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The influence of seat backrest angle on perceived discomfort during 

exposure to vertical whole-body vibration 

Abstract 

National and International Standards (e.g. BS 6841 and ISO 2631-1) provide 

methodologies for the measurement and assessment of whole-body vibration in 

terms of comfort and health. The EU Physical Agents (Vibration) Directive 

(PAVD) provides criteria by which vibration magnitudes can be assessed. 

However, these standards only consider upright seated (90°) and recumbent (0°) 

backrest angles, and do not provide guidance for semi-recumbent postures. This 

paper reports an experimental programme that investigated the effects of backrest 

angle on comfort during vertical whole-body vibration. The series of experiments 

showed that a relationship exists between seat backrest angle, whole-body 

vibration frequency and perceived levels of discomfort. The recumbent position 

(0°) was the most uncomfortable and the semi-recumbent positions of 67.5° and 

45° were the least uncomfortable. A new set of frequency weighting curves are 

proposed which use the same topology as the existing BS and ISO standards. 

These curves could be applied to those exposed to whole-body vibration in semi-

recumbent postures to augment the existing standardised methods. 
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Relevance statement 

Current vibration standards provide guidance for assessing exposures for seated, 

standing and recumbent positions, but not for semi-recumbent postures. This 

paper reports new experimental data systematically investigating the effect of 

backrest angle on discomfort experienced. It demonstrates that most discomfort is 

caused in a recumbent posture and that least was caused in a semi-recumbent 

posture. 

 



1. Introduction 

The majority of whole-body vibration exposures occur in transport environments where 

the dominant motion is often in the vertical direction with vibration occurring in a 

frequency range of 0.2 to 20 Hz (e.g. passenger transport, earth-moving and industrial 

machinery, agricultural and forestry machines, military vehicles). The vertical 

biomechanical response of the human body shows a resonance at about 4 to 5 Hz which 

coincides with the frequencies where people are most sensitive in psychophysical tests. 

The exposure of the seated or standing human to whole-body vibration, especially at 

frequencies in the human resonance range can have a variety of detrimental effects on 

perceived comfort and health (BS 6841, 1987; ISO 2631-1, 1997). 

Currently, two standards BS 6841 (1987) and ISO 2631-1 (1997), provide 

methodologies for the measurement and assessment of human response to whole-body 

vibration in terms of health, comfort, vision and manual control. The standards define 

frequency weightings for application to vibration at the seat, floor and backrest in the 

translational and rotational axes. For assessments of health or comfort, the standards 

provide different methods of dealing with complex multi-axis vibration (Mansfield, 

2005), based on calculations of the vibration dose value (VDV) or the root-mean-square 

(r.m.s.) of the frequency weighted acceleration and suggest criteria by which the 

quantities can be evaluated. Although the standards provide specific guidance for 

assessing those in seated, standing and recumbent positions, there is no suggested 

strategy to take into account semi-recumbent postures that are experienced by drivers 

of, for example, military vehicles, patients being transported by ambulance, some long-

reach excavators used in demolition, race-car drivers, and passenger transportation 

where seats recline to facilitate sleep (e.g. long-haul air travel, some trains, some ships). 



The effect of whole-body vibration exposure on comfort and health is dependent 

on a number of factors: the frequency, duration and magnitude of vibration, the position 

at which contact between the body and vibration occurs, vibration waveform and the 

posture and orientation of the body (Mansfield, 2005). Changes in posture result in 

changes in the transmission of vibration from the seat to the head and body (Griffin et 

al., 1979; Paddan and Griffin, 1988). In many environments postures are dictated by 

seating, workspace configuration or specialised tasks, although seating can also be used 

for vibration isolation (Corbridge et al., 1989). 

Short term exposure to whole-body vibration can result in physiological 

changes. Researchers have reported cardiovascular responses (heart rate, respiration 

rate, blood pressure, and oxygen intake) during exposure to moderate vibration 2-20 Hz 

(Guignard, 1985). High magnitudes of vertical vibration (amplitudes of 1.5g), in the 

frequency range of 1-15 Hz for 15 minutes have been shown to result in the subjects 

experiencing symptoms of chest pain (Magid et al., 1960). Long term whole-body 

vibration has been proposed as a causal factor in the development of the lumbar spine 

disorders and back pain in general (Ozkaya et al., 1996; Zerlett, 1986; Bovenzi and 

Zadini, 1992). Studies by Magnusson and Pope (1998) on the epidemiology and 

biomechanics of working postures, reported that no single posture could be maintained 

for a long period of time without considerable discomfort. Lack of body movement 

leads to accumulation of metabolites, which leads to an acceleration of the degeneration 

of the discs and increases the risks of disk herniation. Most importantly the authors 

concluded that an inclined backrest reduces the effects of vibration, as it reduces the 

disc pressure. 

There are no known studies that have made a specific link between health 

effects, vibration and posture. Stayner (2001) highlighted that although it is possible to 



associate back pain with an occupation, it is far more difficult to identify which aspect 

of the occupation is the cause of the pain. It is unlikely, therefore, that epidemiological 

data can provide a basis for establishing relative health risks between any pathogen that 

might be present for those working in reclined postures. Nevertheless, epidemiological 

studies show that those employed in sectors with high magnitudes of vibration tend to 

have higher prevalence of back pain (Bovenzi and Betta, 1994; Bovenzi and Hulshof, 

1998; Mehta and Tewari, 2000; Mansfield and Marshall, 2001) although it is not 

necessarily the vibration that causes the pain. 

There is a large individual variability in subjective assessments of discomfort 

during exposure to whole-body vibration. Studies have shown that the variation in 

subjective assessment may be due to the physical size of the participants, in that large 

males and female participants tend to be less sensitive to low frequencies (less than 6.3 

Hz) and more sensitive to higher frequencies of vertical vibration (Griffin et al., 1982). 

Other sources of individual variation include expectation, experience and context. 

It has been suggested that by reclining the crew in military armoured vehicles, 

the effects of vibration will reduce, and the resulting reduction of the physical profile of 

the vehicle could make the vehicle less detectable to the enemy. The implications of this 

are that crew will be required to perform a number of tasks in a reclined posture and 

stay in that posture for prolonged periods of time. However, as typical tasks undertaken 

by crew require extended periods of sustained vigilance, the human cost of discomfort 

should not be overlooked. Previous studies have shown that discomfort ratings and 

fatigue significantly increase with reclination (towards the recumbent) for long duration 

tasks (80 to 240 minutes), even with no vibration exposure (Thody et al., 1993; 

Edwards et al., 1994; Edmonds, 1994). Causes of discomfort can be attributed to 

secondary biomechanical considerations rather than directly to the posture: lifting the 



head whilst reclined to view a display or working with upper limbs above shoulder level 

were both considered to generate unacceptable postural loads. If these postures are 

combined with vibration exposure, then discomfort might develop more rapidly. 

The EU Physical Agents (Vibration) Directive (PAVD) (European Commission 

2002 Directive 2002/44/EC) is implemented in all Member States in Europe and, for the 

first time, introduced limits on the vibration exposures for workers. Central to the 

Directive is the requirement to assess and minimise risks with vibration exposure. If 

vibration exposure is considered to constitute a risk, or if it exceeds the ‘daily exposure 

action value’ of 0.5 ms-2 A(8) measured according to ISO 2631-1 (1997), then some 

form of action must be taken to minimise those risks. The Directive is clear that a 

holistic approach is required such that, for example, the design and layout of 

workspaces is optimised. As ISO 2631-1 (1997) does not provide guidance for 

assessment of those exposed to whole-body vibration in semi-reclined postures, it is 

possible that the assessment may generate results that do not reflect the true risk for the 

operator exposed to vibration when seated in such a posture. Risk assessments that are 

too conservative may result in an unnecessary reduction in individual exposure times, 

and impact adversely on worker productivity; assessments that underestimate the risk 

may result in an unnecessary increase in risk of whole-body vibration injury. 

This paper reports a research programme that was designed to identify the 

relative sensitivity of the human body to vibration of different frequencies and at 

different backrest angles, with a view to proposing new frequency weightings that could 

be used to augment comfort or risk assessments of those exposed to vibration in reclined 

postures. This study represents the second part of a 2-part experiment looking at the 

effects of vibration on performance (Paddan et al., 2012) and discomfort. 



2. Method 

2.1 Design 

The study comprised two main experimental phases. Phase I investigated the effects of 

sinusoidal, vertical whole-body vibration at frequencies of 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 

Hz and 64 Hz, on perceived comfort at each of 5 backrest angles: 0° (recumbent), 22.5°, 

45°, 67.5° and 90° (upright), see Figure 1. Phase II investigated the effects of changes in 

backrest angle on perceived comfort during exposure to 8 Hz of vertical whole-body 

vibration. Phase II followed Phase I. The overall aim of the study was to establish 

whether seat backrest angle had any effect on perceived comfort, and to use the data to 

generate new frequency weighting curves. The design of the experiment was approved 

by the QinetiQ Ethics Committee under a generic laboratory whole-body vibration 

exposure protocol. 

 

Figure 1 about here 

 

2.2 Participants 

Twenty participants (10 male, 10 female) took part in the experiment and participated in 

both experimental phases. The mean age of the male participants was 30.3 years (stdev 

= 9.7 years, range 21–53 years), mean weight was 78.0 kg (stdev = 10.5 kg, range 61–

93 kg), and mean height was 1.78 m (stdev = 0.07 m, range 1.67–1.85 m). The mean 

age of the female participants was 32.1 years (stdev = 9.0 years, range 22–47 years), 

mean weight was 64.8 kg (stdev = 8.6 kg, range 53–83 kg), and mean height was 1.69 

m (stdev = 0.07 m, range 1.63–1.87 m). 



2.3 Apparatus 

A man-rated vertical vibration simulator with a capacity of displacements up to ±0.9 m 

was used to generate the vibration stimuli. It can be programmed to accept vertical 

vibrations generated by laboratory instruments or derived from recorded vehicle data. 

The vibration simulator has a velocity limit of 1.5 ms-1, an acceleration limit of 30 ms-2, 

and a frequency range of 0 to 50 Hz. 

An adjustable seat was mounted on the platform of the vertical vibration 

simulator (see Figure 2). The main frame for the adjustable seat used for the trial was of 

a rigid wooden construction. The seat measured 2.0 x 0.8 x 1.5 m high with backrest 

fully upright and incorporated an adjustable footrest, a 3-point safety harness, a chest 

strap and a motorised backrest that could be driven remotely to any angle between 0° 

(recumbent) and 90° (upright) (see Figure 2). The seat surface was covered in high 

friction 1 mm thick foam rubber and the participants had the use of a small head cushion 

measuring 0.22 x 0.15 x 0.35 m. The acceleration at the base of the seat was measured 

using an Endevco Q-Flex QA-116-15 servo accelerometer. Additional orthogonal 

acceleration measurements were also taken from the mid-point on the rear of the 

backrest using Endevco 7265-10 piezo-resistive accelerometers. Participant intercom 

and emergency stop controls were also provided. 

 

Figure 2 about here 

 

2.4 Procedure 

The participants attended the laboratory on a total of eight occasions. The first visit 

comprised a calibration and familiarisation session. The nature of the trial was 



explained and informed, written consent obtained. The participants were exposed to all 

of the sinusoidal stimuli to be used in the trial, that had frequencies of 2 Hz, 4 Hz, 8 Hz, 

16 Hz, 32 Hz and 64 Hz, a magnitude of 2 ms-2 r.m.s. and a duration 10 seconds. Each 

stimulus had a 500 ms linear taper at the start and end. Exposure of the participants to 

these stimuli allowed the output of the vertical oscillator to be calibrated to each 

individual. In addition, this allowed the participants to ascertain the range of whole-

body vibration that they would be exposed to. This exposure was repeated at the start of 

each experimental session to help re-familiarise participants with their assessment 

criteria. In addition, on the first visit a short dummy run was undertaken. The 

participants were exposed to two randomly selected pairs of stimuli, presented to the 

participant in the same manner used in the main experiment to familiarise the 

participant with the trial methodology and subjective comfort rating criteria. 

Immediately after the presentation of each pair of whole-body vibration stimuli, 

the participants were asked to give a subjective comfort rating for the comparator 

stimulus relative to the reference stimulus, where the reference stimulus was always 

equal to 100%. If the participants believed the comparator stimulus was more 

uncomfortable than the reference, they gave a rating above 100%. If they believed it 

was more comfortable than the reference, they gave a rating below 100%. Participants 

were allowed to determine their own upper and lower limits. 

Between one and five days following the familiarisation session the participants 

attended the laboratory for the first of five sessions comprising Phase I of the trial. For 

each session the participants were exposed to whole-body vibration stimuli whilst 

seated in one of five backrest angles: 0° (recumbent), 22.5°, 45°, 67.5° and 90° 

(upright). The order of backrest seating angle for each participant was determined by a 



Latin square design. Participants completed the main Phase I trials over five sequential 

days at the same time of day for each individual. 

On arrival at the laboratory, participants sat on the seat at the appropriate 

backrest angle. The footrest and the participant’s feet were positioned so that the leg 

angle at the knee was fixed at 120° for all conditions. The participants were then 

secured to the seat by the 3-point harness, and headphones placed on the head and the 

headrest adjusted. The headphones allowed 2-way communication with the 

experimenter and also conveyed pink noise (65 dB(A) at the ear) to mask the noise of 

the vertical vibration simulator in operation. 

The tests comprised twelve pairs of stimuli that were each repeated three times: 

a reference and a comparator stimulus. Frequency combinations used were 2 Hz 

(reference) & 2 Hz (comparator), 2 & 4 Hz, 2 & 8 Hz, 2 & 16 Hz, 2 & 32 Hz, 2 & 64 

Hz and 16 Hz (reference) & 2 Hz (comparator), 16 & 4 Hz, 16 & 8 Hz, 16 & 16 Hz, 16 

& 32 Hz, and 16 & 64 Hz. There was a 1-second gap between the reference and 

comparator. An auditory tone, to indicate the start of each pair was sounded 

immediately prior to the onset of the reference stimulus. There was a 20-second gap 

between each pair of stimuli, during which time the participant was asked to provide 

their comfort rating. There was a 2-minute rest period between each of the three sets of 

twelve stimulus pairs. The randomisations of the pairs and timing of the onset of stimuli 

were controlled by custom-written control software. 

It took approximately 40 minutes to complete each experimental session for 

each participant for Phase I. The total VDV for all the stimulus pairs used in this part of 

the trial was 10.6 ms-1.75. 

Following the completion of Phase I, the participants attended the laboratory for 

Phase II of the study. During this Phase, the participants attended the laboratory for two 



sessions. The first session comprised calibration and familiarisation, during which the 

participants were exposed to the 8 Hz stimulus and a dummy run of one of the trials. For 

the experimental session of Phase II, the participants were exposed to a stimulus 

comprising a frequency of 8 Hz at a vibration magnitude of 2 ms-2 r.m.s for three 

repeats of four pairs of reference-comparator seat positions: 45° & 0°, 45° & 22.5°, 45° 

& 67.5°, and 45° & 90°. A similar test protocol was used for Phase I and Phase II. 

It took approximately 40 minutes to complete each experimental session for 

each participant for Phase II. The total VDV for all the stimulus pairs used in this part of 

the trial was 11.3 ms-1.75. 

3. Results 

As described above, participants were asked to express their perceived level of 

discomfort for a given test stimulus with respect to the reference stimulus, using a 

comparative scale where 100% represented the two stimuli being equal. As no upper 

bounds or resolution were set, participants were free to map their subjective impression 

of the whole-body vibration to the objective scale in any way that they felt appropriate. 

For example, one participant used the range from 80% to 140% and another subject 

used the range from 50% to 500%. The results from Phase I are summarised in Figure 3: 

the graphs show the median of six repeats for each participant (three repeats with a 2 Hz 

reference and three repeats with a 16 Hz reference). Each graph represents one 

participant’s response to each of the five backrest angles, and the differing ranges used 

by the participants can be clearly seen. 

 

Figure 3 about here 

 



To directly compare the results from all participants could produce misleading 

results due to differences between their subjective mapping, and therefore all of the 

results were normalised using Equation (1) (Mansfield et al., 2000). The normalised 

results for each participant have zero mean and unity standard deviation, enabling a 

direct comparison to be made of the relative ratings. Higher values indicate greater 

ratings of discomfort. 

 

 
P

PR
N

xRR σ
−=  (1) 

 

Where  RN = Normalised Score 

  RR = Raw Score 

P
x  = Mean of participant’s raw scores 

σP = Standard deviation of participant’s raw scores 

The results from Phase I are shown in Figure 4, with the normalised response 

against test stimulus frequency (the second of the pair of frequencies presented to each 

participant). In this figure, the results for both of the reference frequencies (2 Hz and 16 

Hz) have been combined for each of the test stimulus frequencies. Participants were 

most sensitive to whole-body vibration in the 4 to 16 Hz frequency range. For the 0°, 

22.5°, 45° and 67.5° backrest angles, the greatest ratings occurred at 8 Hz; for the 90° 

backrest angle, the greatest ratings occurred at 4 Hz. 

 

Figure 4 about here 

 



The normalised results from Phase II are shown in Figure 5. During Phase II, the 

stimulus frequency was kept constant at 8 Hz and the backrest angle varied. A backrest 

angle of 45° was chosen as the reference position and therefore has a value of zero in 

Figure 5. At 8 Hz (the frequency where participants were most sensitive to vibration), 

the recumbent position of 0° was considered to be the most uncomfortable and the 

backrest angle of 67.5° was the least uncomfortable. Generally the effect of backrest 

angle on perceived comfort at 8 Hz was significant (p<0.05, paired-samples t-test; Table 

1). The only exceptions occurred for comparison of results obtained at 22.5° and 90° 

and results obtained at 45° and 90°. For each of the practical backrest angle transitions 

(0º↔22.5º, 22.5º↔45º, 45º↔67.5º and 67.5º↔90º) significant differences were 

observed. 

 

Figure 5 about here 

 

Table 1 about here 

 

If Figure 4 was to be plotted on a 3-dimensional graph (x-axis = frequency, y-

axis = backrest angle, z-axis = normalised perceived discomfort), then Figure 5 would 

be a perpendicular slice through the frequency axis at 8 Hz. The result of normalising 

the values of the results of Phase I at 8 Hz (Figure 4) according to the results from Phase 

II (Figure 5) is shown in Figure 6, which describes the relationship between backrest 

angle and perceived comfort. These combined results show that the extreme postures 

(0° and 90°) were the most uncomfortable. 

 

Figure 6 about here 



 

4. Weighting Filters 

4.1 Weighting filters defined by ISO 2631-1 and BS 6841 

Both ISO 2631-1 (1997) and BS 6841 (1987) describe methods of calculating vibration 

exposure from acceleration data. The two standards differ in the calculations used 

(Griffin, 1998; Rimell and Mansfield, 2007), but both have similar methods of 

weighting the data prior to calculation. This paper only considers vertical vibration, and 

therefore horizontal or rotational vibration, and the application of the standards to 

upright standing operators will not be considered. 

The standards provide frequency weighting curves dependent on the posture of 

the operator, the direction of the vibration, and whether the measurement is required for 

an indication of health risk, comfort, perception threshold or motion sickness. For 

operators using a recumbent or upright sitting posture and for vertical motion, ISO 

2631-1 (1997) recommends the use of its Wk curve and BS 6481 (1987) recommends 

the use of its Wb curve. These two curves are shown in Figure 7, and it can be seen that 

there are slight differences in the magnitude response, although they have similar 

general shapes (Mansfield, 2005). 

 

Figure 7 about here 

 

The frequency weighting curves are defined by a set of s-domain (Laplace 

operator) equations and by tabulated third-octave values. ISO 2631-1 weighting curves 

are defined by the following equations: 
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where: ωn = 2 π fn and fn = corner frequency 

The total weighting function is defined as: 
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where G is a scalar gain value. 

 

The coefficient values for Wk are given in Table 2. By replacing s with jω, and 

then separating the real and imaginary parts, the complex frequency response can be 

obtained. The magnitude and phase response can be obtained by use of a rectangular-to-

polar conversion. 

 

Table 2 about here 



 

The BS 6841 weighting curves for Wb are defined by the following equations: 
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where: ωn = 2 π fn and fn = corner frequency 

The total weighting function is defined as: 
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It can be shown that Equation 6 is algebraically equivalent to Equation 9 when 

the substitutions shown in Table 3 are used and when Q1 = Q2. Therefore, the 

weighting filters described in Table 2 can also be implemented using the s-domain 

equations of BS 6841 (Equation 7 to Equation 9). 

 

Table 3 about here 

 

Rimell and Mansfield (2007) have proposed a general method for implementing 

vibration weighting filters as infinite impulse response (IIR) filters for inclusion in 

analysis software, the methods presented are applicable to the filters described here. 



Alternatively, the filters can be converted to linear-phase finite impulse response (FIR) 

digital filters as described by Notini and Mansfield (2004). 

4.2 Weighting filter design for a wide range of postures 

Using the s-domain equations for Wk (Equation 2 to Equation 6), the parameters were 

selected such that the calculated transfer function was an optimum fit with the measured 

data. A minimum least-squares metric was used to fit the data. Figure 8 shows an 

example where the measured data points and the transfer function are shown for the 90º 

posture. As the experimental data only covered the frequency range from 2 Hz to 64 Hz, 

the response outside of this range is unknown and therefore the new filters include low- 

and high-pass filtering to limit the influence of the out-of-band frequencies (a similar 

band-limiting function is also included in the current standards). The complete set of 

weighting filters is shown in Figure 9 and their coefficients are presented in Table 2. 

These filters may be implemented by inserting the coefficients into Equations 2 to 6 or 

into an existing digital implementation. 

 

Figure 8 about here 

 

Figure 9 about here 

 

The experiment, and hence the resulting weighting filters, are defined only at 

discrete backrest angles; however, through the use of an interpolation strategy, it is 

possible to calculate a weighting filter for any angle between 0º (recumbent) and 90º 

(upright). The interpolation enables any weighting filter coefficients to be calculated for 

any backrest angle and is based on a 4th order polynomial fit of the form: 
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where a is the coefficient and x is the backrest angle. The coefficients shown in 

Table 4 were calculated using a Singular Value Decomposition (SVD) polynomial-

fitting algorithm, and the correlation coefficient, r, is equal to unity for every one of 

interpolated filter coefficients. Because r = 1, the interpolated frequency responses are 

an exact match to those found experimentally for the backrest angles of 0º, 22.5º, 45º, 

67.5º and 90º. For example, consider the equation for f5 as a function of backrest angle, 

x: 
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It is advisable to exercise caution when interpolating between 90º and 67.5º, as 

the response between these angles is uncertain. Figure 10 shows the interpolated filter 

for a backrest angle of 10º, and also the two nearest filters based on the experimental 

results for 0º and 22.5º. 

 

Table 4 about here 

 

Figure 10 about here 

 

5. Discussion 

The aim of this study was to investigate whether seat backrest angle influenced 

perceived comfort during vertical whole-body vibration. This study has showed that, in 



general, the level of perceived discomfort increases with decreasing backrest angle (i.e. 

more reclined). At 8 Hz (the frequency of most sensitivity in this study) it was 

monotonic from 67.5° to 0°. Also noteworthy is that the participants are most sensitive 

to whole-body vibration over the frequency range of 4 Hz to 8 Hz, which corresponds to 

the region of the resonance frequency of the human body (Mansfield et al., 2000; 

Paddan and Griffin, 1988). 

Previous research into biomechanics of humans on stationary chairs (Magnusson 

et al., 1994; Magnusson and Pope, 1998; Goel et al., 1999; Kayis and Hoang, 1999; 

Wilke et al., 1999; Lengsfeld et al., 2000) has shown that chairs with armrests, a tilting 

seat-pan and a lumbar support reduce intradiscal pressure in the spine, and also that 

intradiscal pressure decreases as the backrest angle decreases (becomes more 

recumbent). A decrease in spinal intradiscal pressure results in a reduction in the 

perceived discomfort of the user. The research, which only considered a limited range 

of postures with backrest angles from -10° (anterior lean) to 50° (posterior lean) and 

recumbent, also recommended a backrest angle of 70°. The findings from the 

experiment described in this paper suggest that such earlier research may also be 

applicable to chairs mounted to vibrating surfaces for backrest angles of between 90° 

and 45°. 

The upright 90° posture is considered to be the most uncomfortable at all 

frequencies except 8 Hz, which is to be expected as, for postural support, a reclined 

sitting position is desirable for maximum comfort, allowing the muscles to relax. It is 

also possible that, in the 90° position, the back was not pressed hard against the 

backrest, effectively resulting in an unsupported back, which, according to Nachemson 

(1985), applies about twice the intradiscal pressure to the spine compared with the 

relaxed sitting position. The recommended backrest angle for an office chair is 70° to 



75°, with a seat-pan tilt of 5° to 10° (Pheasant, 1990). The 67.5° and 45° postures 

produced less discomfort than the 90° posture whilst exposed to vibration at all 

frequencies investigated in this study. In this experiment, participants’ hands were by 

their sides. If, however, the participants were engaged in a task where their arms were 

above shoulder height, it is expected that they would find the recumbent positions 

increasingly uncomfortable after a short period of time (Magnusson and Pope, 1998). 

Figures 11 and 12 compare the results from this study with the results published 

by Maeda et al., (2001). The posture used in the experiment described in this paper for 

the recumbent (0°) position is slightly different (the legs were bent to represent a 

possible driving position) to that used in the experiment reported by Maeda. The 

disparity in the curves at higher frequencies (see Figure 11) may be due to the use of 

different head supports (this experiment used a padded head-rest whereas Maeda used 

no head support). ISO 2631-1 suggests the use of Wj frequency weighting for supine 

vibration exposures without padded head support; this shows greater sensitivity to high 

frequency vibration, similar to the results reported by Maeda. The posture for the 

upright position (90°) in this experiment corresponded to that used by Maeda and the 

measured response below 16 Hz is very similar to the results published by Maeda (see 

Figure 12). 

 

Figure 11 about here 

 

Figure 12 about here 

 

If it is required to control risk from whole-body vibration, then the new set of 

frequency weighting filters presented here could be used to augment assessments 



according to ISO 2631-1. The standard format enables users to apply the filters using 

their existing filter topologies (either analogue or digital) simply by inserting the new 

coefficient values. In most cases this would result in backrest angles of 67.5° being 

shown to be preferable, and fully reclined to be worst. Other ergonomic considerations, 

such as static postural loading and fatigue, should also be considered. 
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Figures 

Figure 1. The five postures used in the experiments illustrating the changes in backrest 
angle (‘0° supine’, ‘90° upright’). 

Figure 2. Apparatus used in the experiment, showing the 67.5° backrest angle condition. 

Figure 3. Raw (non-normalised) results from Phase I for each of the twenty participants 
(one graph for each participant). Each line shows the mean of six repeats at each 
backrest angle (three repeats with a 2 Hz reference and three with a 16 Hz reference). 

Figure 4. Effects of vibration frequency on mean normalised discomfort ratings for 20 
participants in five postures. Greater ratings correspond to more discomfort (0° = 
recumbent, 90° = upright). 

Figure 5. Effects of backrest angle on mean normalised discomfort ratings for 20 
participants tested at 8 Hz. Greater ratings correspond to more discomfort. (0° = 
recumbent, 90° = upright). Error bars show ± 1 Standard Deviation. 

Figure 6. Combined effects of backrest angle and frequency of vibration on mean 
normalised discomfort ratings for 20 participants. Greater ratings correspond to more 
discomfort. (0° = recumbent, 90° = upright). 

Figure 7. Published frequency weighting curves: Wk from ISO 2631-1, Wb from BS 
6841. 

Figure 8. Filter approximation to measured data for 90º backrest angle. The dots 
represent the experimental data and the solid line represents the new weighting filter 
transfer function. 

Figure 9. New weighting curves for different backrest angles and the existing ISO 2631-
1 Wk curve. 

Figure 10. Interpolated frequency weighting response for a 10º backrest angle. The 
responses at 0º and 22.5º are also shown for comparison. 

Figure 11. Comparison of subject responses from this study with published data for the 
0° posture (recumbent). Data from Maeda et al.’s study have been scaled for clarity. 

Figure 12. Comparison of subject responses from this study with published data for the 
90° posture (upright). Data from Maeda et al.’s study have been scaled for clarity. 
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Table 1. Results from a paired-Samples t-test for Phase II to examine the significance of 
an effect of backrest angle at a frequency of 8 Hz. Values below 0.05 are considered to 
be significant. 

Table 2. Coefficients for the new frequency weighting curves and for ISO 2631-1 Wk. 

Table 3. Equivalence between the BS and ISO s-domain weighting curve definitions. 

Table 4. Interpolation coefficients. 
 



 

 

Figure 1. The five postures used in the experiments illustrating the changes in backrest 
angle (‘0° supine’, ‘90° upright’). 

 



 

 

Figure 2. Apparatus used in the experiment, showing the 67.5° backrest angle condition. 

 



 

 

Figure 3. Raw (non-normalised) results from Phase I for each of the twenty participants 
(one graph for each participant). Each line shows the mean of six repeats at each 
backrest angle (three repeats with a 2 Hz reference and three with a 16 Hz reference). 
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Figure 4. Effects of vibration frequency on mean normalised discomfort ratings for 20 
participants in five postures. Greater ratings correspond to more discomfort (0° = 
recumbent, 90° = upright). 
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Figure 5. Effects of backrest angle on mean normalised discomfort ratings for 20 
participants tested at 8 Hz. Greater ratings correspond to more discomfort. (0° = 
recumbent, 90° = upright). Error bars show ± 1 Standard Deviation. 
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Figure 6. Combined effects of backrest angle and frequency of vibration on mean 
normalised discomfort ratings for 20 participants. Greater ratings correspond to more 
discomfort. (0° = recumbent, 90° = upright). 

 



 

-30

-25

-20

-15

-10

-5

0

5

0.1 1 10 100
Frequency (Hz)

G
ai

n 
(d

B
)

Wb (dB)
Wk (dB)

 

Figure 7. Published frequency weighting curves: Wk from ISO 2631-1, Wb from BS 
6841. 
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Figure 8. Filter approximation to measured data for 90º backrest angle. The dots 
represent the experimental data and the solid line represents the new weighting filter 
transfer function. 
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Figure 9. New weighting curves for different backrest angles and the existing ISO 2631-
1 Wk curve. 
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Figure 10. Interpolated frequency weighting response for a 10º backrest angle. The 
responses at 0º and 22.5º are also shown for comparison. 
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Figure 11. Comparison of subject responses from this study with published data for the 
0° posture (recumbent). Data from Maeda et al.’s study have been scaled for clarity. 
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Figure 12. Comparison of subject responses from this study with published data for the 
90° posture (upright). Data from Maeda et al.’s study have been scaled for clarity. 

 



 

Table 1. Results from a paired-Samples t-test for Phase II to examine the significance of 
an effect of backrest angle at a frequency of 8 Hz. Values below 0.05 are considered to 
be significant. 

  Angle 
  0° 22.5° 45° 67.5° 90° 

A
ng

le
 

 0° - 0.000 0.000 0.000 0.000 
 22.5° - - 0.001 0.000 0.127 
 45° - - - 0.003 0.502 
 67.5° - - - - 0.004 
 90° - - - - - 

 



 

Table 2. Coefficients for the new frequency weighting curves and for ISO 2631-1 Wk. 

 Backrest angle  
 0° 22.5° 45° 67.5° 90° ISO 2631-1 Wk 

f1 (Hz) 6.2 5.81 5.81 5.81 4.73 0.4 
Q1 1.53 1.65 1.7 1.75 0.91 1/√2 

f2 (Hz) 200 200 200 200 100 100 
Q2 1.53 1.65 1.7 1.75 0.91 1/√2 

f3 (Hz) 14.47 12 12 12 14.47 12.5 
f4 (Hz) 8.02 8 6.98 5.96 8.16 12.5 

Q4 0.1 0.1 0.1 0.1 0.1 0.63 
f5 (Hz) 3.13 9 9.01 9.01 3.13 2.375 

Q5 0.24 0.24 0.24 0.24 0.24 0.91 
f6 (Hz) 5.37 10.9 9.5 8.85 6.71 3.35 

Q6 0.34 0.34 0.34 0.34 0.34 0.91 
G 7.34 4.23 3.55 3.55 9.13 1 

 



 

Table 3. Equivalence between the BS and ISO s-domain weighting curve definitions. 

BS parameter equivalent to ISO parameter 
(Eq. 7 to Eq. 9)  (Eq. 2 to Eq. 6) 

w1 ↔ w1 
w2 ↔ w2 
w3 ↔ w3 
w4 ↔ w4 
w5 ↔ w5 
w6 ↔ w6 
Q1 ↔ Q1 
Q2 ↔ Q4 
Q3 ↔ Q5 
Q4 ↔ Q6 

K ↔ 2
6

2
5

ω
ωG

 

 



 

Table 4. Interpolation coefficients. 

 f1 f2 f3 f4 f5 
a0 6.20E+00 2.00E+02 1.45E+01 9.67E+00 3.13E+00 
a1 -2.41E-02 1.11E+00 -2.56E-01 -1.41E-01 6.08E-01 
a2 1.46E-04 -9.05E-02 9.35E-03 4.79E-03 -2.22E-02 
a3 9.44E-06 2.19E-03 -1.45E-04 -9.44E-05 3.43E-04 
a4 -1.12E-07 -1.63E-05 8.03E-07 6.29E-07 -1.91E-06 
 f6 G Q1 Q2 Q4, Q5, Q6 

a0 5.37E+00 7.34E+00 1.53E+00 1.53E+00 No 
a1 6.24E-01 -2.92E-01 1.86E-02 1.86E-02 interpolation 
a2 -2.34E-02 1.02E-02 -1.01E-03 -1.01E-03 required 
a3 3.30E-04 -1.72E-04 2.21E-05 2.21E-05  
a4 -1.61E-06 1.08E-06 -1.56E-07 -1.56E-07  
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