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ABSTRACT 

For the purposes of both traffic-light control and the design of roadway layouts, it is important 

to understand pedestrian street-crossing behavior because it is not only crucial for improving 

pedestrian safety but also helps to optimize vehicle flow. This paper explores the mechanism of 

pedestrian street crossings during the red-man phase of traffic light signals and proposes a 

model for pedestrians’ waiting times at signalized intersections. We start from a simplified 

scenario for a particular pedestrian under specific traffic conditions. Then we take into account 

the interaction between vehicles and pedestrians via statistical unconditioning. We show that 

this in general leads to a U-shaped distribution of the pedestrians’ intended waiting time. This 

U-shaped distribution characterizes the nature of pedestrian street-crossing behavior, showing 

that in general there are a large proportion of pedestrians who cross the street immediately after 

arriving at the crossing point, and a large proportion of pedestrians who are willing to wait for 

the entire red-man phase. The U-shaped distribution is shown to reduce to a J-shaped or L-

shaped distribution for certain traffic scenarios. The proposed statistical model was applied to 

analyze real field data.  

Keywords: Intended waiting time; Pedestrian street crossing; Signalized intersection; Vehicle 

time headway 
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1. Introduction 
 

In the urban areas of most large cities around the world, there is intensive interaction 

between pedestrians and vehicles. It is hence important to understand pedestrian street-crossing 

behavior because properly designed and placed pedestrian facilities encourage pedestrians to 

follow traffic regulations and to cross streets at safe locations during safe periods. However, in 

most of the current traffic systems in metropolitan cities, pedestrians usually receive a lower 

priority than motorized vehicles. Traffic-signal control has normally sought to optimize vehicle 

flow, and pedestrians have been fitted around that flow (Ahuja et al., 2005; Tiwari et al., 2007; 

Ishaque and Noland, 2008). Recently, research into pedestrian behavior has become 

increasingly important because traffic accidents involving pedestrians have become common in 

many cities of emerging-economy countries due to their rapid motorization and urbanization. 

According to the WHO reports, the number of road traffic deaths is about one hundred 

thousand per year in India and China respectively, among which pedestrian fatalities account 

for a large proportion. Take Delhi, for example, the percentage of road traffic fatalities 

involving pedestrians has reached 40% to 50% of the total fatalities (Tiwari et al., 2007). In 

more developed countries, the total road traffic fatalities are low but as vulnerable road users, 

the percentages of traffic fatalities involving pedestrians are also high. For instance, there were 

a total of 1850 fatalities in road accidents in 2010 across the U.K., among which 21.9% 

involved pedestrian fatalities (DfT, 2012). In London, pedestrian-involved-fatality accounted 

for 46.0% in 2010, i.e., 58 out of a total of 126 road traffic fatalities (TfL, 2012).  

In response to the rapid research advances, two comprehensive reviews of studies of 

pedestrian behavior in urban areas have recently been published, Ishaque and Noland (2008) 

and Papadimitriou et al. (2009). The two articles review existing studies and discuss various 

issues that are encountered in the modeling of pedestrian behavior including: (a) pedestrian 

micro-simulation methods; (b) pedestrian speeds at crossings and the associated behavior such 
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as gap-acceptance behavior and compliance rates; and (c) pedestrian speeds on pavements. It is 

also noteworthy that apart from the empirical studies reviewed in Ishaque and Noland (2008) 

and Papadimitriou et al. (2009), there is attention in the recent literature paid to the 

methodological research on pedestrian behavior, such as pedestrian walking behavior based on 

discrete choice (Antonini et al., 2006; Robin et al., 2009), pedestrian flow modeling (Huang et 

al., 2009), pedestrians route choice and activity scheduling via dynamic programming 

(Hoogendoorn and Bovy, 2004a, b), etc. 

The literature review, however, suggests that although a lot of attention has been paid to the 

research on pedestrian’s behavior in recent years, very little has been done on the 

methodological development of pedestrian waiting time models at signalized intersections. In 

recent years there have been only a few empirical studies on investigating pedestrian waiting 

times. For instance, Keegan and O’Mahony (2003) considered the impact on pedestrians’ 

waiting times at a signalized crossing in Dublin when a new type of countdown timer was 

deployed. More recently Lipovac et al. (2012) have compared pedestrians’ behavior with and 

without pedestrian countdown displays at two signalized pedestrian crossings in Bosnia and 

Herzegovina. Keegan and O’Mahony (2003) and Yang et al. (2006) used 

questionnaires/interviews to investigate the factors that influence pedestrian-crossing behavior 

during a red-man phase. In addition, Hamed (2001), Tiwari et al. (2007), and Wang et al., 

(2011) applied the Cox proportional hazard model to identify the factors that may lead to 

unsafe crossing in Jordan, India, and China respectively.  

The purpose of this paper is to investigate the statistical modeling of pedestrians’ intended 

waiting times at signalized intersections. Currently, the commonly used model of waiting time 

in queueing theory is the general-purpose exponential distribution (see, e.g. Bocharov et al., 

2003). In traffic studies, the exponential distribution was also used to model pedestrians’ 

waiting times for street crossings (e.g. Zhuang and Wu, 2011). In addition, in safety analysis 
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on pedestrians’ crossings, survival analysis was often applied (e.g. Hamed 2001; Tiwari et al. 

2007; Wang et al., 2011) where the exponential distribution and its extensions (such as Weibull 

distribution, gamma distribution, etc.) were explicitly or implicitly assumed. The exponential 

distribution and its extensions, however, are in general not suitable for the investigation of 

pedestrians’ waiting times at signalized intersections because in theory the waiting time 

assumed in these models can be infinitely long. It is therefore unable to capture the 

characteristics of the bounded waiting time at signalized intersections (in particular the tail area 

closer to the upper bound of the red-man phase). This is shown in Figure 1 with a U-shaped 

distribution for the field data on intended waiting times prior to unsafe crossings during the 

red-man phase; these data were collected at a signalized intersection in a Chinese city, 

Kunming. A detailed data description and analysis will be provided in Section 4. Similar U-

shaped patterns were also documented in the literature (e.g. Lipovac et al., 2012). 

 

(Figure 1 is here) 

Figure 1. Histogram (left) and empirical distribution function (right) of pedestrians’ 

intended waiting times at an intersection in Kunming. 

The data displayed in Figure 1 challenge the exponential distribution model, indicating that 

pedestrians’ waiting times at signalized intersections can greatly differ from the exponential 

distribution and its extensions. This has some important practical implications. First, this shows 

that the exponential-distribution-based microscopic simulations for pedestrians’ intended 

waiting times at signalized intersections are in general inadequate because the exponential 

distribution is in general unable to model pedestrian behavior in the red-man phase of traffic 

lights. Secondly, the U-shape of the distribution suggests that the arithmetic mean and standard 

deviation are in general not suitable summary statistics for measuring the centrality and 

variability of pedestrians’ intended waiting times at signalized intersections. In addition, the 
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commonly used statistical testing methods such as the z-test and t-test may perform poorly 

because the data are in general far from being normally distributed. Lachenbruch (2002), for 

instance, discussed the difficulties in hypothesis testing for bounded outcomes, in particular 

when the data are L-shaped, J-shaped, or U-shaped. Lachenbruch showed that the efficiency of 

statistical inference is in general low when normality-based methods are used to analyze 

bounded outcomes.  

This paper explores the mechanism of pedestrian street crossings during the red-man phase 

of traffic light signals and proposes a new distributional model for pedestrians’ waiting times at 

signalized intersections. We investigate pedestrians’ intended waiting times during the red-man 

phase of traffic lights, and show that the U-shaped distribution exhibited in Figure 1 is the 

outcome of the interaction between vehicles and pedestrians.  

This paper is structured as follows. Section 2 discusses the modeling of pedestrians’ 

intended waiting times at signalized intersections. In Section 3 we investigate the properties of 

the proposed model and statistical inference for the model. To illustrate this model, an 

empirical study is conducted in Section 4. Concluding remarks are offered in Section 5. 

Finally, the proofs of the theorems are given in the Appendix.  

 

2.   Modeling for pedestrian s’ intended waiting times 

 
In this section we first briefly review some general-purpose models for waiting time. Then 

we develop a statistical model for pedestrians’ intended waiting times at signalized 

intersections. The statistical modeling process is undertaken in three steps. We start from a 

simplified scenario for a particular pedestrian under specific traffic conditions. We then use a 

generalized linear model to capture the relationship between the intended waiting time and the 

traffic conditions. Finally, we derive the distribution of interest by taking into account the 

interaction between vehicles and pedestrians.  
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2.1   General-purpose models for waiting time 

Let random variable 𝜉 denote the waiting time required for a service. The most commonly 

used model for waiting time is the general-purpose exponential distribution Pr{𝜉 < 𝑤} = 1 −

exp(−𝑤/𝛾) with probability density function (p.d.f.) 𝑓𝐸𝑋𝑃(𝑤) = 𝛾−1 exp(−𝑤/𝛾) (𝑤 ≥ 0), 

where 𝛾 > 0 is the average waiting time. This model is widely used in applications of queuing 

theory (see, e.g. Bocharov, 2003), and many other areas in operations research and statistics. 

Harris (1968), however, has found that in practice the average waiting time 𝛾 may be affected 

by a number of factors, and it varies as a gamma variate. Harris shows that a more suitable 

model for those problems is the following Pareto distribution:  

 𝑓𝑃(𝑤) = �𝜃𝐶
𝜃𝑤−(𝜃+1)      𝑤 ≥ 𝐶

0                          𝑤 < 𝐶
, 

With parameters 𝜃 > 0 and 𝐶 ≥ 0. The Pareto distribution is frequently used in applications 

where the waiting-time measurements have a heavier right-tail.  

 

2.2   Model for bounded waiting time 

The aforementioned general-purpose models for waiting time do not impose any 

restrictions on the duration of the waiting time. In some applications, however, the waiting 

time has an upper bound denoted by 𝐶 > 0. To apply the Pareto distribution to model bounded 

waiting times, we must transform it so that the support of the waiting time is on the bounded 

period [0,𝐶]. To do this, we define a mapping 𝜂 = 𝑓(𝜉) from [ 𝐶, +∞) to [0,𝐶]:   𝜂 = 𝐶(1 −

𝐶/𝜉). The transformed random variable  𝜂  follows the distribution below: 

 𝑓𝐵𝑃(𝑤;𝜃,𝐶) = (𝜃/𝐶)(1 − 𝑤/𝐶)𝜃−1  for 0 ≤ 𝑤 ≤ 𝐶.   (1) 

Distribution (1) has a bounded support on [0,𝐶], and hence it is termed bounded Pareto 

distribution (denoted 𝐵𝑃(𝜃,𝐶) in this paper). Clearly the p.d.f. 𝑓𝐵𝑃(𝑤;𝜃,𝐶) is strictly 
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decreasing (or increasing) if 𝜃 > 1  (or 0 < 𝜃 < 1); and it is constant (i.e., a uniform 

distribution on [0,𝐶]) if 𝜃 = 1, as illustrated in Figure 2.   

 

(Figure 2 is here) 

Figure 2. Illustration of 𝐵𝑃(𝜃,𝐶) with 𝐶 = 80 and 𝜃 = 4 (real line), 𝜃 = 0.5 (broken line), 

and 𝜃 = 1 (dotted line). 

For pedestrian crossings at signalized intersections, the pedestrians’ intended waiting times 

are bounded by the duration of the red-man phase of traffic lights. This fact has an enormous 

impact on pedestrian waiting times. Distribution 𝐵𝑃(𝜃,𝐶) with 𝜃 > 1 can thus be used to 

model the scenario where a pedestrian highly values his/her time and becomes more impatient 

as he/she waits longer. This type of pedestrian tends to ignore the red-man signal and to seek 

every opportunity to cross the street. Consequently, the probability that he/she waits decreases 

rapidly as time increases. The empirical study in Kaiser (1994) found that pedestrian 

impatience and risk-taking behavior increase after twenty seconds of delay. Keegan and 

O’Mahony (2003) show that the pedestrians in their sample who did not wait at the crossing 

overestimated the length of time they would have had to wait by 200% on average.  

On the other hand, 𝐵𝑃(𝜃,𝐶) with 𝜃 < 1 can be used to describe the scenario where a 

pedestrian tends to be law-abiding and not to risk his/her safety. Keegan and O’Mahony (2003) 

show that law-abiding pedestrians are aware that the light will soon change, making a safe 

crossing possible. Consequently, the longer they wait, the less likely that they will cross the 

street during the red-man phase. They are also more realistic about the waiting time: the law-

abiding pedestrians in Keegan and O’Mahony (2003) overestimated the length of time they 

would have had to wait by only 69% on average, as opposed to 200% in the previous case.  
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Finally, the distribution 𝐵𝑃(𝜃,𝐶) with 𝜃 = 1 can be used to model the scenario where a 

pedestrian’s attitude to risk and time saving is neutral, and the probability that he/she crosses 

the street during the red-man phase is constant over the entire duration of the phase. 

Although 𝐵𝑃(𝜃,𝐶) has the potential to model pedestrians’ intended waiting times, it is in 

general not flexible enough to accommodate various traffic conditions and the heterogeneity of 

pedestrians. For instance, it is unable to capture the features exhibited in Figure 1. 

 

2.3    Vehicle time headway 

Pedestrian street-crossing behavior is in general the outcome of interaction between 

pedestrians and vehicles. Although many traffic parameters may affect pedestrian crossings 

such as the vehicular speed, the most important factor is the vehicle time headway that 

characterizes the gap between two consecutive vehicles because the vehicular speed is capped 

by a relatively low speed limit in urban areas, especially in city/town centers. The vehicle time 

headway is the elapsed time between the front of the lead vehicle passing a crossing point on 

the street and the front of the following vehicle passing the same point. Because pedestrians 

normally seek an appropriate gap between vehicles for street crossings, the vehicle time 

headway provides a measure of a pedestrian’s opportunity to cross the street during the red-

man phase.   

We define the effective critical headway (ECH) to be the minimum vehicle time headway 

required by a pedestrian to cross safely. In other words, a pedestrian will cross a street only if 

the current vehicle time headway is greater than his/her ECH. Empirical studies have provided 

evidence on the relationship between pedestrian-crossing behavior and the gap between 

vehicles.  In an early study, for instance, Cohen et al. (1955) found that 92% of pedestrians 

crossed the road when the available gap was 7 s; no one crossed when the gap was shorter than 
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1.5 s; and everyone crossed when the gap was 10.5 s or more. More empirical evidence has 

been provided by later research; see Ishaque and Noland (2008) and the references therein. 

Now, let 𝜇 denote the ECH of a pedestrian and ℎ the vehicle time headway. Following the 

previous analysis, the intended waiting time 𝑊 of a pedestrian 𝑃 for a given vehicle time 

headway ℎ during the red-man phase is modeled as: 

 𝑊|(ℎ,𝑃) ~ �𝑓𝐵𝑃
(𝑤;𝜃,𝐶)         𝑖𝑓 ℎ > 𝜇

𝛿(𝑤 − 𝐶)             𝑖𝑓 ℎ ≤ 𝜇   ,      (2) 

where 𝛿(𝑤) is the Dirac delta function. The above model simply says that the pedestrian’s 

intended waiting time 𝑊 during the red-man phase follows 𝐵𝑃(𝜃,𝐶) if the vehicle time 

headway is greater than the ECH; otherwise the pedestrian has to be prepared to wait for up to 

the entire red-man phase. The mathematical expectation of the intended waiting time is:  

 𝐸[𝑊|(ℎ,𝑃)] = �𝐶/(1 + 𝜃)         𝑖𝑓 ℎ > 𝜇
𝐶                         𝑖𝑓 ℎ ≤ 𝜇  .      (3) 

We now model the relationship between the intended waiting time and the vehicle time 

headway. We first define the excess headway as the difference between the actual vehicle time 

headway and the ECH, i.e., ℎ − 𝜇. As mentioned earlier, this quantity plays an important role 

in explaining the variability in waiting time: the higher the level of the excess headway, the 

more likely that the pedestrian will cross the street (Cohen et al., 1955). To establish a 

quantitative link between the excess headway and the intended waiting time, we note that 

𝐵𝑃(𝜃,𝐶) belongs to the exponential distribution family (see, e.g., McCullagh and Nelder, 

1989): 

 𝑓𝐵𝑃(𝑤;𝜃,𝐶) = (1/𝐶)exp {𝜃𝑙𝑜𝑔 �1 − 𝑤
𝐶
� + log(𝜃) − 𝑙𝑜𝑔 �1 − 𝑤

𝐶
�}   for 0 ≤ 𝑤 ≤ 𝐶, 

with the mean function 𝜕{− log(𝜃)}/𝜕 𝜃 = −1/𝜃. We thus use a generalized linear model to 

approximate the complicated relationship and relate the parameter 𝜃 to the attribute, the excess 

headway ℎ − 𝜇, via the natural link function so that the variability of the waiting time can be 

explained using the excess headway: 𝜃 = 𝛼 + 𝛽max (ℎ − 𝜇, 0), where 𝛼  is the intercept and  𝛽 
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is the coefficient of the attribute. In this paper, the coefficient 𝛽 is termed the sensitivity 

coefficient for the excess headway ℎ − 𝜇. Clearly, it takes only a positive value. Furthermore, 

from Eq. (3) we find that 𝛼 = 0 as 𝐸[𝑊|(ℎ,𝑃)] = 𝐶 for ℎ ≤ 𝜇. Therefore, the above 

generalized linear model reduces to 𝜃 = 𝛽max (ℎ − 𝜇, 0). Model (2) is thus rewritten as  

 𝑓𝑊(𝑤|(ℎ,𝑃)) =  �[𝛽max (ℎ − 𝜇, 0)/𝐶](1 − 𝑤/𝐶)𝛽max (ℎ−𝜇,0)−1      𝑖𝑓 ℎ > 𝜇
 𝛿(𝑤 − 𝐶)                                                                      𝑖𝑓 ℎ ≤ 𝜇

     (4) 

for 0 ≤ 𝑤 ≤ 𝐶. The conditional expectation of the intended waiting time can be written as a 

unified form: 𝐸[𝑊|(ℎ,𝑃)] =  𝐶/{1 + 𝛽max(ℎ − 𝜇, 0)}. As expected, it decreases as the 

excess headway increases. We also note that the model 𝜃 = 𝛽max (ℎ − 𝜇, 0) indicates that 𝜃 

can be greater (or less) than unity, and hence the probability density (1) is strictly decreasing 

(increasing) if: (a) the sensitivity coefficient is large (small) for a given excess headway; or (b) 

the excess headway level is high (low) for a given pedestrian. 

There are many sophisticated statistical models for vehicle time headway. In particular, 

Cowan (1975) proposed a widely used model for the vehicle time headway in which the 

vehicle headway 𝐻 is assumed to include two components, 𝐻 = 𝜏 + 𝑇. The constant 𝜏 is the 

“tracking or following” component, representing the minimum time difference between the 

lead vehicle and the following vehicle passing the same point. The random variable 𝑇 is the 

“free” component, assumed to follow an exponential distribution: 𝑇~𝐸𝑥𝑝(𝜆, 𝜏). The p.d.f. of 

the vehicle time headway in Cowan’s model is  

 𝑓𝐻(ℎ) =  𝑝𝛿(ℎ − 𝜏) + (1 − 𝑝)𝜆−1exp {−(ℎ − 𝜏)/𝜆}  for ℎ ≥ 𝜏,  (5) 

where 𝑝 is the proportion of vehicles associated with the “tracking” component.  

 

2.4    Waiting time model for given pedestrian 



 11  

Now we turn to consider pedestrians. The existing studies in the literature classify 

pedestrians into categories; the pedestrians in different categories behave differently for street 

crossings during the red-man phase.  

In this paper we follow this approach and classify pedestrians into two broad categories, 

risk averse and risk taking, according to whether or not the ECH is greater than the minimum 

headway. Risk-averse pedestrians have a higher average level of ECH, so they tend to wait 

until they are sure it is safe to cross. This category includes those who tend not to trade safety 

with time and those who have less mobility. Keegan and O’Mahony (2003) found that 20% of 

the pedestrians in their survey always waited. Hamed (2001) showed that a pedestrian’s past 

involvement in a traffic accident seems to prevent him/her from accepting higher risk. Ahuja et 

al. (2005) noted that pedestrians are more law-abiding at traffic signals if they are accompanied 

by children or their mobility is impaired or they have heavy luggage. On the other hand, risk-

taking pedestrians have a lower average level of ECH, so they tend to cross the street whenever 

possible. This category includes individuals who value their time highly and thus tend to take 

risks during street crossings. For instance, most commuters fall into this category. Hamed 

(2001) reported that pedestrians who frequently use a certain crossing and who live nearby are 

likely to reduce their waiting times by accepting higher risk. Younger and/or male pedestrians 

also tend to be risk-takers (Oxley et al., 1997; Hamed, 2001; Tiwari et al., 2007). Note that, as 

shown in Cohen et al. (1955), depending on the nature of traffic and in particular the minimum 

headway, a pedestrian can be risk-averse in one scenario and risk-taking in another. We assume 

that pedestrians from different categories also have different levels of the sensitivity coefficient  

𝛽 for a given level of excess headway: risk-taking pedestrians are more sensitive than risk-

averse pedestrians and thus are more likely to cross the street unsafely. 

Now we take into account both the traffic conditions and the pedestrian characteristics to 

model the intended waiting time. We first note that model (2) is a distributional model of the 
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waiting time, conditional on given time headway and given pedestrian type. Hence, we will 

employ a useful method in statistics, statistical unconditioning, to work out the unconditional 

distribution from conditional distribution (4) so that the resulting distribution applies to all time 

headways and pedestrians. Technically, we integrate the waiting-time distribution (2) over the 

distribution of headway distribution (5). This leads to the following waiting-time distribution:  

 𝑓𝑊(𝑤|𝑃) = ∫ 𝑓𝑊(𝑤|(ℎ,𝑃))𝑓𝐻(ℎ)𝑑ℎ+∞
𝜏 ,       (6) 

where 𝑃 is an indicator of the pedestrian type with two nominal levels, RT (risk-taking) and 

RA (risk-averse). Let 𝜇𝑅𝑇 and 𝜇𝑅𝐴 denote the ECH of risk-taking and risk-averse pedestrians, 

and 𝛽𝑅𝑇 and 𝛽𝑅𝐴 the corresponding sensitivity coefficients for the excess headway. The 

following theorem gives a model of intended waiting time for risk-taking pedestrians. 

 

Theorem 1. Let 𝜏 denote the minimum vehicle time headway. For risk-taking pedestrians with 

the ECH 𝜇𝑅𝑇 ≤ 𝜏 and sensitivity coefficient 𝛽𝑅𝑇,  the cumulative distribution function (c.d.f.) 

of the intended waiting time is a mixture of two component distributions: 

 𝐹𝑊(𝑤|𝑃 = 𝑅𝑇) = (1 − 𝑝)𝐹1(𝑤) + 𝑝𝐹2(𝑤)   for  0 ≤ 𝑤 ≤ 𝐶,   

where 𝐹2(𝑤)=1 − (1 − 𝑤/𝐶)𝛽𝑅𝑇(𝜏−𝜇𝑅𝑇), 𝐹1(𝑤) = 1 − �1 − 𝑤
𝐶
�
𝛽𝑅𝑇(𝜏−𝜇𝑅𝑇)

{1 − 𝜆𝛽𝑅𝑇 ln �1 −

𝑤
𝐶
�}−1, and 𝑝 is the proportion of vehicles associated with the “tracking” component and 𝜆 is 

the average headway of the “free” component in the headway model (5). 

 

See the Appendix for proof. As it can be seen from the proof of Theorem 1, 𝐹2(𝑤) and 

𝐹1(𝑤) in Theorem 1 describe the probabilities that risk-taking pedestrians cross the street when 

the headway is at the minimum level 𝜏 and when the gap is larger respectively.  

Likewise, for risk-averse pedestrians, we can obtain: 
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Theorem 2. Let 𝜏 denote the minimum vehicle time headway. For risk-averse pedestrians with 

the ECH 𝜇𝑅𝐴 > 𝜏 and sensitivity coefficient 𝛽𝑅𝐴, the cumulative distribution function (c.d.f.) 

of the intended waiting time is a mixture of two component distributions: 

 𝐹𝑊(𝑤|𝑃 = 𝑅𝐴) = (1 − 𝑞)𝐹3(𝑤) + 𝑞𝐹4(𝑤)       for 0 ≤ 𝑤 ≤ 𝐶,   

with 1 − 𝑞  = (1 − 𝑝)exp {−(𝜇𝑅𝐴 − 𝜏)/𝜆}, 𝐹3(𝑤) = �1 − 𝜆𝛽𝑅𝐴 ln �1 − 𝑤
𝐶
��

−1
, and  𝐹4(𝑤) =

𝐼([𝐶, +∞)), where 𝐼(𝑆) is an indicator function for a set 𝑆 that is equal to 1 if 𝑤 ∈ 𝑆 and 0 

otherwise. 𝑝 and 𝜆 are the proportion of vehicles associated with the “tracking” component and 

the average headway of the “free” component in the headway model (5) respectively. 

 

The derivation of equation in Theorem 2 is given in the Appendix. Theorem 2 shows that 

the first component of the distribution, 𝐹3(𝑤), characterizes the probability that risk-averse 

pedestrians seek an opportunity to cross the street, whereas the second component, 𝐹4(𝑤), 

describes the probability that risk-averse pedestrians are willing to wait for the entire red-man 

phase.  Hence, for risk-averse pedestrians, 𝐹𝑊(𝑤|𝑃 = 𝑅𝐴) is in general a J-shaped distribution.  

  

2.5    Model for intended waiting time 

In the previous subsection we investigated street-crossing behavior for different pedestrian 

types. We now consider a general population that consists of both risk-taking and risk-averse 

pedestrians. Let 𝜋 = Pr {𝑟𝑖𝑠𝑘 𝑡𝑎𝑘𝑖𝑛𝑔} denote the proportion of risk-taking pedestrians, and 

thus 1 − 𝜋 = Pr {𝑟𝑖𝑠𝑘 𝑎𝑣𝑒𝑟𝑠𝑒} is the proportion of risk-averse pedestrians. From the total 

probability theorem, we obtain the following c.d.f. of intended waiting time that is a mixture of 

four component distributions: 

 𝐹𝑊(𝑤) = Pr {𝑊 < 𝑤} = 𝜋𝐹𝑊(𝑤|𝑃 = 𝑅𝑇) + (1 − 𝜋)𝐹𝑊(𝑤|𝑃 = 𝑅𝐴) 

 = 𝑟1𝐹1(𝑤) + 𝑟2𝐹2(𝑤) + 𝑟3𝐹3(𝑤) + 𝑟4𝐹4(𝑤)      (7) 

with 𝑟1 = 𝜋(1 − 𝑝), 𝑟2 = 𝜋𝑝, 𝑟3 = (1 − 𝜋)(1 − 𝑞), and 𝑟4 = (1 − 𝜋)𝑞.  
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In practice, the traffic conditions and the layout of intersections vary, and hence it is not 

unusual that one or more components are absent in model (7). For example, if risk-averse 

pedestrians are very cautious and 𝜇𝑅𝐴 is relatively large compared to the minimum headway 𝜏, 

then   𝑞 = 1 − (1 − 𝑝)exp{−(𝜇𝑅𝐴 − 𝜏)/𝜆} is close to 1. Consequently, the third component is 

absent and all risk-averse pedestrians tend to wait for the green-man signal. 

We note that in the literature the classification of pedestrians varies from study to study. 

For instance, Keegan and O’Mahony (2003) classified pedestrians into two categories, “waiter” 

and “walker,” according to whether or not they wait for the green-man signal. On the other 

hand, Liu et al. (2000) and Yang et al. (2006) classified pedestrians into “law-obeying” and 

“opportunistic”. Clearly, the category of “waiter” or “law-obeying” corresponds to only the 

fourth component of model (7), and the category of “walker” or “opportunistic” includes the 

remaining three components.  

On the basis of the previous analysis, we see that the four components of model (7) result 

from the interaction between pedestrians and vehicles, where each component describes the 

probability that a risk-taking or risk-averse pedestrian crosses the street during the red-man 

phase in the scenario of either the minimum headway or a larger gap, as illustrated by the 

following 2×2 classification table. 

 

(Table 1 is here) 

 

Hence, model (7) is able to differentiate different sub-types of “walker.” This is of practical 

interest because different pedestrian types have different implications for pedestrian safety. 

 

3.  Model properties and statistical inference 

 
3.1    General class of model for pedestrians’ waiting times 



 15  

The model developed in the previous section belongs to a more general class of model for 

bounded waiting times. To show this, we define a distribution family having a c.d.f. of 

𝐺(𝑤;𝐴,𝐵,𝐶) with parameters 𝐴 ≥ 0, 𝐵 ≥ 0: 

 𝐺(𝑤;𝐴,𝐵,𝐶)  = 1 − �1 − 𝑤
𝐶
�
𝐴

{1 − 𝐵 ln �1 − 𝑤
𝐶
�}−1   if    𝑤 ∈ [0,𝐶]. 

This distribution family includes the bounded Pareto distribution as a special case when 𝐵 = 0. 

It is easy to show the following limiting cases for this distribution family. 

 

Theorem 3. The c.d.f 𝐺(𝑤;𝐴,𝐵,𝐶) approaches  

(i) the degenerate distribution at 𝑤 = 0 if either parameter 𝐴 becomes sufficiently large but 𝐵 

is fixed at a given value, or  𝐵 becomes sufficiently large but 𝐴 is fixed at a given value;  

(ii) the degenerate distribution at 𝑤 = 𝐶 if 𝐴 becomes sufficiently small and 𝐵 = 0. 

 

From part (ii) of Theorem 3, 𝐺(𝑤;𝐴, 0,𝐶) approaches the fourth component of (7) as 

parameter 𝐴 becomes sufficiently small. Hence, the distribution of intended waiting time 

developed in the previous section can be written as a more general mixture of four component 

distributions that belong to the same distribution family: 

 𝐹𝑊(𝑤) 

      = 𝑟1𝐺(𝑤;𝐴𝑅𝑇 ,𝐵𝑅𝑇 ,𝐶) + 𝑟2𝐺(𝑤;𝐴𝑅𝑇 , 0,𝐶) + 𝑟3𝐺(𝑤; 0,𝐵𝑅𝐴,𝐶) + 𝑟4𝐺(𝑤;𝐴𝑅𝐴, 0,𝐶), (8) 

where 𝐴𝑅𝑇 =  𝛽𝑅𝑇(𝜏 − 𝜇𝑅𝑇), 𝐵𝑅𝑇 = 𝜆𝛽𝑅𝑇 and  𝐵𝑅𝐴 = 𝜆𝛽𝑅𝐴. 𝐴𝑅𝐴 is a parameter to ensure the 

fourth component is a continuous distribution. These parameters satisfy the constraints 

𝐵𝑅𝑇 > 𝐵𝑅𝐴 and 𝐴𝑅𝑇 > 𝐴𝑅𝐴.  

Theorem 3 also leads to a couple of other important scenarios that are of interest in 

practice. First, from Theorem 3(i), when 𝐴𝑅𝑇 becomes large, the waiting-time distribution 

𝐹𝑊(𝑤|𝑃 = 𝑅𝑇) for risk-taking pedestrians reduces to the degenerate distribution at 𝑤 = 0. In 

practice, this corresponds to the scenario where the minimum headway is large and almost all 
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risk-taking pedestrians cross the street immediately after arriving. Secondly, when 𝐵𝑅𝑇 

becomes large but 𝐴𝑅𝑇 is fixed, the intended waiting-time distribution 𝐹𝑊(𝑤|𝑃 = 𝑅𝑇) reduces 

to a mixture of the degenerate distribution at 𝑤 = 0 and a bounded Pareto distribution 

𝐺(𝑤;𝐴𝑅𝑇 , 0,𝐶). This corresponds to the scenario where the average vehicle time headway of 

the “free” component is large and/or risk-taking pedestrians are very sensitive to larger gaps 

between vehicles. In this case the pedestrians associated with the first component 𝐹1(𝑤) tend 

to cross the street immediately after arriving.  Consequently, 𝐹𝑊(𝑤|𝑃 = 𝑅𝑇) is likely an L-

shaped distribution.  

 

3.2    Summary statistics  

In practice, it usually helps to use a few numerical values to summarize the information 

contained in a distribution. For single-modal symmetric distributions such as normal 

distributions, the mean and standard deviation are the most commonly used summary statistics. 

For U-shaped distributions, however, these summary statistics could be misleading sometimes 

(see, e.g., Lachenbruch, 2002).  

For the mixture distribution (8), we advocate providing summary information for each 

individual component because each component represents a specific group of pedestrians. We 

suggest using the median 𝑤0.5 as a measure of centrality and the interquartile range 

𝑤0.75−𝑤0.25 as a measure of dispersion, where for a continuous c.d.f.  𝐻(𝑤), the quartile 𝑤𝑠 is 

defined to be the value such that 𝐻(𝑤𝑠) = 𝑠 for a value of 𝑠 ∈ (0,1). Both the median and the 

interquartile range are robust statistics and are particularly useful for skewed distributions.  

We now consider the c.d.f. 𝐺(𝑤;𝐴,𝐵,𝐶). To solve the equation 𝐺(𝑤𝑠;𝐴,𝐵,𝐶) = 𝑠 for 𝑤𝑠, 

let 𝑦 = �1 − 𝑤𝑠
𝐶
�
𝐴

. Then we obtain   

 𝑦 = (1 − 𝑠)[1 − (𝐵/𝐴) ln(𝑦)].                 (9) 
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It is easy to show that (9) has a unique root 𝑦𝑠 ∈ [1 − 𝑠, 1] that can be calculated using any 

simple numerical method. The quartile is thus given by 𝑤𝑠 = 𝐶(1 − 𝑦𝑠
1/𝐴).  

Some special cases follow immediately. First, for the second component 𝐺(𝑤;𝐴𝑅𝑇 , 0,𝐶), it 

is straightforward to obtain the quartile 𝑤𝑠
(2) = 𝐶[1 − (1 − 𝑠)1/𝐴𝑅𝑇]. Likewise, for the fourth 

component we have 𝑤𝑠
(4) = 𝐶�1 − (1 − 𝑠)1/𝐴𝑅𝐴�. In particular, 𝑤𝑠

(4) = 𝐶 as 𝐴𝑅𝐴 becomes 

sufficiently small. For the third component 𝐺(𝑤; 0,𝐵𝑅𝐴,𝐶) we can obtain 𝑤𝑠
(3) =

𝐶 �1 − exp �− 𝑠
𝐵𝑅𝐴(1−𝑠)��. The following theorem shows the relationships between the medians 

of the individual components. 

 

Theorem 4. For the mixture distribution (8) with 𝐴𝑅𝑇 > 𝐴𝑅𝐴 and 𝐵𝑅𝑇 ≥ 𝐵𝑅𝐴, the medians 𝑤0.5
(𝑖) 

(i=1,…,4) of the components satisfy: (i) 0 ≤ 𝑤0.5
(1) ≤ 𝑤0.5

(2) ≤ 𝑤0.5
(4) ≤ 𝐶 ; (ii) 0 ≤ 𝑤0.5

(1) ≤

𝑤0.5
(3) ≤ 𝐶 . 

 

From Theorem 4 we have 𝑤0.5
(1) + 𝑤0.5

(2) ≤ 𝑤0.5
(3)+𝑤0.5

(4).  Hence, on average, risk-taking 

pedestrians have a smaller intended waiting time than do risk-averse pedestrians. We define the 

overall average waiting time to be 𝑤0.5 = ∑ 𝑟𝑖𝑤0.5
(𝑖)4

𝑖=1 . 

 

3.3    Model estimation and selection 

We note that model (7) is a mixture of continuous and discrete components that can cause 

problems in statistical inference. Two simple solutions are available to circumvent the 

problems. First, we can replace (7) with the more general model, Eq. (8), for which all the 

components are continuous. This approach is useful for theoretical analysis.  
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An alternative approach is to follow a commonly used approach in data analysis and to use 

a discretized version of Eq. (7) (see, e.g., Zucchini and MacDonald, 2009, pp. 10). This is 

particularly preferable when the limiting cases occur and some components converge to a 

degenerate distribution. For instance, when 𝐵𝑅𝑇 is large and 𝐴𝑅𝐴 is small, the first component 

reduces to a degenerate distribution (see Theorem 3). We can thus use a discretized probability 

mass function for the intended waiting time: 

 Pr (𝑊 = 𝑡𝑗) 

      = 𝑟1 𝐼�{𝑡𝑗 = 0}� + 𝑟2𝑝�𝑡𝑗;𝐴𝑅𝑇 , 0,𝐶� + 𝑟3𝑝(𝑡𝑗; 0,𝐵𝑅𝐴,𝐶) + 𝑟4𝐼({𝑡𝑗 = 𝐶})   (j=1,…,K),    

              (10) 

where 𝑝�𝑡𝑗;𝐴,𝐵,𝐶� = 𝐺�𝑡𝑗+1;𝐴,𝐵,𝐶� − 𝐺�𝑡𝑗;𝐴,𝐵,𝐶� is the probability mass function that is 

discretized from 𝐺(𝑤;𝐴,𝐵,𝐶) with 𝑡𝐾+1 = +∞. 𝐼({𝑡 = 𝑎}) is the indicator function at 𝑡 = 𝑎, 

i.e., it is equal to 1 if 𝑡 = 𝑎; and zero otherwise.  

Usually parameter identifiability can be an issue for mixture distributions of discrete 

components. We note, however, the second and third components in model (10) are not 

discrete distributions but rather they are continuous distributions discretized at pre-specified 

intervals. The major difference between a genuine discrete distribution and the discretized 

continuous distributions lies in the fact that the latter depend on only a few parameters rather 

than a number of point mass probabilities. In addition, the constraints 𝐵𝑅𝑇 > 𝐵𝑅𝐴 and 𝐴𝑅𝑇 >

𝐴𝑅𝐴 can help address the issue of identification.  

We next consider the data for statistical inference. The data collected usually contain a 

substantial number of censored values because the observation of intended waiting times is 

often interrupted by the green-man signal. Specifically, if this signal appears before a 

pedestrian crosses, the observation of the intended waiting time is considered censored (Tiwari 

et al., 2007), and the only information available is that the waiting time is longer than the 

observed duration. Hence, a random sample of n pedestrians includes n observations, and each 
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is characterized by a data pair {�𝑤𝑗, 𝑐𝑗�}, where 𝑤𝑗 is the observed actual waiting time of 

pedestrian j, defined to be the time difference between arriving at the crossing point during the 

red-man phase and leaving the curb. 𝑐𝑗 is the corresponding indicator, with 𝑐𝑗 = 0 if the time 

that pedestrian j is willing to wait is observed, and 𝑐𝑗 = 1 if the observation is interrupted by 

the green-man signal.  

Because of the nature of the mixture model, it is convenient to employ the EM algorithm 

for statistical inference. The EM algorithm has long been used in the literature of transport and 

traffic studies. An early application is the estimation of intersection origin-destination matrices 

(Nihan and Davis, 1989). Li (2005) investigated the estimation of general transport-network 

origin-destination matrices using the EM algorithm.  

Specifically, consider a mixture model with m component distributions, 𝑓(𝑤) =

∑ 𝑟𝑖𝑓𝑖(𝑤,𝛟)𝑚
𝑖=1 , where each component has a p.d.f.  𝑓𝑖(𝑤;𝛟) and c.d.f. 𝐹𝑖(𝑤;𝛟)  (i=1,…,m), 

and vector  𝛟 includes all the parameters of the component distributions. Let 𝐫 = [𝑟1, … , 𝑟𝑚]𝑇 

be the vector of weights. For model (8), for instance, 𝑚 = 4  and 𝛟 = [𝐴𝑅𝑇 ,𝐵𝑅𝑇,𝐴𝑅𝐴,𝐵𝑅𝐴]𝑇. 

We introduce the following unobserved data to represent which particular sub-population that 

each observation {�𝑤𝑗, 𝑐𝑗�}  arose from: 𝐳𝑗 = [𝑧𝑗1, … , 𝑧𝑗𝑚]𝑇, where 𝑧𝑗𝑖 is one (or zero) 

according as whether the corresponding waiting-time observation {�𝑤𝑗 , 𝑐𝑗�}   arose (or did not 

arise) from the ith component of the mixture (i=1,…,m). The complete data 𝐱𝑗 include both the 

observed data {�𝑤𝑗, 𝑐𝑗�}  (also termed incomplete data) and the unobserved data 𝐳𝑗𝑇, i.e.  

𝐱𝑗 = {𝑤𝑗 , 𝑐𝑗, 𝐳𝑗𝑇}  (j=1,…,n). The complete-data log likelihood for  𝛟 and 𝐫 is: 

 𝑙𝑜𝑔𝐿(𝛟, 𝐫) = ∑ ∑ 𝑧𝑗𝑖𝑅𝑖(𝑤𝑗,𝛟)𝑛
𝑗=1

𝑚
𝑖=1 , 

where 𝑅𝑖�𝑤𝑗;𝛟� = �1 − 𝑐𝑗�𝑙𝑜𝑔𝑓𝑖�𝑤𝑗;𝛟� + 𝑐𝑗𝑙𝑜𝑔[1 − 𝐹𝑖�𝑤𝑗;𝛟�].  

The EM algorithm includes a number of iterations, each consisting of two steps, the 

Expectation step (E-step) and Maximum step (M-step). Following McLachlan and Krishnan 
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(2008), it is easy to show that the E-step simply requires replacing 𝑧𝑗𝑖 by their corresponding 

conditional expectations,  𝑧𝑗𝑖
(𝑘) = 𝑟𝑖

(𝑘)𝑅𝑖�𝑤𝑗;𝛟(𝑘)�

∑ 𝑟𝑙
(𝑘)𝑅𝑙�𝑤𝑗;𝛟(𝑘)�4

𝑙=1
 , where 𝛟(𝑘) and 𝐫(𝑘) denote the values of 

𝛟 and 𝐫 at the kth iteration. We use a variant of the EM algorithm in the paper, ECM 

(Expectation Conditional Maximization), in which the M-step includes a couple of conditional 

maximization (CM) steps: each block of parameters, 𝛟 or 𝐫, is maximized individually, 

conditionally on the other parameters remaining fixed. See McLachlan and Krishnan (2008) for 

a detailed description of the EM algorithm and its extensions. 

There are several methods that can be used to derive the standard errors of the estimated 

parameters in the mixture model. One commonly used method is to approximate the standard 

errors using the inverse of the observed information matrix related to the incomplete data 

likelihood. This likelihood can derived directly using the mixture distribution 𝑓(𝑤) =

∑ 𝑟𝑖𝑓𝑖(𝑤,𝛟)𝑚
𝑖=1  based on the incomplete data {�𝑤𝑗 , 𝑐𝑗�}. There are also some other methods 

available such as the supplemented EM algorithm or using a bootstrap approach. See, e.g., 

Zucchini and MacDonald (2009, Section 3.6), for a detailed discussion.   

In practice, there may exist several competing models for which one or more components 

are absent, and we want to choose one model among the others. Two commonly used criterions 

for model selection are AIC and BIC. The BIC criterion penalizes models with a higher 

number of parameters more severely than AIC. In addition, the BIC will select with probability 

1 the true model (assuming it is in the class of models considered) as sample size becomes 

large, while AIC will tend to choose more complex models (see, e.g. Hastie et al., 2009). We 

use BIC for model selection in this paper. 

 

4.  Empirical study  
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To illustrate the proposed model, we return to the field data discussed in Section 1 and 

undertake an empirical analysis using the EM algorithm discussed in Section 3.  

The intersection chosen for the analysis is located in a busy area of a Chinese metropolitan 

city, Kunming. It has four arms, with two major roads (Renmin Road East and Baita Road) 

crossing. Around the intersection are a theater, a number of small shops, and several residential 

areas. The pedestrian-crossing behavior was observed at a crossing point of the north arm of 

the intersection. The intersection was signalized with the standard three-phase cycle. 

Data were collected on two consecutive weekend days from 10:00 a.m. to 12:00 noon and 

2:00 p.m. to 4:00 p.m. During the observation period the total duration of the traffic-light cycle 

was 110 s, and the duration of the red-man phase was 75 s. For each pedestrian in the sample, 

we recorded the actual waiting time during the red-man phase, and whether the pedestrian 

crossed the street in the red-man phase or waited until the green signal showed. We also 

recorded other information about the pedestrians, including the gender and age group (young, 

middle-aged, and elderly). The separation into age groups was based on best-effort guesses on 

the part of the observer. In total, 283 valid observations were included in the following 

analysis. Table 2 displays the percentages of the pedestrians in the different categories.  

 

(Table 2 is here) 

 

Initially, we considered the general 4-component model (8), but we found that the 3-

component model below would suffice since it had the same likelihood value of -567.3 but a 

smaller BIC of 1162.9 (as opposed to1174.1 for the 4-component model): 

 𝐹𝑊(𝑤) = 𝑟1𝐺(𝑤;𝐴𝑅𝑇 ,𝐵𝑅𝑇 ,𝐶) + 𝑟2𝐺(𝑤;𝐴𝑅𝑇 , 0,𝐶) + 𝑟4𝐺(𝑤;𝐴𝑅𝐴, 0,𝐶).  (11) 

Two observations immediately follow from model (11). First, because the third component of 

model (8) is absent here, it suggests that the risk-averse pedestrians’ ECH was large so that 
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almost all of the risk-averse pedestrians were willing to wait for the full red-man phase. This is 

in line with our observation during the data collection that the traffic was heavy and the vehicle 

time headway was relatively small. Second, during the data analysis it was observed that the 

estimate of parameter 𝐵𝑅𝑇 was very large and the estimate of parameter 𝐴𝑅𝐴 was very small, 

suggesting that the first and the last components in (11) converged to the degenerate 

distribution at 𝑤 = 0 and the degenerate distribution at 𝑤 = 𝐶 respectively. Hence, we 

considered a discretized 3-component model in the subsequent analysis: 

 Pr (𝑊 = 𝑗) = 𝑟1 𝐼(𝑗 = 0) + 𝑟2𝑝(𝑗;𝐴𝑅𝑇 , 0,𝐶) + 𝑟4𝐼(𝑗 = 𝐶)    (j=0,…,75).    (12) 

The results are summarized in Table 3 (the first panel). It can be seen from Table 3 that 

about 13.8% (with standard error of 5.7%) of the pedestrians intended to cross the street 

immediately after arriving at the crossing point during the red-man phase. About 50.6% (with 

standard error of 6.2%) of the pedestrians were willing to wait for the entire phase. The 

remaining 35.6% (with standard error of 3.3%) of the pedestrians initially waited and then 

found an acceptable gap and crossed. The median intended waiting time for this pedestrian 

type was 28.8 s. The overall average intended waiting time including all three components was 

48.2 s.  

 

(Table 3 is here) 

 

To assess the performance of the model in terms of fitting the data, we conducted a 

goodness-of-fit test. For this end, the duration of the red-man phase was split into seven sub-

intervals as displayed in Figure 1, i.e. [0, 10), [10, 20), [20, 30), [30, 40), [50, 60), and [60, 75]. 

The observed frequencies 𝑂𝑖  and the expected frequencies 𝐸𝑖 (i=1,…,7) obtained using model 

(12) in the sub-intervals were compared: 

 𝑋2 = ∑ (𝑂𝑖 − 𝐸𝑖)2/7
𝑖=1 𝐸𝑖. 
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The calculated test statistic was 𝑋2 =3.51. Asymptotically 𝑋2 follows the chi-square 

distribution with the degrees of freedom 7-3-1=3, so the critical value at the 5% significance 

level is 7.81. Hence model (12) was not rejected at the 5% level.  

Next, to investigate how different pedestrian types perceived the risk associated with street 

crossings, we undertook data analysis for each age group using model (12). The results are 

displayed in Table 3 (the second to fourth panels). It can be seen that: 

(a) The estimate of  𝑟4 increases with age. This suggests that senior pedestrians are more 

likely to wait for the entire red-man phase. 

(b) The estimate of  𝑟1 decreases with age. This suggests that more young pedestrians 

intended to cross the street immediately after arriving at the crossing point during the 

red-man phase. 

(c) The overall average intended waiting time increased with age. 

These findings suggest that young pedestrians tend to be risk-takers whereas senior 

pedestrians are more risk-averse. This is understandable because a pedestrian’s decision on 

street crossings is a trade-off between safety and time-saving, subject to his/her mobility. Most 

senior pedestrians in Chinese metropolitan cities are retired, so their safety is usually more 

important than time saving. Moreover, elderly pedestrians are often less mobile, so they tend 

not to accept smaller gaps between vehicles. 

In addition, the data analysis was also performed separately for male and female 

pedestrians, and the results are displayed in Table 3 (the last two panels). It can be seen that 

more females (52.7% with standard error of 8.9%) than males (46.9% with standard error of 

8.6%) were willing to wait for the entire red-man phase. In addition, fewer females (11.5% 

with standard error of 8.8%) than males (15.7% with standard error of 7.7%) intended to cross 

the street immediately after arriving at the crossing point during the red-man phase. The overall 
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average intended waiting time of the females (54.7 s) was longer than that of the males (43.0 

s), indicating that the crossing behavior of females was less aggressive.  

The above analyses for different gender groups were not adjusted for the factor ‘age’, 

hence potentially the differences exhibited for different sexes could be due to the distribution 

for ‘age’, i.e., the more aggressive behavior of the male pedestrians might be explained purely 

in terms of ‘age’ if the females were older than the males. Referring to Table 2, however, there 

is no evidence that the female pedestrians in the data were older than the males.  

 

5.   Concluding remarks  

 

This paper has investigated the statistical modeling of pedestrians’ intended waiting times 

for street crossings at signalized intersections. In the literature, the exponential distribution is 

the most commonly used model for waiting time. For pedestrian crossings at signalized 

intersections, however, the pedestrians’ intended waiting times are bounded by the duration of 

the red-man phase of the traffic lights. This fact has an enormous impact on pedestrians’ 

waiting times because for risk-averse pedestrians, empirical studies show that the longer they 

wait, the less likely that they will cross the street during the red-man phase. Clearly the 

exponential distribution is unable to capture such a nature for pedestrian street crossings. 

To accommodate the complex nature of the distribution of intended waiting times, the 

statistical modeling in this paper initially started with a simplified scenario for a particular 

pedestrian under specific traffic conditions. Then we took into account the interaction of 

vehicles and pedestrians via statistical unconditioning. This led to a mixture distribution with 

four components. When the weights of the first and fourth components are large, this 

distribution is U-shaped, showing that in general there are a large proportion of pedestrians 

who cross the street immediately after arriving at the crossing point, and a large proportion of 

pedestrians who are willing to wait for the entire red-man phase. The weights of the 
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components are in general determined by the traffic conditions and pedestrian types, so the 

general U-shaped distribution can sometimes reduce to a J-shaped or L-shaped distribution.  

The proposed model can be used in simulation-based experiments to gain a better 

understanding of the interaction between vehicles and pedestrians, and to evaluate the impact 

of new traffic-light control schemes and roadway-layout redesigns on pedestrian-crossing 

behavior. The model also has important implications for statistical analyses of pedestrian 

crossings. Care must be taken in the analysis of waiting-time related problems because the 

distributions of intended waiting times are in general far from normal.  

In this paper we have focused on univariate analysis in which only one variable, pedestrian 

waiting time, is explicitly modeled. In some risk analyses, a multivariate approach is required 

so that a number of risk factors can be taken into account simultaneously in the analyses. We 

note, however, most existing multivariate approaches are based on the assumption of normal 

distribution or exponential distribution (or its extensions), hence they are not suitable methods 

to analyze the problem here. A fruitful direction for future research would be to develop a 

multivariate modeling approach, on the basis of the model proposed in this paper, for 

pedestrians' waiting times at signalized intersections. 
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Appendix: proofs of theorems 

To simplify the notation, the dependence of 𝜇 and 𝛽 on the pedestrian type is suppressed in 

the proofs of Theorems 1 and 2 below. 

Proof of Theorem 1. From equation (6) we obtain  
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 𝑓𝑊(𝑤|𝑃 = 𝑅𝑇) 

= (1 − 𝑝)∫ 𝑓𝑊(𝑤|(ℎ,𝑃))𝜆−1exp {−(ℎ − 𝜏)/𝜆}𝑑ℎ+∞
𝜏 + 𝑝 ∫ 𝑓𝑊(𝑤|(ℎ,𝑃))𝛿(ℎ − 𝜏)𝑑ℎ+∞

𝜏 . 

Let 𝑓1(𝑤) and 𝑓2(𝑤) denote the integrals of the first and second terms on the right-hand-side 

(RHS) of the above equation respectively. By the definition of function 𝛿(ℎ − 𝜏), it is 

straightforward to obtain 𝑓2(𝑤) = [𝛽(𝜏−𝜇)
𝐶

](1 − 𝑤/𝐶)𝛽(𝜏−𝜇)−1, hence it is a bounded Pareto 

distribution, 𝐵𝑃(𝛽(𝜏 − 𝜇),𝐶). Now we consider 𝑓1(𝑤). Noting 𝜇 ≤ 𝜏, it can be shown by 

some algebra that  

 𝑓1(𝑤) = (𝛽(𝜏 − 𝜇)/𝐶) �1 − 𝑤
𝐶
�
𝛽(𝜏−𝜇)−1

{1 − 𝜆𝛽 ln �1 − 𝑤
𝐶
�}−1 

  +(𝜆𝛽/𝐶) �1 − 𝑤
𝐶
�
𝛽(𝜏−𝜇)−1

�1 − 𝜆𝛽 ln �1 − 𝑤
𝐶
��

−2
. 

The proof is completed by noting that the c.d.f. corresponding to the above density function is  

  𝐹1(𝑤) = 1 − �1 − 𝑤
𝐶
�
𝛽(𝜏−𝜇)

{1 − 𝜆𝛽 ln �1 − 𝑤
𝐶
�}−1. 

 

Remark: Recalling headway distribution (5), we can see that 𝑓2(𝑤) describes the probability 

that risk-taking pedestrians cross the street when the headway is at the minimum level 𝜏, 

whereas 𝑓1(𝑤) characterizes the probability that risk-taking pedestrians wait for a larger gap  to 

cross during the red-man phase.  

 

Proof of Theorem 2. From equation (6) we obtain  

 𝑓𝑊(𝑤|𝑃 = 𝑅𝐴) = ∫ 𝑓𝑊(𝑤|(ℎ,𝑃))[(1 − 𝑝)𝜆−1 exp{−(ℎ − 𝜏)/𝜆} + 𝑝𝛿(ℎ − 𝜏)]𝑑ℎ𝜇
𝜏  

  +∫ 𝑓𝑊(𝑤|(ℎ,𝑃))(1− 𝑝)𝜆−1exp {−(ℎ − 𝜏)/𝜆}𝑑ℎ+∞
𝜇 . 

Note that from equation (4) we have 𝑓𝑊(𝑤|(ℎ,𝑃)) = 𝛿(𝑤 − 𝐶) for  ℎ ≤ 𝜇. Hence, the first 

term of the RHS is the degenerate distribution at 𝑤 = 𝐶 multiplied by a weight which can be 

shown to be  𝑞 = 1 − (1 − 𝑝)exp {−(𝜇 − 𝜏)/𝜆}.  



 27  

On the other hand, by some algebra it can be shown that the second term of the RHS is 

 𝑓3(𝑤) = (𝜆𝛽/𝐶) �1 − 𝑤
𝐶
�
−1
�1 − 𝜆𝛽 ln �1 − 𝑤

𝐶
��

−2
 

multiplied by a weight of 1 − 𝑞 . It is easy to verify that 𝑓3(𝑤) is a probability density function 

with the c.d.f. of  𝐹3(𝑤) = �1 − 𝜆𝛽 ln �1 − 𝑤
𝐶
��

−1
. This completes the proof. 

 

Next, we focus on the proof of Theorem 4 because the proof of Theorem 3 is immediate.  

Proof of Theorem 4. To show part (i), we note that 𝑦0.5 ≥ 0.5 from (9). Hence 𝑤0.5
(1) =

𝐶�1 − 𝑦0.5
1/𝐴𝑅𝑇� ≤ 𝐶�1 − (0.5)1/𝐴𝑅𝑇� = 𝑤0.5

(2). The result of 𝑤0.5
(2) ≤ 𝑤0.5

(4) is obvious from 

𝐴𝑅𝑇 > 𝐴𝑅𝐴. To show part (ii), we note that from 𝐵𝑅𝑇 ≥ 𝐵𝑅𝐴 we have (1 − 2𝑦)/𝐵𝑅𝑇 ≥

−1/𝐵𝑅𝐴. Since the left-hand side is equal to � 1
𝐴𝑅𝑇

� ln (𝑦) from (9), we obtain � 1
𝐴𝑅𝑇

� ln (𝑦) ≥

−1/𝐵𝑅𝐴. This completes the proof by exponenting both sides of the inequality. 
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Table 1. Pedestrians’ crossing probability distributions  

for different pedestrian types and traffic conditions 

 Traffic condition 

Pedestrian type Minimum headway Larger headway 

Risk taking 𝐹2(𝑤) 𝐹1(𝑤) 

Risk averse 𝐹4(𝑤) 𝐹3(𝑤) 

 

 
  



 32  

Table 2. Percentages of the pedestrians in different age and gender groups 

 Young Middle-aged    Elderly 

Male 15.9% 25.8% 11.0% 

Female 19.1% 20.4% 7.8% 
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Table 3. Parameter estimates of the three-component pedestrian waiting-time model (12) 

 All age/gender groups   (average waiting time=48.2 s) 
Parameter 𝐴𝑅𝑇 𝑟1 𝑟2 𝑟4 
Estimate 1.429 0.138     0.356 0.506 
Standard error  0.155 0.057 0.033 0.062 
     
 Young  pedestrians   (average waiting time =44.3 s) 
Parameter 𝐴𝑅𝑇 𝑟1 𝑟2 𝑟4 
Estimate 1.294 0.196 0.364 0.440 
Standard error 0.216 0.103 0.054 0.108 
     
 Middle-aged pedestrians   (average waiting time =47.5 s) 
Parameter 𝐴𝑅𝑇 𝑟1 𝑟2 𝑟4 
Estimate 1.357 0.122 0.407 0.471 
Standard error  0.218 0.083 0.055 0.090 
     
 Elderly  pedestrians   (average waiting time =57.1 s) 
Parameter 𝐴𝑅𝑇 𝑟1 𝑟2 𝑟4 
Estimate 2.018 0.069 0.240 0.691 
Standard error  0.613 0.128 0.063 0.139 
     
 Male  pedestrians    (average waiting time =43.0 s) 
Parameter 𝐴𝑅𝑇 𝑟1 𝑟2 𝑟4 
Estimate 2.112 0.157 0.374 0.469 
Standard error  0.278 0.077 0.044 0.086 
     
 Female  pedestrians    (average waiting time =54.7 s) 
Parameter 𝐴𝑅𝑇 𝑟1 𝑟2 𝑟4 
Estimate 0.832 0.115 0.358 0.527 
Standard error  0.152 0.088 0.055 0.089 

 

 
  



 34  

 

 

Figure 1. Histogram (left) and empirical distribution function (right) of pedestrians’ 

intended waiting times at an intersection in Kunming. 
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Figure 2. Illustration of 𝐵𝑃(𝜃,𝐶) with 𝐶 = 80 and 𝜃 = 4 (real line), 𝜃 = 0.5 (broken line), 

and 𝜃 = 1 (dotted line). 
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