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Abstract 
 
Liposomes with a mean size of 59−308 nm suitable for pulmonary drug delivery were 
prepared by the ethanol injection method using nickel microengineered flat disc 
membranes with a uniform pore size of 5−40 μm and a pore spacing of 80 or 200 
μm. An ethanolic phase containing 20−50 mg/ml phospholipid (1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) or Lipoid® E80), 5−12.5 mg/ml stabilizer 
(cholesterol, stearic acid or cocoa butter), and 0 or 5 mg/ml vitamin E was injected 
through the membrane into an agitated aqueous phase at a controlled flux of 
142−355 l/m2/h and a shear stress on the membrane surface of 0.80−16 Pa. The 
mean particle size obtained under optimal conditions was 84 and 59 nm for Lipoid 
E80 and POPC liposomes, respectively. The particle size of prepared liposomes 
increased with increasing the pore size of the membrane and decreased with 
increasing the pore spacing. Lipoid E80 liposomes stabilized by cholesterol or stearic 
acid maintained their initial size within 3 months. A high entrapment efficiency of 
99.87% was achieved when Lipoid E80 liposomes were loaded with vitamin E. 
Transmission electron microscopy images revealed spherical multi-lamellar structure 
of vesicles. A reproducibility of the developed fabrication method was high.  
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– Investigation of Process Parameters and Application to the Encapsulation of 

Vitamin E 

 

1. Introduction 
  
Over the last decades, advances in pharmaceutical science and technology have 
facilitated the availability of an extensive range of novel drug carriers including 
nanoparticles, nanocapsules, nanospheres and liposomes. Liposomes are known as 
self-assembled vesicles witmh a phospholipid bilayer structure, which contains an 
aqueous cavity [1]. Because of their structure, liposomes can entrap hydrophilic 
agents in their internal aqueous compartment and lipophilic ones within the lipid 
membrane [2]. Owing to their biocompatibility, biodegradability and low toxicity, 
liposomes have attracted much attention in a wide variety of fields including contrast 
agents, cosmetics, and drug delivery systems [3]. 
Rational liposome design can be done by selecting an appropriate formulation and 
production method. For pharmaceutical and clinical use, several criteria must be 
fulfilled in terms of size and size distribution which are of critical importance for in 
vivo applications of a liposomal formulation. In particular, the size of liposomes 
affects drug loading, biodistribution, targeting, acoustic response, therapeutic efficacy 
and rate of clearance from the body. In addition, the method used for liposome 
preparation must be reproducible and process conditions must allow production at 
reasonable costs and economic scale-up [4]. 
Since the pioneering discovery of Bangham several decades ago [1], the 
development of liposomes preparation methods has been astonishing. Indeed, 
numerous preparation techniques have been reported in the literature. Thin film 
hydration, reversed-phase evaporation, detergent dialysis and solvent injection are 
the most commonly applied methods for liposome formulation. More details can be 
found in a recent review on liposomes [5]. 
The conventional ethanol injection technique first described by Batzari and Korn [6] 
offers many advantages, such as simplicity, the absence of potentially harmful 
chemicals and complicated physical treatments, the possibility of production of small-
sized liposomes with minimum technical requirements and the possibility of scale up. 
Several novel approaches based on the ethanol injection technique are reported 
such as the microfluidic channel method [7] and the cross flow injection technique [8] 
whereby substantial progress was achieved, leading from conventional batch 
process to potential large scale continuous procedure.  
Microporous membranes are increasingly used for the preparation of emulsions and 
micro/nano particles, such as lipid nanoparticles [9], nanocapsules [10], gel 
microbeads [11], microcapsules [12] and liposomes [13]. Recently, a new 
microengineered nickel membrane has become available, consisting of an array of 
regulary spaced, rectilinear pores. Microengineered membranes are analogous to an 



array of parallel microfluidic channels through which one fluid phase can be 
introduced into another fluid at an overall much higher flow rate than is possible in 
microfluidic devices.  
The membrane contactor method of liposome preparation used in this study was 
based for the first time on microengineered membranes. These membranes, which 
have a perfect hexagonal array of uniform pores, allow a much more uniform and 
controllable injection of lipid-containing organic phase into an aquous phase. 
Therefore, the use of microengineered membranes enables a better control over 
diffusive mixing at the liquid/membrane interface where the lipids self-assemble into 
vesicles. This may provide fine control of liposome size distribution and make easier 
the extrapolation of the results for an industrial large scale production.  
This new method of liposome preparation was applied to the encapsulation of α-
tocopherol (one isomer of vitamin E), which prevents oxidative damage and lipid 
peroxidation in central and peripheral nervous systems [14]. Because of its promising 
therapeutic potential and safety, α-tocopherol has been tested to prevent cigarette 
smoke toxicity as several pulmonary disorders are mainly caused by oxidative stress 
phenomena [15]. However, oral or intravenous administration failed to restore the 
bronchoalveolar level of vitamin E [16]. Recently, attention has been drawn to 
pulmonary delivery of nanoencapsulated drugs, showing high intracellular uptake and 
improved stability and solubility of active substances; in particular liposome 
formulations have been used for the solubilization of poorly water-soluble drugs. 
Vitamin E-loaded liposomes with appropriate size distribution and high loading 
capacity could be an effective drug carrier to target the lungs after its pulmonary 
administration via aerosol. 
The aims of the present study were: (a) to develop and optimize a novel liposome 
preparation method using microengineered membranes: the experiments have been 
done to investigate the effects of process parameters (aqueous to organic phase 
volume ratio, organic phase flow rate, agitation speed), phospholipid type and 
concentration, stabilizer type, and membrane microstructure on the characteristics of 
the vesicles; (b) to apply the optimized process to the encapsulation of vitamin E; (c) 
to study the process reproducibility and the stability of liposomal suspensions.   
 

2. Materials and methods 
2.1 Materials 

 
Reagents. Phospholipids used were POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine) and Lipoid® E80, purchased from Lipoïd GmbH (Ludwigshafen, 
Germany). Lipoid® E80 is obtained from egg yolk lecithin and containing 82% of 
phosphatidyl-choline and 9% of phosphatidyl-ethanolamine. Vitamin E, cholesterol 
and phosphotungstic acid were supplied by Sigma-Aldrich Chemicals (Saint Quentin 
Fallavier, France). All reagents were acquired with their analysis certificate. Ethanol 
95% was supplied by Fisher Scientific (United Kingdom) and was of analytical grade 
and used without further purification. Ultra-pure water was obtained from a Millipore 
Synergy® system (Ultrapure Water System, Millipore). 



 
Microengineered membranes and stirred cell. The liposomes suspension was 
prepared using a stirred cell with a flat disc membrane fitted under the paddle blade 
stirrer, as shown in Figure 1 (a).  

Figure 1 
Both stirred cell and membranes were supplied by Micropore Technologies Ltd. 
(Hatton, Derbyshire, United Kingdom). The agitator was driven by a 24 V DC motor 
(INSTEK model PR 3060) and the paddle rotation speed could be controlled in the 
range from 200 to 1300 rpm by the applied voltage. The membranes used were 
nickel microengineered membranes containing uniform cylindrical pores with a 
diameter of 5, 10, 20 or 40 µm, arranged at a uniform spacing of 80 or 200 µm. The 
membranes were fabricated by the UV-LIGA process, which involves galvanic 
deposition of nickel onto the template formed by photolithography [17]. A perfect 
hexagonal array of pores with a pore at the centre of each hexagonal cell can be 
seen in the supplementary material (Figure S1).  
The porosity of a membrane with the hexagonal pore array is given by:  

2)/)(3/(2 Ld pπε =               (1) 

where dp is the pore diameter and L is the interpore distance. The porosities of the 
membranes used in this study, calculated from Equation (1) and expresses as 
percentages, are given in the supplementary material (Table S1).  
 

2.2  Protocol for preparation of liposomes  
 
A schematic diagram of the experimental set-up is shown in Figure 1 (b). The 
required amounts of phospholipid (20 or 50 mg/ml Lipoid E80 or POPC) and 
stabilizer (cholesterol, stearic acid or cocoa butter, 25% w/w based on phospholipid 
dry matter) were dissolved in ethanol. The organic phase was injected through the 
membrane using a peristaltic pump (Watson Marlow 101U, Cornwall, UK) at a 
constant flow rate of 2-5 ml/min corresponding to the dispersed phase flux of 142-
355 l/m2/h. The stirring speed ranged from 200 to 1300 rpm, which generated a shear 
stress on the membrane surface between 0.80 to 15.5 Pa. The cell was filled with 20-
60 ml of ultrapure water and the experiment was run until a predetermined organic to 
aqueous phase ratio was achieved. Spontaneous formation of liposomes started as 
soon as the organic phase was brought in contact with the aqueous phase. The 
liposomal suspension was kept under stirring for 15 min and finally the suspension 
was collected and the ethanol was removed by evaporation under reduced pressure 
(Buchi, Flawil, Switzerland).    
After each experiment, the membrane was sonicated in ethanol for 1 hour, followed 
by soaking in a siloxane-based wetting agent for 30 min (in order to increase the 
hydrophilicity of the membrane surface). Drug-loaded liposomes were prepared as 
described above, with the only difference being that 5 mg/ml vitamin E was dissolved 
in the ethanolic phase containing a mixture of phospholipid and stabilizer.   
 



2.3 Characterization of liposomes  
 
In order to assess the quality of liposomes and to allow comparison between different 
batches, various analyses have been performed: particle size distribution, zeta 
potential, encapsulation efficiency, and microscopic observation. 
 
Size analysis. In this study, two different techniques for particle size characterization 
were used: dynamic light scattering (DLS) otherwise known as photon correlation 
spectroscopy (PCS) and differential centrifugal sedimentation (DCS). A Malvern 
Zetasizer Nano-series (Zetamaster 3000 HSA, Malvern, UK) was used for DLS 
measurements. Each sample was diluted 100-fold with ultra-pure water before 
measurement and was then analyzed in triplicate at 25°C. The average particle size 
was expressed as the Z-average and polydispersity was expressed as the 
polydispersity index, PDI. A CPS disc centrifuge, model DC 24000 (CPS instruments, 
Florida, USA), was used for DCS measurements. A light beam near the outside edge 
of the rotating disc passes through the centrifuge at some distance below the surface 
of the fluid and measures the concentration of particles as they settle. The time 
required for particles to reach the detecting beam depends upon the speed and 
geometry of the centrifuge, the difference in density between the particles and the 
fluid, and the diameter of the particles. Thus, when operating conditions are stable, 
sedimentation velocity increases with the particle diameter, so that the time needed 
to reach the detector beam is used to calculate the size of the particles [18,19]. In 
this study, a sucrose gradient (from 18% to 26%) was built and the sample was 
diluted in a sucrose solution (30%) before being injected. Prior to the analysis, the 
instrument was calibrated using an aqueous dispersion of polybutadiene particles of 
a known size distribution (mean size of the calibration standard = 402 nm). The mean 
particle size was expressed as the number-average mean diameter, dav and the 
polydispersity was expressed as the coefficient of variation, CV = (σ/dav) × 100, 
where σ is the standard deviation of particle diameters in a suspension. A smaller CV 
or PDI value indicates the narrower size distribution [20, 21]. All values of the mean 
particle size and PDI or CV are expressed as the mean ± standard deviation (S.D.). 
 
Zeta potential determination. The zeta potential was measured using a Malvern 
Zetasizer Nano-series (Zetamaster 3000 HSA, Malvern, UK) and used to predict the 
colloidal stability of the liposome syspension. The measurements were repeated at 
least three times after sample dilution in water. The zeta potential was calculated 
from the electrophoretic mobility using the Helmholtz-Smoluchowski equation [22]. 
 
Encapsulation efficiency. Liposome preparations are a mixture of encapsulated 
and non-encapsulated drug fractions. Methods to determine the fraction of 
encapsulated material within liposomes typically rely on destruction of the lipid bilayer 
and subsequent quantification of the released material. In the present study, the drug 
encapsulation efficiency was determined using the protamine aggregation method, 
as described by Wang et al. [23] and Sun et al. [24]. Briefly, the total amount of 



vitamin E (TA) was determined after disrupting and dissolving vitamin E-loaded 
liposomes in ethanol using an ultrasound bath for 10 min. The amount of 
encapsulated vitamin E was determined after non-disruptive aggregation of 
liposomes with an equal volume of protamine solution (10 mg/ml) and a normal 
saline solution. The mixture was centrifuged (Heraeus, Thermo scientific, 
Philadelphia, USA) at 15 000 rpm for 50 min at + 4°C to remove the supernatant from 
the liposome - protamine aggregates. The resulting liposomal pellet was dissolved in 
ethanol and assayed for encapsulated vitamin E amount (EA). The vitamin E 
encapsulation efficiency (E.E) was calculated as follows:  

100/.. ×= TAEAEE               (2) 
The encapsulation efficiency was determined in triplicate. 
The concentration of vitamin E was measured using an HPLC system (Agilent 
System series 1100, Agilent Technologies, California, USA). The HPLC equipment 
consisted of a pump, an auto-sampler and a UV/VIS detector. The column used was 
a LiChrospher RP C18 column (5 µm, 15 cm  0.46 cm) (Supelco, Bellefonte, USA). 
The separation was carried out using a mixture of methanol and water (96:4 v/v) as 
the mobile phase at a flow rate of 1.6 ml/min. The eluent was monitored at 292 nm 
and peaks were recorded using the chromatography data system software provided 
by Agilent. Before the chromatographic data were collected, the column was 
equilibrated for 30 min with a minimum of 30 column volumes. At the end of the 
assay, the column was washed using water - acetonitrile mixture (50:50 v/v) for 60 
min. This HPLC analytical method was validated (data not shown). 
 
Microscopic observation. The morphology of the liposomes was observed by 
Transmission Electron Microscopy (TEM) using a CM 120 microscope (Philips, 
Eindhoven, Netherlands) operating at an accelerating voltage of 80 kV. The sample 
was prepared as described in our previous study [25]. A drop of the liposome 
dispersion was placed on a copper grid. A thin film of the liposome dispersion was 
obtained by removing excess solution using a filter paper. Negative staining using a 
2% phosphotungstic acid solution (w/w) was performed directly on the deposit during 
1 min. Finally, the excess of phosphotungstic solution was removed with a filter paper 
after which the stained samples were transferred to the TEM for imaging.  
 

2.4 Reproducibility test 
 
Once all process parameters were assessed, the experiment under optimal 
conditions was repeated two times. The technique reproducibility was evaluated in 
terms of mean particle size and size distribution. 
 

2.5 Stability study 
 
Stability assessment is a major consideration for liposomes production. Since 
liposome preparations are heterogeneous in size, the average size distribution 
changes upon storage. Liposomes tend to fuse and grow into bigger vesicles, which 



are thermodynamically more stable. Hence, time variation of the size distribution is a 
good indicator of the long-term stability of liposomes. Moreover, breakage of 
liposomes during production and storage presents a significant problem leading to 
drug leakage from the vesicles. Therefore, encapsulation efficiency is also an 
important indication of the stability of liposomes [5]. 

The liposomal samples were stored under conditions required by the 2008 guidelines 
of the ICH (International Conference on Harmonization of Technical Requirements 
for Registration of Pharmaceutical for Human Use): 5 ± 3°C for normal stability study. 
The storage period was about 3 months for drug-free liposomes and 2 months for 
drug-loaded liposomes. The stability was assessed by comparing the initial mean 
size, zeta potential and encapsulation efficiency with those achieved after the storage 
period. 
 
3 Results and discussion 

3.1 Mechanism of liposomes formation 
 
In our study, an ethanolic solution of vesicle-forming lipids was injected through the 
membrane into an agitated aqueous phase, leading to the formation of numerous 
micro-streams of the organic phase within a boundary layer of the aqueous phase. 
Due to interdiffusion of the two miscible phases, phospholipids in the ethanol/water 
mixture reached a solubility limit and self-assembled into vesicles [13]. The exact 
mechanism of liposomes formation is not yet well understood. A model of vesicle 
formation was proposed by Lasic [26]; this model suggests that during the injection 
process, the phospholipids which are completely soluble in the organic phase, 
precipitate at the water/ethanol phase boundary due to change in their solubility. The 
phospholipid bilayers peel off of the precipitated phase and forms bilayered 
phospholipid fragments (BPFs) in the aqueous phase. The thermodynamic instability 
at the edges of the BPF causes bending and when the BPF closes upon itself, a 
vesicle is formed. The BPF was suggested to be an intermediate structure in all 
vesicle formation processes.  
 

3.2 Optimization of phospholipid concentration 
 

As can be seen from Table 1, as the phospholipid concentration in the organic phase 
was increased from 20 to 50 mg/ml, the mean vesicle size increased from 187 to 227 
nm and the PDI increased from 22 to 29%. Probably, at the higher phospholipid 
concentration in the organic phase, more phospholipid molecules are incorporated 
into each vesicle and larger vesicles are formed.  

Table 1 
Our results are in agreement with those reported elsewhere. Laouini et al. [27] 
observed that the mean size of liposomes, prepared using a hollow fiber membrane 
contactor, increased from 114 to 228 nm when the phospholipid concentration in the 
organic phase increased from 20 to 80 mg/ml. In addition, Jaafar-Maalej et al. [13] 
prepared liposomes using SPG membranes and observed that the average size was 



around 50 and 95 nm at the phospholipid concentration in the organic phase of 20 
and 60 mg/ml, respectively. The similar trends with larger vesicles at higher 
phospholipid contents in the organic phase were reported in other liposome 
preparation techniques such as the modified ethanol injection method [28] and the 
microfluidic method [29]. 
Therefore, 20 mg/ml was selected as the optimum phospholipid concentration in the 
ethanolic phase in the subsequent parts of the study, since it gave vesicles with the 
smaller mean size. 
 

3.3 Optimization of aqueous to organic phase ratio 
 
In order to investigate the effect of aqueous phase volume, liposomes were prepared 
using approximately 13 ml of the organic phase and respectively 20, 40 and 60 ml of 
water; corresponding to an aqueous to organic phase volume ratio of 1.5, 3 and 4.5. 
As can be seen in Table 1, the mean size of liposomes decreased as the aqueous 
phase volume increased. Indeed, at the higher aqueous to organic phase volume 
ratio, phospholipids from the organic phase become more diluted after mixing with 
the aqueous phase, which may result in the formation of smaller vesicles. Moreover, 
formation of a more diluted liposomal suspension may help to prevent the fusion of 
small liposomes to larger vesicles, which can occur immediately after their formation. 
The similar results were obtained using a hollow fiber membrane module [27]; 
increasing the aqueous to organic phase volume ratio from 0.4 to 2 led to a decrease 
in the mean size of liposomes from 189 to 114 nm. When the organic phase was 
injected through a 0.9 µm SPG membrane into aqueous phase with a volume of 400 
and 500 ml, the mean particle size of liposomes was 203 and 61 nm, respectively 
[13]. 
Our data suggests that the optimum aqueous to organic phase volume ratio is 4.5 
since it produced liposomes with the smallest mean size. Thus, in the following 
experiments, the aqueous phase volume was set at 60 ml and the organic phase 
volume was set at approximately 13 ml. 
 

3.4 Optimization of agitation speed 
 
Table 1 also illustrates the effect of the stirrer speed on the particle size distribution 
of the prepared liposomes. When the stirrer speed was increased by a factor of 6.5 
(from 200 to 1300 rpm), the mean size decreased by 58% (from 219 to 92 nm). The 
decrease in the particle size was the most pronounced in the range from 200 to 600 
rpm. In addition, an increase in the agitator speed from 200 to 1300 rpm led to a 
broader size distribution (the PDI was 8, 22 and 41% for the agitation speed of 200, 
600 and 1300 rpm, respectively). A decrease in the particle size with an increase in 
the stirrer speed was due to increase in the interdiffusion rate of the two phases. The 
faster diffusion rates generally lead to smaller vesicles because the local 
phospholipid concentration during vesicle formation is lower due to a more uniform 
distribution of phospholipids over the ethanol/water mixture. A similar trend was 



reported by Dragosavac et al. [30] in membrane emulsification using the same stirred 
cell device and it was attributed to the higher drag force acting on droplets on the 
membrane surface. The droplet size was significantly reduced when the stirrer speed 
increased up to 600 rpm, but this effect was less pronounced at the higher stirrer 
speeds; the average droplet size was almost constant at stirrer speeds above 1100 
rpm. Our results are also in agreement with other membrane emulsification studies 
using the stirred cell device [31, 32]. In this study, 600 rpm was selected as the 
optimum agitation speed taking into consideration both the size of liposomes and 
their uniformity.  
 

3.5 Optimization of the organic phase flow rate 
 
As the flow rate of the organic phase decreased, so did the liposome size. Table 1 
shows that the liposome size was 121 and 84 nm at the flow rate of 5 and 2 ml/min, 
respectively. These two flow rates are equivalent to the transmembrane flux of 142 
and 355 l/m2/h, respectively. Increase in the flow rate of the organic phase leads to 
an increase in the rate of transfer of phospholipids (PL) to the membrane surface, 
given by the product: CoQo, where Co is the PL concentration in the organic phase 
and Qo is the organic phase flow rate. Our results indicate that the size of liposomes 
increases with increasing the rate of transfer of PL to the membrane surface or 
decreasing the rate of transfer of PL away from the membrane surface. Therefore, 
the largest vesicles are formed at the conditions corresponding to the maximum 
concentration of PL at the membrane/aqueous phase interface. The similar trends 
were observed in liposome preparation using SPG membrane and hollow fiber 
membrane. Laouini et al. [27] observed a decrease of the liposome size from 129 to 
114 nm when the organic phase pressure was reduced from 3.8 to 1.8 bar. Jaafar-
Maalej et al. [13] found that a peak in the particle size distribution of liposomes was 
shifted from around 45 to 80 nm as the organic phase pressure increased from 3 to 5 
bar. Sheibat-Othman et al. [33] have produced pH-sensitive particles by injecting 
organic phase into aqueous phase in a membrane contactor and obtained larger 
particles at higher organic phase flow rates. In this study, based on the obtained 
results 2 ml/min was considered as the optimum organic phase flow rate, since it 
produced liposomes with the smaller size at acceptable production rate. 
 

3.6 Choice of the stabilizer 
 
The liposomal preparation developed in this study is intended to be aerosolized in 
order to target the smokers lungs. Therefore, it would be meaningful if cholesterol 
used as a stabilizer could be replaced by another lipid, since cholesterol is usually 
associated with atherosclerosis and cardio-vascular diseases [34]. In the present 
study, we have investigated the use of stearic acid and cocoa butter as alternative 
stabilizers to cholesterol.  
Stearic acid was already tested in liposomal formulations [35, 36]; however only the 
encapsulation efficiency was assessed and no investigation on long-term stability has 



been carried out. Cocoa butter has never been used in a liposome preparation; it was 
choosen since it is a widely used excipient in pharmacy and exhibits a better 
biocompatibility and lower in-vivo toxicity than semi-synthetic lipids. Cocoa butter 
contains 41% stearic acid of its typical fatty acid content, it is solid at room 
temperature and melts between 32 and 38°C. As shown in Table 1, at the same 
experimental conditions (the phospholipid concentration of 20 mg/ml, the aqueous to 
organic phase ratio of 4.5, the agitator speed of 600 rpm, and the transmembrane 
flux of 142 l/m2/h), the initial vesicle size was 84, 154, and 135 nm for liposomes 
stabilised by cholesterol, stearic acid and cocoa butter, respectively.  
However, only liposomes prepared using cholesterol or stearic acid maintained their 
initial mean size after 3 months (Figure 2). Liposomes prepared using cocoa butter 
doubled in size during the storage period (from 135 nm at day 0 to 324 nm at day 
90). Therefore, it can be concluded that stable liposomes can be obtained using 
cholesterol or stearic acid. Although stearic acid was an efficient long-term stabilizer 
of liposomes, under the same experimental conditions significantly smaller and more 
uniform vesicles can be produced using cholesterol (the PDI increased from 24 to 
37% and the mean size from 84 to 154 µm when cholesterol was replaced by stearic 
acid in the liposomal formulation). Cocoa butter was not suitable for long-term 
stabilisation, although the initial vesicle uniformity was comparable to that achieved 
with cholesterol. 

Figure 2 
 

3.7 Choice of the phospholipid 
 
Two phospholipids were tested in this study: Lipoid E 80 and POPC. Table 1 shows 
that under optimal conditions both phospholipids enable the formation of liposomes 
with a mean size below 85 nm and acceptable size distribution. Therefore our 
optimized process can be used to prepare liposomes containing any of these two 
phospholipids.  
 

3.8 Reproducibility of the optimized process 
 
Based on the previous findings, the formulation composed of 60 ml of water and 13 
ml of ethanolic phase containing 20 mg/ml of phospholipid (Lipoid E 80 or POPC) 
and 5 mg/ml of cholesterol was taken to produce an optimal liposome suspension 
using a microengineered membrane with a mean pore size of 20 µm and a pore 
spacing 80 µm. The organic phase flow rate was 2 ml/min, which is equivalent to the 
transmembrane flux of 142 l/m2/h, and the agitation speed was 600 rpm. The 
experiment conducted under these optimum conditions was repeated twice with both 
Lipoid E 80 and POPC in order to test the reproducibility of the technique. The 
resulting data, presented in Figure 3, revealed very good reproducibility, in terms of 
mean size and PDI, between different liposome batches produced using the same 
type of phospholipid.   

Figure 3 



The other results (not shown here) obtained in repeated experiments performed 
under identical conditions confirm good reproducibility of the preparation process. 
 

3.9 Comparison of different particle size characterization methods 
 
The DLS (dynamic light scattering) instrument does not require calibration and 
sample preparation prior to each measurement. Due to its simplicity and speed, the 
DLS method was used for size characterization of liposomes during the optimization 
step. The differential centrifugal sedimentation (DCS) requires a density gradient to 
be built up with 9 different sucrose concentrations (from 18% to 26%) and the sample 
should be diluted in 30% sucrose solution prior to each measurement. In addition, 
calibration of the instrument is required using a sample of known particle size. Thus, 
DCS was only used once the process was optimized to corroborate the values for 
particle size by checking for multiple modes in the size distribution. The four 
reproducibility test batches (two using the lipoid E 80 and two using the POPC) were 
characterized using DCS and the results were compared with those obtained with the 
DLS instrument in Table 2. 

Table 2 
As can be seen, the results obtained using the same sample differ significantly 
depending on the characterization method used. The larger mean particle sizes and 
broader particle size distributions were obtained using DCS, which can be explained 
by the fact that in DCS, the sedimentation velocity increases as the square of the 
particle diameter, so particles that differ in size by only a few percent settle at 
appreciably different rates. This means that the DCS method can achieve a higher 
resolution of particle size compared to the DLS method. The DCS method also has a 
higher sensitivity which enables the detection of small additional peaks and picks up 
small changes in the size distribution. In addition, all measurements using DCS were 
run against a known calibration standard which assures a high accuracy of the size 
analysis. Given that the CPS instrument was more accurate and more sensitive, the 
DCS method was used for particle size measurements in the subsequent parts of this 
study.  
 

3.10 The effect of ethanol removal 
 
During the preparation process, the ethanolic phase was injected through the 
membrane pores into the aqueous phase. The obtained liposomes were in the 
nanometric range, although the pore diameter ranged between 5 and 40 µm. In order 
to investigate the effect of solvent evaporation on the vesicle size, the particle size 
distribution of liposomes was measured before and after rotary evaporation and the 
results are presented in the supplementary material (Table S2). 
As can be seen in Table S2, no significant difference in the mean particle size and 
size distribution was observed in the liposomal suspension before and after solvent 
removal, which means that the vesicle formation process was mainly controlled and 
driven by the rate of interdiffusion of the two phases. Vesicles were formed once the 



organic phase was brought into contact with the aqueous phase, irrespective of the 
ethanol removal rate. Therefore, the critical concentration of phospolipid in the 
ethanol/water mixture was reached without solvent evaporation, simply by dilution of 
the organic phase with water present in the cell. Because ethanol evaporation did not 
affect the liposome size and size distribution, it was not necessary to optimize 
experimental conditions in the rotary evaporator such as evaporation temperature, 
pressure, rotation speed of the flask, etc. 
  

3.11 The effect of membrane cleaning and wetting procedure 
 
The membrane was immersed in a siloxane-based wetting agent for 30 min before 
each experiment in order to improve the hydrophilicity of the membrane surface. The 
reason for this treatment was to prevent the organic phase from being spread over 
the membrane surface and to ensure that tiny jets of the organic phase emerging 
from the membrane pores penetrate thoroughly into the aqueous phase. Table S3 
summarises the results of two experiments performed under identical conditions with 
a brand new membrane used without any surface treatment and the one re-used 
after cleaning and treatment with the wetting agent.   
No difference in the mean size of liposomes and CV was observed between the two 
membranes, which means that the membrane properties were completely restored 
after cleaning and that the treatment with a wetting agent, critically important in 
membrane emulsification, is not needed in liposome production.  
 

3.12 The effect of membrane microstructure 
 
In order to investigate the effect of the membrane characteristics on the liposomes 
mean size, experiments were conducted using 6 different membranes with nominal 
pore sizes 5, 10, 20 and 40 µm. The membranes with pore sizes of 5 and 10 µm had 
a pore spacing of 200 µm, whereas the membranes with 20 and 40 µm were supplied 
with two different pore spacings (80 and 200 µm). As shown in Figure 4 (a), as the 
interpore spacing increased, the particle mean size decreased. This may be 
explained by the fact that when the distance between the membrane pores 
increased, the newly formed vesicles are less likely to aggregate. The liposome size 
is determined by a balance between the nucleation and growth rates. The larger the 
pore spacing, the smaller the number of organic phase micro-streams (potential 
nuclei) formed in the aqueous phase and the higher the amount of phospholipid 
delivered through each pore; hence, smaller number of larger vesicles will be formed. 
It could also be noticed from Figure 4 (a) that the influence of the pore spacing is 
more pronounced for larger pore sizes.   

Figure 4 
Figure 4 (b) summarizes the effect of the membrane pore size on the size of the 
liposomes produced. Our results are in agreement with those reported for membrane 
emulsification in the same stirred cell. Dragosavac et al. [30] used the same type of 
microengineered membranes to produce oil-in-water emulsions and found that the 



size of oil drops increased by a factor of 1.8 when the pore size was changed from 
19 to 40 µm. Many other studies on membrane emulsification indicate that the 
particle size increases linearly with increasing the pore size [37, 38]. Our data fitted 
well to a linear model with a gradient of 0.22 nm/µm and R2=0.992 (Figure 4 c). Thus, 
our study confirmed that the liposome size depends on the membrane structure (pore 
size, spacing); this underlines the feasibility of controlling the liposome size by using 
microengineered membranes with different pore sizes and interopore distances. 
 

3.13 Loading of vitamin E into liposomes 
 
Table 3 shows the effect of entrapment of vitamin E on the liposome size and size 
distribution.  

Table 3 
The addition of the drug increased the vesicle mean size from 88 to 96 nm and the 
CV from 32 to 44%. The increase in the vesicle size could be explained by the 
entrapment of the drug within the phospholipidic bilayers.  
The negative values of the zeta-potential were obtained (around -28 mV), which 
could be attributed to the presence of negatively charged phospholipids in bilayers. 
The zeta potential measurements give information on the surface properties of the 
colloidal system and could therefore be useful to determine the type of the 
association between the active substance and the colloidal system (for example 
whether the drug is encapsulated in the lipid matrix or simply adsorbed on the 
surface) [39]. Table 3 indicates that the presence of the drug did not affect the 
negative surface charge. This result suggests that all vitamin E was encapsulated 
within the lipid bilayers without any adsorption to the vesicles surface. The greater 
the zeta potential the more likely the suspension to be stable, because the charged 
particles repel each other and this overcomes their natural tendency to aggregate 
[40, 41]. It is currently believed that the absolute value of zeta potential above 15 is 
required for a good electrostatic stabilization [42]. Thus, our zeta-potential values 
were sufficient to prevent liposomes aggregation and predict a good stability of the 
liposomal suspensions. 
The high encapsulation efficiency of vitamin E within liposomes (99.87 ± 1.14%) was 
probably due to the high lipophilicity of the drug. This result was in agreement with 
those reported in the literature. Marsanasco et al. [35] reported that the percent of 
vitamin E encapsulated within liposomes prepared by the method of Bangham was 
equal to 98.13 ± 0.02%. 
The prepared liposomal suspension is intended to be aerosolized for specific delivery 
of vitamin E to the alveoli level. Several previous studies have shown that the 
aerosolization of colloidal systems would enhance their aggregation which is 
dependent on the nebulizer design. No specific correlation was found between the 
initial size and the size of the nebulized droplets [43, 44]. For instance, the mass 
median diameters of aerosols generated upon nebulization were 2 to 14.4 folds 
larger than primary geometric particle diameters [45]. Therefore, the aerosolization of 
our vitamin E-loaded liposomes would generate particles less than 1.5 µm which is 



suitable to reach the alveolar space since many studies reported that for specific 
delivery to the alveoli a size less than 5 µm was required [46].  
 

3.14 TEM observation 

The micrographs of drug-free liposomes (prepared using Lipoid E 80 and POPC) and 
drug-loaded liposomes taken by Transmission Electron Microscopy (TEM) are given 
in Figure 5. 

Figure 5 
As could be seen, liposomes were of spherical shape with multilayered membrane 
structure. Their size estimated from TEM pictures was in the range of 50-150 nm 
which is coherent with values obtained using DLS and DCS.  
 

3.15 Stability study 
 
 
The variations of the zeta potential, the vesicle mean size and CV were followed over 
the storage time of 3 months for drug-free liposomes and 2 months for drug-loaded 
liposomes at 5 ± 3°C. The stability data are shown in Table 4 and Figure 6. 

Table 4 
Figure 6 

According to Heurtault et al.42, the size determination is a good indicator of stability 
since in most cases the particle size increased before macroscopic changes 
appeared. Our stability data show that the average size remained nearly unchanged 
during the storage period. In addition, the zeta potential was maintained at its initial 
value and no aggregation or sedimentation was observed during storage. Also, there 
were no significant changes in the vesicle size distribution during the same period 
(data not included). These results demonstrate a good stability of the liposome 
suspensions and thus indicate an adequate formulation of the preparation and 
optimum selection of process conditions. 
 
 
 
4 Conclusions 
 
In this study, we present a novel application of microengineered membranes: the 
preparation of size-controlled liposomes. The purpose of the research was to study 
the effect of the formulation factors and the process parameters on the final 
characteristics of lipid vesicles. The liposome formation was based on a diffusion-
driven process in which the dissolved phospholipids (Lipoid E 80 or POPC) self-
assemble into liposomes as ethanol quickly diffuses and dilutes into agitated 
aqueous stream at the microsieve/aqueous phase interface. The size and size 
distribution of liposomes was precisely controlled through adjusting phospholipid 
concentration and flow rate of the organic phase, pore size and spacing of the 



microengineered membrane used for injection of the organic phase, the degree of 
agitation in the cell and the mixing ratio of the two phases. This indicates that with a 
careful choice of formulation factors and process parameters, liposomes could be 
obtained with a defined size distribution. The rate of evaporation of ethanol did not 
have any appreciable effect, indicating that the process was controlled by the rate of 
interdiffusion of the two miscible liquids.  
The reproducibility of the optimized process was good, and after each experiment the 
membrane surface could be easily cleaned and fully regained its hydrophilicity. The 
prepared samples remained stable for 3 months. 
We have shown that a simple low-volume stirred cell is a useful apparatus for a quick 
testing of different experimental conditions. For continuous and larger-scale 
production, other experimental set-ups should be employed, such as crossflow and 
oscillation membrane systems and it will be the subject of our future investigation.  
 
 
5 References 

 

[1] Bangham, A. D. Ann N Y Acad Sci. 1978, 308, 2-7. 

[2] Torchilin, V. T.  Drug Discov. 2005, 4, 145-160. 

[3] Lian, T.; Ho, R. J. Y.  J Pharm Sci. 2001, 90, 667-680. 

[4] Wagner, A.; Platzgummer, M.; Kreismayr, G. J Liposome Res. 2006, 16, 311-319. 

[5] Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar-Gandoura, S.; 
Charcosset, C.; Fessi, H.  J Colloid Sci. Biotechnol. 2012, 1, 147-168.  

[6] Batzri, S. Korn, E. D. Biochim Biophys Acta. 1973, 298, 1015-1019. 

[7] Jahn, A.; Vreeland, W. N.; Gaitan, M.; Locascio, L. E. J Am Chem Soc. 2004. 
126, 2674–2675. 

[8] Wagner, A.; Vorauer-Uhl, K.; Katinger, H. J Liposome Res. 2002, 12, 259-270. 

[9] Charcosset, C.; El Harati, A,; Fessi, H. J. Controlled Release. 2005. 108, 112-
120. 

[10] Charcosset, C.; Fessi, H. Drug Dev. Ind. Pharm. 2005. 31, 987-992. 

[11] Zhou, Q. Z.; Wang, L. Y.; Ma, G. H.; Su, Z. G. J. Colloid Interface Sci. 2007. 
311, 118-127. 

[12] Wagdare, N. A.; Marcelis, A. T. M.; Boom, R. M.; Van Rijn, C. J. M. J. Colloid 
Interface Sci. 2011. 355, 453-457. 

[13] Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. J. Liposome Res. 2011. 3, 213-220. 



[14] Terrasa, A. M.; Guajardo, M. H.; Marra, C. A.; Zapata, G. Vet. J. 2009. 182, 463-
468. 

[15] Scherrer-Crosbie, M.; Paul, M.; Meignan, M.; Dahan,  E.; Lagrue, G.; Atlan, G.; 
et al. J. Appl. Physiol. 1996. 81, 1071-1077. 

[16] Kato, Y.; Watanabe, K.; Nakakura, M.; Hosokawa, T.; Hayakawa, E.; Ito, K. 
Chem. Pharm. Bull. 1993. 41, 599-604. 

[17] Vladisavljević, G. T.; Kobayashi, I.; Nakajima, M. Microfluid. Nanofluid. 2012. 13, 
151-178. 

[18] Fitzpatrick, S. T.; US patent number 5,786,898. 28 July 1998. 

[19] Schucks, P. Biophys. J. 2000. 82, 1096-1111. 

[20] Cheng, C.; Chu, L.; Xie, R. J. Colloid Interface Sci. 2006. 300, 375-382. 

[21] Nazir, A.; Schroen, K.; Boom, M. J. Membr. Sci. 2010. 362, 1-11. 

[22] Hunter, R.; Midmore, H. Z. J. Colloid Interface Sci. 2001. 237, 147-149. 

[23] Wang, X. H; Cai, L. L.; Zhang, X. Y.; Deng, L. Y.; Zheng, H.; Deng, C. Y et al. 
Int. J. Pharm. 2010. 410, 169-174. 

[24] Sun, W.; Zhang, N.; Li, A.; Zou, W.; Xu, W. Int. J. Pharm. 2008. 353, 243-250. 

[25] Laouini, A.; Jaafar-Maalej, C.; Sfar-Gandoura, S.; Charcosset, C.; Fessi, H. Prog 
Colloid Polym Sci. 2012. 139, 23-28.  

[26] Lasic D. D. Biochem J. 1988. 256, 1-11. 

[27] Laouini, A.; Jaafar-Maalej, C.; Sfar-Gandoura, S.; Charcosset, C.; Fessi, H. Int J 
Pharm. 2011. 415, 53-61. 

[28] Kremer, J. M. H.; Vander Esker, M. W.; Pathmamanoharan, C.; Wiessema, P. H. 
Biochemistry. 1977. 16, 3932-3935. 

[29] Pradhan, P.; Guan, J.; Lu, D.; Wang, P. G.; Lee, L. G.; Lee, R. J. Anticancer 
Res. 2008. 28, 943-948. 

[30] Dragosavac, M. M.; Sovilj, M. N.; Kosvintsev, S. R.; Holdich, R. G.; 
Vladisavljević, G. T. J. Membr. Sci. 2008. 322, 178-188. 

[31] Stillwell, M. T.; Holdich, R. G.; Kosvintsev, S. R.; Gasparini, G.; Cumming, I. W. 
Ind. Eng. Chem. Res. 2007. 46, 965-972. 

[32] Kosvintsev, S. R.; Gasparini, G.; Holdich, R. G.; Cumming, I. W.; Stillwell, M. T. 
Ind. Eng. Chem. Res. 2005. 44, 9323-9330. 



[33] Sheibat-Othman, N.; Brune, T.; Charcosset, C.; Fessi, H. Colloids Surf. A. 2008. 
315, 13-22. 

[34] LaRosa, J. C.; Hunninghake, D.; Bush, D.; Criqui, M. H.; Getz, G. S.; Gotto, A. 
M. Jr.; et al. Circulation. 1990. 81, 1721-1733. 

[35] Marsanasco, M.; Márquez, A. L.; Wagner, J. R.; Alonso, S. V.; Chiaramoni, N. S. 
Food Res. Int. 2011. 44, 3039-3046. 

[36] Hsieh, Y. F.; Chen, T. L.; Wang, Y. T.; Chang, J. H.; Chang, H. J. Food Sci. 
2002. 67, 2808-2813. 

[37] Vladisavljević, G. T.; Schubert, H.; 2003. J. Membr. Sci. 2003. 225, 15-23. 

[38] Williams, R. A.; Peng, S. J.; Wheeler, D. A.; Morley, N. C.; Taylor, D.; Whalley, 
M.; et al. Chem. Eng. Res. Des. 1998. 76 A 8, 902-910 

[39] Barratt, G. Cell. Mol. Life Sci. 2003. 60, 21–37. 

[40] Mora-Huertas, C. E.; Fessi, H.; Elaissari, A. Int. J. Pharm. 2010. 385, 113-142. 

[41] Wiacek, A.; Chibowski, E. Colloids Surf. A. 1999. 159, 253–261.  

[42] Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J. E.; Benoit, J. P. Biomaterials. 
2003. 24, 4283-4300. 

[43] Dailey, L. A.; Schmel, T.; Gessler, T.; Wittmar, M.; Grimminger, F.; Seeger, W.; 
et al. J. Controlled Release. 2003. 86, 131-144. 

[44] McCallion, O. N. M.; Taylor, K. M. G.; Thomas, M.; Taylor A. J. Int. J. Pharm. 
1996. 133, 203-214. 

[45] Bosquillon, C.; Rouxhet, P. G.; Ahimou, F.; Simon, D.; Culot, C.; Preat, V.; et al. 
J. Controlled Release. 2004. 99, 357-367. 

[46] Schreir, H.; Gonzalez-Rothi, R. J.; Stecenko, A. A. J. Controlled Release. 1993. 
24, 209-223. 



 
(a) 

 
 
 
 
 

(b) 
 

 
 
 
 
 
 
Figure 1. (a) Schematic illustration of the stirred cell with simple paddle stirrer above 
a flat disc membrane (b = 12 mm, D = 32 mm, Dm = 33 mm, nb = 2 and T = 40 mm). 
(b) Schematic diagram of the experimental set-up.  



 
 
 
Figure 2. Stability data for Lipoid E80 liposomes prepared using various lipids 
(cholesterol, stearic acid or cocoa butter) as stabilizers. The experimental conditions 
are specified in Table 1. The size characterization was performed using DLS.   



 
 

Figure 3. Reproducibility data for liposome suspensions prepared under optimal 
conditions. The size characterization was performed using DLS.  



 
Figure 4. Influence of the nominal pore size and pore spacing of the membrane on 
the liposome mean size. The experimental parameters: phospholipid: 20 mg/ml lipoid 
E80, stabilizer: 5 mg/ml cholesterol, aqueous to organic phase volume ratio: 4.5, 
agitation speed: 600 rpm, and organic phase flow rate: 2 ml/min. The size 
characterization was performed using DCS. 

(a) 
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Figure 5. Transmission electron microscopy of drug-free liposomes prepared using 
lipoid E80 (a) or POPC (b) and drug-loaded liposomes (c). 

(a) (b) (c) 



 
 
Figure 6. Stability data of drug-free liposomes prepared using Lipoid E80 (a) and 
POPC (b) (results presented are the average of reproducibility batches) and drug-
loaded liposomes (c). The size characterization was done using DCS. 

(a) 

(b) 

(c) 



Table 1. 

Influence of formulation factors and process parameters (phospholipid concentration, aqueous to organic phase volume ratio, 
agitation speed, transmembrane flux, stabilizer type and phospholipid type) on liposomes characteristics (mean size and PDI). The 
method used for size characterization was the DLS. 

Phospholipid 
concentration (mg/ml) 

Aqueous to organic 
phase volume ratio 

Agitation speed 
(rpm) 

Transmembrane flux 
(l/m2/h) 

Stabilizer 
nature 

Phospholipid 
nature 

Mean size* 
(nm) 

PDI* 
(%) 

20 3 600 355 Cholesterol Lipoid E 80 187 ± 3 22 ± 1 

50 3 600 355 Cholesterol Lipoid E 80 227 ± 3 29 ± 1 

20 1.5 600 355 Cholesterol Lipoid E 80 308 ± 2 21 ± 1 

20 4.5 600 355 Cholesterol Lipoid E 80 121 ± 1 22 ± 1 

20 4.5 200 355 Cholesterol Lipoid E 80 219 ± 3 8 ± 1 

20 4.5 1300 355 Cholesterol Lipoid E 80 92 ± 1 41 ± 1 

20 4.5 600 142 Cholesterol Lipoid E 80 84 ± 2 24 ± 1 

20 4.5 600 142 Stearic acid Lipoid E 80 154 ± 4 37 ± 1 

20 4.5 600 142 Cocoa butter Lipoid E 80 135 ± 2 24 ± 1 

20 4.5 600 142 Cholesterol POPC 59 ± 2 30 ± 2 

 

*: Each value represents the mean ± S.D. (n=3) 



Table 2.  

Size characterization of liposome suspension containing two different phospholipid 
(PL) types, prepared under optimal conditions, using two different characterization 
methods. 

PL  
Dynamic light 

scattering 
(DLS) 

Differential centrifugal 
sedimentation 

(DCS) 

Lipoid E 
80 

Mean size* 
(nm) 84 ± 1 110 ± 3 

PDI or CV* 
(%) 25 ± 2 37 ± 2 

POPC 

Mean size* 
(nm) 58 ± 1 88 ± 1 

PDI or CV* 
(%) 28 ± 2 34 ± 1 

  

*: Each value represents the mean of the 2 batches of reproducibility ± S.D. (n=3). 



Table 3. 

Effect of vitamin E loading on the characteristics of liposomal suspension. The 
experimental parameters: phospholipid: 20 mg/ml Lipoid E 80, stabilizer: 5 mg/ml 
cholesterol, vitamin E: 5 mg/ml, aqueous to organic phase volume ratio: 4.5, stirring 
speed: 600 rpm, organic phase flow rate: 2 ml/min, pore size: 10 µm, pore spacing: 
200 µm. The size characterization was performed using DCS.  

Liposome 
suspension 

Mean size* 
(nm) CV* (%) 

Zeta 
potential* 

(mV) 
E.E.* (%) 

Drug-free 88 ± 2 32 ± 1 -28.0 ± 0.9  

Drug-loaded 96 ± 3 44 ± 2 -28.5 ± 0.8 99.87 ± 
1.14 

 

* Each value represents the mean ± S.D. (n=3) 

 

 



Table 4. 

Encapsulation efficiency stability ± S.D.* (%) of vitamin E loaded liposome 
suspension stored at 5 ± 3°C. 

After preparation After 1 month After 2 months 
99.87 ± 1.14 99.76 ± 1.03  98.81 ± 1.20 

 

Experimental conditions of liposome suspension preparation: phospholipid: 20 mg/ml 
Lipoid E 80, stabilizer: 5 mg/ml cholesterol, 5 mg/ml vitamin E, aqueous to organic 
phase volume ratio: 4.5, agitation speed: 600 rpm, organic phase flow rate: 2 ml/min, 
pore size: 10 µm, pore spacing: 200 µm. The size characterization was performed 
using DCS. 

* Standard deviation (n=3). 



 

Supplementary Material 

 

 
 
 
Figure S1. Microscopic images of some membranes used in this study: (a) dp = 40 
µm, L = 200 µm, (b) dp = 20 µm, L = 80 µm, and (c) dp = 10 µm, L = 200 µm. (d) 
Schematic view of the pore arrangement showing a regular hexagonal array of 
cylindrical pores with uniform pore spacing (L – pore spacing, dp – pore diameter).    

 



Table S1. 
 
Pore diameters, pore spacing and porosities of the membranes used in this study. 
 

Pore diameter 
(µm) 

Pore spacing 
(µm) 

Membrane porosity 
(%) 

5 200 0.06 

10 200 0.2 

20 200 0.9 

40 200 3.6 

20 80 5.7 

40 80 22.7 
 

 

 



Table S2. 

Effect of ethanol evaporation on the liposome size characteristics. The experimental 
parameters: phospholipid: 20 mg/ml POPC, stabilizer: 5 mg/ml cholesterol, aqueous 
to organic phase volume ratio: 4.5, agitation speed: 600 rpm, organic phase flow 
rate: 2 ml/min, membrane pore size: 20 µm, pore spacing: 80 µm. The size 
characterization was performed using DCS. 

 Before ethanol evaporation After ethanol evaporation 

Mean size* (nm) 84 ± 3 89 ± 2 

CV* (%) 33 ± 2 34 ± 1 

 

*: Each value represents the mean ± S.D. (n=3) 



Table S3. 

The effect of membrane cleaning and treatment with a wetting agent on the liposome 
size and size distribution. The experimental parameters: phospholipid: 20 mg/ml 
Lipoid E 80, stabilizer: 5 mg/ml cholesterol, aqueous to organic phase volume ratio: 
4.5, agitation speed: 600 rpm, organic phase flow rate: 2 ml/min, pore size: 20 µm, 
pore spacing: 200 µm. The size characterization was performed using DCS. 

 
Brand new membrane 
(without wetting agent 

treatment) 

Used membrane (after 
cleaning and wetting) 

Mean size* (nm) 91 ± 3 91 ± 2 

CV* (%) 36 ± 1 35 ± 1 

 

*: Each value represents the mean ± S.D. (n=3) 
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Nomenclature 

b Blade height (m) 

CV Coefficient of variation 

PDI Polydispersity index 

dp Pore diameter (m) 

D Stirrer diameter (m) 

Dm Effective membrane diameter (m) 

L Pore spacing (interpore distance) (m) 

nb Number of blades 

T Internal diameter of tank (m) 

ε Membrane porosity 
 

        

 


