i,j,k~(m+l), N=O,l, ..• and 

llx=lly=llz= __ 1 __ ) and if we denote UN be the value of U(x. ,y. ,zk) 
(m+l) , i,j,k ~ ) 

at the time level N, then the P.R. analogue of (3.18.23) is given by, 
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(N+l/3 N ) 
1 02 N+l/3 1 02 N 1 2 N Ui,j,k -Ui,j,k 

+ + 20 u .. k = 
(lIx)2 xUi,j,k (t.y)2 yUi,j,k (t.z) z ~,), t.t/3 

(N+2/3 N+l/3) 
1 02 N+l/3 1 02 N+2/3 1 2 N u i ,;) ,k-Ui,j ,k 

(t.x)2 xUi,j ,k 
+ 

(t.y)2 yUi,j,k 
+ 20 u .. k = 

H/3 (t.z) z ~,), 

N+2/3 
u .. k+ 
~ ,J , 

(3.18.24) 
( N+l N+2/3) 
Ui,j,k -Ui,j ,k 

t.t/3 

After some extensive manipulation, a van Neumann stability analysis 

yields, 

where I 

and 

= ~N+l 
Y - = 

~N 
1 + 3(Y-9) (X+Y+Z) 

(3+X) (3+Y) (3+Z) , 

x = 4(t.t/(t.x)2)sin
2 

(Slt.x/2) 

Y = 
. 2 2 
4 (t.t/(t.y) )sin (S211y/2) 

2 2 
Z = 4(t.t/(t.z) )sin (S31lz/2) 

(3.18.24a) 

If X>6 and Y=Z=O, then y<-l. Thus, A = 
lit 3 

> 2 implies instability. 
(t.x) 2 

Another unconditionally stable alternating-direction scheme that 

has been developed to solve the two-dimensional problem (3.18.1) 

results from a modification of the Crank-Nicolson method due to 

Douglas (1962). It is given by, 

t 1 202 (u. . k • +u. ) + 1 202U
i 

. 
(U. j k .-u .. k) = 1" +"2" 1,J, 

and t 

(t.x) x ~,), +~ ~,j,k (t.y) Y ,),k t.t 

1 2 
20 (u.. .+u .. k)+ t 

(t.x) x ~,),k+, ~,), 

1 2 
28 (u. . k l+u, . k) = 

(t.y) Y 1. , ), + 1. , ) , 

(U.. l-u" k) 1.,J,k+ 1.,J, 
lit 

(3.18.25) 

We note that if the intermediate solution u. . k • is eliminated, 
1.,J, +1 

then again the overall equation (3.18.21) is satisfied for a 
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rectangular region. Hence, the order of accuracy of the Crank-

Niao~son modified A.D.I. saheme (3.18.25) due to Douglas (1962) is 

given by, 

222 
= O( [lit) )+O( [lIx) )+O( [lIy) ) • (3.18.26) 

The generalisation of the scheme to three space variables takes the 

form, 

1 1 ~ 2 (N+l/3 N ) _---=1""- 2uN . + , 2u u. . k+ui· + 2u i k 
(lIx) x l.,J, ,J,k (lIy) Y ,J, 

1 02uN = 
(lIz/ z i,j,k 

N+l/3 N 
(ui . k-u .. k) 

1), ~,J, 

1 02 (N+l/3 N ) 1 
2 u. j k+u .. k +, 

(lIx) Xl." l.,] , 

N+2/3 N 
(u .. k-u .. k) 

1.,), 1.,), (3.18.27) 
lit 

1 02 (N+2/3 N ) 1 

2 u.. k+u . . k +, 
(lIy) y l.,J, 1,J, 

1 (N+l 
(lIz) 2 ui ,j ,k + 

N 
U. • k) 

1. , J , 

N+l N 
(u. j k-u . . k) 

= 1.'_' 1.,), 

lit • 

By referring to equation (3.18.27), if we subtract the first equation 

from the second and the second equation from the third separately, 

we obtain a more convenient form of the scheme given by, 

2 )uN+1/3 = 
lit i,j,k 

2.)uN+2/ 3 = 
lit i,j,k 

1 02 
(lIy) 2 y 

2 02 
(lIy) 2 Y 

N 2 N+l/3 
u .. k - - u 1.,J, llt i,j,k 

2 N+l /1 
't)u .. k = 
u 1.,], 

2 N 
2 0 u. . k 

(lIz) z 1,J, 

2 N+2/3 
- - U lit i,j,k 

(3.18.28) 



, N+l/3 
When the region is a cube, the intermediate solut~ons u, 'k 

1.,), 

267 

and N+2/3 be 1" d ' h 1 l' f (3 18 28) u, j k can e ~m~nate us~ng t east two re at~ons 0 •• • 
~, , 

The resulting difference equation is, 

1 62) (N+l + N ) 
2 u,' k u i ' k (lIz) z ~,J, ,J, 

+ 

N+ 1 N _ II t 2 _--,,,.---,,,1.,,..-_,,,,,,,6 26 20 2 ( N + 1 _ N ) 
(u, , k-ui ' k) ('-2) 2 2 2 u, 'k u, j k • 
~,J, ,J, ~ (lIx) (lIy) (lIz) x y z ~,J, ~" 

I (3.18.29) 

As expected, this formula is a perturbation of the Crank-Nicolson 

difference equation in three dimensions anG-the truncation error is, 

2 2 2 2 
TCND = O([lIt] )+O([lIx] )+O([lIy] )+O([lIz] ) , 

or with lIx=lIy=lIz=h on the cube, 

TCND = 0([lIt]2)+0([h]2) 

From (3.18.24a), if we let, 

Xl = tx 

Y
l 

= ty 

Zl = tz 

(3.18.30) 

(3.18.30a) 

then an application of the von Neumann analysis yields the following 

amplification factor, 

y 
1-(Xl+Yl+Zl)+(XlY1+YlZ1+ZlX1)+XlYlZl 

1+(Xl+Yl+Zl)+(XlY1+YlZl+ZlXl)+XlYlZl 

and thus for any lIt)o,lyl<l indicating unconditional stability. 

The following method, discovered by Douglas and Rachford (1956) 

has also received widespread application. In the, two-dimensional 

problem, the Douglas-Raahford proaedure is given by, 



1 2 
20 U. 1 + 

(lIx) X l.,j,k+z 

and 
1 2 

20 ui . k + 
(lIy) Y ,), 
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(u -U.) 
i,j,k+t i,),k 

lit 

(3.18.31) 

(u -u ) 
i,j,k+l i,j,k+! 

lit 

The elimination of the intermediate values ui . k 1 results in the 
,J, +'% 

overall equation, 

(u .. k l-u .. k) 
___ l.~,~)~,~+~ __ l.~,~)~,~ +(lIt) 

lit (lIx) 2 

0
2 

Y2(u .. kl-ui' k) (3.18.32) 
(lIy) 1.,), + ,), 

which, this time, is a perturbation of the backward~difference fully 

implicit formula (3.18.8). As expected, it can be shown by the usual 

Taylor's expansion in several variables that, 

2 2 
TDR = O(lIt)+O([lIx) )+O([lIy) ) , (3.18.33) 

or on the square region, 

(3.18.33a) 

The stability condition of the scheme (on the square) can be 

found by employing the von Neumann criterion. The resulting 

amplification factor is, 

2 2 l+X Y 
y = 

2 
l+X+Y+Y 

where X,Y (and Z) are given by (3.18.24a). Now, for lIt)o,lyl<l giving 

absolute stability of the method. 

The corresponding difference equation for the three-dimensional 

problem is, 

1 2 1 2 
2

0 u / + -=-'2:<50 u .. k + 
(lIx) x i,j,k+l 3 (lIy) y 1.,), 

1 2 (u. . k 1/3-u . . k) 1.,], + 1,J, 2 0 u. . k = _=-'-,-",:~.!..::.._::.c..c=,-
(lIz) z 1.,), lit 



1 2 
--::'--"'28 ui . k 
(~z) z ,), +1 

1 2 
= --'~28 u .. k 

(~y) y1.,), 

1 2 
= -~"'25 u,. + 

(~z) Z 1.,),k 

(u -u ) 
i,j,k+1 i,j,k+2/3 

~t 

The standard von lIeumann analysis shows that (on the cube), 

y = l+XY+XZ+YZ+XYZ 
';'l-'+::X::Y":'+:';X~Z+"'Y~Z":'+;;XY:=:Z-=-=-+ X~+ y=-=+":'z=- < 1 , 
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(3.18.34) 

giving unconditional stability. The overall equation for (3.18.34) 

can be obtained by eliminating Ui ,j,k+1/3 and Ui ,j,k+2/3. 

yields, 

1 2 
28 u. . k 1 + 

(~x) XL,), + 

(u. . k l-ui . k) 1.,J, + IJI 
~t 

~t ( 1 
2 

(~x) 

1 2 
28 u. . k 1 + 

(~y) Y 1.,), + 
1 2 

2
6 u. . k 1 = 

(lIz) z 1.,), + 

(u .. k 1-u . j k) 
1.,], + .1." 

This 

(3.18.35) 

which is again a perturbation of the fully implicit formula in three 

dimensions. Like the latter, it has an error term of, 

or 

222 
= O(lIt)+O([~xl )+O([~yl )+O([~zl ) 

on the cube. 

(3.18.36) 

(3.18.36a) 

Mention must also be made on the following method which was 

introduced by Brian (1961) to solve a three-dimensional problem. 

The BPian procedure takes the form, 
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1 2 N+1/3 _....:1,-=-.2 N -'::-,,6 U + au + 
(t.x)2 x i,j,k (&)2 y i,j,k 

N+l/3 N 
1 2 N (ui 'k-u , 'k) , __ ~,~J~,~-=~~,~J~,~ 

2 uu"k=- ,~ 
(L\z) z ~,J, u~ 

(N+2/3 N+l/3) 
1 2 N+2/3 1 2 N Ui,j,k-Ui,j,k 

(3.18.37) 2 6 u, , k = 
(&)2 0yUi,j,k 

+ 
(t,y) y ~,J, t.t 

(N+l N+2/3) 
1 62 N+l 

= 1 02 N Ui,j,k-Ui,j,k 
~ 

(/!,z)2 ZUi,j,k (t.Z)2 zUi,j,k+ t.t 

When the intermediate solutions are eliminated, the overall equation 

reduces to equation (3.18.29). Hence the local truncation error 

takes the form (3.18.30) and (3.18.30a) which is second-order 

correct in both space and time. It can also be shown in the same 

manner as before that the Brian procedure is always stable. 



3.19 ITERATIVE PROCEDURE FOR TIlE A. D.!. METHODS 

As we have seen above, the A.D.I. methods enable us to soZve 

directZy t~e resulting tridiagonal system of linear equations aZong 

or paraZlel to each direction of the Cartesian axeS. The simple, 

efficient and stable Thomas aZgorithm is often applied for this 
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purpose. We now recall from the last section that the overall formula 

of the Peaceman-Rachford method to solve the two-dimensional heat flow 

equation is given by, 

0
2 

(u, ' k l-u, 'k) 't 
+ y ~(u +u ) .. _.:;1.""""J"!":':":'+7-:::-=1...!"""J..!.,=-=- + (.::....) 

(t.y) 2 i,j,k i,j,k+1 t.t 4 

0
2

0
2 

x y 
2 2 

(t.x) (t.y) 
(u,' -u, ) • 

1.,J,k+l 1.,j,k 
(3.19.1) 

It is interesting to note that equation (3.19.1) can be taken to 

represent an iterative procedure which converges if 

(3.19.2) 

for k sufficiently large (i.e. as the temperature (solution) reaches 

a steady state). The substitution of the values of (3.19.2) into 

(3.19.1) leads to 

( 1 02 + --,1=-'2;00
2

) u, , = 0 , 
(t.x)2 x (t.y) y 1.,J 

(3.19.3) 

which is the standard five-point difference replacement of the LapZace's 

elliptic equation. Thus, the PR method (3.18.20) applied to a heat 

conduction problem where the boundary conditions are independent of 

the time, represents an iterative procedure for solving Lap1ace's 

equation on a square with Dirich1et boundary conditions. Equation 

(3.19.3) can be written as, 

{u, 1 ,-2u, ,+U, 1 ,}+{u, , 1-2u, ,+U, , 1} = 0, for i,j=1,2, ... ,m 
l.+,J ~,J 1.-,J 1.,)+ 1.,J 1.,J-

(3.19.4) 
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Let the unknowns be ordered along the horizontal mesh lines and 

let, 

With the boundary conditions, 

f i=O,m+l; 

1 j=O,m+l; 

j=1,2, ..• ,m 

i=1,2, ... ,m 

(3.19.4) can be written in the familiar block tridiagonal form 

-0 I !::1 m 

I -0 I' ~2 m 
" 

m 
0 , , , , , , , , , 

= b , , , 
"- , , 

t 

l 
, , " ( 

0 I -0 I ~-1 m m 

I -0 u m ""ill 

(3.19.5) 

(3.19.6) 

where the right-hand side is obtained from the data, I is the mXm 
m 

T 
unit matrix and 0=4I;(LiLm) is tridiagonal with 

° 
1 0 

1 0 

1 0 
L = , " m , 

0 
, 

L 
Therefore, (3.19.6) can 

Au = E" 

o 
of order , 

" , , , , 
1 ° (mxm) 

be written as, 

T u = (u
1

'u
2

, ••• ,u ) 
- - - """"1D 

(mxm) 

with A=H+V, where H and V arise from the representation of the 

(3.19.7) 

respective bracketed terms in (3.19.4). Thus, the component of the 



vector Hu corresponding to the mesh point (xi'Yj) is given by 

u. -2u .. +u 
1+1,j 1,J i-l,j 

which is a central 

a2u 
operator ---2 along 

difference approximation to the one-dimensional 

ax 
Similarly, the 

a2u 
components of ~ correspond to the discretisation of ---2 along 

ay 

different horizontal lines. 
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different vertiaal lines. Hence, when viewed as an approximation to 

the operator (cf. equations (3.19.3) and (3.19.7», 

A=H+V is the natural splitting of A into its one-dimensional components. 

If we def ine, 

L = 

L 
rn 

L 

o 

m , o 
, , , , , 

L 
m 2 2 

(m xrn ) 

o 

and B = 
0..... 0 

.... 
I .... 
rn, .... 

.... " o "I .... 0 1 2 2 
m j (rn Xm ) 

T T 
then H=2I-(L+L ) and V=2I-(B+B ) • Various iterative schemes can now 

be devised based on the splitting of A. 

From equation (3.19.7) we have, 

(H+V)~ = ~ , 

which is equivalent to, 

(H+rI)~ = (rI-V)~ + ~ 

where r is any positive scalar. This suggests the simple bloak 

iterative method, 

(H+rI) u (p+l) = (rI-V)~ (p) + b p=O,l,2, ..• (3.19.8) 

With u(O) . 
~ g1ven. NOW, H+rI is block diagonal where each block is 

. T 
given by (2+r)I -(L +L ). Hence, to obtain the new approximation 

m m m 
(p+l) 

~j ,we only need to sweep through the mesh on line j by solving 
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a system of m linear equations with a symmetric diagonally dominant 

tridiagonal matrix. Similarly. we also have the scheme. 

(v+rI)~(P+l) = (rI-H)~(P) + £. p=O.1.2 •••• (3.19.9) 

(0) . 
with u given. However. V+rI is bZoak tridiagonaZ and the left-

hand side of (3.19.9) takes the form (along rows). 

(2 ) (p+l) (p+l) 
+r u -u ___ -L _=2 __ _ 
(p+l) (2 ) (p+l) (p+l) 

-~l + +r ~2 -u3 

(V+rI):!:!. (p+l) = (3.19.10) 

The equations (3.19.9) can be simplified as follows. We write down· 

the first component of each of (3.19.10). This yields. for the left-

hand side of (3.19.9). 

{(2+r)I -(L +LT)~l(P+l) 
m m m -

" T where ~1=(ull.u12 ••••• ulm) which are the unknowns along the first 

vertical mesh line (column). Similarly. the jth component of each 

of (3.19.10) yields equations with the left-hand side. 

{(2+r)I -(L +LT)}~j(P+l) 
m m m -

Hence. a reordering which is column-wise in this way. produces as 

before m systems each with a tridiagonal matrix. The iterative 

process (3.19.9) is therefore easily implemented and improves the 

approximations one vertical line (column) at a time. 

The iterative process can be extended to more general 

differential equations than the one (the simple Laplace equation) 

that we have considered above. In general. we will be solving the 
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finite difference equations A~=i where A=H+V+L is block tridiagonal 

and L is a positive diagonal matri:x:. Furthermore, H and V are 

symmetric and positive definite. H is block diagonal where each 

block is a tridiagonal symmetric and positive definite matriJ:, 

and similarly for the reordered form of V. We shall assume in the 

subsequent discussion that the matrix is of order (nxn). 

The A.D.I. iteration combines the features of the schemes 

(3.19.8) and (3.19.9) by writing (H+V+L)~=i as a pair of equations, 

(H+!E+rI)~ = (rI-V-'L)~ + f , 
(3.19.11) 

and (V+H+rI)~ = (rI-H-%L)~ + f , 

for any constant r>O. With Hl=H+%L and Vl=V+%L, the A.D.I. method of 

Peaceman and Rachford is given by, 

and 

(H +r I)U(P+%) 
1 p+l - . 

(V +r I)U(P+l) 
1 p+l -

= (r lI-Vl)U(P) + f 
p+ - - (3.19.12) 

= (r lI-Hl)U(P+%) + f , p~O , 
p+ - -

where ~(O) is a starting approximation and the rp are positive 

constants called acceleration parameters whose values are chosen to 

maximise the rate of convergence. It is clear that the first stage 

of (3.19.12) corresponds to the process of iterating horizontally 

along rows and the second stage to iterating vertically along columns. 

From (3.19.12), we can write, 

u(p+l) = M(r )u(p) 
- p+l-

where the ADI iteration matri:x: 

+ .'l(r
p

+
l

) , p~o , 

(cf. Gault et al (1974» is given by 

(setting r l=r) , p+ 
-1 -1 

M(r) = (Vl+rI) . (rI-HI) (Hl+rI) (rI-VI)· 

(p) (p) 
If we denote the error vector by ~ then ~ =~ -£ and 

(p+l)-M( ) (p) e - r 1 e . He nee, we have, p+ .-

(3.19.13) 



276 

e(p) = Tr M (r . ) ) e (0) 
1. -

, p>-l • (3.19.14) 
i=l 

The aonvepgenae of the ADI scheme can be easily shown for the 

stationary case with constant parameters ri=r. If we let 

- -1 -
M(r)=(Vl+rI)M(r) (Vl+rI) ,then by similarity, M(r) and M(r) have 

the same eigenvalues. Hence, from (3.19.13), we obtain, 

P (M(r» = P (M(r» ~ IIM(r) 11 

~ 11 (rI-H
l

) (Hl+rI)-lll 11 (rI-V
l

) (Vl+rI)-lll 

where p(M(r» is the spectral radius of M(r). Since Hl and V
l 

are 

symmetric and positive definite, then in the L2 norm, we find that 

11 (rI-Hl ) (Hl+rI)-ll 12 = max I::~~I < 1, 
1~1~n ~ 

where ~i' l~i~n are the eigenvalues (positive) of Hl • A similar 

argument applies to the norm involving V
l

' Hence, p(M(r»<l for all 

r)O and therefore the P.R. iteration (3.9.12) converges. 

For our approximation (3.19.3) with a uniform spacing, it is 

possible to determine the optimum parameter rb such that 

p (M(r
b

» ~ p (M(r» for all r)O • 
A-

It turns out that p(M(rb»=p(M ), the optimised spectral radius for 
wb 

the point SOR iten7tion (see, for example, Goult et a~ (1974». 

Hence" the two schemes have an identical asymptotic rate of convergence. 

The A.D.l. iteration does, however, involve far more computation and 

it is therefore essential to vary the acceleration parameters r 
p 

the non-stationary case. 

For our approximation (3.19.3), it can be shown that Hl and Vl 

Thus, if in general, Hand V
l 

commute, 
1 . 

Hl and V
l 

have a common set of (orthonormal) eigenvectors. NOW, let 
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n n 
(~~'Y~)~~l and (n~'~)~~l be the eigensystems of Hl and Vl respectively 

For p iterations of (3.19.12), the relation (3.19.13) yields, for 

It follows that -IT M(r i ) is 
i~l 

~ 

= max 
l~.t~n 

~ 
symmetric and therefore 

(3.19.15) 

which establishes the convergence of the iteration. Generally, ~~ 

and n~ are unknown. However, the estimates for a and a where 

o < a ~ ~~ ,n ~ ~ a 
may be found by using variants of the power method. Clearly, 

so that 

~ (ri-z) 
where R (z) = I I ( ). Thus, the problem of minimising the 

p i~l r i +z 

spectral radius in (3.19.15) is now one of minimising the uniform 

norm of the rational function R. This can be done by using Chebyshev 

polynomials. The reader may consult Varga (1962) for a detailed 

discussion on this subject. 
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3.20 VARIANTS OF THE A.D.I •. SCHEME AND THREE DIMENSIONAL PROBLEMS 

Many variants of the basic Peaceman-Rachford scheme have been 

proposed. For example, we have, on modifying the second stage of 

(3.19.12) , 

(p) (H +r I)u(P+t} ~ 
I p+l - (r II-VI}U + f p+ - (3.20.I) 

and (Vl+r II) u (p+ I) 
p+ -

~ (VI-(l-w}r II}U(P}+(2-W}r lu(P+t) 
p+ - p+ -

where w is a parameter. For w~O, we have the Peaceman-Rachford 

scheme (3.19.12) and for w~l, we obtain the scheme due to Douglas 

and Rachford (1956). For HI and VI symmetric and positive definite 

and with a fixed acceleration parameter r)O, the resulting generaZised 

A.D.I. saheme is convergent for any 0~w(2. 

An important feature of the Douglas-Rachford scheme is that it 

generalises to equations with multi-space variables. To solve the 

three-dimensional Laplace equation, for example, the approximating 

seven-point finite-difference formula is given by, 

(X+Y+Z) E. ~ ! (3.20.2) 

where X,Y and Z are symmetria positive definite and which after 

appropriate reordering are bZoak diagonaZ (eaah diagonaZ bZoak being 

tridiagona Z) • The Douglas-Rachford scheme takes the form, 

and 

(X+r I)u(p+l/3) ~ 
p+l -

(r I-x-2Y-2Z}u (p) + 2f 
p+l -

(Y+r II)U(P+2/3} 
p+ -

~ Yu(p}+r u(p+l/3) 
- p+l-

(p+l) (Z+r I}u ~ 
p+l - Z (p) + (p+2/3) 

u r IU p+ -

(3.20.3) 

and corresponds to sweeping through the mesh parallel to the three 

coordinate axes in turn; each stage consisting of solving tridiagonal 

systems. When X,Y and Z commute, the scheme is convergent for any 
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fixed iteration parameter r>O (this is equivalent to the stability 

of the scheme (3.18.3~». 

3.21 OTHER FORMS OF APPROXIMATION FOR MULTI-DIMENSIONAL PARABOLIC 

EQUATIONS 

Since the A.D.!. methods were first introduced by Peaceman and 

Rachford (1955), several other alternating direction techniques have 

been considered for parabolic problems. As we have seen, many 

splitting schemes can be constructed by "perturbing" in a suitable 

way an implicit formula. Douglas and Gunn (1964) extended this 

basic idea to develop schemes of the form 

N+l N 
(I+A)~ = B~ , (3.21.1) 

where A = I Ai and {Ai}i=l are easily "inverted" (for example, 
i=l 

by solving sets of tridiagonal equations). In the two dimensional 

case, they used 

and 
N+l 

(I+A.)u( ) 
~ - i 

N+l 
= ~(i-l) 

N 
+ A u 

i-
N+l N+l 

i=2 ,3, ••• ,q; u =~(q) 

and showed that it is equivalent to (3.21.1) with a perturbed right 

hand side. 

Mitchell and Fairweather (1964) developed generalised Peaceman-

Rachford and Douglas-Rachford schemes and then derived the corresponding 

formulae which led to a better accuracy than the original P.R. and 

D.R. methods. 

Several Russian mathematicians have studied some closely related 

techniques (to the A.D.L) under the name of the "method of fractional 
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steps". In particular, the ZooaUy one-dimensionaZ (L.O.D.) methods 

have been developed by D'Yakonov, Marchuk, Samarskii and Yanenko to 

solve time dependent partial differential equations in two or more 

space variables. In the two-dimensional case, the equation 

au a2u a2u -=-- + 
a/ at a/ (3.21.2) 

is written as the pair, 

tau a
2

u = 
a/ 

at 
(3.2l.2a) 

and 

! au a
2

u = at a/ 
(3.21.2b) 

In advancing the solution from time t=kat to t=(k+1)at, it is assumed 

that equation (3.2l.2a) holds from t=kat to t=(k+!)at and equation 

(3.21.2b) holds from t=(k+!)at to t=(k+1)at. The derivatives in 

(3.21.2a/2b) are discretised accordingly. For example, the Crank-

Nico1son discretisations on the square region give the following L.O.D. 

split schemes, 

and 

2 
(1-%>'& )u .. k > = y 1,J, +z 

2 
(1-%>'& )u. . k 1 = x 1.,J, + 

2 
(l+!A& )u .. k 

Y 1.,J, 

2 
(l+!A& )ui . k > 

x IJ, +'% 

Finally, we briefly mention the hopsootoh method which attempts 

to reduce the implicitness of difference schemes whilst maintaining 

their order of accuracy and stability. The 8-weighted scheme to 

approximate (3.18.1) is given by, 

u -u - A{8(&2+&2)u .. k 1+(1-8) (&2+&2)u .. k} 
i,j,k+l i,j,k - x y 1,J, + x y 1.,J, 

The values of 8=0" and 1 give the classical explicit, the Crank-

Nico1son and the fully implicit scheme respectively. Hopscotch 
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generalises the role of e by making e a function of space and time, 

i.e. 8=e .. k 
~,J, 

To preserve accuracy and stability, conditions must 

be placed on the values of ei . k. The following formula, 
,J, 

u. j k l-u. . k ~, , + 1.,], 

where 
e. k 

1. ,j , 

2 2 2 2 = >.{e .. k 1(0 +0 )ui . k l+e .. k(o +0 )u .. k} 
1.,), + x Y ,J, + 1.,J, x y 1.,J, 

{

I if i+j+k is an even integer 

. 0 otherwise 

was introduced by Gourlay (1970) as the odd-even hopscotch method. 

Another choice of e, known as the Zine hopscotch. is given by, 

e = i,j,k {

l if i+k is even 

o otherwise. 

In addition, we also have the peripheraZ hopscotch which can be 

carried out on either a circular or a rectangular grid. The reader 

who wishes to have further details on hopscotch methods is recommended 

to refer to Gourlay (1970), Gourlay and McGuire (1971), Gane (1974), 

Gane and Gourlay (1977), Gourlay and McKee (1977) and Greig and Morris 

(1976) • 
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4.1 INTRODUCTION 

In this chapter, the group explicit (GE) methods which were first 

introduced by Evans and Abdullah (1983) to solve parabolic problems 

will be extended to hyperbolic equations of first and second order. 

The development of these methods stems from the general observation 

that the alternate use of different algorithms with truncation errors 

of opposite signs can lead to the cancellations of the error terms at 

most points on the mesh lines. Although this alternating strategy 

does not necessarily amount to the upgrading of the order of the 

approximation, it is, however, expected to provide a better accuracy 

than the individual algorithms themselves as well as other schemes 

that are traditionally employed to solve the given differential equation. 

The GE techniques involve the utilisation of asymmetric approx-

imations which when coupled in groups of two adjacent points on the 

mesh result in implicit equations. These equations will then be 

converted to explicit ones which produce the numerical solutions of 

the differential equation thus exhibiting the simple nature of the 

methods. 

This chapter will deal with the construction of two different 

schemes in which the GE procedure is used to solve the simple hyperbolic 

equation of first order of the form, 

au 
at = 

au 
ax ' O~x~l, t~O . (4.1.1) 

The application of the procedure will then be extended to the wave 

equation, 
, O~x~l, t~O ; (4.1.2) 

An analysis of the local truncation errors will also be performed 

followed by an investigation of the stability requirements of the 

various schemes. 
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4.2 GE METHODS FOR THE GENERALISED WEIGHTED APPROXIMATION TO THE 

FIRST ORDER EQUATION 

From equation (2.9.8) of Chapter 2, the generalised weighted 

finite-difference analogue for (4.1.1) at the point (x, ,t, e)=(i~x, 
1. )+ 

(j+e)~t) is given by, 

1 
- -,[e{(l-w)u, 1 ' 1+(2w-l)u, , 1-wu , 1 ' 1l+(I-e){(l-W)U, 1 ,+ 

LloX 1.+ ,J+ 1.,J+ 1.- ,J+ :1.+ ,] 

(4.2.1) 

or 
-A[e{(I-w)u, 1 ' 1+(2w-l)u, , 1-wu . 1 ' 1l+(l-e){(I-w)u, 1 ,+ 

1.+ ,J+ 1.,J+].- ,J+ 1+ ,] 

(4.2.2) 

where A= ~:, the mesh ratio. 

With w=l, this equation reduces to 

(l+Ae)u, '+l-Aeu , 1 ' 1 = (l-A(I-e»u, ,+A(I-e)u, 1 ' 1.,J ].- ,J+ 1.,J 1.- ,J 
(4.2.3) 

and for w=o equation (4.2.2) becomes, 

(4.2.4) 

The local truncation error representations can be obtained by expanding 

the terms U, , l'U' 1 ' l'U' 1 ' and U" about the point (i~x,(j+t)~t) 
1.,]+ 1.- ,J+ 1.- IJ 1.J 

using the Taylor series. The expansion for (4.2.3) leads to, 

aU ilU il
2

U (~t) 2 a 4u 
T = (- + -), , +~x(-t - - 16 2 2)' '+1+~t(-t(I-2e) 

4.2.3 ax at 1.,J+1 a} ilx at 1.,J z 

a
2

u _ (~x)2 (1-2e) a
4

u 1 a
3

u ), , + 
t 12 3 ), '+1 +(~x) (~t) (-4(1-2e) 2 J+1 

axa ax at 1.,J Z ax at l., z 

2 1 a 3u ~x a 4u 2 1 a 3u 1 a 3u ~ t 
(~x) (- - - -24 -4)' '+1 + (~t) (-8 + - - - -(1-2e) 

6 ax 3 ax l.,) z axat2 24 at3 48 

3 
5 (~x) (~t) (1-2e) 

512 
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(4.2.5) 

A similar expansion for the terms Ui . l' 
, J+ 

Ui +1 ,j+1,Uij and Ui +1 ,j about the point (iAK,(j+!)~t) provides the 

following truncation error expression for the formula (4.2.4), 

T 
4.2.4 

i.e. 

(.1t) 
2 

16 

a2u 1 2 
-- - -(~x) (1-26) 
axat 12 

4 
a U ) + (~x) (~t) ( 41 (1-26) 

ax3at i,j+! 

4 4 5 a U ) 

axat3 i, j+! 
+ ((~x) .L£_ 

51 ax5 

5 (~x) (~t) 3 (1-26) 
514 

3 
5(AK) ~t(1-26) 

512 

1 a3u ~t 
+ - -- - -(1-28) 

24 at3 48 

5(AK)2(~t)2 
512 

a2u 1 2 
+~t(-t (1-26)-- - -(tlx) 

axat 12 

(tlx) (~t) ( !(1-26) (~x)2 
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1 a3u t.t + - -- - -(1-26) 
24 at3 48 

4 
a u ) 

axat3 i, j+! 

"1 "2 
+ O( (t.x) (At) ) (4.2.6) 

with "1+"2=4 and 0~6~1. 

Now, at the point ((i-1)t.x,(j+S)At), equation (4.2.4) takes the 

form, 

A6u. j 1+(1-A6)U. 1 . 1 = -A(l-6)u. j+(l+A(1-6))u. l' (4.2.7) 
1., + 1.- ,J+ 1., 1.- ,J 

By coupling the equations (4.2.3) and (4.2.7) the two formulae can be 

written simultaneously in matrix form as, 

,-1.6 

G1-A6) 

i.e. , 
A~j+1 = B~j , 

where, [ -" '''''J A = 

(1-1.6) 1.6 

and T 
~ = (u i _1 ,j,U i ,j) • 

!T(l-6) 

= L1+A (1-6) 

["-" B = 

1+1.(1-6) 

1-1.(1-61 
-1.(1-6) J 

'-W-,] 
""-(1-6) 

(4.2.8) 

(4.2.9) 

The (2 x2) matrix A can be easily inverted. Hence from (4.2.9), 

we have, 
-1 u = A Bu. I -j+1 -] 

(4.2.10) 

with, 

-1 L-" '''''J A-1B [':" -A l 
A = and = 

(1-1.6) A6 (l-A)J 

From equation (4.2.10), this gives rise to the following set of 

exp~iait equations, 
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u, 1 '+1 = (l+A)ui 1 ,-AU, j , 
1.- ,J -,J 1., 

(4.2.11) 

and Ui,j+l ='Aui_l,j+(l-A)Uij • (4.2.12) 

whose computational molecules are shown in Figure (4.2.1). 

Equation (4.2.11) 

j+l 

j 

i-l i 

Equation (4.2.12) 

j+l 

j 

i-l i 

FIGURE 4.2.1 
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Equations (4.2.11) and (4.2.12) are for adjacent points which are 

grouped two at a time on the mesh line. Special formulae are needed 

to cope with the possibility of the existence of ungrouped points 

near the boundaries. The solution at the ungrouped point near the 

right boundary at the advanced time level can be computed from the 

equation (4.2.4) by putting i=m-l. This leads to, 

u = [(1+>'(1-8))u 1 .->'(1-8)u .->'8u . 1)/(1->.8), (4.2.13) 
m-l, j+l m- ,J m, J m, J+ 

where >'8Fl. 

Equation (4.2.3) with i=l, deals with the value of u at the 

ungrouped point near the Zeft boundary. Thus, we have, 

u = 
l,j+l [>'(1-8)u .+(1->'(1-8) )u

l 
j+A8U . 1)/(1+>'8). 

O,J I o,J+ 
(4.2.14) 

Since the initial line O~x~l is uniformly divided with a spacing or 

increment ~x, the manner in which the above points are grouped very 

much depends on whether the number m of intervals of the line segment 

is even or odd. On this basis, a variety of group explicit schemes 

can be devised - as we will presently see. 

Even Number of IntervaZs 

When m is even, we will have an odd number (m-l) of internal 

points (i.e. points that do not include the left and right boundaries 

whose values are given by u and u respectively at every time level). o m 

Consequently, the single ungrouped point will be located near either 

boundary. 

(iJ The GER Scheme 

This refers to the ~roup ~xplicit with ~ight ungrouped point (GER) 

scheme. It results in the consecutive application for t(m-2) times 

. of the equations (4.2.11/12) for the first (m-2) points grouped two at 
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a time. This is followed by a final use of equation (4.2.13) for the 

(m-l)th point at every time level as shown in Figure (4.2.2). Thus, 

we have the following set of equations, 

-A6u
i 

1 . 1+(1+A6)Ui . 1 - ,J+ ,J+ = A(1-6)u. 1 .+(1-A(1-6))u .. ,' 
1.- ,J 1.,J 

= (1+A(1-6))u. 1 .-A(1-6)U
i 

., 
1- ,J ,] (1-A6)ui 1 . 1+A6ui . 1 - ,J+ ,J+ 

and 
(1-A6)u 1 . 1 = -A6u . l-A (1-6)u .+(1+A(1-6))u 1 ., 1.6;<1. 

m- ,J+ m,J+ 'm,] m- IJ 

which can be written in the more compact, imp~icit matrix form as, 

(1+1.6) 

A6 
_L 

1 -A6 

1 (1-A6) 
1 

I 

-----1-

_____ L 
o 

).,(1-6) (l-A (1-6)) I 

1 
(1+A(1-6)) -A (1-6) I 

-" - - - - - - I 
A(1-6) 

I 

t-

1 

-I, - -I , 
I " 

I 
1 

-

1- -'r -
r -A6 

1 

-

1 
-1 

1 (1-A6) 
--I 

(l-A (1-6)) 1 , 

I 

I 

I 
- - .., - --

I 
o 

-l - - -

-1-
(1+A6) 

A6 L 
I 
I (1-A6) 

u
1 

u 2 

u3 

u
l 

m-3 

u m-2 

-L ______ _ 

o I 1 (l+A (1-6)) 

r 
-A (1-6) _,,_1- - -1-

1- _ 
L 

o 

\ 1 
I \ 
1 ~(1-6)-

1 
1 

L 
, 

(1+;1. (1-6)) 
1-

1 

1 

(1-;1.(1-8) )~ 
1 

-;I. (1-6) 1 

--r---

\(l+.;I. (1-6)) I 

. -1 



u
1 

u 2 
u

3 
I 
I 
I 
I 

u l 
m-3 

u
m

_
2 

u
m

_
1 
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+ £1 (4.2.15) 

j 

T 
where b

1
=(Q,Q, ••• ,-A(1-6)u j-A6u . 1) which consists of known 

- m, m,J+ 

boundary values. Now, if we define, 

~ :: : 
1= - , - -I - - - _1-

I 

_1-
I 
I 
1 

10 11 

11 Q 1 
"'T - I, 
I I 
1- _1_ 

I
I 

0 1 
I 

... .... .. 

0 1 
I 
I 

_I
. I 

I 
_1-
1 I 

- _ ..... ~I-
10 
1 I 
11 Q I 

-1- -1-

I : I 1 (m-1) x (m-1) 

and 

-1 1 I 

-1 1 
1 I 
I- - -1- -1- - '--

-1 1 
0 1 

1 
I 1 I 

___ 1--1_ ~I - - - - L 1 _ 
G

1 
.... I = 1 I .... I .... 

.J _1- .... _ .... L 1 - - - 1T -I 1 1-1 

I I 0 1 I .,. _I r.:1_ 1 ,L 
1 I l -1 I 1 I «m-l) x (m-1» 

then we have, 

(4.2.16) 

(4.2.17) 



-1 
On premultiplying this equation by El provides us with 

(I+A6G
l
)u. 1 = (I-A(1-6)G

1
)u. + b

l -J+ -J -

where I is the identity matrix of order «m-l)x(m-l)). 

Hence, we obtain, 

where, 

... 
+ b , 

-1 
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(4.2.18) 

(4.2.19) 

The explicit equation (4.2.19) is the governing equation for the 

computation of the GER scheme. 

(ii) The GEL Scheme 

This is an abbreviation for the ~roup !xplicit with Left ungrouped 

point scheme and it is in fact a reverse of the GER scheme. It is 

obtained by the use of equation (4.2.14) for the first internal 

point followed by the application of equations (4.2.11/12) for t(m-2) 

times for the remaining points on the mesh line. The scheme is 

displayed diagrammatically in Figure (4.2.3) and is determined by the 

following set of linear equations, 

and 

(1+A6)u1 ,j+l = (1-A(1-6)Ulj + A(1-6)uOj +A6UO,j+l ' 

-A6u. 1 . 1+(1+A6)U .. 1 = A(1-6)u. 1 .+(1-A(1-6))u. "j 
1.- ,J+ 1,J+ 1- ,J 1.J 

i=3 15, ••• I m-I; 
(1-A6)U

i 
1 . 1+A6u .. 1 = (1+A(1-6))u. 1 .-A(1-6)u ..• Ae/l. 

- ,J+ 1,J+ 1.- ,] 1J 

In the implicit matrix form, these equations can be written as, 



1+A61 I I l U
1 1 

- - +- - -(~;6i"j - - - - - r 
__ 1 ______ 

-A6 I U
2 I 1 

'It-A6) A6 I U
3 - _1- I L - - - i - - - --

I -A6 (1+A6)1 U
4 

I 
1 

1 I 
1(1-A6) 

- - I- A6 I Us - - - 1- - ~ - - -
I I I' 1 0 , I 

1 I I '- I 

- - 1- -1- - 1 'I - - - - 1_~6 - - --
1 I (1+A6) U 

0 I 1 
m-2 

1 I (1-A6) A6 U 
I m-I 

1 I (I-A (1-6»1 
-";'---1- - - - - -1- r - - - - - - -

1\ (1-6) (I-A (1-8» I I 

_: ~+~1:?)2. :- ::--!)~ __ : __ Q ___ _ 

I' I 
I " 

----I- t- - -I _ _ _ _ _ - -
o I lA (1-6) (1-A(1-8» 1 1 

I (l+A (1-8» ~(1-8) 
I 

T 
where £2=(A(1-8)uO.j+A8UO.j+l.0 ••••• 0) • 

If we define. 

1 , I I 
-~----1-

o 11 I 

_ Irl _0 L _ J 
10 1 I 

11 01 
I- - -1-

E = 1 
2 -1-

1 I', 
1 I' 

I 

I 
I- -
I 
1 

o , 
1 I 'I 

-I - - 1- - IQ "1 - t -
I I 
1 11 0 L: 

= 

j+l 

1 

U 
m-2 
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(4.2.20) 

+ be 

(4.2.21) 



1 I I I 
-'- - r - - - r '-1 1 I 

1-1 11 
1 1 

_I I - + - .,. - - --1 1 1 1 
1 1 I 0 I -1 1 + "1 r and G

2 
= I' 

I , , I 
" 1 , I 

_1_ " I .1 
- r=l-l I I 0 I , 

I 1 1-1 1 
I I 

then the GEL scheme takes the form, 

(E2+A6G2)~j+l = (E2-A(1-6)G2)~j + ~2 

-1 
If we premultiply this equation by E2 ' we get 

(I+A6G2 )U. 1 = (I-A(1-6)G2)u. + b2 ' -J+. -J -
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(4.2.22) 

(4.2.23) 

and this leads to the following explicit formula for the computation 

of the GEL scheme, 

u. 1 = (I+A6G
2

)-1(I-A(1-6)G
2

)U. 
-J+ -] 

... 
+ £2 ' (4.2.24) 

" -1 where £2 = (I+A6G2 ) £2· 

(iii) The (S)AGE Saheme 

As the name suggests, this (Single) ~lternating ~roup ~xplicit 

scheme entails the alternate use of the GERand the GEL formulae 

(i.e. equations (4.2.18) and (4.2.23» as we march our solutions 

forward with respect to time as illustrated in Figure (4.2.4). 

Thus, the two time-Zevel proaess of the S(AGE) scheme is given by, 

and 

(I+A6Gl )U. 1 = (I-A(1-6)G )u. + b l -J+ 1 -:J -1 
j=O,2 ,4, ••• 

(I+A6G2 )':!.j+2 (I-A(1-6)G2)':!.j+l + ~2 J 

(4.2.25) 
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(iv) The (D)AGE Scheme 

The (Double) ~lternating ~roup ~xplicit scheme is a four-time 

level process. A single application of the algorithm requires the 

utilisation of the GER and the GEL schemes for the first two time 

levels followed by the employment of the same formulae but now in 

reverse order for the second two time levels. This alternating 

procedure is repeated as the solutions are progressed vertically. 

Thus. we see that the (D) AGE scheme is basically a periodic rotation 

of the (S)AGE scheme with the second half cycle implemented in opposite 

order to complete the four time level process and is given by. 

(I+A6Gl )u. 1 = (I-A(1-6)G
l

)u. + £1 -J+ -J 

(I+A6G2)u. 2 = (I-A(1-6)G2)u. 1 + £2 -J+ -J+ 

(I+A6G2)u. 3 = (I-A(1-6)G2)u. 2 + £2 
j=O.4.8 •••• 

-J+ -J+ 
(4.2.26) 

(I+A6Gl )u. 4 = (I-A(1-6)G
l
)u. 3 + £1 -J+ -J+ 

The scheme is represented diagrammatically by Figure (4.2.5). 

Before we proceed to establish the corresponding finite-difference 

analogues for the case when the line segment O~x~l has an odd number 

of intervals, we observe that if we denote, 

G (i) =' fl 
L-l 

ll~ J . i=1.2 ••••• t (m-2) 

then from (4.2.17) and (4.2.22). we have. 

= 

G (1) 

G(2) 

" 0 , 
.... 

"G(!<m-2) -1) 

G <l (m-2) ) 

o -J«m-l)X(m-l» 

(4.2.27) 

(4.2.28) 



1 

o 
G ( 1 (m-2 ) -1) 

(4.2.29) 

G (l (m-2» I 
:..J (m-I) x (m-I» 

Odd Number of IntervaZs 

We will have an odd number of intervals when m is odd. Therefore, 

at every time level, the number of internal points is even. 

Accordingly, again there are two possibilities which determine the 

manner in which the points are grouped on the mesh line. In the 

first possibility, we will have t(m-l) aompZete groups of two pOints. 

m-3 
In the second possibility, however, we are led to (-2--) groups of 

two points and one point which is ungrouped adjacent to eaah boundary. 

Based on these observations, the following group explicit schemes can 

be constructed in an analogous fashion as in the even case. 

(iJ The GEU Saheme 

In this scheme, there are two points which are ungrouped, 

one each which is adjacent to the left and right boundary. 

Thus, for the Zeft ungrouped point (the second point) , we use equation 

(4.2.14) whilst the solution at the right ungrouped point (the (m-l)th 

point) is determined by equation (4.2.13). For the grouped points 

in between, we apply equations (4.2.11) and (4.2.12) in succession 

for t(m-3) times to give the solutions at these points. This is 

repeated for progressive time levels and the whole procedure is known 

as the Group Explicit with Ungrouped ends method. Thus, the GEU method 

requires the solution of, 
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(1+Ae)U1 ,j+l = (1-A(1-e))u1 .j+A(1-e)UO,/A6u
O
,j+l'. 

-A6u 1 . l+(1+Ae)u .. 1 =A(i-e)u
i 

1 .+(l-A(l-e))u .. ))i=3,5, 
i- .J+ 1.,)+ - ,) 1.,) ••• ,m-2; 

(l-Ae)u' l . l+Aeu i j 1 = (l+A(l-e))u. 1 j-A(l-e)u .. 'e-"l 
~- , J+ , + 1.- I .1., J 1\ ,-

(l-Ae)u . = -Aeu . -A(l-e)u .+(l+A(l-e))u 1 j 
m-l, )+1 m.J+l m,) m- , 

which can be written in the implicit matrix form as, 

~l:A~)~ ___ __ : ____ :_. _ __ _ : __ 1 
I I-Ae (1+Ae) 1 I I 

1(1-Ae) Ae I I .1. ---- -----+-----
1 I .... , 10 I 
I ' ...... 1 I 
1 
I 
I ., 
1 

1 

01 
_I 

I 
1 

------1-
I-Ae (l+Ae) I 

1 I 
1 (l-Ae) Ae I 

. -I -, 
11-Ae 
I 

1-1. (I-e) I I 
- - - r - - - - - - - 1- i 

A (l-e) (1-1. (l-e)) 1 1 
I 

___ _ I ~+: (.:.-e) 2 -A '2--e)1 _ : _ 
1 \ 1 
1 1 \1 

o 

u
1 

u
2 

u
3 
I 
I 
I 
1 

U 
m-3 

u 
m-2 

u 
m-l 

j+l 

I 
-1- - --

I 

I 

L - -- -
I 

- - - -1- - - - -I - 1>:"(1-6) - - - - -1--
(I-A (l-e)) 

I ___ 1 
I 

o I I 

I _: ~1~ (~-e)2 -A (l-e~ _ _ __ 
; .1 

_. - -
I I I (l+A (l-e) ) 
I 1 

u
1 

u
2 

u
3 

1 
U 

m-3 

u 
m-2 

u 
m-l 

(4.2.30) 

T 
where £3 = (A(l-e)u j+Aeuo ' 1,0, ••• ,O,-A(l-e)u .-Aeu j 1) 

0, ,J+ rn t ] rn, + 

Now if we let 

+~3' 

j 



l 
I G(l) 

and 

G (2) 0 .. ... 

G (2) 

o 

... .. 
..... G(t(m-2)-1) 

o G (!(m-3» 
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(4.2.31) 

-1 

(4.2.32) 

where the (2 x2) matrices G(i), i=1,2, .•• ,t(m-l) are defined as in 

(4.2.25), then the GEU scheme is given by, 

" " (I+l6Gl)~j+l = (I-l(l-e)Gl)~j ,+ ~3 ' (4.2.33) 

and is described by Figure (4.2.6). 

(iiJ The GEe Scheme 

This scheme, known as the ~roup ~xplicit £omplete method is obtained 

by applying successively t(m-l) times equations (4.2.11) and (4.2.12) 

for the first to (m_l)th point along each progressive mesh line as 

displayed in Figure (4.2.7). Thus, the relevant implicit equations are, 

-lBu. 1 . 1+(1+l6)u .. 1 = l(l-B)u. 1 .+(l-l(l-B»u. ·1 ].- ,J+ 1,J+ 1.- ,J 1.,J 

(l-lB)u. 1 . l+!..eu .. 1 = (l+l(l-B»ui 1 .-l(l-B)u .. 1 
1.- ,J+ .1.,J+ - ,J 1.,) ) 

which in the matrix form are written as, 

1=2,4, ... , (m-I);' 
leFl 



= 

-A6 (1+Ae) 1 u
l 

1 
(l-Ae) A6 _1- __ 

~--
u

2 - - - - I , I 

I , 01 
" 1 
, I 

" I 
I _'.J. - - - - - - ---
~ I-A6 (1+).e) u 

m-2 
I 
: (l-Ae) A6 u 

m-l 
j+l 

(l-A (1-6» I [1(1-6) 
I 

(1+A (1-6» -A (1-e)1 

L 

-T,- - -1 -0- -- --
I', I 

, I 
-:- -'-1- -------
I' lA (l-e) (l-A (1-6» 

1 0 I 
I I (l+A (1-6» -A (1-e)_ 

I 

U
2 
I 

I 
I 
I 
I 

u 
m-2 

u 
m-l j 

298 

(4.2.34) 

Therefore, by using (4.2.32), the GEe scheme can be expressed as, 

(4.2.35) 

(iii) The (S)AGE and (D)AGE Saheme 

The alternating schemes corresponding to the ones that we have 

developed for the even case are given by, 

" " (I+A8Gl ) !:!'j+l = (I-). (1-6)Gl)~ + E.3 

" "-
(I+A8G

2
)u, 2 = (I-A (1-8)G2)~+l -J+ 

} (4.2.36) 

for (S)AGE (Figure 4.2.8) and, 

" "-
(I+)'8G

l
)u, 1 = (I-A (1-8)G

l
)U, + E.3 -J+ -J 

"- " (I+A8G2)u, 2 = (I-A(1-8)G2)~+l -J+ 
"- " (I+)'8G2) !:!.j+3 = (I-).(1-8)G

2
)U, 2 
-J+ 

A " (I+A8G
1

) u, 4 = (I-).(1-6)G
1

)U, 3 + E.3 -J+ -J+ 

I 

j (4.2.37) 

for (D)AGE (Figure 4.2.9). 



Notice that the above GE formulae are slightly different from 

those obtained by Evans and Abdullah (1983) for parabolic problems 

in the sense that the same group G
i 

(i=l or 2) appears in both sides 

of the equations. The following conclusions may therefore be drawn: 

(a) the GE schemes can be derived from the class of locally 

one dimensional methods (LOO), 

(b) there is no overlapping of the grouping of points. Rather 

they are disjoint as shown in Figures 4.2.2-4.2.9, 

and (c) there is no longer a need for the commutativity of the 

" " matrices G
l 

and G2 • 
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4.3 TRUNCATION ERROR ANALY;;IS FOR THE GE METHODS 

(i) Truncation Error for the GER Scheme 

The set of explicit equations obtained by coupling equations (4.2.3) 

and (4.2.4) are. 

u. 1 . l+Au .. -(l+A)ui 1 j = 0 
~- ,J+ l.J - , 

(4.3.1) 

ui.j+l-Aui_l.j-<l-A)uij = 0,. (4.3.2) 

The truncation errors for any two grouped points are given by the 

truncation errors of equations (4.3.1) and (4.3.2) for i=2.4 ••••• m-2. 

By expanding the terms U. 1 . l'U' .• U. 1 . in equation (4.3.1) about 
1.- .J+ l.J l.-.J 

the point «i-l)~x.(j+t)~t). we get. 

T 4.3.1 

i.e. I 

T 4.3.1 

+ ••• , 

4 
3x3t 

1 +--
1920 

(11+(12 = 4 • (4.3.3a) 

Similarly by expanding the terms U .. l'U' 1 . and Ul.'
J
' about the point 

1.,]+ 1-,J 

(it-x. (j+!)~t) leads to. 



T 
4.3.2 

i.e .. , 

T 4.3.2 

(~t)2(~x)2 a5u 
48 ax3at2 

+ ...... , 

(~t)3~x 
+ -=="9-=-6= 

(~x) 2 
12 
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a5u I (~t) 4 

dxat 4 1920 

(4.3.3b) 

The truncation error for the single ungrouped point near the right 

end is given by the truncation error incurred for equation (4.2.4). 

This is obtained directly by putting i=m-l in equation (4.2.6) which 

gives, 

(4.3.3c) 

(ii) Truncation Error for the GEL Scheme 

The truncation error for the single ungrouped point near the left 



boundary is given by the truncation error for equation (4.2.3). 

Hence with i=l. the expression (4.2.5) gives. 

T = L 

. 2 
a u 

llx[-! - -
ax

2 

a4u 
-1 
ax4 l.j+! 

(lit) 
2 

16 

a a 

2 
(llx) (1-2e) 

12 
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O((llx) l(llt) 2); (4.3.4) 

We note that the truncation errors for any two grouped points of the 

GEL scheme are given by T
4

•
3

•
l 

and T
4

•
3

•2 of the equations (4.3.3a) 

and (4.3.3b) respectively. 

(iii) Truncation Error for the GEU Scheme 

As indicated by Figure (4.2.6) for the case when an odd number 

of intervals is used. the truncation error of the scheme at the left 

ungrouped point is given by TL of (4.3.4) whilst the error at the 

single ungrouped point near the right end is TR of (4.3.3c). For the 

points in between the boundaries which are grouped two at a time. the 

truncation errors are given by T4 •
3

•
l 

and T
4

•
3

•2 of equations (4.3.3a) 

and (4.3.3b) respectively. 

(iv) Truncation Error for the GEe Scheme 

In this scheme. the grouping of two points at a time along each 

mesh line is complete as shown by Figure (4.2.7). Hence. the 

truncation error for this scheme is given by T4 •
3

.
l 

and T4 .
3

•2 

respectively for i=1.3 •.••• m-4.m-2 when ID is odd. 



(v) Trunoation E~~o~ fo~ the S(AGE) Soheme 

If we assume that the number of intervals is even, then as we 

know from Figure (4.2.4), this scheme entails the alternate use of 
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the GER and the GEL schemes along the vertical direction. Accordingly, 

its truncation error is given by the truncation errors of the GER and 

the GEL schemes along the alternate time level. This produces the 

possible effect of the cancellation of the component error terms at 

most internal points. A more accurate solution with this scheme is 

therefore expected than any of the previous GE methods. A similar 

argument holds when m is odd. 

(vi) Trunoation Erro~ fo~ the D(AGE) Soheme 

The GER, GEL, GEL AND GER methods, in that order, are employed 

at each of every four time levels. By the same reasoning as above, 

we will expect this four-step process to be as accurate if not better 

than the S(AGE) method. In fact, our numerical experiment will show 

that the D(AGE) procedure can be more superior than the S(AGE) scheme 

or any of the other GE methods. 
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4.4 STABILITY ANALYSIS FOR THE GE METHODS 

We shall now proceed to establish the stability requirement of 

the GE methods. From the formulae (4.2.19), (4.2.24), (4.2.33) and 

(4.2.35), we present below the explicit expressions for the GER, GEL, 

GEU and the GEe schemes: 

-1 "" u = (I+A8Gl ) (I-A(1-8)Gl)~j + £1 -j+l (4.4.1) 

-1 "-
u, 1 = (I+A8G2 ) (I-A(1-8)G2)~j + £2, -J+ 

(4.4.2) 

,.. -1 ,... " u, = (I+A8G
l

) (I-A (1-8)Gl ) ~j + £3 -J+l 
(4.4.3) 

,.., -1 I\. 
and u = (I+A8G2 ) (I-A(1-8)G2)~j -j+l (4.4.4) 

These processes may be written in a single form as, 

" ~j+l = r~j + £ ' (4.4.5) 

where r, the amplification matrix, corresponds to the scheme employed 

"-
and b is the relevant column vector of order (m-l) as indicated in 

the formulae above. 

(iJ Stability of the GER Scheme 

From the equations (4.4.1) and (4.4.5), the GER amplification 

matrix is given by, 

(l+A) -A 1 

(l-A) 
_1-

1 (l+A) 

1 A -----,-
-', 

I 

1 
1 

- -;:- ,- -:-
(l-A) , 10 
-', ,-

1 _-::',1 _ 
, I (l+)') 

o I A 
-I - - - "1-

1 

-). 

~ -- -l 
I I 

-1-
1 
t-
1 

(l-A) I 
-I - - -

A 
1 1 + "70""':-:-:-1 
I (1-A8) (m-l)x(m-l) 

(4.4.6) 
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with ASfl. It can be easily shown that r GER possesses the eigenvalues 

A 
I, of multiplicity (m-2) , and (1+ (I-AS». If we denote p(rGER ) as 

the spectral radius of r
GER

, then for the stability of the GER 

scheme, we require p(rGER)~l. This implies that 

(4.4.7) 

which gives, 
A -2 ~ ~ 0 • 

(I-AS) , 
(4.4.8) 

Since A is non-negative, then (l-AS)<0 or 

AS>l and A~-2(1-AS) (4.4.9) 

Different cases of S are now treated to investigate the condition of 

stability of the GER scheme. 

(a) For 6=0, we have 

I A 1-1+ (1-A6) - l+A for all positive values of A. Therefore, 

which shows that the GER scheme is always unstable. 

(b) For 0<6<1. (4.4.9) gives, 

A6>l and 
2 

A~ (26-1) 

The second inequality can never be satisfied since A is non-

negative whilst (28-1) is always negative. Hence, for this 

particular case of 6, the GER method is always unstable. 

(c) For 6=t, we obtain, 

and as in case (a), the GER scheme is absolutely unstable. 

(d) For !<6~l, (4.4.9) becomes, 



or 
1 

A>t and 

We deduce that, the scheme is conditionally stable for A~(26~1) 

We conclude from the cases (a) ,(b),(c) and (d) that the GER 

scheme is: 

(1) always unstable for O~8~t, and 

(2 ) 
2 

it is conditionally stable for A': (26-1) when e E Cl ,11. 
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It may therefore be summarised that none of the cases above can 

really be considered useful either because of their unconditional 

instability (when O~%t) or due to their "inverse" conditional stability 

(when t<6~1 and which could lead to excessively large time steps). 

(ii) Stability of the GEL Scheme 

From the equations (4.4.2) and (4.4.5), the GEL amplification 

matrix is given by, 

A I 1 
1-

(1+A8) I 1 - - - - '- 1- -1- - - - -
1 (l+A) -A 

1 I 
1 

>. (I-A) I 0 1 

fGEL = -- - -1- - I- - -I - - -
I I', 1 

1 , 1 
1 

... 
-1-

,I - - - -1- -i 
1 I (1+A) -A 

I 0 I I 

(4.4.10) 

I I 
A (I-A) 

I I (m-I) x (m-l) 

The eigenvalue.s of fGEL are 1 (of multiplicity (m-2» and (1- (l:A6» 

and the GEL scheme is stable if P(fGEL)~l. This requires that 

A . 
1
1 - 1 < 1 (4.4.11) (1+>'6) , 

giving, A 
o ~ (1+>'6) ~ 2. (4.4.12) 
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Since A is non-negative then from (4.4.12), we must have (1+A6»0. 

Hence, 

(a) For 6=0, we have 

A ~ 2(l+A6) • 

A 1 = II-A 1 • 
(1+1.6) 

(4.4.13) 

In order that p(rGEL)~l, we must have II-AI~l which is satisfied 

for A~2. Therefore, for this particular case of 6, the condition 

of stability is A~2. 

(b) If 0<6<;, then from (4.4.13) we obtain A(1-26)~2 which leads to 

the following condition of stability, 

2 
A ~ (1-26) 

(c) For 6=i, we get, 

11 - A 1 = 11 - (l+~A) 1< 1 for every positive value of A. (1+1.6) 

This implies that the scheme is always stable for 6=t. 

(d) For t<6~1, inequality (4.4.13) leads to, 

2 
A ~ (1-26) 

NoW, the quantity 2/(1-26) is always negative whilst A is non-negative. 

Hence, the scheme is absolutely stable for all values of A. From all 

the cases above, we conclude that the GEL scheme is: 

(1) conditionally stable for A~2/(1-26) with 0~6<t, and 

(2) it is absolutely stable for all values of A when t~6~1. 

(iii) Stability of the GEU Scheme 

From the equations (4.4.3) and (4.4.5), the GEU amplification 

matrix is given by, 



1 - (1+1.6) 

- - - - - 1(1+1)

I 
___ L A 

1 

(1-1.) 1 
-1-

" 1 " 

1 

4---

I 
I 

'"1 -
10 

1 
-1-

I- - --
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I 
1 " " I 

1 
1 (4.4.14) 

---_1. 

--- -1-
1 

r.: - - ---l -
I 1(1+1.) -A 1 

o 1 1 A (1-1.) I _1 __ I ___ ...l __ _ 
I 1 A 

1 
I I I 1 + -;(71:':"_'""1. 6,,",):-1 
I (m-l)x(m-l) 

A 
whose eigenvalues are 1 - (1+1.6),1 (of multiplicity (m-3» and 

1+ (1-1.6) Hence we can easily deduce from the conclusions drawn on 

the stability analysis of the GER and the GEL schemes that the GEU 

2 
method is conditionally stable for Al. (26-1) when 6 E(! ,1) • 

(iv) StabiZity of the GEe Scheme 

From the equations (4.4.4) and (4.4.5), the GEC amplification 

matrix is given by, 

(1+1.) -A 1 
1 

A (1-1.) I I 
I - -- r- ~A-I - - - + I- - - - -
I (1+1.) I 

I 1 
1 A (!-:\)..L _ 0 I 

- - - - -t -I - -I - - -.... 
rGEC= I I .... , I I ..... - - - -I +- -I(~A)- ~ t-

al I I 
I 1 A (1-1.) I 

1- I- -I .1 - -
1 

1 (1+1.) -A 

L 
\ 

A (1-1.) 

4.4.15) 

(m-1) x (m-1) 

since f
GEC 

has (m-l) eigenvalues, each equals to 1, then clearly the 

GEC scheme is always stable with no restrictions on A and 6 E [0,1) • 
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(v) StabiZity of the (S)AGE Scheme 

We shall ·first consider the case when m is even. By means of 

equations (4.2.25), we obtain, 

-1 -1 
'!:!'j+2 = (I+AilG2 ) (I-A(1-8)G2 ).!:!.j+l+(I+AilG2 ) .£2 ' 

(I+AilG
2

) -1(I-A(1-8)G
2

) (I+AilG
1

) -1 (I-A (1-8) G
1

).!:!.j + '£2' 

(4.4.16) 

Le., '!:!'j+2 = r SAG~j +'£2 ' 

where, 

= 

(4.4.17) 

(4.4.18) 

and.£2 is the appropriate column vector of order (m-1). Ne observe 

that r
1 

and r
2 

are exactly the amplification matrices of the GEL (4.4.10) 

and the GER (4.4.6) schemes respectively. Hence, by mUltiplying these 

matrices, we obtain, 

a 

c 

e 

r SAGE= 

where 

b 

d -c e 

f d -f 

c d -c 

e f d 
~ 

0 

e 

-f 
.... ......... 

~ .... 
c ~d 

e f 

o 

-c e 

d -f 

c 

e 

d 

f 

a = (l+A) (1-A/(1+A8», 

b -A (1->./ (1+A8» , 

c = A (1+A) , d 
2 2 

1-A , e = A , 

(4.4.19) 

g 

1!,. (m-1) x (m-l) 

(4.4.20) 

f A(l-A), g = -A(1+A/(1-A8» and h= (1-A) (1+A/(1-A8». 



Note that diag(fSAGE)=(a,d,d, •.• ,d,h) with d occurring (m-3) times. 

It is difficult to evaluate directly the eigenvalues of f
SAGE 

in a 
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closed form. However, we know from Chapter 1 that if the eigenvalues 

of f SAGE are denoted by ~i' i=1,2, ••• ,m-l, then, 

m-l 
L ~. = tr.(f

SAGE
) where tr.(fSAGE ) is the trace of f SAGE i=l 1. 

which is the sum of the diagonal elements of f SAGE ' 

i.e. I ~1+~2+ ••• +~m-l = a+(m-3)d+h • 

Now if we insist p(fSAGE)~l it follows that, 

Hence we seek the values of X such that, 

1~11+1~21+ ••• +I~m-ll 
:;: (m-l). 

la+(m-3)d+hl ~ lal+ (m-3)ldl+lhl~(m-l) , 

i.e. , (1+X) I (1-X/(1+X8) 1+(m-3) I (1_X2) 1+1 (I-X) I (1+A/(1-A8)) I~ (m-l). 

Let </>(X) = (1+AlI(1-A/(1+A6))I+(m-3)1(l-X
2

)1+i(1-X)II(1+A/(1-A8))I. 

",(X) is non-negative and if X~l for 8 E [0,1], X8tl we find that </>(A) 

will be a continuous function of A, 

i.e. 
2 

</>(A) = (l+X) (1-A/(1+X8))+(m-3) (l-X )+(l-A) (1+X/(1-X8)). 

</>(X) attains its greatest value of (m-l) at X=O and </> (X) <m-I in the 

range O<X~l. 

Therefore, if, p(fSAGE)~l, then X~l, for SE [0,1], X8t!. 

2 3 
Now suppose that we form the sequence fSAGE,fSAGE' •.. It is 

observed that the entries of the product f~AGE contain combinations 

of powers in A,(l-X) and (1-X/(1+X8)). Hence if X~l, liro f~AGE=O 
k--= 

which implies that f
SAGE 

is convergent. A necessary and sufficient 

condition for this to be ,so is p (f SAGE) <1. We conclude that the (S)AGE 

scheme is stable for X~l. 
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When m is odd, the equations constituting the (S}AGE procedure 

are given by (4.2.36). This time, however, the amplification matrix 

r SAGE is the product of the amplification matrices of the GEe and the 

GEU schemes and it takes the form, 

a -c e 

-b d -f 

c d -c e 

e f d -f 

c d -c e 

e f d -f , , 
r SAGE= , , , , 

0 c 

e 

'd 

f 

o 

-c e 

d -f 

c 

e 

d 

f 

(4.4.2l) 

g 

h (m-l}x(m-l) 

The matrix has the same diagonal elements as in (4.4.l9) and clearly 

the (S}AGE scheme for the odd case is also conditionally stable for A~l. 

(vi) Stabi~ity of the D(AGE) Scheme 

The four-step process of (4.2.26) can also be written in the form, 

U = r u + b' -j+4 ·DAGE -j -1 
, 

where the amplification matrix r
DAGE 

is given by, 

(4.4.2Z) 

-1 -1 -1 
r DAGE = {(I+AeG

l
) (I-A(1-8}G

l
}}{(I+AeG

Z
) (I-A(1-e}G

Z
}{(I+AeG

2
) 

(I-A(1-e}G
2

) (I+AeGl}-l(I-A(l-e}G
l

}} 

= rGERrGELrSAGE (4.4.23) 

and £i is the relevant column vector of order (m-I). By multiplying 

the matrices in (4.4.23), we find that, 
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and we seek values of A such that 

Ipl+ltl+!(m-4) Iwl+ !(m-4)lzl+lpll~ m-I. 

Now, Ipi+!t·I+!(m-c) Iwl+ !(m-C) Izi+!P11 

2 1.2212 221 = 1 (1+1.) (1- (HA6» -A (1+21.) +1-1. (1-1.(1+1.6» +(1-1.) (1+21.) 

2 2 . 2 2 
+! (m-C) 1 (1+1.) (1-ZA) -A (1+21.) 1 +! (m-C) 1 (1-A) (1+21.) -A (1-21.) 1 

+ 1 (1-21.) (1+1. (1-1.6» 2 1, 

~ 1 (1+1.) 2 (1-1./ (1+1.6» 21 + 1 1.
2 

(l+2A) 1+1-1.
2 

(1-A/ (l+Ae» 21 + 

2 
1 (1-1.) (1+21.) 1 

2 2 2 
+! (m-Cl{ 1 (1+1.) (l-2A) 1+1 A (1+21.) 1 }+! (m-C) {I (1-A) (1+21.) 1 

11. 2\1_21.) 1 H (1-21.) (1+A/ (I-Ae» 21 ' 

= .p(A) • 

.p(A) is non-:negative and if Ad for 6 E [0,1] we observe that .p(A) is 

a continuous function of A, 

i.e. .p(A) = (1+1.)2 (1-A/(1+Ae»2+A2(1+2A)+A
2

(I-A/(I+A6»2+(1-A)2 (1+ 21.) 

+!(m-C){(1+A)2(1-2 A)+A
2

(1+2A)}+t(m-C){(1-A)2(1+2A)+A
2

(1-2A)} 

2 
+ (1-21.) (1+A/ (1-1.6» 

2 2 2 2 2 2 
= (A +(1+1.) ) (1-1./(1+1.6» t(A +(1-1.) ) (1+21.) + (m-4) (1-21. ) 

+(1-21.) (1+1./(1-1.6»2. 

Our problem is now reduced to seeking A such that .p(A)~(m-l) • .p(A) 

achieves its greatest value of (m-l) at 1.=0 and in the range O<A~t, 

IjI (A) <m-I. Therefore, if p (f DAGE) ~1 then Ad for 6 E [0,1] • 

For convenience, let us replace fGEL,fGER,rSAGE and r DAGE by r 1 ,r2 ,r3 

and r 4 respectively. We now construct the sequence of matrices 

2 3 r 
f 4 ,f4 ,f

4
, •.• ,f

4
,... Consider, 



r -DAGE 

P q r s 

-q t u v 

r -u w x r s 

-s v -x z u v 

r -u w x r s 

-5 V -X Z U V , .... .... 

o 
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o 

.... (4.4.24) , 
r -u"'w X r s 

-5 V -x z u V 

r -u w X y 

-s v -x Z 

Y -ql PI 
(m-l)X(m-l) 

where 

2 ).. 2 2 2 
P - (1+)..) (1- (1+),,9» -).. (1+2).), q - -(>-(1+),,)(1-),,/(1+),,8» +)"(1-)")(1+2>-», 

2 3 2 2 2 
r - 2(1+)..» .. , s - -2).. , t - -).. (1-),,/(1+18» +(1-),,) (1+2)..), 

2 2 2 2 
u - -2 A (I-A), v - 2 (I-AlA ,W - (1+A) (1-2).) -A (1+2).) , 

2 2 2 
2A (1+),,/(1-),,8», Z - (1-)..) (1+2).)- X (1-21), 

q, - -2;\ (I-A) (1+)../ (1-A8» , 
2 

PI - (1-2A) (1+1/(1-),,8» • 

Now, diag. (rOAGE ) - (p,t,w,z,w·,Z, •.• ,w,z,Pl) with w,z each 

occurring alternately for (m-4)/2 times. 

i.e. I 

If ~i' i-l, ••• ,m-l represents the eigenvalues of r DAGE then 

m-I 
I ~. - tr. (rDAGE ) , 

i-I ~ 

1~1+~2+"'+~m-ll - Ip+t+t (m-4)w+! (m-4)z+P1 1 

~ 1~11+1~21+···+I~m-ll 

If we require that p(rDAGE)~l then we have, 

(4.4.25) 
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f4 = f2r /3 , {from equation (4.4 .23» 

= fl l {f/2) 

2 
= r 2 {r l Jr2 • 

Hence, 
f2 2 = (f2f/2) (f2f/) 4 

2 2 
= f2flf/l (f l f 2) 

222 = f 2{f/2!f/2 . 
Similarly, we also have, 

and continuing in this manner, we find that, 

(4.4.26) 

Combinations of powers in 2A, (l-2A) and (l- A) . h (l+A8) appear ~n t e 
2 2 r lim{f
l

f
2

) =0 and from 
r-

2 2 r 
entries of (rl f 2) • Therefore, if A~t then 

(4.4.26), lim r~=o, the null matrix. 
r- 2 3 

Hence the sequence f 4 ,f 4 ,r4 , ••• converges and a necessary and 

sufficient condition for this to be so is p{r4)(1. 

We conclude that the DAGE scheme is conditionally stable for A~t. 

The corresponding amplification matrix for the (D) AGE scheme when 

m is odd is found to be, 



P2 

cl 

r
2 

where P2 
= 

cl = 

r 2 = 

q2 

tl 

-x 

r 

-s 

r
l 

x r s 

w
l 

u v 

0 
-u tl x r s 

v -x w
1 

U v ... 
.......... ' "-" ,,"'" " ..... " .... " " 

o 

... 
" ...... " " ..... .... " .... " .... " " .... " .......... " .... ""'" ...""" ... r -u .... t .... x r 

1 

-s v -x 
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(4.4.27) 

s 

v 

r -u tl x Y 

-s v 

Y -ql PI: (m-llx (m-I) 

A 2 A 2 A 
(1+21.) (1- (1+1.6» , q2 = -21. (1+1.) (1- (1+1.6»' r l = 2A (1- (1+1.6» , 

2A (1+1.) (l-
A 

1-41.
2

(1+1.) , 
2 

(1+1.6» , tl = w
l 

1+41. (A-I), 

2).2(1_ A 
(1+1.6) ) (4.4.28) 

and the other entries of the matrix take on the same values as in 

(4.4.25). As previously, it can be established that the scheme has 

conditional stability for A~!. 
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4.5 APPLICATION OF THE GE METHODS TO A MORE GENERAL FIRST ORDER 

EQUATION 

Our discussion on the GE methods easily carries over to the case 

of solving a more general equation of the form, 

au aU at + ax = k(x,t) • (4.5.1) 

The basic implicit formulae defining the GE schemes now become, 

(l+Ae)ui . l-Aeu. 1 . 1 = (l-A(l-~)ui .+A(l-e)ui 1 .+C,tk .. e 
,]+ ~- ,J+ ,J -,] 1.,J+ 

(4.5.2) 

and 

(4.5.3) 

from which the following set of explicit equations determining the 

solutions at the grouped points are derived, 

and 

u. 1 . 1 ~- ,J+ 

u = i,j+l 

= (l+A)ui 1 .-Aui·+c,t((l+Ae)ki 1 . e-Aek .. e) 
-,J ] - ,J+ 1.,J+ 

AU. 1 .+(l-A)ui·+c,t(Aek. 1 . e+(l-Ae)k .. e)' 
~- ,J J ~- ,J+ 1.,J+ 

(4.5.4) 

(4.5.5) 

The equations describing the u-values at the left and right ungrouped 
~ 

points are given respectively by, 

Ul,j+l = [A(l-e)uO,j+(l-A(l-e»Ulj+AeUO,j+l+C,tkl,j+e]/(l+Ae) 

(4.5.6) 

and U 1 . 1 = [(l+A(l-e»u 1· .-A(l-e)u .-AeU . l+C,tk 1 . e]/(1-A6), m- ,J+ m-,] , m] m,J+ m- ,J+ 

A6fl • (4.5.7) 

The one-step, two-step and four-step processes are then developed in 

exactly the same manner as before. 
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4.6 GE METHODS FOR THE SPATIALLY-CENTRED APPROXIMATION TO THE FIRST 

ORDER EQUATION 

Let uS now consider the hyperbolic equation of first order of 

the form, 

(4.6.1) 

If we approximate the time and spatial derivatives by the forward 

and central difference formulae respectively at the point (xi,t
j

) we 

obtain, 

aU 
u, , -U, , 

= ~'J+l 1.,J + 0 (/It) (4.6.2) 
at 6t 

, 

and au U, 1 ,-U, 1 ' 2 
-= 

.1.+ ,] 1.- ,) +0([1\><] ) (4.6.3) 
ax 21\>< 

NOW, by using the Taylor's series about the point (Xi+l,t
j

) we have, 

Ui+l,j+l (4.6.4) 

or 

(4.6.5) 

If we substitute this expression into (4.6.3), we get 
au 

'U [U, 1 '+l-(6t) (-;-), 1 j-Ui _l ,1 
a = 1.+ ,] oX 1.+ ,_ ,] 

2/1x ax 
(4.6.6) 

By virtue of (4.6.1), equation (4.6.6) together with the equation 

(4.6.2) leads to the following finite difference analogue, 

u, , l-u" -(u'+l' '+l-u'_l ,) 
1. , ] + 1. I J =: _--"l."",,-,,,,J,-,-,:.,.....;l.=-=, ""J_ 

/It 2/1x 

or 
(4.6.7) 

where we have assumed the consistency relation /It + 0 as /It,/lx + 0 
/Ix 

and r=lA=! 6t 
/IX 

molecule, 

The formula (4,6.7) has the following computational 
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j+l 

j 

i-l .i i+l 

FIGURE 4.6.1 

and the approximation is known as the RL (right to left) type since its 

computation at the mesh points proceeds from the right boundary. 

Similarly. if we reverse the above procedure. we obtain the following 

LR approximation. 

ru. . +u .. 1 = u .. + ru. 1 j 
~-l.J+l ~.J+ ~J ~+ • 

(4.6.8) 

and its computational molecule is given by. 

j+l 

1 j 

i-l i i+l 

FIGURE 4.6.2 

The local truncation error for equation (4.6.7) is obtained from the 

following Taylor series expansion about the point (x .• t. t): 

(lit) 3 . 3 ~ J+ 3 

[(.2!:!. + au II t .Q.lJ. 1 .Lt!. + ~(lIx)2 .Lt!. + 3 T = ·-)+t + ---
4.6.7 at ax lIX at 8.3 ! lIx 

at
3 3' 3 2.3 ! . ax 
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a
3

u 3 2 a
3

u 1 2 a
3

u 1 (6x) 4 (6t) (6x) - --(M) + --(6t) ._+-
2 4.3 ! 2 4.3! at3 5! ax at axat 

a
5

u 5 (6x)3(6t) a
5

u 5 (6x) 2 (6t) 2 a
5

u 5 a
5

u 
--+-- +-- 3 2 

+ 45r(6x) (6t)-2-
ax5 2.5! 4 2.5 ! 

ax at ax at . . ax at 

5 4 
+ 16.5!(6t) 

1 (6t)5 
6x 

... 1. . ~ 

i.e. , 

T 
4.6.7 

4 
axat 

+ 32 .5l 1.,)+"2" 

(4.6.9) 

and the truncation error for (4.6.8) is given by, 

T 
4.6.8 

i.e. , 

T 
4.6.8 

= [(au _ ~) +1 6t ~ _ 1:.(6t) 2 a
3
0 + _3_ (6t) (6x) a

3
u 

at ax 6x at 3 ax3 2.3! a/at 
3 ---4.3! 

3 3 3 5 
(6t)2 a u +(_1_ (6t)2 + _1_ (6t) ).L£ _ .1:... (6x) 4 ~ + _5_ 

axat2 4.3! 8.3! 6x at3 5! ax5 2.5! 

3 as 5 2 2 aSu 5 3 aSu 
(6x) (6t) 4 U - 251(6X) (6t) 3 2 I 45r(L\x) (6t) -2-3-

ax at· ax at .. ax at 

1 4 1 (6t)5) a5u 
- (16.5! (6t) + 32.5! 6x ~ .•• li,j+1 

3 
= (au _ au) + 6t(t ~ +.1:... (6t)2 .L£ + 1:. (6x)2 

at ax i,j+t 6x at 48 at3 4 

3 3 
+ (6t) 2 (.1:....L£ _ 1:. a u ) + 

24 at 3 8 axat2 i,j+1 

1 2 a3 
- -(6x) (2) 

6 ax3 i,j+l 

1 "1 "2 
6X O( (6x) (6t) ); (4.6.10) 

As previously, the two equations in implicit form, i.e. equations 

(4.6.7) and (4.6.8) can be coupled to produce the following set of 

explicit equations, 



or 

and 

u. 1 . 1 1.- ,]-r 

where r
l 

= 1 
2 

(l-r ) 

1 
= --=-=-" 2 

(l-r ) 

-r 
, r 2 = 2 

(l-r ) 

2 
u. 1 .-ru

i 
.+ru. 2 .-r u·"l . 1-,J J 1-,J 1.+,J 

2 
-ru. 1 .+u.j-r u. 2 .+rui 1 . 1.-,J 1. 1.-,] +,J 

2 
r 

and r3 = --~2°- with rll. 
(l-r ) 

corresponding computational molecules are 

i-l 
Equation (4.6.11) 

j+1 

and 

j 

FIGURE 4.6.3 

l. 

Equation 
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(4.6.11) 

(4.6.12) 

The 

j+l 

j 

The solution at the right ungrouped point is given by equation (4.6.7) 

with i=m-i,i.e., 

Um- l ,j+1 = -ru +u +ru 
m,j+1 m-1,j m-2,j J 

(4.6.13) 

whilst the solution at the ungrouped point near the left boundary is 

determined by equation (4.6.8) with i=l, i.e., 

ul . 1 = -ruo . 1+ul ·+ru2 · (4.6.14) 
,]+ ,]+]] 



Without loss of generality, we shall consider only the GER, GEL, 

S(AGE) and D(AGE) schemes of the GE class of methods. The truncation 

errors and stability of these methods will be investigated in some 

detail. 

(iJ The GER Soheme 

From (4.6.7), (4.6.8) and (4.6.13), the implicit equations 

constituting the GER scheme are given by, 

u. 1 . l+rui . 1 - u. 1 .+ru. 2 . 1.- ,J+ ,]+ 1.- ,] 1.-,J 

ru. 1 . l+u .. 
1.- ,J+ 1.,J+1 - u l• ,+ru. 1 ., ,J 1.+,J 

i-2 ,4, ••• , (m-2) 

and u . = -ru . +u . +ru ., 
m-l,)+l m,)+l m-I,) m-2,) 

which, in matrix form, can be written as, 

~ 

1 r, u
1 

I I I 
r 1 

.1 I u
2 --I ----- -,-

11 rl 1 

d ___ 1 
u

3 
I 11 I I 

r I -1- 't ... - I -
1 ..... I I .... I ... I I 
~ 

... 
- 1-- I - -- t- --1'1 

10 rl u l 

I 1 m-3 

1 1 Ir 
, 

1 , u
m

_
2 - - - r- -I- - - - -1-- ..,-

1 I I , 
1 um-I: 1 I 

j+l 

1 1 I , rU1 
l - -I I- - - - - l-

t 1 rl I u
2 

J r_ 11 
1 
r- u

3 
1 

, , + b • , 
0 

-1 
1 , 

" I , 
I 

I 0 , 
J. 

, 
- l -,- -

I I 1 r u 
1 m-2 , 

I 
L , 

I I r 1 u m-I 
j 

(4.6.15) 
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where 
T 

b
1 

~ (ruo"o, ••• ,-ru '1) . The matrix equation (4.6.15) 
- J m,J+ 

can be represented in the more compact form by, 

(I+rG1)u, 1 ~ (Itr G2)u, + b
l 

' 
-J+ -J -

(4.6.16) 

where, 

° 1 1 G(l) , , 
I I I 

1 0 1 _1- _ 4- L _.L I -, - -- I-
1 1 1 1 (2) 1 1 1° I 1 G I 

I 1 1 1 10 , 
G ~ __ ~ _ 0-1 - 1 C _1- _1- _ .1 _ 1 -1- ~ 

.L _ , " I', 1 I 1 I', , 1 "-
" I , _1-- - -1- - I- I--'0- - - - -1-

1 I I 1 
1 I I I 1 1 

IG1 (m-2) , 

01 

and 

G ~ 
2 

and 

1 '1 ° 1 I 
-1- - J.. -j- --1- - -,-

I I , , ° , 
° 1 " , 

- - j- - -
I G (1) 

, 1- - - - r ---

-1- -
1 

--I-
1 
I 
L 

I 1 I 
- 1- t t-

I G (2) 1 0 I 
-I- -I. --I 

I I', 
I ,I 
, I ' I 

'T"I 0 -, r t Tm-ii 
IG 

10 I 
'l ---I , , , 

, i~1,2, ••• ,1(m-2); m being even. 

(ii) The GEL Scheme 

, The implicit equations for the GEL scheme are given by, 

u 1 ' 1 ~ u1 ,+ru2 ,-ruo ' 1 ' ,]+ ] ] ,]+ 

u, 1 ' l+ru , , 1 ~ u, 1 ,+ru, 2 ' , 
1.- ,J+ 1.,J+ 1.-,J ~-,] 

ru, 1 ' l+u , , 1 ~ u,,+ru, 1 ' 
1.- ,J+ 1.,J+ 1.J 1.+,J 

i~3 ,5, .. " (m-1) 

or in matr ix form as, 

, 
L 

'0 , 

(4.6.17) 



1 I 1 I 

- -I - ; -I - - - 1 - -
1 1 r 1 

1 I 1 
r 11 1 

l. -r;. - -1- -1- - -
1 r I 1 

I 1 1 I P -I .::.. r- _.L -i--
I I' 

1 1 
, I 1 , 

I 1 1 
, 1 
~I--I- -t - -1- I 1 r 

I I 0 1 
1 I 1 
I I r 1 

1 

where ,. 

(iii) The (S)AGE and (D)AGE Schemes 

u
1 

u
2 

u
3 

u
4 

Us 
I 
1 
I 
I 
I u
m

_
2 

um-l: 
j+l 

u 
m-I 

~ 

j 

+ b 
-2 ' 
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(4.6.18) 

(4.6.19) 

The two-step (S)AGE scheme is given by the following equations, 

and 

(I+rGl)u. 1 = (I+rG2 )u. + b
1 -)+ -) -

(I+rG2 )u. 2 = (I+rG1)u. 1+b2 
-)+ -)+ -

j=O,2,4,.,. } (4.6.20) 

while the four-step (D) AGE method is computed from 



326 

(I+rG1)E.j +1 
= (I+rG2)~+£1 

(I+rG2 )E.j +2 = (I+rG1)E.j +1 +£2 
j=O.4.8 •••• (4.6.21) 

(I+rG2 )u. 3 = (I+rG
1

) u. 2 +bZ -J+ -J+ -

and (I+rG1)u. 4 = (I+rG
2

) U. 3 +b
1 -J+ -J+ -
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4.7 TRUNCATION ERROR ANALYSIS FOR THE GE METHODS 

(i) Truncation Error for the GER Scheme 

From (4.6.16), the explicit form of the GER scheme is given by, 

A 

+ b , 
-1 

(4.7.1) 

The matrix representation (4.7.1) consists 

of the following equations, 

u, 1 . 1 = rlu, 1 ,+r2 (u, ,-ui 2 ,)-r3u, 1 ' , 
~- ,J+ 1.- IJ 1.J -,J 1.+ ,J 

(4.7.2) 

Ui,j+l = r1ui/r2(ui_l,j-ui+l,j)-r3ui_2,j , for i=2,4,00., (m-2) , 

(4.7.3) 

and u = -ru +u +ru 
m-l,j+l m,j+l m-l,j m-2,j 

(4.7.4) 

The truncation error for (4.7.2) is obtained by expanding the terms 

Ui-1,j+l' Uij , Ui _2 ,j' Ui_l,j and Ui+l,j using the Tay1or's series about 

the point ((i-1)lIx, (j+!)lIt) : 

T 
4.7.2 

4 
3 U 1 + 

3x33t (i-l,j+t) 
(4.7.5) 

In the same way, a Taylor series expansion for U, , l' U, 1 " U'+l " 1.,J+ 1.-,] 1. ,J 

U, , and U, 2 ' about the point (illx,(j+t) lit) gives the following 
1.,J 1.- ,J 

truncation error expression for equation (4.7.3): 

T = (lit) (~Ut) (',)'+') + (lIx) (lit) [2 3U + l(lIt) 
2 

4.7.3 0 ~ , (lIt-2l1x) 3x 4 

4 
3 U 1+ 

axat
3 

(i,j+!) 



(Ilx) (Ilt) 2 a2u 
(2t.x+llt) (axat) (i,j+;) 

222 
+ (Ilx) (Ilt) [2 .L!!. _ 

2 2 2 
(4 (Ilx) -(Ilt» ax 

(Ilt) a4u 
2 2 

ax at 

2 +-
3 
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2 
+-

3 
(Ilx) 3 (Ilt) (llx+2Ilt) 

(4 (Ilx) 2 +(Ilt) 2) 

a3u 1 a4u 
[-3 - 2"(llt) 3 ] (i '+;) 

ax ax at ' J 

+ ••• (4.7.6) 

The truncation error for the single ungrouped point near the right end 

is given by the equation (4.6.9) with i=m-l, i.e., 

(4.7.7) 

(ii) Truncation Error [or the GEL Scheme 

From (4.6.19), the GEL scheme takes the explicit matrix form, 

(4.7.8) 

" -1 where £2= (I+rG
2

) £2. When written component-wise, (4.7.8) becomes, 

U1 ,j+l = -ruO,j+l+ulj+ru2j , (4.7.9) 

ul,'-l,J'+l = r 1u, 1 ,+r2 (u, ,-u, 2 ,)-r3u, 1 ' 
~- ,J 1.] 1-,] 1.+ ,J 

(4.7.10) 

i=3,5, .. . m-I, 

and Ui ,J'+l = r 1u, ,+r2 (u i 1 ,-u, 1 ,)-r3u, 2 ' • 
1] -,J 1.+ IJ 1.- ,J 

(4.7.11) 

The truncation error for the equation (4.7.9) can be obtained directly 

from (4.6.10) by putting i=l, to give, 

T = (au _ au) 
L at ax 1,j+; 

(4.7.12) 

The truncation errors for any two grouped points (equations (4.7.10) 



and (4.7.11» are given by T4 •7 •2 and T4 •7 •3 of the expressions 

(4.7.5) and (4.7.6) respectively for i;3.5 ••••• m-l. 

(iii) Trunaation EPrors [or the (S)AGE and (V)AGE Sahemes 

Based on the truncation errors of the GER and the GEL schemes. 

the truncation errors of the (S)AGE and (D) AGE methods are analysed 

in exactly the same manner as for the alternating schemes of the 

generalised weighted approximation of Section 4.3. 
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4.8 STABILITY ANALYSIS FOR THE GE METHODS 

Before we proceed to investigate the stability condition of the 

GE schemes, we shall first of all establish the following results which 

will be used in our stability analysis. 

From (4.6.17), we find that the matrices G
l 

and G2 have the same 

set of eigenvalues which consists of 0,1 (of multiplicity t(m-2)) and 

-1 (of multiplicity t(m-2)). Hence, we observe that although these 

matrices are symmetric, they are not positive definite. Furthermore, 

each of the matrices (I+rG
l

) and (I+rG
2

) has the eigenvalues O,l+r 

(of multiplicity t(m-2)) and l-r (of multiplicity t(m-2)). Hence, 

the spectral radius of (I+rG
k

) (k=1,2) is given by, 

P (I+rGk ) = 11 (I+rGk ) 112 

= l+r for all positive values of r. 

The inverses of (I+rG
k

) take the form, 

1 
2 

(l-r ) 

1 

-r 

L 

-r I 

1 I 
I-
I 1 

Lr -, 
I 

-l 
1 

-' 

-I 
10 
I -, 
I 

I 
-I-

I 
1° 
r 

I 
I 

I -, , , 
..1. 
I , 

_1-
-r I 

1 I -,-
, 2 
,( l-r ) 

(4.8.1) 

(4.8.2) 

(m-l) x (m-l) 



and 

1 
= ----'~,-

2 
(l-r ) 

2 (l-r )1 
-i-

1 1 

I-r 
l-

1 

I 
-I 

1 
I 
I 
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1 I 

-I - - - --l 
-r 1 1 

1 
11 1 
-1- ,---

I ' , 0 1 
I 

, I 
" I 

10 
, 

~ - -'I--
I 11 -r 

(4.8.3) 

I I 
I 1 -r 1 (m-I) x (m-I) 

-1 
A direct evaluation of the eigenvalues of (I+rGk) shows that these 

eigenvalues are 1, l/(l-r) of multiplicity !(m-2) and l/(l+r) of 

multiplicity!(m-2). 

(i) StabiZity of the GER Scheme 

From the equation (4.7.1), the amplification matrix of the GER 

scheme is known to be 

(4.8.4) 

Hence, 

p (r GER) = II r GER 112 

= II (I+rG
l

) -1 (I+rG2) 112 

~ 1I (I+rGl)-111211 (I+rG2) 112 ' (4.8.5) 

= (4.8.6) 

To enable us to find the spectral radius of r
GER

, we shall nOw consider 

(4.8.5) for different cases of r. 

(a) For O(r(l, we have 

= r. 

Therefore, if I IrGll lil, then it follows from Corollary 1.25 that, 

(4.8.7) 



Hence, using (4.8.5) and (4.8.7) we find that 
11 (I+rGiI12 

p(fGER ) ~ l-ll rG
l

l1
2 

= Q
l 

• 

It is clear that (f )< with a = l+r >1. p GER ,al 1 l-r 

(b) For r>l, we have 

-1 
(I+rG

l
) (I+rG

l
) = I 

and IIII12~11 (I+rGl )-1112 11 (I+rGlI12, which implies, 

Hence, we get from (4.8.5) and (4.8.8) that p(rGER)~al with 

11 (I+rGiI12 

Q l ~ 11 (I+rGrI1
2 

l+r 
= -- = 1. 

l+r 

332 

(4.8.8) 

We deduce from the cases (a) and (b) that for all values of r, the 

GER scheme is always unstable. 

Alternatively, this condition of stability can also be established 

by first considering the eigenvalues of (I+rGk)-l which are I, l/(l-r) 

of multiplicity t(m-2) and l/(l+r) of multiplicity t(m-2) for k=l,2. 

It is seen that, 

NOW, using (4.8.5), (4.8.6) and (4.8.9) we find that: 

(a) for O<r<l, 

= (l+r) > 1 d an 
(l-r) 

(4.8.9) 
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(b) for 1<r~2, 

(l+r) 
a l = 1 (l-r) I > 1 and 11 r GERI12 ~al with al>l; 

and 

(c) for r>2, 

From (a) ,(b) and (c) we deduce that the GER scheme is always unstable. 

(ii) Stability of the GEL Scheme 

From the equation (4.7.8), the amplification matrix of the GEL 

scheme is given by, 

(4.8.1O) 

and 

-1 
= 11 (I+rG2 ) (I+rGt I1 2 

-1 
~ 11 (I+rG2 ) 11211 (I+rGt I1 2 

(4.8.11) 

Since 
-1 . . -1 

11 (I+rG2) 112=11 (I+rGl ) 112 and 11 (I+rGt I1 2=11 (I+rG2) 11 2 , 

the analysis of the stability of the GEL method will be the same as 

that of the GER scheme and we therefore conclude that the GEL scheme 

is also absolutely unstable. 

(iii) Stability of the (S)AGE and (D) AGE Schemes 

The second equation of (4.6.20) gives us, 

-1 -1 
u, 2 = (I+rG

2
) (I+rGl}u, 1+ (I+rG

2
) b

2 -J+ -J+-

By inserting u, 1 obtained from the first equation leads to, 
-J+ 

-1 -1 
~j+2 (I+rG2 ) (I+rGl ) {(I+rGl ) (I+rG2}}~j + ~2 

-1 
(I+rG2 ) I(I+rGZ>~j +~2 ' 

= Iu, + b Z' -J -

Hence, the amplification matrix of the (S}AGE scheme is r -I 
SAGE 

(4.8.12) 

(4.8.13) 
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with eigenvalues equal to 1 of multiciplicity (m-l). (S)AGE is 

therefore stable (weakly) for whatever choice of r or A. 

Similarly, from the last two equations of (4.6.21) we obtain 

-1 -1 -1-1 
= (I+rGl ) (I+rG2){(I+rG2) (I+rGl)~+2+(I+rG2) E.2 h (I+rGl ) E.l , u -j+4 

-1 -1 
= (I+rGl ) {(I+rG2 ) (I+rG2) }(I+rGl)~j+2+E.2' , 

-1 = (I+rGl ) I(I+rG1)~j+2 + E.2· 

+ bill 
-2 

= Iu + b'" 
-j+2 -2 

(4.8.14) 

The vector u. 2 of equation (4.8.13) is then inserted into (4.8.14) to 
. -J+ 

give, 

u = Iu + b" 
-j+4 -j -2 

(4.8.15) 

Again, the amplification matrix r
DAGE 

is the identity matrix with (m-l) 

eigenvalues, each equal to 1 implying that the (D) AGE scheme is also 

weakly stable. 
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4.9 GE METHODS FOR THE ROBERTS AND WEISS APPROXIMATION TO FIRST 

ORDER EQUATION 

A similar semi-implicit method for solving the first order 

convection equation has been developed by Roberts and Weiss (1966). 

It is based on the following discretisation of the equation at the 

. and 
, Jti 

Ui_~j+L Let us consider the first order equation at the point (xi,tj+t)' 

i.e. # 

(au) 1 + (au) 1 = 0 • 
Ox i,j+, at i,j+z 

If we replace the space derivatives as follows, 

(au) 1«au) (au» + O([6t]2) = 0 
at i,j+t +, ax i,j+l + ax i,j , 

followed by the discretisation 

(Ui j l-u .. ) 2 
-:::.!.' _..,+=---=~""J _ + 0 ( [6 t) ) + 

6t 

(U. • l-u. 1 . 1) 
t{ ~,J+ ~- ,J+ + 

6x 

2 
+ O([6t) +6x)} = 0 , 

(Ui+l,j-Uij ) 

6x 

au 
in which the backward difference form replaces (ax)i,j+l and the 

au 
forward difference form replaces (-a ). ., we get the analogue 

x 1.,J 

where r=A/(2+A) and A=6t/6x. 

The computational molecule of equation (4.9.3) is given by, 

j+l 

j 

i-l 

FIGURE 4.9.1 

(4.9.1) 

(4.9.2) 

(4.9.3) 
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If we reverse the above procedure, we obtain the following approximation, 

-ru .. l+ui 1 . 1 = u. 1 .-rui 2 .. , 
1..,]+ - ,)+ 1.-,] -,J 

(4.9.4) 

with its computational molecule given by, 

j+l 

j 

i-2 i-I i 

FIGURE 4.9.2 

By using the familiar Taylor series expansion about the point 

(x. ,t. ~), we obtain the following truncation error for the LR 
l. )+. 

approximation (4.9.3), 

1 2 a 3u a3u 
T4 •9 . 3 = 3"(.'1x ) (-3)i,j+t-H /lx ) (/It) ( 2 )i,j+t 

ax ax at 

1 2 a3u 
+ u(/lt) (-3)i ·+t + 

at ,) 
(4.9.5) 

Similarly, the truncation error for the RLapproximation (4.9.4) is 

given by, 

T 
4.9.4 

= 2 (.a!! _ au) 
at ax i,j+t 

8 2 a 3u 2 a 3u 
- -3 (/lx) (-3)· . ,+[ (/lx) -t (/lx)(/lt)]( 2 ). . ~ 

ax l.,)+, ax at l.,)+, 

4 
2 3 a u 

+ -3 (/lx) (-4)· . 1 + ••• 
~,J +'2" 

ax 
(4.9.6) 
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When the RL and LR formulae are coupled and the mesh points are grouped 

two at a time as before, we obtain the following set of explicit 

equations, 

and 
ul.' ,J'+l = r 2 (u, 1 ,-u, 1 ,l+rlu, ,-r3ui 2 ' , 

~-,J ~+,J 1.J - ,] 

where 2 r = l/(l-r), 
1 

2 
r 2 = r/(l-r ) and 

2 2 
r3 = r /(l-r ). 

The solutions at the right and left ungrouped points are given 

respectively by, 

u = u , +r (u ,-u , ) 
m-l,j+l m-l,J m,J+l m-2,J 

and 

Further discussions on the GE schemes of the Roberts and Weiss 

(4.9.7) 

(4.9.8) 

(4.9.9) 

(4.9.10) 

approximation are abandoned because as will be explained in a later 

section, these schemes produce low accuracies in their solutions. 



4.10 GE METHODS FOR THE SECOND-ORDER WAVE EQUATION 

Let us now consider solving the following second-order wave 

equation, 

subject to the initial conditions, 

U(x,O) = fl (x) 

au 
at (x,O) = f2 (x) , 

and the boundary conditions, 

and 

U(O,t) = gl (t) 

U(l,t) = g2(t) 
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(4.10.1) 

(4.10.2) 

(4.10.3) 

The wave equation (4.10.1) can be reduced to a system of simultaneous 

differential equations of first order by the following substitutions, 

U (1) au 
= 

at 

U (2) au (4.10.4) 
and = ax 

In the more general case, first-order systems of equations can be 

written in matrix form as, 

" "-aU a~ 

at + A ax = ° (4.10 .5) 

.
'where A is an nxn real matrix (not necessarily symmetric) and U is an 

. " (1) (2) (n) T 
n-cornponent column vector ~=(U ,U , ••• ,U ). 

A non-singular matrix P exists through the similarity trans-

formation, 

(4.10.6) 

where D is a diagonal matrix having the real eigenvalues of A as its 

elements (i.e. D=diag(~.), the ~. being the eigenvalues of A). On 
1. 1. 
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premu1tip1ying (4.10.5) by P, we get 

a... -1 a ... 
at (P~) +PAP ax (P~) = 0 

i.e. I aV av 
(4.10.7) 

... 
where v=Pu. Hence, the decoupZed scaZar form of (4.10.7) is given by 

av (i) 

ax 
= 0, i=1,2, ... In. (4.10.8) 

For our particular problem, if 

P = 

then equation (4.10.5) takes the form (4.10.7) where 

! = (v(l) ,v(2»T = (u(1)_u(2) ,u(1)+U(2»T, i.e. , 

V (1) = u(l) _ u(2) u(l) = t (V (1) + v(2» 

V (2) U (1) + U (2) 
and 

U (2) tcv (2) 
_ V (1) ) 

= = 
(4.10.9) 

and 

D = ~ J • 
(1) (2 ) 

Hence, the decoup1ed scalar equations for V and V are 

av(l) av(l) 
'::":"'-,-+--=0 

at ax 
(4.1O.lOa) 

av(2) - av(2) 
at - a;z- = 0 

and 
(4.10 . lOb) 

respectively. The system (4.10.10) can be rewritten as 

av (p) 
= a--

ax 
(4.1O.lla) 

where, 
when p=l 

(4.1O.11b) 

when p=2 
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These first order differential equations in ~;(V(l) ,V(2»T will be 

solved by using the weighted difference anaZogues, 

{ (p) (p) (p) } {(p) (p) 
A[8 (l-w)v. 1 . 1+(2w-l)v .. l-wv . 1 . 1 +(1-8) (l-w)v. 1 .+(2w-l)v .. 

1+ ,]+ 1.,]+.1.- ,J+ 1.+ ,J 1J 

o~e,w~l. (4.10.12) 

These equations reduce to 

(p) + (p) 
1Bv. 1 . 1 (a-18)v .. 1 

1.- , J+ 1., J+ 
; -1(1-8)V!P)1 j+(a+1(1-8nV!P

j
) 

1.- , 1. 
(4.10.13) 

and 

(p) (p) 
(a+18)vi . 1-18v. 1 . 1 ,J+ 1.+ ,J+ 

; (a-l (1-8n v ~>:) +1 (1-8) v (p) . 
~J i+l,J 

(4.10.14) 

when w takes the values 1 and 0 respectively. The local truncation 

errors of (4.10.13) and (4.10.14) at the point (x.,t. 1) are given 
~ J+z 

respectively by, 

T 
4.10.13 

and 

T 
4.10.14 

a2v (p) 
; lIx [-t 2 

ax 

(lit) 
2 

16 

a3v(p) 

ax
3 

a3v (p) 

at
3 

lit 
+ -(1-28) 

48 

(lit) 
2 

+--
16 

4 (p) 2 (p) (lIx)2 
a ~ 21 .. ,+lIt [t(1-28) d~d~ +12(1-28) 
ax at ~,J+' 

2 1 
+ (lit) ['8(1-28) 

a 
+24' 

(4.10.15) 

4 (p) 2 (p) a; 21 .. +t+lIt[t (1-28) ; ~t + 
ax at ~,J x 

2 1 a3v(p) 
+(lIt) (8'(1-28) 2 

axat 
. Cl1 "2 

+O( (lIx) (llt) ). 

(4.10.16) 



with ~1+~2=4 and O~a~l. If we apply the formula (4.10.14), at the 

point (x, l,t, a)' we obtain, 
1.- J+ 
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(a+Aa)vi(Pl) , l-Aav~P~ 1 = 
- ,J+ l,J+ 

(a-A(l-e))v~Pl) ,+A(l-a)v~J?) (4.10.17) 
1- I J 1J 

By coupling equations (4.10.3) and (4.10.17), we arrive at the 

following set of explicit equations (we have omitted the details to 

avoid repetition), 

and 

(p) 
Vi-l,j+l = 

(a-A) (p) + A (p) 
a Vi_l,j -; vij 

(p) 
Vi,j+l = 

_ ~ v(p) + (a+A) (p) 
a i-l,j a vij 

(4.10.18a) 

(4.10.l8b) 

(1) 
These equations must be solved simultaneously to give the values of v 

(2) 
and v at the grid points along each j-line. From (4.10.14), the 

equation determining the values of v(p) at the ungrouped point adjacent 

to the right boundary is given by, 

(p) 

Vm-l,j+l 
= [(a-A(l-S))V(P

l
) j+A(l-a)v(J?)+Aav(P~ 11/(a+Aa) (4.10.19) 

m- , mJ m,J+ 

whilst from (4.10.13) we obtain the following formula for the ungrouped 

point at the left end, 

(p) 
vl , j+l (4.10.20) 

The GE schemes are then constructed along a similar line as before -

and without loss of generality we assume that we will be using an even 

number of intervals of the line segment O~x~l. 

(iJ The GER Scheme 

By means of equations (4.10.13), (4.10.17) and (4.10.19), the 

GER scheme is represented by the formula, 

(4.10.21) 
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where 

~ 

1 -1 1 1 , 
-1 ' 

1 1 
1 

.1-
1 

-1- - -- - r- -, 
1 -11 1 1 

-1 1 1 
1 

1 
1-, - --t -I 

G
1 

= 
, 0, 

1 (4.10.22) , 
1 ...... 1 I ...... 

~-
-, r- -1- -+ 

1 0 
1 -1 

I I 1 

-' I 11 -11 
-1- - - - -,- I-

t , 
1 

, 1 - «m-l) x(m-l» 

and 
(p) (p) T 

£1 = (0,0, ••• , A (1-6) v . +A6v . 1) . 
m) m,)+ 

(ii) The GEL Scheme 

The GEL scheme is determined by the equations (4.10.20), (4.10.13) 

and (4.10.17) which can be expressed in a more compact form as, 

where, 

and 

(iii) 

HI 
1- -'-
I 11 
I I 

-+1 
I 

1--1--

I : 
L.I 

I 

--'-
-1 1 

- -:--~ 
1 

I 
:!.I- -

1 

-C4--
1 " 1 .... 
1 ..... 1 

T - - -1-
10 1

1
-

1 , , 
I I 1 -1:.. (m-l) x (m-l) 

_ (p) (p) T 
£2 - (-A (1-6) vo . -Aev . 1,0,0, ••. ,0) 

) 0,)+ 

The (S).4GE and (D)AGE Schemes 

(4.10.23) 

(4.10.24) 

The alternative use of the GER and the GEL methods leads to the 

following (S)AGE formulae, 



343 

(p) (aI-A(1-6)Gl)V~P) + ~l 

) 
(aI+A6G

1
)v, 1 = 
-J+ -J 

(aI+A6G2) .;~~ (p) 
+ ~2 = (aI-A(l-6)Gl.) v, 1 -J+ 

j=0,2,4, ••• (4.10.25) 

and the (D) AGE four-step process, 

(p) (aI-A(1-6)Gl)V~P) + ~l 1 (aI+A6Gl ) v, 1 = 
-J+ -J 

(p) (p) 
+ ~2 (aI+A6G2 ) ';+2 = (aI-A(1-6)G2)';+1 

(4.10.26) 
(p) (p) 

+ ~2 (aI+A6G2 )V, 3 = (aI-A(1-6)G2)';+2 -J+ 

(p) (aI-A(1-6)Gl)V~P~ + ~l· (aI+A6Gl ) ~j+4 -J+ 

j=0,4, ••• 

All of the GE schemes employed above provide us with the values 

of V(l) and v(2) at the mesh points. The solution u of the wave 

equation (4.10.1) can then be computed using the relations in (4.10.9) 

i.e., 

and 

U(l) : t(v(1)+v(2» 

u(2) : t(v(l.)_v(l» 

From (4.10.27), for example, we have, at the point' (x, ,t,), 
l. J 

(au) : 
't ' , o 1., J 

(4.10.27) 

(4.10.28) 

(4.10.29) 

and a first-order explicit approximation is obtained from the equation, 

or 
(4.10.30) 

On the other hand, if we add equations (4.10.27) and (4_10.28), 

we find that, 
(2) 

v (4.10.31) 
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dU dU 
(dt}i,j + (aX}ij 

; (2) v ... 
~J 

(4.l0.32) 

This can be solved by the second-order Lax-wendroff explicit analogue 

given by, 

U',J.+l = t).(l+).}u. 1 .+(1_).2}u .. -t).(l-).}u. 1 .+t.tv~~) 
~ ~- ,J ~J ~+ ,J ~J 

At the point (x.,t. ,) however, (4.l0.3l) becomes 
~ J+. 

: v (2) 
i,j+t 

(4.1O.33) 

(4.1O.34) 

and the following second-order accurate Crank-Nicolson type implicit 

approximation can be used, 

(2) 
v. . l} • 

1, J+ 
(4.lo.35) 

In employing the method of solution to (4.l0.3l), we must of course 

bear in mind its stability requirements as well as its order of accuracy. 
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4.11 TRUNCATION ERROR ANALYSIS OF THE GE SCHEMES 

(iJ Truncation Error for the GER Scheme 

The set of explicit equations obtained by coupling equations 

(4.10.13) and (4.10.17) are 

(p) 
Vi - 1 ,j+l 

(a-A) (p) 
v. 1 . 

A (p) 
- - v .. 0 (4.11.1) 

a ~- ,J a ~] 

and 
(p) +}'v(p) (a+A) (p) 

= 0 Vi ,j+l v .. . 
a i-l, j a ~] 

(4.11.2) 

The truncation errors for any two grouped points are given by the 

truncation errors of equations (4.11.1) and (4.11.2) for i=2,4, ••• ,m-2. 

Thus we have, 

T 4.11.1 

and 

T 4.11.2 

= 
a2v(p) 

6x [! 2 
ax 

+ 

a4v(p) 

ax3at 1i _1 ,j+! 

(6t)2 a4v(p) 
2 21 '-1 ·+t +6t[! 

a2v(p) 
+. 

(6x) 2 
16 ax at ~ ,] axat 

1 a3v(p) 2 
+ (6x) (6t) [4" 2 1 i-l . t + ("'x) 

ax at ,]+ 

a +-
24 

12 

1 a3v(p) 
[6" 3 

ax 

(4.11.3) 

2 
("'x) 

+ 12 

(4.11.4) 

The truncation error for the single ungrouped point near the right end 

is obtained from (4.10.16) by putting i=m-l. This gives, 



2 
(lIx) 

12 

a 
+-

24 

+ <''>t)2 
16 

lit +-
48 

(ii) Truncation Error [or the GEL Scheme 
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(4.11.5) 

The truncation error for the single ungrouped pOint near the left 

boundary is obtained from (4.10.15) with i=l and this gives the expression, 

(lit) 
2 

-~ 

a4v(p)· a2v(p) 

ax2at211,j+~+lIt[~(1-28)axat 

a3v (p) 

ax2at ll,j+~ 

2 
+ (lIx) (1-28) 

12 

lit +-
48 

(4.11.6) 

The truncation errors for any two grouped points are given by T
4

.11 •1 

and T4 .
11

•2 respectively. 

(iii) Truncation Error for the (S)AGE and (D)AGE Scheme 

As we have already seen, the truncation errors of the GER and GEL 

schemes (in their appropriate order of alternation) constitute the overall 

truncation errors of the two and four-step processes. Thus, there will 

be cancellations of errors at most points- leading to some improvement in 

the solutions of the methods when compared with the constituent GER and 

GEL schemes. 
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4.12 STABILITY ANALYSIS OF THE GE SCHEMES 

It is clear from (4.10.1) and (4.10.9) that to reach an overall 

stability, the GE schemes applied to the decoup1ed equations in 

(4.10.10a/b) must be stable simultaneously. 

(iJ Stability of the GER Scheme. 

From equation (4.10.21), we have 

v(p) 
-j+1 

where r
GER 

is the amplification matrix given by 

-1 r GER ; (aI+>'6G
1

) (aI->' (1-6)G
l

) 

and " -1 
£1 ; (aI+>'6Gl ) £1 

(4.12.1) 

(4.12.2) 

(4.12.3) 

For the case p;l (and a;-l) we have already established in Section 4.4 

that the GER scheme for (4.10.10a) is absolutely unstable in the range 

0~6~! and is conditionally stable for >'~(2~-1) when t<6~1. For the 

case p;2 (and a;l) we have, 

(l-A) >. I 

->. (1+>') 
1 

- --- --I-
1 (1->') 

1 ->. 
- - - I-

r
GER

; 1 

- - - - -I 

- - - - 1-

----+----

o 

'-
0 1 

I' 1"" 
" I 
'I -' --

I 
1 

-I 

1(1->') 
1 

I ->. 
I 

1 
I 
1 ..., - --

1 
- _1- __ _ 

>. 1 

I 
(1+>') 1 

-I - - --

(4.12.4) 

1 
I 
I I 1 - 7!->'~;-1 

1 (1+>'6) (m-1)x(m-l) 
>. 

whose eigenvalues are 1 (of multiplicity (m-2» and 1 - (1+>'6) 

For stability, we require that 
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giving 
A 

o ~ ~ 2, which is just the inequality (4.4.12). 
(1+A8) . 

Hence 

we deduce from Section 4.4 that the scheme is conditionally stable for 

A~ 2 with 0~8<t and it is absolutely stable for all values of A when 
(1-28) 

t~8~1. From the two stability requirements above, we therefore conclude 

that for overall stability,the GER 

(ii) . Stability of the GEL Scheme 

scheme is stable only for A~(2~_1) when 

!<8~1. 

From equation (4.10.23), the GEL scheme can be explicitly 

expre ssed as, 

-1 
where r

GEL 
is the amplification matrix given by rGEL=(aI+A8G2 ) 

(4.12.5) 

" -1 (aI-A (1-8)G2 ) and £2=(aI+A8G2) £2. We have already seen in Section 

4.4 that the GEL scheme when applied to the differential equation 

2 
(4.10.10a) (when p=l and a=-l) is conditionally stable for A~ (1-28) 

and is always stable when t~e~l. The amplification matrix of the 

GEL scheme for (4.10.10b) (when p=2 and a=l) is 

r 
GEL 

= 

(l-A) 

-A 
_1-, 

'-

....J 
I 

'::+A~ _ :_0 
I'" I 
I ',I 

- - i(i:=A)- A 1 

o I 
-A (1+A) I (m-l) x (m-l) ..... 

A 
whose eigenvalues are 1 (of multiplicity (m-2» and 1 + (1-A8) 

stability, we require, 

11 + A 1 ~ 1 
(1+A8) -

or A 
-2 ~ (1-A8) ~ 0 

(4.12.6) 

For 
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which is the same inequality given by (4.4.8) of Section 4.4. From 

the argument that followed, we deduce that the GEL scheme for 

(4.10.10b) is always unstable when o~e~! and is stable only for 

A~ (2e~1) when !<8~1. Again for ove~ZZ stabiZity,we are led to the 

same stability conditions as that which was concluded for the GER 

scheme above. 

(iii) Stability of the (S)AGE and (D)AGE Schemes 

From (4.10.25) and (4.10.26) we find that the amplification 

matrices of the S(AGE) and D(AGE) schemes are given respectively by 

and 

f SAGE 

f 
DAGE 

fGELfGER 

fGERfGELfSAGE 

It has already been proved in Section 4.4 that the (S)AGE scheme for 

(4.10.10a) (when p=l and a=-l) is conditionally stable for A~l. 

Similarly, the (D) AGE scheme is found to have conditional stability 

only for A~!. For the case p=2 (and a=l) , we have, 

a' b' 

c' d' -c' e' 

e' f' d' -f' 

c' d' -c' e' 

e' f' d' -f' o 
.... 

f
SAGE 

= "- .... (4.12.7) 
.... , 

.... 
c' 'd' -c' e' 

0 
e' f' d' -f' 

c' d' g' 

e' f' h' 
- (m-l) x (m-l) 

where A 
a' = (l-A) (1 + -0.-).8)) 

b' = ). (1 + -(1~A8)) 
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c' ~ -A (I-A) , d' ~ 1_,1.2, e' ~ ,1.2 
(4.12.8) 

-,1.(1+,1.) , ,1.(1- A 
h' (1+,1.) (l-

A 
f' ~ g' ~ 

(1+,1.6) ) and ~ 

(1+,1.6) ) 

and 

la'I+(m-3) Id'l+!h'llOt/!(A) 

where 
A 2 A 

t/!(A) ~ (1-,1.) (1 + (1_A6»+(m-3) (1-,1. )+(1+,1.) (1- -:(-=-l+'""'A'"'Sc:"» 

for AlOl, 6 E [0,1] and A6~1. It can be shown as in Section 4.4 that 

the (S)AGE method is stable for A~l. 

The (D)AGE amplification matrix (for p~2 and a=l) , however, takes 

the form, 

rDAGE~ 

where 

p' 

-q' 

r' 

-s' 

p' 

q' r' s' 

t' u' v' 

-u' w' x' r' 

v' -x' z' u' 

r' -u' w' 

-5' v' -x' 

0 

s' 

v' 

x' r' 

z' u' .... 

s' 

v' 

..... 
..... 

..... ... 
rl -ut w' 

_Sf Vi -Xl 

r' 

-s' 

o 

(4.12.9) 

x' r' s' 

z' u' v' 

-u' w' x' y' 

v' -x' z' q' 
1 

y' -q' p' 
1 1 (m-l) x (m-l) 

2 A 2 2 A 2 
(1-,1.) (1+ (1-,1.8» -A (1-2,1.), q' ~ -[-,1.(1-,1.) (1+ (1-,1.6» 

-A (1+,1.) (1-2 A) 1, 

r' = 2(1-,1.),1.2,5' = 2,1.3 

2 A 2 2 2 2 
t' = -A (1+ (1-;6» +(1+,1.) (1-2,1.), u' = n(I-A ), v' ~ 2(1+,1.),1. 

w' 
2 2 2 

(1-,1.) (1+2,1.) -A (1-2,1.), x' = -2,1. (2,\ -1), 2,1.2(1- A y' = (1+,1.6)-) 

z' (1+,1.)2 (1-n)_A2 (1+2,1.), q' 2A (1+'\) (1 -
A 

= = 
(1+8,1.» , 1 

pr == (l+n) (1 -
,\ 2 

1 (1+6'\) ) (4.12.10) 
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and 

lp' 1+lt' 1+!(m-4} lw' 1+!(m-4} Iz' 1+lpil~l/J(A} 
where, 

2 A 22 2 A 22 
= (i-A) (1+ (I-Ae}) -A (1-2A}+A (1+ (l-Ae}) +(l+A) (1-2A) 

2 2 2 2 
+! (m-4) {(I-A) (l+2A) +A (1-2A) }+! (m-4) {(l+A) (1-2A) +A (l+2A}} 

A 2 
+ (l+2A) (1 - (l+Ae)) 

22 A 222 2 
= (A +(l-A) ) (1+ (l-Ae}) +(A +(l+A) ) (l-2A}+(m-4) (1-2A ) 

A 2 
+ (i+2A) (1- (l+Ae)) 

for A~L e E [0,1] and Ae;il. It can be shown in a similar manner as 

before that the (D) AGE method is stable for A~!. For an overall 

stability, we conclude that the (S}AGE and (D}AGE processes are 

conditionally stable for A~l and A~! respectively. Therefore, it 

is recommended that for practical purposes, only (S}AGE is used. 
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4.13 NUMERICAL EXAMPLES AND COMPARATIVE RESULTS 

To demonstrate the application of the GE schemes on hyperbolic 

problems, four numerical experiments were conducted. 

Experiment 1 

The weighted GE algorithms of Section 4.2 were implemented on 

the following two first-order hyperbolic problems: 

(a) ProbZem 1 

° , 
subject to, 

U(x,O) ~ cos x, 

U(O,t) ~ cos t, 

and U(l,t) ~ cos(l-t) 

The analytical solution is given by, 

U(x,t) = cos(x-t) , 

and 

(b) ?rob Zem 2 

aU + au = k ( t) 
at ax x, , 

(k(x,t) 
-2t 

~ -2sin(x-t)e ), 

subject to, U(x,O) = sin x, 

U(O,t) -sint e 
-2t 

= 

U(l,t) sin(l-t)e 
-2t 

= and 

The analytical solution is given by, 

-2t 
U(x,t) = sin(x-t)e 

(4.13 .1) 

(4.13.2) 

(4.13.3) 

(4.13.4) 

The GE solutions to Problems 1 and 2 are compared with the solutions 

obtained from some of the standard methods, such as the classical 

explicit scheme (EXP) and the schemes of Lax-Wendroff (L-W) , Roberts-

Weiss (R-W) and Crank-Nicolson (C-N) (or the Centred-In-Distance, 

Centred-In-Time (CD-CT) scheme). 
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A comparison of their accuracies is obtained by computing the 

absolute error (A.E.), 

(4.13.5) 

or the percentage error (P.E.), 

x 100 (4.13.6) 
lu .. 1 

1.,J 

at each point along the mesh line whereu and U are the numerical and 

the analytical (exact) solutions respectively. Tables 4.13.1 and 

4.13.2 provide the absolute errors of the numerical solutions to 

Problem 1 at t=0.4 and t=l.O for A=0.5 and 6=0.5. Similarly, the 

absolute errors for the numerical solutions to Problem 2 are shown 

by Tables 4.13.3 and 4.13.4. The average of all the absolute errors 

along the time levels t=0.4 and t=l.O for each of the schemes involved 

is also entered in the tables. 

Experiment 2 

Several runs were made on the implementation of the (S)AGE and 

(D)AGE schemes for a range of values of 6 in [O,lJ and for t=0.2(0.2)1.0. 

For each particular value of 6, the entries in Tables 4.13.5 (Problem 

1) and 4.13.6 (Problem 2) give the average of the absolute errors along 

each of the chosen time levels. 

Experiment 3 

The (S)AGE and (D) AGE schemes of the spatially-centred 

approximations of Section 4.6, were applied on Problem 1 and the 

absolute and percentage errors calculated. Table 4.13.7 displays these 

errors at each mesh point on the time level t=l.O for A=O.l. 
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Experiment 4 

In this experiment, we proceeded with the application of the GE 

techniques on the second-order wave equation, 

subject to, 

U(x,O) : ~ sin (rrx) , (4.13.7) 

dU 
-at(x,O) : 0 , 

U(O,t) = 0 , 

and U(l,t) : O. 

The analytical solution is given by, 

U(x,t) : ~ sin (1TX) cos (1Tt) (4.13.8) 

Again, we display the absolute errors of the numerical solutions 

along the mesh line t:l.O for A=0.5 and 6:0.5 in Table 4.13.8. 
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4.14 DISCUSSION OF NUMERICAL RESULTS 

It is clear from Tables 4.13.1-4.13.4 that the (S)AGE and (D) AGE 

schemes are more accurate than the GEL method in solving Problems 1 

and 2. This result is expected because of the cancellation of error 

terms at most points of. the grid system when the GER and the GEL 

schemes are applied in their appropriate order of alternation for the 

(S)AGE and (D) AGE processes. We also find that at some of the mesh 

points (along t=O.4 and t=l.O), the (S)AGE and (D) AGE schemes can 

have about the same magnitude of absolute errors as that of the high-

order Lax-Wendroff, Roberts-Weiss and the Crank-Nicolson methods. In 

fact, an examination of the average of absolute errors for Problem 2 

(Tables 4.13.3 and 4.13.4) clearly shows that the (S)AGE and (D) AGE 

schemes are more superior than the other methods that we have considered. 

Furthermore, the computational complexity incurred in solving the first-

order hyperbolic equation (4.1.1) is also considerably less than that 

of, say, the Crank-Nicolson method. The following Table 4.14.1 gives 

us a comparison of the amount of arithmetic involved at m internal 

mesh points aZong each time row where the solutions of the various 

difference schemes are determined. It is seen that the (S)AGE and 

(D) AGE schemes even compare well with the explicit, second-order 

accurate Lax-Wendroff formula. 
. 

Method 
Number of Number of Number of Additions 

Multiplications Divisions (Subtractions) 

EXP m - 2m 

L-W 2m m Sm 

GER/GEL/ 
m+l (S)AGE/(D)AGE 1 2m+l 

C-N(CD-CT) 8m-l 3m-2 7m-3 

TABLE 4.14.1 
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We observe from the entries in Tables. 4.13.5 and 4.13.6 that the 

(S)AGE and (D) AGE schemes are most accurate along the time rows t= 

0.2(0.2)1.0 for A=O.5 when the time weighting a takes the value of 

about 0.5. A possible explanation of this result is that, the terms 

involving the coefficients (1-29) in the truncation errors in (4.3.3c) 

and (4.3".4) vanish when e is exactly 0.5. This leads to a·considerable 

increase in the accuracy of the solutions at. the ungrouped points and 

the overall effect of the cancellation of errors due to the alternate 

use of the GER and GEL algorithms is the improvement in the solutions 

as they progress forward in time. 

Table 4.13.7 obviously shows that the stability advantage of the 

(S)AGE and (D) AGE schemes is clearly overriden by their very poor 

accuracy when applied to the spatially-centred approximations of 

section 4.6. This stems from the consistency difficulty of the two 

asymmetric formulae (equations (4.6.7) and (4.6.8)) which when coupled 

together determine the basic equations of the GE schemes. From (4.6.9) 

we see that in order for T4~.7 0 as ~x,~t~, it is essential ~t~ 

fastep than ~x~. Even if we assume that this consistency requirement 

is accomplished, we still find from (4.6.10) that the difference 

equation (4.6.8) would be consistent with the differential equation 

au aU 
+ - + at ax at 

au au -a;=o,i.e., 

au at = 0 , 

rather than with the hyperbolic equation (4.1.1). The truncation 

error expressions for the GER and GEL further confirm the above 

consistency problem. 

The GE methods for the Roberts and weiss approximations also suffer 
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with the same consistency inadequacy as above. While the truncation 

error of the RL approximation (4.9.3) tends to 0 as Ax,~t~, the 

truncation error of the LR approximation (4.9.4), however, appears to 

au ~ . 
tend to 2 (at - ax) at the mesh p01nt. This consistency difficulty only 

serves to produce very low accuracies in the (S)AGE and (D) AGE solutions 

when the RL and LR formulae are coupled in the same way as before. 

Any further theoretical treatment on these methods is therefore not 

pursued. However, it seemS only sensible to suggest that due to the 

wave like nature of the solution then methods based on the Saulev semi-

implicit strategy are more favourable than the GE type methods. 

To arrive at the solution of the second-order wave equation (4.13.7), 

Experiment 4 necessitates us to solve two different sets of first-order 

differential equations. The first set involves v(l) and v(2) whose 

approximations at the mesh points are obtained by applying the GE 

techniques on (4.l0.l0a/1Ob). The solutions u are then computed by 

means of the explicit «4.10.30)), LaX-Wendroff «4.10.33)) and the 

Crank-Nicolson type «4.10.35)) formulae. These solutions are compared 

in Table 4.13.8. No attempt is made to compute the GER and the GEL 

solutions as these schemes have a rather rigid stability requirement. 

It becomes apparent from the table that the (S)AGE-LW methods provide 

the most accurate solution. The stability restrictions of the (S)AGE-CN 

and (D)AGE-CN methods are A~l and A~! respectively and besides incurring 

a comparatively heavier computational load, these methods also happen 

to produce a less accurate solution for our particular problem. Hence, 

for its simplicity and accuracy, the (S)AGE-LW (also stable for A~l) 

combination is favoured. 



t=o 4 A=O S ~t-O OS ~x=O 1 e-O S . • . • - . • . • - . 

~ 0.1 0.2 0.3 0.4 0.5 0.6 

GEL 4.7SxlO 3 
9.89 xlO 

-2 
5.93 xlO 

-2 
9.5x10 

-2 
5.6sx10 

-2 
8.72x10 2 

(S)AGE 6.38x10 
-4 

9.92x10 -4 2.95xlO -4 
7.87x10 

-4 
2.42x10 

-4 
9.86xlO 

-4 

(D) AGE 1.02x10 
-3 -3 

1.02x10 . 1.0x10 
-3 

2.l1xlO 
-4 

2.04x10 
-4 2.04 x10 -4 

EXP 2.41xlO 
-3 4 .83 xlO-3 

7.0x10 
-3 -3 

8.6x10 . 9.4Sx10 
-3 9.66xlO-3 

L-W 3.29x10 
-S 3.87x10-S 1. 76xlO -S 2.18x10-5 

6.91xlO 
-S 

1.17x10 
-4 

R-W 9.49x10 
-S 

1.11x10 
-4 

6.28x10 -4 2.S8x10-5 
1.36x10 

-4 
2.42xlO 

-4 

C-N (CD-CT) -5 -S -5 -6 -S -5 5. 77xlO 7.2x10 4.18xlO 5.06xlO 9.73xlO 9.82x10 

EXACT 
0.955336S 0.9800666 0.9950042 1.0 0.9950042 0.9800666 SOLUTION 

TABLE 4.13.1: Absolute Errors of the Numerical Solutions to Problem 1 

0.7 0.8 

5.15x10 
-2 7.6 x10-2 

S.98x10 
-4 1.2Sx10 -3 

5.43xlO -4 5 .43xlO-4 

9.5xlO -3 
9.17x10 -3 

1.69xlO 
-4 

1.93xlO 
-4 

4.28x10 
-4 

2.7SxlO 
-4 

3.44xlO 
-4 

5.78xlO 
-5 

0.9S53365 0.9210610 

0.9 

4.44x10 
-2 

6.99x10 
-4 

1.04 10-3 

8.74xlO 
-3 

3.39x10 
-4 

. -3 
1.09x10 

7.15x10 
-4 

0.8775826 

Average 01 

f\11 Abso1u 
Errors 

6.37x10 

7.2lxlO 

6.43 xlO 

7.71xlO 

1.l1xlO 

2.74xlO 

l.65xlO 

-

W 
111 
():) 

· 

· 
· 

-

-
-
-

I 



t~1.0. A~0.5. llt~0.05, 1l"~0.1. e~0.5 

~ 
~verage of 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B 0.9 
All Absolute 
Errors 

-3 -1 4 .38 xIO-l -1 4.35 xlO-1 -1 4 .14xIO-l -1 -1 4.12XlO-l GEL 3.33 xIO 5.31 xIO 5.3lXIO 5.09xlO 4.86 xlO 3.7BxIO 

-4 -3 -4 -3 4.82 xlO-4 -3 -4 . -3 -4 1.04xlO -3 (S)AGE 2.18 xlO 1. 58 xIO 2.46 xIO 2.07xlO 2.27xIO 5.0xIO 1.89xlO 1.18 xIO 

(D) AGE -4 -3 -4 -3 1.66xIO-4 -3 -4 -3 -4 -4 3.27xIO 1.12xIO 1.B7xIO 1.36xlO 1.50xlO 1.55xIO 1.88xlO 2.39 xlO 7.71xlo 
-3 -3 5.94 xlO-3 -3 -2 -2 -2 . -2 -2 -2 EXP 1.65xIO 3.64xlO 8.47xlO 1.llXlO 1.39xlO 1.66xlO 1.90xlO 2.llxlO 1.13xlO 

L-W 9.52 xIO 
-5 

1. 73 xIO 
-4 2 .3lXIO-4 

2.68xlO 
-4 

2.8xlO 
-4 

2.72 xlO 
-4 

2.15xlO 
-4 

1.80xlO 
-4 

4.89xlO -6 
1.9lxlO 

-4 

R-W 2.38xlO 
-4 

4.7xlO 
-4 

5.29xlO 
-4 

9.27xlO 
-4 

3.53xlO 
-4 

1.39xlO 
-3 

1.44xlO 
-4 

1.12xlO -3 
1.93xlO -4 

5.97xlO -4 

C-N(CD-CT) 1.14 xIO 
-6 

4.58xlO 
-4 

4.97xIO 
-5 

8.29xlO 
-4 

7.91xlO 
-6 

9.04xlO 
-4 

5.1xlO 
-6 

5.75xlO 
-4 

3.55xlo 
-5 

3.1BxlO 
-4 

EXACT 
0.6216100 0.6967067 0.7648422 0.8253356 0.8775826 0.9210610 0.9553365 0.9800666 0.9950042 SOLUTION -

TABLE 4.13.2: Absolute Errors of the Numerical Solutions to Problem 1 



~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

-4 9.06XlO-3 -3 2.39 xlO-2 -2 3. 78 xlO-2 -2 
GEL 5.94xl0 6.99 xlO 1.64xlO 2.52xl0 

(S)AGE 9.13xlO -4 7. 71 xlO-4 8.33xlO 
-4 

9.11'10 
-4 

8.14 xlO 
-4 6 .27xl0-4 7.08xlO -4 

(D) AGE 5.04xl0 -4 2. 74 xlO-4 4.41xl0 -4 1.65Xl0-5 3.57xlO 
-5 5.19xlO-5 5.08xlO -4 

-3 9.7xlO-3 -2 -2 -2 3.47xl0-2 -2 
EXP 3.76xl0 1. 7lxlO 2.46 xl0 3.05xl0 3.76xlO 

-4 7 .62 xlO-4 -3 -3 -3 1. 77xl0-3 -3 
L-W 3.02xl0 1. 26xl0 1.61xl0 1.75xl0 1. 77xlO 

R-W 1.11xl0 
-4 3.35xlO-4 5.72xl0 

-4 7.7xl0 
-4 9.25xlO 

-4 
1.02xl0 

-3 1.24xlO -3 

C-N(CD-CT) 7.0xl0 -5 2.08xl0 -4 3.58xlO -4 4.56 xlO 
-4 5.61xlO -4 5.05xlO -4 7.85xlO -4 

EXACT 
-0.1327158 -0.0890597 -0.044858 SOLUTION 0 0.0448580 0.0892679 0.1327858 

TABLE 4.13.3: Absolute Errors of the Numerical Solution to Problem 2 

0.8 

5.01 xl0 
-2 

1.37xl0 -4 

4.69 xl0 
-4 

3.99xl0 
-2 

1.62xlO -3 

8.2xl0 
-4 

2.9xlO -4 

0.1749769 

0.9 

3.3xlO 
-2 

-6.84xl0 

-3.68xl0 

-4.17xlO 

-2.04xl0 

2.18xl0 -: 

1. 17xl0 -: 

o .215419E 

\Average of 
IAll Absolute 
IErrors 

1.85xlO-2 

5.82 xlO-4 

2.43xlO-4 

2.18xlO 
-2 

1.17xlO 
-3 

7.25xlO 
-4 

4.89xlO 
-4 

-

w 

'" o 



t=l.O, A=0.5, ~t=0.05, ~x=O.l, 8=0.5 

~ 
Average of 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
all Absolute 
Errors 

-4 1.12xIO -3 -3 -2 -2 -1 1.05xlO -1 -1 -1 -2 
GEL 5.93xlO 4.96 xlO 6.06xlO 5.61 xIO 1.18xIO 1.70XlO 1.5xlO 6.06xIO 

(S)AGE 1.38xlO 
-3 

2.48 xIO 
-4 

1. 23xlO 
-3 

2.53 xIO 
-4 

1.16xlO 
-3 4.85 xlO-4 

1.01xlO 
-3 4 .15 xio-4 

8.9xlO 
-4 6 .43 xIO-4 

(D) AGE 7.06 xlO 
-4 

2.99xIO 
-4 

6.61xlO 
-4 

2.83 xIO 
-5 

5.24xlO 
-4 

1.82xIO 
-4 

4.28xlO 
-4 3 .34 xIO-4 

3.48xlO 
-4 3 .19 xIO-4 

EXP 3.64xlO 
-4 

1.99xIO 
-4 

6.98 xlO 
-4 

2.57xlO 
-3 

5.68xlO 
-3 

1.02xIO 
-2 

1.63xlO 
-2 2 .35 X lO-2 

3.15 xlO 
-2 8.28 xlO-3 

L-W 5.24xlO 
-5 

1.38xIO 
-4 -4 

2.54xlO 3.9xIO-4 
5.93xlO 

-4 
8.71 xlO 

-4 
1.43xlO 

-3 1.57 xIO -3 3.16xlO 
-3 

7.69xIO -4 

R-W 6.86xlO 
-6 

6.5xIO 
-5 

9.85xlO 
-5 4.22xlO 

-4 
S.38xlO 

-4 
1.01XlO 

-3 
2.06xlO 

-3 
8.27xlO 

-4 
2.48xlO 

-3 
7.1xlO 

-4 

C-N(CD-CT) 2.21xlO 
-4 

2.63xlO 
-4 . -4 

4.99xlO 5.96 xIO-4 
8.46xIO 

-4 6.46xlO 
-4 

1.17 10 
-3 

3.34 10 
-4 

1.44xlO 
-3 

6.68xlO 
-4 

EXACT 
-0.1060118 -0.0970836 -0.0871854 -0.0764160 -0.0648832 -0.0527020 -0.03999431 -0.0268870 -0.013511C -SOLUTION 

TABLE 4.13.4: Absolute Errors of the Numerical Solutions to Problem 2 



~ethod (S) AGE 

t ~ 0 0.25 0.5 0.75 1 0 

0.2 3.80xlO-4 3.5x10-4 3.48X10-4 3.71X10-4 4.39 XlO-4 2.43xlO-4 

0.4 7.66xlO-4 7.23xlO -4 7 .21X10-4 
7.88xlO -4 1.02xlO-3 

5.72xlO 
-4 

0.6 1.01xlO -3 9.43xlO 
-4 

9.43 xlO 
-4 

L12 xlO 
-3 1.62"10-3 

8.55 xlO 
-4 

-3 -3 1.02xlO- 3 -3 2 .13 xlO-3 
0.8 1. 18xlO 1.07xlO 1.27xlO 

-3 
1.0lxlO 

1.0 1. 34xlO 
-3 

1. 17xlO 
-3 

1.04x10 
-3 

L3x10 
-3 2.45xlO-3 1.21xlO 

-3 

TABLE 4.13.5: Average of Absolute Errors for Problem 1 

(D) AGE 

0.25 0.5 

2.09 XlO-4 2.88 XlO-4 

4 .63 x10-4 6.43 xlO-4 

6.43 xlO-4 8 .19xlO-4 

7.90xlO-4 8.S5x10 -4 

9.49xlO 
-4 7.71XlO-4 

0.75 

3.48xlO-4 

7.62xlO-4 

1.03x10 
-3 

1.29xlO 
-3 

1.38xlO 
-3 

1 

3.88xlO-4 

1.01X1O-3 

1. 38x10 
-3 

1. 67xlO 
-3 

2.09xlO-3 

w 
'" N 



A=0.5, lIt=0.05 

~thod (S) AGE 

t~ 0 0.25 0.5 0.75 1 0 

0.2 1.60x10 
-2 7.81'10-3 3.82 xlO-4 7.56xlO-3 1.47xlO-2 1.67xlO -2 

0.4 2.05xlO -2 9.8xlO- 3 5.82 xlO-4 9.88xlO-3 2 .16xlO-2 2 .29xlO-2 

0.6 1.66X 10 
-2 8.19xlO- 3 6.68xlO-4 1.07x10 

-2 2.72xlO-2 2.18 XlO-2 

0.8 1.58xlO -2 9.07xlO- 3 6. 77xlO-4 1.57x10 
-2 

4.31x10 -2 1. 82 X lO-2 

1.0 2.09x10 -2 
1.2xlO 

-2 6.43xlO-4 2.05xlO 
-2 

5.73xlO 
-2 2.11'10-2 

TABLE 4.13.6: Average of Absolute Errors for Problem 2 

(D) AGE 

0.25 0.5 

8.32xlO-3 1.41'10-4 

-2 
1.13xlO 2.43xlO-4 

1.07 XlO-2 3.19xlO-4 

9.62 xlO-3 2 .87xlO-4 

1.20x10 -2 3.19x10-4 

0.75 

8.4XlO-3 

1.15x10 -2 

1.13xlO -2 

. -2 
1.38x10 

1.8xlO -2 

1 

1. 69x10 -2 

2. 34xlO-2 

2 .64X 10-2 

3.56xlO 

4.65x10 

-2 

-2 

w 
'" w 



t=1.0, A=O.l, ~t=O.Ol ~x=O.l , 

~ 
Average of 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 all Errors 

A.E. 3.96xlO-1 2.83xI0-1 1.9xlO -1 9.57 xlO 
-2 3.16xlO-12 

9.57xI0 
-2 1.9xlO-1 

2.83 xlO 
-1 3.73xlO-1 1. 73xI0-1 

(S)AGE 
3.6xI0-1O P.E.(%) 63.77 40.67 24.91 11.6 10.39 19.94 28.91 37.53 21.61 

A.E. 3 .85x lO-1 2.83 xlO 
-1 1.9XlO -1 9.57 xlO 

-2 2.89xlO-12 
9.S7xlO 

-2 1.9xl0 -1 2.83xlO-1 3.8sxlO-1 1. 74 x lO-1 

(D) AGE 
3.3xI0-1O P.E. (%) 61.88 40.67 24.91 11.6 10.39 19.94 28.91 38.66 21.54 

EXACT 0.6216100 0.6967067 0.7648422 0.8253356 0.8775826 0.9210610 0.9553365 0.9800666 0.9950042 -
SOLUTION 

TABLE 4.13.7: Absolute and Percentage Errors of the Numerical Solutions to Problem 1 



t=l.O, A=0.5 ~t=O 05 ~x=O 1 , . , 0- , 0-0 5 -
~ 

M~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

{SjAGE-EXP 4.02xlO-3 2.6X10- 3 1.61xlO -3 3.74xlO 
-3 6 .18xlO-4 3. 38xlO-3 

1.63XlO 
-3 

1.86xlO 
-3 

{DjAGE-EXP 7.66xlO-4 6.25xlO -4 
1.27xlO 

-3 
1.27xlO 

-3 1.22x10 -3 1.55xlO -3 7. 35xlO-4 1.46x10-3 

{SjAGE-LW 8.35XlO-4 1. 11xlO-3 4.34xlO 
-4 

1.17xlO 
-3 3 .61xlO-4 2.52xlO 

-4 
7.79xlO 

-4 
1.5xlO -3 

{Dj AGE-LW l.13xlO -3 8.85xlO -4 
1.83xlO 

-3 
1.66xlO 

-3 1.24xlO -3 1.15xlO 
-3 

3.88xlO 
-4 

1.76xlO 
-4 

{Sj AGE-CN 1. 46xlO -3 1.78XlO 
-3 

4.69xlO 
-3 

2.44XlO 
-3 

1.09xlO 
-2 

1.67xlO 
-3 

1.2X10 
-2 

6.54xlO 
-4 

{DjAGE-CN 1. 95xlO 
-3 

4.35xlO 
-4 

5.96xlO 
-3 -4 

9.9xlO ° 9.17xlO 
-3 ° -3 

1.49xlO 9.3xlO 
-3 

1.42X10 
-3 

EXACT 
-0.0386272 -0.0734732 -0.1011271 -0.1188821 -0.125000 -0.1188821 -0.1011271 -0.0734732 

SOLUTION 

TABLE 4.13.8: Absolute Errors of the Numerical Solutions to the Wave Equation 

0.9 

4.06xlO-3 

1.14xlO-4 

2.09xlO-3 

1. 98xlO -3 

° -2 
1.02xlO 

7.86xlO 
-3 

-0.0386272 

Average of all 
Absolute Errors 

2.61xlO 
-3 

1.oxlO-3 

9.47xlO 
-4 

1 .16xlO-3 

5.09XlO 
-3 

4.29xlO 
-3 

-

W 
0\ 
V1 
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5.1 INTRODUCTION 

In this chapter, we consider applying the GE strategy to solve 

parabolic problems with special geometries involving one-space 

dimension given by, 

aU a 2u Cl au 
at = a/ + r -ar- (5.1.1) 

together with the following initial-boundary conditions, 

and 

U(r,O) = fIr) , O:fr:fl 

aU 
--a (O,t) = 0, U(l,t) = ° for O:ft:fT • 
r· 

As we have seen earlier, equation (5.1.1) reduces to the simple 

(S.1.la) 

diffusion equation of (3.1.2) when Cl=O. Evans and Abdullah (1983) 

have successfully implemented the GE algorithms for this equation 

and showed them to be more superior than most of the difference 

schemes that are currently in use. We shall now extend the GE 

application to parabolic problems that possess cy~indrica~ and spherica~ 

symmetry by putting Cl=l and 2 respectively in (5.1.1). The GER, GEL, 

(S)AGE and (D) AGE schemes will be developed and the stability 

requirements established. We will also investigate the truncation 

errors of the methods and perform some numerical experiments to 

compare their accuracy with that of existing schemes. 
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5.2 DERIVATION OF SOME OF THE COMMONLY USED SCHEMES 

we shall follow the approach adopted by Evans and Abdullah (1983) 

by utilising the following generalised formulae to approximate the 

derivatives in (5.1.1) at the point (r.,t, .)=(illr,(j+!>lIt), i.e., 
J. J +, 

( oU.) 
or i, j+t 

and 

2 
(810 u i • ' 1-820 u, • ' 1+83° u, • ,-840 u, • ,)/(lIr) , r +'1,J+ r 1.-'1,J+ r 1.+'1,J r 1. ... '1,J 

(5.2.1) 

(5.2.2) 

(5.2.3) 

where lIr and lit are the increments with respect to the r- and t-axes 

and, 

u, ,-u, 1 ' J.) J.- ,) 

(forward difference) 

(backward difference) (5.2.4) 

The finite-difference analogue of (5.1.1) is therefore given by, 

uJ.',)'+l = u, ,+A(8 ° u, • ' 1-62° u, • ' 1+83° u, I ,-840 u, I ,) 
~J 1 r 1.+"2"IJ+ r 1.-"21)+ r 1.+'1,J r 1.-'2",J 

+ 2", A ("Ill u, , 1+"2" u, '+"3" u, , 1+"411 u, ,) 
1. r 1,J+ r 1.) r 1.,J+ r 1.J 

(5.2.5) 

where A = ~2 the mesh ratio. Some of the well-known methods to 
(lIr) 

approximate (5.1.1) may be obtained by an appropriate choice of the 

weighting parameters. For points not on the axis (rFO) , we have the 

following examples: 

(a) The CZassicaZ Explicit Scheme 

becomes, 
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Il Il 
u',]'+l = (I-Vdu, ,+(1- -2i}Au, 1 ,+(1+ -2,}AU, 1 ' .... ~J 1- ,J 1. 1.+, J 

(S.2.6) 

or (S.2.7) 

where, 

(S.2.8) 

we note that the formula (S.2.6/7) is just the explicit scheme of 

(3.13.2S) • 

(h) The FUZZy ImpZicit Scheme 

With e
1

=e2=1; e =e =0' ex =Il =1 and 1l
2

=1l4=0, equation (S.2.S) 
3 4 ' 1 3 

reduces to 

i=1,2, ••• ,m-1 , (S.2.9) 

or 
-\i,U'+l '+l+(l+2A}u, '+l-P,U, 1 '+1 = u" , 11. 1. ,J 1,) 1. 1- ,J 1.) 

(S.2.10) 

i=1,2, ... ,m-I, 

which coincides with equation (3.14.1a). 

(c) The Crank-NicoZson Scheme 

The Crank-Nico1son scheme is obtained by putting e =e =e =e =1 
123 4 

and Il =Il =Il =Il =1 which leads to the formula 
1 2 3 4 ' 

lq,U'+l '+l-(l+A}U, '+1+1P ,u, 1 '+1 = -lq,u, 1 ,-(l-A}U, ,-tp,u, 1 " 
1..1 ,J 1.,)]. 1.- ,J 1. 1.+ ,] l.J 1. 1.- ,J 

for i=1,2, ... ,m-l, (S.2.11) 

and this bears the same form as in (3.14.10). 



rd) The Asymmetric RE Approximation 

If we choose 8
1

=8
4

=1, 8
2

=8
3

=0, a
l

=a
2

=1 and a
3

=a
4

=0. equation 

(5.2.5) gives us the following RL approximation. 

370 

(l+qi)Ui.j+l-qiUi+l.j+l = (l-Pi)Uij+Piui_l.j' i=1.2 •••.• m-l 

(5.2.12) 

whose asymmetric computational molecule is given by. 

j+l 

~~----------(l-Pi j 

i-l i 

FIGURE 5.2.1 

(e) The Asymmetric LR Approximation 

following LR approximation. 

::: (l-q.)u .. +q,ll, 1 ., i=1,2, ... ,m-l 
~ ~J ~ ~+ • J 

(5.2.13) 

whose asymmetric computational molecule is given by. 
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(j+l)th level 

jth level 

1-1 i i+l 

FIGURE 5.2.2 
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5.3 DERIVATION OF THE GE SCHEMES 

If we apply equation (5.2.12) at the point (r. 1,t. ,) we find 
1.- J +, 

that, 

(I-Pi 1) u. 1 . +P. 1u . 2 . - 1-,J 1- 1- IJ 

and together with equation (5.2.13) form the following stencil, 

~----------~L-~1=+~P2i __ -r~ 

i-2 

as well as the system, 

-q. 1:1 1.-

i. e. , Au. 1 -J+ 
= 

or u. 1 = 
-J+ 

i-I 

FIGURE 5.3.1 

= 

"-Bu + u. , 
-j -] 

-1 -1" A Bu. + A U. 
-J -J 

1-q 
i 

i 

(l-p. 1) 
1.-

o 

(5.3.1) 

(j+1)th 
level 

qi jth 
L-___ --I 1eve1 

i+1 

r-
p. 1u . 2 . 1.- 1-,J 

(5.3.2) 

(5.3.3) 

(5.3.4) 



Since 

-1 
A 

1 
= -=-~----,,.I 

(l+p.+q. 1) 
~ ~-

q. 1 
~-

Li (l+qi_l) 
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(5.3.5) 

equation (5.3.4) leads to the following explicit equations for generaZ 

points not on the axis, 

(5.3.6) 

and 

1 
= (1 + ) [P.P. lU' 2 .+p. (l-p. l)u, 1 .+(l+q. 1) (l-q.)u .. +p. q. 1 ~ ~- ~-, J ~ ~- ~-, J ~- ~ ~J 

~ ~-

whose computational molecules are given respectively by 

Equation (5.3.6) 

and 

(l+pi ) Pi-l 

(1+p. +g. 1) 
~ ~-

i-2 

(1+p.) (l-p. 1) 
~ ~-

(l+p. +q. 1) 
~ ~-

i-1 

q. l(l-q.) 
~- ~ 

(l+p. +q. 1) 
~ ~-

i 

. FIGURE 5.3.2 

(5.3.7) 

q.q. 1 
~ ~-

(1+p.+q. 1) 
~ ~-

i+l 

j+l 

\ 
I 

j 
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Equation (5.3.7) 

1 
j+l 

I \ I \ 
PiPi - l Pi (l-Pi _l ) (l+q. 1) (l-q.) (l+q. l)q. 

f--
1. - 1. 1.- 1. 

(l+p.+q. 1) J-- (l+p.+q. 1) (l+pi +qi-l) (l+p.+q. 1) 
1. 1.- 1. 1.- 1. 1.-

j 

\ I \ J \ 

i-2 i-l i i+1. 

FIGURE 5.3.3 

The diagrammatic representation of the GER scheme is given by 

Figure 5.3.4 below: 

(j+l)th le vel 

jth level 
I I 
I I 
I I 

I I I 

I I 

I I 
I 

---I 

I I I 
I ___ I 

-1 I I 
0 1 2 3 4 m-l m r 

FIGURE 5.3.4: The GER scheme 
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we obtain the following approximations of the derivatives at the 

points (O,j+;) On the axis: 

and 

( 3U) ~ 
3t (0, j+t) 

2 
(u l . -uo . -uO j l+u -1 . +1) I (M) ,] ,] , + ,J 

(UO '+l-uO .)/~t , 
, J , J 

3U 
(ar) (O,j+t) : (uO,j+l-u_l,j+l+ul,j-UOj)/2~r 

From (3.13.28), the following relationship holds on the axis, 

au 
(at) (0, j+t) 

(5.3.8) 

(5.3.9) 

(5.3.10) 

(5.3.11) 

and the substitution of (5.3.8) and (5.3.9) into (S.3.ll) leads to the 

approximations 

(S.3.12) 

By utilising (S.3.10) and the boundary condition (S.l.la) in which 

au ar(O,t) = 0, we arrive at the following formula for the fictitious 

values u 1 . l' - ,J+ 

Now by inserting u 1 . 1 into (S.3.12), we therefore obtain the 
- ,J+ 

approximations to the left boundary values as, 

(S.3.13) 

u = (1-2,x)u
OJ

' +2~ulJ" (S.3.14) O,j+l 

" 11 t where Cl = (l+,d A and A = 2' the mesh ratio. The solutions at the 
(IIr) 

single ungrouped pcint near the right boundary can be obtained from 

(S.2.12) by taking i=m-l to give, 
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Um-I,J'+1 ~ (p IU Z .+(l-p l)u I .+q lU . 1)/ m- m- I J m- m- I J m- rn, J + 

(5.3.15) 

Hence the GER scheme is expressed by the following implicit equations, 

" A U = (l-Za)u
OJ

' + 2au
lJ

. , 
O,j+l 

') i=Z,4, •.• , 
(m-4) , (m-Z) , 

m even and m>4, 

(l+q. I)U' I ·+l-q· lU' '+1 = Pi IU' Z .+(l-P. l)u, 1 j 
~- 1.-,J 1- 1.,J - 1-,J 1.- 1.-, 

and 

Um_l , j+l = 

or in matrix form as, 

. I 

I 
-, - - - - _I 1-

1 

-----~~ 
-P 2 

-q 
I 

1 (1+q3) 

I 
1 1 -P4 

1--1---- -- --
1 1 

I-} - - - - -:- --
I I 0 
1 

-------"t-
, I 
1-

1 

I 1 

I -
I -q3 0 I 

(1+P4 JI 1 

-I ~ .:- -: - - - 1-1 
L _ ~ - - - -1-1 
I 1(1+~_3) -qm-3 I I 
1 I -Pm-Z (I+Pm_Z) I I 
~- -;-- -----i~1 

• 
u' m-3 



= 

where 

1 
I 
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I 

1 
(l-P1~ 1- ____ : ____ L , u

1 1--------
1 (l-q 2) q2 1 1 

P
3 

(l-P
3

) I 

-I - - - 1- - - - 1- - 1-
, 1 (l-q 4) q4 , 

liPS (l-p) 1 
1_ - - .J ___ 5 ~ -1-

I I .... 1 
1 1 "~I 

- - - - 1- - - - -
, ,f (1-~_2) 

, ' 
1 1 Pm-1 

: : -:( 1:;:-+:=~-_-1') 

o 

-1-

o (l-p 1) m-
-:-( 1-=-='):+ IU

m
_1 +~-1-

+ ~1 (5.3.16) 

~-1 . )T 
b = (0,0, ••• , )u 
-1 (1+~_1 m, j+1 

Now, if we let, 

and 

° I ' 'Ill 
- I - - I- - -I - - .. - - - + -I 

, G (1) 1 i f 1 I 
111 

- -I - - - - -+ - -1- - - - -
, 'G (2),' " 

110 
- .J. - -,- - ~ - -1- - - -t 

, , , .... , 1 , 
- 4 - - - r - ~I - - - -I 

, I' G (t (m_2)) , 
_ .J _ I _C-+ _ 1 ~ __ J_~ 

, 1 I , ° 

(5.3.17) 

(mxm) 

j 
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2 

I 

-2~ 22 I I 
I I 

Pl -Pl I 1 I 

- -I~(]JT ;-
1 2 I 

--------1-
1 1 (2) I 

1 G2 I 1 
I 

-, 
1 

- - - + 
1 
I 
I 

T I 
.1 .1 
1 
I 

T 
I 0 
I 
I 

+
I 
I 

L 
I 
I 

I 
I 

I 
I 

I 
I -,-
I 

I 

""t 

I 

.J.. 

o 

'\0-2 

- (Pm- 1 +'\0-1) 

(1+'\0_1) 
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(5.3.18) 
with 

and 

G (i) = 
1 

f2i
-

1 

L -P2i 

-q2i-0 ,i=1,2, ••• ,!(m-2) 

P2iJ 

, i=1,2"""(m-4) 

then, the GER scheme can be written as, 

(I+Gl)U, 1 = (I+G
2

)U, + b
l 

' (5.3.19) -J+ -J-

or -1 " 
~j+l = (I+Gl ) (I+G2)~j + £1 ' (5.3.20) 

where u, (uO"ul"""u l,)Tandbl=(I+Gl)-\l' -J ,J ,J rn-,] -

(ii) The GEL Scheme 

The GEL scheme is represented diagrammatically by Figure 5.3.5 

below, 
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FIGURE 5.3.5: The GEL Scheme 

By choosing 81=~=1 and 82=8
3

=0 in (5.2.1), we have as approximations 

to (5.3.11) at r=O, the formula, 

(5.3.21) 

From (5.2.13), we also obtain, with i=l, the relation, 

-PIUO,j+1+(1+P1 )U1 ,j+1 = (1-Ql)ulj+Q1U2j • 

Equations (5.3.21) and (5.3.22) form the coupled system: 

(5.3.22) 

i. e. I 

or 

and with 

u '= 
-j+1 

-1 
A 

= Bu 
-j 

"
+ !:!'j 

-1 
A Bu, 

-J 

1 
, 

< 1 +P1 +a) 

-1'\ 
+ A u. , 

-J 

'L'Su-1 ,j 1<5.3.23) 
Ql u 2 ' 

, J 

(5.3.24) 
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this leads to, 

(5.3.25) 

and 

I 
{

A 1\ A A 

PI (l-a)uOj+(I+a) (I-QI)ulj+Plau_l,j+(I+a)qIU2j}· 
" (I+P

I 
+a) 

(5.3.26) 

From the boundary condition (5.1.la), we have (~~) (O,j+!)=o and if 

we choose a
l

=a
3

=O and a
2

=a
4

=1 in (5.2.2), we obtain the following 

approximation on the axis, 

and hence u I ,=u
I 

,. With these values, the required equations for 
- , J , J 

the left boundary as well as the single ungrouped point adjacent to 

it are given respectively (from (5.3.25) and (5.3.26» by, 

UO,j+1 = (I~PI+a) {(I+PI) (1-&)UOj+(2+PI-QI)~Ulj+~QIU2j} 

and 

(5.3.27) 

These equations together with the system (5.3.2/3) for i=3,5, .•. ,(m-3), 

(m-I) describe the GEL scheme which can be written in matrix form as, 



I 

-I 

I - --
_q I 

2 I 
(l+P3) L 

- l(i+q4 ) 
J 

I 
I 
I 

-1-
I 

I 
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= 

I A ~ A 
(2+P

l
)a (2+P

l
- Ql)a a Ql 

'1 -
A A A 

(l+Pl+a) (1 +P
l 

+a) (l+Pl+a) 

A " ~ "-
P

1 
(l-a) 

1 + 
P

1 
(a-i) -Ql (l+a) (l-<a) ql 

" A 

(l+P
l 

+a) (l+p
l
";) (l+Pl+a) 

I 
I 0 P 2 

(l-P
2

) 
I 
1- - - - - - - - - - - -
I 

., 
I - - - -

- - - - - - - - - - - - - - _I 

T = (0,0,0, ... ,q lU .l 
m- mJ 

o 

I 
I 

1 
t----- T - --

o 
I .... .... ( .... 

"':1- __ 

1 

-4 

1 

t-
1 
I 

(1-P
m

_
2

) I 
- - - -I - --

I (l-~_l) 

U
4 

I 
I 
1 
1 

U 
m-3 

m-2 

t
u 

u
m

_
1 

. 

J 

(5.3.29) 
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l 

I 

+- -1-
1--G(2) 

1 1 
t-- - '-' - - - --
1 1 

1 I 
1- -I - .., r 
I_G(3)1 1 

1 
T - -

1 

1 1 1 0 -1- - - -I--J--- __ 1 __ _ 
1 1 I', 1 I 

_______________ 1 1 ~ '- _ -: _ _ I 
1 0: : -Gi t (m-2)) : 1 

_______________ 1_ i of :----i--J 
f I I-q -1 

1 I 1 "1Il 

o o 1 
1 

o 0 f 1 

1 
1 
1 

-'- ----1-- , 
_G(l) 1 1 I 

1 2 I 
- - - - - -1- - 'j - - - T - - --

: 1--G(2)1 10 

-I---..I-~-,,---I---- -'r 1 I" 1 . -- -;- -1- --:- -'-'- ~G(t(m:-2ii 
I 1 0: :- 2 

(5.3.30) (mxm 

(5.3.31) 

(mxm) 

then the GEL scheme takes the form, 

or 

" (I+G
2

)U 
-j+1 

(5.3.32) 

(5.3.33) 
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T ,. "-L 
where u, = (u ',u

l
', ••• ,u 1 ,) and b

2
= (HG

2
) D

2
• 

-) 0)) m- ,) - -

(iii) The (S)AGE and (D)AGE Schemes 

The alternating group explicit schemes are formed by the 

application of the GER and the GEL processes in their appropriate 

sequences. Thus, the following formulae constitute the (S)AGE two-

step scheme: 

and 

(I+Gl)U, 1 = (I+G2 )U, + b l } -)+ -)-
j=O,2,4, ••. 

A A 

(I+G2)~+2 = (I+Gl)~j+l + ~2 
(5.3.34) 

and the (D) AGE four-step scheme is given by, 

(HGl)U, 1 = (HG
2

)U, + ~l , 
-)+ -) 

A " (I+G2)~j+2 = (I+Gl)~j+l + ~2 

" " j=O,4,8, (5.3.35) 
(I+G

2
)U, 3 = (I+Gl)u, 2 + ~2 -)+ -)+ 

and (I+Gl)U, 4 = (I+G2)~+3 +~l -)+ 
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5.4 TRUNCATION ERROR ANALYSIS OF THE GE METHODS 

(iJ Truncation Error for the GER Scheme 

The truncation errors of the approximations of the Zeft boundary 

values as given by equation (5.3.14) can be estimated by expanding 

UO,j+l,UO,j and Ul,j about the point (ro,tj+t). 

following expression of the truncation error: 

This leads to the 

TLB = T 5.3.14 
2 2 

"aU aU" 2aU 1\ au 
= -2a(lIr) (a;:-)o,j+t+(lIt) (a-t)o,j+t-a(lIr) (a/)o,j+t+a(lIr) (lit) (arat)o,j+t 

3 3 3 ' 
1" 3 a U A 2, a U 1" 2 a U ) 

- yx(lIr) (-3)0 ),+,+ta(lIr) (lIt)( 2 )0 ),+,-;rx(lIr) (lit) (arat20,)'+' 
Or ' , , ar at ' , z 
3 1\ 4 ,.. 4 

1 3 a U a 4a U a 3 a U 
+ 24 (lit) (-3) 0 '+' - u( 6r) (-4) 0 '+' + 6'( lIr) (lit) ( 3 ) 0 ' , 

at ,). ar') , ar at ' ) +. 
A 4 A 4 A 
a 2 2 aU a 3 au a 4 

- S(lIr) (lit) ( 2 2)0" + 24 (lIr) (lit) ( 3)0,)'+' + 192 (lit) 
ar at ,)+, arat' 

a 1 "2 
+ O((lIr) (lit) ) , a

1
+a

2 
= 5 . (5.4.1) 

The truncation errors for the GER scheme at the generaZ grouped 

points can be derived by resorting to Tay1or's series expansions of 

equations (5.3.6) and (5.3.7) about the points (r, l,t, ,) and (r"t, ,) 
~- )+, ~ )+, 

respectively. Thus, we obtain 

T 
5.3.6 

au ' au 
= {(l+p,)p, l+(l+q,)q, I} (lIr) (-ar) , 1 ' ,+(l+p,+q, 1) (lit) (-at)' 1 '+' 

1. 1.- 1. 1.- 1.- ,J+-z 1. 1.- 1.- ,J '1 

2 a2u 
-H(l+p,)p, 1+(l+3q,)q, l}(lIr) (-2)' 1 ' , 

1. 1- 1. 1.- ar 1.- ']+2 

a2u 1 
-H(l+p,)p, l-(l+q,)q, I} (lIr) (lit) (-a at)' 1 ' ,+ ~6 (l+p,)P'_l 

1. 1.- 1. 1.- r 1.-, J+1 1. .... 

3 a 3u 1 2 
(1+7q,)q, l}(lIr) (-3)' 1 ,+,+7{4 (l+p,)p, l+(1+3q,)q1 l}(lIr) (lit) 

1. 1.- ar 1.- ,J z 1. 1.- 1.-

a
3
u 1 2 a

3
u), ' (-2-)' I' , , + -s{ (l+p, )p, l-(l+q, )q, I} (lIr) (lit) ( 2 1 ' 

ar at ~- ,J+, ~ 1- 1 1- arat 1- oJ+, 

1 3 a3u 1 
+ 24 (l+p,+q, 1) (lit) (-3)' 1 ' ,- 24[ (l+p,)p, 1+(1+15q,)q, I} 

1.- 1- at 1.-, J+-z 1. 1.- 1. 1.-
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1 2 2 a4u 1 
- 16( (l+Pi)Pi_1+(1+3q,lq'_1} (lIr) (lit) ( 2 2) '-1 '+' - 4S( (1+p,)P i _1 ~ 1 ar at 1 ,), ~ 

3 a 4u Cl 1 
-(1+q,)qi_1} (lIr) (lit) ( 3)' 1 ,,+O«lIr) (lit)), 

1 arat 1-, J+, 

and 

2 2 a4u 1 3 
(l\r) (lit) ( 2 2)' '+' - 4S(P, (l+p, l)-(l+Q, l)q,} (lIr) (lit) 

ar at 1,J, 1 1- 1- 1 

4 
( a u ) 
arat3 i, j+! 

(5.4.3) 

Finally, from equation (5.3.15), the truncation error of the 

approximation near to the right boundary is given by, 

au au 2 a
2

u 
(p,-q,) (lIr) (,) 1 ,,+(lIt)('t) l' ,-!(p,+q,) (lIr) (-2) 1" 

]. 1. or m- ,)+2 0 m- ,J+"2 l. 1. ar m- ,J+,% 

a2u 1 3 a3u t (p, +q, ) (lIr) (lit) (~t 1" + -6 (p, -q,) (lIr) (-3) l' +' 
1 1. ora m- ,J+z l. 1. dr m-,J z 

1 2 a3u 1 2 a3u 
+-4(P,-Q,)(lIr) (lit) ( 2 ) l' '+-S(p,-Q,) (lIr) (lit) ( 2) 1" 

1 1 ar at m- ,J+, 1 1 arat m- ,J+' 
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+ 24 
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1 2 . 2 a4u 
- '8(P.+q.) (tor) (tot) ( 2 2) 

1 1 ar at m-l, j+! 

(5.4.4) 

(iiJ Trunaation Error for the GEL Saheme 

The truncation errors at the left boundary and at the ungrouped 

point near to it can be derived by means of equations (5.3.27) and 

(5.3.28). By expanding these equations about the points (ro,tj+t) and 

(rl,t j +!), we obtain, 

TLB = T5 •3 •27 

and 

J\ au 1\ au A 2 = (l+Pl+~) (tot) (at)0,j+!-(2+Pl+ql)~(tor) (ar)0,j+!-!(2+Pl+3ql)~(tor) 

2 2 au A au 1 ,.,,, 2 
(ar2)0,j+!+!(2+Pl+ql)cdflr) (fit) (arat)o,j+! - ~ (l+Pl) (l-a)~ql} (fit) 

a2u 1 . A 3 a3u 1 A 2 
(at2)0,j+! - 6"(2+Pl+7ql)cdtor) (ar3)0,j+!+ 4(2+Pl+3ql)~(tor) (tot) 

a 3u 1 '" 2 a
3

u l" 3 
( 2 ) .1-8(2+Pl+ql)~(tor)(tot) ( 2)0 .+1+24(l+Pl~1 (tot) 
ar at o,J+, arat ,J. 

T 
5.3.28 

,. "au A au 
{Pl (l-~) -ql (l+~) } (tor) (ar) l, j+t + (l+Pl +~) (tot) (at) l, j +! 

(5.4.5) 
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.A /\ 2 a2u A A . 
-HPl (l-Cl) + (l+CI) ql}(t.r) (ar2) l,j+! - HPl (I-Cl) -(l+CI)ql}(t.r) (t.t) 

a2u l{"" 3 a3u 1 " "-
(arat)l,j+! + 6" P l (l-Cl)-(l+CI)ql) (t.r) (ar3 )1,j+!+ 4{Pl (l-Cl)+(l+CI)ql) 

(5.4.6) 

The truncation errors of the scheme at the remaining points grouped 

two at a time are given by T
5

.
3 

.6. (equation (5.4.2) and T
5

•
3

• 7 (equation 

5.4.3) respectively for i=3,5, ... , (m-3) and (m-l). 

(iii) Truncation Errors for the (S)AGE and (D)AGE Schemes 

The truncation errors of these alternating group explicit methods 

are given by the truncation errors of the GER and the GEL schemes when 

they are applied in their correct sequence. 
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5.5 STABILITY ANALYSIS FOR THE GE METHODS 

(i) Stability of the GER Scheme 

From equation (5.3.20), the. explicit form of the GER scheme is 

where rGER 

by, 

" ~j+l ~ rGE~j + ~l ' (5.5.1) 

-1 
~ (I+G

l
)· (I+G2) , the amplification matrix which is given 



" " (1-2" ) 2" 

(1+P
2

) P
l 

(1+P
2

) (l-P
l

) ql (1-q2) 

(1+P2 +ql) (1+P
2

+ql) (l+P2+ql) 

P2Pl 
P

2
(1-P

l
) (l+ql) (1-q2) 

(1+P2+ql) (1+P
2

+ql) (1+P2+ql) 

(1+P
4

)P
3 

0 0 
(l+P4 +q3) 

P4P3 0 0 
(l+p 4 +q3) 

r
GER 

= "-
"-

o 

L 

q2q l 

(l+P2+ql) 

(1+ql)q2 

(l+P2+ql) 

(1+P
4

) (1-P
3

) q3(1-q4) q4q 3 
(l+P4 +q3) (1+P

4 
+q3) (l+P4 +q3) 

P
4

(1-P
3

) (1+q3) (1-q4) (1+q3) q4 

(l+P4 +q3) (l+P4 +q3) (1+P4 +q3) 

" "-

"-

'" 

"-
"-

"-
"-

'" " (1+P
m

_
2

) P
m

-
3 

(1+Pm- 2+qm-3) 

P P m-2 m-3 

o 

"-
"-

'" "-
"- '" " (l+Pm_2Xl- Pm_3) 

(1+Pm- 2 +Qm-3) 

P 2 (l-p 3) m- m-

(1+Pm-2+Qm_3) 

o 

m even, m>4 

"-
Qm-3 (1-~_2) 

(l+p m-2 +Qm-3) 

(1+Qm_3) (1-~_2) 

(l+Pm-2+Qm_3) 

o 

(1+~_3)~_2 

(1+Pm_2+~_3) 

(l-p 1) m-

(mXn 

w 

'" ·0 



The stability of the GER scheme will now be investigated for two 

different cases of a. 

(a) For the case a=2 (spherical symmetry) 

" A 3A We have a=3A. pl=O. P2:2' ql=2A and q2=:1. The characteristic 

equation of the matrix fGER is IDr=det(fGER-~I)=O where ~ are the 

eigenvalues of f
GER

. Now. if we expand the determinant by the first 

column. we get ~=(1-6A) as an eigenvalue of f
GER

• For stability. we 

require 1~1~1 which leads to the condition 

(5.5.3) 

For the second and subsequent even rows of fGER we have as the sum of 

the moduli of the elements of the row. 

1 (l+Pi +l ) 11 (l-Pi ) 1 

Il+Pi+l+q
i l 

+ 
1 qi 111-qi+l l 
Il+Pi+l+q

i l 

i=1.3 •..•• (m-3). m>4 

since Pi and qi are non-negative. 

For i=l we obtain. 

1+P2+ql ll-q2 1+q2ql 

(1+P2 +ql) 

2 
or A~ 3 

For ~~ese values of A. 
1+P2+Ql-qlq2+Q2ql 

(l+P2 +ql) 

- 1 . 

For i=3 •.••• (m-3l. we find that. 

(5.5.4) 
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if p,:;:l then 
~ 

i 
A:;: (i-l) 

and if qi+l:;:l then 
i+l 

A:;: (i+2) 

f ' i i+1) Now or A:;:min'«i_l) , i+2 

Si+l = 

= 

= 

i+l 
= (i+2) I 

(l+Pi+l)Pi+(l+Pi+l) (l-Pi ) +qi(l-qi+l) +qi+lqi 

(l+Pi +l +qi) 

Pi+PiPi+l+l-Pi+Pi+l-PiPi+l+qi-qi+lqi+qi+lqi 

(l+Pi +l +qi) 

= 1. 
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(5.5.5) 

For the third row, the sum of the moduli of the elements of the row is 

P2+(1+ql)i l - q 2 i +(1+ql)q2 
= 

(1+P2+ql) 

Again, if A~f as in (5.5.4) we have, 

53 = (p2+(1+ql) (1-q2)+(1+ql)q2)/(1+P2 +ql) , 

= (P2+l+Ql-Q2-Qlq2+Q2+qlq2)/(1+PZ+Ql) 

= (1+P2+ql)/(1+P2+Ql) 

= 1 .. 

For the subsequent odd rows of r
GER 

we get 

p, lP,+P'+lll-p, i+(l+Q,) il-Q, li+(l+Q,)q'+l 
1.+ 1. 1. 1. 1. 1+ 1. l. 

(l+p, l+Q,) 
~+ ~ 

Again using (5.5.5), if A~~~:;~ then 

5, 2 
~+ 

= 
Pi +1P i+Pi+l(l-Pi )+(l+Qi) (l-Qi+l)+(l+Qi)Qi+l 

(l+pi+l +qi) 

i=3, ••• , (m-3) 

with m>4, 

Pi+1Pi+Pi+l-Pi+1Pi+l-Qi+l+Qi-QiQi+l+Qi+l+QiQi+l 
= 

(l+p, l+Q,) 
~+ ~ 



= 1. 

An application of Brauer's theorem to the last row leads to 

III -

i.e. , 
(l-p 1) P 

11 _ -;-;-c-"m:...--=- :: ~m,":--=l_,.. 
(l+~_l) (l+~_l) 

or 

Let l-2p 
m-I and 

1 
11 = 112 = 

1 (l+~_l) (l+~_l) 

l-2p 
The requirement Illll~l implies -1 

m-I 
~ l+q 1 

or -l-q -m-I 
The left-hand side inequality gives 

2(m-2)A _ m \ ~ 2 
(m-I) (m-I) 

m-
~ 1, 

l+q 1 m-

393 

or 
(2m-2) 
(m-4) 

(5.5.6) 

The second requirement 

11121 ~ 1 implies (l+q:_l):: 1 which is true for all A>O. 

Therefore, for overall stability we have using (5.5.3), (5.5.4), (5.5.5) 

and (5.5.6), 

12. i+1 3 (3» 2m-2}' 
A:::min.{3"' 3",ml.n. (i+2 ' i= , .•• , m- 'm-4 m>4 

1 
= 3" 

Hence the GER scheme for the spheric ally symmetric parabolic problem 

is conditionally stable for A::t. 

(b) Fop the case a=l (cylindrical symmetpy) 

The characteristic equation is 101=0, where, 



(1-4),) -11 4), 

(4+3).) ). (4+3),) (2-).) 
2 (4+9),) 2 (4+9),) -11 

3).2 3 (2-)'JA 
2(4+9),) 2 (4+9>.) 

0 0 

0 0 

IDI= 

3(4-5),», 
2 (4+9),) 

(2+3),) (4-5),) 
2 (4+9),) -11 

(1+P4)P3 

(l+p 4 +q3) 

P4P3 
(1+P4 +q3) 

0 

15).2 

2 (4+9),) 

5(2+3),», 
2(4+9>.) 

(l+p 4) (l-P
3

) 

(l+P4+q 3) 

P
4 

(1-P
3

) 

(l+p 4 +q3) 

, , , 
(1+Pm_2 ) Pm- 3 

(1+Pm- 2+qm-3) 

P P m-2 m-3 

-11 
q3(1-q 4) 

(1+P4+q 3) 

(1+q3) (1-q 4) 

(l+p 4 +q3) 
-11 

, , , , 
(1+P

m
_

2
) (1-P

m
_

3
) 

(1+Pm_2 +qm-3) 

P
m

-
2 

(1-P
m

_
3

) 

(l+p m-2 +qm-3) 

-j.! 

g4q3 

(1+P4 +q3) 

(1+q3) q4 

(l+P4 +q3) , , , , 
~_3(1-qm_2) 

(1 +P m-2 +qm-3) 

0 

(l+Pm_2 +qm-3) 

(1~_3)qm_2 

(l+p 2+q 3)' m- m-

(l-p 1) m-
(l+q 1) -11 

m-

(5.5.7) 

IN 

'" .... 



By carrying out the following set of row operations Ri on the 

determinant 101 we obtain: 

(i) 

(iii) 

Thus, 

or 

where, 

... (4+3)"»),, 
Rl 2 (4+9),,) 

i.e. = «4+3)..»).. 
Rl 2(4+9),,) 

2(4+3)..»)..2 
, .::;. ('-'4":+0:9 "">. "-) 7( 1""--'4'"')..'---11-;-) , 0,..., 0) , 

and I I (4+3)"»),, I I 
o ... 2(4+9)..) (1-4>'-11) 0 ; 

i. e. , 
3 (4-5),,) >. 

R2 = (0,8
1

, 2(4+911) ,0, ... ,0); 
15).2 

2 (4+911) 

3)..2 
Rl "'""'('::'4 +"'3""')..,",)"7)..-RRl ' 

i.e. 

and 

i.e. 

R = 
1 

101 ... 

(3)" 
2 
/2 (4+9),,) , 6).

3
/ (4+9),,) (1-4)..-11) , 

3)..2 
2 (4+911)(1-4>'-11) 101; and 

0, ... ,0), 

(2+3>') (4-5),) 5(2+3),,», 
R3 = (0,82 , 2 (4+9),,) -11 , 2 (4+9>') , 0, •.. ,0) • 

101 

3)..2 

= 2 (4+9>') (1-4>'-11) 101 

= 
2 (4+9),,) (1-4)..-11) 

3).2 
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(5.5.8) 



ID 1= 1 

with 

and 

i 3A 
2 

6 A 
3 

2 (4+9A) (4+9A) (1-4A-j.1) 

o 3(4-5A}A 
2 (4+9A) 

15A
2 

2 (4+9A) 

5 (2+3A}A 
2 (4+9A) 

(2+3A) (4-5A) 
2 (4+9A) -j.1 

= 

= 

o 

" " " 
" 

" , 

, 

" " 

, , 
P m-1 

(l+'\n_1) 

" " , , 
(l-p 1) 

m-
(1+qm_1) 

2 
(4+3A) (2-9A) -{ (16-12A-75A ) -2 (4+9A) j.1}j.1 

2 (4+9A) (1-4A-j.1) 

3 
3(2-A}A(1-4A-j.1}-12A 

2 (4+9A) (1-4A-j.1) 

, 
" 

-j.1 

" 

The determinant 101 now takes the form 

(l-4A-j.1) 4A 0 

0 Sl 
3(4-5A}A 15A 2 
2 (4+9A) 2 (4+9A) 

S2 
(2+3A) (4-5A) 5 (2+3AJA 
2 (4+9A) -j.1 2 (4+9A) 0 

" 
, , 
" 

, 
" " " 101 = " , 

" " " " " 0 " " , 
" , 
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o 
0 

(5.5.9) 
... 0 , 

(5.5.lO) 

and on expanding the determinant 

(l+qm_1) 

101 =0 about the first column we find 

that (1-4A-j.1) 1021=0 where 1021 is now the minor obtained from 101 by 

deleting the first row and column. This gives us the result, 

1-4A-j.1 = 0 and [021=0. 
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From the first equation, the stability requirement that 1~1~1 leads to 

By repeating the same procedure on ID21 we also have 

8
1 

= 0 , 

or (4+3>.) (2-9A)-{ (16-12A-7SA2}-2(4+9A)~}~ = 0 , 

2 2 
2(4+9A)~ -(16-121.-751. )~+(4+3A) (2-91.) i.e. , = 0 , 

whose solutions are given by, 

~ = ( 16 -12 A - 7 51. 2 ) ± .0-1-6---12-1.---7-5-1.":"2-) 2="--8-(-4-+-9-1. -) -( 4-+-3-1.-) -( -2 --9-1.-) 

4 (4+91.) 

(5.5.11) 

• 

If the solutions are ~1 and ~2' we find by inspection that for 1.=0.454, 

1~11=0.685006039 

and 1~21= 0.997073088 

giving max{I~11,1~21} = '1~21< 1 ; 

and for A = 0.455, 1 ~11 = 0.693311298 

and 1~21= 1.001333226 

which' imply max.{ 1~11, 1~21} = 1~21 >1. 

Thus for stability, we require 

A ~ 0.454. (5.5.12) 

Now the sum of the moduli of the elements of the third rOw to 

row (m-l) is each equal to 1 

Since p.=(l- 21)A and q. 1 

if p. ~1 and q. 1:"1 for i=l, 3, ••• , (m-3) • 
l. l.+ 

1. ~ 1.+ 

1 
(1+ 2(i+l»A, the conditions on Pi and 

q. 1 require, 
l.+ 

. 2i (2i+2» 
A :" mw. «2i-l) , (2i+3) 

= 
(2i+2) 
(2i+3) 

By applying Brauer's theorem to the last row, we have 

i. e. , 2(2m-3)A 
2 (m-l) 

(2m-l) A 
2(m-l) ~ 2 

(5.5.13) 
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giving A !i (4m-4)/(2m-5) • (5.5.14) 

Therefore, for the stability of the entire set of equations, we must 

have uSing (5.5.11), (5.5.12), (5.5.13) and (5.5.14), 

, . {> 45 . (2i+2 i 1 3 (3» 4m-4} 4 
1\ ~ ml.n. "l,0. ,mill. 2i+3' =" ... , m- , 2m-S ' rn> 

= 0.454. 

(iiJ StabiZity of the GEL Saheme 

From equation (5.3.33), the expllcit form of the GEL scheme is 

" u = r u. + b 2 ' -j+l GEL-] -
(5.5.15) 

1'\ -1 '" 
where r

GEL 
= (I+G

2
) (I+G

1
), the amplification matrix which is given 

by, 



~l+Pl) (l-~) (2+P
1 
-ql) c; " aql 

I (1+P
1 

+a) 
(1+P

1 
+~) (1+P1+a) 

" " A (l+Q) ql . p (I-a) (l+a) (1-ql)+P1" 
1 

(1+P
1 
+~) (1+P

1 
+&) (1+P

1 
+a) 

0 
(l+P

3
)P

2 
(1+P

3
) (I-Pt 

(1+P3 +q2) (l+P3 +q2) 

P3P 2 
P

3
(1-P

2
) 

0 
(1+P

3
+q2) (1+P

3 
+q2) 

0 0 0 

0 0 0 

r
GEL 

~ 

o 

0 

q2(1-q3) 

(1+P
3 

+q3) 

(1+q2) (l-qJ 

(l+P3 +q3) 

(1+P
S

)P
4 

(l+PS+q4 ) 

P SP 4 
(l+P

S 
+q4) 

(l+P3 +Q3) 

(1+q2)q3 

(l+P3 +q2) 

(l+P
S

) (l-p 4) 

(l+PS+Q4) 

P
S

(1-P
4

) 

(1+P
S

+q4) 

(1+q4) (l-qS) 

(l+P
S

+q4) 

(l+PS+q4) 

(l+Q4)qS 

(l+PS+Q4) 

\. 
\. 

"
\. 

" 

" " 

(l+p
m

_
1

) P
m

-
2 

(1+Pm_1 +qm-2) 

Pm- 1Pm- 2 

\. 

" (l+p 1) (l-p 2) m- m-
(l+Pm_1 +Qm-2) 

P
m

-
1 

(1-P
m

_2 ) 

(1+Pm_1 +~-2) 

m even, m>4, 

"-

o 

Qm-2 (l-~_l) 

(1+Pm_1 +~-2) 

(1+Qm_2) (l-qm_l) 

(l+Pm_1 +qm-2) 

(S.S.16) 

(mX 

W 
ID 
ID 



(a) For the case a=2 (spheriaa~ sy~try) 

The characteristic equation is IDI=o where, 

(1-31.) (2-21.) 31. 
(l+3>')-~ (1+3>') 

0 (1-21.) -~ 

0 
(3+2>') >. 
(6+131') 

0 
2>.2 

(6+13>') 

o o 

o o 

IDI= 

6>.2 

(1+3 >') 

2A 

(3+2),) (2-A) 
(6+13>') -~ 

2 (2->.) >. 
(6+13>') 

o 

o 

o 

3 (3-4A) A 
(6+131') 

(2+3>') (3-4>.) 
(6+13>') -~ 

(5+4>') 3>' 
(20+ 41>.) 

12>.2 

(20+ 41>.) 

12>. 
2 

(6+13>') 

4(2+3>')>' 
(6+13>') 

(5+41.) (4-3>') 5>. (5-6>') 
(20+ .41>') -~ (20+41>') 

(4+5>') (5-6Al 4>. (4-3>') 
(20+41>.) (20+41>.) -~ 

, , 
... ... ... ... 

(l+Pm-l)Pm-2 

(l+Pm_1 +~-2) 

... ... , 
... 

... ... 

(20+41>.) 

(4+5>') 6>' 
( 20+41>.) 

... ... ... ... 

Pm- 1Pm- 2 P l(l-pl m- m-Z 

... ... ... 

o 

(5.5.17) 

... 
o 
o 



If we expand the determinant about the first column, we obtain 

by deleting the first row and the first column. This gives us, 

(1-JA) , I 
(1+3A) -~ = ° and 101 = 0. 

From the first equation, ~ = :i~;~: and 1~1<1 for every A>O. 

( i) 

Now we carry out the following row operations on ID11: 

(3+2A)A 

i.e. R -+ 
1 

«3+2A)A 
(6+13A) 

2 (3+2A) A 
2 

, (6+13A) (1-2A-~) , 

(3+2A) A I 
and 1°11 .. (6+13A) (1-2A-~) 1°1 ; 

0, ... ,0), 

( ii) R R R 2" 2- 1 ' 

(iii) 

3(3-4A)A 
i.e. R2 .. (O,B l , (6+13A) , 

12A2 
-:(""6-+:-"13""A'""):-'''' 0, 0, • • • , 0 ) ; 

(0 B (2+3A) (3-4A) ~, ~i:~;~: A ,0, ••• ,0) • 
'2' (6+13A) 

Thus I we have 2,,2 

(6+13>-), (1-2>--~) I D11 

or = (6+13A) (1-2A-~) 10 I 
2A2 2 

which takes the form, 
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ID 1= 1 

I (1-2}'-J,l) 2A 

I 0 8
1 

3 (3-4}')}'/(6+13}') 

o (2+3A) (3-4}') 
(6+13>') -J,l 

(5+4}')3A 
(20+4lA) 

12>.2 

(20+4lA) 

o 

12A2 

(6+13}') 
4 (2+3A)}' 
(6+13}') 

(5+4}') (4-3A) 5}' (5-6}') 
(20+41A) -J,l (20+41A) 

4}'(4-3}') 
(20+4lA) 

\ 
\ , 

, 
\ 

(4+5)') (5-6}') 
(20+4lA) -J,l 

\ , , 
, 
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30},2 

( 20+41A) 

(4+5},) 6}' 
(20+4lA) , , , 

, , 
o 

, 
\ 

(l+P
m

_
l

) P
m

- 2 

(l+Pm_l +~-.t 

, 
(l+P

m
_

l
) (1-P

m
_

2
) 
-J,l 

(l+Pm_l +qm-2) 

q 2(1-q 1) m- m-

where 

(l+Pm_l+~_i 

(l+~_i(l-~_l) 

(l+Pm_l +~-2) 

(5.5.18) 

2 . 1\ ={ (6+13}') J,l - [(3+2A) (2-}') + (6+13}') (1-2A) 1 J,l+ (3+ZA) (2->') (1-2}')-

2(3+2},)},2}/(6+13}') (1-2A-J,l) 

and 

8
2 

= {2A(2-5},)-2A(2-},)J,l}/(6+13>.) (l-ZA-J,l) 

By expanding the determinant about the first column, we get 

(1-2A-J,l) 1021 =0 

where 1021is the minor obtained from 1011 by the deletion of the first 

row and the first column. This gives us, 

(1-2A-J,l) = 0 

and 1021=0. Hence, J,l=l-2}' and the stability requirement 1J,l1~1 leads 

to the condition, 

A ~ 1 • (5.5.19) 
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The same procedure is repeated on the minors ID21 and ID31 from which 

we obtain the conditions of stability 

A ~ 0.B49 and A~0.B4B 

respectively. Finally, by operating on ID41 we obtain 

ID 1= 4 

Ss 

0 

0 

SA (s-6A) 
(20+4lA) 

S7 

sA(7+6A) 
(42+BsA) 

" 
" 

30A
2 

(20+4lA) 

Sa 

(7+6A) (6-sA) 
(42+BsA) 

" 

n (7-BA) 
(42+BsA) 

" , , " , , , 

(42+BsA) 

, 
" " 

(5.5.20) 

o 

o 

l 
(1+Pm-l)Pm-2 

(l+Pm_l +"m-2) 

"m-2(1-"m-l) 

(l+Pm_l +qm-2) 

p p 
m-l m-2 Pm-l (1-Pm_2) 

(l+Pm_l +qm-2) 

(l+"m_2) (l-(~_l) 
-~ 

(l+Pm_l '-2) 

where, 

S3 ={{ (Z+3A) (3-4A)-(6+13A)~}Sl-3SZ(3-4A)A}/(6+l3A)Sl' 

S4 = {4S1 (2+3A)A-12S 2A
2

}/(6+13 A)Sl ' 

Ss =({(s+4A) (4-3A)-(ZO+41A)~}S3-(s+4A)3AS4}/(ZO+41A)e3 ' 

86 = {4A(4-3A)S3-1ZAZS4}/(20+41A)83 ' 

S7 =({ (4+sA) (s-6A) - (20+41A) ~}es-sA(s-6A) 86 } / (20+4lA) 85 

and SB = (4+sA)6A8s -30A
2

8
6

}/(20+41A)8
s 

If we expand the determinant about the first column, we get, 

From Ss=O, we obtain the following quartic equation: 

where 

4 3 2 
a~ +b~ +c~ +~+e = 0 , 

Z 
a = (20+41A) (6+13A) 

(5.5.21) 
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b = -(6+13),) {[ (5+4),) (4-3>.) (6+13)')+(20+4lA) (2+3),) (3-4),) I 

+ (20+41).) [(3+2),,) (2 -).) +(6+13),) (1-2),) I } 

c = (5+4).) (6+13),) (12-25),) (2+3),) 

+ [(3+2).) (2-).) + (6+13),) (1-2).) I [(5+4),) (4-3),) (6+13),) + (20+41).) 

(2+3),) (3-4).) 1+(20+41).) (6+13),) (3+2),) (2-5),) _6).2 (3-4),) (2-).) (20+41).) 

d = -(5+4),) [(3+2),) (2-),)+(6+13),) (1-2).)J (2+3),) (12-25).) 

+6/[ (3-4>.) (2-).) (5+4),) (4-3),)+(3-4),) (2-5),) (20+41).) -12).2(5+4).) (2-A) I 

-(3+2A) (2-5),) [(5+4),,) (4-JA) (6+13),) + (20+4lA) (2+3),) (3-4),) I 

e = (5+4),) (2+3>.) (12-25),) (3+2).) (2-5),) 

-6), 
2 

(5+4).) (2-5),) (12-25),) • 

On solving the quartic equation algebraically by the method 

described in Chapter 1, we find that, 

for ).=0.8393, 

~1 = 0.7971763129, ~2 = 0.4630300548, ~3 = -0.9999914241, and 

~4 = -0.4854824809, 

with max{l~ll, i~21, 1~31,1~41}=1~41<1; 

and for )"=0.8394 

~1 = 0.79716185, ~2 = 0.46300037, ~3 = -1.00022034, and 

~4 = -0.48560624, 

with max{l~il, i~21, 1~31,1~41}= 1~41>1. 

Hence for stability we require, 

)" " 0.8393. (5.5.22) 

Now for rows 6(1) (m-2) , the sum of the moduli of the elements in each 

of these rows is equal to 1 if Pi~l and qi+l~l for i=4,6, .•• ,(m-4). 

These conditions give us, 

A < (i+l) 
, (i+2) (5.5.23) 



m-2 
If P 2~1 (i.e. ~~---3) and if q l~l (i.e. m- m- m-

m-l 
~~---) then for 

m 
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m-2 
A~min(m_3 

m-l 
-) 

m 

m-l 
~ ---, the sum of the moduli of the elements in row 

m 

(m-l) is 

(1+Pm_l)Pm_2+(1+Pm_l) I (1-Pm_tl+qm_2Il~_11 
(l+pm- l +qm-2) 

qm-2qm-l 
~ ((1+Pm-l+qm-2)-~-2qm-l}/(1+Pm-l+qm-2) ~ 1 - ~(;1~+P~m~_~1~~~-_-2~) 

Similarly, for the sum in row m we have, 

~ 

< 1 for 
m-l 

A~--- . 
m 

< 1 

(5.5.24) 

Therefore we deduce from (5.5.19)-(5.5.24) that to achieve overall 

stability, we require, 

< . . . (i+l) 
~ , ml.n{1,o.S49,O.S4S,O.S393,ml.n«i+2)' 

5 
="6. 

(iii) StabiZity of the (S)AGE Scheme 

m-l 
i=4,6, ... , (m-4) ,---}; 

m 

m>4. 

From (5.3.3~), the explicit expression for the (S)AGE scheme is 

given by 

where 

u = r u + b' I j=o,2,4, ... 
-j+2 SAGE-j -2 

r SAGE ~ r r 
GEL GER 

(5.5.25) 

By multiplying the two matrices in (5.5.25), the general form of the 

amplification matrix of the (S)AGE scheme is 



,-
la

l 
a

2 
a

3 
a

4 

b
l 

b
2 

b
3 

b
4 

(1) ( 2) (3) .( 4) 
cl c

2 
c

3 
c

4 

d(l) d (2) d (3) (4) 

1 2 3 . 
d

4 

0 0 
(1) (2) 

c
3 

c
4 

0 0 
d(l) 

3 
d(2) 

4 

0 0 0 0 

0 0 0 0 

f
SAGE " ... 

" ... ... ... ... ... ... ... 

o 

L 

.... 
" ... ... " ... " ... 

" " ... 
... 

" " " ... ... 
" " .... 

" .... 

.... 

" , 

.... 

.... 
... 
.... 

... .... .... .... 
... ... .... 

l 

o 

... 
" " .... ........... .......... .... .!:.... ..... 

..... .... ..... ... .... " 
.... " " ... "-.... ..... ... .... 

...... (1)" (2) , (3) "(4)'" (5)' (6) 
c c c c c c 

m-5 m-4 m-3 m-2 m-l m 
d(l) d(2) d(3) d(4) d(5) d(6) 

m-5 m-4 m-3 m-2 m-l m 
(1) (2) 

c
m

_
3 

c
m

_
2 

d(l) d(2) 
m-3 m-2 

(5.5.25a) 

m even 

m>4 

(mxm) 

.... 
o 
'" 



where 

~PI{(I+P2)~+PI)-ql} 
+ (I+P

l 
+ii) (l+P

2 
+ql) 

U(l-P
l

) {(1+P2) (2+P
l
)-ql} 

+ (l+Pl+a) (1+P
2

+ql) 

Uql (I-Q2)(l+Pl ) 

(l+Pl+u) (1+P2+Ql) 

<lqlq2(3+Pl ) 

A " (1-",) (1-2",) P
l 

b l = (l+P
l 

+&J 

P
l 

{(l+a) (1+P
2

- ql)+P
l 

(1+P
2

) a} 
+ (l+P

l 
+5) (1+P

2 
+ql) 

b
4 

= 

e l 
= 

e 2 
= 

fl = 

~Pl (l-a) 

(l+P
l 

+&) 

ql (l-q2) (2 (1+",) +Pl ") 

(1+P2+Ql) (l+Pl +&J 

qlQ2(2(1+~)+Pl ~ 

(l+Pl +@ (1+P2+ql) 

(l+Pm_l ) (1-~_2) (1-Pm- 2+qm-3) Pm-lqm-2(1-~-1) 
(1+Pm- 2+qm-3) (1+Pm- l +Qm-2) 

+ 
(1+Pm-l~-2) (l+Qm_l) 

(1+Pm-l)Qm-2(1-Pm_2+~_3) 
+ 

(l-Pm_l ) (1-~_1)~_2 

(1+Pm- 2+Qm-3) (1+Pm-l+~_2) (I+Pm- l +Qm-2) (l+Qm_l) 

Pm- 1 (I-Qm_2) (1-Pm- 2+Qm-3) Pm- l (l-~_l) (1+qm_2) 
+ 

(1+Pm- 2+Qm-3) (1+Pm- l +Qm-2) (1+Pm- l +qm-2) (l+Qm_l) 

, i=1,3, ... ,m-5,m-3; 
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2(1-P i l)P, (l+p. 1) 
- ~ 1.+ = -;-:--!:..-=--;:-,~.:=.:..:.c,-.,.. 

(l+p.+q. 1) (1+p·+1+q·l 
1. 1- 1. J. 

, i=2,4, ... ,m-4 ,m-2 

i=3,5, ... ,m-3 

= 
(l+p. l+q i 2) (l+p.+q. 1) , 

1.- - 1..1.-

(6) 
c. 

1 

2q. 3q . 2 (l-q. 1) 
= =.=.1_-:::.....;1:..-~_..,...;1""-=--_--:-_--;

(l+p. 2+q · 3) (l+p. l+q i 2) 
1.- 1.- 1.- -

2q. 4q · 3q · 2· = ~=1_-~1~-~~1~-~~ ____ ~ 
(l+Pi 3+q · 4) (l+p. 2+q · 3) - 1.- 1.- 1.-

(2) 2 (l-p i-i) PiP i+1 
d =-;-;-:---=-:,=-.;::.;.;;-:-=--:--;--

1 (l+p.+q. 1) (l+p. l+q i) 
1. 1- 1.+ 

i=4,6, ... ,m-2 ; 

, i=5,7, ... ,m-l 

, i=6,8, ... ,m 

, i=1,3, ... ,m-3 

, i=2,4, ... ,m-2 

i=3,5, ... ,m-3; 

(4) P. l q · 2(1-p. 2+q · 3) (l-p. 1) (1+q. 2) (l+p.-q. 1) 
1- 1.- 1.- 1- 1.- 1.- 1. 1.-

d . = -,-::.-=--=--""--7'-;-;;--=--"----:- + -;-;-~:....::-:-::--7-;-;:-:-,......,.-::=-___7:.....=.-
1 (l+p. 2+q · 3) (l+p. l+q · 2) (l+p. l+q · 2) (l+p.+q. 1) 

1- 1.- 1.- 1- 1.- 1- 1. 1.-

i:::::4,6, ... ,m-2 i 

I i=5,7, ... ,m-l ; and 

(6) 2q. 3(1+q. 4)q· 2 
d 

1- 1- 1-
= -( ) (1 ' i=6,8, ... ,m . 

1 l+p. 3+q · 4 +P. 2+q · 3) 1- 1.- 1.- 1.-



(a) For the ease 0=2 (spherical symmetry) 

When a~2. the characteristic polynomial 101~lrSAGE-tLII~o is given by. 

(1-31-) (1-61-) 61-{2-1-+(l-3A) (2+SI-)} 181-
2

(2-3A) 541-
3 

(1+31-) -/.L (1+31-) (2+51-) (1+3>-) (2+51-) ""'(-:-1+-"3::-:;1-""7)-:-(""2+--:5'"'1--:-) 

o (2-3),) 4),(2-3>.) 12).2 
(2+5),) - tL (2+5),) (2+5),) 

o (2) (3) (4) 
c

2 
c

3 
-/.L c

4 
(5) 

Cs 
(6 ) 

c
6 

o d (2) d(3) d(4) " 
2 3 4 - .. 

deS) 
5 

d(6) 
6 

o o (1) (2) 
c

3 
c4 

(3) 
Cs -tL 

(4) 
c

6 
( 5) 

c
7 

(6) 
c

8 

o o 
d(l) d(2) 

3 4 
d (3) 

5 
d(4)_/.L 

6 
d (5) 

7 
d(6) 

8 

101 

, , 0 , , , , ~ 0 (5.5.26) o , 
(2)' 

, 
c (1) c(3)_/.L (4) (5) (6) 

c c c c 
m-S m-4 m-3 m-2 m-1 m 

d (1) 
m-S 

d (2) 
m-4 

d (3) 
m-3 

d(4)_/.L deS) 
m-2 m-1 

d (6) 
m 

c 
(1) 
m-3 

c 
(2) 
m-2 

e -/.L 
1 

e
2 

d (1) 
m-3 

d (2) 
m-2 f1 f -/.L 

2 
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By expanding the determinant about the first column, we obtain 

(1-31.) (1-61.) I I I I I {- (1+3X) -Ill Dl =0 where I Dl is the minor derived from D by 

deleting the first row and column. Hence, an eigenvalue of r
SAGE 

is 

11 = 
(1-31.) (1-61.) 

(1+31.) 

and since we require i III ~l for stability, a real bound on the mesh 

ratio is 
2 

A ~ 3 (S.5.27) 

Now, for these values of A, the sum S of the moduli of the elements 

in each of the rows 2 to 4 is S~l. For rows 5(2) (m-3), the sum of the 

moduli of the elements in each of the rows is, 

1 (1)11 (2)11 (3)11 (4)11 (5)11 (6)1 Si+2 = c i + c i +l + c i +2 + c i +3 + c i +4 + c i +S ; 

i=3,S, ••• ,(m-5) • (S.5.28) 

Similarly, the sum of the moduli of the elements in each of the 

rows 6 (2) (m-2) is 

i=3,5, ••• , (m-5) • 

It can be shown that for 

i+1 
A ~ - , i=3,5, ••• , (m-5) 

i+2 

The absolute sums in rows (m-l) and m are given respectively by 

and 

S = 
m-l 

S = 
m 

Again, it can be shown that for 

m-2 
A <... m-I 

(5.5.29) 

(5.5.30) 

(5.5.31) 

(5.5.32) 

(5.5.33) 



Sm_l<l and Sm<l. For overall stability of the (S)AGE scheme, we 

deduce from (5.5.27), (5.5.30) and (5.5.33) the condition 

411 

{2 . i+l m-2} 
A ~ min. 3,ml.n.(i+2 ' i=3,5, ••• ,(m-5)), m-l ,m even and m>4; 

2 
Le., A ~3. 

(b) For the case 0.=1 (cyZind:r>icaZ symmetry) 

The characteristic polynomial of r
SAGE 

when 0.=1 is given by, 



a -J,! 
1 

a
2 

b
l 

b -J,! 
2 

( 1) 
cl 

(2) 
c

2 
d (1) 

1 
d (2) 

2 

0 0 

0 0 

a
3 

b
3 

(3) 
c -J,! 

3 
d (3) 

3 
(1) 

c
3 

del) 
3 

o 

(3) 
c -J,! 

5 
d (3) 
5, ... ... , ... ... 

" 
, 

" ... , , ..... .... , ..... ..... 

.... .... 

.... 

.... .... .... ... 
..... ... 

"- .... ..... ..... .... ... 
(2) 

c 
m-4 

d (2) 
m-4 

..... .... 
(3) ... 

C
m

_
3 

-J,! 

d(3) 
m-3 
(1) 

c 
m-3 

d (1) 
m-3 

o 

, 
.... .... 

(4) ... (5) 
c c 

m-2 m-l 
d (4l..J,! d (5) 

m-2 m-l 
(2) c 
m-2 

d (2) 
tp-2 

e -1-1 
1 

c 

i = 0 (5.5.34) 

(6) I 
m 

d(6) 
m 

f -J,! 
2 
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where, 

a = 
1 

{ (2+),) (1-2).) (1-4).) (4+9).) +). 
2 

[ (4+3A) (4+).) -lZAl } /{ (2+5).) (4+9)')} , 

a = 
2 

{4)' (2+),) (1-21.) (4+9).)+). (2-1.) [ (4+31.) (4+)') -121.1 } /{ (2+51.) (4+91.) } , 

a
3 

• {3). 
2 

(4-5),) (6+A)}j{ (2+51.) (4+9).)}, 

a
4 

= {lS),.3(6+)')}/{ (2+51.) (4+9A)}; 

2 . 
b

l 
= A{ (1-21.) (1-41.) (4+9).) +[ (1+21.) (4-31.) +(4+31.». 1 }/{ (2+51.) (4+9).)}, 

b = {4A
2

(1-ZA) (4+91.)+(2-1.) [(1+21.) (4-3A)+(4+3A)A
2

J}/{(2+SA) (4+9).)}, 
2 

b = 3 
{3A(4-S).) [2 (1+2A)+A

2
J)/{ (2+51.) (4+9A)}; 

b = 
4 

{lSA
2

[2(1+ZA)+).2 1 }/{ (2+51.) (4+9).)}; 

(1) 
{6;2(6+5A)}/{(4+9A) (12+25A)}, cl = 

(2) 
= {6)' (2-1.) (6+51.) }/{ (4+91.) (12+2SA)}, c

2 

(3) {(6+5A) (4-51.) (4+31.) (24+491.)+251.
2 

(24-7).) (4+9).)) 
c

3 = 2 (4+9).) (12+25).) (24+49).) 

(4 ) S{ (6+51.) (4+31.) (24+491.) +(6-51.) (4+91.) (24-7).)} 
c

4 = 2 (4+91.) (24+491.) (12+251.) 

( 5) 
{lOSA 

2 
(8-91.) }/{ (12+251.) (24+49A)} Cs = 

(6) 
94SA

3
/{(12+25)') (24+49)')}, c

6 = 

d (1) = 30A
3
/{ (4+91.) (12+2SA)}, 

1 

d (2) = {30A
2 

(2-1.) } /{ (4+91.) (12+251.) } , 
2 

d (3) = SA (4-51.) (4+31.)/2(4+91.) (12+251.) 
. 3 

d(4) = {2SA 2 ~4+3A) (24+491.) +(6-51.) (4+51.) (4+91.) (24-7).)} 
4 2 (4+91.) (12+251.) (24+491.) 

d~S) = {2LA(4+5A) (8-91.) }/{ (12+251.) (24+49A)}, and 

d(6) = 1891.
2

(4+51.)/(12+251.) (24+491.) • 
6 



and values for all other remaining c's, d's, e's and f's take the same form as before but with ~=l. 

By making the appropriate row operations on the determinant IDI we obtain: 

lal-~ a
2 a) a

4 

0 Sl S2 6) 

0 8 4 Ss S6 
(5) (6 ) 

Cs c
6 

0 S 7 BS S9 
d (5) 

5 
d(6) 

6 

0 0 
(1) (2) (3) (4) (5) (6 ) 

c
3 

c
4 Cs ~ c6 c

7 Cs 

0 0 
del) d (2) d (3) d(4) d 15) d(6) 

-~ 3 4 5 6 ... 7 S 
0 ... .... .... 

.... ..... .... ... .... 
IDj= .... .... ... ...... .... .... = o , ...... .... ... ... ... ... ... ( 1) ... (2) ... (3) (4) (5) (6) C m-S c c -I! c C C 

0 m-4 m-3 m-2 m-l m 
d (1) d (2) d(3) d(4)_~ d(5) d(6) 

m-5 m-4 m-3 m-2 m-l m 
(1) (2) 

e -I! c 
m-3 

c e
2 m-2 1 

del) 
m-3 

d (2) 
m-2 fl f -I! 

2 

(5.5.35) 

... .... ... 
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where, (1) 

81 
b -U-

a
2
b

l 
84 

(2) cl a2 = = c
2 2 (al-U) (al-u) 

a
3
b

l 
(1) 

82 b - 85 
(3) cl a 3 = = c
3 -U- (a

l
- u ) 3 (a

l 
-U) 

a
4

b
l 

c (1) 

83 b - 86 
(4 ) 1 a4 = = c
4 4 (al - u ) (a

l 
-U) 

d(l) d (1) 

8 7 
d (2)_ la2 

8S 
d(3) 1 a 3 = = 2 (al - u ) 3 (al-u) 

d (1) 

and 89 
d(4) -U- 1 a4 = 4· (al - u ) 

By working on the first column of IDI and the other minors, we obtain 

the following restrictions on A : 

working on I D I , A~0.Ss5S7 (5.5.36) 

working on I D11 ' A~l ; (5.5.37) 

working on I D21 ' A~0.Sss87 (5.5.3S) 

and working on I D31, A~0.S5587 (5.5.39) 

NOw, if we let 5i +2 and 5 i +3 (i=3,5, ••• ,m-5) be the sum of the 

moduli of the elements in each of the rows 5(2) (m-3) and 6(2) (m-2) 

respectively, then following the same line of argument as in the 

spherically symmetric case, we note that, 

and 

for 

5
H2 

:;: 1 

5 i +3 :;: 1 

(2i+2) 
A:;: (2i+3) , i=3,5, ••. ,m-s (5.5.40) 

We also find that the absolute sums in rows (m-l) and m satisfy, 

and 

when 

5 < 1 
m 

(5.5.41) 
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We deduce from (5.5.36)-(5.5.39) and (5.5.40)-(5.5.41) that the 

(S)AGE scheme for the cylindrically symmetric case is conditionally 

stable for 

A~m'~{0.85587, .. (2i+2 . 3 5 (5» (2m-4)} - ~. l.O,mm 2i+3' 1.= , , ... , m- , (2m-3) 

= 0.85587. 

(iv) StabiZity of the (D)AGE Scheme 

From (5.3.35), the explicit form of the (D)AGE scheme is expressed 

by 

u 4=r u.+"b2
11 ,j=O,4,8, ... 

-j+ DAG~J-

where r DAGE = rGERrGELrSAGE ' (5.5.42) 

which is the amplification matrix of the (D) AGE scheme and whose 

characteristic polynomial is given by, 
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'" ..... ... "" (i) + b d (i) b. = b
1

a
i 

+ b
2

b
i 

+ b
3

c
i 

for i=1,2 , 
1 4 i 

-.J '" '" + b c(j) + b d(j) .... (j-2) 
b. = ~ a j 

+ b
2

b
j + bSC j 

for j=3,4 
) 3 j 4 j 

'" " (k) + b
4
c\k) "" (k-:J) 

bk 
= b

3
c

k + bSCk 
for k=S ,6, 

"" .... (R.-2) 
bR. = bScR. for R.=7 ,8 ; 

"" ... .... .... (i) " d (i) c
i 

= c
1

a
i 

+ c
2

b
i 
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3

c
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a
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4
d
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) 3 j 
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c
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3
c

k + c 4<lk + cSck 
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.... " (R.-2) for R.=7,8; cR. = cScR. 

'" ~(l)b d(2) (i) d(3)d(i) 
d. = + 2 c i 

+ for i=1,2, 
1 1 i 3 i 

'V 
d(l)b d(2) (j) + d(3)d(j) ~(4) (j-2) ~(S)d(j-2) 

d. = + 2 c j + 4 c j + 5 j for 
) 1 j 3 j 

:; = d(2) (k) + "'d
3
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-K 2 ck K + 4 ck K 
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+ d
6 

c
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n 6 n 
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j 
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j =3,4, 

for k=S,6, 

for 2=7,8, 
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-(1) 
c

i 
= d(1) d (1) 

i+2 i 
for i=1 (2) (m-ll) , 

~(2) d(1)d(2) 
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~ i+1 i 
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i 

= + 
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i=S (2) (m-7) , 
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r k 

+ d c + + + 
m-5 m+k-S m-4 m+k-S m-3-m+k-S m-2 m+k-S m-l m+k-S 

for k=5,6, 

~ d:(2)c(5) dY)d(5) "(4) d(5)f 
r7 = + + d

m
_

2
e

l 
+ 

m-4 m-l m-3 m-l m-l 1 

'V d:(2)c(6) d(3) d (6) ~(4) d(5) f 
rS = + + d

m
_

2
e

2 
+ 

m-4 m m-3 m m-l 2 

- ~(l)d(i) 
5. = for i=1,2, . 

J. em_5 m+i-S 

~ ~(l)d(j) ,,(2) (j-2) A(3) d(j-2) 
5. = + e c + e m_3 m+j-S for j=3,4, 

) m-5 m+j-S m-4 m+j-S 

- ~(l)d(k) "(2) (k-2) A(3) (k-2) "(4) (k-4) A(5) (k-4) 
5

k 
= + e c + e d + e c + e d 

m-5 m+k-S m-4 m+k-S m-3 m+k-S m-2 m+k-S m-l m+k-S 

for k=5,6, 

~ "(2) (5) ~(3)d(5) ",(4) " (5) 
57 = e c + + e

m
_

2
e

l 
+ em_lfl 

, 
m-4 m-l m-3 m-l 

"" ,,(2) (6) ~(3) d (6) "(4 ) ,,( 5) 
58 = e c + + e

m
_

2
e

2 
+ e

m
_

l
f

2 m-4 m m-3 m 

~ ~ d (i) t. for i=1,2, 
J. 1 m+i-6 

~ f d (j) '" (j-2) " (j-2) 
t. = + f 2C

m
+

j
_

6 
+ f3 d . 6 for 

) 1 m+j-6 m+)-
j=3,4, 

~ f d(5) A A " f d(6) 
t5 = + f

2
e

l 
+ f/ l ; t6 = 

1 m-l 1 m 

with, 

" " "... (i-a) (1+P
l
-2a) / (l+P

l 
+a) ; "-a

i 
= 

A 
a 2 

" a 3 
A 

" '" b
i 

2(1+P
2

)P
i

(1-a)/(1+P
i

+a) (1+P
2

+Qi) 
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~ 

(1-P2)ql (1+P3-q2) "- (1+P2)ql (l-Pl+a) 
b

3 
= 

(l+Pl+a) (1+P2+ql) 
+ 

(1+P2+ql) (1+P3+q2) 

"-
b4 

= 2qlq2(1-q3)/(1+P2+ql) (1+Pl +q2) 

"-
bS 

= 2qlq2q3/(1+P2+ql) (1+P3+Q2) 

'" " " cl = 2P1P2 (1-a)/(1+Pl +a) (1+P2+Ql) 

" "-
A 

" 
P2 [ (2+P

l
- Q1) aP

l 
+ (l-P

l
) ( (l+a) (l-Ql) +P

l 
a) 1 (1+Q1)p2 (1+P3 -q2) 

c 2 
= 

(1+P1+a) (1+P2+q1) 
+ 

(1+P2+Q1) (1+P3+Q2) 

" 
" 

P2Q1 (l+Cl-Pl ) (1+q1) (1-P2) (1+P3 -Q2) 
c

3 
= 

(1+P
1 

+ci) (1+P2+Q1) 
+ 

(1+P2+Q1) (1+P3+Q2) 

"-
2q2 (1-Q3) (1+Q1) 

c4 
= 

(1+P2+Ql) (1+P3+Q2) 

" Cs = 2q2Q3(1+Ql)/(1+P2+Ql) (1+P3+Q2) 

i=l,3, ... ,m-S .i 

i=2,4, ... ,m-4 

"(3 ) (l-Pi+Qi_l) (l+Pi +l ) (l-qi) + Pi +l (1+Pi +2-Qi+1)Qi 
d, = 

(1+p,+Q, 1) (l+p, l+Q,) 1. (1+Pi +1 +Qi) (1+Pi +2+Qi+l) 
l. 1.- l.+ 1. 

i=3, 5, •. . ,m-3; 

"(4) (1-p, l+Q, 2) (l+P,)Q, 1 (I-Pi) (I+P i +1-qi)Qi-l 1.-].- 1. 1.-
d, 

(l+p, 1+Q, 2) (l+p,+q, 1) 
+ 

(l+Pi +Qi-l) (1+Pi +1+Qi) 1. 
].- 1.- 1. 1.-

i=4,6, ... ,m-2; 

"(5) 2Q, 2Q, 1 (I-Q,) 
1.- 1.- l. 

i=5, 7, •• " (m-I) d, = 
1. (l+p, l+Q, 2) (l+p,+Q, 1) 

1.- 1.- 1. 1.-
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~ (6) 2qi-3qi-2qi-1 
i=6,8, ••• , (m-2) d

i 
= 

(l+p. 2+q · 3) (l+p. l+q· 2) 1.-,1- 1- 1.-

,,( 1) 2Pi+1Pi+2Pi+3 
i=1,3, ... ,m-S e. = 

(1+Pi +2+q i+l) (1+Pi +3+qi+2) 1. 

-.(2) 2 (1-Pi )P i +lP i +2 i=2,4, ... ,m-4 e. = 
1. (l+Pi+l+qi) (1+Pi+2+q i+l) 

= 

i=3,5, ••• , (m-3) 1 

Pi (1-Pi - 1+qi-2)qi-l (I-Pi) (l+Pi+l-q
i ) (l+qi_l) 

=-:7-----'O"'::-=-:--:"'""'-=-=----,-+-;-:--:-'~-_7_*"~=---_:_::_+-=-
(l+Pi-l+q i_2) (1+Pi +qi_1) (l+Pi +qi_1) (1+Pi +1 +qi) 

i=4,6, ••. , (m-2) 

= 
2(1+q. 2)q. l(l-q.) 

1- 1.- 1. 

(l+p. l+q· 2) (l+p.+q. 1) 
1.- 1.- 1. 1.-

i=5, 7, .•. , (m-I) 

i=6 ,8, ••• , (m-2) 

.- 2Pm_2Pm_l 
f1 = 

(1+Pm_1 +qm_2) (l+qm_l) 

"- 2 (1-Pm_2) Pm-l 
f2 = and 

(1+Pm- l +Qm-2) (l+Qm_l) 

d 11 th ' b' (j) , d (. j) 's,' d f' h th an a e ais, is, c i S, 1. eis an is ave e same 

meaning as before. 

(a) Fop the case ~=2 (sphepicaZ symmetry) 

We note that in this case b == c == d == ~ = c(l) == del) = 0 
1 1 1 1 1 1 

I I ~ I· 
and therefore, by expanding D about the first column we get (al-~) iDll=O 

where [011 is the minor which resulted from the deletion of the first row 



and column of 101. This leads to 

~ = {(1-3;l.) (1-6A)}2 
(1+3 A) 

which for stability gives the following real bound on A, 
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2 
A l; "3 (5.5.44) 

By making the appropriate row operations on the minors 1011 and 1021 

and then solving the resulting algebraic equations, we arrive at the 

following stability restrictions, 

A .:: 4.1652 (5.5.45) 

and A ~ 1.41927 (5.5.46) 

It can be established through very extensive manipulation (the 

mathematics involved is too long to be reproduced here) that the sum 

of the moduli of the entries in each of the remaining rows except the 

2 
last is less than or equal to 1 when A~"3. For the last row, the 

absolute sum is strictly less than 1. Hence for overall stability, 

we deduce from (5.5.44)-(5.5.46) that the (O)AGE scheme is conditionally 

2 
stable for A~"3 when a=2. 

(b) For the case a=l (cy~indriaaZ symmetry) 

To establish stability, we first perform the following set of row 

operations R. on the determinant 101: 
~ 

(i) 
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where , 

, for i=2,3, .•• ,5 

(iii) 

i.e. 

(v) 

and 101 

where Si+9 

(vii) 

i.e. 

and 



(viii) 

(ix) 

for 

R + 
1 

i.e., 

and 

~ (1) 
cl 

IDI+-:;;--IDI, 
(a1-~) 

(x) R6 + R6 -R1 ' 

(xi) 

where B
i

+19 

and 

R+ 
1 

i.e. 

and IDI + 

- (i) = c 
i 

0, ... ,0), 

for i=2 (1) 5 , 
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~(1) ~ 
cl a6 C' ) ,0, ••. ,0) , 

a -~ 
1 

i.e. 
-(7) -(S) -(9) -(10) -(11) 

R7 = (O,B26,B27,B2S,B29,B30,d -~,dS ,d9 ,d10 ,d11 ' 

"'(12) 
d

12 
,0, •.. ,0), 

where Si+24 for i=2 (1) (6) • 

Hence we have, 



or 101 

On expanding the determinant 101=0 about the first column, we 

find that (~l-~) 1021=0 where 1021 is the minor derived from 101 by 

deleting the first row and column. Thus, ~=a'l and I~I attains its 
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maximum value of 0.181722393 when. A~l.oOO6 which implies that for the 

stability of the first row of the determinantal equation, we require, 

A ~ 1.0006 • (5.5.47) 

By similarly manipulating the other minors, we are led to the following 

restrictions on the mesh ratio: 

A ~ 1.54745 (5.5.48) 

and A ~ 1.40682 , (5.5.49) 

and repeating the same procedure for the remaining rows and minors 

results in algebraic equations with (al-~) as their multiple factors. 

Again, for the stability of these rows of equations, we must have 

A~l.OOO6. To achieve overall stability, we therefore conclude from 

(5.5.47)-(5.5.49) that A~l.OOO6. 
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5.6 NUMERICAL EXAMPLES lINO COMPARATIVE RESULTS 

Two numerical experiments were'carried out to demonstrate the 

implementation of the GE schemes on parabolic problems with special 

geometries. 

Experiment 1 

This experiment dealt with the solution of the following parabolic 

problem with cylindrical symmetry (Mitchell and Pearce (1963», 

au 
at 

1 aU a
2

u =--+--r ar 2 ar 
, (O~r~ 1) I 

given the auxiliary conditions, 

and 

U(r,O) = JO(Br) , o,r~l, 

au(O t) = ° , t>o , ar ' 
U(l,t) = 0, t>o , 

(5.6.1) 

(5.6.1a) 

Where Jo(Br) is the BesseZ function of the first kind of order ° and 

S is the first root of J (B)=O. The 
° 2 -B t 

= Jo(Br)e 

exact solution is 

U(r,t) (5.6.2) 

and the values of the Bessel function at the grid points are generated 

using the NAG library subroutine (the first four roots of Jo(B)=O are 

B
l

=2.405, B
2

=5.520, B
3
=8.654, B

4
=11.79). In Tables 5.6.1-5.6.3 are 

displayed a comparison of the numerical solutions of the GE schemes 

with the exact solutions at the appropriate grid points in terms of 

their absolute errors for various values of the mesh ratio A. The 

absolute errors of the solutions of the explicit (EXP) scheme of 

(3.13.25) and (3.13.33) and the Crank-Nicolson (CN) method of (3.14.10) 

and (3.14.12) are also included. 
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Experiment 2 

The following parabolic problem with spherical symmetry (Saulev 

(1964» is considered, 

a2u 2 au 
= -- + - - + k (r t) 

ar2 r ar ' 
(5.6.3) 

(k(r,t) 
-t 2 2 2 2 2 2 

= e {[6+(1-r hr t -(l-r )]cos(nt)-[(l-r )r+4rt-2t(1-r )/r] 

1[sin(nt) }) 

subject to the initial-boundary conditions, 

U(r,O) 
2 

= l-r 

au (0 t) = ° , 
ar ' 

(5.6.3a) 

and U(l,t) = 0, 

with the exact solution, 

2 -t 
U(r,t) = (l-r)e cos (1[rt) (5.6.4) 

Since our parabolic equation incorporates a source term k(r,t) , 

some modifications on the basic equations governing the GE schemes are 

therefore required. For general grouped points not on the axis, instead 

of equations (S.3.6) and (S.3.7) we have, 

u'_l,]'+l = {(l+p.)p. lU' 2 .+(l+p.) (l-p. l)u. 1 .+q. l(l-q.)u .. +q.q. 1 
• ~ L- 1-,J ~ 1- 1-,] 1- 1 1J 1 1-

U'+l .+,;t[(l+P.)ki 1 .+,+q. lk .. ,]}/(l+p.+q. 1) 
1,] 1. -,J"l 1- 1.,J+"1 1. 1.-

(S.6.5) 

and 

u',]'+l = {P.P. lU' 2 .+p. (l-p. l)u, 1 .+(l+q. 1) (l-q. )u .. +(l+q. 1) 
..... 1. 1.- 1.- I J .1. 1.- .1.-, ] 1.- 1. .1] 1.-

For the GER method, the equations (5.3.14) and (5.3.15) are now 

. replaced by, 

and 

u . 
0, ]+l 

(S.6.7) 

u = 
m-l,j+l (p lU 2 .+(l-p l)u 1 .+q l u . l+,;tk 1 . 1)/(1+q 1) m- m-,] m- m- ,J ill- m,J+ m- ,J+'! m-

(5.6.8) 
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respectively. Similarly, the equations defining the left boundary 

as well as the point immediately next to it for the GEL scheme 

become (replacing equations (5.3.27) and (5.3.28», 

"-
/ (l+Pl +,d (5.6.9) 

and 

(5.6.10) 

The numerical solutions of the above spherical problem using the 

GE schemes are obtained for various values of A and to indicate their 

accuracy, Tables (5.6.4)-(5.6.6) provide a comparison with the exact 

solution in terms of their absolute errors. 

It is observed that, presumably due to the term ~ aau in (5.6.1) 
r r 

and (5.6.3) (with a=l and 2 respectively), the solutions of the GE 

schemes are slightly less accurate in the vicinity of the axis (r=O) 

than in the remainder of the field. AS we have already seen, special 

equations have to be formulated to cope with this difficulty at the 

point of singularity. In fact, an examination of the truncation errors 

f th lit ( . o e GE schemes at r=O indicates the presence of the term -- equat10ns 
lIr 

(5.4.1) and (5.4.5» and it is therefore essential that to attain 

consistency, lit approaches 0 faster than does lIr. It is also found for 

our cylindrical problem that the GE class of methods are more accurate 

than the other schemes under investigation. From Table 5.6.2, the 

(S)AGE and (D) AGE methods in that order are more superior whilst in 

Table 5.6.3, (D) AGE has the edge on other difference formulae. This 

is to be expected since the truncation error expressions of the 
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constituent GER and GEL formulae possess terms of different signs and 

hence the correct alternate applications of these formulae to 

constitute the (S)AGE and (D) AGE schemes can lead to cancellations of 

error terms. The same observation also applies for our spherical 

problem although comparative results from other schemes are not 

available. However, it suffices to say that among the GE class of 

methods, the (S)AGE method gives a more satisfactory result. 

We conclude that despite the limited stability of the GE schemes, 

their stability ratios are not so restricted as to be impractical for 

implementation for special geometries when compared with other schemes. 

Being explicit, they are simple and incur low computational load and 

above all exhibit better accuracy. The use of the alternating schemes 

in particular, i.e. (S)AGE and (D) AGE is highly recommended. 



t=0.175, A=0.175, 6t=0.OO175, 6r=0.1 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

GER 2.15xlO 
-3 

2.16xIO -3 
2.0xlO 

-3 
2.0lxlO -3 

1.66xlO 
-3 

l.65xlO 
-3 

l.17xlO 
-3 

l.15xlO 
-3 

6.04 xlO 
-4 

GEL 1.9xlO 
-3 

1.88xlO 
-3 

1.89xlO 
-3 

l.63xlO 
-3 

l.62xlO 
-3 

l.19xlO 
-3 

l.17xlO 
-3 

6.34xlO 
-4 

6.07xlO 
-4 

l.43 xlO-3 -3 -3 -3 -3 9.96XlO-4 -4 -4 -4 (S) AGE 1.42xlO l.4XIO l.27xlO l.2lxlO 9.07xlO 6.34xlO 5.24xlO 

(D) AGE 1.4 7xlO-3 
1.49xlO 

-3 
1.42xlO 

-3 1.36xlO -3 1.2xlO 
-3 

l.09xIO 
-3 

8.66xlO 
-4 . -4 

7.23xlO 4.6 xlO 
-4 

EXP 3.l9 xlO 
-4 

2.73 xlO 
-4 

2.54xlO 
-4 

2.37xlO 
-4 

2.19xlO 
-4 

1.99xlO 
-4 

1.75xlO 
-4 

l.47xlO -4 
l.l5xlO 

-4 

C-N 2.06xlO -3 
2.04xlO 

-3 
1.96xlO -3 

l.83xlO -3 
l.64xlO 

-3 
1.42xlO -3 

l.l7xlO -3 
8.95xlO -4 

6.07xlO -4 

EXACT 
0.3634169 0.3581809 0.3426988 0.3176383 SOLUTION 0.2840764 0.2434480 0.1974773 0.1480959 0.0973516 

TABLE 5.6.1: Absolute errors of the numerical solutions to the cylindrical problem 

0.9 

5.67xlO 
-4 

6.32xlO 
-5 

2.32xlO 
-4 

2.99xlO 
-4 

7.64xlO -5 

3.l6xlO -4 

0.0473117 

Average 01 
all 
absolute 
errors 

l.5lxlO -3 

l.26xlO 
-3 

l.OXIO -3 

1.04xlO -3 

2.01xlO -4 

l.39xlO -3 

-

.... 
W 
N 



t:0.6, \:0.3, 6t:0.003, ~r:O.l 

~ 
\Average of 
all 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 absolute 
errors 

GER 7.07xlO-4 
7.02 xI0 

-4 6.62 xlO-4 6.35 xI0-4 
5.47xI0 

-4 
5.03 xI0 

-4 3 .82 xI0-
4 

3.26 xlO 
-4 

1.9xI0 
-4 1. 32 xlO-4 4. 79xI0-4 

-4 -4 -4 -4 -4 -4 -4 -4 1.53 xlO-4 -5 3.47xI0-4 
GEL 5.29xlO 5.22xl0 5.12 xlO 4.56xlO 4.31xI0 3.38xl0 3.04 xlO 1.91xl0 3.84xlO 

(S)AGE 1.07XI0 
-4 

1.04xl0 
-4 

1.09XlO 
-4 

9.18xlO 
-5 

9.93 xI0 
-5 

7.15xlO 
-5 

8.o6 xlO 
-5 

4.57xl0 
-5 

5.42xlO 
-5 

1. 72 xlO 
-5 7.8 xlO-5 

(D) AGE 2.2"10 
-4 

2.27xl0 
-4 

2.12xI0 
-4 

2.08xlO 
-4 

1. 76xlO 
-4 

1.68xlO 
-4 

1.23 xlO 
-4 

1.12xlO 
-4 6 .o6xlO-5 

4.88xlO 
-5 

1. 56xlO 
-4 

-4 -4 -4 -4 -4 -4 . -4 -4 -5 -5 -4 
EXP 2.89xlO 2.91xl0 2.8xl0 2.6xl0 2.32xlO 1.98xlO 1.6xlO 1.19xl0 7.65xlO 3.54xl0 1.94xl0 

C-N 6.2xl0 
-4 

6.12xl0 
-4 5.86xl0 

-4 
5.44xlO 

-4 . -4 
4.88xlO 4.19xl0 

-4 
3.42xl0 

-4 
2.58xlO 

-4 1.71xlO -4 
8.49xlO 

-5 4.12xlO-4 

EXACT 0.0311041 0.030656 0.0293309 0.0271860 0.0243135 0.0208362 0.0169017 0.0126752 0.0083321 0.0040493 -
SOLUTION 

. 

TABLE 5.b.2: Absolute errors of the numerical solutions to the cylindrical problem 



t=0.6, A=0.6, ~t=o.o06, ~r=O.l 

r 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Method 

{S)AGE 1.39xlO -3 1. 39xlO -3 1.3 xIO 
-3 1.25xIO -3 1.05xIO 

-3 9 .58 xIO-4 6 .93 xIO-4 
5.82 xIO 

-4 
2 .93 xIO-4 

-4 -4 -4 2.18 xlO-4 -4 -4 -4 -5 -4 (D) AGE 2.88xlO 2.72xlO 2.86xIO 2.5xlO 1.43xlO 1.87xlO 6.33xlO 1.2xlO 

C-N 9.75xlO -4 
9.63xIO -4 9.23xlO 

-4 
8.57xlO 

-4 
7.69xlO -4 . -4 

6.62xlO 5.4xIO 
-4 

4.08xlO 
-4 . -4 

2.71xlO 

EXACT 
0.0311041 0.030656 0.0293309 0.027186 SOLUTION 0.0243135 0.0208362 0.0169017 0.0126752 0.0083321 

TABLE 5.6.3: Absolute errors of the numerical solutions to the cylindrical problem 

0.9 

1.84xIO 
-4 

2.35xlO 
-5 

1.35xlO 
-4 

0.0040493 

Average of 
all 
absolute 
errors 

9 .09xlO-4 

l.85xlO 

6.50xlO 

-

... 
w ... 

-4 

-4 



- . , - . , - , - . t-O 175 A-O 175 6t-0 00175 6r-0 1 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

GER 7.86xlO 
-4 

7.88 xlO 
-4 

7.91x10 
-4 7 .64 x10-4 

7.5x10 
-4 

7.23xlO 
-4 

6.41x10 
-4 6 .45xlO-4 

-4 -4 -4 5 .89 X 10-4 -4 4.84x10-4 -4 2.75xlO-4 
GEL 6.23x10 6.27 xlO 6.01xlO 5.43x10 4.45x10 

(S)AGE 5.53x10 
-4 

5.57x10 
-4 

5.37xlO 
-4 

5.15xlO 
-4 

4.78x10 
-4 4.3x10 -4 

3.9lx10 
-4 

3.0x10 -4 

(D) AGE 5.73x10 
-4 

5.69xlO 
-4 

5.56x10 
-4 

5.29xlO -4 4.94xlO -4 4.52xlO -4 
3.88xlO 

-4 3 .42xlO-4 

EXACT 
SOLUTION 

0.839457 0.8298068 0.8010120 0.753539l 0.6881618 0.6059549 0.5082867 0.3968087 

TABLE 5.6.4: Absolute errors of the numerical solutions to the spherical problem 

0.8 0.9 

4.15x10-4 
4.9 xlO 

-4 

2.82xlO 
-4 

9.27x10 
-5 

2.77xlO 
-4 

1.16 x10 
-4 

2.31x10 
-4 1.85xlO-~ 

0.2734428 0.1403673 

Average of 
all 
absolute 
errors 

6.79 x10 
-4 

4 .56 xlO-4 

4.16xlO -4 

4.32xlO -4 

-

.... 
w 
VI 



t O. ), O. t 0.00 r O. IAverage of 

~ 
all 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
absolute 
errors 

6 A 3 t. 3 t. 1 

-2 -2 -3 8.97xlO-3 -3 6 .66 xlO-3 5.24 xlO-3 -3 -3 1.39xIO -3 6.71 xlO-3 
GER 1.04xIO 1.03xlO 9.88xIO 7.99xlO 3.91xlO 2.28 xlO 

-3 -3 -3 8.48 xlO-3 -3 6 .llXlO-3 -3 3 .19xlO-3 -3 -4 -3 
GEL 9.85xlO 9.77xIO 9.19xlO 7.32xlO 4.74xlO 2.06xlO 5.12xlO 6.12xlO 

-3 . -3 -3 -3 . -3 
5.79 xIO-3 -3 -3 -3 -4 -3 

(S)AGE 9.71 xlO 9.64 xlO 9.04xlO 8.23xlO 7.06xlO 4.44 xlO 3.0xlO 1.92xlO 7 .1lxlO . 5.96xlO 

-3 -3 -3 -3 -3 -3 4.51 xIO-3 -3 -3 -4 -3 
(D) AGE 9.87xlO 9.7xlO 9.2xlO 8.3xlO 7.23xlO 5.92xlO 3.2xlO 1.8xlO 9.28xlO 6.07xlO 

EXACT 0.5488116 0.5336998 0.4898613 0.4216731 0.3360558 0.2419376 0.1495505 0.0696068 0.0124057 -0.013069 -
SOLUTION 

TABLE 5.6.5: Absolute errors of the numerical solutions to· the spherical problem 



Average 0: 
r 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
all 

0 absolute 
Method errors 

(S)AGE 
-3 8.45 xlO-3 -3 6.74 xlO-3 -3 -3 2.79 x10-3 1.37xlO -3 1. 17 xlO -3 1.35xlO-5 4.53 XlO-3 

7.91x10 7.55 xlO 5.28xlO 4.01x10 

-3 -3 -3 -3 -3 -3 3 .82x10-3 -3 -4 -3 -3 
(D) AGE 9.01xl0 9.16xlO 8.8x10 7.64x10 6.69x10 5.24x10 2.73xlO 9.33xlO 1.12xlO 5.52x10 

f------

EXACT 
SOLUTION 

0.5488116 0.5336998 0.4898613 0.4216731 0.3360558 0.2419376 0.1495505 0.0696068 0.0124057 -0.013068 -

TABLE 5.6.6: Absolute errors of the numerical solutions to the spherical problem 
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6.1 INTRODUCTION 

As we have already seen in Chapter 3, the ADI method was developed 

to deal with two-:dimensional parabolic (and elliptic) problems and the 

solutions were obtained implicitly in the horizontal and vertical 

directions. The method could then be extended for applications to 

higher-dimensional problems. Thus we ·find that the method has no 

analogue for the one-dimensional case. 

We will, however, show that it is possible to derive another 

metho4 the analysis of which is analogous to the ADI scheme. Initially 

we present the method for one-dimensional problems and then extend its 

implementation to higher dimensional ones. This iterative method 

employs 

at each 

the fractional splitting strategy which is applied alternately 
iloaltu" 

half (intermediate) ,time step on tridiagonal systems of 

difference schemes and which has proved to be stable. Its rate of 

convergence is governed by the acceleration parameter r.The accuracy 

of this method is, in general, comparable if not better than that of 

the GE class of problems as well as other existing schemes. 
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6.2 THE ALTERNATING GROUP EXPLICIT METHOD TO SOLVE SECOND ORDER 

PARABOLIC EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS 

Consider the following second order parabolic equation, 

au 
at 

a2u 
--2 ' ~xSl, O<t~T 
ax 

subject to the initial-boundary conditions 

U(x,O) = f(x), O<x<l 

U(O,t) = g(t), O<t~T 

and U(l,t) = h(t) 

A uniformly-spaced network whose mesh points are x.=i~x, t.=j~t 
1. J 

(6.2.1) 

(6.2.1a) 

for 

i=O,l, ••. ,m,m+l and j=O,l, .•• ,n,n+l is used with ~x= (m:l),~t= -:(-n-"~"'l"") 

and A = ~t 

2 ' 
(~x) 

the mesh ratio. The real line ~x~l is thus divided 

as illustrated, 

x =0 

° 
x 

m 
x =1 

m+l 

From equation (3.4.4), a weighted approximation to the differential 

equation (6.2.1) at the point (x.,t .• ) is given by 
1. J +, 

-ASU. 1 . 1+(1+2AS)u .. l-ASu. 1 . 1 = A(l-S)u. 1 .+(1-2A(1-S»u .. + 
1- ,J+ 1,J+ 1.+ ,J+ 1.- ,] 1J 

A(l-S)u. 1 . , i=1,2, ... ,m. 
1.';- , ] 

(6.2.2) 

This approximation can be displayed in a more compact matrix form as 

la b 1 h 1 r fl 
1 

le I I I a b 0 [U 2 f2 

I 
I 

I I 
c a b ... I I I I (6.2.3) I ! ... ... ... I i I ... ... ..... ! 

I ! I I I ..... ..... ... I i ... ... I I ! I ... I i ... ... 
bi lu I 

\fm_ll -e a 
m-l\ 

l C ! I 
c a' lUm 

t l fm J J (mxm) ) j +1 



441 

i.e. I Au = i. . (6.2.4) 

where, 
c = -A8 • a = (1+2>-8). b = -A8; 

fl = A (1-9) (u
O

' +U2 ,) Heu
O 

' 1+ (1-2A (1-9)) u
l 

' 
J J .J+ ,J 

f, = 
~ 

>-(1-8) (u, 1 ,+u, 1 ,)+(1-2A(l-8))u" • i=2.3 ••••• m-2.m-l; 
1.-,J 1.+ IJ 1.) ~ 

f ,-
m 

A(1-8)(u l'+u 1 ,)+(1-2A(1-8))u ,+A(1-8)u 1 ,+ 
rn- , J m+ I J m) m+ , J 

>-8um+l • j +l and 

T T 
£ = (ul ' 1,u2 ' 1'" •• u '1) and f = (fl .f2 •••• .fm) • ,J+ ,J+ m,]+ 

(6.2.4a) 

we note that f is a column vector of order m consisting of the 

boundary values as well as known u values at time level j while u are 

the values at time level (j+l) which we seek. We also recall that 

(6.2.4) corresponds to the fully implicit. the Crank-Nicolson. the 

Dougtas and the classical explicit methods when 8 takes the values 

1. t. t - l~A and 0 with accuracies of the order O([~X12+~t). 
2 2 4 2 2 , 

o( [~xl +[~tl ). o( [~xl +[~tl ) and o( [~xl +~t) respect~vely. 

Let us first assume that we have an even number Of intervaZs 

(corresponding to an odd number of internal points. i.e. m odd) on the 

real line O~x~l. We can then perform the following splitting of the 

coefficient matrix A: 

where, 

ra/~ ~ - - -
a/2 b r

I I c a/2 

1- -: 
1- _ , __ 

[ -:-
la/2 

I c 
I 

-..! 
I 

I 

-I-

t 
I 

1 

I 

L 
b I I 

a12:-::- .9_: ___ 11 

t " ..... I 

"0 I - la/2 b -
: c a/2J (mxm) 

(6.2.5) 

(6.2.6) 
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and 

a/2 b 

I 
1 

c a/2 I 1 -,:;; - ,- I- - -,- -
b 1 

, 
1 1 , 

L C _ a/2 I 1 
-1- -1- -

I I' 0 " I (6.2.7) G ~ I 1 , 
1 2 , 

- - - - I - -l _ 'l. J 
1 

,a/2 b 
0 

I a/2 
1 

c 
- - - -I -1- -

, a/2 
(mXm) 

It is assumed that the following conditions are satisfied: 

(i) G1+rI and G
2
+rI are non-singular for any r>O, 

(ii) for any vectors 11 and 12 and for any r>O, the systems 

(Gl +rI)~l = !1 
(6.2.8) 

and (G2 +rI) ~2 ~ !2 

are more easily solved in explicit form since they consist of only 

(2 x2) subsystems. 

Thus, with these conditions, system (6.2.4) becomes 

(G
1 

+G2 ) ~ =! . 

. The ~lternating Qroup ~plicit (AGE) iteration consists of 

writing (6.2.9) as a pair of equations, 

and 

(G
1 
+rI)~ ~ (rI-G2 )~+! 

(G2+rI)~ ~ (rI-Gl)~+! 

(6.2.9) 

(6.2.10) 

The AGE method using the Peacerran and Rachford variant (cf. (3.19.12» 

for the stationary case (r~constant) is given by, 

and 

(G +rI)u(P+t) 
1 -

(G2+rI)~ (p+l) 

(rI-G
2

) ~ (p) +! 

= (rI-G )u(P+t)+f 
1 - -

, p~O , 

(6.2.11) 

(0) 
where u is a starting approximation and r are positive constants 
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called acceleration parameters whose values are chosen to maximise 

the rate of convergence. We now seek to analyse the convergence 

properties of the AGE method. From (6 ~2 .11) we can write, 

(p+l) (p) 
~ ~ M(r)~ + Si(r) , p~O , (6.2.12) 

where the AGE iteration matrix is given by, 

-1 -1 
M(r) = (G

2
+rI) (rI-G

l
) (Gl+rI) (rI-G

2
) (6.2.13) 

If e denotes the error vector and U the exact solution of (6.2.1) then 

e(p) = ~(p)-Q and ~(P+l) = M(r)~(P). Hence, we have, 

(6.2.14) 

We now prove, 

Theorem 6.1 

If G
l 

and G2 are real positive definite matrices and if r>O then 

p(M(r» < 1 . (6.2.15) 

Proof: 
_ -1 

If we let M(r) = (G2+rI)M(r) (G
2

+rI) ,then by a similarity 

-transformation, M(r) and M(r) have the same eigenvalues. Hence, from 

(6.2.13) we find that, 

p(M(r» = p(M(r» 

~ IIM (r) 11 
(6.2.16) 

where p(M(r» is the spectral radius of M(r). But since G
l 

and G
2 

-1 
are symmetric and (rI-Gl ) commutes with (Gl+rI) ,then in the L2 norm 

we have 

(6.2.17) 

where Ui are the eigenva1ues of G
l

• But since G
l 

is positive definite, 
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its eigenvalues are positive. Therefore, 

(6.2.18) 

Similarly, 

and we have, 

(6.2.19) 

and convergence is assured. We note that to establish the condition 

(6.2.15) for unsymmetric matrices G
l 

and G
2 

may require us to evaluate 

directly the eigenvalues of M(r) which can be difficult. 

It is possible to determine the optimum parameter ; such that 

the bound for p (M(r» is minimised. To investigate this we assume that 

G
l 

and G2 are real positive definite matrices and that bounds for their 

eigenvalues ~. and n. are available, i.e., 
~ ~ 

In the L2 norm, (6.2.16) implies 

-1 -1 
p(M(r) ~ p«rI-Gl)(Gl+rI) )p«rI-G

2
) (G2+rI) ) 

= t;:;m I::~:I}{~:J::~:I} 
< { max 11~11}2 = ~ (a,S';r) 
, a~z~S r+z 

(6.2.20) 

(6.2.21) 

But (r-z)/(r+z) is an increasing function of z. Therefore, we find 

that, 

\M1en 

I r-zl max --
I r+zl 

a~z~e 

r=fc;ii, we have, 

I~I r+al 

For O<r<fc;ii, we obtain, 

Ir-sl 
r+S 

= I r-SI = /S-ra 
Ir+s .0:+/S 

2/S( fc;ii-r) 

(r+B) (.0:+18) 

> 0 , 

(6.2.22) 

(6.2.23) 
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i.e. Ir-al > 
r+a (6.2.24) 

Similarly, for ~a<r, we get, 

i.e. , 

Ir-al Ir:tcl -

> 0 , 

(6.2.25) 

Hence, using (6.2.21)-(6.2.25) we deduce that the bound ~(a,a;r) for 

" ~ '" "IS-la 2 p(M(r» is minimised when r~r~vaa and P(M(r»~~(a,a;r) ~ ( ). 
;;;+>18 

For an efficient implementation of the AGE algorithm, it is 

essential to vary the acceleration-parameters r from iteration to 
p 

iteration - the non-stationary case. This will result in a substantial 

improvement in the rate of convergence of the AGE method when the 

Peaceman-Rachford variant is employed. The Peaceman-Rachford formula 

(6.2.11) will now become 

and 

(G +r I)U(P+!) ~ 
1 p+l -

(r li-G
2

)u(P)+f 
p+ --

(G +r I)u(P+l) 
~ p+l -

~ (r I-G )u(p+!) +! ' p~O • 
p+l 1-

(6.2.26) 

The best values of rp can be ascertained provided G
l 

and G2 are 

commutative - a property which is not possessed by our model problem. 

However, these matrices commute if the boundary conditions are periodic 

and of order 4, that is, when the conditions (6.2.1a) are replaced by 

u(O,t) ~ u(l,t) ) ~(o,t) ~ ~~ (1;/;) • (6.2.27) 

For the general application of (6.2.26), (r >0) we assume first of 
p 

all that the positive definite matrices G
l 

and G
2 

commute. 

and 

and 

G
2 

have a common set of (orthonormal) eigenvectors. Let 

m 
(nj'~j)j~l be the eigensystem of Gl and G2 respectively. 

Thus, G
l 

m 
(J.Lj '~j) j~l 



For p iterations of (6.2.26), relation (6.2.13) yields, for 

l~j~m, 

( IT M (r. » v. = 
i=l ~-J 

It follows that ITM(r.) 
i=l ~ 

is symmetric and therefore, 

< 1 
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(6.2.28) 

(6.2.29) 

and convergence of the iterative process is achieved. Now, it is 

clear that 

fr Ir'-~'I I r. -Tl '1 fr Ir'-~'I IT I r. -Tl '1 ...2--.1 < Ir>Tl~ max 
i=l r:+~~ Iri+Tl

j 
, 

max 
i=l r>~~. max 

l~j~m l~j~m l~j~m i=l 

~{ max IT Iri-zlr (6.2.30) 
a~z~e i=l ri+z 

where we have used the bounds for the eigenvalues given by (6.2.20). 

Hence, 

(6.2.31) 

p 
where R (z) = 

p IT 
(r. -z) 

~ 

(r. +z) 
~ 

The difficulty of determining the optimum 
i=l 

parameters by minimising ~(a,8;rl, ••• ,rp) has led a number of authors 

to devise alternative sequences. For example, the parameters used by 

Peaceman and Rachford (1955), are, 

"r. 
J 

8 (~) (2j-l) / (2p) . 1 2 
8 ' J= , , ... ,p 

from which we obtain the result, 

p(TrM(r.» ~ 
i=l ~ 1

11 +-

(6.2.32) 

(6.2.33) 
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Wachpress (1966), on the other hand, solved the minimisation problem 

analytically in terms of elliptic functions and arrived at the result 

" =S(~)(j-l)/(P-l) 
rj S , p~2 , j=1,2, •.. ,p. (6.2.34) 

It must be noted that the requirement that G
1 

and G2 be commutative 

can" be very restrictive indeed. However, in far more general situations 

we can expect convergence of the AGE iteration for a fixed aooeZeration 

We conclude this section by considering the case when we have an 

odd number of intervaZs (corresponding to an even number of internal 

points, i.e. m even) on O~x~l. The coefficient matrix A will be split 

as in (6.2.5) but G
l 

and G
2 

now take the form, 

b , 

a/2 1 
_1- _ 

, a/2 , 
_1-:' 

I 

I 

-, 
b , 

a/2 , 

-1 
I 
I 
I 
~ 

I 
-,,- -
, ' , I o 

_L 
I 
1 

1 
--I 

1 __ _ 1 
1- _'1 __ _ I 

-1---

-,
I 

'0 , 
1 

la/2 

1 
c 1- _ 

I 

b , 

a/2 I 
r - - -
1 a/2 b 

c J 
a/2 (mxm) 

(6.2.35) 
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and 

(a/2 I I I 
- -,- - - _L - - - - - -1- -

I a/2 b 
, I I 
I I I c a/2 I I 

-1- -1- -I--
I I a/2 b· I 

I I 
I 

I a/21 l- e 
-1- L -I -1- -

G2 
= I' 10 I (6.2.36) 1 , 

1 I 
, 

I I 
, 

- -I i -' ~/2- + 
b 

C I I I , 
a/2 1 

a/2 j (mxm) 

I I c 
- -1- - _1-

I 
-1- I t 

I I 
, 

1 I . r 

All the preceding conditions and arguments regarding convergence and 

the choice of the optimal acceleration parameter for both the stationary 

and non-stationary cases remain valid. 
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6.3 VARIANTS OF THE AGE SCHEME AND ITS COMPUTATION 

Many variants of the basic Peaceman-Rachford scheme can be 

proposed. For example, we have, on modifying the second stage of 

(6. :1.,.16) (the non-stationary case), 

(G +r I)u(P+t) = 
1 p+l -

(r lI-G
2

) u (p) + f 
p+ - - (6.3.1) 

and (G +r I)~(P+l) = 
2 p+l -

(G
2
-(1-w)r lI)U(P)+(2-W)r lu(P+t) 

p+ - p+ -

where W is a parameter. For w=O, we have the Peaceman-Rachford 

scheme (6.2.26) and for w=l, we obtain the scheme due to Douglas and 

Rachford (1956). For Gl and G2 symmetric and positive definite and 

with a f~ed acceleration parameter r>O, the resulting generalised AGE 

scheme is convergent for any O~w~2. As we shall see in a subsequent 

chapter, a natural extension of the AGE algorithm is to implement it 

on higher dimensional boundary value problems using the Douglas-

Rachford variant. 

For the purpose of computation, we shall now attempt to derive 

equations that are satisfied at each intermediate (half-time) level. 

For the Peaceman-Rachford variant, in particular and with fixed 

parameter r, the AGE method can be applied to determine u(p+t) and 

(p+l) 
u implicitly by, 

(Gl+rI)E.(P+t) = (rI-G
2

)E.(P) +! 

and (G
2
+rI)E.(P+l) = (rI-Gl)~(P+t) + f 

or explicitly by, 

and 

u (p+t) = (G
l 
+rI) -1 {(rI-G

2
) ~ (p) + !} 1 

= (G
2 

+rI) -1 {(rI-G
l

) ~ (p+t) +!}. J (p+l) 
u 

(6.3.2) 

(6.3.3) 

If we assume m to be 'odd (even number of intervals) and if we write 

"-G = (6.3.4) 



where a 
r = r + -

. 2 2 

then from (6.2.6) and (6.2.7), we have, 

1 . 1 r 2 __ .L_,,-I __ +- -- __ ...I 
, G I, I 

- - ,- - - - - - - - - 1- - -, G I , 
__ L_ r--j.~---o'--

(Gl+rI) =' ,.... 1 
I ' 

and 

10 ',I 
-_.1 r ""1 - --'--

,lA 
I 1 G 

'" G 
1 1 I I 
1 1 

- - -1-, ..... 

, 
-1- _1_ 

1 I 1 , G -, , 
.l. ___ _ ,- -:-

-+ , 
, " C , , .... 
~- -
I 

, 1 
-,- -1-, , 

, 
- r" ,G 

""1 
1 
1 

, 
t 
I 
1 
1-
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(6.3.5) 

(6.3.6) 

(m"m) 

(6.3.7) 

It. is clear that (Gl+rI) and (G
2
+rI) are block diagonal matrices. All 

the diagonal elements except the first (or the last for (G
2

+rI» are 

(2x2) submatrices. Therefore, (Gl+rI) and (G
2

+rI) can be easily 

inverted by merely inverting their block diagonal entries. Hence, 

-1 
(G

l 
+rI) 

1 

" 1 -,--- --- + 
"-1, I , 

1 G I 1 
i - : -;- - 1- - I 

I I G-l 
1 I 

- -- -I--- Oi --I I ..... " 1 

1 
r 
I 

I 
-1- - -I 

I 0 I 
1 

" .... 1 
I" 
1 G-l 

(mxm) 

(6.3.8) 



1 
= K 

to./r 
2 

I 

l-
I r 2 

1 -c 
; 
1 
I ,-

I I 
-1-- L __ 

-b I 1 

I I 
r~ '- J __ _ 

I' Cl 
I', 1 
I ' , 1 
I"O---r---
I I r 2 -b 
I I 

'-C r 2 
(mXm) 

Similarly, we obtain, 

-1 1 
(G +rI) = -

2 to. 

-b 

I-c 
,J.. 

1 
I 

, 
1 , .J ___ 1 __ , 

1 

- -1-

1 

I 
I 
1 

1 
--1---· 

I 

, -,- --, 
I 

-bl 

,-c r I 
_ 1_ - :.2,_ -

I Mr2J 
(p+t) d (p+1) 

From (6.3.3), u an u are given by, 
(mxm) 

(p+t) 1 
Mr2 ' 

r u (p) -bu (p) +f U
1 I , 

1 1 2 1 
(p+t) - - -I - r ..J. (p) (p) 

u
2 1 r 2 -bl I -eu

1 
+r

1 
u

2 
+f2 

I 
(p+t) 

, 
1 (P)b (p) +f I -c r I u

3 ____ 21 __ + ___ r 1 u 3 - u
4 

3 , 
I I, 10 -eu (p) +r u (p) +f I 1 

=- \ 3 , 1 4 4 , to. 1 \ I 1 
I , 

1 ,\1 1 
I -r - -1- - r- r u (P)'-bU (p) +f 
1 , 0, 1 1 m-2 m-i m-2 
(PT! ) I 

Ir2 
-b -eu (p) +r u (p) +f 

C7~!t)J I m-2 1 m-1 m-1 1 

I-e r
2 

r u (p) +f 
m 1 m m 
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(6.3.9) 

(6.3.10) 

(6.3.11) 

(6.3.12) 
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and 

(p+l) 
-b I I r u(P+~)+f u

1 r
2 I 1 1 1 

(p+l) I I I r u(P+~)-bu(P+~)+f u2 -c r 2 I 
_1_- --1---

1 2 3 2 
(p+l) - -, r- I- -c (P+~)+r u(P+~)+f u
3 I 2 

-bl 1 u2 1 3 3 
1 1 I r u(P+~)-b (P+~)+f 1 -c r Z I 1 4 Us 4 - -- -I- -'-1.--- 8-1---

1 . , 1 -cu(P+~)+r u(P+~)+f 
= 1 I ' 1 4 I 1 S S I 

'" 
, 

I 1 ,- 'I I I (p+l) '"1 ...,---+- 1 u 
0 r -b m-2 2 I I 

(p+l) 1 
r u(P+~)~bu(P+~)+f' I-c r I U

m
_
1 3.1 1 m-l m m-l 

(p+l) - - - -,- ;- I-
-cu(P+~)+r u(P+~)+f u 1 I I I "'/r m I 2 m-l 1 m m 

(6.3.13) 

. '" 2 where r l =r-a/2, r 2=r+a/2 and =r
2
-bc. (6.3.14) 

The alternating implicit nature of the (2 X2) groups in the 

equations (6.3.2) is shown in Figure (6.3.1) where the implicit/explicit 

values are given on the forward/backward levels for sweeps on the 

(p+~)th and (p+1)th levels. 

t Even Number 

2! 

I I 2 

I ! 
11 

I I 1 

I I 
~ 

I I p=O 

of Intervals (Odd Number of Internal Points) 

I r ---I I 
-' 11 :=. 1 L __ 

I~---' 

/1-- __ 
. - --

l~l:= 
n~ 
L ,_.J ___ Jl--='~_"_:::-:L--d' ~;l 

x 

FIGURE 6.3.1: The AGE Method (Implicit) 
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The corresponding explicit expressions for the AGE equations are 

obtai.ned by carrying out the multiplications in (6.3.12) and (6.3.13). 

Thus, we have, 

(i) at ZeveZ (p+lz) 

and 

where, for i=m-l 

otherwise 

with the following computational molecules (Figure 6.3.2), 

(p+t) 

p 

1 2 

(p+t) 

p 

i-1 i i+1 i+2 



(p+i) 

p 

i-I i i+l i+2 

FIGURE 6.3.2: The AGE Method (Explicit) at level (p+i) 

(ii) at ZeveZ (p+l) 

and 

where, 

and 

(p+l) 
u. 

1. 

(p+l) 
ui+l 

i=1,3, ... ,m-2 

u(p+l) ~ (-cu(P+!)+r u(P+!)+f )/r 
m m-l 1 m ID 2 

o for i~l 

-cr
2 

for i#l 

o for i~l 

2 
c for i#l 

~ ~ '" Q ~ -crl' R ~ Q = r
1

r
2

, S = -br2 ' 

"" Ti~ -cfi+rli+l 

with its computational molecules given by Figure (6.3.3). 
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(6.3.16) 

(6.3.16a) 

) 



455 

(p+l) 

(p+t) 

i-l i i+l i+2 

(p+l) 

(p+t) 

i-l i i+l i+2 

(p+l) 

(p+t) 

m-l m 

FIGURE 6.3.3: The AGE Method (Explicit) at Level (p+l) 

For the generalised AGE Scheme (6.3.1) with fixed acceleration 

parameter r, the relevant equations at level (p+t) remain the same as 

in (6.3.1 S/1 Sa). The equations at level (p+l) are, however, now 

replaced by, 



(p+l) u1 
(p+1) 

u2 
(p+1) 

u
3 

I 
I 1 
1 = -
I 

t; 

I 
(p+l) u

m
_
2 

(p+1) u
m

_
1 

U 
(p+l) 
m 

r 2 -b 1 

I 1 

-c r 2 I 
1 

-_-1 1 

_bl 
---r--

Ir2 I I 

I-c r21 
- - - T" - -1',- 1-0- i - -

1 I, I I 
-----1-----

I r -b I 
1 

1 

..J 

o I I 2 1 

1 : -c r 2 I 
r -I --t-

1 1 : Mr2 
I 

a where r 1 ,r2 and t; are given by (6.3.14) and r3 = 2-(1-w)r and 

r 4=(2-w)r. This leads to 

(p+l) 
= (P (p+t) +Q (p+;) +R (p) +s (p» / t; 

}",., ••••• m" 

U
i Ui Ui +1 Ui U i +1 

(p+l) (E> (p+t) +12 (p+t) +1\ (p) +5 (p» It; = u i +1 ui ui +1 ui u i +l 

and (p+l) (r3u~P)+r4u~P+t»/r2 U = 
m 

where, 

P = r
2

r
4

, Q = -br4 ' 
R = r

2
r

3
-bc, S = b (r -r ) 2 3 

and ~ ~ ~ "-' 
P = -er 4' Q = P = r

2
r
4

, R = c(r
2
-r

3
) and S = r 2r 3 -bc 

and the computational molecules are given by Figure (6.3.4) • 
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(6.3.17) 

1 
I (6.3.18) 

I 
) 

) (6.3.19) 
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(p+l) 

(p+! ) 

p 

i i+l 

(p+l) 

(p+t) 

p 

i i+l 

(p+l) 

(p+t) 

p 

m 

FIGURE 6.3.4: The generalised AGE method (Explicit) at level (p+l) 



Finally, let us now consider the case when m is even 

(corresponding to an odd nwnber of intervaZs) ~ We shall then have 

from (6.2.35) and (6.2.36), 

-1 
(G

l 
+rI) = 

1 
=~ 

--1 1 , £_; __ .1_ 
, 

1 
I 
I 

I 
I 

-b 

-c r
2 

~-l 1 
G 

- -1- -
I 

..J. __ - - I __ 

I', 0 1 
1 " I 
10 . ,I 

- - - - - - -1- - -
I 1 "'-1 
, 1 G , 

-+ - - -I ---
-b 1 

-1-
r

2 
I 
I -c 

- - -
1 

-- - r 
r 

I 

r I I 
2 _ L ___ 1_ --, 

, , 0' 
'e" , 
1 _'J 

1r -b 
I 2 

'-c r , 2 
(mxm) 

and 

l/r 1 , 1 
__ 2 _ I _ _ - - .J - - f-

A-1' 1 LG 1 _____ I- _ ~ 

I', 0 I I 
I, 1 
10 " 

-4- --- --\.; 
I "-1 r 

+ 
IG ---,-'-

Il/r , 2 
(mXm) 
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(6.3.20) 

(6.3.21) 

(6.3.22) 
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The Peaceman-Rachford variant in its implicit form (6.3.2) can 

be pictorially represented by Figure (6.3.5). 

t Odd Number of Intervals (Even Number of Internal Points) 

I I 
I I 

2- 1~1 
I L_ J 

I 
I 

I I ... -. 

1-

t-

p=O 

1 

~U_ •... -

FIGURE 6.3.5: The AGE Method (Implicit) 

By means of equations (6.2.35)-(6.2.36), (6.3.3) and (6.3.20)-(6.3.22) 

we obtain the following explicit expressions for the AGE scheme: 

(i) at level (p+~) 

(p+t) 
u

i 
= u i _l u i ui +1 ui +2 i 

G 

G 

G 

G 

2 

1 

2 

1 

-+
x 

(p+t) 
ui+l 

(A (P)+B (p)+c (P)+D (P)+E )/11) 

( ( ( ) 
i=1,3, ... ,m-l 

(A~ (P)+-B p)+c- p) +~D P +-E )/A 
(6.3.23) 

and 

where 

= u. 1 u. u. 1 u, 2 ' il 1.- 1. 1.+ 1.+ 1. 

, for i=l 
A = { 0 

-cr
2

, otherwise 
= -br

l
, D 

= jO' for .i=m-l ) 

b
2

,otherwise 



and 
A = la' for i=l 

2 . 
c ,otherwl.se 

(U) at level (p+1) 

and 

where 

and 

(p+l) 
u

l 

(p+l) 
u

i 

(p+l) 
ui +l 

(p+l) . = (-cu (p+t) +r u (p+t) +f ) /r 
um m-l 1 m m 2 

~ 

D = 
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(0, for i=m-l 

l-br2 ,otherwise 

(6.3.23a) 

i=2 ,4, ... ,m-2 

(6.3.24) 

) 
(6.3.24a) 

For the gene~lised AGE scheme (6.3.1) with fixed acceleration 

parameter r, the same equations in (6.3.23) still apply for level 

(p+t). At level (p+l) , we have the following equations, 

where, 

and 

(p+l) 
ui+l 

(p+l) (p) (p+t) 
u = (r3u +r u ) /r2 ' 

m m 4 m 

}i=2 ,4, ••• ,m-2 
(6.3.25) 

The AGE algorithm is completed explicitly by using the required 

equations at levels (p+t) and (p+l) in alternate sweeps along all the 

points in the interval (0,1) until a specified convergence criterion 

is satisfied. 



6.4 THE AGE METHOD TO SOLVE SECOND ORDER PARABOLIC EQUATIONS WITH 

PERIODIC BOUNDARY CONDITIONS 

Consider the following second order parabolic equation, 

au -. at 
a

2
u + 
2 ax 

k(x,t), O~x~l, O<t~T 

subject to the initial condition, 

U(x,O) • f(x) , O<X<l , 

and the boundary condition, 

U(O,t) • U(l,t) , ~~ (O,t): ~~ (i,t) 
AS'in Section 6.2, a weighted approximation to the differential 

equation (6.4.1) at the point (xi,tj+t) is 
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(6.4.1) 

(6.4.1a) 

-;I.Su. l' . 1+ (1+2A8)Ui' j l-;I.Su. 1 j 1· A(1-8)u. 1 .+(l-2A(l-S»u .. 
1.- ,J+ , + 1.+ , + 1.- ,J l.J 

+A(l-S)ui 1 .+t.tki . " for i;1,2, ••• ,m. (6.4.2) 
+ ,J ,J+'% 

When written in the matrix form (6.2.3) and taking account of (6.4.1a) 

we obtain the system (6.2.4) where, 

c· -;I.S , a ; (1+2A8), b • -;I.S; 

f l • (1-2A(1-8ll ul .+A(1-S)u2 .+A(1-8)u .+t.tkl . , 
] ] m] ,]+, 

fl. .• A(l-S)ui 1 .+(1-2A(1-S»u .. +A(1-8)u i 1 .+6tk .. +" 
- , J l.J + ,] l.,], 

i=2, .. . ,m-l, 

f = A(l-S)ul.+;I.(l-S)u 1 .+(1-2A(1-S»u j+t.tk .,. m ] m- ,] m m,] +, 

To implement the AGE algorithm, w,e split the coefficient matrix A as 

in (6.2.5) with A given by, 

a b c 

c a b 

c a b 0 , , 
A ; 

, 
C " , 

(6.4.3) 

, , 
c a 

b c 
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and to ascertain the forms of G
l 

and G2 , we treat two different cases 

of m as before. 

(a) m even (even number of points since u =u at every level with o m 

G2 = 

and 

-1 1 
(G

l 
+rI) -", 

a 
2 

b I 
I 

c a I I 

~ + - - -
I ~ b I 

2 I 
I ~ I 
I c 2 

- - - r - -I, 

I 

I 
I 
I 

-- -I 

I 
I 

__ OL_ 
I I .......... 

I 
I 

- - - 1 :1)- - ..... , J 
I a 
I 2 
I 

b 

a 
I c 
I 2 (m"m) 

~I 1 I I c 2 I I 
-r- -1 -- - ___ L --1--

I~ I I 
b 

I I 
12 

a I I I 
IC 

~ 1- _C_L J_ - - --r - - I 1 
I --- - -I-- 1- r - - - - - """a -
I I C Iz b I 

I I I 
I 1 I c ~I 

..J 2 
I- - - - - - -1- _1-

b I I la/2 
I I 

r 2 -b I 
I 

-c I 
I 

- - 1" -b 
_r;S 

l- - --I I r 2 

I -c 
-1-

I 

I I 

~2~ __ OL __ 
I .... ' I , 

0-- ..:.1 --
I I r 2 -b 

I 
I 
I -c 

I 

(mXm) 

(6.4.4) 

(6.4.5) 

(6.4.6) 
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and 
r

2 
I I I I 

_L ..J 
.-c __ L. - ... - r -

I r 2 
-b I • I 

l-c r 2 I I 
. -1 1 - - - - "I ,-:.. - -I- -'"1-

(G +rI) =- 10 I • (6.4.7) 2 t:. ..... 
I .... I I .... - - '- I- - ~- - ,-
10 (2 

-b 
I I 

l-c r
2 

I 

;- ..J - - L . 
-b I Ir 

I • 2 (m"m) 

Hence, using (6.3.1), (6.4.4)-(6.4.7) we obtain the following equations 

for the computation of the generaZised AGE scheme: 

(i) at ZeveZ (p+~) 

(p+t) 
u

1 
(p+t) 

u
2 
(p+t) 

u
3 

r
2 

-c 

-b I 

I 
I r

2 
-I- t- -1-

1 r 2 -b, , 
I • 

I 
I 
I 

= 
1 
t:. - -- '-c 

r 2 ' -1- +Q ---,-

u(p+t) 
m-I 

u (p+t) 
m 

which leads to: 

u(P+!) = 
~ 

, 
I 0 , -,-, 
I , 

\ , 
I \ 
I \ I 
I i 

-1-
I ,r2 , 

'-c 
I 

and 
(p+t) 

u i +1 = (~AU (p) +Bu (p) +cu (p) +~DU (p) + ~E ) /' 
i-I i i+l i+2 i"" 

with 
(p) (p) (p) = u and u = u 

m+l 1 m 

where, 

-b 

r
2 

r u(p)-cu(P)+f 
1 1 m 1 

(p) (p) 
r 1 u2 -bu3 +f2 

-cu(p)+r u(P)+f 
2 1 3 3 

r u (p) -bu (p) +f 
I 4 5 4 

-cu(p)+r u(P)+f 
4 • 1 5 5 

• 
• r u (p) -bu (p) +f 

1 m-2 m-I m-2 
(p) (p) 

-cu 2+r l u l+f 1 m- m- m-

-bu (p) +r u (p) +f 
1 1 m m J 

(6.4.8) 

(6.4.9) 

J 



and .-J 2 <"01 ....., _ ......., 

A = c , B = -cr
l

, C = r r D - br E -1 2' - - 2' i- -cf. +r2f. 1. 
~ ~+ 

(U) at ZeveZ (p+1) 

(p+l) 
u

l 
(p+l) 

u2 

I 
r 
1 
I 
I 
1 
I 

/p+l) 
U 

m-l 
(p+l) 

U 
m 

This gives, 

and (p+l) 
ui +l 

1 

r 2 r I I I-c 
- - - - ;:1- -1- - +-

I r 2 -b I I 
I I I I 

-c r21 I _1_- _____ +_ 
1\ I 1 

1 
-1- -

1 
I 

- _1 __ 
-b 1 

I \ 
1 \ I 0 I 
I \ I 1 

-t - -'- - _1-
10 Ir2 -bl 
1 1 I 
I I-c r21 

-1- -1- - _1-
1 Ir2 

with Uo = u
m 

and u
l 

= u
m

+
l 

at both alternating levels 

where, 

p = c(r
2
-r

3
) , Q = r 2

r
3
-bc, R = -cr4 ' 

S = r 2
r

4 
~ ~ ~ ~ 

and p = r
2

r
3
-bc, Q = b (r

2
-r

3
), R = r 2

r
4 

and S = -br4 · 

(b) m odd (odd number of pOints) 

We have, 

} 
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(6.4.10) 

(6.4.11) 

(6.4.11a) 



r~:. 

G = 
1 

L-I 

l 

and 

l 

1 I I 1 
~ -
I a/2 

1 

- -1-
b 1 

- -i -
1 

__ .1.. __ _ 

1 

I I I 
1 c a/2 1 

-1- .L _ 
b I 

- _I ___ _ 

I-

I 
1 

T 

1 a/2 

I 
c 

-1-

I 
1 

- - - T 
I 
1 

I 
1 
1 

I 
I 0 ' 

a/2_1 I 
- - T I', I 

, I 

" , ·1 

o 
c a/2 

1 c) 

I 
I 1"-----

1 a/2 b I 
,-
I 

I 
1 c _a/2 L _ _ _ _ _ 1 

r~ I 1 " 
1 , 
1 
10 

, 
o 

, , 
-1- -

, 

(mxm) 

-1-
1 1 a/2J 

• (mxm) 

I-c 
- 1-

I , 

1 
-/-

-b I 
--L - - -:- -~-1 

I . I I 

I 1 r I 
2 
- 1- - - i ,r -b 

2 I 
I-c r21 L __ , 

I 
I 
I - - -

465 

(6.4.12) 

(6.4.13) 

(6.4.14) 
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- -' 

where 

, 
-4-, , , 

466 

-::~i ,- -1
1 

Ill /r2 

(6.4.15) 
(6.4.16) 

We shall now derive the AGE equations using (6.3.1) and (6.4.12)-

(6.4.15) : 

(iJ ZeveZ (p+~J 

( (P+!) 
rMr2 : 

., , r r U(P)-b (p)- (P)+f u
1 I , 1 1 u 2 cUm 1 

(P+!) 1- -Ir~ - -,- , (p) (p) 
u

2 
-b -cu

1 
+r

1
u 2 +f2 

I I_c 

, 
I (p) (p) 

1 r 2 ' -'- - -
r 1u 3 -bU4 +f3 

=6" 
__ -l _ -, --

I (p) (p) 

" 

-cu
3 

+r
1

u 4 +f4 
\ Cl I 1 I , 

11 : 
, , , \ , , 
,0 

, 
,I Ir U(P)-bu(P)+f 

I -1- ~ .L 1 m-2 m-1 m-2 
iu(p+!) l- - (p) (p) 

Ir -b -cu 2+r 1u l+f 1 
I m-1 J 

' 2 
m- m- m-

t (P+!) r u (p) +f -bu (p) lU , -c r
2 m I 1 m m 1 

(6.4.17) 

Hence, we obtain 

(p+t) 
= u

1 
(p+t) 

u, .. 
1 

and 
(p+t) 

= u i + 1 

(p) (p) (p) 1 
(r1u l -bu2 -cum +f1 )/r2 i. 

(p) (p) (p) (p) } (AU, 1+8U, +Cu, l+DU, 2+E,)/1l 
~- .1. 1.+ 1+ 1. . 

() () () () 1=2,4, •.. ,m-3,m-1 
- p ~ p ~ p ~ D ~ 

(AU, l+8U, +cu, 1+Du'"2+E,)/1l 
.1.- 1. .1.+ .1.+ .1. 

(6.4.17a) 

• 

I 

J 



with u(p) = u(p) 
1 m+l 

where, 

A = -cr
2

, B = r
1

r
2

, C = -br
1

, 
2 

D = b , 

and 

Ni) 

- 2,.., ~ 
A = C i B = -cr

1
, C = r

1
r

2
, 
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(p+l) 

u
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I 

(p+1) u
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r
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t, -bt, 

2 I 
-cl:. I:. /r2 I 
-----, 
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-t 1 
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2 I 
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2 
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(p+1) 
u

1 

(p+1) 
u

2 

o 

I 
I 

_ 1_ 
I 
I 
I ,-
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(6.4.17b) 

I-et, 
I 
Ic

26/ 
-I - - -
I 
I 

I 
t-

(6.4.18) 

) 
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(p+l) u
i = 

(p+l) 
ui+l = 

u (p+l) = 
ID 

(6.4.19) 

where, 

Pl = r 2
r

3
-2bc, P

2 = b(r
2
-r

3
) , P3 = c(r

2
-r

3
), P

4 
= r 2r

4 
1 

Ps = -br P6 = -cr4 4 
, 

I -bc+r311/r2 ' 
2 

Ql 
c(r

2
-r

3
), Q2 = Q3 = -c (r

2
-r

3
)/r

2
, Q4 = -cr

4
, 

QS = r 4
11/r

2
, Q6 

2 = r 4c /r
2 

, 

I 
-br4 , I 

J 

P = r 2
r

3
-bc, Q = b(r

2
-r

3
), R = r 2r 4 ' S = -br 4 

~ ~ ~ ~ 

P = c(r
2
-r

3
) , Q = r 2

r
3
-bc, R = -cr

4
, S = r 2

r
4 

2 
-bc+r3l1/r2 ' Rl = b(r

2
-r

3
) , R2 = b (r

3
-r

2
)/r

2
, R3 = R4 

(6.4.l9a) 

The iterative process is continued for each alternate sweep until 

convergence is reached. 



469 

6.5 THE AGE METHOD TO SOLVE THE DIFFUSION-CONVECTION EQUATION 

Consider the following diffusion-convection equation (cf. (3.11.1», 

k dU 
dX 

(6.5.1) 

with its Dirichlet boundary conditions at x=O,l specified by (6.2.1a) 

At the point (xi,tj+t)' the derivatives in the equation (6.5.1) are 

approximated by finite differences given by (5.2.1)-(5.2.3). Thus, we 

are led to the following generalised formula, 

i=l,2, ... ,m, (6.5.2) 

where, 
2 A = 6t/(6x) , E = EA , K = tkA6x • (6.5.2a) 

Different choices of the weighting parameters a,6 lead to a variety of 

finite-difference schemes. As examples, we have, 

u .. 1 = (E+K)u. 1 .+(1-2E)u .. +(E-K)u. 1 . , 
1.,J+ 1.- ,J 1J 1.+ ,J 

which is the cZassicaZ expZicit scheme with 0([6x)2+6t) 

accuracy_ 

(b) 6
1

=6
2

=1, a
1

=a
3

=1, 6
3

=64=0, a
2

=a4=0 gives the following 

fuZZy implicit scheme, 

-(E+K)u. 1 . 1+(1+2Elu .. l-(E-K)U. 1 . 1 = 
1.- ,J+ 1., J+ 1.+ , J+ 

with 
2 

0([6x) +6tl accuracy. 

(6.5.3) 

(6.5.4) 

-HE+2K)u. 1 . l+(l+E+Klu .. I-tEll. 1 . 1 = !(E+2K)U. 1 .+ 
1- ,J+ 1.,J+ 1.+ ,J+ 1.- ,J 

(l-E-K)u .. +tEu. 1 . , (6.5.5) 
l.) l. + ,) 

which is the Crank-NicoZson scheme with upwinding with 0(6x+[6t)2) 

accuracy_ 
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+(l-E)u .. +i(E-K)u. 1 .• 
1J 1+ • J 

(6.5.6) 

which is the Crank-Nicolson scheme with 0([~x12+[~t12) 

accuracy. 

The generalised finite-difference equation (6.5.2) generates a 

tridiagonal system of linear equations of the form (6.2.3) and (6.2.4) 

where, 

eu .-cu . 1+fu
l

.+gu2 .• 
OJ O. J+ J J 

f
1
· = eu. 1 .+fui·+gu· 1 .• ·i=2.3 ••••• m-l. 1.-,J J 1.+,) 

f eu 1 .+fu .+gu 1 .-bu 1 . 1 m m-,J m] m+,) m+ ,J+ 

The AGE algorithm is applied to the system (6.5.2) or (6.2.4) 

with the usual splitting of the coefficient matrix A resulting in 

exactly the same equations for computation as was found in Section 6.3. 
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6.6 THE AGE METHOD TO SOLVE A FIRST ORDER HYPERBOLIC EQUATION 

A first order hyperbolic equation takes the general form, 

au au 
at = - ax + k(x,t), O~x~l, O<t~T • (6.6.1) 

The Dirichlet boundary conditions of (6.2.1a) may be specified on the 

above hyperbolic problem. Following the arguments in Section 2.9, 

equation (6.6.1) is replaced at the point (x.,t, 8) by the difference 
~ J+ 

analogue (cf. equation (2.9.8)), 

-t)'8u, 1 ' l+u, , 1+H8u, 1 ' 1 = H(1-8)ui 1 ,+u, ,-l)'(1-8)u, 1 ' 
1.- ,J+ 1,)+ 1.+ ,)+ -,J 1.) 1.+ ,J 

+t.tk, , 8' i=1,2, ••• ,m. (6.6.2) 
1., J+ 

Again, this tridiagonal system of linear equations can be 

presented in the matrix form (6.2.3/4) where, 

c = -!A8, a = 1, b = !Ae ; 

fl = Ul,+lA(l-e) (u ,-U2 ,)+lA8u 'l+t.tkl , e' 
J OJ J O,J+ ,J+ 

(6.6.2a) 

= H(l-8) (u, 1 ,-u, 1 ,)+u. ,+t.tk. j 0' i=2,3, ••• ,m-2,m-l, 
1.-,J 1.+,J 1.J 1., +-

and f = u ,+H(1-8) (u 1 ,-u 1 ,)-t).eu 1 'l+t.tk 'e' m m) m-,J m+,J m+ ,)+ m,J+ 

We note that equation (6.6.2) corresponds to the explicit (classical), 

fully implicit (centred-in-distance, backward-in-time) and the 'Crank-

Nicolson t}~e (centred-in-distance, centred-in-time) formula when 8=0,1 
. 2 

and l with accuracies to the order of o (t.x+t.t), O([t.x] +t.t) and 

O([t.x]2+[t.t]2) respectively. 

When the AGE algorithm is implemented on the above system, we will 

arrive at exactly the same form of equations along the lines (p+t) 

and (p+1) as those that we derived for the heat equation (6.2.1). These 

explicit equations are given by (6.3.15)-(6.3.16), (6.3.18)-(6.3.]9) and 

(6.3.23)-(6.3.25) . 
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It must be mentioned, however, that the constituent matrices Gl 

and G2 are not symmetric since from (6.6.2a) CFb. In fact both matrices 

(without loss of generality, we take the case m odd only) have one real 

and (m-I) complex eigenvalues given by !,!(1+>.9i) (of multiplicity 
c 

!(m-l» and !(1->.9i) (also of multiplicity !(m-l» where i =;.:1. 
'c c 

The same analysis to prove Theorem 6.1 cannot, therefore, be used to 

establish the condition (6.2.15) for convergence. However, an attempt 

made to employ the inequality (6.2.16) turned out to be unsuccessful. 

We have, 

(6.6.3) 
and similarly, 

1 
= -

t, 

By virtue of (6.6.2a), we obtain, 

2 1 2 2 
r l = r-t, r 2 = r+t, r l r

2
+bc = r ~(l+>' 8 ) , 

b( ) '8 ( ) '8 d' (r+~)2~41,292. - r
l

+r
2 

=-Ar,-cr
l

+r
2 

=Aran ,,= , r~A 

(6.6.5) 
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Hence by taking the L norm on inequality (6.2.16), we find that 
00 

11 (rI-G
l

) (G
l 

+rI) -111
00 

= 11 (rI-G
2

) (G
2 
+rI) -111

00 

{
Ir-!I Ir2_1/4(1+A2e2) I+Aer} 

max (r+!) , (r+!)2 +1/4/e2 

for A,r>O and O~e~l. - (6.6.6) 

If, for example, we prescribe A=4, r=l, and e=l, we get, 

= 1.16 

which leads to i 1'M(r) 11 > 1 
00 

(6.6.7) 

and this clearly does not satisfy the sufficient condition for 

convergence (Le. 11'M(r) 11<1). The failure of this test does not 

necessarily imply non-convergence of the AGE iterative process. It 

serves to confirm the theoretical difficulty that arises in dealing 

with unsymmetric matrices. A direct derivation of the eigenvalues of 

the AGE iteration matrix therefore becomes necessary and this can be 

very cumbersome if not impossible. An alternative to this analytical 

approach is to evaluate them numerically by means of, for example, 

the power method to obtain the dominant eigenvalue. This would enable 

us to show that p(M(r)~l. 
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6.7 THE AGE METHOD TO SOLVE A SECOND ORDER HYPERBOLIC (WAVE) EQUATION 

(a) The Wave Equation with Dirichlet Boundary Conditions 

We seek the solution to the wave equation. 

~t<T , (6.7.1) 

subject to the following auxiliary conditions. 

U(x.O) = f(x) 

au 
at(x.O) = g(x) • 

(6.7.1a) 

U(O.t) het) 
Oi;t<T (6.7.1b) 

U(l.t) = k(t) 

Following our discussion of Section 2.13. the general three-level 

implicit formula approximating (6.7.1) at the point (i6x.j6t) is. 

1 2 
2 0 u, j = 

(6t) t l. 

1 2 . 2 2 
2 [ao u, , 1+(1-2a)0 u'j+ao u i ' lJ 

(6x) x 1..J+ . X l. x .J-
(6.7.2) 

where a. a weighting factor takes the values of a>-1/4 for stability. 

2 2 
The truncation error is O([6xJ +[6tJ ) for a=1/4 and 1. On 

expanding (6.7.2) we obtain. 

2 2 2 2 2 
-aA ui_l.j+l+(1+2aA )Ui.j+l-aA u i +1 • j +1 = (1-2a )A u i _1 • j +2(1-(1-2a)A ) 

2 2 2 2 
u'j+(1-2alA u, 1 ,+aA u, 1 j 1-(1+2aA )u, , l+aA u, 1 ' l' 
~ 1.+ ,J 1.- , - 1.,J- 1.+ ,]-

i=1,2, ... ,m (6.7.3) 

which gives a tridiagonal system of equations that can be displayed 

in the matrix form (6.2.3/4) where, 

2 
1+2aA 

2 2 6t c = -aA • a = • b = -aA • A = - ; 
6X 

2 2 2 2 
fl = [2(1-(1-2a )1 )u

1
,+(1-2a )1 u

2
,J+[-(1+2a 1 )U

1 
' 1+a1 u

2 
' lJ+ 

J J .J- .J-

2 2 
aA [uO.j+l+uO,j_1J+(1-2a)1 uOj ; 

2 2 2 2 
f, = (1-2alA u, 1 ,+2(1-(1-2a)1 )u, ,+(1-2alA u, 1 ,+a1 U, 1 ' 1 

1. 1.- ,J 1.J 1.+ ,J 1.- ,J-
22, 

(1+2a1 )u, , 1+a1 u, 1 ' l' 1.=2.3 ••..• m-l ; 1,J- 1.+ ,]-



475 

and f 
m 

222 2 
= [(1-2a». u 1 ,+2(1-(1-2a)A )u ,l+[aA u 1 ' 1-(1+2aA)u '11 m- ,J m] m- ,)- m,]-

2 2 
+aA [u 1 'l+u 1 ' 1]+(1-2a)A u m+ ,J+ m+ ,]- m+l,j 

The u values on the first time level are given by the initial condition. 

Values on the second time level are obtained from applying the forward 

difference approximation to first order, at t=O, 

u -u 
i,l i ,0 

llt 

= g. from (6.7.1a) I 
~ 

giving u'l=u'o+llt9,. Solutions on the third and subsequent time 
~ ~ ~ 

levels are generated iteratively by applying the AGE algorithm on 

[6.7.3a) 

lines (p+;) and (p+l) and utilising the same explicit equations used 

by the first order hyperbolic equation of (6.6.1), i.e. the formulae 

(6.3.15)-(6.3.16), (6.3.18)-(6.3.19) and (6.3.23)-(6.3.25) for both 

cases of even and odd number of intervals. 

(b) The Wave Equation with Derivative Boundary Condition 

We will again solve the wave equation (6.7.1) together with the 

initial conditions (6.7.la) but now the boundary conditions (6.7.lb) 

are replaced by, 

and 

aUto t) = het) , 
ax ' 

U(l,t) = k(t) • 

A central difference approximation is used to represent the 

boundary condition at x=O, i.e., 

giving u 1 ' = u
l

,-26xh , 
- ,J J J 

Similarly we have, 

u 1 ' 1 = ul ' 1-26xh, 1 - ,J- ,J- J-

(6.7.4) 

(6.7.5) 

(6.7.5a) 
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and U_l,j+l = Ul,j+l - 26xhj +l ' (6.7.Sb) 

Now, returning to equation (6.7.3) and putting i=O, we get, 

222 
-<lA u 1 j 1+ (1-2<>A)u . l-<lA ul . 1 = -,+ O,J+ ,]+ 

2 2 
(1-2<»A u 1 j+2(1-(1-2<»A)u . 

- , O,J 

2 2 2 2 
+(1-2<»A ul .+aA u 1 . 1-(1+2<>A)u . l+aA ul j 1 ,J -,]- O,J- ,-

(6.7.6) 

The insertion of the calculated values (6.7.S)-(6.7.Sb) into equation 

(6.7.6) at the fictitious points (-l,j-l), (-l,j) and (-l,j+l) yields, 

2 2 
(1+2<>A )uo . 1-2<>A u l . 1 

1)+ ,J+ 
2 2 2 

= 2 (1-(1-2<»A )U
Oj

+2 (1-2<> lA u
lj

-(l+2<>A ) 

2 2 2 
u . 1+2<>A ul . 1-2(6x)<>A h

j 
1-2 (6x) (1-2<»A h.-

O,J- ,J- - J 

(6.7.7) 

Hence when the tridiaqonal system of equations incorporating (6.7.7) 

and (6.7.3) (for i=2,3, ••• ,m-l,m) is written in matrix form, we have, 

Au = f , (6.7.8) 

where, 

a b l 

c a b 

c a ... ... b .... o 
A 

.... 
= .... (6.7.9) 

.... .... 
.... .... ,,'" .... 

. " .... " .... .... 
0 c a b 

... .... .... 

c a 
(m+l) x (m+l ) 

u = (the unknown values at level (j+l» 

f = (the known values at the preceding 

levels) 

and 
2 2 2 2 

c = -ClA, Q= 1+2ClA, b = -ClA, b
l 

= -2ClA. 

As in (a), the solutions on the first time level are obtained from the 
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initial condition and the values on the second level from (6.7.3a). 

To be in conformity with previous convention, we shall take the 

values of u in the order of u
l

' u
2

' ••• , ul\ where M=m+ 1. Hence, u
l 

corresponds with the value of u at x=O, ~ with u at X=(M-l)6x=~x 

and u
M

+
l 

with u at x=M6x=(m+l)6x=1 on the line segment O~x~l. We then 

have, from (6.7.8), 

(a b
l 

u
l fl 

c a b u
2 f2 

0 I 
cab ... ,,, " = (6.7.10) ... ... 

" ... ... ' " ( I ... " ..... ... , I 
" I 

0 ... " " I I ... ... , c a b u f 
M-l M-l 

c a MXM u
M fM 

with 
2 2 2 2 2 

fl = 2(1-(1-2a)A )u
lJ

.+2(1-2a)A u .-(1+2aA)u . +2aA u . -2 (6x)aA 
2J 1,J-l 2,J-l 

2 2 
h

j
_
1

-2(6x) (1-2a)A h
j
-2(6x)aA h

j
+

l 

2 2 2 2 2 
f. = (1-2a)A u. 1 .+2 (1-(1-2a)A )u .. +(1-2a)A u. 1 j+aA u. 1 .-Cl+2aA ) 
~ 1- ,J 1.J 1.+ I 1- IJ-1 

2 
Ui,j_l+aA ui+l,j+l' i=2,3, ••• ,M-l; 

and 
2 2 2 2 

f = [(1-2a)A u 1 .+2(1-(1-2ctjA )u .1+[aA u 1 . 1-(1+2aA)u . 11 
M M"' ,J MJ M- ,J- M,J-

2 2 
+aA [uM 1 . l+u 1 j_l 1 + (1-2a)A u + ,J+ M+, M+l,j 

If we assume M odd, then with the usual splitting A=G
l

+G
2

, G
l 

takes 

exactly the same form (with m replaced by M) as in (6.2.6). The other 

constituent matrix G
2

, however, is given by, 



a/2 b
l 

I I 

1 c a/2 I I _____ .1_ I __ , __ _ 

I a/2 -;;- T - I 
I , , 

____ ..J .: _ a/:J _ ,_ 
I I'" 0 

-----I 
, 

-1- -

I ' .... , , 
-r -1'"-
0

1 
la/2 

I I c 
r- ~ , , 

• 

a/2 ' 
-1- -

: a/2 JMXM 
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(6.7.11) 

~ ~ 
Similarly (G1+rI) is given by (6.3.8/9) whilst (G

2
+rI) turns out 

to be, 

-1 
(G

2 
+rI) 

where 

-t.b/t.2 

t.r/t.2 I 
---I 

I r 2 

'-c 
- _I_-

I , 

I 

I 
I , 
t---I-

-b I I 

I 1 , 
- J--

I , r' I 
- ~, - -.Lo- - L -

I', ' 
1- - - - - --r-

I ',' I 
O --t '+- - - -bl ,r2 I I 

I- - - - - -
l 

-, --, , 
I l-c r I 

_1- _ , __ ~I __ 

, , Mr 
I , ,2 

(6.7.12) 

(6.7.13) 

It is clear that the required explicit equations for the computation 

of the AGE scheme at level (p+!) remain the same as (6.3.1S/1Sa) except 

(p+!) (p) (p) 
the first equation which is replaced by u

l 
=(rlu

l 
-b

l
U

2 
+f

l
)/r

2
• 

We arrive at the following AGE equations at level (p+l): 

(p+l) 
u

l 

(p+l) 
u2 



(p+l) u, 
1. 

(p+l) = ui+l 

i=3,4 I • •• ,M-2 

and (p+l) 
u

M = 
- - ~ "" where P, P, Q, Q, R, R, Sand S are given by (6.3.19). 

If M is even, we find that, 

a/2 

c 

b11 

a/2 I __ L 

, a/2 
1 
I c 

--r 
1 

- - - -+ 
1 

I 
- -1-

I 

I 
_.1 

b 1 
1 

~/~ - -
I', , 

I 

1 
-1- -o 1 

1 .... 1 
- -1- -la/2 

01 1 

I ,--
I 
I 

1 c 

t-

with G
2 

as"in (6.2.36), 

,
I 
1 ...J ___ _ 

1 , 
-I - ---

b 1 
1 

a/2 1 ,- --
1 a/2 b J 

: c a/2 (MXM) 

r: -1-

1 

1-
I 1 2 

I-C 
I 

-1- -

1° 
I 

------r-

-b 
1 

-' 
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(6.7.14) 

(6.7.15) 

1 

(6.7,16) 

-1 
and (G2+rI) as in (6.3.22). Hence, the explicit expressions for the 

generated AGE scheme at level (p+t) are given by, 
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u (p+2) (p) (p) (p) 
= (r2 (r

l
u

l 
+fl)-b

l 
(r

l
u 2 -bu

3 
+f2»/~2 1 

(p+t) (p) (p) (p) 
u2 

= (-c(r
l

u
l 

+f
l

)+r2 (r
l

u
2 

-bu
3 

+f2»/~2 
(6.7.17) 

(p+t) 
= (Au(P)+Bu(P)+eu(P)+DU(P)+E )/~ 

)i=3,5, ••• ,M-l J 
u

i i-l i i+l i+2 i 

and 
(p+t) 

= (Au (p) +BU (p) +cu (p) +DU (p) +E ) /~ u i +l i-l i i+l i+2 i 

~ ~ "" 'V ~ 

where A,A,B,B,C,C,D,D, E. and E. are obtained from (6.3.23a). The same 
1. 1. 

equations in (6.3.24) remain valid for use at level (p+l). 



6.8 THE AGE METHOD TO SOLVE NON-LINEAR PARABOLIC AND HYPERBOLIC 

EQUATIONS 

The concept of the AGE method is now extended to a variety of 

non-linear problems. 

(iJ au a2if at = --2- • n>.2. 
ax 

Solving the equation: 

We shall now consider implementing the AGE algorithm on the 

following non-linear parabolic problem of the form, 

481 

aU a2un 

at = ax2 
, n~2 , (6.8.1) 

given the initial condition, 

U(x,O) = f(x), O<x<l , 

and the boundary conditions, 

U(O,t) = g(t) (6.8.la) 
O<t:iT • 

and U(l,t) = h(t) 

The equation (6.8.1) is approximated at the grid points by finite-

difference schemes and we shall adop.t the approach of Richtmyer and Lee 

to linearise them which result in tridiagonal systems of equations as 

before. 

(aJ Riehtmyer's linearisation 

The non-linear equation (6.8.1) is approximated by the implicit 

weighted average difference formula, 

1 2 n 2 n 
2

[80 (u .. 1)+(1-8)0 (u .. )] 
("'x) x ~,J+ x ~J 

(6.8.2) 

with i=1,2, ... ,m. 

As in the linear case n=l, the above formula corresponds to the fully 

implicit, the Crank-Nicolson and the Douglas schemes when 8=l,t and 

(6,,-1) /12" respectively with" = By resorting to the Taylor 

series expansion of un . 1 about the point (Xi ,t
J
.) we have, 

~,J+ ..... 
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n 
n U~j + (lit) 

aU
ij 

U = at + i, j+l 
n 

au, , 
n 

aU
ij + (lit) ~+ = u ij au, , at 
~J 

Hence to terms of order n, the approximation, 

(6.8.3) 

replaces the non-linear unknown u~ , 1 by an approximation which is 
1,J+ 

linear in Ui,j+l. NOW, if we let, 

(6.8.4) 

then using (6.8.2) and (6.8.3) we obtain, 

1 2 n n-l 2 n 
2[60 (u, ,+nu" w

i
)+(l-6) 0 u, ,1 

(lIx) x ~J ~J x ~J 

= 1 2 n-l 2 n 
2[n80 u

i
' w,+o u, ,1 

(lIx) x J ~ x ~J 

1 n-l n-l n-l n n n 
2 [n8(u

i 
1 ,w, l-2u

i
, W,+U, 1 ,w, l)+(u, 1 ,-2u, ,+u, 1 ,)1 = 

(lIx) - ,J ~- J ~ ~+ ,J ~+ ~- ,J ~J ~+ ,J 

(6.8.5) 

which gives a set of linear equations for the W,. Now the system of 
~ 

equations (6.8.5) can be written in the more compact matrix form as 

(with n=2). 

A~ = !. ' (6.8.6) 

which is solved for W and by means of (6.8.4) , the solution at time 

level ( j+l) is given by, 

u, 1 = w + u. (6.8.7) 
-J+ - -J 

The coefficient matrix A takes the following tridiagonal form, 



A = 

where a, , = 
~J 

b, , = 
~J 

and c, = 
~j 

" " "-
" "-

" " 
" " " 

" " ... 

o 
" ... 

" 
" " ... " " ... " " "', " 

1 
1+4Aeu, " 

~J 

-2AeU, 1 " 
1.+ , J 

o 

i=1,2, ... ,m; 

... 
cl' m- ,) 

1=1,2, •.. ,m-l; 

-2Aeu, 1 .. 
1.- ,J 1=2,3, ••• ,m. 

a 1 ' m- ,] 

c , 
m] 

b , 
m-l,J 

a , 
mJ 
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(6.8.8) 

(mxm) 

The entries of the right hand side vector of (6.8.6) are given by 

fl = (-2Aul,)ulj+(Au2,)u2,+AU ,[u ,+2e(u 'l-u j»); 
J J J OJ OJ O,J+ 0 

fi = (AU
i 

1 j)u, 1 ,+(-ZAui,)u, ,+(AU, 1 ,)u, 1 j' i=2,3, ••• ,m-l; 
-, 1. - , J J 1.) 1. + , J 1. + , 

and f = (Au 1 ,)u 1 ,+(-ZAu ,)u j+AU 1 ,[u 1 ,+2e(u 1 ,-u 1 ,»). 
m m- , J m-, J m] m m+ I J m+, J m+ , J+ 1 m+ , J 

If we assume m odd then when A is split into the sum of the matrices 

G
1 

and G
2

, these constituent matrices take the forms, 

-1 
I 
I 

G1 = - -- t-

and 

I 
-I 

I 

c
3j 

- -1- ----I -----1 b
2j 

a 3j / 2 __ L 

la4j / 2 

I 
1 c Sj 

o 
1(6.8.9) aSj / 2 1 

-I 
I 

- -1,- - I - - - - -

I "" I 
1- -'t- - - - -

l a 1 ,/2 b 1 ' I m- ,J m- ,J o 
I c a ./2 
I m , j rn, J 
I (mxm) 
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I I 

I I 
_ ~2j_ ~2{2 ~ _____ , __ :- ________ , __ 

,a3/2 b 3j : I 

I c4j _ a 4 /2' f 
- - - - - - ,- -;-, I -0- - - - - ,-

I , ',I ' ______ ' ____ 
4

_-+ _____ _ 
I 0 I lam_2 ,/2 b

m
_2,j-;--

-1-, 
I 

J 
I 

I 

I 
L 
:am/2 

(6.8.10) 

G(i) = [ta2i ,j+r 

C 2i+l, j 

then a = IG(i) I 
i 

b
2

" 1 l., J 

t a
2

:t
1
r , 

1.+ ,) 

(6.8.11) 

= (ta2i ,+r) (ta
2

, 1 j. +r) -b
2

, ,c
2

, 1 ' 
,J 1.+ , 1.,J 1.+,J 

and, 

-1 
(G

1 
+rI) 

where, 

= 

J\ (i) 
G = 

= 

Similarly, we have, 

1 
ta2 , 1 ,+r 

1. + , J 

-C2i+l, j 

-b2 , ,] l.,J 

ta
2

, ,+r 
l.,J 

(6.8.12) 

(6.8.13) 

(mxm) 

i=l,2, .•. ,t (m-I). 

(6,8.14) 

• 

(mxm) 
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(~(1) I , 1 I 1 
G L __ I_ I----~-----

1 ~ (2) I 1 
1 G __ 1 ___ , _ _:_ 

1 I'.... '0 
1 ,- .:>i -: - - -

- T :0 le; (m-I) /2 1 

_ '- - r- - - - -
I I ' 

I 1/ (!amj+r) (mxm) 

(6.8.15) 

where 

. ~(i) = 

!a2i ,j+r -b2i- 1 ,jl 

> + I 
1 (6.8.16) 

-C2i ,j ,a2i_1 ,j rJ 

(!a2 · .+r) (!a2 . 1 .+r)-b2 · 1 ,c2 ' ., i=1,2, ••• ,!(m-l). 
~,J ~- I) 1.- I) 1.,) 

with 

(6.8.17) 

We, therefore, arrive at the following equations for the computation 

of the solution of the non-linear problem using the generalised AGE 

scheme: 

(l) at level (iterate) (p+~) 

- (p) (p) -
(SlWl -bl W2 +fl)/r

l 

(p) (p) (p) (p) / 
(A.W. l+B.w. +C.w·l+o.w. 2+E .) a i / 2 1. 1.- 1. 1. 1. 1.+ 1. 1.+ 1. 1 (6.8.18) 

ii=2,4, ••• ,m-l (p+! ) 
wi+l = 

~ (p) - (p) ~ (p) ~ (p) ~ 
(A.w. l+B.Wi +C.w. l+O'w. 2+E.)/ai/2 

1. 1.- 1. 1. 1.+ 1. 1.+ 1. 

where, 

Ai = -ciri +l , Bi = ri+lsi , Ci = -biSi +l , 0i = 

'" 
Ai = cic i +l ' Bi 

J fo, for i=m-l 

lb.b. l,otherwise 
1. 1.+ 

with 
r+!a. 

1. 
and s.- = r-!a., i=1,2, ... ,m. 

1. 1. 
j 

(6.S.1Sa) 
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(2) at ZeveZ (iterate) (p+Z) . 

(p+l) 
w. ' 
~ 

(p+l) 
wi+l 

(p+l) w 
.m 

= (p) (p) (p+!) (p+!) '" 
(Piwi +Qiwi+l+Riwi +siwi+l )/a(i+l)/2 

= 
i:::1,3, ... ,m-2 

where, (6.8.19) 

Pi = ri+lqi-biCi+l' Q
i 

= b i (r i+l -qi+l) , R. = r. Id, S. = -b.d 
~ ~+ ~ ~ 

~ 

ci+l(ri-qi), - - - rid 
and p. = Q

i 
= -bici +l +riqi+l' R. = -c. Id, S. = ~ 

~ ~+ ~ 

with 

r. = r+!a. , qi !a.-(l-w)r and d = (2-w) r, i=1,2, ... ,m. ~ ~ ~ 

(6.8.19a) 

If on the other hand, we assume that m even then we obtain the 

following forms, of the constituent matrices: 

a l /2 b
lj 

, 
1 

c
2j a 2/2 , 

- --- - - r 
,a3/2 , , c4j - - - - --.--, 

----I-

b
3j 

1 

a 4/2, 

, 
-,--------

1 , 
- - ,,- 0, 

- -I , 
- -,-
o 

" , 
'L ____ _ 

'a ./2 b 1 . m-I,] m- ,] 
I 
IC 

(6.8.20) 

, 
I m I j a ./2 J 

mJ (mxm) 

a ./2 , , , 
IJ _1 ____ -I _ ; ________ +-_ 

la2/2 b 2j I : 

I C3j a
3j

/21 0 , 

G2 = - - - ~- - - - t-"", - - - - i-
I -' ~'-+ _ _ _ _I_ f- - - ,- I 0 ,am_2,/2 b

m
_

2
,j 

- 1 

[

" 1 I 1 
cl' a 1 ./2 

- - -'I - - - - 1- 1 ~-.,!J - - ~ ! . .J - ~ -.i2 ( ) 
,mJ mxm 

(6.8.21) 

J 
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~(1) I 1 , 
G _ 1_ _ _ :- _ _ J 

(G
1 

+rI) -1 = 

1 ::>. (2) : 

-+ 
~ _1- __ 0 __ _ 

I...... .... I 

J - , 1 
(6.8.22) 

_1-- __ 1- __ 

I le I~ (m/2) 
1 IG (mxm) 

and 
I 

1 1 
(r+ta1 ,) 1 1 I..J. 

- - ]"1 -6 IT) I" c: I - - -

_ _ _ _I _ _I --=. - - u. - - t- --
-- ~ I I - - - i - -+0- - - 1 ("70-2)" - -

1 I" 2 1 
_1_ -lG __ L.. - --

1 I 1 

(6.8.23) _. 

I i(r+ta ,) 
I I m] 
I (D>< m) 

where AG(i) and G~(i) 'b (6 8 14) d (6 8 16) , 1 are g~ven y •. an •• respeet~ve y. 

The AGE equations ean be derived along similar lines as before and are 

given by, 

(1) at level (p+~) 

(p+t) 
w

i 
= 

(p+t) 
wi +1 = 

where, 

A, 
~ 

Di 

'V 

A, 
~ 

( (p) + (p) (p) (p) ) I" 
A,W, 1 B,w, +C w, l+D ,w, 2+E , 10.(. 1)/2 

= 

= 

= 

... 1.- 1. 1. i 1.+ 1. 1.+ 1. 1.+ 

r 0, for i=l 

j - , 
~-c.r. l,otherwl.se 

~ ~+ 

ro, for i=m-1 

i . 
tb b, l,otherwise 

i 1.+ 

ro, for i=l 

le,e, l,otherwise 
~ ~+ 

r 0 , for i=m-l 

it-r,b, l,otherwise 
~ ~+ 

E, = r-, 1f, -b, f, 1 
1. 1.+ 1. 1. 1.+ 

i=l,3, ... ,m-l 

r,s, 1 
~ ~+ 

(6.8.24) 

(6.8.24a) 



(2) at leveZ (p+l) 

(p+l) 
w

l 

(p+l) 
w, 

1. 
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1 

(p+l) 
wi +l 

i=2,4, ... ,m-2 

(p+l) 
w 

m 

where 

(6.8.25) 

Pi = (ri+lqi-bici+l)' Qi = =dX S =-db I i+l' i i ' 

-dci +l , Si = dr i 

~ 

riqi+l-ci+lbi' Ri = 
(6.8.25a) 

The iterative process is continued until the convergence requirement 

is met. 

(b) Lee's three-level linearisation 

Lees (1966) considered the non-linear equation, 

b(U)au = JL {a(u)au} , a(U»O, b(U»O , 
at ax ax 

and investigated a difference scheme that: 

(6.8.26) 

( i) achieved linearity in the unknowns u
i 

' 1 by evaluating all 
, J+ 

(H) 

(Hi) 

Since, 

coefficients of u, , 1 at a time level of known solution 
1.,)+ 

values, 

preserved stability by averaging u
ij 

over three time levels, and 

maintained accuracy by using central-difference approximations. 

au _ 1 
(-:;-), , - -:;-(U, 1 ,-U, 1 ,) 

oX 1,) oX 1.+1,J 1-11) 

1 
= - 6 U 

t,x x ij 

then a central-difference approximation to (6.8.26) is given by 

111 
btu, ,) 2't(u, '+l-u, , 1) =,6 {a(u, ,) ,6 u, ,} 

1,J Ll 1,J 1,J- oX x 1.J LlX X 1J 

(6.8.27) 
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which reduces to the Richardson formula (3.3.1) when a(u)~b(u)~l and 

is therefore unconditionally unstable. However, in the linear constant 

coefficient case (see Mitchell and Griffiths (1980), pages 89-92), 

2 1 2 
unconditional stability is obtained by replacing 6

X
ui ,j by 36x(ui,j+l+ 

Uij+U, , 1). Following this procedure, equation (6.8.27) is rewritten 
1. ,]-

as, 
b(u'j) (u, j l-u, , 1) 

1. 1., + 1,J- ~ 2A[a(u, I ,) (ui 1 '-U'j)-a(u, , ,) (u'j-U, 1 ,)] 
l.+~,J +,J 1. 1.-'1"/J 1. 1.-,] 

and then ui +1 , j' uij and Ui_l,j are replaced by, 

111 
-3(u, 1 '+l+u, 1 ,+ui 1 ' 1)' -3(u, , l+u, ,+U, '1) and -3 (u, 1 ' 1+ 1.+,J 1.+ ,] + ,J- 1.,J+ 1.J 1.,J- 1.- ,J+ 

respecti vely. 

u, 1 ,+U, 1 ' 1) 
1.- , J .1.- ,J-

Furthermore, since u'+' ' do not fall on the grid 
1.-4/J 

points, we replace a(u, , ,) 
1.+4 ,J 

and a(u, , ,) by a(Ui+lij+Uij) and 
1.-'7,J 

u, ,+ui 1 ' 
a ( 1J 2 -, J) t' 1 respec 1 ve y. This leads to the Zinearised three-ZeveZ 

formuZa, 

2 + 
btu, ,) (Ui ' l-u, , 1) = -3A[S {(u, 1 '+l-u, , l)+(u, 1 ,-U, ,)+ 1.J ,J+ 1.,]- 1.+,] 1.,J+ 1+ ,] 1.) 

(Ui +l ' 1-u , , l)}-S-{ (u, '+l-u, 1 ' l)+(u, ,-u, 1 j) ,J- 1.,J- 1.,) 1.- ,J+ 1.J 1.- I 

where 

+(Ui ,j_l-Ui_l,j_t}] , 

u, 1 ,+ui , 
S+ ~ a( 1+ i J J) and S 

(6.8.28) 

u, ,+u
i a( 1J

2 
-l,j) (6.8.29) 

Lees (1966) proved the convergence result for (6.8.28) by showing that 

for sufficiently small values of ~x and ~t, 

2 2 
max /U, ,-u, '/ ~ K«~x) +(~t) ) , 
i,j 1J 1J , 

where K is a constant. For this method to be applied to (6.8.1), it 

is necessary to write the equation in the seZf-adjoint form as, 

au a2un 

at ~ ----2' n~2 , 
ax 
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On comparing this equation with (6.8.26), we find that for the 

particular value of n=2, a(U)=2U and b(U)=l and from (6.8.29), 

Ui+l,j+Uij , 8 

Hence the formula (6.8.28) becomes, 

= ui,+ui 1 ' • 
) -,) 

(6.8.30) 

2- 2+- 2+ 
= -3 A8 u, 1 '--3A(8 +8 )U,' +-3A8 u, 1 j 

. 1.- ,J 1.J 1.+ , 

2- 2+- 2+ 
+ '3 A8 Ui _1 ,j_1+(1 - '3A(8 +8 ))ui ,j_1 + '3 A8 U

i +l,j_1' for i=1,2, •.•• m 

(6.8.31) 

which is a tridiagona1 system of equations that can be written in 

the matrix form (6.8.6) (with ~rep1acing~) where A takes the form 

(6.8.8) and, 

a, , 
l.) 

b, , 
1.) 

and c ij 

2 + -
= 1 + '3A (8 +8 ) 

2 
i=1,2, .•• ,m; = 1 + '3A(ui_l.j+2Uij+ui+1.j)· 

= - ~ A8+ 
3 

2 
i=1,2, ... ,m-I; = - '3A(Ui+1.j+Uij)· 

2 -
= - '3A8 u, 1 ' 1 1.- I J+ 

= - ~3A(U . . +U. 1 .) I i=2,3, ... ,m. 
1.) 1.-.) 

The components of the right hand side vector f are given by. 

and 

2 
fl = '3Ar(u1j+uOj) (uO.j_1+uO.j+uO.j+1)+(u2j+u1j) (U2.j_1+U2j)-

2 
(UOj+2U1j+u2j)u1j] + [1 - '3A(uOj+2U1j+u2j)]u1.j_1 

2 + - + -
f, = -3Ar8 (u, 1 ,+U, 1 j 1)+8 (u, 1 ,+ui 1 ' 1)-(8 +8 )u .. ]+ 

1. 1+,] 1.+ I - 1.-,] - ,]- l.J 

2 + -
[1- -3A(8 +8 )]u, , l' for i= 2.3 •••.• m-1. 

1.,] -
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2 
f = -A [ (u +u. ) (u . +u +u .) + (u . +u ) (u + 

m 3 m+l,j m) m+l,)-l m+l,j m+l,)+l m) m-l,j m-l,j-l 

2 
u 1 .)-(u 1 j+2u j+u 1 j)u j]+[l- -3A(u 1 j+2u j+u 1 j)]u . l' m-,J m+, m m-, m m+, m m-, m,J-

When the AGE procedure is implemented on the above tridiagonal 

system of equations, we will arrive at the same computational formulae 

(with ~ replaced by ~) at the (p+t) and (p+l) iterates as that for 

Richtmyer's linearisation. This implies that equations (6.8.18)-

(6.8.19) (for the case m odd) and the equations (6.8.24)-(6.8.25) (when 

m is even) will be used for our iterative process. 

(ii) a
2
v = av + Vav >0 SoZving Burgers' Equation: £ ax2 at ax' £ • 

The general. non-Zinear paraboZia equation for initial boundary 

value problems is given by, 

au au 
at = 4> (x,t,U'ax' 

2 
~) 

2 ' ax 
0<>«1, (6.8.32) 

subject to smooth initial and boundary conditions. This problem is 

well posed in the region (see, for example, Friedman (1964» if 

-i~_ > a > 0 
aU -xx 

(6.8.33) 

If this holds, then the implicit relation (6.8.32) may be solved for 

2 a U ---2 Thus, we assume the partial differential equation to have the 
ax 
form, 2 a U 

-2 = 
ax 

au au 
~(x,t,U'ax' at) , 

where the properly posed requirement is 

£JL aU~a>O. 
t 

(6.8.34) 

(6.8.35) 

In some instances, (6.8.34) may be written in the quasi-linear form, 

au f(x,t,U)-- + g(x,t,U) 
ax 

(Specifically Burgers' equation £ 

au 
= p(x,t,U)at (6.8.36) 

= aU + ~ is of this form). 
at ax 
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(a) The fuZZy impZicit form 

At the point (i,j+l), (6.8.36) can be approximated by the formula, 

1 
2 

(lIx) 

2 
6 u i ' 1 x ,J+ 

. which contains u, , 1 only linearly and where the difference 
~, J+ 

operators 0 and ~ are defined by, 

and 

Oyn = Yn+! - Yn-! (central) 

~Yn = !IYn+t+Yn-!l (averaging) 

Thus, the algebraic problem is Zinear and tridiagonaZ at each time step. 

For Burgers' equation, we have the analogue, 

which leads to 

(b) The Crank-NicoZ.8on form 

Ui,j+l-uij 
lit. 

i=l, ... ,m. (6.8.38) 

The application of the Crank-Nicolson concept to the equation 

(6.8.36) gives, 

(6.8.39) 

which are non-Zinear. For Burgers' equation, these simplify to 

EA 
u',J'+l-u'J' = -21(u, 1 ,-2ui ,+ui 1 ,)+(ui 1 ' l-2u, , l+u, 1 ' 1)1 
......... 1.- IJ J +,J - ,J+ 1.,J+ 1.+ ,J+ 

At.x 
- --I(u'+l j-U, 1 ,)", ,+(u'+l '+l-u, 1 ' l)S, ,1 4 ~, ~-,J ~J ~,J ~- ,J+ ~J 

(6.8.40) 

where "ij=Sij=(ui ,j+l+uij )/2. This equation, however, can be Zinearised 

if we replace "ij by Ui,j+l and Sij by u ij ' Thus, (6.8.40) becomes, 

_ (£ lIx lIx EA lIx 
2 + -4 AUij)u, 1 ' l+(l+EA+ -4 A(u, 1 j-U, 1 ,»ui j 1-(-2 - -4 AU, ,) 

1.- ,J+ 1+, 1.-,J , + 1.J 

EA EA 
ui+l,j+l = 2 ui_l,/(1-EA)Uij + 7i+l,j' 1=1,2, •.• ,m. (6.8.41) 



(a) The Prediator-Correator form 

Non-linear algebraic equations can be avoided if two-step methods 

called the predictor-corrector methods are used. The 'predictor' gives 

a first approximation to the solution and the 'corrector' is used 

repeatedly, if necessary, to provide the final result. If ~ of (6.8.34) 

assumes the form, 

au au 
~ = fl (x,t,U)at + f 2 (x,t,U)ax + f 3 (x,t,U) (6.8.42a) 

or au au au 
~ = gl (x,t,U'ax)at + g2(x,t,u'ax) (6.8.42b) 

then a predictor-corrector modification of the Crank-Nicolson procedure 

is possible so that the resulting algebraic problem is linear. The 

class of equation (6.8.42a) includes Burgers' equation and if ~ is of 

the form (6.8.42a), then one possibility of the predictor is 

for i=1,2, ••• ,m followed by the corrector, 

(ui j l-u .. )] • , + 1.J 
(6.8.44) 

For Burgers' equation, the corresponding predictor-corrector (P-C) 

pair are given by, 

[!A(lIX) (u. 1 j-u. 1 .)-2]u .. 1+, 1-,J 1J 

(6.8.45) 

and 

(6.8.46) 
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The above predictor-corrector formulae are known to have second-order 

accuracy in both space and time ('DcuJlas and Jones (1963». Note that 

(6.8.43) is a backward difference equation. One may also use the 

following modified Crank-Nicolson predictor, 

-2-('=~-X-)"'2 O!(Ui,j+!+Uij ) ~ 1jJ[iLlx,(j+!).'It,uij , .'I~1l0xUij' .'I
2
t(Ui ,j+!-Uij )1. 

(6.8.46a) 

While the procedure (6.8.43) and (6.8.44) leads to a set of linear 

algebraic equations to solve for ~ when it is of the form (6.8.42a), 

it does not for 1jJ of the form (6.8.42b). If (6.8.44) is replaced by, 

U
ij

) 1 , (6.8.47) 

the system (6.8.43) and (6.8.47) does produce the desired linear 

algebraic equations with a local truncation error O«.'Ix)2)+O«.'It)3/2). 

All of the equations (6.8.38), (6.8.41) and (6.8.46) generate, as 

before, tridiagonal systems of the form, 

Au ~ f , (6.8.47a) 

T 
where A takes the same form as (6.8.8), ~~(ul,j+l,U2,j+l"",um,j+l) 

T 
and !~(fl,f2, ••• ,fm) Hence, we have, 

(1) fop the impZioit fo~ (6.8.38) 

a. :- = 1+2£A I i=1,2, ...... ,m 
1.,J 

b, , ~ -A(E - .'I
4
x

u ,,), i~l,2, ..• ,m-l 
1.,J 1.J 

.'Ix 
c, , ~ -A(E + -C-U

4 
' ,), i~2,3, ••. ,m 

1.,J 1.,J 

fl ~ '(~ + .'Ixu)u +u 
A ~ 4 Ij O,j+l Ij 

fi ~ u, , 
1.J 

i=2,3, ..... ,m-l 

and 
A(E 

.'Ix 
f ~ - -u )u + u 
m 4 mj m+l,j+l mj 



(2) for the Crunk-NicoZson form (6.8.41) 

t:,;x. 
ai,j = 1 + A[E + Ll(ui +1 ,j-Ui - 1 ,j)], i=1,2, ••• ,m 

Ci,j = - t(E + ~ij)' i=2,3, ••• ,m 

fl.' = E2A(U. 1 .+U. 1 .)+(l-EA)u .. , i=2,3, ••• ,m-1 
~-,J 1.+,J . 1.] 

and 

(3) for the predictor-corrector form (6.8.46) 

C .. = --2A(E +-¥u2 .. ,), i=1,2, •.• ,m 
1.,J 1.,J+'% 

Qi,j = l+EA, i=1,2, ••• ,m-1 

A t:,;x. 
f1.' = -2[E(U. 1 .-2u .. +U. 1 .)- -=-U2 . j+,(u'+l .-u. 1 .)]+ui ·, 

1.- IJ 1.J 1.+ ,J' 1., 2" 1. ,] 1.- ,J ] 

i=2,3, ... ,m-l 

A t,x t,x 
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and f 
m 

= -[du .-2u .+u .)+(E- - u .)u - -=-U • 
2 m-l,) m) m+l,) 2 m,)+! m+1,j+l 2 m,)+! 

(u 1 .-u 1 .)]+u .• 
m+ IJ m- IJ m] 

When the AGE algorithm is implemented, our iterative process will 

require the same equations for computation as in (6.8.18) and (6.8.19) 

(for the case, m odd) and (6.8.24) and (6.8.25) (for the case, m even) 

with ~ replaced by~. We note, however, that for the predictor~ 

corrector form, the solutions at the predictor stage are obtained using 

the' Thomas elimination algorithm. 
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(iiiJ A Non-Linear Example for the Reaction-Diffusion Equation 

We shall now consider the following one-dimensional reaction-

diffusion equation taken from Ramos (1985), 

au a2u at = --2 + S , 
ax 

(6.8.48) 

2 
. where S=U (l-U) and -oo<x<oo and t~O. This equation has an exact 

travelling wave solution given by, 

U(x,t) = l/(l+exp(V(x-Vt») , (6.8.49) 

where, U(-oo,t) = 1, U(oo,t) = 0 , (6.8.50) 

and V is the steady-state wave speed which is equal to l/~ In our 

numerical experiments, however, equation (6.8.48) was solved in a 

truncated domain -5~x~400, where the locations of the boundaries were 

selected so that they did not influence the wave propagation. In the 

truncated domain, the following initial condition was used, 

U(x,O) = 1/(l+exp(Vx» , (6.8.51) 

i.e. the initial condition corresponds to the exact solution. 

Various schemes in the GE and AGE class of methods are nOW 

developed to solve (6.8.48). 

(aJ GE schemes involving an explicit evaluation of the sou~e term:GE-EXP 

Following the same argument as in Section 5.2, a generalised 

approximation to (6.8.48) at the point (Xi,tj+t) is 

(u, , l-u, ,) 
1.,J+ 1.] 

6t 

+ Sij· (6.8.52) 

By letting 81 =8
4

=1 and 82=8
3
=0 in (6.8.52), we obtain the following 

asymmetric LR approximation, 

(6.8.53) 
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where A = 
t:r. 

(rue) 2 • 
If we choose e = e =1 and e = e =0 we arrive at the 

2 3' 1 4 

following RL formula, 

(l+A)ui . 1- Au. 1 . 1 = 
,J+ 1.- ,J+ 

AU +(l-A)u .. +t.t si)' i+l,j l.) 

or equivalently, at the point (i+1,j+!), 

-Au .. l+(l+A)u. 1 . 1 = (l-A)ui 1 .+Au. 2 .+t.t sl.·+l,)·· 
1,)+ 1.+ ,J+ +,J 1.+,) 

(6.8.54) 

When we couple equations (6.8.53) and (6.8.54), we obtain, 

i.e. , 

or 

giving 

~1+A) 

L -A 

u i +1 ,j+l 

Letting a
l 

= 

a = 
4 

[
Ui ,j+1 J -
ui+l ,j+1 

[
1-1. 0] rU

ij 1+ 

o 1- A lu. 1 . 
1.+ ,J 

"
Au·

1
=BU

j
+u. , 

-)+ - -) 

-1 " u = A (Bu.+u.) 
-j+l -) -) 

[Ui _1 ,j-llltsij l, 
I A u. +2 . + t.ts. 1 .J L 1. , J 1.+ f J 

1 = -::-,,,=.,
(1+2>-) r 2 2 

A (1+A)u. 1 j+(l-A )u.j+A (l ___ )u. 1 .+1. u. 2 j+ 
1.- , 1. 1.+,J 1.+ I 

t.t[(1+A)s .. +As. 1 .1 .l l.) l.+ ,) 

A (l+A) 
(1+2A) 

1.
2 

(1+2A) 

A 2u. 1 .+1. (l-A)u .. +(1-1. 2)u. 1 .+1. (1+A)u
i 

2 j 
1.- ,J 1.) 1.+ ,] + , 

+t.t [As
i

·+(l+A)s. ·1 .1 
) l.+ ,) 

a = 
(l-A 2) A Il-A) , a = , 

2 (1+21.) 3 (1+2A) 

t.t(l+A) 
and a

6 
= t.tA 

a = 
5 (1+21. ) (1 +2A) 

we have the following set of explicit equations defining the GE schemes 

at the general points, 

ul.' ,). +1 = a 1u. 1 . +a2u .. +a 3u. 1 . +a4u. 2 . +aSs .. +a6s. 1 . , 
1.-,) 1.J 1.+,] 1.+,] 1.J 1.+,J 

(6.8.55) 

and 
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and 

(6.8.56) 

For the ungrouped point at the right end boundary, we have using 

(6.8.53) 

i.e. , 

u . = a (u . +u . ) +a u +a s ., 
m-l,J+l 7 m-2,J m,J+l 8 m-l,j 9 m-l,J 

(6.8.57) 

where 
a

7 
= 1/(1+1), a

8 
= (1-1)/(1+1), a

9 
= 4t/(1+1) • 

Similarly, using (6.8.54); the ungrouped point at the left end boundary 

is given by, 

(6.8.58) 

With equations (6.8.55)-(6.8.58) we can then construct the alternating 

schemes of (S)AGE/(D)AGE-EXP schemes based on their constituent GER 

and GEL formulae. 

(b) GE methods empZoying the prediator-corrector technique: GE-PC 

The formulation is the same as in iii(a) except that the source 

term S is now approximated by (Si,j+si)/2 where 8
i

=S(U
i

) and the value 

u
i 

in the predictor step is determined by the solution of the system 

of differential equations (the explicit method of lines) 

. 1 
---2[u'

1 
.-2u. ,+u

i 
1 .]+s., i=1,2, ••• ,m-1. 

(4x) 1+ ,J 1.,J - ,J 1. 

(6.8.59) 

(The system (6.8.59) is derived by discretizing the spatial derivatives 

in (6.8.48) and keeping the time as a continuous variable. The diffusion 

terms are evaluated at the previous time step). These equations are 

solved by means of an expZiait, fourth order accurate Runge-Kutta method. 
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The solution is then employed in the corrector step by the appropriate 

GE schemes whose set of explicit equations could be similarly derived 

as in iii(a) and given by, 

ui,]·+l = alu. 1 .+a2u .. +a3u. 1 .+a4u. 2 .+as(s .. +s.)/2+a6 (si+l .+9.+1 )/2 
1.- IJ 1] 1.+,J 1.+,J 1.J 1. ,J 1. 

and 

as(s. 1 .+5. 1)/2 . 1.+,J 1.+ 

(6.8.60) 

(6.8.61) 

In the same way, the ungrouped point at the right end boundary is 

given as 

um_l,]·+l = a 7 (u 2 .+u . 1)+a8u 1 .+ag(s 1 .+5 1)/2 m- IJ m,J+ m- ,J m-,] m-
(6.8.62) 

and at the left end boundary by, 

(6.8.63) 

Raving found the basic equations for our GE schemes given by (6.8.60)-

(6.8.63) the (S)AGE/(D)AGE-PC methods can be constructed. 

(a) The AGE methods empZoying the prediator-correator teahnique on 

impZiai t approxim:ztion: AGE-PC 

As in iii(b), before applying the AGE algorithm on the corrector, 

the explicit method of" lines is again employed to determine the values 

of u
i 

from the system of ordinary differential equations, 

1 2[u. 1 .-2u. +u. 1 .1+s., i=1,2, ••• ,m 
(lIx) ~+,] ~j ~-,] 1 

= 

which is solved by means of an explicit, fourth-order accurate, Runge-

Kutta method. The solution u
i 

say, is then employed in the following 

implicit approximation to (6.8.48) in the corrector step, 
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(Ui ' 1-u , j ) 1 
.] + ~ - = ---=-:;::[ ( 2 ) ( 2 At 2 u, 1 j- ui,+ui~l ' + ui 1 ' 1- ui ' 1+ 

u 2 (l1x) ~+. ] .] + .]+ .]+ 

Ui _1 • j +1 ))+(Sij+Si)/2 • 

where Si=S(U
i
), This C-N like scheme can be written in tridiagona1 

matrix form as, 

or 

with 

and 

+l1t(s, ,+s,) (6.8.64) 
~] ~-

A.'! = !. • 

c = b = -A • a = 2 (1+1.) 

f1 = 2U1j+A(UOj+UO.j+1+U2j-2U1j)+l1t(Slj+~) 

fi = 2Uij+A(Ui+1.j-2Uij+Ui_1.j)+l1t(Sij+Si)' i=2.3 •.••• m-1 

f = 2u ,+A(u 1 ,+U 1 ' 1-2u j+u 1 ,)+l1t(s ,+s). m m) m+, ] m+ , J+ m m-, J mJ m 

The AGE equations required to solve the system (6.8.64) are given by 

(6.3.15) and (6.3.18) for the case-m odd and (6.3.23) and (6.3.25) for 

the case m even. 

(d) The AGE methods employing time linearisation techniques on implicit 

approximation: AGE-TL 

Four different time 1inearisation schemes can be derived as 

approximations to the differential equation (6.8.48). 

(1) First time linearisation scheme (lTL) 

The familiar fully implicit approximation to (6.8.48) is given by 

·Ui .]'.+l = u, ,+A(u, 1 'l-2u , , l+u , 1 ' l)+l1ts, , l' i=1.2 •.••• m. 1.J 1.- ,J+ 1.,]+ 1.+ ,J+ 1.,)+ 

(6.8.65) 

The source term si.j+1 can be 1inearised around the previous time step 
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by means of Taylor '.s series as 

(6.8.66) 

The substitution of the el<pression in (6.8.66) into (6.8.65) yields 

the following equation, 

as 
Uij+at(sij-(aU)ijUij) . 

(6.8.67) 

(2) Seaond time tinearisation saheme (2TZ) 

By applying the Crank-Nicolson concept to the differential equation 

(6.8.48), we obtain the following approl<imation, 

U',J'+l = u .. +A(u·+l · . 1-2u. j l+u, 1 ·+1)/2+A(u. 1 .-2ui ,+ui 1 .)/2 
.... 1.] 1. ,J+ 1., + 1.-,] 1.+ IJ J - IJ 

+at(s .. +S .. 1)/2 for i=1,2, ••• ,m. 
~J ~,J+ 

(6.8.68) 

The substitution of (6.8.66) into (6.8.68) leads to, 

as 
-AUi_l,j+l+(2+2A-at(aU)ij)Ui,j+l-AUi+l,j+l = 2Uij+A(Ui+l,j-2Uij+ 

as 
Ui_l,j)+at(2sij-(aU)ijUij) (6.8.69) 

(J) Third time linearisation saheme (JTL) 

This technique employs a first-order accurate time discretisation 

and a three-point compact formula for the diffusion terms (Kopal (1961» 

and can be written as, 
02 

x 
u'J' + A --"'2-- u. . l+ats. . l' i=l ,2, ••• ,m 
~ (1+0 /12) ~,J+ ~,J+ 

or, 
0

2 
x 

(1+ -12)u, . 1 
1.,)+ 

2 x ,2 
Ox 2 Ux 

= (1+ 12)Uij +AOxUi,j+l+at(l+ 12)Si,j+l (6.8.70) 

where ° denotes the usual central difference operator. By substituting 

(6.8.66) into equation (6.8.70) we obtain, 
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1 as 5 as 1 
[-A+7:,{12 l-t.t(;-), 1 ,}lu, 1 ' l+[2A+ ~6 l-t.t(;-), )lu, '1 + [-.\+ 12 

aU ~- ,J ~- ,J+ aU ~,J ~,J+ 

1 as 1 
-12 [l-tlt(oU) , 1 ,lu, 1 ,+ -6tlt [Ss, ,+t(s, 1 ,+si 1 .ll, (6.8.71) 

o ~+,J ~+,J 1.)].-,] +,] . 

i=l,2 I ••• I m. 
(4) Fourth time Zinearisation saheme (41Z) 

This scheme employs a second-order accurate time discretisation 

and a three-point compact formula for the diffusion terms (Kopal (1961» 

which is fourth-order accurate in space. The finite-difference form of 

the 4TL method can be written as, 

02 
x 

u 1 = u'J' + A 2 [u, ,+u, j 11/2+tlt[si'+s, '11/2, 
i,j+ ~ (1+0 /12) ~J ~,+ J ~,J+ 

or 
0
2 
x 

(2+ -6 )u, , 1 
1.,)+ 

x 
i=1,2 I ... .. ,ro 

The substitution of (6.8.66) into (6.8.72) yields 

(6.8.73) 

We note that equations (6.8.67), (6.8.69), (6.8.71) and (6.8.73) generate 

tridiagonal systems of the form (6.8,47a). Hence, we have, 

(1) for 1TL (6.8.6?) 

= -).. i=2,3, ... ,m 

a ij l+2A-tlt (~~) ij , i=l,2, ... ,m 

b
ij 

= -).. , i=l,2, ... ,m-l 

as 
fl = u1j +tlt(slj -(au)l,jU1j )+AuO,j+l 
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as 
fi = Uij+bt(Sij-(aU)ijUij), i=2,3, ••. ,m-l 

and 
as 

fm = Umj+bt(Smj-(au)mjUmj)+AUm+l,j+l 

(8) _ for 8TL (6.8.69) 

and 

(3) 

and 

C
ij 

= -A , i=2,3, ... ,m 

as 
a ij = 2+2 A-llt(au\,j , i=l,2, ••• ,m 

b
ij 

= -A, i=l,2, ••• ,m-l 

as 
fl = 2ul / A(U2j -2U1j ) + lit (2s1j - (au) Ij Ulj ) + A(UOj +UO, j+l) 

as 
fi = 2Uij+A(Ui_l,j-2uij+ui+l,j)+llt(2sij-(a:J)ijUij)' i=2, ••• ,m-l 

as 
f = 2u ,+A(U 1 ,-2u ,)+lIt(2s '-('U) ,U ,)+A(U 1 ,+u 1 '1); 

m m) m-, ) m) m) 0 m) m) m+ ,) m+, ) + 

for 3TL (6.8.71) 

1 as 
i=2,3, .. . ,m c, , = 7,+ 12[l-llt(aU)i_l,jl , 

1) 

5 as 
i=l,2, .. . ,m a, , = 2 A+ -[l-llt (-) 1 

1) 6 au ij 

b, . 
1 as 

i=l ,2, ••• ,m-l = -A+ -[l-lIt (-) 1 
1) 12 au i+l,j 

fi = l~[l-llt(!~)i_l,jlUi_l,jT ~[l-llt(!~)ij+ l~[l-llt(~~)i+l,jlUi+l,j 
1 , 

+ -611t [Ss, ,+1(s, 1 ,+s, 1 ,)l ,1=2, ••• ,m-l, 
1) 1- ,) 1+ ,) 

f = ...!...[l-llt(2..§.) ,l [u ,-u ,l+m ,+ ...!...[l-At(as) ,l' 
m 12 au m+l,) m+l,) m+l,)+l m+l,)+l 12 aU m-l,) 

1 as 
Um_l,j + ~S[l-llt(au)mjlUmj +lIt[SSm/1(sm_l,j+Sm+l,j)l ; 

(4) for 4TL (6.8.73) 

= ~[l- lit (~) J -' '2 3 c ij 6 2 au i-I, j I\,~.::::" ••• ,m, 
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f1.. = [.!.(l- t.t(~) .)+>'lu. .+[~(2-t.t(~) )-2>.lu .. + 
6 2 au i-l,J 1.-1,J 6 au ij 1.J 

i=2,3, •.• ,m-l 

and f =.!.[l_t.t(~) .l(u .-u . )+>.(u +u .) 
m 6 2 au m+l,J m+l,J m+l,J+l m+l,j m+l,J+l 

+[!.(l- t.t(as) +>.lu + [~(2-t.t(~) )-2>.lu. 
6 2 aU m-l,j m-l,j 6 au m,j mJ 

+ "'6
t

(S 1 .+lOs j+s 1 .) • m- , J m m+ I) 

Again we find that the equations governing the convergence of the AGE 

iterative process that utilises each of the above time linearisation 

schemes are given by (6.8.18) and (6.8.19) (for the case m odd) and 

(6.8.24) and (6.8.25) (for the case m even) with ~ replaced by ~. 

(iv) SoZving the Non-Linear First Order HyperboZic (Convection) Equation 

A non-linear first order hyperbolic equation may take the 

following form, 
au = _~ 
at ax 

(6.8.74) 

By resorting to the generalised difference formula developed in 

section 2.9, an approximation to (6.8.74) at the point (i,j+8) is 

given by, 
(u .. 1-11··) 1 

1, J+ 1J { 
't = -u .. 8 -[(l-w)u. 1 . 1+(2w-l)u .. 1-
II ~,J+ ~x 1+ ,J+ 1,J+ 

WU·
l 

. ll+(l-e) [(l..,w)u
i 

1 .+(2w-l)u .. -wu i 1 .ll. 
1- , J + + , J 1.) -, J 

where O:;w, 8:;1. for i=1,2, ••• ,m. (6.8.75) 
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(a) ~e imp~iait, aentred-in-distanae, baakward-in-time saheme (CDBT) 

If we choose w=! and 8=1 in (6.8.75) we obtain the following 

formula, 

Cli,j+l[ 1 - u -u 
2t.x i+1, j+1 i-l, j+l ' 

(6.8.76) 

where a
i 

' 1 = u, '1· Equation (6.8.76) is linearised by replacing 
IJ+ 1.,)+ 

(p) 1 Cl, , 1 by u
i 

' 1 (the 0 d value in our iterative process) leading to 
1.,)+ ,J+ 

the tridiagonal system of equations, 

A (p» + + A (p) ) =u 2 
(- ZUi,j+1 Ui-l,j+l Ui,j+l (2' Ui,j+l ui+l,j+l ij' i=l, , ••• ,m; 

(6.8.77) 

where A=t.t/t.X, the mesh ratio. 

(b) ~e aentred-in-distanae, centred-in-time saheme (CDCTJ 

The choice of w=! and 8=! in (6.8.75) gives the difference analogue, 

u, j+l-U, , 
1., 1) 

t.t 
Ui , j+! 

= 4' [ (u, 1 ' l-u, 1 ' 1) + (u, 1 ,-U, 1 j»). 
uX 1.+ ,J+ 1.- ,]+ 1.+ ,] 1- I 

(6.8.78) 

Since u
i 

' 1 does not fall on the grid point, it can be replaced by 
, J +7 

(U, ,+U, , 1)/2 and (6.8.78) becomes, 
.1,] 1,J+ 

1 
- -4' [Cl" (u, 1 '+l-u i 1 '+1) +8, ,(u i +l ,-",x l.J 1. + , J - , J l.J , J 

u, 1 ,) 1 
1.- , J 

which is non-linear with Cl, ,=8', ,=(u, ,+U, '1)/2. It can, however, be 
l.J l.J l.J 1.,J+ 

linearised by letting instead Cl, ,=u, , and 8, ,=u, , 1 and consequently 
l.J l.J l.J 1., J+ 

we get the tridiagonal system of equations, 

(- ~ij)Ui_l,j+l+(l+ ~(Ui+l,j-Ui_l,j»Ui,j+l+(1uij)Ui+l,j+l = u ij 

(6.8.79) 

As previously, ,the tridiagonal systems (6.8.77) and (6,8,79) are of 



the form (6.S.47a) and therefore we have 

(1) fo!' CDBT (6.8.77) 

= A (p) 
- ZUi, j+l c, , 

1J 
, i=2,3, ... ,m 

a
ij 

= 1, i=1,2, ... ,m 

A (p) 
b ij ,= '2'1'\,j+l' i=1,2, ... ,m-l 

fl = u
lj 

+ (~(p) )u 
2 l,j+l O,j+l 

f, = u ij ' i=2,3, ... ,m-l, 
1 

f 
A (p) 

= U - (- U )u 
m mj 2 m,j+l m+l,j+l 

(2) fo!' CDCT (6.8.79) 

A 
c ij = - '4 uij ' i=2,3, ••• ,m 

and 

A 
a

1
, J' = 1 + -4 (u, +1 ,-U, 1 ,), i=l, 2, ... ,m 

1. ,J 1.-,J 

b ij = iuij , i=1,2, ••• ,m-l, 

A 
fl = u lj (1 + '4 uo, j+l) 

f, = 
1 

u
ij 

, i=2, ... ,m-l, 

, (1 
A 

f = U --u ) 
m mJ 4 m+l,j+l' 

The AGE iterative process is completed when convergence is reached 
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using the equations (6.S.1S) and (6.S.19) (if m odd) and (6.S.24) and 

(6.S.25) (if m even) with ~ replaced by ~. 
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6.9 NUMERICAL EXPERIMENTS AND COMPARATIVE RESULTS 

A number of experiments were conducted to demonstrate the 

application of the AGE algorithm on parabolic and hyperbolic problems 

and where appropriate the solutions were compared with that of the GE 

class of methods either given by Evans and Abdullah (1983) or obtained 

by the author. In most cases, both the Peaceman-Racnford (PR) and the 

Douglas-Rachford (OR) variants were employed for the implementation of 

the AGE scheme and the acceleration parameter r was chosen so as to 

provide the most rapid convergence. Unless otherwise stated, the 

-4 aonvergenae aritePion was taken as eps=lO 

EXPERIMENT 1 

We considered the following problem taken from Saulev (1964), 

au -= a
2u 

-2- , 
ax 

subject to the initial condition, 

U(x,O) = 4x(1-x) , O~x~l 

and the boundary conditions 

U(O,t) = U(l,t) = 0 , t~o . 
The exact solution is given by, 

00 2 2 
U (x, t) 

32 L 13 e -11 k tsLn(krrx) = 
3 

11 k=1,(2) k 

(6.9.1) 

(6.9.la) 

(6.9.2) 

Tables 6.9.1-6.9.3 provide a comparison of the accuracy of the methods 

under consideration in terms of the absolute errors at the appropriate 

grid pOints for various values of X. It is very clear that in the AGE 

class of methods, the Douglas formula (AGE-DG) employing the PR variant 

.1s the most accurate in comparison with the fully implicit formula 

(AGE-IMP) as well as the Crank-N1colson scheme (AGE-CN). This is to be 



508 

expected since DG is second-order accurate in space and fourth-order 

accurate in time whereas CN and IMP have accuracies to the order of 

O[(t.X)2+(t.t)2) and O[(t.x)2+t. t ) respectively. By the same reasoning, 

the PR variant which we know is second-order accurate in both space and 

time is expected to produce a better solution and takes smaller iteration 

2 
than the OR variant whose truncation error is O«t.x) +t.t). It is also 

apparent that (O)AGE and AGE-CN have comparable accuracies. 

TO indicate the efficiency of the AGE iterative methods, it is 

necessary to consider the computational complexity for each iteration 

as well as the number of iterations required for convergence. One way 

of estimating this computational complexity is to count the number of 

arithmetic operations performed on each mesh line (time level) where 

there are m internal points. Thus, using (6.2.4a), (6.3.15/1 5a) and 

(6.3.18/19) (with m odd) we find that to complete one iteration of the 

generalised AGE scheme, the amount of work done is given by the table 

below: 

Scheme Number of mulriplications Number of additions 

AGE-IMP 
(19m-l) 

+ 31 6m+l9 
2 

AGE-CN 
(23m-l) + 31 8m+20 

2 

AGE-DG 
(23m-l) 

+ 45 8m+23 
2 

TABLE 6.9.4 

In comparison, the Thomas algorithm requires approximately (11m-3) 

multiplications and (7m-3) subtractions to solve the CN scheme directly. 

We infer from Table 6.9.4 that for large m, the number of multiplications 

incurred in the implementation of the AGE algorithm for CN or DG are 

• 
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only slightly more thari that required by the Thomas algorithm. On the 

average only two iterations are needed by the PR variant for convergence 

and it can therefore be concluded that the AGE scheme has merits as an 

alternative iterative method with respect to stability, accuracy, 

efficiency and rate of convergence. 

EXPERIMENT 2 

In this experiment, we attempted to solve the following heat 

conduction problem with periodic boundary conditions, 

au 
at lO(l-x)xt 

subject to the initial condition, 

U(x,O) = x(l-x) , 

and the boundary conditions, 

U(O,t) = U(l,t) dU &U ( ) , ~ (0'-\:'')'' --;; 1,t 
The above problem has the exact solution given by, 

U(x,t) = 
'" 2 2 

5 I cos (2~"X) [ 4k2,,2 t _l +e -4k " t} 
8 k=l (k,,) 

2 2 
-4k " t 

I e 
cos (2k"x) 

k=l 

The AGE solutions at the grid points on selected time rows and 

for various time steps are displayed in Tables 6.9.5 and 6.9.6 for 

(6.9.3) 

(6.9.3a) 

(6.9.3b) 

(6.9.4) 

both the PR and DR variants. It is observed that except for A=O.l (at 

t=O.l), an examination of all the averages of the percentage errors 

indicates that the AGE solutions are more accurate than the (O)AGE 

values derived by Abdullah (1983). While the number of iterations for 

the PR variant remains fairly constant (as well as the percentage 

errors), the iteration count for the OR variant tends to become large 

with increasing A. 
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EXPERIMENT 3 

This experiment involved the solution of the diffusion-convection 

equation, au 
at 

k au 
ax 

with the initial condition, 

U(x,O) = 0, o<x<l , 

and the Dirichlet boundary conditions, 

U(O,t) = ° , } 
~O • 

U(l,t) = 1. 

The coefficients k and £ assumed the same values of 1. The exact 

solution is given by, 

(6.9.5) 

(6.9.5a) 

(6.9.5b) 

U(x,t) + 2 L 
n=l 

k 
(_l)n ml -2£-(x-l) . ( ) 

-'-=..,2,-""'----,2'" e s ill mIx 
(mr) + (k/2£l 

e (6.9.6) 

From Abdullah (1983) the solutions of (6.9.5) by means of the 

Crank-Nicolson scheme with upwinding (CNU) and the (D) AGE scheme were 

included. These were then compared with the AGE scheme employing the 

fully implicit formula (AGE-IMP) as well as the methods of Crank-

Nicolson (AGE-CN) and Crank-Nicolson with upwinding (AGE-CNU). 

The absolute errors of the numerical solutions of these schemes 

are shown in Tables 6.9.7-6.9.10. It must be remembered that the CNU 

scheme is only first-order accurate in space and second-order accurate 

in time. This explains the poor accuracy of CNU and AGE-CNU even when 

compared with the fully implicit formula whose truncation error is 

0«~)2+~t) since smaller values of ~t were taken in our experiments 

with ~x=O.l. For small A, the (D)AGE process appears to have a slight 

edge on AGE-cN. For larger mesh ratios such as A=2.0, however, the 
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AGE-cN method can be very competitive since it exhibits better accuracy 

and requires only one iteration for convergence and is therefore worthy 

of recommendation. 

EXPERIMENT 4 

The AGE algorithm was implemented on the same first-order hyperbolic 

equations of Section 4.13, i.e. Problem 1 and Problem 2 given by: 

(a) Problem 1 

aU au 

° +- = , 
at ax 

subject to, 

U(x,o) = cos x 

U(O,t) = cos t 

and U(l,t) = cos (l-t) 

The exact solution is given by, 

U(x,t) = cos(x-t) 

and 

(b) Problem 2 

subject to, 

and 

au au 
at + ax = k(x,t) , 

-2t 
(k(x,t) = -2sin(x-t)e ) 

U(x,O) = sin x 

U(O,t) 

U(l,t) 

-2t 
-sin (t) e , 

-2t 
sin(l-t)e 

The exact solution is given by, 

-2t 
U(x,t) = sin(x-t)e 

(6.9.7) 

(6.9.7a) 

(6.9.7b) 

(6.9.8) 

(6.9.9) 

(6.9.9a) 

(6.9.9b) 

(6.9.10) 

It is known that the truncation errors of the fully implicit scheme 

and the Crank-Nicolson type scheme (the centred-in-distance, centred-in

time formula) are 0«llx)2+l1t ) and 0«llx)2+(llt)2) respectively .• The 
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accuracies of the AGE method utilising these schemes (AGE-IMP and 

AGE-CN) are depicted in Tables 6.9.11-6.9.14 for both problems using 

A=0.5 and A=l. They are then compared with the results derived from 

the GE class of methods and other well-known schemes given in Tables 

4.13.1-4.13.4. It is interesting to note that the CN method (using 

the Thomas algorithm) and the AGE-CN scheme (employing the PR variant) 

exhibit the same order of accuracy although the latter with 3 to 4 

iterations requires more computational load than the former. Further-

more, for Problem 1, these schemes evidently emerge as the next most 

accurate method of solution after the Lax-Wendroff formula. For Problem 

2, however, the (D)AGE process appears to be more favourable. As expected, 

the DR variant of the AGE class of methods produces a slightly less 

accurate solution and entails two to three times more iterations than 

the corresponding PR formula. 

EXPERIMENT 5 

This experiment dealt with the following problems involving the 

one-dimensional wave equation: 

(a) ProbZem 1 (with DirichZet boundary conditions) 

(6.9.11) 

subject to the initial conditions, 

U(x,O) = ~in(1TX) , 

au at (x ,0) = 0 , 

(6.9.11a) 

and the boundary conditions, 

U(O,t) = U(l,t) = 0 . (6.9.11b) 

The exact solution is given by, 
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1 
U(x,t) = 8 sin(~x)cos(~t) (6.9.12) 

and 

(b) ProbZem 2 (with derivative boundary aonditions) 

a2~= 
ax 

subject to the initial conditions, 

U(x,O) 
2 

= lOOx 

au 
at(x,O) = 200x 

and the boundary conditions, 

aUto t) = 200t 
ax ' 

U(l,t) = lOO(1+t)2 

The exact solution is of the form, 

2 
U(x,t) = lOO(x+t) 

(6.9.13) 

(6.9.l3a) 

(6.9.l3b) 

(6.9.14) 

In applying the AGE algorithm to the general equations (6.7.3), 

we chose a=1/4 to correspond with the implicit method (243.15) which as 

we know from Section 2.15 has second-order accuracy in both space and 

time. In Table 6.9.15 is shown the absolute errors of the AGE solutions 

for Problem 1 for X=O.5 and X=l.O. As solutions by means of the GE 

class of methods are available, the results of this particular experiment 

are compared with that of Table 4.13.8. It is immediately evident that 

while the (S)AGE-LW combination is favoured in appZying the GE teahnique 

on the wave equation it is, however, slightly less accurate than the 

AGE scheme which unlike the former has the additional advantage of 

being unconditionally stable. The iteration number necessary for 

convergence is also found to be considerably small. In Table 6.9.16 

is presented the percentage errors of the AGE solutions to the wave 

equation for Problem 2 for the values of X progressing from 0.1 to 2.0. 
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Unfortunately, no solutions from other schemes have been worked out 

to provide a comparison for this particular example. 

EXPERIMENT 6 

This experiment was concerned with the solution of the non-linear 

problem, au -= at (6.9.1S) 

with the exact solution (Abdullah (1983)), 

(2U-3)+~n(U-!) = 2(2t-x) (6.9.16) 

The appropriate boundary data were given to satisfy the above exact 

solution. 

The analytical solution was obtained iteratively by means of the 

Newton-Raphson method through the formula, 

U(p+l) = !+[i - 1~n(u(p)-1)-x+2tl (1- ~~~P~))' 
2U 

and the initial guesses were taken as, 

4 2 (x-2t) 
+ -=--.:e:......,,...,..-;,.,...,.. 

4+2e 2 (x-2t) 

p=1,2,3, .•• (6.9.l7) 

(6.9.l7a) 

The AGE solutions using the fully implicit, crank-Nicolson and 

Douglas formulae which were linearised using the Ritchmyer's method 

(AGE-IMP(RCHM),AGE-CN(RCHM) and AGE-DG(RCHM)) are shown in Tables 

6.9.17-6.9.18. They are compared with the results obtained from the 

linearised schemes of Crank-Nicolson (using the Richtmyer's method) 

and Lee and as well as from the (D)AGE formulae. The linearised 

schemes of Crank-Nicolson (CN) and Lee employed the Thomas algorithm 

as a method of solution to the resulting tridiagonal system of equations. 

As the (D)AGE scheme had to be solved iteratively, convergence of the 
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iterative process was considered for every group of 2 points and the 

figures in brackets in the tables indicate the number of iterations 

required. 

It is observed that in the AGE class of methods, the AGE-LEE scheme 

provides the most accurate solutions for both A=O.OS and A=O.l. The 

approximate amount of arithmetic involved in the computation of the AGE 

solutions per iteration is given in Table 6.9.19 below. 

~ Number of Nwnber of 
Method multiplications additions 

AGE-IMP/CN/DG 41m-16 24m+l 

AGE-LEE SOm-21 4Sm-20 

TABLE 6.9.19 

TO reduce the storage requirement to a minimum, the entries of the 

coefficient matrix A and the right-hand side vector f of (6.8.6) were 

generated rather than stored at each of the (p+t) and (p+l) iterates. 

Consequently as is expected for a non-linear problem, the computational 

complexity of the AGE schemes can be quite substantial. 

It is also apparent that the (D) AGE, CN and LEE schemes possess 

solutions close to the analytical ones. However, it must be mentioned 

that the (D)AGE scheme requires 3 iterations for every group of 2 points 

while the AGE methods require only 1 or 2 iterations over the whoZe mesh 

line. 

EXPERIMENT 7 

The following Burger's equation was considered, 

eU = E e
2
u _ uB! 

at 2 ax eX 
(6.9.18) 

and the initial and boundary conditions were prescribed so as to satisfy 
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the exact solution. Two problems were solved using the AGE algorithm. 

Prob~em 1 

This problem has the exact solution (Madsen and Sincovec (1976)), 

-A -B -C -A -B -C 
U(x,t) = (O.le + O.se + e )/(e + e + e ), O~xH, t~O 

where, 

0.05 
A = -e---(x-o.s+4.9st) 

and 

and 

Prob~em 2 

The exact 

U(x,t) = 

where, 

~ = 2 f: 

and 

B = 0.25( 5 -e--- x-o. +o.75t) 

C = 0.5 (x-o 375) e • 

solution to this problem is given 
00 2 2 

2n I k ~ sin (knx)e (-ek n t) 
k=l 

1 rx 
cos (knx)exp{- 2'€J

o
F(X')dxo}dx, 

= Jl exp {- J:...JXF(X')dx'}dx 
o 2e 0 

(i) F(x) = 4x(1-x) 

(ii) F(x) = sin(nx) 

(6.9.19) 

(6.9.l9a) 

by (Cole (1951)), 

(6.9.20) 

(6.9.20a) 

(6.9.20b) 

(6.9.20c) 

Comparative results for Problem 1 using the (D) AGE and AGE schemes 

for A=l.O and e=O.l and e=l.O at t=l.O are given in Table 6.9.20. The 

figures in brackets for the (D) AGE scheme indicate the number of iterations 

required for convergence at every group of two points. The numerical 

solutions to Burgers' equation for the same problem'obtained by means 

of the various difference schemes at different time levels for smaller 
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values of £ are presented in Tables 6.9.21-6.9.22. The solutions to 

Problem 2 are shown in Tables 6.9.23-6.9.24 where only the PR variant 

was employed for the generalised AGE method. 

It can be inferred from Table 6.9.20 that the AGE-cN and (D)AGE 

processes exhibit comparable accuracies at the grid point. The number 

of iterations required by the AGE-cN (PR) scheme (about 3-4 iterations) 

can be further reduced by relaxing the convergence criterion which at 

-6 
10 may be regarded as quite stringent. Similar features of accuracy 

of the (D)AGE and AGE-cN schemes are also observed in Tables 6.9.21-

6.9.21 for a much smaller value £=0.003 although now the solutions are 

at slight variance with the exact ones. However, a Zarge number of 

ite~tions were required to achieve convergence of the (D) AGE procedure 

(Evans and Abdullah (1984». The AGE-CN (PR) method, on the other hand, 

required only 2 iterations over the whole mesh line at t=O.l and t=O.S. 

Hence, it can be said that the AGE-cN scheme is just as competitive, if 

not better, than the (D)AGE method. 

For Problem 2 with F(x) given by (6.9.20b) we find from Table 6.9.23 

that while the (D)AGE and AGE-CN schemes have about the same order of 

accuracy, the AGE-IMP method appears to be more accurate. The same 

conclusion can be drawn from Table 6.9.24 with F(x) given by (6.9.20c). 

In this particular case, the explicit scheme (Caldwell and Smith (1982» 

demonstrates that it provides a better solution. In general, it is not 

expected of these two schemes to perform better. However, the inaccuracies 

in the solutions for small values of £ seems to be a difficulty 

experienced by most finite difference methods. 

Finally, as an indication of efficiency of the AGE algorithm, we 

present below estimates of the computational complexity per iteration 
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of the relevant difference schemes employed to solve the above 

Burger's equation: 

~ Number of Number of 
Schemes multiplications additions 

AGE-IMP 24m 
( 39m-l) -3 

2 

AGE-cN 41m-16 37m-19 

TABLE 6.9.25 

where we have assumed that m is odd. 

EXPERIMENT 8 

This experiment dealt with the calculation of the propagation of 

a one-dimensional wave governed by the reaction-diffusion equation, 

where 

aU a2u 
at =-2 

ax 
+ S , 

S = i(l-U) 

-c:o<x<co , t~O I (6.9.21) 

(6.9.21a) 

AS was explained in Section 6.8(iii), for practical purposes, the above 

domain was truncated to -50~x~400, t~O and the following initial and 

boundary conditions were prescribed, 

U(x,O) = 1/ (l+/x) , (6.9.21b) 

U(-50,t) = 1 , 

and U(400,t) = 0 , (6.9.21c) 

where V= 1/12", the steady-state wave speed. The exact travelling wave 

solution is given by, 

U(x,t) = l/(l+eV(x-Vt)) . (6.9.22) 

The numerical solutions to the reaction-diffusion problem were obtained 

using the GE-PC, AGE-PC and AGE-TL schemes and comparisons among these 

methods were presented in terms of the absolute errors of the solutions. 
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The mesh ratio was taken as A =0.2 and the calculations were performed 

with different spatial grids and time steps. 

An examination of the absolute errors in Tables 6.9.26-6.9.29 for 

solutions at different time levels with t:.x=l.O and t:.t=O.2 shows that 

for small t, the AGE-4TL method is the most accurate followed by the 

AGE-PC, (D) AGE-PC, AGE-2TL, (S)AGE-PC, AGE-ITL, AGE-3TL, (S)AGE-EXP 

and (O)AGE-EXP schemes while for large t we have in decreasing order of 

accuracy, the AGE-4TL, AGE-2TL, AGE-PC, (O)AGE-PC, (S)AGE-PC, AGE-ITL, 

AGE-3TL,(O)AGE-EXP and (S)AGE-EXP schemes. The same conclusion can be 

drawn for finer grids with t:.x=O.S and t:.t=O.OS (Tables 6.9.31-6.9.32). 

However, as t progresses, AGE-3TL becomes more accurate than AGE-ITL. 

One possible explanation to the above observation is that the accuracy 

of the methods is very much dependent on the time step employed in the 

calculation. For the TL methods, for example, the non-linear reaction 

terms are expanded in Taylor series about the previous time and the ITL, 

2Tl, 3TL and 4TL formulae are known to have accuracies to the order of 

2 2 2 4 4 2 
O([t:.x] +t:.t) , O([t:.x] + [t:.t] ), O([t:.x] +t:.t) and o ([t:.x] + [t:.t] ) respectively. 

The results presented in Tables 6.9.26-6.9.29 and Tables 6.9.31-6.9.32 

therefore suggest that tempo~Z approximations pZay a more dominant role 

than spatiaZ approximations in determining the accuracy of the methods. 

A similar reasoning can also be applied to other methods employing the 

PC technique. For each grid point along the mesh line (time row), the 

5 Runge-Kutta method of O([t:.t] ) accuracy is used which is then corrected 

by utilising the Crank-Nicolson formula which in turn is second-order 

accurate in both space and time. Thus, in the (S)AGE-PC and (O)AGE-PC 

methods, the utilisation of these high-order formulae coupled with the 

cancellation of errors resulting from the alternate use of the 
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constituent GER and GEL schemes lead to accurate solutions of these 

schemes. 

In Tables 6.9.30 and 6.9.33, we compare the accuracy of the various 

methods in terms of the computed wave speed V. For a steady state wave 

propagation problem, the following condition applies, 

au + V au = 0 • 
at ax 

(6.9.23) 

au . 
By substituting at into (6.9.21) and then integrating the result using 

(6.9.2lc), V can be obtained as, 

J
4OO 2 

V = U (l-U)dx (6.9.24) 

-50 

In our experiment, the solutions worked out from each of the numerical 

methods were used along the whole mesh line and then the composite 

trapezium rule was employed to compute V which was then compared with 

the exact value 1/12 =0.7071058. It must be mentioned that RaI!X)S (1985) 

employed the Thomas algorithm to solve tridiagonal systems of equations 

arising from the application of the relevant finite difference formulae. 

Since the values of V from the solutions of these methods are available, 

we are then able to compare the accuracy of the solutions of the (S)AGE, 

(D)AGE and AGE class of methods with those obtained from the application 

of the Thomas algorithm. In general, we find that the computed values 

of V from the AGE (PR) solutions (CV) are in close agreement with those 

of Ramos (CV-R). This can also be read from a comparison of the 

appropriate percentage errors in the computed values (PCV and PCV-R) 

as presented in Tables 6.9.30 and 6.9.33 for both coarse and fine grids. 

An estimate of the computational effort involved by all the methods 

to execute .the calculations per time row (in the case of the GE schemes) 

or per iteration (in the case of the AGE schemes) is given in the 

following table: 
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~s Number of Number of 
Schemes multiplications additions 

GE-EXP l2m+lO 7m+l 

P 3Sm 29 

GE-PC C lSm+lO 9m+l 
------------- - - - -- -----. 

Total 56m+lO 9m+30 

P 3Sm 29 

AGE-PC C 22m-23 (33~-l) I 6 
-- - -- - - - - r--------

Total 6Om-23 (33m-l) 35 
? I 

AGE-lTL (73~-l) 134 3lm-13 

AGE-2TL 3Sm-l2 (63m-l) 
-11 

. 2 

AGE-3TL 76m-l2 52m-13 
, 

AGE-4TL 75m-1O 55m-11 

TABLE 6.9.34 

The estimate of the amount of work done is based on an odd number (m 

odd) of internal points on the time row. 

From the preceding discussion, we conclude that among all the 

methods worthy of recommendation, the AGE-4TL{PR) procedure provides 

the most accurate solution to the reaction-diffusion problem_ As a high-

order method , it is expected to yield more accurate results for a wide 

range of spatial and temporal step sizes. By contrast, the 3TL technique 

is the least competitive in the AGE class because it is not only less 

accurate but also requires more arithmetic work and iterations. 

Although the GE-PC and AGE-PC procedures result in highly accurate 

solutions for our particular example, the explicit evaluat1:ons of the 

diffusion terms at the predictor. stage may lead to some stability 

restrictions on the time step size. 



EXPERIMENT 9 

The following non-linear first order hyperbolic (convection) 

equation was considered 

= -U 3U 
3x 

and two problems were solved using the AGE algorithm. 

ProbLem 1 
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(6.9.25) 

Equation (6.9.25) was solved subject to the auxiliary conditions 

(Casulli et al, 1984), 

U (x ,0) = l-x, ~x~l (6.9.26) 

U{O,t) = 1 , O<t~l , 

and 

={: 
for l~t 

U{l,t) 
for t<l. 

(6.9.26a) 

The exact solution is given by, r for x~t 
U{x,tj 

x-l 
t-l for t<x~l. 

(6".9.27) 

ProbLem 2 

For this problem, the initial and boundary conditions take the 

form (Ames (l977», 

U{x,O) = x , O~x~l (6.9.28) 

U{O,t) = 0 t~O 

and U{l,t) = 11 (l+t) t~O . (6.9.28a) 

This problem has the exact solution given by, 

U{x,t) = xl (l+t) . (6.9.29) 

The solutions to both problems were obtained using the AGE 

algorithm which was implemented on the CDBT and CDCT formulae given by 

the linearised tridiagonal systems (6.8.77) and (6.8.79) respectively. 
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A number of computer runs were carried out using ~x=O.05 and with 

varying time steps to determine the accuracy of the AGE-cDBT and AGE-

COCT schemes. The results given in terms of the absolute errors are 

shown in Tables 6.9.35-6.9.37. 

It is observed from Table 6.9.35 that for small dt, the average of 

absolute errors on time level t=l.O indicates that the AGE-COBT scheme 

is more accurate than the AGE-COCT procedure. When the mesh ratio is 

progressively increased (~x being fixed) we find that the accuracy of 

the AGE-COCT scheme begins to improve over the AGE-COBT method. Since 

the truncation errors of the COCT formula is O([~x12+[~t12), it is 

therefore clear that the AGE-CDCT scheme produces a more accurate 

2 
solution than AGE-COBT whose truncation error is only O([~xl +dt). The 

accuracy of the AGE-COCT scheme is even more pronounced for the second 

example. It is immediately evident from Table 6.9.37 that despite 

-6 
having to satisfy the stringent convergence requirement of eps=lO , 

the AGE-COCT(PR) scheme demonstrates that it requires only two iterations 

while at the same .time it maintains its high order of accuracy for large 

time steps. Thus, although the computational complexity of the AGE-COCT 

scheme may be slightly large as illustrated in· Table 6.9.38, it offers 

great promise as an accurate, stable and efficient numerical procedure 

to solve non-linear hyperbolic problems. 

~ Schemes 
Number of Number of 
multiplications additions 

AGE-COBT 22m+2 29(m-l) +14 
2 

AGE-COCT 34m-16 26m-12 

JABLE 6.9.38: Computational complexity per iteration (m odd) 



1.=0.1, t=0.05, llt=O.OOl, llx=O.l, r=0.5, epS=lO 

~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

GER 6.0xlO -5 1.6xlO -3 l.sxlO -3 2.3 xlO-3 
2.3xlO 

-3 2.3xlO-3 2 .6xlO-3 

GEL 1. 9xlO 
-3 1.6xlO -3 2.6xlO -3 2.3xIO -3 

2.3x10 
-3 2.3 XlO-3 1.5xlO -3 

(S) AGE 9.0xlO 
-4 1.4 xIO -3 2.0xlO -3 

2.0xIO 
-3 

2.1x10 
-3 

2.1xIO -3 
1.9xlO -3 

(D) AGE 9.0xlO 
-4 1.sxlO -3 1.9xlO 

-3 2.1xlO-3 
2.1xlO 

-3 2.1xIO-3 -3 
1.9xlO. 

PR 1.5xlO 
-3 2.6xIO-3 3.3xlO -3 

3.7xIO 
-3 

3.8xlO 
-3 

3.7xlO 
-3 

3.3xlo 
-3 

AGE-IMP 
2.3XlO-3 -3 -3 DR 4.2xIO . s.sxlO 6.2xlO 

-3 
6.4xIO 

-3 
6.2xlO 

-3 5 .sxlO-3 

PR 9.1xlO 
-4 

1.6xlO 
-3 

2.1xlO 
-3 

2.3 xlO 
-3 

2.4xlO 
3 2 .3xlO-3 

2.1xlO 
-3 

AGE-CN 
-3 3.2x10-3 -3 -3 -3 -3 -3 DR 1. 7xlO 4.2x10 4.8x10 s.oxlO 4.8x10 4.2x10 

-6 s.5 xIO-6 PR 1. 7xlO 1.2x10 -5 
1. 7xlO -5 

2.0xlO 
-5 

1.7xlO 
-5 

1.1x10 
-5 

AGE-DG 
-4 1.sxlO -3 -3 DR 8.1xlO 2.1"10 2.4lflO 

-3 
2.6xlO 

-3 
2.4xlO 

-3 
2.1xlO -3 

EXACT 
0.1950648 0.3707705 0.5098716 SOLUTION 0.5989617 0.6296137 0.5989617 0.5098716 

TABLE 6.9.1: The absolute errors of the numerical solutions to Problem (6.9.1) 
(Parabolic problem with Dirichlet boundary conditions) 

0.8 

1.6xlO -3 

1.6xlO -3 

1.6xlO " 

1.6xlO 
-3 

2.6 xIO-3 

4.2 xlO 
-3 

1.6xlO 3 

3 .2 xlO-3 

s.sxlO-6 

1.sxlO 
-3 

0.3707705 

0.9 

1.9xIO -3 

6.0xIO-S 

8 .oxIO-4 

9.0xlO 
-4 

1.5x10 
-3 

2.3xlO -3 

9.1xlO 
-4 

1.7x10 
-3 

1. 6 x 10-6 

8.1xlO 
-4 

0.1950648 

~mber of 
Iterations 

-
-

-

-
2 

6 

2 

6 

2 

6 

-

U1 

'" .... 



-4 A=O.S, t=0.2S, 6t=0.OOS, 6x=0.1, r=O.S, eps=10 

~ 0.1 0.2 0.3 0.4 

-4 1.1xl0 -3 -3 -3 GER 1.0xl0 1.1xl0 1. 7xl0 

GEL 1.2x10 -3 1.1xI0 
-3 

1.9xl0 
-3 

1. 7 x I0 
-3 

(S)AGE 2 .oxlO-4 1.6XlO -3 1.8x10 
-3 

2.5x10 
-3 

(O)AGE 2 .ox10-4 
7.0X10 

-4 
3.0xI0 

-4 
7.0xlO -4 

PR 2.2xl0 
-3 4 .2 xlO-3 

5.7x10 
-3 

6.7x10 
-3 

AGE-IMP 
2.6xI0-3 -3 OR S.oxI0 6.8 xlO -3 

8.0xlO -3 

PR 5.3 XlO-4 . -3 
1.0x10 1.4x10 

-3 
1.6xI0 

-3 

AGE-CN 
-4 1.9xlO -3 -3 -3 OR 9.7x10 2.5x10 3.0x10 

PR 1.5xI0-5 2:5XlO-5 
3.8x10 

-5 4.4X10-5 

AGE-OG 
4.2XI0-4 -4 OR 8.0x10 1.1x10 -3 

1.3x10 
-3 

EXACT 
0.0270461 0.0514447 0.0708075 0.0832392 SOLUTION 

0.5 0.6 0.7 

1.8xl0 
-3 

1.7xl0 
-3 

1.9xl0 
-3 

1.8xlO 
-3 

1. 7xl0 
-3 

1.1xl0 
-3 

2.5 XlO-3 
2.3xl0 

-3 
2.1x10 -3 

7.0xI0 
-4 ' 

5.0xl0 
-4 

7.0x10 
-4 

-3 -3 -3 7.0xI0 6.7xlO 5.7xl0 

8.4 XI0-3 
7.9xl0 

-3 6 .8x10-3 

1. 7xl0 
-3 

1.6x10 
-3 

1.4x10 
-3 

3.1x10 -3 
3.0x10 

-3 
2.5x10 -3 

4.7xlO -5 
4.5x10 

-5 3.6xlO -5 

1.3xlO -3 1.3X10 -3 1.1xl0 -3 

0.0875229 0.0832392 0.0708075 

TABLE 6.9.2: The absolute errors of the numerical solutions to Problem (6.9.1) 
(parabolic problem with Oirich1et boundary conditions) 

0.8 0.9 

1.1xl0 -3 1.2xl0 
-3 

1.1xI0 
-3 

1.0x10 
-4 

1.0x10-3 8.0xI0 -4 

3.0xI0 
-4 

3.0xI0 
-4 

4.1 x10-3 2.2xlO -3 

4 .9 xlO-3 2.7xlO -3 

1.0x10 -3 5.4x10 
-4 

1.8x10 -3 9.9 xlO 
-4 

2 .8xlO-5 
1.2x10 

-5 

7 .9 x10-4 
4.2x10 

-4 

0.0514447 \0.0270461 

Number of 
Iterations 

-
-

-

-
3 

6 

2 

6 

2 

6 

-

U1 
N 
U1 



-4 A=1.0, t=O.S, ~t=O.Ol, ~x=O.l, r=O.S, eps=10 

~ 0.1 0.2 0.3 

GER 9.0XlO-6 
2.0xlO 

-4 
2.0xl0 

-4 

-
GEL 2.2xlO-4 

2.1xl0 
-4 

3.Sxl0 
-4 

(S)AGE 6.0xl0 -4 
1.5xlO 

-3 
1.9xlO 

-3 

-- --
(O)AGE 4.0Xl0-4 

3.0xl0 
-4 

2.0xl0 
-4 

PR 6.3xlO -4 
1.3xl0 

-3 
1.6xl0 

-3 

AGE-IMP-
-4 -3 -3 

OR 8.1xl0 1.6xl0 2.1xl0 

PR 7.3xlO-S 
1.Sxl0 

-4 
1.9xl0 

-4 

AGE-CN 
-4 -4 -4 

OR 3.0xlO 5.8xl0 7.7xl0 

PR 1.6xl0 -5 
2.7xl0 

-5 
4.3xl0 

-5 

AGE-DG 
2 .oxl0-4 -4 -4 OR 4.0xl0 5.4xl0 

EXACT 
0.0022936 0.0043628 0.006048 SOLUTION 

0.4 0.5 0.6 0.7 

3.0xl0 
-4 

3.0xl0 
-4 

3.0xl0 
-4 

4.0xl0 
-4 

3.3xl0 
-4 

3.SxlO 
-4 

3.3xl0 
-4 

2.1xl0 
-4 

2.4xlO 
-3 

2.SxlO 
-3 

2.3xl0 
-3 

2.0xl0 
-3 

3.0xl0 
-4 

3.0xlO 
";4 

2.4xl0 
-4 2 .8xl0-4 

2.0xl0 
-3 

2.0xl0 
-3 

1.9xl0 
-3 

1. 7xl0 -3 

2.SxlO 
-3 

2.6xlO 
-3 

2.Sxl0 
-3 

2.2xl0 
-3 

2.3xlO 
-4 

2.4xlO -4 
2.2xl0 -4 

2.0xl0 
-4 

9.2xl0 
-4 

9.6xlO 
-4 

9.1xl0 
-4 

7.9xlO 
-4 

4.9xl0 
-5 

5.3xl0 
-5 

5.1xlO 
-5 - -5 

4.0xl0 

6.3xl0 
-4 

6.6xlO 
-4 

6.3xlO 
-4 -4 S.4xl0 _ 

0.0070591 0.0074224 0.00705091 0.0060048 

TABLE 6.9.3: The absolute errors of the numerical solutions to Problem (6.9.1) 
(Parabolic problem with Oirichlet boundary conditions) 

0.8 0.9 

2.0xlO 
-4 

2.0xl0 
-4 

2 .lXl0-4 9xl0 -6 

1.3xlO 
-3 

8.0xl0 
-4 

- -5 
7.0xl0 1.Sxl0 

-4 

1.2xl0 
-3 

7.0xl0 
-4 

1.SX10-3 9.1xl0 
-4 

1.4xl0 -4 
8.1xl0 

-5 

5 .6XlO-4 
3.1xl0 

-4 

3.1xlO 
-5 

1.2xlO 
-5 

3.9xl0 
-4 

2.2xl0 
-4 

0.0043628 0.0022936 

Number of 
Iterations 

-
-
-
-
2 

4 

2 

4 

2 

4 

-

111 

'" '" 



-4 
~x=O.l, r=0.5, eps=10 PR variant 

~ 
Average of Number of 

Mesh Ratio 
6.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Percentage Iteration, 

A 
Errors 

0.1 (D) AGE 0.1693 0.1718 0.1745 0.1766 0.1774 0.1767 0.1747 0.1720 1.1696 0.1684 ,=1% -
~t=O.OOl 

AGE-IMP 0.1696 0.1720 0.1748 0.1768 0.1776 0.1768 0.1748 0.1720 1.1696 0.1687 1.004% 2 
AGE-CN 0.1697 0.1721 0.1747 0.1767 0.1774 0.1767 0.1747 0.1721 0.1697 0.1686 1.003% 2 

t=O.l AGE-DG 0.1699 0.1722 0.1746 0.1765 0.1772 0.1765 0.1746 0.1722 0.1699 0.1689 1.001% 2 
EXACT SOL. 0.1718 0.1739 0.1763 0.1781 0.1788 0.1781 0.1763 0.1739 0.1718 0.1709 - -

0.5 (D) AGE 0.3556 0.3639 0.3724 0.3784 0.3808 0.3788 0.3730 0.3650 0.3567 0.3517 " 2% -
~t=0.005 

AGE-IMP 0.3607 0.3682 0.3759 0.3814 0.3834 0.3814 0.3759 0.3682 0.3607 0.3568 1.003% 2 
AGE-CN 0.3607 0.3682 0.3759 0.3814 0.3834 0.3814 0.3759 0.3682 0.3607 0.3567 1.004% 2 

t=0.5 AGE-DG 0.3607 0.3682 0.375') 0.3814 0.3834 0.3814 0.3759 0.3682 0.3607 0.3567 1.004% 2 
EXACT SOL. 0.3650 0.3720 0.3793 0.3846 0.3865 0.3846 0.3793 0.3720 0.3650 0.3618 -

1.0 (D) AGE 0.9526 0.9684 0.9811 0.9971 1.0028 0.9989 0.98Gb 0.9698 0.9525 0.9425 -.3% -
~t=O.Ol 

AGE-IMP 0.9684 0.9837 0.9994 0.0108 1.0149 1.0108 0.9995 0.9837 0.9684 0.9603 1.002% 2 
AGE-CN 0.9683 0.9837 0.9995 1.0109 1.0150 1.0109 0.9995 0.9837 0.9683 0.9602 1.002% 2 

t=1.0 AGE-DG 0.9683 0.9837 0.9995 1.0109 1.0150 1.0109 0.9995 0.9837 0.9683 0.9602 1.002% 2 
EXACT SOL. 0.9795 0.9937 1.0088 1.0197 1.0237 1.0197 1.0088 0.9937 0.9795 0.9729 - -

1.5 (D)AGE 1. 9832 1.9999 1.9769 1.9944 2.0403 2.0458 2.0097 1.9685 1.9350 1.9332 '.:t3% -
~t=0.015 

AGE-IMP 1.9885 2.0117 2.0355 2.0528 2.0590 2.0528 2.0356 2.0117 1.9886 1.9764 1.001% 3 
AGE-CN 1.9884 2.0117 2.0356 2.0529 2.0592 2.0529 2.0356 2.0117 1.9884 1.9762 1.001% 2 

t=1.5 AGE-DG 1.9884 2.0117 2.0356 2.0529 2.0592 2.0529 2.0356 2.0117 1.9884 1.9762 1.001% 2 
EXACT SOL. 2.0107 2.0322 2.0549 2.0715 2.0775 2.0715 2.0549 2.0322 2.0107 2.0007 - -

TABLE 6.9.5: The numerical solutions to Problem (6.9.3) 
(Parabolic problem with periodic boundary conditions) 



Mesh Ratio 

~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 (D) AGE 0.1693 0.1718 0.1745 0.1766 0.1774 0.1767 0.1747 

lIt=O.OOl AGE-IMP 0.1703 0.1738 0.1764 0.1775 0.1764 0.1737 0.1703 
AGE-eN 0.1703 0.1737 0.1763 0.1772 0.1763 0.1737 0.1703 

t=O.l AGE-DG 0.1704 0.1735 0.1760 0.1769 0.1760 0.1735 0.1704 
EXACT SOL. 0.1718 0.1739 0.1763 0.1781 0.1788 0.1781 0.1763 

0.5 (D) AGE 0.3556 0.3639 0.3724 0.3784 0.3808 0.3788 0.3730 

lIt=0.005 
AGE-IMP 0.3625 0.3701 0.3756 0.3776 0.3756 0.3701 0.3625 
AGE-CN 0.3625 0.3702 0.3757 0.3777 0.3757 0.3702 0.3625 

t=O.5 AGE-DG 0.3626 0.3702 0.3758 0.3778 0.3758 0.3702 0.3626 
EXACT SOL. 0.3650 0.3720 0.3793 0.3846 0.3865 0.3846 0.3793 

1.0 (D) AGE 0.9526 0.9684 0.9841 0.9971 1.0028 0.9989 0.9866 

lIt=O.Ol 
AGE-IMP 0.9774 0.9931 1.0045 1.0086 1.0045 0.9932 0.9774 
AGE-CN 0.9773 0.9931 1.0045 1.0087 1.0045 0.9931 0.9773 

t=l.O AGE-DG 0.9774 0.9932 1.0046 1.0087 1.0046 0.9932 0.9774 
EXACT SOL. 0.9795 0.9937 1.0088 1.0197 1.0237 1.0197 1.0088 

1.5 (D) AGE 1.9832 1.9999 1.9769 1.9944 2.0403 2.0458 2.0097 

lIt=0.Ot5 
AGE-IMP 2.0056 2.0294 2.0466 2.0528 2.0466 2.0294 2.0056 
AGE-CN 2.0052 2.0291 2.0464 2.0526 2.0464 2.0291 2.0052 

t=1.5 AGE-DG 2.0052 2.0292 2.0465 2.0527 2.0465 2.0292 2.0052 
EXACT SOL. 2.0107 2.0322 2.0549 2.0715 2.0775 2.0715 2.0549 

TABLE 6.9.6: The numerical solutions to Problem (6.9.3) 

0.8 0.9 

0.1720 1.1696 
0.1672 0.1658 
0.1674 0:1660 
0.1676 0.1663 
0.1739 0.1718 

0.3650 0.3567 
0.3550 0.3511 
0.3550 0.3510 
0.3550 0.3511 
0.3720 0.3650 

0.9698 0.9525 
0.9621 0.9541 
0.9620 0.9539 
0.9620 0.9539 
0.9937 0.9795 

1.9685 1.9350 
1.9824 1.9703 
1.9819 1.9697 
1.9820 1.9697 
2.0322 2.0107 

OR variant 

Average of 
Percentage 

1.0 Errors 

0.1684 1% 
0.1672 1.802% 
0.1674 1.809% 
0.1676 1.828% 
0.1709 -
0.3517 2% 
0.3550 2.528% 
0.3550 2.521% 
0.3550 2.508% 
0.3618 -
0.9425 3% 
0.9621 1.632% 
0.9620 1.638% 
0.9620 1.632% 
0.9729 -
1.9332 3% 
1.9824 1.302% 
1.9819 1.320% 
1.9820 1.316% 
2.0007 -

Number of 
Iteration, 

-
2 
2 
2 
-
-
6 
6 
6 
-
-
8 
8 
8 
-
-
9 
9 
9 
-

lJ1 
IV 
<Xl 



k-l 0 c-l 0 6t-0 001 - . , - . , - . , 6x-0 1 A-O 1 t-o 1 r-O 5 - . , - . , - . , - . , 

~ 0.1 0.2 0.3 0.4 

CNU 2.4xlO 
-3 

4.9xlO 
-3 7.3X10-3 

9.4xlO 
-3 

OAGE 1.6xlO -4 
2.7xlO 

-4 2 .8 xlO-4 -4 
1.3X10 

OR 1.3xlO -4 
1.4xlO 

-4 
5.4xlO 

-5 
4.8xlO 

-4 

AGE-IMP 
-4 -4 -5 -4 PR 1.3xlO 1.5xlO 4.4xlO 4.7xlO 

OR 2.4xlO -3 
4.9 xlO 

-3 7 .37X10-3 9.6xlO 
-3 

AGE-CNU 
-3 -3 -3 -3 PR 2.4xlO 4.9xlO 7.38xlO 9.6xlO 

OR 1.7xlO 
-4 

2.8xlD 
-4 

2.7xlO -4 
9.1xlO 

-5 

AGE-CN 
-4 -4 .. -4 -4 PR 1.8xlO 2.9xlO 2.8xlO l.oxlO 

EXACT SOLUTION 0.01895 0.04370 0.07892 0.12982 

eps: convergence, criterion 

-7 eps-5 OX10 - . 

0.5 

1.lxlO 
-2 

9.0xlO 
-5 

l.04xlO 
-3 

l.oxlO 
-3 

l.lxlO 
-2 

l.lxlO 
-2 

1.8xlO 
-4 

1.6xlO 
-4 

0.20177 

0.6 

1.2xlO 
-2 

4.0xlO 
-4 

1.6xlO -3 

. -3 
1.6xlO 

1.2xlO 
-2 

1.2xlO -2 

5.1xlO 
-4 

4.9xlO 
-4 

0.29986 

0.7 0.8 

1.15xlO 
-2 

9.4xlO 
-3 

6.1X10 
-4 

6.2 xlO 
-4 

1.9xlO 
-3 

1.8xlO 
-3 

1.9xlO 
-3 

1.8xlO -3 

1.15X10 
-2 . -3 

9.4 xlO 

1.15xlO 
-2 

9.4xlO 
-3 

7.2xlO 
-4 

7.2xlO 
-4 

7.0xlO 
-4 7.lxlO-4 

0.42794 0.58805 

TABLE 6.9.7: The absolute errors of the numerical solutions to Problem (6.9.5) 
(Diffusion-convection problem) 

Number of 

0.9 Iterations 

5.6 xlO-3 -

4 .3 xlO-4 -

1.1xlO -3 
12 

1 .lX10-3 
3 

5 .6 xlO-3 
12 

5.6xlO 
-3 

3 

4.6xlO 
-4 

12 

4.5xlO -4 
3 

0.77976 -



k=l 0 ~=1 0 ~t=O 005 ~x=O 1 . , . , . , . , A=O 5 t=o 5 r=O 5 . , . , . , -7 eps=5 oxl0 . 

~ 0.1 

CNU 1.7xlO 
-3 

DAGE 2.0xl0 
-5 

DR 1.6xI0 
-4 

AGE-IMP 
PR 1.6xl0 

-4 

DR 1.7xl0 
-3 

AGE-CNU 
PR 1.7xl0 

-3 

DR 5.8xl0 
-5 

AGE-CN 
PR 5.6xl0 -5 

EXACT SOLUTION. 0.06043 

eps: convergence criterion 

Number of 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Iterations 

-3 -3 -3 -3 -3 
5.8xlO 

-3 -3 -3 3.2xl0 4.5xI0 5.4xl0 6.1xl0 6.2xlO 4.7xlO 2.8 xlO -
-5 -5 -5 -5 -5 -5 

6.0xI0 
-5 -5 6.0xI0 5.0xI0 8.0xI0 8.0xl0 8.0xI0 9.0xI0 6.0xI0 -

3.22xlO 
-4 

4.6xI0 
-4 

5.7xlO 
-4 

6.3xl0 
-4 

6.3xlO 
-4 

5.~xl0 
-4 

4.4xI0 
-4 

2.4xl0 
-4 

9 
-4 -4 -4 -4 -4 -4 -4 -4 3.19 xlO 4.6xlO 5.7xlO 6.3xlO 6.3xlO 5.7xlO 4.4xl0 2.5 xlO 4 

3.2xl0 
-3 4 .4xlO-3 5.4xlO -3 

6.04 xlO 
-3 6.2 XlO-3 

5.8xlO 
-3 

4.7xl0 
-3 2 .8xlO-3 

9 

-3 -3 -3 -3 6.2xlO-3 -3 -3 2 .8xlO-3 3.2xl0 4.5xl0 5.4xl0 6.1xlO 5.8 xlO 4.7xlO 3 
-4 -4 -4 -4 -4 

2.0xl0 
-4 -4 -5 

9 1.1xl0 1.6xl0 1.98xlO 2.2xl0 2.2xlO 1.6xl0 9.3 xl0 

-4 -4 
1.9xl0 

-4 -4 -4 -4 -4 -5 
3 1.1xl0 1.6xl0 2.1xlO 2.2xl0 1.97xlO 1.6xl0 8.99xl0 

0.12730 0.20136 0.28345 0.37447 0.47539 0.58724 0.71114 0.84830 -

TABLE 6.9.8: The absolute errors of the numerical solutions to Problem (6.9.5) 
(Diffusion-convection problem) 

V1 
W 
o 



-7 k=1.0, £=1.0, ~t=O.Ol, ~x=O.l, A=1.0, t=1.0, r=0.5, eps=5.0Xl0 

~ 0.1 0.2 0.3 0.4 0.5 

CNU 1.5xl0 -3 2.9xl0 -3 4.1xl0 -3 -3 4.9xl0 . 5.5 xl0 -3 

DAGE 2.7xl0 -5 5.2xlO -5 
7.2xlO -5 8.8xl0 -5 9.8xl0 -5 

DR 3.1xl0 -5 
6.0xl0 -5 8.4xl0 -5 

1.0xl0 -4 1.1xlO -4 

AGE-IMP 
-5 -5 -5 -4 -4 PR 3.1xl0 5.9xlO 8.2xl0 1.0xl0 1.1xlO 

DR 1. 5xlO -3 2.9x10 -3 4.1xl0 -3 4.97x10 -3 5.5x10 -3 

AGE-CNU 
-3 -3 -3 -3 -3 PR 1.5xl0 2.9x10 4.1xl0 4.98xl0 5.5xl0 

DR 2.8xlO -5 5.4xlO -5 7.6xl0 -5 
9.3xlO -5 

1.0xl0 
-4 

AGE-CN 
-5 -5 -5 -5 -5 PR 2.7xl0 5.2xl0 7.3 xlO 8.9x10 9.9 xlO 

EXACT SOLUTION 0.06120 0.12884 0.20360 0.28621 0.37752 

eps: convergence criterion 

. 

0.6 0.7 0.8 0.9 

5.7 xlO -3 5.3xl0 -3 4.3xl0 -5 2.6xlO -5 

1.0xl0 -4 
9.4xl0 -5 7.6xl0 -5 4.6xlO -5 

1.2xl0 -4 
1.1xl0 -4 8.8xlO -5 5.3xl0 -5 

1.lxl0 -4 
1.1xlO 

-4 
8.6xlO -5 . -5 

5.2x10 

5.7xl0 -3 5.3x10 -3 4.3xl0 -3 2.6xl0 -3 

5.7xl0 -3 5.3xlO -3 4.3xl0 -3 2.6xlO -3 

1.1xlO -4 9.9xl0 -5 
8.0xl0 

-5 
4.8xl0 -5 

1.0xlO 
-4 9.6 Xl0-5 

7.8 xlO 
-5 4.7xl0 -5 

0.47843 0.58996 0.71322 0.84945 

TABLE 6.9.9: The absolute errors of the numerical solutions to Problem (6.9.5) 
(Diffusion-convection problem) 

Number of 
Iterations 

-
-
3 

2 

3 

2 

3 

2 

-

U1 
W 
I-' 



k=1.0, £=1.0, 6t=0.020, 6x=0.1, A=2.0, -7 t=2.0, r=O.S, eps=SxI0 

~ 0.1 

CNU 1.Sxl0 -3 

DAGE, -5 3.0xl0 TWO-LEVEL 

DR 2.7xlO -5 

AGE-IMP 
PR 2.7xl0 -5 

1----_.--'--
DR 1.Sxl0 -3 

AGE-CNU 
-3 PR 1.SxlO 

DR 2.7xl0 -5 

AGE-CN -5 
PR 2.7xl0 

EXACT SOLUTION 0.061207 

eps: convergence criterion 

Number of 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Iterations 

-3 -3 -3 -3 -3 -3 -3 2 .6 xlO-3 2.9 xI0 4.1xI0 4.9 xlO S.SxI0 S.7xI0 5.3 xlO 4.3xlO -
-5 -5 

9.0xI0 
-5 -4 -4 -4 

8.0xl0 -5 -5 S.oxl0 7.0xI0 1.0xl0 1.0xI0 1.0xI0 S.oxI0 -

S.lxl0 
-5 

7.2xlO 
-5 

8.8xlO -5 
9.8xl0 -5 

10XI0 
-4 

9.4 xI0 
-5 

7.7xl0 -5 
4.6xI0 -5 

1 

5.PI0 
-5 

7.2xI0 -5 
8.8 xlO 

-5 
9.8xlO -5 ' , -4 

1.0xI0 9.4xI0 -5 7.7xI0 -5 
4.6 xlO 

-5 
1 

2.9xI0 -3 
4.1xl0 -3 

4.97xl0 -3 S.SxlO -3 
S.7xl0 

-3 
S.3xl0 -3 

4.3xl0 -3 2.6xI0 -3 
1 

2.9 xI0 
-3 

4.1xI0 
-3 

4.97xl0 -3 S.SxlO -3 
S.7xI0 

-3 
S,3 xI0 -3 

4.3xl0 -3 2 .6xI0-3 
1 

-5 -5 8.8 xlO-S -5 -4 -5 -5 4 .6xlO-S S.2xI0 7.2xlO 9.8xl0 1.0XI0 9.4 xlO 7.7xl0 1 

-5 -5 -5 -5 -4 -5 -5 -5 5.1xl0 7.2xio 8.8xlO 9.8x10 1.0x10 9.4x10 7.7x10 4.6x10 1 

o .12!il8S1 0.203610 0.28631 0.377541 0.478454 0.589980 0.713236 0.849455 -

TABLE 6.9.10: The absolute errors of the numerical solutions to Problem (6.9'.5) 
(Diffusion-convection problem) 

U1 
W 
N 



(a) t=0.4, A=0.5, 6t=0.05, 6x=0.l, r=0.5, eps=10-4 
\ 

~ 0.1 0.2 0.3 0.4 

-3 -3 -3 
PR 2.46xlO 4.94xlO 7.l6xlO 8.l8xlO 

AGE-IMP -3 -3 -3 
OR 2.3lxlO 4.92xlO 7.04xlO 8.24xlO 

PR 5.8lxlO -5 7.l9xlO 
-5 

4.l6xlO 
-5 5.25xlO 

-3 

-3 

-6 

AGE-CN -4 -4 -5 -5 
1.52xlO 1.29xlO 9.54xlO 4.6xlO OR 

EXACT 0.9553365 0.9800666 0.9950042 1.0 SOLUTION 

(b) 
-4 

t=l.O, A=0.5, 6t=0.05, 6x=0.l, r=0.5, eps=lO 

~ 0.1 0.2 0.3 0.4 

PR 5.63xlO -3 5.39xlO 
-4 1.23xlO -2 6.04xlO -4 

AGE-IMP -3 -3 -3 -3 
OR 5.43xlO 1.08xlO 1.19xlO 1.64xlO 

PR 1.16xlO -6 4.58xlO 
-4 

4.99xlO 
-5 

8.29xlO 
-4 

AGE-CN -5 -4 -4 -3 
OR 7.29xlO 9.64xlO 2.28xlO 1.9xl0 

EXACT 
0.6216100 0.6967067 0.7648422 0.8253356 SOLUTION 

0.5 0.6 0.7 0.8 

9.79xlO 
-3 

8.39xlO 
-3 1.18xlO -2 5.53xlO 

-3 

. -3 
9.93xlO 8.53xlO -3 1.24xlO -2 5.67xlO -3 

',/ -5 
9.75xlO 9.82xlO -5 3.44xlO -4 5.77xlO -5 

. -4 
2.23xlO 2.42xlO -4 7.57xlO -4 1. 75xlO -4 

0.9950042 0.9800666 0.9553365 0.9210610 

0.5 0.6 0.7 0.8 

2.21xlO -2 2.5lxlO -4 3.3xlO -2 1.59xlO -4 

2.l0xlO 
-3 

1.46xlO 
-3 

3.28xlO 
-2 6.82xlO -4 

7.27xlO 
-6 

9.04xlO 
-4 

4.42xlO 
-6 

5.75xlO 
-4 

1.29xlO 
-4 

2.19xl0 
-3 

4.4xlO 
-5 

1.4SxlO 
-3 

0.8775826 0.9210610 0.9553365 0.9800666 

TABLE 6.9.11: The absolute errors of the AGE solutions to hyperbolic Problem 1 (6.9.7) 

0.9 

1.53xlO -2 

1.6lxlO -2 

7.l5xlO -4 

1.51xlO -3 

0.8775826 

0.9 

4.l9xlO -2 

4.19xlO 
-2 

3.49xlO 
-5 

1.9xl0 
-4 

0.9950042 

Average of 
all 
absolute 
errors 

8.l7xlO-3 

8.35xlO -3 

1.65xlO -4 

3.7xlO -4 

-

f>lverage of 
all 
absolute 
errors 

1.29xlO -2 

1.32xlO 
-2 

3.l8xlO -4 

7.96xlO 
-4 

-

No. 
of 
iter 
atio 

3 

9 

3 

9 

-

No. 
of 
iter-
ation 

4 

9 

3 

9 

-

U1 
W 
W 



( ) a t-O. 8 A 1 , = .0, I1t-o 1 11 . , x-o. 1 , r=O. 5 , eps-
-4 

10 

~ 0.1 

-3 
PR 8.23x10 

AGE~IMP 
-3 

DR 7.92x10 

-4 
PR 1.lx10 

AGE-CN -4 
DR 2.97xlO 

EXACT 
0.7648422 SOLUTION 

(b) t-2 0 A-I 0 6t-0 1 - . , - . , - , 

~ 0.1 

PR 7.57xlO 
-2 

AGE-IMP -2 
DR 7.51xlO 

-4 
PR 1.6x10 

AGE-CN 
-4 

DR 1.41x10 

EXACT 
-0.3232896 SOLUTION 

0.2 0.3 0.4 

4.36xlO 
-3 

2.06xlO 
-2 

8.89x10 
-3 

4.27x10 
-3 . -2 

2.03xlO 8.68xlO 
-3 

3.63x10 
-4 

2.llx10 
-4 

6.66x10 
-4 

5.47x10 
-4 

4.73x10 
-4 

1.01x10 
-3 

0.8253356 0.8775826 0.921061 

- . , r-O 5 - . , -4 
eps-10 -

0.2 0.3 0.4 

1.18x10 
-2 

7.09xl0 
-2 

1. 8 lxlO 
-2 

1. 15xlO 
-2 

7.01xl0 
-2 

1. 76xlO 
-2 

4.24xlO 
-4 

8.72xlO 
-4 

5.26xlO 
-4 

7.73x10 
-4 

1.25x10 
-3 

1.01x10 
-3 

-
-0.2272021 -0.1288445 -0.2919952 

0.5 0.6 0.7 0.8 

3.67x10 
-2 

1.02xlO 
-2 

5.35x10 
-2 

6.73x10 
-3 

3.65xlO 
-2 

9.88x10 
-3 5.34x10 

-2 
6.5xlO 

-3 

4.013xlO 
-5 

8.18x10 
-4 

4.81x10 
-4 

5.72xlO 
-4 

5.85xlO 
-5 

1.19xl0 
-3 

6.94xlO 
-4 

8.31x10 
-4 

0.9553365 0.9800666 0.9950042 1.0 

0.5 0.6 0.7 0.8 

6.67xlO 
-2 

1. 79xlO 
-2 

6.47x10 
-2 

1.15x10 
-2 

6.57x10 
-2 

1.75xlO 
-2 

6.35x10 
-2 

1. 12x10 
-2 

1.92xlO 
-3 

3.88xlO 
-4 

2.99x10 
-3 

1.28x10 
-4 

2.78x10 
-3 

7.92xlO 
-4 . -3 

4.18x10 3.53xlO 
-4 

0.0707372 0.1699671 0.2674988 0.3623578 

TABLE 6.9.12: The absolute errors of the AGE solutions to hyperbolic Problem 1 (6.9.7) 

Average 
of all 

0.9 
absolute 
errors 

6.77xlO 
-2 

2.41xlO 
-2 

6.78xlO 
-2 

2.39xlO 
-2 

7.29xlO 
-4 

4.43x10 
-4 

1.2x10 
-3 7 .ox10-4 

0.9950042 -

Average 

0.9 
of all 
absolute 
errors 

6.61 x10 
-2 

4.48 xlO 
-2 

6.49xlO 
-2 

4.41x10 
-2 

3.75xlO 
-3 . -3 

1.24x10 

-3 5.07xl0- 1.82xlO -3 

0.4535961 -

No. 
of 
iter 
atiol 

5 

12 

4 

10 

-

No. 
of 
iter· 
atior 

6 

14 

4 

11 

lJ1 
W ... 

-



(a) 
-4 

t~0.4, A~0.5, ~t~0.05, ~x~O.l, r~0.5, eps~10 

~ 0.1 

PR 4.42xlO 
-3 

AGE-IMP 
-3 

OR 4.36xl0 

-5 
PR 6.89xl0 

AGE-CN -5 
OR 8.27xl0 

EXACT 
-0.1327158 

SOLUTION 

(b) t~ 1 .0, ~o. 5 , ~t=O.O 

~ 0.1 

PR . 1.85xl0 -2 

AGE-IMP 
-2 

OR 1.83xl0 

PR 2.22xlO 
-4 

AGE-CN -4 OR 1.89xl0 

EXACT 
-0.1060118 SOLUTION 

0.-2 

1.04x10 
-2 

1.05xl0 
-2 

2.08xlO 
-4 

3.32xl0 
-4 

-0.0890597 

5 , ~x=O. 1 , 

0.2 

1.45xl0 
-2 

1.47xlO 
-2 

2.63xl0 
-4 

6.38 xlO 
-4 

-0.0970836 

0.3 0.4 

1. 78x1O 
-2 

2.1xl0 
-2 

1.8xl0 
-2 

2.13x1O 
-2 

3.58x1O 
-4 

4.56xlO 
-4 

5.5xl0 
-4 

7.39xl0 -4 

-0.044858 0 

r~O. 5 , -4 
1 eps~ 0 

0.3 0.4 

2.82x1O -2 
2.6xl0 

-2 

2.81xl0 
-2 

2.64xl0 
-2 

4.99x1O 
-4 

5.97xl0 
-4 

6.11xl0 
-4 

1.2xl0 
-3 

-0.0871854 -0.0764160 

0.5 - 0.6 0.7 0.8 

2.97xl0 
-2 

2.3xl0 
-2 

4.27xl0 
-2 

1.38x1O 
-2 

3.01xl0 
-2 

2.33xl0 
-2 

4.34xlO 
-2 

1.41xl0 
-2 

5.62xl0 
-4 

5.04xl0 
-4 

7.86xl0 
-4 

2.9xl0 
-4 

9.26x1O 
-4 

8.56xl0 
-4 

1.36xl0 
-3 

5.56xl0 
-4 

0.044858 0.0892679 0.1327858 0.1749769 

0.5 0.6 0.7 0.8 

4.37xl0 
-2 

2.73xl0 
-2 

5.94xI0 
-2 

1.65xlO 
-2 

4.43xl0 
-2 

2.77xlO 
-2 

6.08xl0 
-2 

1.68xlO 
-2 

. -4 
8.46xl0 6.47xl0 

-4 
1.17xl0 

-3 
3.34xl0 

-4 

1.43xl0 -3 1.25x10 -3 2 .35x1O-3 6.76xl0 
-4 

-0.0648832 -0.052702 -0.03999431 -0.026887 

TABLE 6.9.13: The absolute errors of the AGE solutions to hyperbolic Problem 2 (6.9.9) 

0.9 

6.04xlO 
-2 

6.13 xl0 
-2 

1.17xlO -3 

2.04xlO 
-3 

0.2154198 

0.9 

7.04xlO 
-2 

7.23xl0 
-2 

·-3 
1.44xl0 

3.14x1O 
-3 

-0.013511 

Average 
of all 
absolute 
errors 

2.48xlO 
-2 

2.52xl0 
-2 

4.9xlO 
-4 

8.26xl0 -4 

-

Average 
of all 
absolute 
errors 

3.38 xl0 
-2 

3.44xlO 
-2 

6.69 x10 
-4 

1.28 XI0-3 

-

No. 
of 
iter-
ations 

4 

10 

3 

9 

-

No. 
of 
iter-
ations 

3 

7 

3 

7 

-

111 
W 
111 



( ) a t=O. 8 A 1 , = .0, llt=O. 1 , 

~ 0.1 

-2 
PR 2.1xl0 

AGE-IMP -2 
DR 2.07xl0 

9.97xlO 
-5 

PR 
AGE-Crr 

-5 
DR 3.41xlO 

EXACT -0.1300653 
SOLUTION 

llx=O. 1 , r=O. 5 , -4 
1 eps= 0 

0.2 0.3 0.4 

-

1.lxl0 
-2 

4.1xl0 
-2 

1.62xlO 
-2 

1.lxl0 
-2 

4.1xl0 
-2 

1.62xlO 
-2 

2.97xlO 
-4 

3.27xl0 
-4 

7.44xl0 
-4 

3.81xl0 
-4 

3.52xl0 
-4 

8.43xl0 
-4 

-0.113993 -0.096794:: -0.0786222 

(b) t-2 0 A-I 0 llt 0 1 llx 0 1 r 0 5 . , . , - . , - . , - . , -4 
eps 10 -

~ 0.1 0.2 0.3 0.4 

--t--

PR 1.19xl0 
-1 

1.18xlO 
-2 

1.06x10 
-1 

1.88xl0 
-2 

AGE-IMP 
-1 -2 -1 -2 

DR 1.2x10 1.16xl0 1.07xlO 1.85xl0 

PR 2.05xlO 
-3 

1.05xl0 
-3 

2.0lxl0 
-3 

1. 52xlO 
-3 

AGE-CN -3 -4 -3 -3 
DR 2.89xlO 9.6xl0 2.45x10 1.37x1O 

-
EXACT 

0.0173321 -0.0178366 -0.018163 -0.0183078 SOLUTION 
. 

0.5 0.6 0.7 0.8 0.9 

7.85xl0 
-2 

1.71xlO 
-2 

1.2xl0 
-1 

1.27xlO 
-2 

1.48xl0 
-1 

7.89x10 
-2 

1.71xl0 
-2 

1.2xlO 
-1 

1.27xlO 
-2 

1.49xlO 
-1 

1.26x10 
-3 

1.04xl0 
-3 

2.35xl0 
-3 

6.98xl0 
-4 

2.74xl0 -3 

1.55xl0 
-3 

1.09xl0 
-3 

2.97xlO 
-3 

7.22xl0 
-4 

3.59xlO -3 

-0.0596645 -0.0401106 ~0.02015602 0 0.020156 

0.5 0.6 0.7 0.8 0.9 

8.62x10 
-2 

1.85xl0 
-2 

6.64xlO 
-2 

1.14x10 
-2 

5.43xl0 
-2 

8.59x10 
-2 

1.83xl0 
-2 

6.56xl0 
-2 

1.12x10 
-2 

5.32xlO 
-2 

1.28x10 -3 1.33xl0 
-3 

4.64xl0 
-4 

6.61x10 
-4 

2.11xl0 
-4 

1. llx10 
-3 

1.2xl0 
-3 

3.03xlO 
-4 

5.95xl0 
-4 

9.0xl0 
-4 

-0.0182698 -0.0180491 -0.0176482 -0.0170709 -0.016323 

TABLE 6.9.14: The absolute errors of the AGE solutions to hyperbolic Problem 2 (6.9.9) 

Average 
of all 
absolute 
errors 

5.17xlO 
-2 

5.19xlO 
-2 

1. 06 xlO 
-3 

1.28xlO -3 

-

Average 
of all 
absolute 
errors 

5.48xl0 
-2 

5.46xl0 
-2 

1.18xl0 -3 

1.31x1O 
-3 

-

No. 
of 
iter-
ations 

5 

10 

3 

9 

-

No. 
of 
iter-
ations 

4 

9 

3 

6 

-

111 
W 

'" 



·~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(a) t=1.0, 1.=0.5, t.t=0.05, t.x=O.l, r=0.5, eps=10 '-4 

-5 -4 -4 -4 -4 -4 1.69xl0-4 -4 -5 
PR 6.43xlO 1.22xl0 1.69 xlO 1.98xl0 2.08xl0 1.98xlO 1.22xl0 6.44x10 

AGE -3 -3 -3 . -3 -3 -3 -3 -3 -3 
DR 1.86x10 3.54xlO 4.87xlO 5.72xlO 6.02x10 5.72x10 4.87xlO 3.54xl0 1.86x10 

EXACT SOLUTION 0.0386272 -0.0734732 -0.1011271 -0.1188821 -0.125000 -0.1188827 -0.1011271 -0.0734732 -0.0386272 

(b) t=2.0, 1.=1.0, t.t=O.l, t.x=O.l, r=0.5, eps=10 
-4 

-4 
PR 5.6xl0 1.06xlO -3 

1.47xl0 -3 1. 73x10 -3 1.81xlO 
-3 

1. 73xlO 
-3 

1.47xlO -3 
1.07x10 

-3 5. 59 X lO-4 
AGE -3 -3 -3 -3 -3 -3 -3 -3 -3 DR 1.47xlO 2.8xlO 3.83x10 4.52x10 4.74xlO 4.5xlO 3.85x10 2.78xl0 1.47xlO 

EXACT SOLUTION 0.0386272 0.0734732 0.1011271 0.1188821 0.125000 0.1188821 0.1011271 0.0734732 0.0386272 

TABLE 6.9.15: The absolute errors of the AGE solutions to the wave equation for Problem 1 (6.9.11) 

Average 
of all 
absolute 
errors 

1.46x10 -Ir 

4.22xl0 -3 

-

1.27x10 -3 

3.33x10 -3 

-

No. 
of 
iter-
ation 

111 
W 
..... 

2 

6 

-

3 

8 

-



~ 
Average 
of all 

0 0.12 0.24 0.36 0.48 0.6 0.12 0.84 0.96 perc.enfuse 
errors 

(a) t=0.4, A=O.l, ~t=0.004, ~x=0.04, r=0.5, eps=10 
-4 

-l" 
5.92 XlO-1 -1 -1 -1 1. 55 xlO -1 -2 -2 -3 -1 PR 9.99xI0 3.91xl0 2.77x10 2.07 xlO 8.87 xlO 4.15xlO 8.57x10 2.86xl0 

AGE 
-1 -1 -1 -1 3. 73 x 10-1 2 .64x10-1 -1 -2 5 • 16xlO -1 DR 1.49xl0 9.17 xlO 6.64xlO 5.29xl0 4.42xlO 1.47xlO 3.57xlO 

EXACT SOLUTION 16 27.04 40.96 57.76 77 .44 loo 125.44 153.76 184.96 -
(b) t=2.0, A=0.5, ~t=0.02 , ~=0.04, r=0.5, eps=10 

-4 

-3 -4 -4 -4 -3 2.05XI0-3 2.61 xlO-3 -3 -3 -3 PR 1.46x10 7.53xlO 5.58xlO 1.32xI0 1.34 xlO 3.79xl0 2.93xlO 1.51xl0 
AGE 

2 .6 xlO-2 -2 -2 -2 -2 -2 5 .82 xlO-3 -3 -3 -2 DR 2.35 xlO 2.17xlO 1.83x10 1.38x10 1.39xlO 8.64xl0 4.14xlO 1.53xl0 

EXACT SOLUTION 400 449.44- 501.76 556.96 615.04 676 739.84 806.56 876.16 -

(c) t=8.0, A=2.0, ~t=0.08, ~x=0.04, r=0.5, eps=10 
-4 

-3 -4 -3 -3 -3 
7.36 xI0-3 8. 77x10-3 -3 -4 -3 PR 3.12xlO 9.96 xlO 2.97xlO 3.33 xlO 1. 75x10 4.91x10 8.35xlO 3.53 xlO 

AGE 
-3 -3 -3 -3 -3 7 .37xlO-3 8. 77 x lO-3 '-3 -4 3. 53xlO-3 DR 3.11 xlO 1.01'10 2.97x10 3.33xI0 1.75xI0 4.91xl0 8.35xlO 

EXACT SOLUTION 6400 6593.44 6789.76 6988.96 7191.04 7396 7603.84 7814.56 8028.16 -

TABLE 6.9.16: The percentage errors of the AGE solutions to the wave equation for Problem 2 (6.9.13) 

No. 
of 
iter-
ation 

2 

14 

-

4 

17 

-

14 

33 

-

U1 
W 
00 



t=0.05, ~x=O.l, A=0.05, 
-4 

eps=10 

~ 0.1 0.2 

(D) AGE 1. 5OW\ 1.43409 

PR 1.49914 1.43226 
AGE- IMP (RCHM) 

OR 1.49830 1.43049 

PR 1.49957 1.43318 

AGE-CN (RCHM) 
OR 1.49914 1.43227 

CN 1.50000 1.43409 

PR 1.50098 1.43618 
AGE-DG (RCHM) 

OR 1.50204 1.43841 

PR 1.5OOO9E 1.43430 
AGE-LEE 

OR 1.49909 1.43254 

LEE 1.50000 1.43409 

EXACT SOLUTION 1.50000 1.43409 

0.3 0.4 0.5 0.6 0.7 

1.3697~1 1.30713 1.246~~ 1.18740 1.13~ 

1.36766 1.30452 1.24381 1.18481 1.12845 

1.36561 1.30200 1.24141 1.18233 1.12643 

1.36868 1.30580 1.24502 1.18608 1.12947 

1.36762 1.30450 1.24375 1.18478 1.12839 

1.36976 1.30713 1.24630 1.18740 1.13056 

1.37241 1.31033 1.24954 1.19069 1.13337 

1.37527 1.31381 1.25308 1.19430 1.13647 

1.37011 1.30753 1.24677 1.18785 1.13099 

1.36779 1.30485 1.24394 1.18505 1.12845 

1.36976 1.30713 1.24630 1.18740 1.13056 

1.36974 1.30713 1.24631 1.18741 1.13057 

TABLE 6.9.17: Numerical solutions to non-linear problem (6.9.15) 

0.8 0.9 

1.07590 1.0~ 

1.07411 1.02267 

1.07240 1.02183 

1.07498 1.02309 

1.07408 1.02264 

1.07590 1.02355 

1.07820 1.02478 

1.08075 1.02613 
-

1.07619 1.02370 

1.07415 1.02247 

1.07590 1.02355 

1.07590 1.02355 

Average 
of all 
absolute 
errors 

NA 

. -3 
1.92xlO 

3.77xlO 
-3 

9.82xlO 
-4 

1.95xlO 
~3 

NA 

2.42xl0-~ 

5.06xlO 
-3 

3.14x10 
-4 

1.82x10 
-3 

NA 

-

No. 
of 
iterations 

-
1 

1 

1 

1 

-
1 

1 

2 

3 

-

-

\Jl 
W 

'" 



-4 
t=O.l, 6x=0.1, A=O.l, eps=10 

A 0.1 0.2 

(O)AGE 1.567~~ 1.50001 

PR 1. 56514 1.49530 
AGE-IMP (RCHM) 

OR 1.56300 1.49078 

PR 1.56627 1.49766 
AGE-CN(RCHM) I OR i 1.56517 1.49536 

CN I 1.56739 1.5000 

PR 1.56809 1.50148 
AGE-DG (RCHM) 

OR 1.56882 1.50302 

PR 1.5675 1.50025 
AGE-LEE 

DR 1. 56691 1.49920 
----

LEE 1.56739 1.50000 
---,. --•. - ,- -,-- _.-_. __ . 1-. 

EXACT SOLUTION 1.56739 1.50000 

0.3 0.4 0.5 0.6 0.7 

1.434q~, 1.36976 1.30:m 1.24630 1.18~~ 

1.42859 1.36286 1.30041 1. 23928 1.18162 

1.42334 1.35629 1.29402 1.23263 1.17614 

1.43126 1.36625 1.30364 1.24270 1.18438 

1.42848 1.36280 1.30021 1.23915 1.18141 

1.43408 1.36976 1.30712 1.24630 1.18740 

1.43599 1.37210 1.30953 1.24874 1.18950 

1.43797 1.31452 1.31201 1.25127 1.19168 

1.43450 1.37024 1.30769 1.24684 1.18792 

1.43309 1.36859 1.30591 1.24507 1.18631 

1.43408 1.36976 1.30712 1.24630 1.18740 

1.43409 1.36974 1.30713 1. 24631 1.18741 

TABLE 6.9.18: Numerical solutions to non-linear problem (6.9.15) 

0.8 0.9 

1.13056 1.07~ 

1.12569 1.07351 

1.12110 1.07125 

1.12805 1.07462 

1.12558 1.07337 

1.13056 1.07590 

1.13227 1.07680 

1.13404 1.07774 

1.13092 1.07608 

1.12964 1.07531 

1.13056 1.07590 

1.13057 1.07590 

Average 
of all 
absolute 
errors 

NA 

5 .13 xI0-3 

9.99 xI0-3 

2 .63 xI0-3 

5 .22 xl0-3 

NA 

1. 77xI0-3 

3 .62 X16-3 

3.78xI0 
-4 

9.45xI0-4 

NA 

-

NO. 
of 
iterations 

-

1 

1 

1 

1 

-

1 

1 

2 

4 

-

-

u. ... 
o 



E=1.0, A=1.0, 6t=0.01, 6x=0.1, 
-6 

t=1.0, eps=10 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
No.of 
iterations 

-8 -7 -7 -7 -7 -7 -7 -7 -6 
OAGE ,7.0xl0 2.5xl0 3.7xl0 2.9xl0 6.5xl0 3.5xl0 6.1XI0~ 9.6xl0 1.22xl0(?1 

1----------1---- .(2~-i_----.. - ------- .. (2.)1----+------ ,~2 -l~=-=-.=:..JLa+_=:...:..::-==--_+.::...:.=--=.::..l..k.l+-----

PR 5 
AGE-IMP 

" 8 .4xlO -4 , 1.5xl0 -3 I' 1.99xlO -31 2 .3xlO -3 2 .4xlO -3

1

, 2 .3xl0 -3 2 .0xlO -3 1.6xl0 -3 8 .8xI0-4 

: -4 I -3 _~ -3 -3 -3 -3 _ -3 -4 
f-_____ O __ R ____ L8..:.5 xlO 1.5xlO ~9xI0 i 2.3xlO 2 .4xlO ~-x-l0--_+-2-.-0~::.1-=0-_+-.:1=-:..:.6:....x-=1:.:0:..-_j-8:..:.:.8=-x....:l:.:0:..--t_-:;.10"-------1 

PR ! 8.2XlO~: i 1.1XlO~:11 1. "8 'xlO: 1.4XlO~; 2.2XlO~: I 1.1XI0~: 2.9XlO~: 1.1XlO~: 2.7XlO~: 4 
AGE-CN 

OR 1.8xlO 2.9xlO 3.9xl0 4.3xl0 4.5xl0 4.2xl0 3.8xlO 2.5xl0 2.4xI0 10 
f---------.. ----- - .. ------ ----- -"- +---+---+----+----1 

EXACT SOLUTION 0.58918851 0.58233803 0.5747863 0.56861393 0.56174757 0.55488319 0.54802440 0.54117482 0.53433803 -

-6 
E=O.l, A=1.0, 6t=0.01, 6x=0.1, t=1.0, eps=10 

~- 0.1 0.2 0.3 
-

OAGE 
-4 

1.83xlO
C11 

3.26xl0 
-4 -4 

3.88xlO(3 

PR 2.9xl0 
-2 

6.1xl0 
-2 

9.4xl0 
-2 

AGE-IMP 
-2 -2 -2 

OR 2.9xl0 6.1xl0 9.4xl0 
- -

PR 1.62xl0 
-4 

2.78xlO 
-4 

2.83xl0 
-4 

AGE-CN 
-4 -4 -4 

OR 1.60xl0 2.66xl0 2.59xl0 
.. --- --------

EXACT SOLUTION 0.932745 0.911271 0.883314 

0.4 

2.39xl0 
-4 

1.236xl0 
-1 

1.236xlO 
-1 
---

1.07xl0 
-4 

7.17xl0 
-5 

---
0.847514 

No.of 
0.5 0.6 0.7 0.8 0.9 iteratiOl 

-5 . -4 -3 -3 -3 
9.6xl0 (3) 6.49xlO 1.19xl0(3) 1. 51xlO 1.22XlOI31 -
1.4498xl0 

-1 
1.542xl0 

-1 
1.4769xl0 

-1 
1.2229xl0 

-1 
7.485xl0 

-2 
5 

1.450xl0 
-1 

1.543xl0 
-1 

1.4777xlO 
-1 

1.2235x10 
-1 - -2 

7.489xl0 14 

2.8xl0 
-4 

8.3xl0 
-4 

1.38xlO 
-3 

1.64xlO 
-3 

1.30xl0 
-3 

3 

3.3xlO 
-4 

8.94xlO 
-4 

1.45xl0 
-3 

1. 7lxlO 
-3 

1.34xlO 
-3 

13 

0.802758 0.748601 0.685736 0.616304 0.543775 -

TABLE 6.9.20: The absolute errors of the numerical solutions to Burgers' equation for Problem 1 (6.9.19) 



-6 
£=0.003, A=1.0, 6x=0.01, At=O.OOOl, t=O.l, eps=10 

K PR DR 

AGE-cN DAGE AGE-IMP AGE-CN AGE-IMP 

0.05 . 1.000000 1.000000 0.999999 0.999999 

0.10 . 0.999999 0.999999 0.999999 0.999999 

0.15 I'- .ooooa: 0.999999 0.999999 0.999999 0.999999 

0.20 P .99999 0.999976 0.999994 0.999976 0.999994 

0.25 P .999572 0.998482 0.999572 0.998475 0.999569 

0.30 p.95256: 0.930082 0.952562 0.929798 0.952191 

0.35 D.557343 0.593433 0.557344 0.593049 0.557074 

0.40 D.5J1467 0.503739 0.501468 0.503713 0.501458 

0.45 b.498438 0.499422 0.498438 0.499421 0.498435 

0.50 .454613 0.484010 0.454613 0.483994 . 0.454527 

0.55 b.18183; 0.325894 0.181833 0.325743 0.181710 

0.60 .10399' 0.129626 0.103999 0.129561 0.103992 

0.65 .100141 0.101435 0.100148 0.101430 0.100148 

0.70 .10000~ 0.100053 0.100005 0.100053 0.100005 

0.75 .1 0.100002 0.100000 0.100002 0.100000 

0.80 pI 0.100000 0.100000 0.100000 0.100000 

0.85 ~U 0.100000 0.100000 0.100000 0.100000 

0.90 P.l000OC 0.100000 0.100000 0.100000 0.100000 

0.95 P.lOOOoo 0.100000 0.100000 0.100000 0.099999 

Number 
of - 2 2 9 10 
iter-
ations 

EXACT 
SOLUTION 

1.000000 

1.000000 

1.000000 

0.999985 

0.999037 

0.944636 

0.555361 

0.500894 

0.498093 

0.452319 

0.183443 

0.103726 

0.100134 

0.100004 

0.100000 

0.100000 

0.100000 

0.100000 

0.100000 

-

TABLE 6.9.21: The numerical solutions to Burgers' equation 
for Problem 1 (6.9.19) 

542 . 



-6 
&=0.003, A=1.0, ~=0.01, ~t=O.oool, t=0.5, eps=10 

~ 
PR DR 

AGE-IMP AGE-CN DAGE AGE-IMP AGE-CN 

0.05 1.0000 1.000000 1.000000 1.000000 1.000000 

0.10 1.0000 0.999999 1.000000 0.999999 1.000000 

0.15 1.0000 0.999999 1.000000 0.999999 1.000000 

0.20 1.0000 0.999999 1.000000 0.999999 0.999999 

0.25 1.0000 0.999999 1.000000 0.999999 0.999999 

0.30 1.0000 0.999995 0.999999 0.999995 0.999999 

0.35 1.0000 0.999755 0.999999 0.999746 0.999999 

0.40 1.0000 0.992646 0.999999 0.992410 0.999999 

0.45 1.0000 0.894929 0.999999 0.892547 0.999999 

0.50 1.0000 0.620463 1.000001 0.618006 1.000001 

0.55 1.0000 0.492275 1.000020 0.491687 1.000028 

0.60 0.9552 0.360375 0.955208 0.359512 0.953063 

0.65 0.3362 0.173939 0.336164 0.173327 0.334005 

0.70 0.1145 0.109650 0.114505 0.109531 0.114373 

0.75 0.1006 0.100808 0.100642 0.100795 0.100636 

0.80 0.1000 0.100049 0.100027 0.100048 0.100026 

0.85 0.1000 0.100002 0.100001 0.100002 0.100001 

0.90 0.1000 0.100000 0.100000 0.100000 0.100000 

0.95 0.1000 0.100000 0.100000 0.100000 0.100000 

Number 
of - 2 2 8 10 
iter-
ations 

EXACT 

SOLUTION 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.9999 

0.9999 

0.9413 

0.3410 

0.1138 

0.1005 

0.1000 

0.1000 

0.1000 

0.1000 

-

TABLE 6.9.22: The numerical solution to Burgers' equation 
for Problem 1 (6.9.19) 
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Case (i) F(x)=4x(1-x) with E=O.Ol, ~t=O.Ol, ~x=0.25, r=0.5, eps=10-6 

x=0.25 PR 

t 
Exact Implicit Explicit PAGE AGE-IMP 

0.01 0.7492 0.7346 0.7342 0.7342 0.7417 

0.05 0.7460 0.6766 0.6748 0.6755 0.7098 

0.10 0.7420 0.6122 0.6087 0.6104 0.6724 

0.15 0.7380 0.5562 0.5512 0.5537 0.6376 

0.20 0.7340 NA 0.5016 0.5046 0.6054 

0.25 0.7300 NA ~ o .4hS~ O.'i7'i'i 

x=0.5 
PR 

Exact Implicit Explicit PAGE AGE-IMP 
t 

0.01 0.9992 0.9986 0.9992 0.9989 0.9991 

0.05 0.9960 0.9873 0.9901 0.9887 0.9938 

0.10 0.9920 0.9611 0.9662 0.9636 0.9841 

0.15 0.9880 0.9233 0.9299 0.9263 0.9712 

0.20 0.9840 NA 0.8835 0.8796 0.9554 

0.25 0.9800 NA NA 0.8256 0.9370 

x=0.7S 
PR 

Exact Implicit Explicit PAGE AGE-IMP 
t 

0.01 0.7492 0.7644 0.7642 0.7645 0.7567 

0.05 0.7460 0.8241 0.8232 0.8240 0.7837 

0.10 0.7420 0.9027 0.9012 0.9020 0.8181 

0.15 0.7380 0.9843 0.9828 0.9832 0.8531 

0.20 0.7340 NA 1.0065 1.0671 0.8886 

0.25 0.7300 NA NA L1513 0.9242 

K Number of Iterations 

t . 
AGE-IMP . AGE-cN 

0.01 2 3 

0.05 2 3 

0.10 2 3 

0.15 2 3 

0.20 2 3 

0.25 2 3 

TABLE 6.9.23: The numerical solution to Burgers' equation for 
Problem 2 (6.9.20) 

AGE-CN 

0.7344 

0.6757 

0.6104 

0.5537 

0.504 7 

o 4h~<; 

AGE-cN 

0.9989 

0.9887 

0.9636 

0.9265 

0.8797 

0.8254 

AGE-cN 

0.7643 

0.8237 

0.9019 

0.9836 

1.0670 

1.1507 
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case (ii) F(x)=sin(nx) with E=1.0, ~t=O.Ol, ~x=0.25, r=0.5, eps=10-6 

x=0.2S PR 

t 
Exact Implicit Explicit OAGE AGE-IMP 

0.01 0.6290 0.6377 0.6267 0.6259 0.6416 

0.05 0.4131 0.4339 0.4099 0.4168 0.4419 

0.10 0.2536 0.2768 0.2525 0.2639 0.2821 

0.15 0.1566 0.1784 0.1565 0.1681 0.1811 

0.20 0.0964 NA 0.0967 0.1047 0.1163 

~25 0.0592 NA NA 0.0651 0.0746 

x=O.S PR 
Exact Implicit Explicit DAGE AGE-IMP 

t 

0.01 0.9057 0.9141 0.9063 0.9082 0.9142 

0.05 0.6096 0.6380 0.6100 0.6222 0.6386 

0.10 0.3716 0.4075 0.3729 0.3876 0.4080 

0.15 0.2268 0.2604 0.2281 0.2417 0.2607 

0.20 0.1385 NA 0.1395 0.1509 0.1666 

0.25 0.0 845 NA NA 0.0942 0.1064 

x=0.7S 
PR 

Exact Implicit Explicit DAGE AGE-IMP 
t 

0.01 0.6524 0.6556 0.6550 0.6612 0.6514 

0.05 0.4502 0.4702 0.4556 0.4668 0.4617 

0.10 0.2726 0.3007 0.2762 0.2871 0.2952 

0.15 0.1644 0.1904 0.1663 0.1753 0.1877 

0.20 0.0994 NA 0.1006 0.1094 0.1193 

0.25 0.0603 NA NA o (),;,,~ 0.0759 

A Number of Iterations 

AGE-IMP AGE-cN 

0.01 4 4 

0.05 4 4 

0.10 4 4 

0.15 4 3 

0.20 4 3 

0.25 4 3 

TABLE 6.9.24: The numerical solutions to Burgers' equation for 
Problem 2 (6.9.20) 

AGE-cN 

0.6327 

0.4224 

0.2648 

0.1676 

0.1059 

0.0668 

AGE-cN 

0.9103 

0.6246 

0.3906 

0.2445 

0.1530 

0.0957 

AGE-cN 

0.6550 

0.4631 

0.2888 

0.1786 

0.1105 

0.0686 
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-

~ -49 -33 -17 -1 15 207 339 

(S)AGE-EXP 7 .llx 10 -14 8 .17X 10-13 7 .96x 10-8 3 .3lx 10-3 2 .4Sx 10-6 3.37>< 10 -70 3 .01X 10 -12 3 

(O)AGE-EXP 4 .26x 10 -1.4 6.47>< 10-13 6 .58xlO-8 1.82x 10-3 5.4XI0-6 7 .34X 10 -70 2.58 XlO-123 

(S)AGE-PC 8.53x10-14 1.67xlO-12 1.23x10 -7 1.64xlO -3 2.47X 10-6 3.37X10-7O 3.01 xlO -123 

(O)AGE-PC 5.68xlO 
-14 1.88xlO-12 1.41X10-7 2 .06 X lO-4 5 .43X lO-6 7 .34x10 -70 2 .58xlO -123 

PR 1.42xlO-13 8 .8P10-13 7.91 X lO-8 9.2XlO-4 7 .25X lO-6 9 .84xlO -70 2 .47x10 -123 

AGE-PC 
9.09x10 -13 8. 75 x10-8 3 .95XlO-4 6 .S8xlO-6 8.95X10-7O 2 .53xI0 -123 DR 0 

PR 0 2. 3xI0 -12 1.84x10-7 
7 .46XlO-4 1. 76XI0-5 2 .4 XlO-69 1.5xlO -123 

AGE-1TL 
5 .68x10 -14 

-12 -7 1.26XlO -3 1.66X10-S 2 .27x10-69 1.6x IO -123 OR 2.S7 x10 1. 94 x10 

PR 5.68 x10-14 1.1lXI0 12 8.66xI0 -8 1.08XI0-3 7 .25XlO-6 9.84X10-7O 2.47X10-123 

AGE-2TL 
1.14 xlO-13 -12 

9.5lXI0-8 5.S7x10-4 6.58XlO-6 8 .95xlO -70 2 .53xlO -123 OR 1.53xlO 

PR 2.42x10-13 1.68x10-12 
9.6x10 

-8 
1.64xl0 

-3 8.95xlO-6 1.2xlO -69 2 .32xlO -123 
AGE-3TL 

OR 3.27 X10-13 1.68XlO-12 9. 98XlO-8 
2.02x10 

-3 
8.27xl0 

-6 1.11X1O-69 2.38x10-123 

PR 1.56x10 
-13 1.85xlO -1.3 3;"/3xlO-<; 1.9xI0 -4 2 .67xI0-0 4.18x10-'': 3.14x10-LL~ 

,;GE-4TL 
-13 -13 -9 -4 6.44 XlO-7 8 .65xI0-71 3 .2xlO -123 DR 1.43xlO 5.26xlO 4.69x10 3.43xlO 

L:l(ACT 
1.0000 

.cJLUTION 
1.0000 0.9999987 0.9008854 1.11 xlO-4 1.48xlO -68 1. 32xlO -122 

TABLE 6.9.26: The absolute errors of the numerical solutions to non-linear problem (6.9.21) 
(The reaction-diffusion equation) 

Average 
of all 
absolute errors 

1.06x10 -4 

1.12x~0 -4 

3 .65xlO-5 

3 .62 X lO-5 

3 .52X I0-5 

4.21 xlO-5 

5 • 92 xlO-5 

4 .85X10-5 

3.64x10 -5 

4.17x10 
-5 

7 .82x 10-5 

6.95xlO 
-5 

3.17x10-u 

1.63x10 
-5 

-

Number 
of 
iterat ion £ 

-
-
-
-

2 

8 

3 

8 

2 

8 

5 

II 

2 

8 

-

U1 ... 
0\ 

, 
, 



t=12, ~x=1.0, ~t=0.2, A=0.2, -4 
eps=10 

~ -49 -33 

-
(S)AGE-EXP 5.68XlO-14 1.28XlO-13 

(O)AGE-EXP 8.53xlO 
-14 1 .07XI0-13 

(S)AGE-PC 7.11xlO -14 2 .63XI0-13 

(O)AGE-PC 8.53x10 -14 2.63XI0-13 

PR 1.42xlO -14 7.11X10-14 

AGE-PC 
. 

-14 
OR 0 2.84x10 

PR 0 2 .56xlO-13 
AGE-1TL 

-14 -13 
OR 5.68x10 3.55xLO 

PR 5.68xlO 
-14 

1. 56xlO -13 

AGE-2TL 
-13 8.38xlO-13 OR 1.l4xlO 

PR 2.42xlO -13 5.83xl0 13 
AGE-3TL 

-13 9.66xlO-13 OR 3.27xl0 

PR 1.14xl0 
-13 

4.U3xlO 
13 

AGE-4TL 
OR 1.42xl0 -13 5.26xlO -13 

EXACT 1.0000 1.0000 
SOLtrrION 

-17 

2.43xI0-9 

3.03xlO 
-9 

. -9 
5.24xl0 

4.49xlO -9 

2.78x10 
-9 

3.21x10 
-9 

8.04xlO -9 

8.65xlO-9 

3.05xlO 
-9 

3.4Gxl0 
-9 

4.27xlO -9 

4.49xlO 
-9 

1.49xlO -le 

4.69xl0 
-9 

0.9999999 

-1 15 207 339 

6.77xl0 
-7 

5.99xlO -4 1.8xlO -67 1 .68xl0 -121 

-5 2.63xl"- k "~xl,,-4 1.94xlO -67 1.65xI0 -121 

1.llxlO 
-4 

9.91xlO 
-5 1.8X10-67 1.68x10-12l 

8.67xl0 -5 
4.74xlO 

-5 
1. 94xlO 

-67 1.65XlO-121 

6.58x10 
-5 

5.48 xlO 
-4 

3.92xlO 
-67 2 .43x10 -122 

9.6x10 -5 
3.24x10 

-4 
3.53x10 

-67 5 .07x10 -12: 

1.22xl0 
-4 

2.87xlo 
-3 1.lxLO -66 4 .55xLO -12 

1 .54XI0-4 2.57xlO 
-3 

1.03xlO 
-66 

4.06xlO 
-12 

6.69xlO 
-5 

5.53xlO 
-4 

3.92xlO 
--67 2 .43xLO -12. 

9.72x10 
-5 

3.29xl0 
-4 

3.53xlO 
-67 5 .07xl0 -12. 

5.68xl0 
-5 

2.33xlO 
-3 

4.86xlO 
-67 3 .97x10 -12. 

7.81xlO 
-5 

2.08xl0 
-3 

4.47xlO 
-67 1.29xl0 -12: 

5.33xl0 -6 
1.22xl0 

-5 1.5lxlO-W 2.91xlO-121 

3.43xlO 
-4 

6.44xlO 
-7 

8.65xl0 
-71 

3.2xlO -123 

0.9987793 0.0098869 1.33xLO -66 1.19xLO -120 

TABLE 6.9.27: The absolute errors of the numerical solutions to non-linear problem (6.9.21) 
(The reaction-diffusion equation) 

Average 
of all 
absolute errors 

4.28xI0-4 

4 .2<lXI0-4 

1.0xlO 
-4 

1.0lx10 -4 

1.03x10 -4 

1.7xLO -4 

2.92xl0 
-4 

2.22X10-4 

9.6xlO 
-5 

1.63xlO 
-4 

3.67xlO 
-4 

3.05xlO 
-4 

3.6lxl0-o 

1.63xlo 
-5 

-

Number 
of 
iterations 

-
-
-
-

2 

8 

3 

8 

2 

8 

5 

11 

2 

8 

-

--

tn ... ...., 



-4 
t=21, lIX"1.0, lIt=0.2, >'=0.2, eps~lO 

~ -49 -33 

,S)AGE-EXP 7.11xl0 -14 
1. 05xlO 

-13 

\D)AGE-EXP 8.53xI0-H 1.85xlO -13 

,S)AGE-PC 8.53xl0 
-14 

1.85xlO -13 

(D)AGE-PC 
. -14 

9.95xlO 1.85xlO -13 

PR 1.42xlO -14 
2.84xlO 

-14 

AGE-PC -14 
DR 0 2.84xlO 

PR 0 1. 14 xlO 13 

AGE-ITL -14 -13 
OR 5.68xlO 1. 56 xlO 

-14 
PR 5.68x1O 2.7x10 -13 

',GE-2TL -13 -13 
OR 1.14xlO 3.98xlO 

PR 2.42xl0 -l.,j 3 .55x1O-13 

AGE-3TL -13 7 .39x1O-13 
OR 3.27xlO 

PR 2 .13xI0-u 4. 97xI0-13 

AGE-4TL -13 -13 
OR 1.42xl0 9.95xlO 

EXACT 
SOLtrrION 

1.0000 1.0000 

-17 

2.66XlO-
11 

3 • 32xlO-11 

7 .96xlO-11 

7 .05XlO-11 

-11 4.5xl0 

5 • 39 x 10-11 

1. 26xlO -10 

1.4x10 
-10 

4.93xlO-11 

5.85x1O-11 

6.37xlO -11 

6.91xlO -11 

2 .03xl0 -l., 

5.22xlO 
-12 

0.9999999 

-1 15 207 339 

3.17XlO-7 
6.97xl0 

-2 
2.66xlO 

-65 
9.04xlO 

-120 

7 .13xlO-9 7.01xI0-2 
3.21xlO 

-65 5.65xlO-12O 

-6 2.73xlO 1.68xl0 
-2 

2.66xlO 
-65 

9.04xlO 
-120 

2.43xlO -6 
1. 71xl0 -2 

3.21xl0 -65 5.65xI0-12O 

1.79xlO 
-6 

1.56xl0 
-2 

6.84xl0 -65 
2.02xlO 

-119 

2.42xlO -6 
2.56xl0 

-2 
6.1xlO 

-65 1.52xl0 -119 

2.57xlO 
-6 

4.41xlO 
-2 

2.24xl0 
-64 1. 25xlO -118 

3.27x10 
-6 

3.39xl0 -2 
2.06xl0 

-64 1. 14xlO -118 

1.87x10 
-6 

1.48x10 
-2 

6.84xl0 
-65 

2.02x10 -119 

2.51xlO 
-6 

2.49xl0 
-2 

6.1xlO -65 1.52xlO-119 

7.57x10- 1 5.64xl0-" 8.68x10-05 3.27xlO-119 

1. 18x10 
-6 

4.76x10 -2 7 .9x10 -65 2. 74xlO -119 

9 .6xI0-" 7.99xl0-'-> 2 .37x10 -t> 1 2.62x10-...... " 

4.75x10 
-7 

1.01xl0 
-2 

4.82xl0 -66 2.93xI0-119 

0.9999864 0.4733711 1.198x10 
-64 

1.07xlO 
-118 

TABLE 6.9.28: TIle absolute errors of the numerical solutions to non-linear problem (6.9.21) 
(The reaction-diffusion equation) 

Average Number 
of all of 
absolute errors iteration 

-4 
7.00xlO -

-4 7.87xl0 -
-4 

1.88xl0 -
-4 1.87xl0 -

1.64xlO 
-4 

2 

2.85xl0 -4 
8 

5.88xl0 
-4 

3 

4.58x10 -4 
8 

1.54x10 -4 
2 

2.76xl0 -4 
8 

7.19xl0-4 
5 

6.07xl0 
-4 

11 

3.54xl0-0 2 

1.25x10 -4 
8 -

- -



. 

-4 
t=30, lIx=1.0, lIt=0.2', >-=0.2, eps=10 

~ -49 -33 

(S)AGE-EXP 5 .68x 10-14 1.85x 1O -13 

(O)AGE-EXP 7.11xl0 
-14 

1.85x 10-13 

(S)AGE-PC, 7 .11x 10 
-14 

1.85xl0 
-13 

(O)AGE-PC 7.11xl0 
-14 

1.85xl0 
-13 

PR 1.42xI0 -14 2.84 xI0-14 

AGE-PC 
2.84 xI0-

14 
OR 0 

PR 0 1.14xI0 -13 

AGE-ITL -14 1.42xI0 -13 OR ,5.68 xI0 

PR 5.68 xI0 14 2.7 xI0-13 

AGE-2TL 
1.14xI0 -13 -13 

OR 3.98 xI0 

PR 2.42 xI0-1 3.84 xI0-13 

AGE-3TL 
3. 27xI0 -le 7 .39 xI0-13 

OR 

PR 1.42xI0 -.le 4.97 xI0-1e 

AGE-4TL 
2.56 XI0-1 -13 

OR 9.95 xI0 

C:XACT 1.0000 1.0000 
SOLtrrION 

-17 

5 .68xI0 -1, 

1.28~ 10-1 

1.42xlO 
-1~ 

1.3xl0 
-12 

5.68 xI0-1J 

7 .llXI0-13 

1. 79 xI0-1 

2.3 xI0-12 

9.24xI0 1 

1. 28 xI0-1 

1.12xlO -.I., 

1. 52 x1.O 
-1 

2 .98 xI0-.c.: 

6.54 xI0-D 

1.0000 

-1 15 207 339 

1.24xI0 -8 3 .84x 10-3 3 .84x 10-63 
2.57x I0-118 

7 .85x 10-9 3.8xI0-3 
4.7X I0-63 8 .2xlO -118 

5.48xl0 
-8 

1.3x lO 
-3 3 .84xI0 -63 2.57X lO-118 

5.03xl0 
-8 

1.25xl0 
-3 

4.7xl0 
-63 8.2x1O-118 

3.2 xI0-8 
9.05x1O 

-4 9. 78 xI0-63 4 .27xlO -117 

4.29 xI0-8 1.66xlO -3 8.63xI0-
63 3.5 x1O-117 

4.2 xI0-8 1.82xI0 -,j 3. 78xI0 -b~ 2 .33x lO -116 

5 .42xlO-8 1. 21XI0-3 3 .43xlO -62 2.09 xlO-116 

3 .38 xI0-8 8 .54 xI0-4 9.78 x10-63 4 .27xlO -117 

4 .48 xI0-8 1.61X10 -3 8 .63 xlO -63 3 .5xlO -117 

9.2lXI0-~ 2 .45xI0-,J 1.27xI0 -0" 6 .26xI0 -.1..1.1 

1.6xI0 
-8 1.98xlO -3 1.15xI0 -62 5 .4lXlO -117 

1.48 xI0 -J 3.54 xI0" 3 .05xI0-0~ 2 .37xI0-'>''>'' 

7.63 xI0 
-9 6 .8 xI0 -4 ' 6.15xI0-

64 2. 76xlO -117 

0.9999985 0.9877~119 1.08xIO 
-62 

9.65xlO-:
117 

TABLE 6.9.29: The absolute errors of the numerical solutions to non-linear problem (6.9.21) 
(The reaction-diffusion equation) 

Average Number 
of all of 
absolute errors iterations 

1.15x 10-3 -
1. 14x 10 -3 -
2. 75x 10-4 -

-4 
2.71xl0 -
2.23 xI0-4 

2 

3.99 xI0-4 
8 

8.94 xI0-4 
3 

7 .08xlO-4 
8 

2.1XI0-4 
2 

3 .86xI0 -:4 , 
i 

8 

1.07xI0-3 5 

9 .14 X I0-4 11 

3 .41xI0-u 2 

1. 79xlO 
-4 

8 

- -



~ 
AGE-PC AGE-1TL AGE-2TL 

(S)AGE-EXP (O)AGE-EXP (S)AGE-PC (O)AGE-PC 
PR OR PR OR PR OR 

CV 0.6908973 0.6887024 0.7038429 0.70368340.7032153 p.7032711 0.7144151 0.714478 0.7030501 0.7031086 
3 

CV-R (0.6916288) (0.7031970) (0. ~ 031970) (0.7030459 PCV-R(%) (2.19) (0.553) (0.533) (0.714411) 
(0 574) 

PCV(%) 2.292 2.603 0.461 0.484 0.55 b.542 1.034 (1 On043 0.574 0.565 

CV 0.6889379 0.6890496 0.7026014 0.7027083 0.7035437 b.703606 0.7203569 0.720396' 0.7032528 0.7033159 
12 CV-R (0.6870319) (0.7035245) (0 •• 035245) (0. 203591) (0. 032573) 

PCV-R (%) (2 84) « 506) (0.506) (1.874) (0,544) 
PCV(%) 2.569 2.554 0.637 0.622 0.504 p.495 1.874 1.88 0.545 In.516 

CV 0.6892023 0.6892408 0.7027116 0.7027591 0.7038907 p.7039569 0.7211176 0.7211574 0.7035924 0.7036592 
21 CV-R (0.6869790) (0.7b38702) (0. 038702) (0. 211216) (0."1035991) 

PCV-R(%) (2 846) (0.458) (0.458) 
(119P?~87 1 0.497 

(0 496J 
PCVi\i ? ~1? 2.526 0.621 0.615 0.455 pA45 1.982 0.4 7 

CV 0.6892778 0.689422 0.7027429 0.7028983 0.7039567 p.7040239 . 0.7212402 J 0.7212801 0.7036572 0.7037251 

30 CV-R (0.6869822) (0.7b39361) (0. 039361) (0.7212447) (0.7036646) 
PCV-~!%) (2r:846) 

10.617 ('T~~~~5 10.445 (<ts~1~~ I 1.999 (2}<l9!OO5 I 0.488 (0~~?n8 PCV %) 2.521 2.501 

CV: computed wave speed continued ••• 
AGE-3TL AGE-4TL 

CV-R: computed wave speed from Ramos 
PR PCV: percentage error in CV OR PR DR 

PCV-R: percentage error in CV-R 0.7178107 0.7175869 0.7066162 0.7066676 
Exact V=VV2=0.7071058 (0.7178736) (0.7066156) 

(1.523) (0.069) 
TABLE 6.9.30: The computed wave speeds and their percentage errors 1.514 11.482 0.0692 10 •062 

0.7234951 10.7232126 0.7065187 10.7065909 
(0.7235846) (0.7065183) 

(2.330) (0(083) 
2.318 12 278 In.Ml n.n71 
0.7239050 10.7236222 0.7065232 -' 0.706597 

(0.7239955) (0.7065230) 
(2.389) (0.0824) 

2.376 12 •336 0.0824 1.0 .072 

0.7239644 10.7236825 0.7065240 I 0.7065 98 

(0.724~~W) (0.7065237) 

2.384 (2 i:' .. 344 In.D8l] (~'~~;~R 

lJ1 
lJ1 
o 



-4 
~x=0.5, 6t=0.05, A=0.2, eps=10 ,t=3 

~ -49 -33 -17 

PR 2.S4 xI0-14 
2.27 xlO 

-13 
2.04xI0-S 

AGE-PC 
-14 OR 2.84xl0 2 .13 xlO-13 

5.3 xlO 
-8 

PR 2.27xlO 13 
1.07x10 12 

4.7x10 
-S 

AGE-lTL 
3 .S4XlO-13 -12 -S 

.OR 2.06 xlO 8.0xI0 

PR 4. 0x10.:rT 4.97xlO 
-u 

2.12xlO 
-8 

AGE-2TL 
-13 -12 -8 OR 4.41x10 1.49x10 5.38xI0 

PR 4 .26xlO "13 1.99x10 -12 
2.7x10 -8 

AGE-3TL 
-13 -12 -8 OR 3.27xlO 2.57x10 5.19xl0 

PR 1.42x10 -13 S .1 xI0-13 2 .45x10 -10 
AGE-4TL 

-14 
OR 8.53x10 2.07x10 -12 

3.2xl0 -8 

EXACT 
SOLUTION 

1.0000 1.0000 0.9999987 

-1 

2.27xl0 
-4 

1.89 xI0 
-3 

2.6xlO 4 

2.38xlO 
-3 

2 .35 x10-4 

1.S8x10 
-3 

6.67x10 
-4 

2.44xI0 
-3 

1.25xlO -5 

2.1xlO -3 

0.9008854 

15 207 

1. 74 xI0-6 
2.34xI0 

-70 

S.79 xI0 
-7 

1.15xlO 
-70 

3.87xl0 6 5.2 xI0-7O 

1.16xl0 
-6 

1.59xI0 -70 

1. 74 xl0-6 
2.34xl0 -70 

8.79xlO -7 
1.15 xI0 

-70 

1.83 xI0 -6 2.45xlO 
-70 

4.97xlO 
-7 

~ .59 xlO 
-71 

1.8X::'0-9 12 -73 i".83 XlO 

2.54xl0 -6 
3.39xlO -70 

1.11 XlO-4 
~.48 XlO 

-68 

399 

2.97 XlO-123 

3.21xI0 
-123 

2. 7SxlO -123 

. -123 
3.02 xI0 

2.97x10 
-123 

3.21xI0 
-123 

2.97xlO 
-123 

3.1SxI0-123 

3 .13xlO -123 

3.36xlO-123 

. -122 
1.32 xl0 

contlnued ••••• 

Average of 
all absolute 
errors 

S.79 xlO-6 

7.69xlO 
-5 

1.46xlO 
-5 

6.57xlO 
-5 

S.76x10 
-6 

7 .67 x10-5 

1.72 xlO 
-5 

6.03 xlO 
-5 

2 .05xlO 
-7 

7.34 xlO 
-5 

-

Number of 
Iterations 

2 

6 

2 

6 

2 

6 

4 

8 

2 

6 

-

U1 
U1 
t-' 



-4 6x=0.5, 6t=0.05, A=0.2, eps=10 ,t=12 

~ -49 -33 

PR 2.84xlO -14 1. 7IXI0-13 

AGE-PC -14 -14 
OR 2.84xlO 2.84 XlO 

PR 2. 7Xl0-13 
1.04xlO -12 

AGE-ITL 
3.84 xI0-13 . -12 

OR 2.09xl0 

PR 3.98xlO-13 1.85xlO -13 
AGE-2TL 

4 .41xI0 -13 -12 OR 2.4xl0 

PR 4. 26xI0 ::r3 3.17xlO-12 

AGE-3TL 
3 .27 X lO-13 -12 OR 3.95xl0 

PR 9. 52 XI0-13 1.17xI0-12 

AGE-4TL 
OR 8.53xl0 

-14 3. 5xlO -12 

EXACT 
1.0000 1.0000 SOLUTION 

-17 

7.12xl0 -10 

2.27xl0 -9 

1.83xlO -9 

3.49xl0-9 

7.4 xlO-1O 

2.3 xlO-9 

1. 12xI0 -9 

2 .35xI0-9 

8.63xlO -12 

1.48xl0 -9 

0.9999999 

-1 15 207 399 

1. 73xlO -5 
1.39xl0 

-4 
8.63xlO -68 2.31xl0 -121 

1.39xlO -4 
7.36xl0 -4 

4.lxl0 -68 
3.17xl0 -121 

3.26X lO-5 6. 79xI0-4 1. 97 xlO-67 1. 56 xI0 -121 

1.55xlO -4 2.4 7 x 10-4 5.76xI0-68 2 .5IXI0 -121 

1'-. 75xI0-5 
1.41xI0 -4 18.63 xI0-68 2 .3IXI0 -121 

I'- .39 xlO 
-4 7.35xlO-4 4.IXlO -68 3.17xI0-121 

t2.5 xlO-5 ~ -4 .47xl0 ~ -68 .OIXI0 2 .29xI0 -121 

.28xl0 -4 p.7xlO-4 
2.45 xlO -68 3 .06xI0 -121 

.62xl0 -7 ~ -7 .32xl0 .02xI0 -70 2.9 xI0-121 

.2 xI0 -4 
~.69xlO 

-4 
I'- .18 xI0 

-67 3 .69xI0 -121 

0.9987793 p.0098869 1'-.33 X lO 
-66 

1. 19x1O -120 

TABLE 6.9.31: The absolute errors of the numerical solutions to non-linear problem (6.9.21) 
(The reaction-diffusion equation) 

Average of 
all absolute 
errors 

2.55xl0 -5 

3.16xlO -4 

7.0X lO-5 

2 • 27 X lO-4 

2.46 xlO 5 

3.15xlO-4 

6.14 xlO -5 

2.01xlO-4 

2.35xlO-7 

2.93 xI0-4 

-

Number of 
Iterations 

2 

6 

2 

6 

2 

6 

4 

8 

2 

6 

-

111 
111 
I\) 



ax-o 5 4t-0 05 A-O 2 . , - . , - . , -4 eps-l0 - , t-21 -

~ -49 -33 

PR 2.84 ><1.0-14 
0 

AGE-PC 
2.84'10 -14 1.28XI0-1; OR 

PR 2.7xlO-13 1. 21xlO -12 
AGE-1TL 

3.84x10-13 -12 OR 2.26xlO 

PR 3.98x10 -13 
3.55xlO 

-13 

AGE-2TL 
OR 4.41XI0-13 2.57XlO-12 

PR 4.26XlO-13 
3.34'10 

-12 

AGE-3TL 
-13 

4.12'10-12 OR 3.27'10 

PR 9.52'10-13 1. 34xlO-12 
AGE-4TL 

8.53xlO-14 3.67XlO-12 OR 

EXACT 
1.0000 

SOLUTION 1.0000 

-17 -1 

1.07.10 
-11 

4.57.10 -7 

4.24XI0-11 
2.96xlO -6 

2.73XI0-11 
6.61'10 

-7 

6.26xl0 -11 
3.20'10 

-6 

1.2'10-11 
4.66xlO -7 

4.44x10 -11 
2.97xlO -6 

1.82'10 
-11 

3.88'10 
-7 

4 .4xlO-11 2.47'10-6 

8.95'10-13 
6.54xlO -9 

3. 14xlO-11 2.42'10-6 

0.9999999 p.9999864 

15 207 

3.84'10-3 
1.39'10-65 

4.43'10-2 
6.38'10-66 

1.0xl0 -2 
3.27'10-65 

3.0'10 
-2 

9.21x10 -66 

3.71x10 -3 
1.39'10 

-65 

4.41'10 
-2 

6.38xlO -66 

9.98x10 -3 
1.46'10 

-65 

2.6xl0 -2 
3.85'10-66 

1.6.10 -6 1.6xlO -68 

4.04x10 -2 
1.79xlO -65 

0.4733711 1.198x10-64 

Average of 
399 all absolute 

errors 

1.66'10-119 
4.1'10-5 

3.04XlO-119 
5.52'10-4 

3.93XlO-12O 1.41'10 -4 

1. 98xlO-119 3.76xlO -4 

1.66xlO -119 3.96x10 
-5 

3.04 xlO -119 
5.51xlO -4 

1.62xI0 -119 1.25'10-4 

2 ..Jl1..x I0 -119 l11Xl,,-4 

2.6'10 -119 2.42x10 -7 

3...82.xl 0 -119 ~_1~-4 

1.07x10 -118 -

cont11lued •••••• 

Number of 
Iterations 

2 

6 

2 

.6 

2 

E; 

4 

R 

2 

6 

-

U1 
U1 
lA> 



-4 llx=0.5, llt=0.05, >'=0.2, eps=10 ,t=30 

I~ -49 -33 

PR 2.84xI0-14 
0 

AGE-PC 
OR 2.84xlO -14 1.28xlO -13 

PR 2. 7xlO-13 
1.21xlO -12 

AGE-1TL -13 -12 OR 3.84xlO 2.26x10 

PR 3.98x10-.1.~ 3.55xlO -13 

AGE-2TL 
4 .41x10 -13 2.57xlO-12 OR 

PR 4.26xl0-.1.') 3.34x10-L
" 

AGE-3TL 
3.27xlO-13 -12 OR 4.1b<1O 

-13 -12 PR 9.52x10 1.34xlO 
AGE-4TL -4 -12 

OR 8.53xlO 3.67xlO 

EXACT 
SOLUTION 

1.0000 1.0000 

-17 

2. 7xlO-13 

3 .69xlO -13 

9.09xlO -13 

2.53x10 -12 

7.82x10 -13 

2.47xlO-12 

2.81x10 -12 

3.5xl0 -12 

1.41x10 -12 

2.7xlO -12 

1.0000 

-1 15 207 399 

7.99xlO -9 
2.26xI0-4 1.83xlO-63 1.1xlO -117 

-8 3 .43xI0- 3 -64 
2.9xI0-117 4.99xlO 8.11xlO 

1.05xlO -8 . -4 
4.59x10 4.44x10 -63 6 .59xI0 -118 

-8 2 .58xlO-3 -63 1.53XI0-117 5.31xlO 1.20xl0 

8.15xlO -9 
2.2xlO -4 

1.83x10 
-63 1.1x10 -1l7 

-8 
3.43xI0-3 -64 2.9X10-117 5.01xlO 8.l1x10 

-9 3.97X10-4 -63 -1l7 5.4xl0 1.92x10 1.05xlO 
-8 -3 -64 2.68x10-117 4.0x10 2.25x10 4.92x10 

~ • 99XlO-11 2.69XlO-6 2.06XlO-66 2. 35xI0 -117 

3 .98xlO-8 
3.16x10 -3 

2.23x10 -63 
3.86x10-117 

p.9999985 0.9877919 1.08xlO-62 9.65XlO-117 

TABLE 6.9.32: The absolute errors of the numerical solutions to non-linear problem (6.9.21) 
(The reaction-diffusion equation) 

Average of 
all absolute 
errors 

5.59xlO -5 

7.87xlO -4 

2.15xlO -4 

5.23x10 -4 

5.38x10 -5 

7.85xlO -4 

1.9x10 -4 

4.65xlO -4 

2.51x10 -7 

7.33xlO -4 

-

Number of 
Iterations 

2 

6 

2 

6 

2 

6 

4 

8 

2 

6 

-

VI 
VI ... 



-4 6x=0.5, 6t=0.05, A=0.2, eps=10 

R AGE-PC 

I 
PR I OR 

3 

12 

21 

30 

, 
CV 0.7061664 '0.7062216 

CV-R (0.7061863) 
PCV-R(%) (0.13) 

PCV(%) 0.133 10.125 

CV 0.7062323 10.7062913 
CV-R (0.7062578) 

PCV-R (%) (0.120) 
PCV(%) 0.124 '0.115 

• CV 0.70631500.706377 
CV-R (0.7063419) 

PCV-R(%) (0.108) 
PCV(%) 0.112 ,0.103 

CV 0.7063307 '0.7063937 
CV-R (0.7063589) 

PCV-R(%) (0.106) 
PCV(%) 0.11 '0.101 

1 

CV: computed wave speed 
CV-R: computed wave speed 

from RalOOs 
PCV: percentage error in CV 
PCV-R: percentage error in CV-R 
Exact V=1/1:2=0.7071058 

AGE-1TL AGE-2TL AGE-3TL AGE-4TL 
1 I • I 

PR . I OR PR I OR 1 PR I OR PR , OR 
, 1 • : 

0.7090783 0;1091131 0.7061763 10.7062321 0.7098810 ' 0 .7096623 0.7070767 0.7071058 
(0.7090694) (0.7061753) (0.7099601 ) (0.7070766) 
(2.78) (0.132) (0.404) (0.00413) 

0.279 1 0.284 0.131 I 0.124 0.392 I 0.362 0.00412 ' 0.00246 

0.7105140' 0.7105653 0.7062357 • 0.706295 0.7112576 '0.7109959 0.7070700' 0.7071058 
(0.7105382) (0.7062386) (0.7113624 ) (0.7070711) 
(0.485) (0.123) (0.602) (0.0049) 

0.482 I 0.489 0.123 : 0.115 0.587 10.55 0.00505 ' 0.00458 

0.7106940' 0.7107515 
1 : I 

0.7063178 0.7063801 0.7113578 0.7110972 0.7070703 0.7071058 
(0.7107250) (0.7063221 ) (0.7114640) (0.7070724) 
(0.512) (0.111) (0.616) (0.00472) 

0.507 I 0.516 0.111 1 0.103 0.601 10.564 0.00502 1 0.00484 
1 I 1 

0.7113730 '0.7111128 
1 

0.7107242 ' 0.7107833 0.7063334 0.7063966 0.7071058 0.7071058 
(0.7107582) (0.7063389) (0.7114793) (0.7070734) 
(0.,17) (0.108) (0.619) (0'09458 ) 

0.512 I 0.52 0.109 10.1 0.603 ' 0.567 0.00501 • 0.00488 
I 1 • 

TABLE 6.9.33: The computed wave speeds and their percentage errors 

U1 
U1 
U1 



-6 t=l.O, 6x=0.05, 6t=0.025, A=0.5, eps=lO 

~ 
PR 

AGE-cDBT 
OR 

AGE-cDCT 
PR 

OR 

EXACT SOLUTION 

t=l 0 6x=0 05 . , , 

~ 
PR 

AGE-COBT 
OR 

PR 
AGE-cDCT 

OR 

EXACT SOLUTION 

0.1 0.2 

1.21xlO -b 5.25xIO -6 

1.19xlO -6 5.24xlO -6 

9.9xlO -4 1.89xlO -3 

9.9xlO-4 1.89xlO -3 

1.00 1.00 

6t=0 05 . , A=l 0 . , -6 eps=lO 

0.1 0.2 

4.62 XIO-7 2.43XIO-7 

1.84XIO-7 8.19XIO-7 

7.42 xlO-4 2.22 XIO-3 

7.42xIO -4 
2.22xlO -3 

1.00 1.00 

0.3 

3.66xIO -5 

-5 3.65xlO . 

1.88xlO -3 

1.88xlO -3 

1.00 

0.3 

S.49xlO-6 

S.82XIO-6 

4.22XlO-3 

4 .22XlO-3 

1.00 

0.4 0.5 

1.2xlO -4 2 .19xlO-4 

1.21xlO -4 
2.18 xlO -4 

8 .25 xIO-4 6 .55xIO-3 

8 .23 xIO-4 6.55xlO-3 

1.00 1.00 

0.4 0.5 

2.22xlO-S 1. 55 xlO-4 

2.28 xlO-5 1.S3xlO -4 

3 .69XIO-3 4 .28XlO-3 

3 .69xIO-3 4.28xlO -3 

1.00 1.00 

0.6 0.7 0.8 

1. 55 x 10"': 2.15xIO -3 7 .97XIO-4 

. -4 
1.54xlO 2.15xlO-3 7.93xlO-4 

7.06xlO -3 1.22xlO -2 1.63xlO -2 

7.07 xIO - 1.22 xlO -2 1.64 xIO -2 

1.00 LOO 1.00 

0.6 0.7 0.8 

2.27XlO-4 3.44 xlO-3 2.1 xlO -2· 

2 .24 XlO-4 3 .45 XIO-3 2.1PIO-2 

1.27XlO-2 8.78XIO-3 3.7 XIO-2 

1.27xlO -2 8.77xlO -3 3.7xlO -2 

1.00 1.00 1.00 

Average No. 

0.9 of all of 
absolute iter-
errors iations 

- -2 3.04 xlO 1.21xlO 5 

3.04 xlO -2 1.21xlO -2 
16 

1.3xlO -1 1.64xlO -2 
4 

1.3XIO-l 1 ~Llxln-2 1'; 

1.00 - -

Average No. 

0.9 of all of 
absolute iter-
errors ations 

6.77XlO-2 3.25 XIO-2 8 

6.77XIO-2 3.25 XIO-2 20 

2 .2 XIO-l 2.93XlO-2 
6 

2.2xlO -1 12 .Q1Xln-2 lA 

1.00 - -

continued •••••••••. 

U1 
U1 
0'1 



-6 
t=l.O, 6x=0.05, ~t=O.l, A=2.0, eps=lO 

~ 0.1 0.2 

PR 3.07xlO -5 8.7xlO -5 

AGE-cDBT -5 -5 
DR 3.08xlO 8.91xlO 

PR 2.11xlO -3 5.16xlO -3 

AGE-CDCT -3 -3 
DR 2.11xlO 5.16xlO 

EXACT SOLUTION 1.00 1.00 

0.3 

2.61xlO -4 

2.65xlO -4 

4.95xlO -3 

4.95xlO -3 

1.00 

0.4 0.5 0.6, 0.7 0.8 

5 .14XlO-~ 1.81xlO -4 4.91xlO -3 1.98xlO 
-2 5.51xlO -2 

5 .18XlO-~ 1. 77xlO -4 4.91xlO -3 1.98xlO -2 5.51xlO -2 

- -2 -2 -2 -1 6.32xlO 1. 38xlO 1.48xlO 2.47xlO 1.27xlO 

- -2 -2 -2 -1 6.32xlO 1. 38xlO 1.48xlO 2.47xlO 1.27xlO 

1.00 1.00 1.00 1.00 1.00 

TABLE 6.9.35: The absolute errors of the numerical solutions to equation (6.9.25) for Problem 1 
(Non-linear first order hyperbolic (convection) equation) 

~verage 
pf all 

0.9 I'1bsolute 
~rrors 

- 6.22xlO-< 1.21xlO 

1.21xlO ' 6.22xlO 
-, 

3. 75xlO' 6.03xlO-< 

3. 75 x 10-:1 6.03xlO 
-, 

1.00 -

No. 
of 

iter-
ations 

17 

34 

10 

24 

-

U1 
U1 ..., 



t 1 0 ~ 0 05 ~t 0 025 A ; , l<; . , ; . , 

~ 0.1 

PR 1.07xlO -B 

AGE-COBT 
OR 1.56xlO -6 

PR 1.12xlO-ll AGE-CDCT 
-6 

OR 1.76xlO 

EXACT SOLUTION 0.05 

t-l 0 ~l<-O 05 - . , - . , M-o 05 - . , -

~ 0.1 

PR 1.65xlO --I 
AGE-COBT -7 

OR 5.82 xlO 

PR 3.09xlO-U 

AGE-CDCT -7 
OR 7.46xlO 

EXACT SOLUTION 0.05 

;0. 5 , eps;lO -6 

0.2 0.3 

1.69xlO -6 6.3BX10-5 

4.B6xlO -6 
6.B7xlO -5 

2.0XlO-10 1. 32 X lO-9 

3.53xlO -6 5.33xlO-6 

0.1 0.15 

. , -6 eps-10 -

0.2 0.3 

1.45xlO-5 3.17xlO-4 

1.54xlO -5 3 .19xlO-4 

7.l7xl0 le 3.73xlO-9 

1.53xI0 -6 2.37xlO-6 

0.1 0.15 

0.4 

B.59xlO -4 

B.66xlO -4 

3.63xI0-9 

7.llxlO -6 

0.2 

0.4 

2.6BxlO-3 

2.68XlO-3 

8. 3BxI0-]C 

3 .23xlO-6 

0.2 

0.5 0.6 0.7 O.B 

4.69xlO -3 1.04xlO ~ 9.73xlO -3 7.6lxlO -3 

-3 - -3 -3 4.7xlO 1.04xlO 9.73xlO 7.62xlO 

7. 37xlO -1( - 5.56X lO-9 2.65 X10-9 4.72 xlO 
-6 - -6 -6 B.46xlO 8.17xlO 6.29xl0 4.72xlO 

0.25 0.3 0.35 0.4 

0.5 0.6 0.7 O.B 

1.02xlO 
-2 1.9IXI0 -2 1. 94 xI0 -2 1.6xlO -2 

1.02xlO 
-2 

1.9lxlO -2 
1.94xI0 

-2 
1.6xlO 

-2 

7.65xlO 
-9 9.69xlO-9 9.7B xlO-9 9.4 xlO -9 

3.78xlO -6 3 .53xI0-6 2 .B2 xlO-6 2.07xI0 
-6 

0.25 0.3 0.35 0.4 

Average No. 

0.9 of all of 
absolute iter-
errors ~tions 

7 .19XlO-3 -3 4.41xlO 3 

7.l9xlO -3 
4.41xlO -3 

13 

2 .22 X I0-( 3.3X10-9 
3 

3 .29XlO-€ 10-6 9.3Bxl 13 

- -0.45 

Average No. 

0.9 of all of 
absolute iter-
errors ations 

1.44xlO -2 B.B7xI0 ""' 4 

1.44xlO-2 -8.B7xlO 15 

3 .2 xlO-9 5. 3lxlO-9 4 

1. 37 xlO -6 4 .26xlO-l 14 

0.45 - -
continued •.••••..•. 

111 
111 
0> 



-6 t=l.o, ~x=0.05, ~t=O.l, A=2.0, eps=lO 

~ 0.1 0.2 

PR 4. 7sxlO -b 1.79xlO -4 

AGE-COBT -6 -4 
OR 4.SlxlO 1.79xlO 

PR 4.6SxlO -11 5.76XlO-1O 

AGE-cDCT -7 -7 
OR 1.92xlO 4.36xlO 

0.3 

1.85xlO 

1.85xlO 

1.07xlO 

7.78xlO 

EXACT SOLUTION 0.05 0.1 0.15 

0.4 

-3 S.52xlO-3 

-3 S .52xlO -3 

-9 7.76xlO -9 

-7 1.12xlO -6 

0.2 

0.5 0.6 0.7 0.8 0.9 

2.l7xlO -2 3.44xlO -2 
3.7sxlO -2 3.3SxlO -2 2.95xlO 

2.l7xlO 
-2 

3.44xlO -2 3.7sxlO -2 3.3SxlO -2 
2.95xlO 

9.13xlO -9 4.75xlO -9 2.11 xlO -8 
3.l5xlO -S 1.19xlO 

1.llxlO -6 7.7xlO-7 6.43xlO -7 5.S9xlO -7 
2.98 xlO 

0.25 0.3 0.35 0.4 0.45 

TABLE 6.9.36: The absolute errors of the numerical solutions to equation (6.9.25) for problem 2 
(Non-linear first order hyperbolic (convection) equation) 

~verage 
pf all 
fibsolute 
~rrors 

-2 1.8xlO -2 

-2 l.Sxlo -2 

-8 S .92xlO-9 

-7 1.5xlO-6 

-

No. 
of 

iter-
ations 

6 

18 

5 

16 

-

111 
111 
ID 



. -6 
t=5; 6)(=0.1, 6t=0.05, A=0.5, eps=10 

~ 0.1 0.2 0.3 0.4 . 0.5 

PR 5.93xI0 -4 3.34 xI0-3 6.11 xI0-3 4.87xlO-3 1.31xlO -3 
AGE-COBT 

-4 6 .lx10-3 4 .89xI0-3 -3 3.35x10-3 OR 5.89x10 1.29xlO 

-10 2 .18x10 -10 -1 -9 9 .55x10 -le PR 1.11x10 4.55x10 1.06xlO AGE-cDCT -6 5.95xlO -6 1.17x10-5 8.13xlO-6 -5 
OR 3.26xlO 2.39x10 

EXACT SOLUTION 0.0166699 0.0333393 0.05000 0.0666667 0.0833333 

t 10 ~ 0 1 6t 0 1 A 1 0 10 -6 - - . , - . , - . , eps- . , 

~ 0.1 0.2 0.3 0.4 0.5 

PR 2 .24 x10-
j 

7.02x10 -3 
3.51xlO -3 3.81x10 -4 

2.34x10 -3 

AGE-COBT 
-3 -3 -3 -4 -3 OR 2.23xlO 7.03xlO 3.5x10 3.9x10 2.32xlO 

1.48xlO -le PR 1.43X10-1O 5.8xlO-11 -9 7.64x10-1O 1.59x10 
AGE-cDCT -6 -6 -5 7.57x10-6 -5 OR 3.15x10 5.16xlO 1.17x10 2.24x10 

EXACT SOLUTION 0.0090909 0.0181818 0.0272273 0.0363636 0.0454545 

0.6 0.7 0.8 

2 .48xlO-3 2. 74 x10-3 8 .6IX10-4 

2.7 xlO-3 8 .68 X I0-4 -2.49x10 

6.45x10lC 1.64x10 -10 
2.1x10 -9 

8 .26 x10-6 3.8xlO -5 5 .61X10-6 

0.1000 0.1166667 0.1333333 

0.6 0.7 0.8 

- 5 .29X10-4 -3 1.49xlO 2.09"10 

1.5xlO -3 4 .92xlO-4 2.09x10 -3 

. 

2.03x101{ 2.67x10-9 2.71><10-9 

7. 77XlO-E 3 .55x10-5 5.81"10 -6 

0.0545455 0.0636364 0.0727273 

Average No. 

0.9 
of all of 
absolute iter-
errors lations 

- 2 .63x10-3 1.33x10 3 

2.62 x10-3 -1.27x10 11 

. -9 
3.16xlO 1.1x10 -9 

2 

5 .49x10-5 1. 77 x1n-5 , , 
0.1500 - -

Average No. 

0.9 
of all of 
absolute iter-
errors ations 

2.53"10 
-4 2.21x10-3 2 

2.01x1O -4 2 .2xlO-3 10 

3 .07XlO-9 1.26x10 -9 2 

5.1xlO -5 1.(;7x1n -5 10 

0.0818181 - -
continued •••••..•.. 

111 
Cl'I 
o 



t-20 llx=O 1 - , . , llt=O 2 . , 1.-2 0 - . 

~ 0.1 

PR 3.29xlO -3 

AGE-cDBT 
DR 3.28xlO -3 

PR 5.59)(10 -11 
AGE-cDCT 

DR 3.08x10 -6 

EXACT SOLUTION 0.0047619 

, -6 eps-l0 -

0;2 

5.18xl0 -3 

5 .19xI0-3 

4 .llxI0-1O 

4.8xl0 -6 

0.0095238 

0.3 0.4 0.5 0.6 0.7 0.8 

1.81xI0 -3 2.76x10-3 2.4xl0 -4 1.43x10 -4 7 .23XlO-4 2.26xlO-4 

1.81xl0 -3 2.77xI0-3 2 .23xlO-4 1 .49xl0-4 6 .91xI0-4 2 .22XI0-4 

6.25XlO-1O 3.53xlO-9 2.79xlO-9 3 .19xI0-9 2.21XlO-9 1. 77xl0-9 

1.12xl0 -5 7 .3XI0-6 2 .15XlO-5 7.44xlO-6 3 .42XlO-5 15 .34xI0-6 

0.0142857 0.0190476 0.0238095 0.0285714 0.0333333 0.0380952 

TABLE 6.9.37: The absolute errors of the numerical solutions to equation (6.9.25) for Problem 2 
(Non-linear first order hyperbolic (convection) equation) 

!Average 
pf all 

0.9 !absolute 
!errors 

6.29)(10 -4 1.67)(10-3 

5.8)(10 -4 1.66xlO -3 

3.38xI0-9 2 .oxI0-9 

14 .88XI0-5 Il_hx,,,-5 

0.0428571 -

No. 
of 

iter-
ations 

2 

9 

2 

q 

-

IJ1 

'" .... 
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7.1 INTRODUCTION 

The AGE method can be ,readily extended to higher space dimensions. 

To ensure unconditional stability, the Douglas-Rachford (OR) variant 

is used instead of the Pea'ceman-Rachford (PR) formula (cf. Section 

3.18). In two space dimensions, for example, the specific problem 

we are considering is the heat equation, 

au 
at= 

a2u a2u --+--
ax

2 al 
+ h(x,y,t), (x,y,t) E RX(O,T] (7.1.1) 

with the initial condition, 

U(x,y,O) = F(x,y), (x,y,t) E RX{O} (7.1.1a) 

and U(x,y,t) is specified on the boundary of R, aR by 

U(x,y,t) = G(x,y,t), (x,y,t) E aRX(O,T] , (7.1.1b) 

where for simplicity we assume that the region R of the xy-plane 

is a rectangle. Similarly, the three-dimensional heat equation is 

given by, 

h (x,y ,z,t) , (7.1.2) 

with the initial and boundary conditions specified on R which is 

now a cube. Based on the AGE concept for the one-dimensional case, 

the formulation for higher dimensional problems can be done in very 

much the same way by employing the fractional splitting strategy 

introduced by Yanenko (1971). 
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7.2 THE AGE METHOD TO SOLVE TWO-DIMENSIONAL PARABOLIC PROBLEMS 

Consider the two-dimensional heat equation (7.1.1) with the 

auxiliary conditions (7.l.la) and (7.l.lb). The region R is a 

rectangle defined by 

R = {(x,y): O~x~L, O~y~M}. 

At the point P(xi,yj,t
k

) in the solution domain, the value of U(x,y,t) 

is denoted by Ui j k where x.=i~x, y.=j~y for O~i~(m+l), O~j~(n+l) 
, , ~ J 

and ~x=L/(m+l), ~y=M/(n+l). The increment in the time t, ~t is chosen 

such· that tk=k~t for k=0,1,2, ••• For simplicity of presentation, we 

assume that m and n are chosen so that ~x=~y and consequently the 

mesh ratio is defined by A=~t/(~x)2. Analogous to the heat equation 

in one space .dimension, a weighted finite-difference approximation to 

(7.1.1) at the point (i,j,k+;) is given by (with O~e~l) 

~ ui . k t ,], 

~t 
= 

which leads to the five-point fO~U7 

(7.2.1) 

= A(1-9)u. 1 . k+(1-4A(1-e»u .. k+A(l-elu. 1 . k+A(l-9)u . . 1 k+ 
1.- ~J, 1.,), 1.+ IJ, 1.,J- I 

A(l-e)u .. 1 k+t.th .. k+' , 1.,J+ , 1.,),"Z 
(7.2.2) 

for i=1,2, ... ,m; j=l,2, ... ,n. 

We note that when e takes the values 0, t and 1, we obtain the 

classical explicit, the Crank-Nicolson and the fully implicit schemes 

2 ·22 2 
whose truncation errors are O( [~xl +6t) , O( [6xl +[6tl ) and O( [6xl +6t) 

respectively. The explicit scheme is stable only for A~1/4 (if 

2 2 . 1 
6xit.y, we need 6t/[(t.x) +(6y) l~B)' The fully implicit and the 
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Crank-Nicolson schemes are, however, unconditionally stable. The 

computational molecules of these schemes are presented in Figures 

7.2.1-7.2.3 below: 

t 

" =" =" =" =). 1 2 3 4 ' 
"S=1-4). '''6=1. 

r---~~--~---+------~~----~y 
j-l j 

i-l 

x 

FIGURE 7.2.1: The classical explicit scheme 
t ' 

j+l 

level (k+l) 

level k 

Sl =S2=S3=S4=-).' 

SS=1+4)', S6=1. 

level (k+l) 

f-------~------~~y 
j-l j j+l 

i 

i+l 
level k 

FIGURE 7.2.2: The fully implicit scheme 
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level (k+l) 

Jr-+--_:--4-...L.-+---;---_-~ y 
j-l j j+l 

level k 

x 

FIGURE 7.2.3: The Crank-Nicolson scheme 

The weighted finite-difference equations (7.2.2) can be expressed 

in the more compact matrix form as 

where 

Au [k+l] 
-(r) 

[k] 
= B~(r) + b + !I 

= f 

[k] 
u are the known u-values at time level k and 
-(r) 

(7.2.3) 

(7.2.4) 

~(r) (~l '~2"" 'En) T with ~j= (ulj ,u2j ' .•• ,umj ) T, j=l ,2, ••• ,n. 

Thus, the mn internal mesh points on the rectangular grid system R 

are ordered row-wise as shown in Figure 7.2.4 below: 
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y 

(O.M ) 

mn-1 mn 

(n-1 )m 

m+1 m+2 2m-1 2m 

1 2 3 m-1 m 
, x 

(0.0) (L.O) 

FIGURE 7.2.4 

The vector ~ consists of the boundary values where. 

and 

T 
~ ~ (~1'~2"" .~) with 

~1 ~ (A (l-e) [uO,l.k +u1 •0 • k 1 +Ae [uO ,1.k+l +u1.0.k+11 .A (l-e) u 2 •
O

•
k 

b 
-n 

T 
A (l-e) [um•O•k +um+1 •1 •k 1 +Ae [um•o .k+1 +um+ 1.1 ,k+11 ) ; 

T ~ (A (l-e)uo • j.k +Aeu
O• j .k+1·0 ' •••• ~ (l-e) um+1 • j.k +Aeu

m+1 • j .k+l) 

for j=2,3, ... ,n-l; 

A (1-e)u2 1 k+1eu2 1 k l·····A (l-e)u -ilk ,n+ , ,n+ , + m ,n+ I 

+leu .1 (l-e) [u +u J + 
m-l,n+l,k+l m,n+l,k m+l,n,k 

T 1e[u +u 1) 
m,n+l,k+l m+l,n,k+l 

and the vector ~ contains the source term of (7.2.2) given by 
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T . 
~ ilt(hl j k "h2 . k " ••• ,h j k') for J~1,2, ••• ,n. 

I , +"l" , J, +-z m, I +.,. 

The coefficient matrix A in (7.2.3) takes the block tridiagonal form 

as, 

_ I- 1 
- T 

A ~ (7.2.5) 

with 

c 

(7.2.5a) 

and A2 ~ diag (a
l

) of order (mX m) (7.2.5b) 

where 
(7.2.5c) 

Similarly, the matrix B is of the form, 

-1--

B (7.2.6) 

(mnxmn) 



with 

d 

e
1 d, e

1 0 " 
, , 

" 
, , 

" " " " " Bl ~ "- , 
" " " 
, 

0 " " 
, 

" 
, , 

'e 
1 

d e
1 

e 1 d (mxm) 

and B2 ~ diag(e
1

) of order (mxm) , 

where d~ 1-41. (1-9) and e
1 

~ 1.(1-9) • 

We observe from (7.2.5) that the matrix A is of the form, 

A ~ 

(~:~: 
- - - - - -I - - .., 

~:~;~: 
----1------

I 

1 

T-

- _1-
01 ~

I" I 
I I" 
1_ _ '- _ ~I __ ~ __ _ 

10 I : ""I ~ 
_ 1_ -I - - L - --

:~:'J (mnxmn) 
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(7.2.6a) 

(7.2.6b) 

(7.2.6c) 

If we split A into the sum of its constituent symmetric and positive 

definite matrices G
1

, G
2

, G
3 

and G
4

, we have, 

(7.2.7) 

where, 



and 

1 

~: 1 - --'1-- --- - ---

I~ 
I - -1'- - -

I - - -
I 

1 " 

1 
IC 
+ 

" " , 
" 

I 

- -1- - - --

2'~ 

~:~: I I 
-- - -- -1- -- -1-- -1---

~:~:~: 0: 
- - 1- - - 1- - - - - -1- - -

~~:~~i-
I 0 1 I' I 

_I ~ _ 1_ '-'-1 __ _ 
l : 1 :~~ 

(mnxmn) 

(mnxmn) 

In particular, if we let, 

c/2 a
l 1 a 1 

c/2 a 0 , ..... 1, 
..... ...... -.. 

..... ..... -.. 
" 

, 
Al = ....... ....... , 

" ....... ....... 
...... ...... ...... 

I 
...... ...... , , , 

c/2 
, 

C a
l 

a l 

l a l c/2 J (mxm) 
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(7.2.8) 



and 

and 

A = diag(c/2) of order (mXm) , we have 
4 

"I f I 
Al I' , 
- -I~ T --,--

Al I , 
--1-,,---.,--

1 " 0, 
I " , , " , 
o "" ---~- -'+-

1 , "-
1 Al 

(mnXmn) 

A I A ' I 
~L':+ 1 __ } 

A2 I A4 1 A2 1 1 , 
- - 1- - t" - -, - J r -

" " ...... ,,, I" 'J 0 1 

'I " " , 
1 r ,'" , 
1 1 '" Z "", 

. 1 "I "I " - 1- Q t- - - ,..J - r - -I -
" 'A2 1 A4 1 A2 

l--,'- -,'-- -i -,----I 
, ,A2 , A4 

, I (mnxmn) 
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(7.2.9) 

(7.2.10) 

The Douglas-Rachford formula for the AGE fractional scheme then takes 

the form, 

(G +rI)u (p+1/4) = (rI-G -2G -2G -2G )u(P)+2f 

1 
1 -(r) 1 2 3. 4 -(r) -

(G +rI)u (p+1/2) = G u (p) +ru (p+l/4) 
2 -(r) 2-(r) -(r) 

I (G +rI) u (p+3/4) G u (p) +ru (p+1/2) 
(7.2.11) 

= 
3 -(r) 3-(r) -(r) 

(p+l) G u(p)+ru(p+3/4) 
J 

(G +rI) u = . 4 -(r) 4-(r) -(r) 

We now consider the above iterative formulae at each of the four 

intermediate levels: 

(i) At the first intermediate level (the (p+l/4)th iterate) 

Since A=G
1

+G
2

+G
3

+G
4

, then using the first expression of (7.2.11) 

and (7.2.4) we obtain, 
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(p+1/4) (p) [kl 
(G1 +rI)~(r) = ((rI+G1 ) -2A)~(r) +2B~(r) +2 (e.~) 

or (p+l/4 ) 
u 
-(r) 

-1 (p) [kJ 
= (G1 +rI) [((rI+G

1
) -2A) ~(r) +2B~(r) +2 (e.+..2l1 • 

(7.2.12) 

Without loss of generality we assume that the size of the matrix A 

is odd. We find that 

and 

-1 
(rI+G

1 
) 

where 

I , 
Cl 1 
- -/- - l- -1- - -,- - -

1 
C2 1 I 1 

- -1- - - - - - - -1- -
1 1 Cl / " 

- -1- I -,.::- - -0-' - - --
= / , I', 1 , 

I 1 10 ',I 
--------- --T--

I 1 1 1 C2 1 

--1- -1- T - - - -,- ,;;-
1 1 I 1 (mnX mn) 

r
1 

I 

- -1- - - -/-
,r1 a 1 

/ a l r 1 
I-

- -1-

- -1-

- _/, , 
- --, 

1 

-r - -1---
1 , 

-'- --
aI' 1 

_ r1~ ~ _ O~ ___ I 
.... _ _ ,_ _ ~ ,1. __ _ 

0 1 

1 

r 1 a l 

(7.2.13) 

(7.2.14) 

I (7.2.15) 



and 

-1 1 
Cl = -

11 

-1 1 
C

2 
= -

11 

with r
l 

r
l 

a
l 

1 
1 

a l r l I 
----I--

I r l 
I a

l ...1_ 
1 

1 
-1- -

I 

I 

1 

:;1 r -: - -
i 1 

_...J_ 

1 1 I 
r l 1 
-~--o+- -1-

1 '- 1 
" I 1 "I 

- _'j - _1-b r 1 a l I 
1 
a r I 

-1 :.- _ 1_1_ -I
I 1 Ir 

I 1 (mxm). 

..A.-
r

l r -r
1 1 

1 -a
l 

r-
I 

I r 
I 1 

__ l ___ J..-~l 
I 

-1- -1-

r
l 

-a I 
1 1 

-a
l 

r
l 

I 
- - - r - -1-

I r l 
-a 

11 

I -al r l I 
-. - - - - - - I I 

- _1- J 
1 

, 

I C 
+- 1 - - -
1 1 

I 
I 

1 
__ I __ :...L 

1 

- _1 __ 

I 

I 
- - - I- -, 

I 

0 1 

- - - ., -+ .... ...... I ..... , 
-I - I

r
- -

-a I I 1 1 

I 

J 

- - -al rJ.. 
-1-- rt;; 

i 

I 
r

l 

= r +'<:'andl1= 
4 

(r
l 

+a
l

) (rl-a
l

) 
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(7.2.16) 

, (7.2.17) 

,(7.2.18) 

(7.2.19) 
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By writing 01 = C
l

-2A
l

• 02 = C
2

-2A
l

• El = -2A
2

• Fl = 2Bl and 

F2 = 2B2 we get 

= I 
f 
I 

_L __ 
u(p) 
-n-l (r) 
- {P)-
u (r) 

[k) ) 
E.l(r) I 
- (kf --
u -2(r) 
-[i<F -
u -3(r) 

I 

I _l __ 
[k) 

u 
-n-l (r) 
-0<)--
u (r) 

+ 

e.3 +.2.3 
+2 ____ .(7.2.20) 

f 
f 
I 

b +g 
-n-l -n-l 

b +g 
-<n 

Hence. using (7.2.12) we obtain the following set of equations for 

the computation of the AGE algorithm at the (P+I/4)th iterate: 

(p+l/4) -1 . (p) (p) [k) [k) 2 ( + )) 
u = C (0 u +E u + FIUI ( ) +F2 U2 ( ) + b I gl ; -l(r) 1 l-I(r) I-2(r) - r - r -- (7.2.21a) 

u(p+l/4) - C-l(E (u(p) +u(p) )+0 u(p) +F (u[k) +u~k) )+ 
-j(r) - 2 1 -j-I(r) -j+l(r) 2-j(r) 2 -j-l(r) -J+l(r) 

(p+l/4) 
E.j (r) = 

(p+l/.4 ) 
E.n(r) = 

(7.2.21b) 

FIU~k())+2(b.+g.)). for j=3.5 •.••• n-2 ; 
-J r -J-J 

(7.2.21c) 

-1 (p) (p). [k) [k) 
Cl (El.';,_l (r) +01E.n (r) +F 2.';, -1 (r) +F 1 ~ (r) +2 (~ +5!n H. (7 .2. 2ld) 
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Let a
1

=r
1
-2c, a

2
=-2a

1
, a

3
=2d and a

4
=2e

1
• When the above equations are 

written component-wise, we have, 

(a) for (7.2.21a) 

(p+1/4) = [a u (p) +a (u (p) +u (p) )+a [kl [kl [kl ) 1/ 
ull 1 11 2 21 12 3u11 +a4 (un +U12 ) +2 (b11 +g11 r 1 

(p+l/4 ) = [r1v
i
-a;v

i
l/lI 

) 
(7.2.22a) 

un 

i=2 ,4 I ••• ,m-l , 
(p+l/4) 

= [-a1 vi +r1 "i]//:, Ui +1 ,1 

where· 

and [k] 
ui2 )+2(gi1+b i1) 

v = 
i 

-a u(p)+a u(p) +a ((P) +u(p)) [k] + ([kl+ [k] + 
1 i1 1 i+1,1 2 u i +2 ,1 i+1,2 +a3u i +1 ,1 a4 u i1 u i +2 ,1 

[kl 
ui+1,2)+2(bi+1,1+gi+1,1) 

with u
i1

=O for i>m; 

where, 

and 

(p+l/4 ) 
u . 

= [~ u (p) ~ (u(p) + (p) + (p)) [k]+a ( [k] 
~1 mj ~2 m-1, j um, j-1 um, j+1 +a 3Umj 4 um_1 , j mJ 

[k] [k] 
+u .. 1+u . 1)+2(b .+g .)I/r

1
, j=2,4, ••. ,n-1, 

m,J- m,J+ mJ mJ 
(7.2.22b) 

(p) (p) + (p) + (p) [k] ([kl + [k] + 
= a 1u .. +a 2 (u .. 1 u .. 1 u. 1 ·)+a 3u .. +cx4 u .. 1 u. ·+1 

l.J l.,]- l.,]+ l.- ,] l.] J.,]- J.,] 

[kl + [kl) (p) +2(b +g ) 
u i +1 ,j Ui _1 ,j -a1 u i +1 ,j i+1,j i+1,j 

u(p) +a (u(p) +u(p) +u(p) )+a u[k] +a (u[k]+ 
a 1 i+l,j 2 i+1,j-1 i+1,j+l i+2,j 3 i+1,j 4 ij 

[k] + [k] + [k] ) u (p) +2 (b ) 
u i +1 ,j_1 u i +1 ,j+1 u i +2 ,j -a1 ij i+1,j+gi+1,j 



(c) for (7.2 .2Ie) 

(p+I/4) 
uIj 
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(p+l/4) 
(7.2.22e) 

u
ij 

= 

j=3,S, ... ,n-2; i=2/4, •.• ~m-l, 
(p+l/4) 

ui+l,j = 

where, 

W 
= <> u(p)~ (u(p) +u(p) +u(p) )+<> u[k] 

ij I ij ~2 i-I,j i,j-I i,j+1 3 ij 

+<>4(U~kl] ,+u~kj] I+u~kj] l+u~kl] ,)-aIui(P)1 ,+2 (b
ij

+g , ,) 
1.-,J 1., - 1, + 1.+ ,] + ,) 1.) 

and 

<> (p) +Cl ((p) +u(p) +u(p»+<> u[k] 
IUi+l,j 2 ui+l,j_1 i+l,j+1 i+2,j 3 i+l,j 

+<>4 (u,[k,] +u [k] + [k] + [k]) (p) +2 (b ) 
1J i+l,j-1 ui+l,j+1 u i +2 ,j -aIuij i+l,j+gi+l,j 

with uij=O for i)m, 

(d) for (7.2.2Id) 

where 

and 

(p+I/4 ) 
u
In 

(p+I/4 ) 
u. == 1,n 

(p+l/4 ) 
ui+1,n 

(7.2.22d) 

(p) (p) (p» [k] (u[,k] +u,[k] +u,[k] .) 
z'=<>lu, +<>2(u'l +u, 1+<>3u , +<>4 1 1 1 

.L. 1.,n 1.-,n 1.,n- 1.,n 1.-,n 1. ,n- .1.+,n 

-a1u ~Pl) +2 (b, +g, ) 
1.+ ,n 1.,n 1.,n 

= <> u(p) +<> (u(p) +u(P) )+<> u[k] +<> (u[k]+u[k] + 
~i 1 i+l,n 2 i+l,n-l i+2,n 3 i+l,n 4 i,n i+l,n-l 

u!k] )-a u~P)+2(b,. +g, ) 
1.+2,n 1 1.,n 1.+1,n 1.+1,n 

with u, =0 for i)m. 
1,n 
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th (ii) At the second intermediate leveZ (the (p+~) iterate) 

From the second equation of (7.2.11) we have 

U
(p+;) -1 (p) + (p+l/4)) 

-(r) = (G2 +rI) [G2~(r) r~(r) (7.2.23) 

A 
Let Cl=C

l 
as in (7.2.15) with the diagonal elements r

l 
replaced by 

"-
c/4 and C

2
=C

2 
as in (7.2.16) with the diagonal elements r

l 
replaced 

by c/4. 

We also have, 

and 
(mnxmn) 

C-l I I I I I 
_2_1_ -1- ...J T -1-

I c- l , 1 I' 
_ _ _1 -I _ -+ _ _ - -1-

I I c;l, : I 

L- r- 17 ------f-" 01 , 
I 1 " 1 

I '0 ' 1 
,I '" I 

, , 

) 

• 

r - I" - T - - - -, -:'1'1" 

- _1-
1 
1 

" I Cl 1 
1- -1 - - - - ,- ;c~l 

, , I 2 
(mnXmn) 

Hence, equation (7.2.23) yields, 

(7.2.24) 

(7.2.25) 



u(p+!) 
-l(r) 
U(p+ti' 
-2(r) 
-- --

----
u(p+!) 
-n-l (r) 
-: (P+l') 
-n(r) 

= 

(mnx 1) 

For computational purposes, we will then have, 

(p+!) 
= 
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8' u(p) +ru(p+l/4) 1 
2-1 (r) -l(r) 

-2 ~ (p) :;:-r~(p+l74") -
1-2 (r) -2 (r) - - -,- - - --

1 
1 

- - _,- - --j 
"(p) (p+l/4) 
C u +ru 

_ l~-lJ..rL _-n..:.l (E) 
2 u (p) +ru (p+l/4) J 

2-n (r) -n (r) (nirf 

(7.2.26) 

(7.2.27a) ~j (r) C2 [C2~j (r) +r~j (r) , 
-1" (p) (p+l/4) 1 1 

j=1,3, ••• ,n-2, 

and 

u(p+!) 
= -j +1 (r) 

u(p+!) = 
-n (r) 

-1" (p) (p+l/4) 
Cl [Cl~j+l(r)+r~j+l(r) 1, 

El[C' u (p) +ru (p+l/4) 1 
2 2-n(r) -n(r) 

(7.2.27b) 

(7.2.27c) 

By denoting r
2 

= --.£.. and r =.E.- the above equations can be written 
4rl 3 r

l 
component-wise as follows: 

(a) for equations (7.2.27a) and (7.2 .27c) , 

where 

and 

(P+! ) 
U
ij 

u(p+!) 
i+l, j 

(P+! ) 
umj 

= - /f:, 1 [rlVij-alVij] 
for j=l,3, ... ,n; 

[-al v ij+rl v ijl If:, 
r 

= J 

= r u(p)+r u(p+l/4) j=1,3, •.• ,n, 
2 mj 3 mj , 

= ~ u(p)+a u(p) +ru(p+l/4) 
Vij 4 ij 1 i+l,j ij 

(p) c (p) (p+l/4) 
= alu,. + -4 u, 1 ,+ru, l' . 1.J 1.+,J 1.+,J 

(b) for equation (7.2.27b) 

= r u(p)+r u(p+l/4) 
2 lj 3 lj , j=2/4,.~~,n-l, 

i=l,3, ..... ,m-2, 

(7.2.28a) 
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(p+; ) 
u
ij 

= [rlv, ,-alv. j J III 
1) 1 . 

} j=2,4, ••• ,n-l; 1=2,4, .... ,m-l, 
(p+;) 

ui+l,j -

where v
ij 

and V
ij 

are given as in (7.2.28a). 

(iii) At the third intermediate ZeveZ (the (p+3/4)th iterate) 

(7.2.28b) 

If we reorder the mesh points aoZumn-wise parallel to the y-axis, 

we have, 

u -(c) 
T 

= (u
l

,u
2

, ••• ,u) withu, = 
- - -ID -1. 

T 
(u'l,u'2""'u, ) 1. ~ 1n 

for i=1 ,2, .... ,m. 

We also find that, 

A " 
(G3+G4)~(r) . = (G1 +G2)~(c) 

and " /', 
G3~(r) = Gl~(c)' G4~(r) = G2~(c) (7.2.29) 

Hence the third equation of (7.2.11) is transformed to 

(d +rI)u (p+3/4) = ~ u (p) + ru (p+t) 
1 -te) l-(c) -(c) 

or u(p+3/4) = (~ +rI)-l[~ u(P)+ru(P+;») 
-(c) 1 l-(c) -(c) 

(7.2.30) 

Let the matrices P1 and P
2 

be exactly of the same forms as Cl and C
2 

of (7.2.15) and (7.2.16) but of order (nxn). We will then have 

1\ 
G1+rI == 

(mnxmn) 
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-11 1 I I P
l __ 1 __ 1_.1 ___ .l_I..._ 

1 P -1 1 1 1 1 
__ I_~I __ I ____ 1_ .l _ 

1 P-ll 1 I 
" -1 

(G
l 

+rI) = 
'1 + I 

- -,-""1- T'-, -0 1 -I-l 
1 I "I I 

- -1- -l. - D - -' -f - - -j 
and 

(p+3/4) 
E.l (c) 

(p+3/4) 
E.2(c) 
-T 

1 
1 
1 

(p+3/4 ) 
u --m-l(c) 

- (p+3/4) 
u --m (c) 

where 

and 

I -11 
I I IP2 1 -, .,._L - -t--

1 I -1 
1 1 IPl 

1 , 

A c 
Pl=Pl with r l replaced by 4 ' 

~z=P2 with r l replaced by ~ • 

r 
/\ (p) (p+!) 
P u +ru _l=li.c)_ -::1lcL __ 
"(p) (p+!) 
P2E.2(c)+rE.2(c) 
A -(pT - (P+TI --
P u +ru 1-3 (c) -3 (c) ---r----

I 
I 

"(p) (p+t) 
P u +ru 2--m-l (c) -(m-l) (c) 
;;: (p)- - (p+!T --J 
P u +ru 

1--m(c) -ro(c) 

The following equations are therefore obtained for computation at the 

th 
(p+3/4) level: 

(p+3/4 ) 
E.i(c) = 

-1" (p) (p+t) 
Pl [P1E.i(c)+rui(C) 1 for i=1,3 , .... .. ,m (7.2.31a) 

and 
(p+3/4 ) 

E.i(c) = 
-1" (p) (p+t) 

P 2 [P2E.i (c) +rE.i(c) 1 for i=2,4, .... .. ,m-l. (7.2.31b) 

which component-wise yields 

(a) for equation (7.2.31a) 

(p+3/4) = (p)+ (p+t) 
ui1 r 2ui1 r 3ui1 ' i=1,3, •.. ,m, 

(p+3/4) 
u .. 
~,J 

(p+3/4 ) 
u .. 1 1.,J+ 

(7.2.32a) 

j=2,4, ... ,n-l, 
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where 

and w .. 
l.J 

= (p) c (p) + (p+! ) 
alu' j +-cu4 i . 1 ru .. 1 

~ ,J+ 1,J+ 

(b) for equation (7.2.3lb) 

(p+3/4) 
u .. = 

l.,J 
[rlw .. -a

l
;; .. 1 III 

l.J l.J 

l· i=2,4, ..... ,m-I; j=l,3, ... ,n-2, 

(p+3/4) 
Ui,j+l = [-alwij+rl~jl/11 (7.2.32b) 

(p+3/4) 
= r u (p) +r u (P+!) u. , 

l. ,n 2 i,n 3 i,n 

where w
ij 

and w
ij 

are given as in (7.2.32a). 

(iv) At the fourth intermediate ZeveZ (the (p+l)th iten2te) 

By virtue of (7.2.29), the last equation of (7.2.11) is transformed 

to 
.... (p+l) = a u (p) +ru (p+3/4) 
(G2+rI)~(c) 2-(c) -(c) 

or 
(p+l) 

u = -(c) 

which leads to the following formulae: 

and 

(pH) 
~i(c) 

(pH) 
~i(c) 

-1.... (p) (p+3/4) 
= P2 [P2~i (c) +r~i (c) 1 

For computational purposes, we have, 

(a) for equation (7.2 .33a) , 

, i=2,4, ... ,m-l .. 

(p+l) 
u
ij 

= 

(p) 
Ui,j+l = 

[r1z .. -a1z . . 1/11 
l.J l.J }, i=1,3, ••• ,m; j=1,3, •.• ,n-2 

[-alz .. +rlz .. 1 It. 

and 

(p+l) u. 
l.,n 

l.J l.J 

(p)+ (p+3/4) r
2

u r
3

u. 
n ~,n 

, i=1,3, ... ,m 

(7.2.33a) 

(7.2.33b) 

(7.2.34a) 
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(b) for equation (7.2.33b) 

(p+l) (p) + (p+3/4) 
ui,l = r2ui ,1 r 3ui ,1 ' i=2,4, ... ,m-l, 

(p+l) 
uij = 

(p+l) 
Ui,j+l = 

} 

(7.2.34b) 
, i=2,4, ..• ,m-l; j=2,4 ••.. ,n-l, 

where 

and 

Hence, the AGE scheme corresponds to sweeping through the mesh 

parallel to the coordinate x and y axes involving at each stage the 

solution of 2x2 block systems. The iterative procedure is continued 

until convergence is reached, that is, when the requirement 

lu(P+l)-u(P) I~€is met where € is the convergence criterion. 
ij ij' 
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.7.3 THE AGE METHOD TO SOLVE THREE-DIMENSIONAL PARABOLIC PROBLEMS 

We will now develop the AGE method for three-dimensional problems 

in exactly the same manner for two-dimensional equations. Consider 

the following heat equation in three dimensions. 

+ h(x.y.z.t). (x.y.z.t) € R x (O.T] 

(7.3.1) 

with the initial condition 

U(x.y.z.O) = F(X.y.z). (x.y.z.t) € R x {O} (7.3.1a) 

and the boundary conditions 

U(x.y.z.t) = G(x.y.z.t). (x.y.z.t) € 3R x (O.T] (7.3;lb) 

where R is the cube O<x.y.z<l and dR its boundary. Let i.j.k and N 

be the indices in the x.y.z and t-direction respectively with increments 

1 
6x.6y.6z and 6t (for a cube. O~i.j.k~(m+l). N=O.l •••• and 6x=6y=6z (m+l»· 

At the point P(xi'Yj.zk.tN) in the solution domain. the value of 

U(x, .y,.zk.tN) is denoted by U~Nj] k A weighted finite-difference 
1. J 1., , 

approximation to (7.3.1) at the point (xi'Yj.zk.tN+t) is given by 

(with 0:;:6:;:1). 

[N+l] [NI 
(u, , k-u , , k) 

1.,J, 1,J, = _1_2{6(62+62+62)u~N:lkl+(1_6) (62+62+62)u~N), k}+ 
6t (6x) x y z 1..J. x Y z 1.,J. 

h[N+tl • i.j.k=1.2 ••..• m. (7.3.2) 
i. j. k 

"'hich leads to the seven-point formula 

_'su[N+1I [N+lI [N+l] [N+l] [N+l] 
A '1' k+(l+6AS)U 'k-ASU , 1 ' k-ASU , , 1 k-A6U , , k 1-

1.- ,J, it], 1+ ,J, 1,J- t 1.,J, -

[N+1I [N+l] 
,Su, , 1 k-;\'Su, 'k 1 1.,J+ , 1.,), + 

[NI [N] 
= A(l-S)u. 1 ' k+(1-6~(1-e»u. , k 

1- ,J, 1.,J, 

[NI [N] [N] . [N] 
+;\'(l-S)u, 1 ' k+;\,(l-B)u, '·1 k+;\,(1-6)u, 'k l+A(l-S)u, '+1 k 

1.+ ,J, 1.,J- , 1,], - 1,J , 

+ A(l-S)u~N), k 1+6t h[N+t] 
1.,J, + i,j,k 

(7.3.3) 
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As before, the formula (7.3.2) corresponds to the explicit, the Crank-

Nicolson and the fully implicit schemes when 8 is equal to C,! and 1 

respectively. By considering our approximations as sweeps parallel to 

the xy-plane of the cube R={(x,y,z: C<x,y,z<l}, the equation (7.3.3) 

can be written in matrix form as, 

Au[N+l] = BU[N] + b + ~ 

= ! ' (7.3.4) 

where b consists of the boundary values, 

with ~ ::: (gl,1,k,g2,1,k,···,gm,l,k,gl,2,k,g2,2,k' ···,gm,2,k,gl,m,k' 

T 
g2 k'··· ,g k) ,for k=l,2, •.• ,m ,m, m,m, 

and g = ~th[N+!]. The vector urN] denotes the u-values at 
i,j,k i,j,k 

time level N - and the coefficient matrix A is given by, 

A = 

3 3 
(m Xm ) 

(7.3.5) 

2 2 
where the block matrices Ai of size m Xm take the forms 

A
2
=diag(a

l
) of 

2 2 
(m Xm ) 

2 2 
(m Xm ) 

order 



with 

1 

and c = 1+6Ae, A = 

Similarly, the block matrix B is defined by, 

B = 

where, 

Bl .1 B2 ' I I 
- -1- ':""I-.j. -,- + 1-:'" 
B2 Bl B2 I I 1 
- -1- .J.. - - - 1. - --

. I" I" I' 1 0 1 I 
" '1 ' I 

1 1 , • ' ,,'I, I 1 
I " ",--J 

I , I' r, I" 
--1_ - - - _ '!...I -'- ..::: 1 

1 10 1 I BIB I B 
2 1 I 2 

- -, - -I- -, - - r -, - - -
, B2 : Bl 

J , J I 
1 2 

- r - r -' - - I- -I - -l-
J 2 J l J 2 I I I I 

-r- -I'-- "'"' - - - -
" "I " I 01 I 

I ,,-{ " , -.)." 1 

I ", I"" 1-4---.L---
I , 0 I I J 2 I J l J 2 -r -- I----l. 

, I J
2 

I J 
I I 1 

585 

(7.3.6) 

3 3 
(m xm ) 

B
2
=diag(e

l
) of 

2 2 
order (m Xm ) , 

2 2 
(m xm ) 
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d e
l 

e
l 

d e
l 0 , , , , 

" 
, and J

2
:diag(e

l
) of 

J : , 
1 , , , , , , 

order (mxm) , , , 

l 
, , , , 

'd 
, 

0 e
1 

e
l 

el 
d 

(mxm) 

For our approximations which are taken as sweeps parallel to the xy-

plane, the u values are evaluated at points lying on planes which are 

parallel to the xy-plane and perpendicular to the z-axis and on each 

of these planes, the points are ordered row-wise (parallel to the. x-

axis) as depicted in Figure 7.3.1 below. 

z 

1 

}-____ ;-__ +-__ --+x 

1 

y 
FIGURE 7.3.1 

Equation (7.3.4) is therefore written as, 

Au [N+l] 
-[xy] 

~ Bu(N] + b + ~ 
-[xy] 

: f 

1 

(7.3.7) 
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By splitting A into the sum of its constituent symmetric and 

positive definite matrices G
l

, G
2

, G
3

, G
4

, G
S 

and G
6

, we have 

and, 

A = 

with 

~;~: ; 
- - - - 1- - - I- - - -1-

~:~~: 
- - - 1- - .,. -:- - {-

I ""- I I 

I ""-I I 
--+ 

1 

10 

_I 

I 

r~1 
- - -1- ~ T 

:~: : 
-1- - :~f 

1- - r- - -

o 
"-

,-

l 

o 

I 
+-

.... I 
" 

(7.3.8) 

3 3 
(m Xm ) 

, 

--i~1 
~J 3 3 

(m xm ) 
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(~: 
- -

_ I 1 I - - - -

:~: I 
-- --1-

I I ~"" 1 I~I 10 
_1- .., __ 1 ___ ,_ 

I' 1 
, I , ' , I 

t-- - - l-

I o 

:~ " (m xm ) 
l 

and 

AS a natural extension to (7.2.11), the Douglas-Rachford formula for 

the AGE fractional scheme takes the form, 



(G +rI)U(p+l/6) = 
1 -[xy] 

(G +rI)U(p+l/3) = 
2 -[xy] 

G u(p) +ru(p+l/6) 
2-[xy] -[xy] , 

(G +rI)u(p+l/2) = 
3 -[xy] 

G u(p) +ru(p+l/3) 
3-[xy] -[xy] 

(G +rI)u(p+2/3) = G u(p) +ru(p+l/2) , 
4 -[xy] 4-[xy] -[xy] 

(G +rI)u (p+5/6) = G u (p) +ru (p+2/3) 
5 -[xy] S-::[xy] -[xy] 

(G +rI)u(p+l) 
6 -[xy] 

= G u(p) +ru(p+5/6) 
6-[xy] -[xy] 

, 

1 

We now consider the above iterative formula at each of the six 

intermediate levels: 

(i) At the first intermediate ZeveZ (the (p+l/6)th iterate) 
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(7.3.9) 

By virtue of (7.3.8), the first equation of (7.3.9) may be 

rewritten as 

(G +rI)u (p+l/6) - ) (p) + 2f 
1 -[xy] - «rI+Gl -2A) !!.[xy] 

By assuming that m is odd, we find that, 

where 

3 3 
(m xm ) 

(7.3.10) 

(7.3.10a) 



C = 
1 

, 

1 
, , 

Cl' , : _ ,_ _ J _ : 
- ~ C - 1- -; 1 1 _ J 

1 2.!.. _I _I- _____ I 1 
- -,- 1 1 ,Cl' 1 __ _ 
- -4 - ,- T -, - - 1 1 

C2 i _ ,. _ 
.1-1.-1-1-.... - c5 1 

, 1 1 ,.... , 

1 '. 1 10 ' .... " .... 1 __ , _ i 
- -: - ~ -, - :- - - - , C

2 
:- J 

1 .!. -,- - - -, -, Cl) 2 2) - -t - - , (m xm 
' , 1 , , 

C2 1 1 , , 
-- --

1 l-I Cl 1 ,_ ..L - --T 
1 C2 1 , 

- r "I - '-;;1 ~ 
,- "1 - ,- , " - , C = 

I " 
2 

I 1 b _.1. + - --1- 1 
I I , 

l-- T 

r~l~ r~ -al I 1"" 

I 
I 1 a r

l 
' 

1_ 1_ r-
C =1 lr r

l 

'---
1. 1 I 

I 
1- -
1 

I a l - -, -, 

1 1 
-1"-1-, 1 

- --r , , 
_1- ,_ -- - , 

1 - --i---
1 

°1 , ...... 

" 1 1 
_'_1_1 

,Cl' 

t- -

1 

1 

t--

1 
,e 

-, -

f- - - -

.1._ 

1 C2 

(mxm) 

, 

2 2 
(m xm ) 
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(7.3.11) 

(7.3.12) 



and 

1 r
1 

I 
la1 r 1 ' 
1-- -I --.... 
I - - -
1 

- -1-
I 

.1_ 

1 
,0 - - --
1 

la 
I 1 

-T 

r I 

1 

• 

1 1 
T
t r 1 

. (mxm) 

Therefore • 

--1 
':1_ 1 

, c;l, - T - -...! "1-

- -1- -'_-=IT - - - - - -l-
e ' 

(rI+G )-l,. __ + _ Ll_' 0 , 
1 1 I 1'-.... -, - - -1- "I 

where, 

, ..... , I 

- r- - ,- -, - - - '-.... 

l 
,0 t:. -TI - i 

__ 1_ 1. _ _ _ ~2_ ~ _ I 

_I 
, 
1 

1

- - r 

C - 1- -i 

I 1 (;-1) 
I 1 3 3 

(m Xm ) 
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(7.3.13) 

(7.3.14) 

(7.3.15) 



and similarly for c;l with, 

1 
= -

11 

l 

rr1 
-a 

1 

r
1 1 

1:'1_ 
l -

r
1 

-a 
-I 1 - - -

-1 1 
1 C

2 
= -

11 
1 

- -

-
I 

and 

.J. 

-
-a 1 

1 
1 

r
11 -
I' , 

.0 I 

I 

-r 
I 

1 

..... I ..... 

-

0 

- -

-a 
1 

- -,- - - -
-a

1 

_1-
1 

r I 
1 - --
I' 

T - -' 
o 

T - --

I 
1-

rr
1

- -a 1" 
1 I 

I -a r 
1 1 I -I - - --

For simplicity we assume that the boundary value £=Q. 

Consequently, we have, 

f = Bu[N] + 2. 
-[xy] 

and equation (7.3.10) becomes, 

(p+l/6) _ (p) [N] 
(G1 +rI) ~[xy] - «rI+G1 ) -2A) ~[xy] +2B~[xy] +22. 

592 

(7.3.16) 

(7.3.17) 



or 
(p+1/6) 

u = -[xy] 

If we write 

l-
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(G
1

+rI) -1 [ ( (rI+G
1

) -2A) u [(p) ] +2BU [[N]] +2g] . 
- xy - xy -

(7.3.18) 

I 

-1- i-

+ 

[N] 
u 

,-m-1 [xy] 
nNj- --
l!:!m[xy] 

+ 2 

:-llX~]_1 
:2 Ix)'!. 

(7.3.19) 

Hence, using (7.3.18) we obtain the following set of equations for 

the computation of the AGE scheme at the (p+1/6)th iterate: 

u(p+1/6) = ~-l(D u(p) +E u(p) +F u[N] +F u[N] 2 ) (7 3 2 ) 
-l[xy] 1 1-1 [xy] 1-2 [xy] 1-1 [xy] 2-2[xy]+ ~l[xy] .. Oa 
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[NI [NI 
~+1[XYI)+Fl~[XYI+2~[xYI)' k=2,4, ••• ,m-l (7.3.20b) 

u(p+l/6) ='C-1 (E (U(p) +U(p) )+0 U(p) +F ([NI + 
"'k[xyl 1 1 -k-l[xyl "'k+l[xyl l"'k[xyl 2 ~-l[xYI 

[NI [NI 
~k+l[XYI)+Fl~[XYI+2~[XYI)' k=3,5, ••. ,m-2 

u(p+l/6) C-1 (E (p) 0 (p) F [NI +F U[NI + 
-m[xyl = 1 l~-l[xYI+ l~[xyl+ 2~-1[xYI I-m[xyl 

2g [ I) • _ xy 

(7.3.20c) 

(7.3.20d) 

Let r
2

=r
l
-2c. When the above equations are written component-wise, 

we have, 

(a) for (7.3.20a) 

(1) u~~;~i6) = [r2u~~~,1-2al (U~~~'1+U~~~'2+u~~~+1'1)+2dUi~~'1+2el 

with 

and 

[NI [NI [NI 
(u2 . l+u l . 2+u l . 1 1)+2g1 . 11/ r l' for j=1,3, ••• ,m 

Il, III ,J+ , III 

(p+l/6) 
U i ,j,l = (r1a .. 1-a l b . j 1)/4 

1.,), 1, I i=2,4, ... ,m-I, 
(p+l/6) 

u i +1 ,j,1 = (-ala. . l+r l b i . 1) /4 
1.,), III 

ti (p) = u (p) , 
1,m+l,1 1,m-l,1 

u (p) = u (p) , 
i,m+l,l i,m-l,l 

a .. 1 1.,J, 

[NI [NI 
u 

1,m+l,1 
= u 

1,m-l,1 

[NI 
Ui,m+l,l = 

[NI 
Ui,m-l,l 

(7.3.21a) 

[NI [NI [NI [NI [NI 
2e1 (u .. 2+u . 1 . l+u . 1 . l+u .. 1 1)+2du .. 1+2g .. l' .1.,J, 1.- ,), ,1+ Il, 1.,)+, .1.,J, 1,J, 

b = r u(p) -2a (u[NI [NI) (p) +2 
. . 1 2' 1 . 1 1 . 1 . 1 l+u . 1 . 2 -a1u. . 1 e1 1,J, 1.+ III 1.+ ,)+, 1.+ III 1.,J, 

[NI [NI [NI [NI 
(u. . l+u . 1 . 1 l+u . 1 . 2) +2du. 1 . +2g. 1 1.,J, 1.+ ,J+, 1.+ III . 1.+ ,J,1 1.+ ,j,l 



(2) 

where, 

and 

(pH/6) 
= u, , 1 

~,J, 

(pH/6) 
u i +1 ,j,1 = 

(p+1/6) 
u '1 = 

rn, J, 
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(r ai ' 1-a 1b , , 1)/11 

}j=2,4, •.• ,m-1; 
1 ,J, 1.,J, 

i=1,3, ... ,m-2, 

(-ala, , 1+r 1b i ' 1)/11 1.,J, 1], J 

. (p) (p) +u(p) +u(p) +u(p» 
[r2um,j,1-2a1 (u m,j-1,1 m-1,j,1 m,j+1,1 m,j,2 

+2e (u [NI +u [NI +u [NI +u [NI, ) +2du [NI, + 
1 m,j-1,1 m-1,j,1 m,j+1,1 m,J,2 m,J,l 

2g 'll/r1' for j=2,4, ••. ,m-I, rn, J, (7.3.21b) 

(p) (p) + (p) +u (p) ) -a u 
a, , 1 = r 2u, , 1-2a1 (u, '-1 1 u, , 1 1 i '2 l' 1 ' 1 1.,J, 1.,J, 1.,J I 1.,J+, ,J, 1.+ IJ, 

b, , 1 1.,J, 

[NI + [N] [N] + [N] [N] 
+2e1 (U i j-1 1 u, 1 ' l+u , , 1 1 u, j 2) +2du, j 1 , , 1.+ ,J, 1.,J+, 1." 1., , 

+2g, ' 1 1.,J, 

= r u ~p) , -2a (u (p), +u ~p) , +u ~p), + 
2 ~+l,J,l 1 i+1,J-1,1 ~+2,J,1 ~+1,J+1,1 

u
i
(P)l ' 2) -a

1
u

i 
' 1+2e1 (u ~N], +u [N], +u [N] , + 

+ ,J, ,J, ~+1,J-1,1 i,J,l i+2,J,1 

u [N], +u [N] , ) +2du~N] , +2g, , 
i+1,J+1,1 i+1,J,2 ~+l,J,l ~+l,J,l 

(b) for (7.3.20b) 

(1) 

with 

(pH/6) 
Ui,j,k = 

(p+1/6) 
u i +1 , j ,k = 

(p+1/6) 
Um,j,k :::: 

(r1c, , k-a 1d , j k) /11 1.,J, 1" 

)

k=2'4' •.. ,m-I; 

i=1,3, ... ,m-2; 

j=1,3, ... ,m; 

(-a1c, 'k+r 1d , 'k) /11 1.,J, 1.,J, 

[r u (p), -2a (u (p) +u (p), +u (p) . +u (p), 
2 m,J,k 1 m,J,k-1 m,J,k+1 m-1,],k m,]+l,k 

+2e (u [N],' +u [N], +u [N] , +u [N], ) + 
1 m,J,k-1 m,],k+1 m-1,],k m,]H,k 

[N] 
2du 'k+2g 'k]/r

1
, for k=2,4, •.• ,m-1; j=1,3, .•• ,m, rn,] , rn, J, 

(7,3.22a) 

u(p) u (p) [N] [N] 
u = U 

m,m+l,k m/m-l/k m,m+l,k m/m-I/k 

(p) u (p) [N] [N] 
ui,m+l,k i,m-1,k ui,m+l,k ui,m-l,k 



and 

(2) 

where 

and 

d, , k 
~,J, 

= r u (p), -2a (u ~p), +u (p), +u (p), ) -a u ~p) , 
2 i,],k 1 ~,],k-1 ~,],k+1 i,]+l,k 1 ~+l,],k 

2 ( [N) [N) [N) [N) ) +2du [N) + e u,' +u, +u ,+U 
1 ~,],k-1 i,],k+1 i+1,],k i,j+1,k i,j,k 

+2g, 'k 
1.,], 
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= r u (p) -2a (u (p) +u (p) +u (p) +u (p) ) 
2 i+1,j,k 1 i+1,j,k~1 i+1,j,k+1 i+2,j,k i+1,j+1,k 

-a u (p), +2e (u ~N), +u ~N), +u[N), +u ~N) , + 
1 i,],k 1 ~+1,],k-1 ~+l,],k+1 ~,],k ~+2,],k 

[N) [N) 
u, 1 ' 1 k)+2dU, 1 ' k+2gi 1 ' k 1+ ,J+ I .1.+ ,J, + ,J, 

(p+l/G) 
U 1 ,j,k = 

(p+1/G) 
u i +1 ,j ,k 

(p) ) 2 (u [N), +u [N) +u [N) +u [N). + 
+u1 ,j+1,k + e1 1,],k-1 1,],k+1 1,]-1,k 2,],k 

[N] ) +2d [N] +2 ] / 
U1 ,j+1,k U1 ,j,k gl,j,k r 1 

k=2,4, ... ,m-li j=2,4, ... ,m-l; 

i=2,4, ... ,m-I, 

(7.3.22b) 

C, , k 1.,J, 
(p) 2 «p) + (p) + (p) + (p) + = r 2u, , k- a 1 u, 'k-1 u i ' k 1 u, , 1 k u, 1 ' k 1.,J, 1,J, ,J, + 1.,J- -, 1.- ,J, 

d, , k 
~/J, 

u ~p), ) -a u (p) , +2e (u ~N), +u ~N), +u ~N), 
~,]+l,k 1 i+l,],k 1 ~,],k-1 ~,],k+1 ~,]-l,k 

[N) [N] [N] [N] 
+u, 1 ' k+u , 1 ' k+u , , 1 k) +2du, , k+2g , 'k 1- ,J, 1+ ,J, 1,J+, 1.,J, 1.,J,. 

= r u (p) -2a (u (p) +u (p) +u (p) . + 
2 i+1,j,k 1 i+1,j,k-1 i+1,j,k+1 i+1,j-1,k 

[N) [N) [N) 
u, , k+u , 1 ' 1 k) +2du, 1 ' k+2g , 1 . k 1,J, 1.+ ,J+ , 1.+ ,), 1.+ ,J, 

(c) For (7.3.200) 

(1) 
(p+l/G) 

U1 ,j,k 
[r u (p), -2a (u (p), +u (p), +u (p), +u (p) 

2 1,],k 1 1,],k-1 1,],k+1 2,],k 1,]+1,k 

+2e (u [N), +u [N), +u [N] +u [N], ) +2du [N) 
1 1,],k-1 1,],k+1 2,],k 1,]+1,k 1,],k 

+2g
1 ,j,k)/r1 ' 
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(p+l/6) 
= (rle, , k-alfi ' k)/t. 1 Ui,j,k 1.,J, ,], 

r=3,5, ••• ,m-2 I j=1,3, ... ,m; 
(p+l/6) 

= ( -al e, j k +r 1 f. , k) / t. u, 1 ' k 1.+ ,J, .1., , 1..,J, 1.=2,4 I •• • ,m-l, 

(7.3.23a) 
with 

u (p) u (p) [N] [N] 
= u = u 

l,m+l,k l,m-l,k l,m+l,k l,m-l,k 

(p) 
= u (p) [N] 

= 
[N] 

ui,m+l,k i,m-l/k 
, 

ui,m+l,k ui,m-l,k 

e, 'k = r u (p), -2a (u ~p), +u ~p), +u ~p) , +u ~p), ) -a u ~p) , 
1,J, 2 i,J,k 1 1,J,k-l 1,J,k+l 1-l,J,k 1,J+l,k 1 1+l,J,k 

and 

(2) 

+2e (u ~N] +u ~N], +u ~N] , +u ~N] , +u [N] ) +2du [N] 
1 1,j,k-l 1,J,k+l 1-l,J,k 1+l,J,k i,j+l,k i,j,k 

+2g, , k 
1.,J, 

f, , k 
1.')1 

= r u ~p) , -2a (u (p), +u ~p), +u ~p), ) -a u ~p), 
2 1+l,J,k 1 i+l,],k-l 1+l,J,k+l 1+l,J+l,k 1 1,J,k 

2 [N] + [N] + [N] [N] ) 2 [N] + 
+ e l (u, 1 ' k 1 u, 1 ' k 1 u, 'k+u , 1 ' 1 k + dUi 1 ' k 1.+ III - 1+ III + 1.,J, 1+ ,J+ , + ,], 

2g, +1 ' k ' 1. IJI 

u(p+l/6) = 
m, j ,k 

[ (p) -2a (u (p) +u (p), +u (p), +u (p) , + 
r 2u m,j,k 1 m,J,k-1 m,J,k+1 m,J-1,k m-l,J,k 

(p+l/6) 
u, , k 1.,J, 

(p+l/6) 
u, 1 ' k 1.+ ,], 

u (p), ) +2e (u [N], +u [N], +u [N] +u [N] + 
m,J+1,k 1 m,J,k-l m,J,k+l m,j-1,k m-1,j,k 

[N] [N] 
u '1 k)+2dU 'k+2g 'k]/rl , rn, J+ I rn, J, rn, J, 

(r1e, , k -a1f, , k)/t.1 
1,J, 1,J,' k=3 5 -2' 

, ""I m , 

= (-ale, , k+rlf , , k)/t.J i =l,3, ••. ,m-2, 
1.,), .1,J, 

j=2,4, ... ,m-l; 

where, (7.3.23b) 

e, , k = r u (p), -2a (u ~p), +u ~p), +u ~p), +u (p) ) -a u (p) , 
1,J, 2 1,J,k 1 1,J,k-l 1,J,k+1 1,J-l,k 1,J+l,k 1 1+l,J,k 

[N] [N] [N] [N] [N] 
+2e1 (u, ' k l+u, . k 1+u , , 1 k+u , 1 'k+u , , 1 k) 1.,J, - 1.,J, + 1.,J-, 1.+ ,J, 1.,J+, 

[N] 
+2du, , k+2g , , k 

1.,J, . 1.,J, 
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and ~ (p) ( (p) +u (,p) , +u (p) , 
r 2u, 1 ' k-2a1 u, 1 j k-1 1 k 1 i 1 1 k 1.+ IJ, 1.+ , , 1.+ ,J, + + ,]- I 

+u (p) +u (p) ) (p) 2 ([NI 
2 'k i 1 ' 1 k -a1u, j k+ e 1 u, 1 ' k 1 i+ ,J, + ,J+ , 1., , ,1+ IJ, -

+ [NI +u [NI +u [NI +u [NI +u [NI. ) 
Ui +1 ,j,k+1 i+1,j-1,k i,j,k i+2,j,k i+1,j+1,k 

+2d [NI +2g 
U f +1 ,j,k i+1,j,k 

(d) for (7.3.20d) 

(1) 

with 

and 

(2) 

(p+l/6) 
U1,j,m = 

[r u (p), -2a (u (p), +u (p), +u (p), ) +2e 
2 1,],m 1 1,],m-1 2,],m 1,]+1,m 1 

([NI + [NI, +u [NI, ) +2du [NI +2g , I/r, 
U1 ,j,m-1 u2 ,],m 1,]+1,m 1,j,m 1,],m 1 

j=1,3, ... ,m, 

(p+l/6) 
U.. = 

l.,),m 
(r

l P i 
' -a

1
Q

i
, ) / l<. 

,),m ,J,m 
1=2,4, ... ,m-I, 

(p+l/6) 
u i +1 ,j,m = 

u (p) 
~ 

l,m+!,m 

(p) 
~ u, 1 1,m+ ,ID 

(-a
l P i

, +r
l
q

i
, )/t:. 

,J,m ,J,ID 

u (p) [NI 
~ 

[NI 
u u I,m-I,m 1,m+l,m l,m-l,ro 

u (p) [NI 
~ 

[NI 
u u 

i,m-I,m l,m+l,m I,m-I,m 

p, , 
1.,], m 

~ r u ~p), -2a (u ~p), +u ~p) +u ~p), ) -a u (p) , 
2 1,],m 1 1,],m-1 1-l,j,m 1,]+l,m 1 i+l,J,m 

(7.3.24a) 

+2e (u ~N), +u ~NI , +u ~NI , +u ~N), . ) +2du ~N), +2g, , 
1 1.,J,m-l l.+!,J,m l.-l,),m 1,J+l,m l.,],rn l.,J,m 

q, ,. 
l.,),m 

~ r u (p) -2a (u (p) +u (p) ) +2e (u [NI + 
2 i+l,j,m 1 i+l,j,m-l i+l,j+l,m 1 i+l,j,m-l 

[NI + [NI ) 2d [NI +2 
u,' u, 1 '1 + u, l' g, 1 ' 1.,J,ID 1.+ ,J+ ,m 1.+ ,],m 1.+ ,),m 

(p+l/6) 
u. ::; 

rn, J, m 
[r u (p) -2a (u (p), +u (p), +u (p) , +u (p), ) . 

2 m,j,m 1 m,J,m-l m/J-I,m m-l,J,m m,J+!,m 

+2e
1 

(u [NI, +u [NI, +u [NI , +u [N] ) +2du [NI, 
m,],m-l m,]-I,m m-l,],m m,)+l,m m,),m 

+2g , I/r
l

, 
rn, J,ID 



where 

and 
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(p+l/6) 
u .. = (rlP. . -alq, . ) /6. !j:2,4, •.. ,m-l; 
~,J ,ro l.,),m l./),m 

(p+l/6) 
U. 1 . 1.+ IJ,m 

=:: (-alPi· +rl
q . . )/6 ,],m 1.,J,m 

i-l,3, ... ,m-2, 

p .. 
l.,J,m 

q .. 
l./],m 

(7.3.24b) 

= (p) 2 «p) + (p) + (p) ) (p) 
r 2u. . - a l u.. 1 u. . 1 u.. 1 -alu. 1 . l.,],m l.,),m- 1.,)-,m 1.,J+,ro 1.+ ,),m 

[N] [N] [N] [N] [N] 
+2e

l 
(u.. l+u.. 1 +ui 1 . +u. . 1 ) +2du i . 

1., ] , m- 1., J - I m + I J , m 1., J + , m I J , m 

+2g .. 
l./),m 

r u(p) -2a (u(p) +u(p) +u(p) +u(p) ) 
2 i+l,j,m 1 i+l,j,m-l i+l,j-l,m i+2,j,m i+l,j+l,m 

(p) + [N] + [N] [N] [N] 
-alu.. 2el (u. 1· 1 u. 1 . 1 +u. . +u. 2 . l.,),m 1.+ ,),m- 1.+ ,)- ,ID l.,],m 1.+ ,],m 

+u ~Nl] .·1 ) +2du ~N]l· +2q. 1 . 
. 1.+ ,J+ ,ro 1.+ ,],m 1.+ ,],m 

(ii) At the second intermediate ZeveZ (the (p+l/J)th iterate) 

From the second equation of (7.3.9) we have, 

which gives 

Now, 

(G +rI)u(p+l/3) = G u(p) + ru(p+l/6) 
2 -[xy] 2 [xy] -[xy] 

(p+l/3) 
u -[xy] 

C2 I 1 

--r: .. 1-1-
Cl I . _+ __ L 

1 1 C2 I __ 

I I"" .... 

1 1 

-t-l 
1 

- -:-, 
-0- -+ 

, 1 

-1-

1 

-I 

'-
10 "'" 1 

1 1 

1- - -I~I-I-

I 1 C2 1 
- - - -1-:: 1 

1 1 Cl 
[
-_'-,-

+,-1-
l 1 

.,. _ ..l. 

lie J 
1 1 2 

I 

~ -

3 3 
(m xm ) 

By letting C2~C2 with diagonal elements r
l 

be replaced by c/6 

~ -
and Cr Cl with diagonal elements r

l 
be replaced by c/6 

(7.3.25) 

(7.3.26) 
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we find from (7.3.25) that 

(p+l/3) 
u 
-"k [xy] 

r 
--1 {C~ u (p) + (p+l/6)} f 3 
C2 2-"k[xy] ~[xy] or k~l, , ••• ,m 

~ 1l (7.3.27a) 

7:-1 {g u (p) +ru (p+l/6)} for k~2 ,4, .•• ,m-l 
1 l-"k [xy] -"k [xy] . 

(7.3.27b) 

The computation of the AGE algorithm is carried out as follows: 

(1) fOl' (7.3.27a) 

(p+l/3) 
u 'k rn, J, 

:::; (.£6 u(p) +ru(p+l/6»/r I for k=l,3, ... ,m; j=1,3, ... ,m, 
m,j,k m,j,k 1 

(p+l/3) 
~ (rla, 'k-ala, 'k)/t. 

t 
u, , k 
~/J, 1,J, 1.,), 

, k=1,3, ... ,m; j=1,3, ... ,m, 
(p+l/3) 

~ (-ala, , k+rl~ , k)/lI) u, 1 ' k 1+ , J, 1.,J, ,J, (7.3.28a) 

(p+l/3 ) 
Ul,j,k 

~ 

c (p) . (p+l/6) 
(~l,j,k+rul,j,k )/rl , for k=l,3, .•. ,rni j::::2,4, ... ,m-I, 

(p+l/3) 
~ (rla, , k-ala , , k)/t. ) U 

i,j,k ~,J, 1.,J, k=1,3, ... ,m; j=2 ,4, ... ,m-l, 
(p+l/3) 

(-ala i j k+rla , , k)!t. i=2 ,4, ... ,m-I. u, 1 ' k ~ 

1+ ,J, It 1.,J, ) 

and 

(2) fol' (7.3.27b) 

(p+l/3) 
U1 ,j,k 

~ (~ (pl, +ru (p~1/6) ) /r 
6 l,],k l,],k 1 

for k~2,4, ••. ,m-l; j=!,3, ... ,m, 

(p+l/3) 
~ 

"," . ,~," . ,'/O ) u, 'k 1.,), 1.,], 1.,), k=2,4, ... ,m-lj j=2,4, ... ,m-I, 
(p+l/3) 

~ (-ala, 'k +rla, , k)/lI i=1,3, ... , m-2, ui+l,j,k 1.,J, 1.,), 

(7.3.28bl 

(p+l/3) 
~ 
(p) (p+l/6» / for k=2,4, ... ,m-li j=2,4, ... ,m-I, U 'k 6 Um,j,k+rum,j,k r 1 m,J, 

(p+l/3) 
~ (r1a, 'k-ala, 'k)/lI u, 'k 1.,], .1,), 1.,J, 

k=2,4, ... ,m-l; j=2,4, ... ,m-l, 

(p+l/3) 
~ (-ala, 'k+r{a:, 'k)/lI i=1,3, ... ,m-2, U, 1 ' k 1.+ ,], 1.,], 1.,J, 
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where = c (p) (p) (p+l/6) 
a, , k -u + a u, 'k + rUi ' k 
~,J, 6 i, j ,k 1 1.+1,J, ,J, 

and = (p) c (p) + (p+l/6) 
ai, j ,k alui,j,k 

+-u . 
rui+l,j,k 6 i+l,j,k 

If we take our approximations as sweeps parallel to the yz-plane 

'the u values are then evaluated at points lying on planes which are 

parallel to the yz-plane and on each of these planes, the pOints are 

reordered row-wise (parallel to the y-axis, as in Figure 7.3.2), such 

that, 

where, 

with 

1 

y 

T 
~[yz) = (~l [yz) '~2 [yz) , ..• '~[yz) 

(7.3.29) 

~i[yz] = (u i ,l,l,u i ,2,1' ... ,u i ,m,1,u i ,1,2,u i ,2,2'" . .o, 

, 
r 

~ , 
~ 

~ 

z 

1 

~ 
~ 

~ 

T 
u, 2' ... 'u. ), for i=l,2, ... ,m. 
~,m, l.,m,m 

f----+~~rS~~------+-+x 
1 

FIGURE 7.3.2 
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With the above reordering of points we are able to derive the 

computational formulae for the third and fourth intermediate levels 

as follows: 

(iii) At the third intermediate ZeveZ (the (p+;)th iterate) 

The third equation of (7.3.9) is transformed to 

or 

(G +rI) u (P+!) = 
1 -[yz] 

G u (p) 
l-[yz] 

(p+l/3 ) 
+ru 

-[yz] 

u (P+!) = 
-[yz] 

(G +rI) -1 [G u (p) +ru (p+l/3)] 
1 l-[yz] -[yz] 

which leads to. 

u (P+!) 
- i[yz] 

= 

--1:::- (p) . (p+1/3)] 
Cl [Cl~i[yz] + r~i[yz] for i=1,3, ... ,m 

(7.3.30) 

(7.3.31a) 

- -1 ~ (p) (p+l/3) 
C2 [C2~i[YZ] + r~i[yz] ] for i=2.4 ..... m-l. (7.3 .31b) 

Hence. we find that. 

(a) for (?3.31a) 

and 

u~~~;~ = (~~~i.k + ru~~~~~3»/rl' for i=1.3 •••.• m; k=1.3 ••••• m 

(p+! ) 
u. 'k = (rlb, 'k-alb , , k)11:. 

1.,), 1.,], 1,J, 
)i=1.3 ..... m; k=1.3 ..... m; 

J )=2.4 ••..• m-l. 

(7.3.32a) 

(p+! ) 
u, k 

1., rn, 
::: (£6 u~p) + ru~P+lk/3»/r for i=1,3, ... ,m; k=2,4, ... ,m-I, 

l.,m,k l.,m, 1 

(p+! ) 
Ui,j,k ::; (rlb, , k-alb , 'k) I I:. 1.,J, 1,J, 

i=1,3, ... ,m; k=2,4, ... ,m-I;. 

(b) for (?3.31b) 

u (P+!) 
i,m,k 

=(~u(p) + (p+1/3»1 for 2 
6 ' k ru, k r

l
, i= ,4, ... ,m-l;· l.,m, l.,m, 

k=1,3, ... ,m, 



\ 

where 

and 

u(p+l) = 
1, j,k 

u(p+!) 
1,j+l,k 
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(rl b 1 ,j,k-a l b1,j,k)/A 1 

1
1=2,4, ••• ,m-l; k=1,3, ••• ,m; 

= (-albi,j,k+rl:b1,j,k)/A j=1,3, ••• ,m-2, 
(7.3.32b) 

u (p+!) 
i,l,k 

(c (p) (p+1/3»1 f 1 2 4 2 4 
= ~i,l/k+rui/l,k r1 I or =, , ... ,m-I: k= , , ... ,m-I, 

i=2,4, ... ,m-l; k=1,3, ... ,m; 

b = E. u (p) +a u (p) +ru (p+l/3) 
i,j,k 6 i,j,k 1 i,j+l,k i,j,k 

b .. k 1,J, 
= (p) + ~ (p) +ru (p+1/3) 

alui,j,k 6 1,j+l,k 1,j+l,k 

(iv) At the fourth intermediate level (the (p+213)th iterate) 

The fourth equation of (7.3.9) is transformed to 

(G +rI)u(P+2/3) = 
2 -[yz) 

G u(p) + ru(p+l) 
2-[yz) -[yz) 

or 
(p+2/3) 

u = -[yz) 
-1 (p) + ru(p+l») 

(G2 +rI) [G2~[Yz) -[yz) (7.3.33) 

which leads to 

(p+2/3) 
~i [yz) 

+ ru~p[+!»)) , for 1=1,3, ••• ,m, 
-:l. yz 

(7.3.34a) 

+ ru(P+!») , for i=2,4, ••• ,m-1. (7.3.34b) 
-i[yz) 

Therefore, we obtain 

(a) for (7.3.34a) 

(p+2/3) 
u. k 1., rn, 

(E. u (p) (p+t) I 3 = 6 k + ru. k) r
l

, for i=1,3, ... ,m; k=l, , ... ,m, 
i,m, 1,m, 

(p+2/3) 
= u .. k 

1. I J , (rlc. . k-alci . k) lA 1.,], ,J, 
i=1,3, ... ,m; k=l,3, ... ,m; 

(p+2/3) 
= u .. 1 k 1,J+ , 

(-alc .. k+rlci . k)/A j=1,3, ••• ,m-2, 1.,J,. ,J, 

(7.3.3Sa) 
(p+2/3) 

= u 
i,l,k 

c (p) (p+t) 
(G"i,l,k+rui,l,k)/rl ' for i=1,3, ••• ,m; k=2,4, .•• ,m-l, 
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(p+2/3) 
= u 

i, j,k 

(p+2/3) 
= Ui,j+l,k 

(rlc. j k-alc, . k) /f:; 1 1, , 1.,), i =1,3, ... ,m; k=2,4, ... ,m-l; 

(-alc .. k+rlc, . k)/11 j=2,4, ••• ,m-l, 1.,J, 1.,J, 

and 

(b) for (7.3.34b) 

where 

and 

U(p+2/3) = 
i,l,k 

(p+2/3 ) 
= u .. k 1,J I , 

(p+2/3) 
Ui,j+l,k = 

(p+2/3) U -i,m,k 

(p+2/3) 
= u .. k 

1, ] I 

(p+2/3) 
Ui,j+l,k = 

(~6C ~Pl) k+ru~Pl+tk»/rl for i=2,4, ••• ,m-l; k=l,3, ••• ,m, 
~" ~" 

(rlc .. k-alc, . k)/f:; 1.,J, 1.,J, 
, i=2,4, ... ,m-l; k=1,3, ... ,m; 

(-alc .. k+rlc, . k)/11 j=2,4, ••• ,m-l" 1.,J, 1.,J, 

·(7.3.3Sb) 

(£6 u~p) k+ru~P+tk»/rl for i=2,4, ••• ,m-l; k=2,4, ••• ,m-l, 
~,m, ~,m, 

(rlc .. k-alci . k)/f:; 1 1.,J, ,J, 
i=2,4, ••• ,m-l; 

(-alc. . k+rlc, . k) /11 j=l, 3, ••• ,m-2, 1,J, 1.,), 

k=2,4, ... ,m-I; 

) 

= £ U (p) + a U (p) +ru (p+t) 
Ci,j,k 6 i,j,k 1 i,j+l,k i,j,k 

= a u(p) + Su(p) +ru(p+t) 
Ci,j,k 1 i,j,k 6 i,j+l,k i,j+l,k 

To determine the AGE equations at the fifth and sixth intermediate 

levels, it is necessary that we conside-r our approximations as sweeps 

parallel to the xz-plane and then evaluate the U values at points 

lying on each of these planes as illustrated in Figure 7.3.3. 
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1 
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In this case, the points are reordered aoZwrm-wise (parallel to 

the z-axis) such that, 

where 

with 
'!:!'j [xz) 

(G5+G6)~[XY) = (Gl +G2)~[xz) , 

T 
~[xz) = (~l [xz) '.!:!.2 [xz) , ••• '~[xz) ) 

(7.3.36) 

= (ul . l,ul . 2'···'ul · ,u2 · 1,u2 . 2'···'u2 · , 
III III ,J,m ,), ,), ,],m 

T 
••• /U . l'u . 2'···'u . ) , for j=1,2, ... ,m. m,l, m,), m,),m 

With the above reordering of points, the fifth and sixth equations 

are transformed to 

(G +rI)u (p+5/6) = G u (p) +ru (p+2/3) 
1 -[xz) l-[xz) -[xz) 

(7.3.37) 

and 
(pH) _ (p) (p+5/6) 

(G 2+rI)u[ ) - G2u[ )+ru[ ) - xz - xz - xz 
(7.3.38) 

respectively. We now derive the computational formulae at the fifth 

and sixth intermediate levels. 
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(v) At the fifth intermediate ZeveZ (the (p+5/6)th iterate) 

From the equation (7.3.37) we have. 

(p+S/6) 
u 
-[XZ] 

= (G +rI)-l[G u(p) +ru(P+2/3l]. 
1 l-[xz] -[xy] 

(7.3.39) 

which leads to. 

(p+S/6) 
U 
-j [XZ] 

--1 ~ (p) (p+2/3) 
Cl (Cl~j[xz] +~j[xz] ). for j=1.3 ••••• m. 

--1 ~ (p) (p+2/3) 
C2 (C2u.[ ]+ru.[ ] ). for j=2.4 ••••• m-l. 

-J xz -J xz 

(7.3.4oa) 

(7.3.40b) 

Therefore, we obtain, 

(a) for (7.3.402) 

and 

(b) for 

(p+S/6) 
u .. 1 -1,J, 

(p+S/6) 
u i • j .k+l 

(p+S/6) 
U 
i. j.m 

(p+S/6) 
u .. k 1,J, 

(p+S/6) 
u i • j .k+l 

(7.3.40b) 

(p+S/6) 
u .. 

1, ] ,m 

(p+S/6) 
u .. k 1.,J, 

(p+S/6) 
u .. k 1 1, J, + 

(p+S/6) 
u .. 1 1.,J, 

= (;U6 (p) +ru(p+2/3»/r, for j=l,3, ... ,m; i=1,3, ... ,m, 
i.j.1 i.j.l 1 

j=1,3, ... ,m; i=1,3, ... ,m 

= k=2.4 •..•• m-l. (7.3.41a) 

= for j=1,3, ... ,m; i=2,4, ... ,m-l, 

= 

= 

(r1d .. k-aldi j k)/6 ] 
~.J ••• '13 i24 1 J= , , ••• ,m; = I , ••• ,m- , 

(-a1d. j k+r 1d .. k)/6 k=1.3 ••••• m-2. 
1., I 1,J, 

= 
c (p) (p+2/3) . _ . 

(-6 u. . +ru.. )/r
1

• for J-2.4 ••••• m-l; i=1.3 ••..• m. 
1,),m l.,),m 

= 

= 

(r1di.j.k-aldi.j.k)!6 1 
j=2.4 ••••• m-l; 

(-a1d .. k+rld .. k)/6 k=1.3 ••••• m-2. 
1.,), 1.,), 

i=1,3, ..... ,m; 

J (7.3.41b) 

c (p) (p+2/3) = (7U6 · . l+ru . . 1 )/r
1

, for j=2,4, ... ,m-!i i=2,4, ... ,m-l, 
1,), 1,J, 

(p+S/6) 
Ui,j,k == (r1d .. k-ald .. k)/6] 1.,], 1.,), 

(p+S/6) 
u i • j •k +1 == (-a1d i . k+rld .. k) /6 

1], 1.,), 

for j=2,4, ... ,m-l; i=2,4, ... ,m-l; 

k=2.4 ••.•• m-1. 



where 
~ c (p) + u (p) +ru (p+2/3) 

di,j,k f:11,j,k a l i,j,k+l i,j,k 

and d .. k ~ alu~P)j k~6 i(P). k 1+ru~p:2k/3l) 
~,J, l." ,), + l.,), + 

(vi) At the sixth intermediate level (the (p+l)th level) 

From the equation' (7.3.38), we have 

(p+l) 
u 
-[xz] 

-1 (p) (p+S/6) 
~ (G2 +rI) [G2~[xz] +~[xz] ] , 

which leads to 

(p+l) 
~j [xz] 

~ 

f 
-c-l (C~ (p) +ru (p+S/6» 

2 2~j [xz] _j [xz]. for j~1,3, .•• ,m, 

i c-l(i u(p) +ru(p+S/6» f 24 1 l 1 l-j[xz] -j[xz] or j~ , , .•• ,m- • 

Therefore, we obtain, 

(a) for (7.3.43a) 
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(7.3.42) 

(7.3.43a) 

(7.3.43b) 

(p+l) 
u .. 

l.,),m 
= (~6 ~p). +ru~p~5/6»/r I for j=1,3, ... ,m1 i=1,3, ... ,m, 

~,J,m 1.,],m 1 

and 

(p+l) 
Ui,j,k = 

(p+l) 
u .. k 1 1., J, + 

(rle. . k-ale. . k) It:. 1 " 
l.,), ~,), '-1 3 . '-1 3 . 

~J- I , ••• /m, 1.-, , .... ,m, 

~ (-ale
i 

. k+rle .. k)/t:.lk~1,3, •.• ,m-2, 
IJI 1.,), ) (7.3.44a) 

(p+l) 
u .. 1 1.,), 

~ (-U
6
c 

i(P). 1+ru~p:S/16»/rl ' for j~1,3, ••• ,m; i~2,4, ••• ,m-l, 
,J, ~,J, 

(p+l) 
u .. k 

1.,), 

(p+l) 
u .. k 1 1.,J, + 

(rle. . k-ale. . k) It:. 1 
1.,), 1.,), 

, . 3 
_ . ~J=ll , .•• ,m; i=2,4, ... ,m-l; 

~ (-ale .. k+rle .. k)/t:.lk~2,4, .•• ,m-I, 
1.,J, 1.,J, 

) 

(b) for (7.3.43b) 

(p+l) 
Ui,j,l ::; 

(p+l) 
Ui,j,k ::; 

(p+l) 
u .. k 1 1., J, + 

(~6 ~p). 1+ru(P:S/
1
6»/r , for j~2,4, ••. ,m-l; i~1,3, .•. ,m, 

1.,), 1.,), 1 

(rlei,j,k-alei,j,k)/t:." '," 
j=2,4, ..... ,m-l; 

~ (-ale .. k+rle .. k)/t:. k~2,4, .•• ,m-l, 
1.,), 1.,), 

i=1,3, ... ,mi 

) 

(7.3.44b) 



608 

(p+l) 
u

i 
. 

, J,m 
= { (p) (p+S/6» I 

~i, j,m+rui, j,m r 1 , for j=2,4, ... ,m-l; i=2,4, ... ,m-l, 

where 

and 

(p+l) 
Ui,j,k = (rle .. k-ale . j k) It:. 1.,J, 1, I 

j=2,4, ... ,m-l, i=2,4, ... ,m-l; 

_ c (p) + (p) + (p+S/6) 
e. . k - =6 • • k alu i j k 1 ru. . k 1,J, 1.,J, , I + 1.,], 

(p) c (p) (p+S/6) 
e. . k = a u. . k+ =6 . . k ·l+ru. . k 1 1.,J, 1 1.,J, 1.,), + 1.,J, + 

Thus, we se.e that the AGE algorithm corresponds to sweeping 

through the mesh lying on planes (where the appropriate reordering of 

the points are done) parallel to the xy, yz and xz-planes. This 

process involves tridiagonal systems which in turn entails at each 

stage the solution of (2 x2) block systems. The iterative procedure is 

continued until convergence is reached, that is, when the requirement 

I (p+l) (p) I .. . 
u. . k-u. . k H l.S met, where E is the convergence criterl.on. 

1,J, 1.,J, 
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7.4 NUMERICAL EXPERIMENTS 

The AGE algorithm was tested on the following examples: 

(i) TWo-dimensionaZ probZems 

(a) Problem 1 

au 
at (7.4.1) 

subject to the initial condition 

U(x,y,O) = sin(ny)sin(2nx) , 

and the boundary conditions, 

U(O,y,t) = U(2,y,t) = U(x,o,t) = U(x,l,t) = ° . 
The exact solution is given by (Johnson and Riess (1982)) 

2 

(7.4.1a) 

(7.4.1b) 

U(x,y,t) 
-5n t 

= e sin(2nx)sin(ny), O~x~2, O~y~l, t~O.(7.4.2) 

(b) Problem 2 

h(x,y,t) , O~x~l, O~y~l, t~o, (7.4.3) 

with, 
h(x,y,t) 

-t 
= sin x sin y e -4, 

where the theoretical solution is given by (Gourlay and MacGuire (1971)) 

-t 2 2 
U(x,y,t) ~ sin x sin y e +x+y, O~x~l, O~y~l, t~O. 

(7.4.4) 

The initial and boundary conditions are defined so as to agree with 

the exact solution. 

The numerical results for both problems are displayed in 

Tables 7.4.1-7.4.7 and Tables 7.4.8-7.4.13 for different mesh sizes 

and values of x and y. For Problem 1, the convergence of the AGE 

schemes over the whole xy-plane at each time level was considered 

-4 
using a convergence requirement of £=10 . It is evident that the 

AGE method employing the Crank-Nicolson formula (AGE-CN) where the 



, 

2 2 
truncation error is O«~x) +(~t) ) is more accurate than the 

corresponding fully implicit formula (AGE-IMP) where the truncation 

2 
error is O«~x) +~t). This can be inferred from an examination of 

the absolute errors at the grid points as well as from the average 

of the errors given in Table 7.4.7. From the same table, we also 

find that both methods require only 4 iterations to complete the 

iterative procedure. 

For Problem 2, the AGE solutions were compared with the 
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corresponding results of the GE schemes obtained by Evans and Abdullah 

(1983). As above, the AGE-CN scheme is found to be more superior than 

AGE-IMP. It is generally observed from Tables 7.4.8-7.4.13 that the 

-8 
AGE formulae using a more stringent requirement of £=10 . produce 

-4 
more accurate solutions than those with £=10 • For AGE-cN in 

particular, the accuracies of the solutions improve by about one 

place of decimal. 
-4 

To a convergence requirement of £=10 ,the AGE-

CN scheme can have comparable accuracies with that of the GE schemes 

such as (S)AGE and (D)AGE at some of the grid points. However, with 

-8 
£=10 ,the AGE-CN formula is obviously more accurate over the whole 

plane than any of the GE methods. Nevertheless, this is achieved at 

the expense of introducing an iterative procedure as we readily see 

from Table 7.4.13. 

(iiJ A th~ee-dimensionaZ p~obZem 

This problem involved the solution of 

au 
at 

2 
2....!!. 

2 az 
+ h(x,y,z,t), O~x,y,z~l; t~O , (7.4.5) 

(h(x,y,z,t) = (3w
2
-1)sin(wx)Sin(wy)sin(wZ)e-t ) 
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subject to the initial condition, 

U(x,y,z,O) = sin(TIx)sin(TIy)sin(TIz) 

and the boundary conditions, 

(7.4.Sa) 

U(O,y,z,t) = U(l,y,z,t) = U(x,O,z,t) = U(x,l,z,t) = 

U(x,y,O,t) = U(x,y,l,t) = ° . 
The exact solution is given by, 

U(x,y,z,t) = sin (TIx) sin (TIY) sin (TIz) e-t 

(7.4.Sb) 

(7.4.6) 

The absolute errors of the AGE solutions to the above problem 

for A=O.OS and at some of the grid points on the cube are shown in 

Tables 7.4.14-7.4.17. As in the one and two-dimensional cases, 

because of the high order truncation errors of the Crank-Nicolson 

formula, the AGE-eN scheme displays more accurate results than 

AGE-IMP. No attempt was made to obtain the AGE solutions for larger 

values of t because of the prohibitively large computations involved 

which in turn can lead to larger rounding errors and consequently 

make convergence difficult. 



y=0.02 

\=0.5, 6x= I::.y 
.. ) ~ 

= 0.02, I::.t=0.0002, t=0.0018, r=1.0, £=10 

~ 0.02 0.3 0.58 0.86 1.14 1.42 1.7 1.98 

AGE-IMP 5.21xlO -6 
2.02xlO 

-5 1. 59XlO-5 
1.42xI0 

-5 2.13xl0 -5 
6.23xlO -6 

2.36xlO 
-5 

1.2xl0 -6 

-6 9 .88 xlO-6 5.28 XI0-6 -6 -6 4.82XlO-6 -5 -6 AGE-CN 1.45xlO 7.9xl0 8.24xlO 1.0xl0 1.28xl0 
. 

EXACT SOLUTION 0.0072008 0.0546416 -0.0276785 -0.0442688 0.0442688 0.0276785 -0.0546416 -0.0072008 

TABLE 7.4.1: The absolute errors of the AGE solutions for 2D Problem 1 (7.4.1) at y=0.02, t=0.0018 

y=0.5 
-4 \=0.5, 1::.x=l::.y=0.02,l::.t=0.0002, t=0.0018, r=1.0, £=10 

- x Method-----': 0.02 0.3 0.58 0.86 

AGE-IMP 6.76xlO -5 5.33xI0-~ 2.56xl0 
-4 

4.37xlO 

AGE-CN 2.18x10 -5 
1.66x10 

-4 
8.26xlO 

-5 
1.35xlO 

-4 

-4 

EXACT SOLUTION 0.1146805 0.8702209 -0.4408067 -0.7050230 

1.14 1.42 1.7 1.98 

4.2xl0 
-4 

2.79xlO -4 
3.93xl0 

-4 
6.95xlO -5 

1.33xlO 
-4 

8.48xlO 
-5 

1.65xlO 
-4 

2.36xlO -5 

0.7050230 0.4408067 -0.8702209 -0.1146805 

TABLE 7.4.2: The absolute errors of the AGE solutions for 2D Problem 1 (7.4.1) at y=0.5, t=0.0018 



y=0.98 
-4 

A=0.5, ~x=~y=0.02, ~t=0.OOO2, t=0.0018, r=l.O, £=10 

M~ 0.02 0.3 0.58 0.86 

AGE-IMP 4.05xlO 
-6 . -5 

5.38xlO 1.94xlO 
-5 4.65xlO 

AGE-CN 1.4xlO 
-6 1.18xIO-5 5.53 xlO 

-6 
9.75xlO 

-5 

-6 

EXACT SOLUTION 0.0072008 0.0546416 -0.0276785 -0.0442688 

1.14 1.42 1.7 1.98 

3.69xlO 
-5 3.27xlO -5 -5 

4.91xlO 1.11XlO-5 

9.18 xlO 
-6 

6.31xlO 
-6 

1.15xlO 
-5 

1.83xlO -6 

0.0442688 0.0276785 -0.0546416 -0.0072008 

TABLE 7.4.3: The absolute errors of the AGE solutions for 2D Problem 1 (7.4.1) at y=0.98, t=0.0018 

y=0.02 
-4 

A=1.0,6x=~y=0.02, ~t=0.OOO4, t=0.0036, r=1.0, £=10 

~ 0.02 0.3 0.58 0.86 

AGE-IMP 3.77xl0 
-5 

1. 25xlO -4 
8.61xlO 

-5 
1.57xl0 

AGE-CN 3.92 xlO 
-6 

4.66xlO -6 1.13xlO -5 4.18x10 

-4 

-7 

EXACT SOLUTION 0.0065888 0.0499973 -0.0253259 -0.0405061 

1.14 1.42 1.7 1.98 

2.71xl0 
-5 

1.68xl0 
-4 . -5 

3.57xI0 5.64xlO -5 

1. 14xlO-5 3.89X10-6 1.0xlO 
-5 

1.22xl0 -6 

0.0405061 0.0253259 -0.0499973 -0.0065888 

TABLE 7.4.4: The absolute errors of the AGE solutions for 2D Problem 1 (7.4.1) at y=0.02, t=0.0036 

'" I-' 
W 



-4 A=1.0, 6x=~y=0.02,~t=O.OO04, t=0.OO36, r=1.0, E=10 

~ 0.02 0.3 0.58 0.86 

AGE-IMP 1.92x10 
-4 1.51x10 -3 6.8 x1O 

-4 
1. 25x1O 

AGE-CN 3.53x10-5 2.76x1O -4 
1.27x1O 

-4 
2.28x1O 

-3 

-4 

EXACT SOLUTION 0.1049331 0.7962559 -0.4033401 -0.6450991 

1.14 1.42 1.7 1.98 

1.15x1O 
-3 8.22X1O-4 1.46x1O -3 3.17x10 -4 

2.13x1O 
-4 1.48x1O -4 2.68x10-4 5.26XlO 

-5 

0.6450991 0.4033401 -0.7962559 -0.1049331 

TABLE 7.4.5: The absolute errors of the AGE solutions for 2D Problem 1 (7.4.1) at y=0.5, t=0.OO36 

y=0.98 
-4 A=1.0, ~x=~y=0.02, ~t=0.OOO4, t=0.OO36, r=l.O, E=lO 

~ 0.02 0.3 0.58 0.86 

AGE-IMP 8.93x1O 
-6 

3.72x1O 
-4 

2.64x10 
-5 

3.62xlO 

AGE-CN 1.39x1O 
-6 

3.77x1O 
-5 

8.2x1O 
-6 

3.46x1O 

-4 

-5 

EXACT SOLUTION 0.0065888 0.0499973 -0.0253259 -0.0405061 

1.14 1.42 1.7 1.98 

1.62x1O 
-4 

3.01x1O 
-4 

2.75x1O 
-4 

1.09x1O 
-4 

2.12x10 
-5 

2.67x10 
-5 

3.12x1O -5 
9.29x1O 

-6 

0.0405061 0.0253259 -0.0499973 -0.0065888 

TABLE 7.4.6: The absolute errors of the AGE solutions for 2D Problem 1 (7.4.1) at y=0.98, t=0.OO36 



~ Method Average of All Absolute Errors 

A ~ AGE-IMP AGE-CN 

0.5 0.0018 2.33><10-4 7.26><10 
-5 

1.0 0.0036 6.98xlO 
-4 1.21x10 

-4 

TABLE 7.4.7 

Number of 

AGE-IMP 

4 

4 

Iterations 

AGE-CN 

4 

4 

'" .... 
lF1 



x=O.l 

A=O.l, 6x=6y=0.1, 6t=0.OOl, t=O.l, r=l.S 

M~ 0.1 0.2 0.3 0.4 O.S 0.6 0.7 0.8 0.9 

GER 7.0xlO 
-6 

S .0xlO 
-6 

1.3xlO 
-S 

1.1xlO 
-S 

1.9xlO 
-S 

1.8xlO 
-S 

2.3xlO 
-S 

2.2xlO 
-S 

2.2xlO -S 

(S)AGE 2.0xlO -6 
4.0xlO 

-6 
2.0xlO 

-6 7 .0XIO-6 4.0xlO 
-6 

9.0xlO -6 6.0xlO 
-6 

9.0xlO 
-6 

S.oxlO 
-6 

(D)AGE 3.0xlO -6 
3.0xlO 

-6 
S .0xlO 

-7 S .0XIO-6 1.OxlO 
-6 

6.0xlO 
-6 

2.0xlO 
-6 

S .0xlO 
-6 

4.0xlO 
-7 

-4 
(E=lO ) 2.0xlO 

-S 
3.9xlO -S 5.7xlO 

-S 
7.3xlO 

-5 
8.4xlO 

-5 
9.0xlO -5 8.9xlO 

-5 
7.6xlO 

-5 4.8xlO-5 

AGE-IMP 
-8 -6 -6 -6 -6 8 .15XlO-6 -6 . -6 

7 .06xlO-6 4.38XlO-6 (E=lO ) 1. 96xlO 3.86xlO 5.59xlO 7.07xlO 8.66xlO 8.39xlO 

-4 
(E=lO ) 1.75xlO 

-5 
3.4xlO -5 

4.98xlO 
-5 

6.29xlO 
-5 

7.24xlO -5 7.69xlO -5 7.42xlO -5 
6.21xlO 

-5 
3.78 xlO 

-5 

AGE-CN -8 -6 -6 -6 -6 -6 -6 -6 4 .42XlO-6 -6 (E=lO ) 1.23xlO 2.42xlO 3.5xlO 4.43xlO 5.1xlO 5.42xlO 5.25xlO 2.74xlO 

EXACT SOLUTION 0.029018 0.067946 0.126695 0.205177 0.303308 0.421006 0.558194 0.714801 0.890760 

TABLE 7.4.8: The absolute errors of the numerical solutions to 2D Problem 2 (7.4.3) 



x=0.5 

A=O.l, ~x=~y=O.l, ~t=O.OOl, t=O.l, r=1.5 

. 
... 

M~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

GER 1.9xlO-5 6.0X10 -6 1.3xlO -5 8 .0xlO-6 1.lxlO-5 8 .0xlO-6 1.2xlO -5 

(S)AGE 1.6xlO -5 1.2xlO -5 4 .0xlO-6 1.9xlO -5 3 .oxlO-6 2.3xlO -5 6.0X10 -6 

(D) AGE 1.6xlO -5 1 .lxlO-5 6.0xlO -6 1. 7xlO -5 4.0xlO -7 2.0xlO -7 2 .oxlO-6 

-4 (£=10 ) 8.41xlO -5 1.66xlO -4 2.41xlO -4 3 .07xlO-4 3 .58xlO-4 3.87xlO -4 3.84xlO -4 

AGE-IMP -8 -6 -5 2.33X10-5 2. 95xlO-5 3.43xlO-5 -5 -5 (£=10 ) 8.1SxlO 1.6xlO 3.67xlO 3.59xlO 
-

-4 
(E=lO ) 7 .24XlO-5 1.42xlO -4 2.07xlo 

-4 2.62xlO -4 3 .04xlO-4 3.25xlO 
-4 

3.16 xlO -4 

AGE-CN -8 5.1xlO-6 -5 -5 1.85xlO-5 2 .14xlO-5 -5 2 .24 xlO-5 (£=10 ) 1.0xl0 1.46xlO 2.3 xlO 
-

EXACT SOLUTION 0.303308 0.376183 0.468197 0.578931 0.707976 0.854943 1.019463 

TABLE 7.4.9: The absolute errors of the numerical solutions to 2D Problem 2 (7.4.3) 

0.8 

1.oxlO -6 

1.8xlO -5 

1.5xlO -5 

3.34 xlO-4 

3 .05xlO-5 

2 .68xlO-4 

1.91xlO -5 

1.201191 

0.9 

1.7xlO -5 

1.OxlO -6 

5.0xlO -6 

2 .15xlO-4 

1.9~ xlO-5 

1.6sxlO-4 

1.2xlO -5 

1.399809 

'" I-' 
-.J 



x~0.9 

A~O.l, ~x=~y~O.l, ~t=O.OOl, t=O.l, r~1.5 

Me~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
.. _--

GER 2.22xlO -5 1.0XlO -5 1.8xlO 
-5 

1.oxlO 
-5 

1.7xlO 
-5 7 .OX10-5 1.8xlO-5 

f--------.----.... -- --------
(S) AGE 1.9xlO-5 

I 1.3xlO -5 1.1xlO -5 1.9xlO 
-5 

6.0xlO 
-6 2 .OXlO-5 3 .0xlO-6 

--- .. 

(D) AGE 2.0xlO -5 1.3XlO -5 1.2xlO 
-5 

1. 7xlO 
-5 

8.0xlO -6 1.8xlO -5 6 .0xlO-6 
--~-. 

(C=1O-4 ) 4.84xlO -5 
9.59xlO 

-5 
1.4xlO 

-4 
1.81xlO 

-4 
2.15xlO 

-4 
2.4xlO 

-4 
2.48 xlO 

-4 

AGE-IMP 
(£=10-8 ) 4. 38xlO-6 8 .64 xlO-6 1.27xlO -5 -5 -5 2.11xlO-5 2.15 xlO-5 1.62xlO 1.92 xlO 

---
-4 

(£~1O ) 3.78 xlO 
-5 7 .45xlO-5 1.09xlO -4 1.4xlO -4 1.65xlO-4 1.81xlO -4 1.83"10-4 

AGE-CN -8 2.74xlO-6 5 .4 xlO-6 7 . 92 x 10-6 -5 -5 -5 1.35xlO -5 (£=10 ) 1.02xlO 1.2xlO 1.32xlO 
---

EXACT SOLUTION 0.890760 0.990813 1.109460 1.246013 1.399809 1.570209 1.756611 

TABLE 7.4.10: The absolute errors of the numerical solutions to 2D Problem 2 (7.4.3) 

0.8 

.-6 
1.oxlO 

1. 7xlO 
-5 

1.4xlO 
-5 

2.29xlO-4 

1.95xlO -5 

1.63xlO -4 

1.22xlO-5 

1.958450 

0.9 

1.1xlO 
-5 

6 .0xlO-6 

9.0xlO 
-6 

1.63xlO 
-4 

1. 35 xlO -5 

1.09xlO -4 

8 .41xlO-6 

2.175209 

'" I-' 
co 



x=0.5 

A=l.O, 6x=6y=0.1, 6t=0.01, t=0.5, r=1.5 

~ 0.1 0.2 0.3 0.4 0.5 0.6 

(S)AGE 1.49xlO 
-4 

6.5xlO 
-5 

1.BxlO 
-5 9. 7xlO-5 1. 69xlO -4 9.7xlO-5 

(D) AGE 1.16xlO 
-4 

4.4xlO 
-5 

7.3xlO -5 7.6xlO 
-5 

2.6xlO -5 1.16xlO -4 

-4 (£=10 ) 2.BxlO 
-5 

1.lxlO 
-4 

B .B6xlO 
-5 

1.57xlO 
-4 1.14xlO -4 1.55xlO 

-4 

AGE-IMP 
-B -5 -5 -5 -4 -4 -4 (£=10 ) 3.03xlO 5.92xlO B.52xlO 1.07xlO 1.22xlO 1.2BxlO 

--- ------
-4 

(£=10 ) 
- -5 

1.56xlO 3.37xlO 
-5 

4.33xlO 
-5 

5.66xlO 
-5 

S.88xlO 
-5 

6.24xlO 
-5 

AGE-CN 
-B -6 -6 -5 -5 -5 -5 (£=10 ) 4.26xlO B.33xlO 1.2xlO 1.5xlO 1. 7lxlO 1.8xlO --_._-_ .. _---- '--

EXACT SOLUTION 0.289030 0.347770 0.425933 0.523238 0.639410 0.774190 

TABLE 7.4.11: The absolute errors of the numerical solutions to 2D Problem 2 (7.4.3) 

0.7 O.B 

1.31xlO -4 2 .57XlO-4 

1.lxlO-5 1.2BxlO -4 

1.04xlO -4 6 .52XlO-5 

1.23xlO -4 1.02XlO-4 

5.45xlO 
-5 

4.21xlO 
-5 

1. 72xlO 
-5 

1.44xlO -5 

0.927330 1.098597 

0.9 

1.11xlO 
-4 

3.2xlO 
-5 

7 .46xlO-5 

6.3xlO 
-5 

2.61xlO 
-5 

- -6 
B.86xlO 

1.287781 

'" .... 
'" 



x=0.5 

A=l.O, ~x=~y=O.l, ~t=O.Ol, t=1.2, r=1.5 

Meth~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
~--.---

(O)AGE 8.7xlO -5 
2.3xlO 

-5 
1.14xlO 

-4 
5.5x10 

-5 
1. 31x10 

-4 7.7x10 -5 1.53xlO -4 9.9xlO -5 1.2x10 -4 

-4 -5 -5 -5 -5 -5 -5 -5 -5 3. 7lx10-5 
(£=10 ) I 1.4xlO 5.49xlO 4.42xlO 7.82xlO 5.7xlO 7.7xlO 5.16xlO 3.25 xlO 

AGE-IMP I 
-8 I 

-5 -5 -5 -5 -5 -5 -5 -5 3.13xlO-5 
(£=10 ) 1.5xlO 2.94xlO 4.23xlO 5.3xlO 6.04xlO 6.35 xlO 6.08xlO 5.08xlO 

-4 
(£=10 ) 2.52xlO -5 5.28xlO -5 7 .01x10-5 9 .05xlO-5 . -5 

9.63xlO 1.02xlO 
-4 8.97xlO-5 6.94xlO -5 4.21xlO -5 

AGE-CN -8 -6 -6 5. 95xlO-6 -6 -6 8 .93xlO-6 8 .56xlO-6 -6 4 .4x10-6 (£=10 ) 2.11xlO 4.14xlO 7.45xlO 8.49xlO 7.14 xlO 

EXACT SOLUTION 0.274416 0.318688 0.382673 0.466232 0.569229 0.691534 0.833025 0.993586 1.173113 

TABLE 74.12· The absolute errors of the numerical solutions to 20 Problem 2 (7.4.3) . . 
~ Method Average of All Absolute Errors Number of Iterations 

A ~ 
AGE-IMP AGE-CN AGE-IMP AGE-CN 

-4 -8 -4 -8 -4 -8 -4 -8 
(£=10 ) (£=10 ) (£=10 ) (£=10 ) (£=10 ) (£=10 ) (£=10 ) (£=10 ) 

0.1 0.1 2 .13X10-4 1.98xlO -5 1. 74 xlO -4 1.24x10 -5 
2 9 3 10 

., 
1.0 0.5 7.28xlO -5 6.85xlO -5 3.17xlO -5 9.64xlO -6 

4 22 4 11 

1.0 1.2 3.63x10 
-5 3.4X10 -5 5.13xlO -5 4.79xlO -6 

4 21 3 11 

TABLE 7.4.13 

0'\ 

'" o 



y~0.025, z~0.025 

-5 -5-4 
A~0.05, 6x~6y~6z~0.025, 6t~3.125xl0 ,t~3.125xI0 ,E~10 ,r~2.5 

Metho~ 0.025 0.5 0.975 Number of Iterations 

AGE-IMP 1.81xlO -6 3 .89xlO-5 6.99xlO -7 
9 

AGE-CN 7.06xI0 -8 1.41xlO -5 
5.57xI0 

-8 
9 

EXACT SOLUTION 0.0004830 0.0061556 0.0004830 -

TADLE 7.4.14: The absolute errors of the AGE solutions to 3D Problem (7.4.5) 

y~0.975, z~0.025 

-5 -5-4 
A~0.05, 6x~6y~6z~0.025, 6t~3.125xl0 ,t~6.25xlO ,E~lO ,r~2.5 

Me~ 0.025 0.5 0.975 Number of Iterations 

AGE-IMP 7.oxl0 
-6 

2.93xl0 -4 7.02xl0 -5 
8 

AGE-CN 1.67xlO 
-6 

2.16xlO 
-4 

7.46xl0 
-5 

9 

EXACT SOLUTION 0.00048295 0.00615546 0.00048295 -

TABLE 7.4.15: The absolute errors of the AGE solutions to 3D Problem (7.4.5) 



y~0.975, z~0.5 

-5 -4-4 A=0.05, 6x=6y=6z~0.025, ~t=3.l25xlO ,t=1.25xlO ,£=10 ,r=2.5 

.--

~e~ 0.025 0.5 0.975 Number of Iterations 

AGE-IMP 9.58x lO-4 2 .59x lO-2 8.57xlO-4 
8 

AGE-CN 2.8lxlO-4 2.l6xlO 
-2 5 .16 xlO-4 

8 

EXACT SOLUTION 0.00615507 0.0784494 0.00615507 -

TABLE 7.4.16: The absolute errors of the AGE solutions to 3D Problem (7.4.5) 

y=0.5, z~0.5 
-5 -4-4 A=0.05, 6x=6y=6z=0.025, 6t=3.l25xlO , t=1.5625xlO ,£=10 ,r=2.5 

~ 0.025 0.5 0.975 Number of Iterations 

AGE-IMP 9.83xlO -3 1.88xlO -1 1.55xlO -2 8 

AGE-CN 3 .95 xlO-3 8. 77 x 10-2 3 .89xlO-3 8 

EXACT SOLUTION 0.07844683 0.99984376 0.07844683 -

TABLE 7.4.17: The absolute errors of the AGE solutions to 3D Problem (7.4.5) 

0'1 
N 
N 
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SUMMARY AND CONCLUSION 



624 

Throughout the course of this thesis, new explicit methods were 

proposed as alternative finite-difference schemes to solve a given 

hyperbolic or parabolic equation and emphasis on the convergence, 

stability, consistency, accuracy and efficiency of these schemes was 

stressed. The GE methods employed to solve first and second-order 

hyperbolic equations can be very competitive in terms of accuracy and 

efficiency. Unfortunately, we are limited in our choice of larger 

time steps because of restrictions on stability. The same observation 

also applies to parabolic problems with cylindrical and spherical 

symmetries, where the author encountered theoretical difficulties in 

establishing conditions of stability using Brauer's theorem. One 

possible reason is that the upper bounds given by Brauer's theorem 

were not very close to the largest eigenvalue of the amplification 

matrix under investigation. This leaves open the scope for further 

research on the possibility of finding stable, asymmetric semi-implicit 

approximations which when appropriately coupled at the grid points lead 

to stable explicit equations thus qualifying as a difference scheme 

in the GE class of methods. An obvious way to achieve this is to look 

into the possibility of finding the appropriate discretisation of the 

derivatives appearing in the differential equation. 

The flexibility of the AGE schemes is demonstrated by our freedom 

to use the appropriate well-known . implicit difference formula to 

approximate the given differential equation which is guaranteed of 

stability. We also have a choice of the basic iterative formula -

the PR or DR variant. The PR variant is generally favoured because 

of its O([~x12+[~t12) accuracy and given a reasonable convergence 

-4 
criterion, for' example e=10 I it requires a low iteration count. 
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The DR va~iant, on the other hand, is always used for two and higher 

dimensional problems because unlike the PR variant, it is 

unconditionally stable. 
2 

However, it is only O([~xl +~t) accurate. 

It, therefore, becomes essential that further studies be conducted 

to develop a more accurate as well as stable variant which ensures 

the simple splitting of the coefficient matrix of the system of 

linear equations thus enabling the application of the AGE algorithm. 

Both the GE and AGE iterative class of methods have the merits 

that they are explicit and accurate. Furthermore, in the case of the 

AGE schemes, they are always stable. Hence, with improved stability 

and convergence characteristics, the two schemes can be used 

effectively on parallel computers. For higher dimensional problems, 

the ADI method is frequently used up to the present time. This 

employs the Thomas algo~ithm to solve the resulting system of equations 

in each of the appropriate coordinate directions. For such implicit 

methods, often we are not able to exploit to the full the implicit 

parallelism within the algorithm. Thus, although the AGE class of 

methods appear to require a slightly more computational work and 

incur nnre rounding errors than the Thomas algorithm on a sequential 

machine, they however, serve as an efficient technique for achieving 

parallelism. 
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APPENDIX 

SOME SELECTED COMPUTER PROGRAMS 



c GE methods for' parabol ic problems wi th cyl indrical symmetry. 
c This problem is taken from Mi tchell and Pearce and even numbel' 
c of intervals are used. The NAG subroutine generates Bessel values. 
c 

library 'nagf' 
implici t reill *8 (a-h ,o-z) ,integer>2 (i --·n) 
common Ibll/p,q/b12/u,ut/b13/al,a2 
d 1 Irons 1 on p (15) ,q ( 1 5 ) , u ( 15 ,210 ) , ut ( 1 5 ,210 ) 
open (unlt=5, file~'dcopeven4c' ,fot'm='formattc-d')./ 
do 1000 lr=l,2 
ifail=l 
alpha=1.0 
beta-2.405 
read(S,*) nc,tl,sl ,h,fk,mp1 ,np1 ,inj 

c note that!'l denotes lambda or mesh t'd tio 
rl-fk/(hn2) 
a3=1.0-2.0>rl 
a2= (alpha-,l .O)*rl 
al -2.0>a2 
n=npl-1 
ns-npl-2 
nd-npl-4 
m-mpl-l 
do 10 1=2,10 
fi = i 
p (i )= (1 .O-alphal C2 .0* Cf i-l .0) ) ).rl 

10 qCI)" Cl.0+alpha/C2.0,Hfi-l .0)) )*rl 
writeCl,120) alpha,tl ,si ,h,fk,r-l 

c define ini tial and boundary values 
do 1 1=l,mpl 
fl - i 
x=beta*Cfi·l.0)*h 
bessel=s17aefCx,ifail) 
uCi ,1 )=bessel 
do 1 j = 1 ,npl 
fj=j 
xl=-Cbeta**2)*Cfj-l.0).fk 
uCmpl ,J )=0.0 
utCi,J)=bessel*exp(xl ) 

c :3olv" the given ,llfferential equation by gt'ouping points as 
c a r-esul t of coupling the relevant difference equations 

wd te Cl, 1 00 ) 
write(l,10S) 

c fully (~xplicit :~cheme 

if (ne .eq. 1) then 
I,.W i le (1 • i 04 ) 
do 32 j = 1 ,n 
uC2,j.l )"I'(2)-'uC1,j )'qC2).uC3,J )td3*uC2,J) 
U (1 ,j ,-1 ) - C u Cl. j ) +a 1 *u C 2 • j + 1 ) ) I C 1 .0 '-iJ 1 ) 
do 32 i.:.2,m 

32 IJ C 1 • j t 1 ) = C 1 .0-2 .0*t'l ). U Ci • j ) + P ( I ) *u <i -1 ,j ) -. q (i ), u (j t 1 ,j ) 
call outputCu,l.mp1,1,np1.inj) 
\oil i tt? C 1 • 1 40 ) 
'-;:111 .,b3er-r' Crr.p1 ,np1 ) 
t,all dverdg(u,dver,1,fCl,',np',1,inj) 

C !,Jr-{jup cxpllc i t wi tit r·itJht ungr'ouped pl)int (c~er') schE:rr/l~! 
(~::':";f-! .if (ne .e(i. 2) then 

WI i te (1 , 1 06 ) 
du 31 j' 1 • n 
lJ(l,j+1 )=uC1.j )+a1*(uC2.j )·-uCl,J)) 
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31 call gerCm,mpl,j) 
call outPtltCu,l ,mp1, 1 ,npl ,inj) 
writeCl,140) 
call abserr' Cmp1 ,npl ) 
call averagCu,aver,1,m,1,np1,1,inj) 

c group expl iei t wl th left IJClgrouped point Cgel) sehe!re 
else if Cne .eq. 3) then 

wr'i te Cl, 1 07) 
do 40 j=1,n 
u Cl, j + 1 ) = C Cl. 0 +p C 2 ) )'of( 1 . 0-a2 ).u Cl, j l+ C 2.0 t pC 2 ) -q C 2 ) ) 

1 "a2·'u C2 ,j )+a2*q C2 )*IJ (3 ,j) )1 Cl .0+p(2) ta2) 
40 call gelCm,j) 

call outputCu,l ,mpl ,1 ,npl ,inj) 
write Cl, 140) 
call abser'r C mpl ,np1 ) 
call averagCu,dver,l,m,l,npl,l,inj) 

c single alter'nating gr'oup explicit Csage) scheme 
else if Cne .eq. 4) then 

writeC1,108) 
call esageCm,mpl,ns) 
call outputCu,l ,mpl, 1 ,npl, inj) 
writ,cCl,140) 
call abGerTCmpl ,npl) 
call averag(u,aver,1 ,m, 1 ,np1, 1, inj) 

c doubce alter'nating group explicit Cdage) sehe"", 
else if Cnc .cq. 5) then 

writeCl,109) 
call edageCm,mp1,nd) 
call outputCu,1 ,mpl, 1 ,npl ,inj) 
writeCl,140) 
call absen' Cmpl ,npl ) 
call averagCu,aver, 1 ,rn, 1 ,npl, 1, inj) 

end if 
c formats 

c 
c 
c 

100 formatCl,'2nd or'der parabolic diffusion equation with even number' 
lof intervals' ,I) 

104 formatCl,'using Ca) fully explicit ,xheme',/) 
105 format,CI,'soln of the coupled differ'ence equations is',1) 
106 formatC/,'using Cb) ger scheme' ,I) 
107 formatC/,'using Cc) gel schen~' ,I) 
108 format Cl, 'using (d) sage scheme' ,I) 
109 for'matCl, 'uGing Ce) dage scheme' ,n 
120 formaU'alpha:' ,d20.101 

1 'max value in the t-direction=' ,d20.101 
1 'flEX value in the x···dir'ection.:.' ,d20.101 

'incn~m2n.~ h alon~ the x-axis..;' .d20.101 
"incr~ement !< along t,,fil! t. rJxis;:.' ,d,20.101 
, l;3mbda=' ,d20.1 0) 

130 format Cl, ' theoretical soln i~ aiven by' ,I) 
140 for'matCl,'the absolute Con-o,' at each nesh point is',/) 
141 forIl"k':1tC/,'the per"centage lTr'ur Colt each mesh point 1s' ,/) 

1001 continue 
1000 continue 

wr it" (1 , 1 JO ) 
call output (ut,; .mp1 , i ,np1 , i nj ) 
1.:,]11 r:xiL 
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c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

subroutine abserr(l,n) 
Implici t rea 1 *:;) (a-h,o-z), integer*2 (l-n) 
common Ib12/a,b 
dimension a(15,210),b(15,210) 
do 1 i = 1 ,1 
do 1 j = 1 ,n 
a (i ,j ) =abs (a (i ,j ) -b (i ,j ) ) 
return 
end 

subroutine percer (l,n) 
i mpl i c 1 t t'eal*8 (a-h, o-z ) , i ntelJer~2 ( i -n) 
common Ibl2/a,b 
dimension a(15,210),b(15,210) 
doli=l,l 
do 1 j = 1 ,n 
a (i ,J ) =a <i ,j ) *1 OO/abs (b (i ,j ) ) 
return 
end 

subroutine esage(m,mp1,ns) 
implici t real *8 (a-h ,o-z) ,integer*2 (l-n) 
common Ib11/p,q/b12/u,ut/b13/a1 ,a2 
dimension p(15) ,q (15) ,u (15 ,210) ,ut (15,210) 
do 1000 J=1 ,ns,2 
u(1,J.1 )=u(1,j)+al*(u(2,j)-u(l,J» 
call ger(m,mp1,j) 
u(l,j+2)=((1.0+p(2) )*(1.0-a2)*ut1,j.l )+(2.0+p(2)--q(2» 

1*a2*u(2,j.l ).a2*q(2)*uO,J+l »/t1.0+p(2)+a2) 
1000 call gel (m,j.l ) 

t'eturn 
end 

"ubroutine eclag,,cm,fIlp1 ,flU) 

implicit real*8(a-h,o--z), integer*2(i-n) 
common Ibll/p,q/bl2/u,utlbl3/al ,<12 
dimension p{1::;),q(15),u(15,210),ut(15,210) 
do 1000 j=l ,nd,4 
u(l,J"-l )=u(l,j ).al*(u(2,J )--u(l,j» 
call ger(m.mpl ,j) 
do9')9k=1,2 
u (1 ,j.k. 1 ) = ( (1 .0' p (2 ) ). (1 .0- ,,2 ) 'u (1 , j 'k ) , (2 .0 • p (2 )- q (2 ) ) 
1*a2*u(2,j'k).a2~q(2).u(J,J.k»/(1 .0.p(2)+a2) 

999 call gel(m,J,k) 
u(1,J~4)=u(i ,j ,3),al.(u(2,j+3)-u(1,j'3» 

1000 call ger(m,mpl ,j ,3) 
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c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

return 
end 

subroutine output (a, i 1, i2 ,Jl ,J2, inJ) 
Implici t real *8 (a-h ,o-z) ,integel'*2 Ci·-n) 
dimension a(15,210) 
do 1000 j=Jl ,J2,InJ 
wrlte(1,1) j 

1000 write(l,2) (aCi,J),i=il,i2) 
1 formate' j=' ,13) 
2 formatC6d20.101) 

return 
cnd 

subroutine averag (a ,aver, i 1 , i2,j, ,j2, lcount, inj ) 
I rnpl ici t real *8 (a-h ,o-z) ,lnteger*2 (i-I) 
dimension a(15,210) 
if (icount .eq. 0) then 

13=12 
else If C Icount .eq. 1) then 

13=i2 
end if 
do 1000 j=jl,J2,inj 
aver=O. 
write(l,l) J 
wrILe(l,2) (aCi,j),i=i1,i2) 
do 1001 1=11,i2 

1001 aver=aver+a(l,j) 
aver-aver/float(i3) 
wri te Cl ,3) aver 

1000 continue 
1 formatC'j=' ,13) 
2 forma t (6d20. 1 Oil 
3 format(/,'average of all errurs=',d20.10) 

return 
end 

Subl'outine get'Cm,mpl ,j) 
implicit r'eal*8(d-h,o··z),integer~2Ci -11) 

cummon Ibll/p,q/b12/u, utlb13/i11 ,a2 
d I mens i on p ( 1'5 ) ,q ( 1 5 ) • u ( 1 !5 .210) , ut (1 5 , 21 0 ) 
do 4 i'·3.lI1pl.2 
i r (i. • e<.;. lOp 1) then 

else 

u (m. j + I ). (p (m) • u (m-·' . j ) i (1 .0 1-' (m) hu (In, j ) 
+q(rn).u(m.l,j.l) )/(1 .O.q(m» 

u Cl 1, j ,1 ). ( (1 .0+ p Cl ) ) * P ( i· 1 ) * u ( i -2 ,j ) , \1 .0+ P Cl ) ) 
* (1 .0-P ( i -1 ) ) *u ( i -1 ,j ) t q Cl --1 ). (1 .0 -'I ( I ) ) *u (i ,j ) 
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c 
c 
c 
c 
c 

1 +qCi )*qCi-l )*uCitl ,J) )/Cl .0'pCi )+qCi-l)) 
uci ,j+l)= Cpei )'pCi--l ).uCi-2,J )+pCi )*Cl .0-pCi--l)) 

1 *u Ci-l ,j l+ Cl .O+q Cl -1 ) )* Cl .O-q Ci Jl*u C i ,J l+ Cl .O+q C 1-1 ) ) 
1 *q C 1 >*u Ci + 1 ,J ) ) I Cl. O+-p Cl ) +q C i -1 ) ) 
end if 

'l continue 
return 
end 

subroutine gel Cm,j) 
implici t r-eal *8 (a-h,o-z), integer.2 Ci -1\) 

common Ibll/p,q/b12/u,ut/b13/al ,a2 
dirrension p(15) ,q (15) ,u (15 ,21 0) ,ut C15,21 0) 
do 7 i=2,m,2 
if Ci .eqo 2) then 

else 

end if 
7 continuoe 

return 
end 

u C 2 ,j + 1 ) = (p C 2)" (1 • 0-a2 )'u (1 ,J ) + ( (1 • 0+a2 ) * (1 0 O-q C 2 ) ) 
+p(2j,'d2)*u(2,j )+(1 .0+a2)*q(2)'u(3,j) )/(1 .0+p(2l+a21 

u ci -1 ,j + 1 ) = ( (1 . O+p ( i I ).p (i -1 l*u (i -2 ,j ). (1 oO+p <i ) ) 
• (1 .0-pCi-l ) hu Ci -1 ,j) +q( i-l )* (1 .O-g (i) hu( i ,j) 
,gCi )*q(i-l )*u(i.l ,j) )/(1 .Olp(i )tq(i-l» 
u (i ,j ,1 ), (p ( i )'p ( i --1 ) *u ( i - 2 ,j ) tp (i ) * (1 • O-p Cl -1 ) ) 
• u ( i -1 ,j l+ (1 00+ q ( i -1 ) ) * (1 00 -q (i ) ) *u Ci ,j ) tC 1 • O+g ( i -1 ) ) 
*g Ci H'u (i+1 ,j»/ (1 .Otp( i) +q Ci-1 » 
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c TIle Ramos non-linear reaction-diffusion problem is solved by 
c means of the AGE algorithm which employs the fourth time 
c linearisation technique. Odd number of internal points are used. 
c 

impl i c it I'eal *IHa-h, O-Z) , in t.eger.2 C i -n) 
common /bll/u,ul,u2,x 
dimension uC901 ),ul C901 ),u2C901 ),xC901) 
open Cunit·5, file='dt4tl' ,form"formatted' ) 
v'1.0/sqrtC2.0) . 
do 1000 11" 1 ,2 
read CS,,) tl ,sll ,s12 ,h,fk, r ,m,n, icl ,ic2 ,omega ,eps 
ntl=n-l 
data kmax/30/ 
rl·fk/Ch**2) 

c input data for matrix of coefficients 
c 

d'C2.0-omega)*r 
c define initial values 
c 

doli=l,m 
fl=i 
uCi)·l .01Cl .0+expCv*CCfi)*h-50.0») 
xCi)=uCi) 
writeCl,3) 
if Comega .eq. 0.0) then 

writeCl,8) 
else 

writeCl,9) 
end if 
writeCl,4) tl,sll,s12,h,fk,rl,r,m,n,eps 
do 2 Jt=l,ntl 
fjt=jt 
tl =fJUfk 
jt2=Jt+l 
do 28 k·l ,kmax 
I vet. 1 

c define uCk+0.5)=ul Cl) 
c equations for 
c uCk+0.5)~Cgl.ri)<-I>CCrl-g2)uCk)+f) 

c 
al·2.0*rl+5.0*C2.0-fk*xCl )*C2.0-3.0*xCI» )/6.0 
bl '-rl+Cl .0-0.5'Tk*x(2).C2.0-3.0*xC2» )/6.0 
cl--rl+Cl.0+0.5*fk)/6.0 
sl=r-all2.0 
rl o r.al/2.0 
fl·C5.0*C2.0-fk*xCl )*C2.0·3.0*xCl» )/6.0-2.0.rl) 

1 'xCl )··C Cl .0-0.5*f'k*x(2).(2.0-3.0'x(2» )/6.0.,-1) 
2*x(2)+fk*(10.0*(x(1 )-.. 2)*(1.0-xCl »..exC2)**2) 
3*(1.0-xC2»)/6.0,2.0*rl 

ul (1 )=Csl*u(1 )·bl'u(2)+fl )/rl 
do 60 i=2,m-3,2 
al=2.0*rl+5.0*(2.0-fk*xCi)*(2.0-3.0*x(I»)/6.0 
a2=2.0*r·1 +5.0*(2.0-fk*x(f<.1 ).C2.0-3.0*x(i.l» )/6.0 
bl=-t'l+(1.0·0.'J*fk*x(itl )'(2.0-3.0*x(1+1» >16.0 
b2=-rl+Cl .0--O.'5*fk*x(i +2)'(2.0-3.0'x(i+2» )/6.0 
cl'-rl+(1.0--0.5*fk>xCi-l )*C2.0-3.0*x(l-l» >16.0 
c2=-rl+(1.0-0.5*rk*x(!).(2.0-3.0*x(I»)/6.0 
rl'r+all2.0 
l'2=r.a2/2.0 
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c 

sl=r-aI/2.0 
s2=r-a2/2.0 
pl=I.0-0.5*fk*x(i-l )*(2.0-3.0*x(1-1» 
p2=2.0-fk*x(1)*(2.0-3.0*x(i» 
p3=1 .0-0.S*fk*x(i.l ).(2.0-3.0*x(\.I» 
p4,(x(i-_l )**2)*<1.0-x(1-1» 
pS=(x(i)**2)*(1.0-x(!» 
p6=(x(i+l )**2Jl,(1.0-x(1+1» 
pl0=1.0-0.5*fk*x(i)*(2.0-3.0*x(i» 
p20=2.0-fk*x(i+l '*(2.0-3.0*x([.I» 
p30=1.0-0.S*fk*x(i+2)*(2.0-3.0*x(i+2» 
p60= (x (i +2 )**2 )* <1 • O-x (i.2 ) ) 
fl = (pI 16 .O+rl )*x 0-1 ). (S.0*p2/6 .0-2 .O*rl )*x (I )+ (p3/6 .O+rl )* 

lx(l.l )+fk*(10.0*pS.p4'p6)/6.0 
f2= (pI 0/6.0 .rl )*x (i ). (5 .0*p20/6 .0-2 .O*rl )*x (i .1 ) + (p30/6 .O+rl )-. 

I x (1.2) .fk* (10 .0*1'6+pS+p60 )/6.0 
alpha=rl.r2-bl.c2 
ssl = -cl.u(i-l ) .sl *u (i) .fl 
ss2=s2*u(l+l)-b2*u(I.2).f2 
ul (I ) = (r2*ssl-bl .ss2 )/alpha 

60 ul (i+1 )= (-c2*8s1 .rl *882 )/alpha 
al =2 .O*l'l 05.0* (2 .O-fk*x (m-I '* (2 .0-3 .O*x (m-I» )/6.0 
a2=2.0*rl+S.0*(2.0-fk*x(m)*(2.0-3.0*x(m»)/6.0 
bl=(1.0-0.S*fk*x(m)*(2.0-3.0*x(m»)/6.0-r'l 
cl = <1 .0-0.S*fk*x (m-2)* (2 .0-3 .O*x (m-2) ) )/6 .O-rl 
c2=(1.0-0.S*fk*x(m-1 )*C2.0-3.0*x(m-l )))/6.0-rl 
rl =nal 12.0 
r2=r.a2/2.0 
sl=r-aI/2.0 
s2=r-a2/2.0 
pI = 1 .0-0. 5*fk*x (m-2)* (2.0-3. O*x (m-2) ) 
p2=2.0-fk*x(m-l )""2.0-3.0*x(m-l)) 
p3= 1 .0-0. S*fk*x (m)* (2.0-3. O*x (m)) 
p4=(x(m-2)**2)*(1.0-x(m-2» 
p5=(x(m-l )**2)*(1.0-x(m-I» 
p6=(x(m)**2)*(1.0-x(m» 
pl0=1.0-0.S.fk*x(m-1 ).(2.0-3.0*x(m-I» 
p20=2.0-fk*x(m).(2.0-3.0*x(m» 
f 1 = (pI/6. Oor 1 )*x (m-2) + (S. 0*p2/6. 0-2 .O*r 1 )*x (m-I) + (p3/6. O.rl ) 

l'x(m)+fk.(10.0.p5+p4+p6)/6.0 
f2= (pl0/6.0.rl ).x(m-I )+(S.O*p20/6.0-2.0*r'l )*x(m) 

l+fk.(10.0*p6+pS)/6.0 
alpha=rl*r2-bl*c2 
ssl=-cl.u(m-2).sl*u(m-l )+fl 
8s2:.s2*u(m)+f2 
ul (m-' )=(r'2*ss1-cl*ss2)/<11p!,a 
ul (m)=(-c2*ssl.rl.ss2)/alpha 

c define u(k+l )",,20) 
c equations for' 
e u(!<Tl )=(g2+t'i )(-1>( (g2-(I---wld )u(k,.. (2-w)ru(koO.S» 

do 61 i::1,m-2,2 
<11·2.0*rl .5.0*(2.0-fk*x(i).(2.0-J.0*x(! »)/6.0 
,)2=2.0*r-l .5.0.(2.0-fk*x(lol )*(2.0 3.0'x(lol» i/6.0 
bl= :r-l • .<1.0-0.5*l'k*xCi.l )*(2.0--3.0*x(l.I» )/6.0 
";>-C': .(1 .0--0.5*fk*x(i ).(2.0 _3.0.,,(1» )/6.0 
C'1=C'+<11/2.0 
r::! '-t~-~d2/2. 0 
ql =d1/2 .0-- (1 . O--omegd ) *r 
'12 =032/2.0- (1 • O-omega) .or 
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alpha=rl*r2-bl*c2 
ssl=ql*u(il+bl*u(l+l I+d*ul (11 
ss2=c2*uCi l+q2*uCi+l I+d*ul (1+1 I 
u2Cil=(r2*ssl-bl*ss21/alpha 

61 u2(I+l)= (-c2*ssl+rl*ss2)/alpllil 
al=2.0*rl+5.0*(2.0-fk*x(ml*C2.0-3.0*x(o\I)1/6.0 
rl=r+al/2.0 
ql=a1/2.0-Cl.0-orregal*r 
u2(m)=(ql*u(ml+d*ul (m»/rl 

645 

c generate solns on each time level. set ivct=l for successful conver'cence 
c and 0 other'wise. begin i terati ve l"'ocess. 

do 27 i-I,m 
if(abs(u2(il-u(i»-epsl 27,27,29 

29 ivct=O 
27 cont i nUL~ 

do 32 i = 1 ,m 
32 u (i ) = u2 Cl I 

if (ivct .ne. 1) go to 28 
do 80 i=l,m 

80 xCi )=u2Ci I 
c theoretical solution 

do 34 i=l,1\\ 

(; 

c 

fi=i 
34 u1 (i 1= 1 .01 (1 .O+exp (v* ( (r i *hc50.0 )-v*t 1 I ) I 

do 320 jw=icl,ntl,icl 
if Ut .eq. jw) then 
wr i te (1 ,11 ) j t2, t 1 
write(l,12)k 
write(l,14) (1I<i),i=2,m·-l,ic2) 
write(l,51 
write(l,14) (ulCil,i=2,m--l,lc2) 
wr i te (1 ,96 I 
call abserr(l,ml 
write(l,141 (1I2(II,i=2,Jn-l,ic2) 
call averag (I,m) 
sum=O.O 
do 420 i=l,m 

420 sum=sum+(u(II**2)*(1 .O-u(il) 
vtr .... ap=h*sum 

320 

25 

2 
1000 

90 

vper=abs (vtl'ap-v 1*1 00 .O/v 
write(l,144) v,vtrap,vper 
go to 320 
else 
go to 320 
end if 
continue 
go to 2 
continllL~ 

write (1 ,37) 
go to 1000 
continue 
continue 
cdll exit 
formats 

klndx,jt2 

J fOI'rndtC//,'Nl.Jn-linear t"::!dct.ioll-diffu::.;ion (;quaLion t
,/ 

1 'with odd number of int~,;r~ri,Jl fi'1l.!:3h points' ,I) 
1.J forma.t('maximum value in tIle t.. dir'c'cLiOIF" ,d20.iOI 

2 'minimum value ifl the x dir2ct..ion::',d20.101 
2 'maximum value in the x'uircction"' ,d20.101 



c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

3 'increment h along the x-axis:' ,d20.101 
5 'increment k along the y-axis:' ,d20.101 
6 'lambda:' ,d20.101 
7 'parameter r=',d20.101 
8 t number of points used in the x:-dirL~ction= t I i SI 
1 'number' of time levels"', i51 
2 'accuracy :convergence cri tet'ion eps=' ,d20. 10) 

5 format (/,' theoretical soln at selected points is g\ ven by' ,!> 
7 format(6d20.10) 
8 format('using the peaceman rachford variant' ,I) 
9 fornut('using the dougla" rachford val'iant' ,n 

11 fOl'matU,'age iterative soln at tilre level n=' ,i31 
1 'ti/l'e t,~, ,d20.·101 
1 'employing ramos implicit approximation',1 
2 'with 4th time linearisation - 1,1.1' ,Il 

12 fOl'1nat('/l'ethod converges with k=' ,i4,' iterations',1) 
13 format.U,'the absolute el'rol' at. each /l'esh point is' ,Il 
14 format(6d20.10) 
15 format (/ , 'the percentage err'or at each mesh point is',1) 
37 format.('method fails to conver'ge in' ,i4,' iterat.ions' ,I 

1 'at ti/l'e level n=' ,i3) 
96 format. (/,' the ab:lOlute errors at selected point" are' ,I) 
97 for""'t (/,' the percentage errorS at selected points are' ,I) 

144 format(/,'the steady state wave speed v=' ,d20.101 
1 'the computed wave speed vtrap=' ,d20. 101 
2 'the pel'centage error of the wave speed is=',d20.10) 

end 

subroutine abserr(ic2,m) 
impll c 1 t I'eal *8 (a-h, o-z) , integer'*2 ( I -1) 

common Ibl1/u,ul,u2,x 
dl/l'ension u(901 ),u1 (901 ),u2(901 ),x(901) 
do 1 i=l,m,lc2 
u2(i)=abs(ul (1)-u(1» 

return 
end 

subruutine Q.ver·d~;(iG2,m) 
impl j. ~'-; it l'eal *8 (.::l-h,o-z), integer*2 (i "-Il) 

common Ibll/u,ul ,u2,x 
dimension u(901 ),ul (901 ),u2(901 ),x(901) 
aver=O. 
ml={{m-l )/ic2)tl 
do 100 I i = I ,IJI, 1 c2 

1001 8vepaver tu2 (i) 
aver~dver'/float (ml ) 
writt~(1 ,3) dver~ 

I formate' j=' ,i3) 
2 fonna t (6d20. I Oil 
3 tor·mdt(/,'aV(··t-d~e of clll t'~rTor'O:...t ,d.2~).10) 

return 
end 
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e 
e 
c 
c 
c 

subroutine pen;er (ic2 ,m) 
impl iei t l'eal*8(a-h,o-z), integer*2(i-n) 
common Ibll/u,ul ,u2,x 
dimension u(901 ),ul (901 ),u2(901 ),x(901) 
do 1 i=l,m,ic2 
u2Ci)=u2(i)*100/absCulCi» 
return 
end 
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c 
c 
c 
c 
c 

subroutine percer(ic2,m) 
implicit real*8(a-h,o-z), integer*2<i-n) 
common Ibl1/u,u1 ,u2,x 
dimension u(901 ),u1 (901 ),u2(901 ),x(901) 
do 1 i=l,m,ic2 
u2 <i) =u2 (i ) ~1 OO/abs (u1 <1 ) ) 
return 
end 
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c This two-dimensional heat problem is taken from Gourlay and MacGuire 
c and is solved using the A::;E algori thm. 'The size of the coefficient 
c matrix is assumed to be odd. 
c 

Implicit real*Ola-h,o-zl,lnteger*2Ii-nl 
Common Ib11/u,u1,u2,v 
dimension u 1110, 11 0 ) , u 1 1110, 110 I , u2 I 11 0, 11 0 I " I 11 0 , 110 I 
open lunit=5, fLe='ddg,,2d2', form= , form.3tted' I 
do 1000 11'=1,9 
read (5, *) tl ,dt ,SX ,sy.h ,rk ,1", m,n,nt, ic1 , ic2, icount 
nt1=nt-1 
data eps,kmax/0.00000001,LiOI 
rl =dtl Ih**2 I 

c Input data for matrix ef coefficients 
c 
c FULLY IMPLICIT ME1HOD 

if I icount .cq. 1 I then 
writell,3001 
th~ 1 .0 

c CRANK NlCOLSON ME1HOD 
else if (icount .8q. 21 tben 

write(l,3011 
th=0.5 

end if' 
th1 =rl*th 
th2=rl*(1.0·-thl 
th3=thl~th2 

c=1.0+4.0"thl 
a1 =-th1 
d=1.0-4.0<th2 
e1=th2 
r1 =1'+0/4.0 
r2"r1*c/4.0-a1**2 
r3=a1*r 
r4=c/(4.0*rl I 
r5=r/rl 
del =r1 ".2-·al **2 
p1"r1-2.0.c 
p2=-2.0*a1 
p3-2.0"d 
p4=2.0.e1 

c define initial values u(i,jl 
c 

do 1 j=l ,n 
f j =j 
y=fj*h 
do 1 i:: 1 ,m 
ri = i 
x=fl*h 
uli,J 1= (sinlxl'·sinl.yl 1+lxuZ)'rlyuZI 
vI I ,j I=u(i ,j I 
writell,3) 
wl'i tt.' 11 ,9 I 
write(1,lf ) t.l ~ut,3x,h,: y,rk,!"'l ,:'.m~nrnt,,(;ps 
do 2 jt.:::1 ,ilL: 
fjt=jL 
fl,fjt odl, 
f2= If,it-O.5 I.dt 
f3= If jt-l .Ol"lt 
jt2=jt+l 
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do 28 k=1 ,krrax 
i vet=1 

e approximation parallel to x-axis for level (n+0.5) 
c define u(k+0.25)=u1!i,J) 
c 1. equations for 
e VI (K+O .25 )=Cl <·,1> <Dl *U1 (K) ,El "U2 (K) +FhUl (Nl+F2*U2 (N] ) 
e 

ul (1,1 )=(pl*u(I,1 )+p2*(u(2,Il+u(1 ,2) l+p3*v(I,1) 
2+2.0* (dU ( ( (sin (h) )**2 )*e>:p (-f2 )-1;.0) + (2 .0* (h**2) ) *th3) 
2+p4*(v(2,1 ) 
1 +v(1 ,2» )/rl 

do 60 i=2,m-3,2 
f1=i 
x=fi*h 
xl=(fi+l.O)*h 
ul (i,1 )=(rl*(pl*u<1,1 ).p2*(u(I·-1,1 l+uCi,2»+p3*v(i,l) 

1 +2.0* (dU (sin (x )*sln (h )*exp (-f2) -1,.0 l+ (x**2 )*th3) 
1 +p4* 
1 (v <i -1 , 1 ) +v <i ,2 ) +v ( 1 + 1 ,1 ) ) -a 1 *u ( 1 + 1 ,1 ) ) -a 1 • (phu ( 1 + 1 ,1 ) 
2+p2.(u<i+l,2)lu(i+2,l »'p3*v(i+l,l) 
1 +2.0< (dt* (sin (xl )*sin (h "'exp (-f2 )-4.0) + (xl **2 Hth3) 
1+p4*(v(i.l l+v(i+l ,2) 
3 +v <i +2.1 ) ) -a 1 '-u <i .1 ) ) ) Idel 

60 ul <i.l,1 ).(-al*(pl*u(i,1 )+p2*(u(i-l,1 hU(i,2»+p3.v<i,I) 
1+2.0*(dt*(sin(x)*sin(h).exp(-f2)-4.0),(x.*2)*th3)+p4 
h(v<i-l,1 )+v<i,2l+v(i+l,1 »-al*u(i+l,l )ltrl*(pliiu(i+l,l) 
2+p2*(u<i+l,2)+u(i+2,1 »+p3*v(i+l,l) 
1 +2.0* (dt* (sin (xl )*sin (h '*exp (-f2 )-4.0 J+ (xl **2 )*th3) 
1+p4*(v(i,1l+v(i+l,2) 
3+v(h2,1 »-al*u<i,1 »)/del 

xml=float(m-l )*h 
xm=float (m)*h 
ul (m-I. 1 ) = (rl * (pI *u (m-I. 1 l+p2* (u (m2 , 1 ) + u (m-l .2) ) ,p3*v (m-l .1 ) 

1 +2 .O'ddt-. (sin (xml )*sin (td*exp(-f2 )-4.0) + (xml **2 Hth3) 
1+p4*(v(m-2,1 )+v(m-l.2)+v(m.l »-ahu(m.l »-al*(pl*u(m,1 )+p2*u(m.2) 
1 +p3*v (m, 1 l+2 .0. (dt* (si n (xm) *s in (h) .exp( ·(2) -4.0) 
2+ ( (xm**2 J+ (1 . 0+h**2) ) *th3+s in (1 .0 )*sin (h)* (th2*exp (-f3 ) 
3+thl.exp(-fl ») 
2+p4*(v(m-l.1 )+v(m.2»-al*u(m-l,1 »)/del 

ul (m,1 )=(-al*(pl*u(m-l,l )+p2*(u(m-2.1 )+u(m-l ,2» 
l+p3*v(m-l ,1l+2.0*(dt*(sin(xml Hsin(h)*exp(-f2)-4.0) 
2+ (xml **2 )*th3) 
1+p4*(v(m-2.1l+v(m-l.2)+v(m,1 »-al*u(rn.l ))+rl*(phu(rn.l )+p2'u(m,2) 
1 +p3*v(m,1 )+2.0*«jt*(sin(xrn'*sin(h)-.exp(-f2)·Q.0) 
2+( (xrn**2).(1.0+h**2) )*th3+:Jin(I.0)*sin(h)*(th?*exp(-f3) 
3+thl *t'!xp (-fl ) ) ) 
2+p4«v(m-l,l )+v(m.2»-al<u(m-l.l »)/del 

c 2. equations fOl' 
e UJ(K+0.25)=C2<-I>(E",CUJ·-l (KHUJ+l (K»,D2*UJ(K) 
c +F2CUJ-l[N]+VJ+l[N]J+Fl*UJ[r\]J J=2.4 ..... N-l 

do 61 j=2,n-l,2 
fj"j 
y=fj<h 
u 1 (1 ,j ) = Cl'1 Id P 1 *u (1 ,j ) t p2" ( u (i ,j --, ) • u (1 ,j + 1 ) ) +p3 *v (1 ,j ) 

1 +2.0* {dt* (s in (hHs in (y ) *eKp (f2 ).1;.0) Ith3* (YB-2) ) '1"4* 
1 (v (1 , j -1 ) + v ( ! , j ... 1 ) + v (2, j » a 1 *u (2 ,j ) ) . a i I(- (p 1 *lJ (2, j ) -t p2.-: (u (.2 , j -1 ) 
2tu(2,j+lltu(3,jrl+p3<v(2,j) 
2.2.0.dt*(sin(2.0*h)*sin(y)*cxp(-f2) 4.0) 
3+p4*(v(1 ,j)+v(2,j-l )+v(2,j+ll+vC3,j») 
3-ahu (1 ,j) )/del 
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61 ulC2,J)=C-a1*Cpl*uCl,jl+p2*CuCl,j-l).uCl,j+l»+p3wCl,j) 
1+2.0*Cdt*CsinCh)*s!nCy)*ey.pC-f2)-4.0)+th3*CYlOlO2»+p4* 
2(vCl,J-l l+v<1,J+ll+vC2,J) )-ahu(2,J) )+rh(pl*u(2,J )+p2*(u(2,J-l l 
3+u(2,J+ll+u(3,J»+p3*v(2,J) 
4+2.0*dtlO(sinC2.0.h)*sin(y)*exp(-f2)-4.0) 
5+p4*(v(! ,j l+v(2,j-! )+v(2,J+l )j-v!3,j» 
6-al *u (1 ,j» )/del 

do 62 j=2,n-l,2 
fj=j 
y=fj*h 
do 62 ;=3,m-2,2 
fi=! 
x=fi*h 
xl=(fl+1.0).h 
ul Ci ,J ) = (1'1. (phu (I ,j l+p2* (u Ci - I ,j ltu (i ,j - I ) +u (i ,j + 1 » +p3*v (I, j ) 

1+2 .O*dt* (sin (x )*sln (y) .8Xp (-f2) -4.0) 
1+p4*(v(i-l,jl+v(i,j-l )+v(;,j+l )tv(;"I,j»-ahu(itl,j»-al*(pl 
2*uCi.,.1 ,j l+p2"(u(;+! ,j-l )+u(i+!,jtl )+u<it2,J »tp3lOv(;·1 ,j) 
2+2. O*dt* (s;n (xl )*s;n (y) *exp (--f2 )-4.0) tp4 
J. ( v ( i ,j ) tV C it 1 ,j - I ) t V (i > I ,J' I hv ( ; +2 ,j ) ) -a 1 lOu ( i ,j ) ) ) Ide 1 

62 ul <i+l ,j)= (--al*(phu(1 ,J )tp2*(u(l-l,j )tu(i ,j-I )tuCi ,J+l» 
1+2.0*dt*(sin(x)lOsln(y).8xp(-f2)-4.0) 
I .p3*v <i ,J l+p4* (v <i --1 ,J ) +v (i , j -1 ) +V (i ,j t 1 l+v (i > 1 ,j ) )-al 
2*u(i+l,j »H-h(pl*u(i+l ,.I )'p2*(u(itl ,j-l )tu(;+1 ,j+l) 
3tuCi+2,j)l+p3*v(;+I,J) 
1.2.0*dt*(s;n(xl )*s;n(y)*exp(-f2)-4.0) 
2tp4*(v(;,j ),v(;+1 ,j-ll+v(i.,.1 ,j+l) 
4+v(;.2,j»-allOu(;,j»)/del 

do 63 j=2,n-l,2 
fJ=j 
y=fj*h 

63 ul (m,j ) = (pI lOu (m, J ) +p2* (u (m-l ,j ) +u (m,j-l ) +u (m,j+l ) l+p3*v (m,j ) 
1+2.0*(dt*(s;n(float(m)*h).sin(y)*exp(-f2)-4.0) 
1+s;n (1 .0 )*sin (y)* (th2*exp(-f3l+thhexp (-fl ) ) 
2+th3* (1 .0+y**2) ) 
I +p4lO(v(m-l ,J ltv(m,j-l l+v(m,j+l » )/rl 

c 3. for equations 
c UJ(K+0.2S)=Cl <-I >(EhCUJ-l CKl+UJ+l (K) ltD1W(K) 
c tF2.HW-1[N].UJ+1[N]l+Fl ~UJ[Nll J=3,5, ... ,N-2 

do 64 j=3,n-2,2 
fj=j 
y=fj*h 
u I (1 ,j ) = C p 1 .U (1 ,j ) .p2* (u (1 ,j -1 ltu (1 ,j. 1 ) + u (2, j ) ) tp3 *v Cl, j ) 

1+2.0lO(dtlO(sln(h)*sln(yllOexp(-f2)-4.0)t(y*102).thJ)tp4 
1 " (v (1 • J - I ) t V (1 ,j. 1 ) -> V (2 , j ) ) ) I r 1 
u 1 (rn -1 ,j ) = (1-1 " (p 1 *u Un--l ,j I t p2. (1I (ro-2 ,j ) • u (n: - 1 ,j - I ) >u (m-- I ,j t- I ) ) 

1.2.0.dt'(sin(float(m-l )*h)'sinly)*exp(-f2)-4.0) 
ltpJ*v(m-l ,j ).p4*(v(m--2,j »v(m-l ,j--l ).v(m-l,jt' ).v(m,j) )--nl 
?'lOu (m, j ) ) --dl • (pI lOu (m, j ) > p2* (u (m, j--l ),u (m, j t I ) ) ! p3. v (m, j ) 
lt2.0*CdtlO(s;n(float(m).h)*sin(y)*exp(-f2)-4.0) 
2+8;n(1 .O)*s;nly).(th2*exp(-f3).thl*exp(-fl» 
3.th3.Cl.0'y**2»tp4 
3* (v (m, j -1 ) +v (:n, j t 1 ) tV( m- I , j ) ) -a I *u (10- I ,j ) ) ) /dd 

64 ul (m,j)=(-al*(pl*u(m-l,jl+p2'du(m-2,Jl+u(m--1 ,j 1)+u(m-l,j>1») 
1 .2 .O.dt* (sl!dfloa t<Ul-' ) *h) *,-,i f1 (y ) 'exp (-f2 ) --14.0 I 
ltp3*vCm--l ,j),p4*(v(m--2,j)tv(rn--l,j.-1 )tv(m--l ,j.l ).v(m,j»-al 
2*u (rn, j ) ) + rl * (pi *u (rn, j ) +p2* (u (m, j -1 ) ,u (m, j t 1 ) ) I p3*v (In. j ) 
lt2.0*(dt*(sin(floCit(m)*h)*sin(y)'''><p( -f2) 4.0) 
2'5in(1 .O).s;n(y)*(th2*exp(--f3ltthl*exp(-f1» 
J.th3* (J .0'y**2) ltp4 
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3* (v (m,j-l ) +v (m,j +1 l+v (m-I, j ) )-al *u (m--l ,J ) ) )/del 
do 65 J=3,n-2,2 
fJ=J 
y=f J*h 
do 65 1=2,m-3,2 
fi ~I 
x=fi*h 
xl = (fl +1.0 ).h 
ul (l,j)=(rl*(pl*u(i,jl+p2*(u(I--I ,j)+u(I,j-l )+u(I,j+l )!+p3*v(i,j) 

2+2.0*dt-(sln(x).s!n(y)*exp(-f2)-4.0) 
1 • p4* (v (i - I ,j ) + v <i ,j --I ), v ( I ,j + 1 l+v (i, 1 ,j ) ) -a 1 *u ( I + I ,j ) ) --a 1 * (pI 
2*u(I-..I,j)+p2.(u(i.l,j-l ),u(i+l,j.l )+u(I+2,j»);p3.v(i+l ,j) 
2.2.0*dt'(s!n(xl )*sln(y)*exp(-f2)-4.0J 
3+p4.(v(i,j )+v(I+l ,j-l l+v(i.l,j+l )+v(i+2,j) )-al'u<i,J» )/del 

65 ul (I + 1 ,j ) = (-a 1. (pI *u (i ,j ) +p2* (u (I - I ,j ) .u (i ,J - -I ) 'u (I ,j, I ) l+p3 
1 *v (i ,J >+2 .O.dt> (s in (x )*s!n (y )l'exp (-f2) -4.0) 
2'p4*(v(i-l,j).v(i,j-l ).v(i,j.l ).vCi,l,j»-al*u(i+l,j» 
2+rh(pl'u<i.l,j)+p2.(u(l.l,j-l hu(l.l ,j.ll+u<i.2,j»+p3.v<i+I ,j) 
2+2.0*dt*(slnlxl )'sin(y)*expl-f2)-4.0) 
3+p4*(vl!,j)+v(i.I,j-l )+'I<i.l,j+l )+VI!.2,j»)--al*u(I,j»)/del 

c 4. for equations 
c UN (K.O .25 )"Cl (-I > (El *UN-l (KItDl *UN(K) .F2*UN-l [Nl 
c .Fl *UN[Nl ) 

yn=float (n )*h 
_ ul (I ,n)~(pl*u(l,nl+p2*(u(1 ,n-ll+u(2,n) )+p3*v(I,n) 
1 +2.0. (th3* «YI1H2) + «h**2) +1.0» 
2+sin (h) *s i nIl .0)* (th2*exp (--f3 I-tthl "exp (-fl ) ) 
3+dt*(sin(h)*sin(yn)*exp(-f2)-4.0»+p4.lvll ,n-l) 
1 .v(2,n» )11'1 
do 66 i=2,m-3,2 
fl=1 
x=fi*h 
xl= (fi+l.0)*h 
ul (!,n)=lrl*lpl*u<i,n),p2.lu(l-l,n)+u<i,11-1 ».p3*v(!,n) 

1+2.0*(sinlx)*slnll .O)*(th2.exp(-f3).thl*exp(-fl» 
2+(1.0+x**2)*th3 
1 +dt* (s in Ix )*s in IYI1) *exp (-f2 )-4.0) )+1'4 
l*lvli-l,nl+v<i,n-l ).vCi+l,n»-al*u(i .. l ,n) )-al*(phuCi.l,n)+p2 
2*(u(i+l,n-·l )+u(I.2,n»,p3*v(!+I ,n) 
2+2.0>(s!n(xl hsinC1.0)*(th2*exp(-f3)+thl*exp(-fl» 
2+(1.0+xl**2)*th3 
2+dt*(sin(xl )*s!n(yn)*expl-f2)-4.0» 
2+p4*(vCi,n)+v(i+l,n-l ) 
3.vCI.2,n1)--al,uCi,n»)/dd 

66 ul li,I,n)"C-al*Cpl*uCi,rtl.p2*CuCi--I,n).ull,n--! ».p3w(i,n1 
I .2.0*CslnCx)"sinCl.0)-.Cth2+cxpC-f3) .thl+expC-fl») 
2.(1 .O~x'*2)*thJ 
2+dt*(sinCx)*sinCyn)*expC-f2)-4.0»),p4 
I 'CvC i-I ,n )+v( i ,n-l )+'1 Ci.l ,n) )--"I.uC i.l ,n) ).rl '(pl*uC i+l ,n) .p2 
2*(u(i+l ,n--l ),u(1 ,2,n) 1.p3*vCI+l.n) 
2+2.0HslnCxl »sin(1 .0)*(th2*expC-f3)+thl*expC-f1» 
2t(1.0+x1**2)*th3 
1 +JtHsill (xl )*s;n(ynhexpC --[2) - 4.0» 
2ipl,l*{v(i ,n)-t-v{i+1 ,n--1) 
J +v C i "2 ,n ) ) --d 1>u C i ,n ) ) ) IJel 

;<lnl ,flOdt. (111--1 ).h 
xm,float Cm) *h 
u1 (m-! ,n)::-. (r·I-)!o(p1Itou(m-·' ,n)+p2*(U(1l1-'2,1l)HJ(rn-1 ,n-1) ).tfa~v(rn-1 ,n) 

1+2.0'(sin(xml )*sinCl .O).(th2'"xpC-,'J).th1 'exp(-fl» 
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2t(I.0.xml**2)*th3 
2+dt* (s in (xml ) *sin (yn )*exp (-f2) -4.0) ) 
1 tp4* (v (m-2 ,nl+v (m-l ,n-l ) +v (m,n) )-ahu (m,n) )-ah (phu (m,n) tp2 
2*u(m,n-l )tp3*v(m,h) 
2t2 .0* (dU (sin (xm )*sin (yn) *exp(-f2 )-4.0) 
3+(th2.exp(-f3)+thl*exp(-fl) )osin(I.0) 
4*(sin(xm)+sin(yn»)t(2.0+(xm**2)+(yn**2»*th3) 
2+p'-l* (v (m-l ,n l+v (m,n-l ) )-al *u (m-l ,n» )/del 

ul (m,n)=(-al*(pl*u(m-l,n)+p2*(u(m-2,n)+u(m-I,n-l) )+p3*V(m-l,n) 
1 +2 .0* (si n (xml ) *sin (1 .0) * (th2*exp (-f3 l+thl *exp (-fl ) ) 
2.(1.0.xml**2)*th3 
2+dt*(sin(xml )*sin(yn)*exp(-f2)-4.0» 
1 tp4* (v (m-2 ,n l+v (m-I ,n-l ) tV (m,n) ) -al *u (m,n) ) +rl .. (pI *u (m,n l+p2 
2*u(m,n-ll+p3*v(m,n) 
2+2.0*(dt*(sin(xm)*sin(yn)*exp(-f2)-4.0) 
3t(th2*exp(-f3).thl *exp(-fl) )osin(I.0) 
4* (sin (xm) tsin (yn» t (2 .0+ (xrn**2l+ (yn**2) )*th3 ) 
2tp4*(v(m-l ,n)+V(m,n-l) )-al *u(m-l,n» )/del 

c define u(ktO.5)~u2(i,j) 
do 36 j=I,n,2 
do 36 1=I,m-2,2 
u2(i,j)=(1'2*u<i,jl+r3*u(i+l ,jl+r*(rl*ul (l,J)-al*ul Ci+l,j»))/del 

36 u2(i.l,j)o(r3*u(.i,jl+r2*u(i.l,jltr«-al*ul <l,J)+rl*ul (1+1 ,j» )/del 
do 50 j=1 ,n,2 

50 u2(m,J )=1'4*u(m,j )tr5ltul (m,j) 
do 16 J=2,n-l,2 

16 u2(I,j)=1'4*u(I,jl+r5*ul (1 ,j) 
do 17 j=2,n-l,2 
do 17 i=2,m-l,2 
u2(i,j)=(r2*u(i,jl+r3*uCitl,jltr*(rl*ul <i,j)-al*ul (i+l,j»))/del 

17 u2 (i+l ,j)= (1'3*u (i ,J l+r2*" ( i +1 ,J )H'* (·-al.ul (1 ,J l+rl *ul (i.l ,j» )/del 
c approximation parallel to y-axis for' level (n+l) 
c define u(k+0.75)=ul (i,j) by overwrlting 

do 18 i=l,m,2 
18 ul (1,1 )=I'lJ*u(i,1 )+l'5*u2<i,I ) 

do 19 i=2,m-l,2 
19 ul li,n)=I'lJ*u(1,nl+r5*u2<i,n) 

do 20 1=I,m,2 
do 20 j=2,n-l,2 
ul Ii, j )= (r2*u (i ,j ) +r3*u <i ,j +1 hr.HI'hu2 <i ,j )-al *u2 (i ,j+l ) ) )/del 

20 ul Ii,j+l )=(1'3*u(i,Jl+r2*u(i,j.l )+r·,H-al*u2<i,)+l'I.u2(i,jtl »)/del 
do 21 i=2,m-l,2 
do 21 j=l,n-2,2 
ul Cl ,j )= (r2*u <i ,j l+r3*u <i ,j+l )+I'.HI'1 *u2 (i ,j ) -cl 1 *u2 <i ,j+l ) ) )/del 

21 ul (1 ,j.l ) 0 (l'3*u ( i ,j ) +r2*u ( i ,j' I ) +r' ('-d 1 *u2 (l ,j ) +rl *u2 ( i ,j .1 ) ) 1 /-:!d 
c define u (k+1 ):-u2 (i ,j) ~J'y Qvcr'rl'l'i tine 

do 22 1=1 ;m,2 
do 22 j=l,n-2.2 
u2<i,J)= (r2*u<i,j ),r3*u(i ,j.lltl'*(I'I*ul (i.j l-31*ul (i,j.l l) l/del 

22 u2(i ,jt1 )=(1'3*u<i ,j)tr2*ld i,j.1 )+rH'-<31 <ul (1.) )trl >u1 (i.j.l» )id,,: 
do 23 i"1.tn,2 

23 u2<i ,n)=rlJ*u(i ,n)+/'5*ui (i ,n) 
do 2lJ i=2.m-l.2 

24 u2([ ,I )=I''-l*u(i.l "I'S*ul (i, 1) 
do 25 i=2,m·-l,2 
do 2:'; j=2,n-l.2 
u2 (i ,j ) = (r2*u <i ,J ) tr3*u ( i • jt·l ) H"Hrl *u I (i ,j ) - d 1 tu I <i • j • I ) ) ) /del 

25 u2 ( i • j.l ) = (r3 *u ( i ,j ) w2 *to ( i , j • I ) +rH '-d 1 *u I ( i • j ) t rl *u I (i • j .1 ) ) ) Idel 
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dO,26 J=1,n 
do.27 i=1,m 
ifCabsCu2Ci,jl-uCi,jll-epsl27,29,29 

! 29 ivct=Q 
27 continue 
26 continue 

do 32 J=1,n 
do 32 i=1,m 

32 uCi,Jl=u2(i,jl 
if Civet .ne. 1) go to 28 
do 80 J=1,n 
do 80 i=I,m 

80 v(i,jl=u2(i,jl 
ifCjt2 .eq. nt) then 
writeCl ,1 I ljt2,f1 
writeCl,12)k 
do 33 1=1 ,m, ie2 
fi=i 
x=fi*h 
writeC' ,6)i ,x 

33 writeCl,14l (uCi,j),j=1,n,ie1) 
e theoretical solution 

do 34 J=1,n 
f j=j 
y=fj*h 

. do 34 I =1 ,m 
fi:i 
x=fi*h 

34 u1 (i,jl=sin(xl*sin(y)*exp(-fll+(x**2l+(y**2) 
wdte(1,5) 
do 35 i = 1 ,m, i c2 
fi=i 
x=fi*h 
write Cl ,6li ,x 

35 write(1,14) (u1(i,jl,j=I,n,icl) 
wr i te (1 ,96 l 
call abserT(l,l,m,n) 
do 99 i=1,rn,ic2 
fi=i 
x=fi"h 
write(l,6)i ,x 

99 wt'i te Cl, 1 4) (u2 C i ,J ) ,J = 1 ,n, i ell 
call ~verag(l ,l,m,n) 
call per-'cer (1,1 ,m,n l 
wr i Le (1 ,97) 
do 9S i ~ 1 , m, i L~ 2 
fi:i 
x,fi .. h 
wr i te (1 ,6) i • x 

95 wr i te (1 , 1 4) (\.12 ( i • j l • j =, ,n. le 1 ) 
call aV8rag(1,1 ,m,Jl) 

go to 2 
else 
go v) 2 
l~nd if 

28. continue 
wl'i te (1 .37) krflilx, j t2 
go tn 1000 

2 cuntiuue 
1000 conti nue 
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, , 

... 

90 call exit 
c formats 
c 

c 
c 
c 
c 
c 

c 
c 
c 
'C 

c 

3 format(II,'Second order 2 dimensional parabolic equation',l 
1 'with Q source term g(x,y,t)' ,I) 

4 formaU'maximum value in the t-dil'ection=' ,d20.101 
1 'incl'ement dt along the t-axis=' ,d20.101 
2 'maximum value in the x-direction=' ,d20.101 
3 'incl'ement h along the x-axis=' ,d20.101 
4 'maximum value in the y-direction=' ,d20.101 
5 'increment k along the y-axis=' ,d20.101 
6 'lambda=' ,d20.101 
7 'paraJretel' 1'=' ,d20.1 01 
8 'number of points used in the x-direction=' ,i51 
9 'number of points used in the y-direction=' ,iSI 
1 'number of time levels=' ,i51 
2 'ACCURACY: convergence criterion eps=' ,d20.10) 

5 format(/,'U1eoretical soln at selected points is given by' ,I) 
6 format(' i=' ,i31 
'1 'x=' ,d20.10/) 
7 format(6d20.10) 
8 format('using the PEACEMAN RACHFORD variant' ,I) 
9 formatC'using the DOUGLAS RACHFORD vat'iant' ,Il 

11 formatC/,'AGE iterative soln at time level n=' ,i31 
1 'time t~' ,d20.10) 

12 fOI'mat('method converges with k~' ,i4,' iterations',/l 
13 formatCl,'the '3bsolute error at each mesh point is' ,ll 
14 format(6d20.10) 
15 format Cl, 'the percentage error at each mesh point is', /) 
37 formatC'method fails to converge in' ,i4,'iterations',I 

1 'at time level n=', i3) 
96 formatCl,' the absolute "r'rors at selected points are' ,1) 
97 format Cl ,'the percentage errorS at selected points aI'e' ,I) 

300 formatCl,'FULLY IMPLICIT PARABOLIC' ,I) 
301 format C / , 'CRANK-NlCOLSON PARABOLIC' ,I) 

end 

subroutine abserrCic1 ,ic2,m,n) 
impl i ci t real *8('1 -h ,o-z), integel'*2 C i -n) 
common Ib11 /u, u1 ,u2, v 
dimension uCl10,110),u1 C110,110),u2(110,110),vC110,110) 
do1 j;;1,n,ic1 
do 1 i=1,JO,ic2 
u2 C i , j ) =" ba C u 1 Cl ,j ) - u Ci ,j ) ) 
return 
end 

subruutine dverag(ic1 ,ic2,m,nl 
impl icit, ,'eal *8C.'1 -h,o -2). i nt.,:ger":·: (i ',d 
common /b11/u,u1 ,u2,v 
d i rnen,,; i on u C 11 0 , 11 0 ) ,u 1 (1 1 0 , 11 0 ) , u2 (1 10 , 110 ) ,v C 1 1 0 , 11 0 ) 
aver"O. 
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e 
c 
c 
c 
e 

ml = C Cm-I )/ie2l+1 
nl=C Cn-l l/iel 1+1 
do 1001 J=1,n,ie1 
do 1001 i o 1,m,ie2 

1001 avel'=aver+u2Ci ,j I 
aver=aver/floatCml*nl ) 
writeCl,3) aver 

1 formatC' jo' ,i3) 
2 format (6d20.1 0/) 
3 formatCl,'aver·age of all errors=' ,d20.10) 

return 
end 

subroutine pereerCiel,ic2,m,n) 
i mpl ie it. t'eal,j.S (01 -h, o-z l , i ntegel'*2 (i -n) 
common Ibll/u,ul ,u2,v 
dimension u(110,110l,ul Cll0,110l,u2Cl10,110l,vCll0,110l 
do 1 j=I,n,iel 
do 1 i=1 ,m, ie2 
u2Ci,j)=u2Ci,j)*100/absCul (i,jl) 
return 
end 

.. 
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