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State estimation with partially observed inputs:

A unified Kalman filtering approach ?
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Abstract

For linear stochastic time-varying state space models with Gaussian noises, this paper investigates state estimation for the
scenario where the input variables of the state equation are not fully observed but rather the input data is available only at an
aggregate level. Unlike the existing filters for unknown inputs that are based on the approach of minimum-variance unbiased
estimation, this paper does not impose the unbiasedness condition for state estimation; instead it incorporates a Bayesian
approach to derive a modified Kalman filter by pooling the prior knowledge about the state vector at the aggregate level
with the measurements on the output variables at the original level of interest. The estimated state vector is shown to be a
minimum-mean-square-error estimator. The developed filter provides a unified approach to state estimation: it includes the
existing filters obtained under two extreme scenarios as its special cases, i.e., the classical Kalman filter where all the inputs
are observed and the filter for unknown inputs.
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1 Introduction

State space modeling is widely used in various engi-
neering fields. It also plays an important role in econo-
metrics for time series analysis and forecasting (see, e.g.
West and Harrison (1997)) with applications to eco-
nomics, finance, and marketing, such as modeling arbi-
trage pricing and exchange rates (Priestley (1996); Wells
( 2010)), and modeling sales growth and brand aware-
ness (Wierenga (2010)). Recently it has also become a
very popular approach to variable-coefficient regression
modeling in econometrics.

In practice, modeling and decision-making depend on
the availability of data measured on the variables of
interest. The classical Kalman filter, a technique com-
monly used in state space models for rapidly updating
the estimated state vector, considers an extreme scenario
where all the input variables are observed. Recently, con-
siderable attention has also been paid to the other ex-
treme scenario where no input informaiton is available:
a set of recursive formulas has been derived via the ap-
proach of minimum-variance unbiased estimation. See
Darouach and Zasadzinski (1997), Gillins and De Moor
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(2007) and Kitanidis (1987), among many others, for the
recent development.

This paper complements the aforementioned methods
and investigates state estimation when the input vari-
ables in state space models are not fully observed but
rather they are available only at an aggregate level. This
is a problem that has been recognized for a long time
but has not yet been satisfactorily solved. In the litera-
ture there are three commonly used approaches: (a) the
unobserved input variables are assumed to have little
impact on the state variables so they are ignored; (b)
an extra model is stipulated for the unobserved input
variables; (c) the entire state space model is built at the
aggregate level rather than at the level of interest.

For the first approach, the assumption that the unob-
served input variables are ignorable may not be realistic
in applications, and thus it can cause considerably large
modeling errors. For traffic density estimation, for in-
stance, Gazis and Liu (2003) assumed that lane changes
of vehicles were not common and hence lane-change ma-
neuvers, as the inputs of their state space model, were
ignored. As a result, the modeling errors will become
large for the roadways with substantial lane-changes.

With respect to the second approach, one commonly
used method is to treat the unknown inputs as a stochas-
tic process with a known description (known mean and
covariance, for example) or as a constant bias (see, e.g.
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Friedland (1969); Ignani (1990); Zhou et al. (1993)). Be-
cause more assumptions must be imposed, it is in gen-
eral not an ideal solution when little is known about the
input variables. For example, in the study of Australian
state populations in Doran (1996), the net migration ar-
rivals at the individual state level were treated as the
input variables. These input variables, however, are not
directly observed in non-census years. Doran (1996) as-
sumed that they follow an AR(1) process and the coef-
ficients of the AR(1) lags are common for all the states.
Clearly, these assumptions are difficult to validate due
to the lack of data. Kitanidis (1987) also discussed ap-
plications in geophysical and environmental fields where
one cannot make any assumptions about the evolution
of the unknown input variables.

Although the third approach is numerically feasible,
Kalman filtering at an aggregate level may not be able
to provide sufficient information for the problems under
investigation. For instance, some existing studies in traf-
fic studies (e.g., Wang and Papageorgiou (2005)) con-
sider traffic modeling at an aggregate level, the segment
level, where the traffic across all different lanes within
a roadway segment was aggregated and modeled. Con-
sequently, this approach is unable to provide lane-level
traffic information which is crucial for some applications
such as incident detection.

In this paper we assume that the unknown inputs
at the level of interest have substantial impact on the
system and they are not ignorable. In addition, we do not
impose any extra assumptions on the unobserved inputs.
Rather, we will develop a new method that makes use
of the partially observed inputs to estimate the current
state variables at the level of interest.

Although most of the recent studies on state esti-
mation for unknown inputs have used the approach of
minimum-variance unbiased estimation, we will incorpo-
rate a Bayesian approach in this paper. Bayesian analysis
can be used to derive the classical Kalman filter (see, e.g.
West and Harrison (1997)), and it is also a convenient
method for generalizing the classical Kalman filter to
solve more complicated nonlinear and/or non-Gaussian
problems ; see, e.g. the non-Gaussian Kalman filter in Li
(2009) and the particle filter in Simon (2006).

We will show that Bayesian inference is a natural
way to handle partially available input information. Un-
like the existing studies (e.g. Darouach and Zasadzin-
ski (1997); Gillins and De Moor (2007) and Kitanidis
(1987)), there is no need to impose the unbiasedness con-
dition in this paper. We show that under the assumption
of Gaussian noise terms, the developed filter is optimal
in the sense of minimum mean square error within the
class of all estimators having a finite second moment.
The Bayesian approach used in this paper neither makes
any assumptions on the input variables nor directly esti-
mates them at each time point (as did in Gillins and De
Moor (2007), for instance). Instead, the prior knowledge
about the state vector contained in the state equation is
aggregated to the level at which the inputs are observed,
which is then pooled with the current measurements on

the outputs via Bayesian inference so that the estimated
state vector is updated at each time step. We also show
that the resulting recursive formulas provide a unified
filtering approach for the problem where the availability
of the input information ranges from all to nothing. In
particular, it includes the classical Kalman filter (where
all input variables are observed) and the filter for un-
known inputs as its special cases.

2 Problem formulation and examples

2.1 Notation

Consider a linear discrete-time stochastic time-
varying system in the form

xk+1 = Akxk +Gkdk + wk, (1)

yk = Ckxk + vk, (2)

where xk = [x1,k, ..., xn,k]T ∈ Rn is the state vector,
dk = [d1,k, ..., dm,k]T ∈ Rm is the input vector, and
yk = [y1,k, ..., yp,k]T ∈ Rp is the measurement vector
at each time step k. The process noise wk ∈ Rn and
the measurement noise vk ∈ Rp are assumed to be mu-
tually independent, and each follows a Gaussian distri-
bution with zero mean and a known covariance matrix,
Qk = E[wkw

T
k ] > 0 and Rk = E[vkv

T
k ] > 0 respectively.

Following the existing studies, we further assume that
the initial state x0 is independent of wk and vk with a
known mean x̂0 and covariance matrix P0 > 0.

We investigate the scenario where the input vector dk
is not fully observed at the level of interest. Instead some
(or all) input data are available only at an aggregate
level. Specifically, let Dk be a qk×m known matrix with
0 ≤ qk ≤ m and F0k an orthogonal complement of DT

k .
It is assumed that the input data is available only on
some linear combinations Dkdk:

rk = Dkdk, (3)

where rk is observed at each time step k, and no infor-
mation about δk = FT0kdk is available. Hence, δk is as-
sumed to have a noninformative distribution, i.e., it has
a probability density function f(δk) for which all values
of δk are equally likely to occur:

f(δk) ∝ 1. (4)

The matrix Dk characterizes the availability of input
information at each time step k. It includes two extreme
scenarios that are of practical importance: (a) when
qk = 0, Dk is an empty matrix and thus no information
on the inputs is available. This is the scenario investi-
gated in Darouach and Zasadzinski (1997), Gillins and
De Moor (2007) and Kitanidis (1987); (b) when qk = m
and Dk is an identity matrix, it corresponds to the case
that the complete input information is available. This is
the case that the classical Kalman filter applies to. In
some applications, the dimension qk may vary from time
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to time. For instance, in economics and many other so-
cial sciences, the input data may be available at a micro-
scopic level during census years but only at an aggregate
level during non-census years.

To illustrate the scenario that input variables are par-
tially observed, two examples are considered below, both
involving a state equation of the following form:

xi,k+1 = xi,k + d̃i,k + ui,k + wi,k. (5)

2.2 Estimation of Australian state populations

The study in Doran (1996) considered using the state
space equation (5) to characterize the dynamic nature
of the evolution of Australian state populations, where
xi,k represents the population of state (or territory) i in
year k, ui,k is the observed natural increase (births minus

deaths), and wi,k is the corresponding error term. d̃i,k
is the net migration arrivals in state i in year k. In non-
census years the net migration arrivals are observed only
at the national level. Hence, it is the linear combination
of the net migration arrivals of the individual states,∑n
i=1 d̃i,k, that is available. Now we define the input

variables to be di,k = d̃i,k+ui,k. So for this problem, the
individual input variables di,k (i = 1, ..., n) in non-census
years are observed only at an aggregate level (national
level) and the matrixDk in equation (3) is a row-vector of
ones, whereas in census years all inputs di,k (i = 1, ..., n)
are observed so Dk is an identity matrix.

2.3 Estimation of traffic densities

Intelligent transport systems for traffic surveillance
require some fundamental information including traffic
density. Traffic density is defined as the number of vehi-
cles that occupy one unit length of road space per lane.
Here we focus on a road segment with n lanes that is a
detection zone with an upstream detector and a down-
stream detector at the entrance and exit of each lane re-
spectively (see, e.g. Gazis and Liu (2003)). The two de-
tectors count the vehicles passing through. See Li (2009)
for a detailed description of the detectors.

The traffic conservation equation (5) is commonly
used in the literature, where xi,k denotes the total num-
ber of vehicles in lane i at time step k , and ui,k represents
the difference in the numbers of vehicles that enter and
leave the upstream and downstream detectors of lane i.
The quantity ui,k is directly available from the detectors.
However, usually no sensors are installed within a free-
way segment. Hence, d̃i,k, the vehicles’ net gain due to
lane-change maneuvers, is not observed in (5). We note,
however, the net gain of lane-changing vehicles aggre-
gated across all the lanes is equal to zero due to traffic
conservation, i.e.

∑n
i=1 d̃i,k = 0 . Consequently, the in-

put variables defined as di,k = d̃i,k + ui,k are observable
at the aggregate level (the segment level).

3 Main results

3.1 Modified Kalman filter

Consider state space model (1) and (2) with the input
data available only at an aggregate level as specified in
equation (3). Without loss of generality, it is assumed
that the column-rank of DT

k is equal to qk; otherwise the
redundant rows of Dk can be eliminated.

In this paper we incorporate a Bayesian perspective
and follow the approach in Li (2009) and West and Har-
rison (1997): at each time step k the state equation pro-
vides the prior knowledge about the current state vec-
tor, and the observation equation specifies the likelihood
function. The updated estimate of the state vector is ob-
tained from the posterior distribution.

Following the existing studies (e.g. Kitanidis (1987)),
we restrict our interest to the case where Gk has a full-
column rank, m. Let G⊥k denote an orthogonal com-
plement of Gk and let Ωk = [Gk, G

⊥
k ]. In numerical

computation, we can compute a QR decomposition for
Gk, Gk = UkΨk, where Uk is an orthogonal matrix,
Ψk = [ΛTk , O

T ]T , and Λk is an upper triangular matrix.
Then G⊥k can be chosen as Uk[OT , IT ]T . Define

D̃k =

(
Dk O

O I

)
and Πk =

(
Dk−1

CkGk−1

)
,

where I is an identity matrix and O is a matrix of zeros
such that D̃k is an (qk + (n−m))×n matrix. Let Mk =

D̃kΩ−1k . The main result is summarized as follows.

Theorem 1 For state space model (1) and (2) with
rank(Gk) = m, suppose that the input data is available
only at an aggregate level specified by equation (3), and
the matrix Πk has a full column-rank. Then the prior
and posterior distributions for xk at any time step k can
be obtained sequentially as follows:

(i) Posterior of xk−1 for given {y1, ..., yk−1}:
xk−1 ∼ N(x̂k−1|k−1, Pk−1|k−1).

(ii) Prior for sk = Mk−1xk:

sk ∼ N(Mk−1Ak−1x̂k−1|k−1 + r̃k−1, P̃k|k−1)

with r̃k = [rTk , O
T ]T , P̃k|k−1 = Mk−1Pk|k−1M

T
k−1,

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1. (6)

(iii) Posterior of xk for given {y1, ..., yk}:
xk ∼ N(x̂k|k, Pk|k),

where the posterior mean is given by

x̂k|k = Ak−1x̂k−1|k−1 + Pk|kM
T
k−1(Mk−1Pk|k−1

×MT
k−1)−1r̃k−1 +Kk(yk − CkAk−1x̂k−1|k−1),

(7)

with the gain matrix

Kk = Pk|kC
T
k R
−1
k , (8)

3



and the posterior variance is given by

Pk|k = [MT
k−1(Mk−1Pk|k−1M

T
k−1)−1Mk−1

+ CTk R
−1
k Ck]−1. (9)

To show Theorem 1, we need the following lemma.
See the Appendix for proof.

Lemma 1 Consider linear model, Y = Xβ + ξ with
ξ ∼ N(0, V ), where Y is an N -dimensional vector, X is
an N × L matrix, and β is an L-dimensional vector of
unknown parameters with a Gaussian prior distribution.
β and ξ are independent of each other. V > 0 is a known
covariance matrix. For two known matrices Γ and Γ̃ such
that [ΓT , Γ̃T ] is an L×L invertible matrix, suppose that
both the mean φ and covariance matrix W > 0 of γ = Γβ
are known, whereas λ = Γ̃β follows N(µ, W̃ ) with the
hyperparameter vector µ having a noninformative prior.
If the matrix [ΓT , XT ]T has a full column-rank, then the
posterior distribution of β given Y is N(θ,Σ), with pos-
terior mean θ = Σ(ΓTW−1φ+XTV −1Y ) and posterior
covariance matrix Σ = (ΓTW−1Γ +XTV −1X)−1.

We now show Theorem 1 by induction. Assume the
truth in part (i). We aggregate the state vector to the
level at which the inputs are observed by defining sk =
Mk−1xk. Noting Mk−1Gk−1dk−1 = r̃k−1, we obtain the
prior in part (ii) by combining equation (1) with part (i).

Next we show part (iii). Define M̃k = [FT0k, O]Ω−1k
and s̃k = M̃k−1xk. We note that from part (ii), sk fol-
lows a Gaussian distribution with a known mean and
covariance matrix, whereas s̃k has a Gaussian distribu-
tion with an unknown mean M̃k−1Ak−1x̂k−1|k−1 +δk−1.
From (4) and applying Lemma 1, we obtain the poste-
rior of xk which is Gaussian with mean

x̂k|k = Pk|k{MT
k−1(Mk−1Pk|k−1M

T
k−1)−1[Mk−1Ak−1

x̂k−1|k−1 + r̃k−1] + CTk R
−1
k yk}.

The above equation can be re-arranged to have the form
of equation (7). The covariance matrix in equation (9)
is the result of applying Lemma 1.

In addition, let Sk denote
(
Mk−1

Ck

)
. Under the condi-

tions Qk > 0 and Rk > 0, we obtain that Pk|k is non-
singular if Sk has a full column-rank. Since

Sk =


Dk−1 O

O I

CkGk−1 CkG
⊥
k−1

Ω−1k−1,

the condition that Sk has a full column-rank is equivalent
to the condition that Πk has a full column-rank.

The inductive proof is completed by noting that the
results are true for k = 1 where x0 ∼ N(x̂0|0, P0|0) with
x̂0|0 = x̂0 and P0|0 = P0 respectively. 2

Remarks:

(i) Collecting recursive formulas (6)-(9) gives a mod-
ified Kalman filter for the problem that the input
data is available only at an aggregate level (3).

(ii) The essence of the Bayesian approach here is pool-
ing of the prior knowledge about the state vector
at the aggregate level in part (ii) with the current
observation (2) at the original level of interest so
that the posterior mean x̂k|k and posterior covari-
ance matrix Pk|k are computable.

(iii) The condition that matrix Πk has a full column-
rank has a clear physical meaning: it ensures that
the state vector is estimable at each time k.

Next, we turn to consider the computational issue.
Equation (9) involves the inverse of an n × n matrix.
When n is large, the computational cost is high. For
the case that Ck has a full column-rank, the covariance
matrix Pk|k can be written as

Pk|k = Tk − TkMT
k−1[Mk−1(Pk|k−1

+ Tk)MT
k−1]−1Mk−1Tk, (10)

with Tk = (CTk R
−1
k Ck)−1. Clearly when qk is small, the

computational cost is reduced by using equation (10).
This approach is particularly useful when both Ck and
Rk are time-invariant so that Tk can be computed in
advance. When Ck does not have a full column-rank,
however, we need another approach.

Lemma 2 Let P > 0 and R > 0. Let F be an orthogonal
complement of DT such that DF = O. Suppose that both
the matrix DT and matrix [CT , DT ]T have a full column-
rank. Then we have

(i) [DT (DPDT )−1D + CTR−1C]−1

= P − PCTH−1CP + [F − PCTH−1CF ]
×[FTCTH−1CF ]−1[F − PCTH−1CF ]T ;

(ii) [DT (DPDT )−1D + CTR−1C]−1CTR−1

= PCTH−1 + [F − PCTH−1CF ]
×[FTCTH−1CF ]−1FTCTH−1,

where H = CPCT +R.

See the Appendix for proof. Lemma 2 provides an al-
ternative for the computation of the modified Kalman
filter. Specifically, let Fk denote an orthogonal comple-
ment of MT

k , where Fk can be constructed as follows:
Fk = Ωk

(
F0k

O

)
. From Lemma 2, equations (8) and (9)

can be computed as follows:

Kk = Pk|k−1C
T
k H

−1
k + [Fk−1 − Pk|k−1CTk H−1k CkFk−1]

× [FTk−1C
T
k H

−1
k CkFk−1]−1FTk−1C

T
k H

−1
k , (11)
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Pk|k = Pk|k−1 − Pk|k−1CTk H−1k CkPk|k−1 + [Fk−1

−Pk|k−1CTk H−1k CkFk−1][FTk−1C
T
k H

−1
k CkFk−1]−1

× [Fk−1 − Pk|k−1CTk H−1k CkFk−1]T , (12)

with Hk = CkPk|k−1C
T
k +Rk.

We now turn to the assessment of the quality of the
proposed filter. It is known that the filter developed in
Kitanidis (1987) is optimal in the sense of unbiasedness
and minimum variance within the class of all linear es-
timators. In Bayesian statistics, however, the concept
of minimum-variance unbiased estimator does not ap-
ply because the parameters of interest are considered to
be random variables rather than some fixed values. In-
stead, the quality of an estimator can be measured via
the minimum-mean-square-error (MMSE) criterion.

Lemma 3 Under the assumptions of Lemma 1, θ̂(Y ) =
Σ(ΓTW−1φ+XTV −1Y ) is the unique MMSE estimator
of β, where Σ = (ΓTW−1Γ +XTV −1X)−1.

The proof is immediate from Lehmann and Casella
(1998) (Theorem 4.1.1, and Corollaries 4.1.2 & 4.1.4).
Applying Lemma 3, we obtain that the proposed filter is
an MMSE estimator. Note that under the assumption of
Gaussian noise terms in (1) and (2), this result holds not
only for the class of all linear estimators and for the class
of all recursive estimators, but also true for the class of
all estimators having a finite second moment.

3.2 A unified approach to state estimation

For the scenario where no input information is avail-
able, the filtering problem has recently been investi-
gated by a number of researchers using the approach
of minimum-variance unbiased estimation. For instance,
the recursive formulas derived by Kitanidis (1987) are

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1, (13)

x̂k|k = Ak−1x̂k−1|k−1+Kk(yk−CkAk−1x̂k−1|k−1), (14)

Kk = Pk|k−1C
T
k H

−1
k + [Gk−1 − Pk|k−1CTk H−1k CkGk−1]

× [GTk−1C
T
k H

−1
k CkGk−1]−1GTk−1C

T
k H

−1
k , (15)

Pk|k = Pk|k−1 − Pk|k−1CTk H−1k CkPk|k−1 + [Gk−1

−Pk|k−1CTk H−1k CkGk−1][GTk−1C
T
k H

−1
k CkGk−1]−1

× [Gk−1 − Pk|k−1CTk H−1k CkGk−1]T , (16)

with Hk = CkPk|k−1C
T
k +Rk.

It is of particular interest to ask in which way that
the filter developed in this paper is linked to the existing
filters. The answer to this question is summarized in the
following theorem.

Theorem 2 The recursive formulas (6)-(9) reduce to:
(a) the classical Kalman filter when all the entries of the
input vector dk are observed; and (b) the filtering equa-
tions (13)-(16) when no information on dk is available.

Proof. First, when all the input variables are observed
at the level of interest, Dk becomes an m ×m identity
matrix, and thus D̃k is an n×n identity matrix. Hence,
the orthogonal complement Fk of MT

k is a zero-by-zero
empty matrix. Consequently the last term on the right-
hand-side of equations (11) and (12) vanishes, and equa-
tions (11) and (12) reduce to

Kk = Pk|k−1C
T
k H

−1
k ,

Pk|k = Pk|k−1 −KkCkPk|k−1.

Noting r̃k−1 = Gk−1dk−1, equation (7) becomes

x̂k|k = Ak−1x̂k−1|k−1 +Gk−1dk−1

+Kk[yk − Ck(Ak−1x̂k−1|k−1 +Gk−1dk−1)].

These recursive formulas are identical to the classical
Kalman filter equations (see, e.g. Simon (2006)).

Next, we turn to the scenario that no input infor-
mation is available. Since Dk in equation (3) reduces
to a zero-by-zero empty matrix in this case, we have
D̃k = [O, I]. We chooseG⊥k = Uk[O, I]T , where Uk is the
orthogonal matrix in the QR decompositionGk = UkΨk

as defined before. Then we obtain Mk = D̃kΩ−1k =
[O, I]UTk . Therefore, we can choose an orthogonal com-
plement of MT

k as Fk = Gk. We then obtain that equa-
tions (11) and (12) reduce to (15) and (16). Finally, equa-
tion (13) is immediate by noting r̃k = MkGkdk = 0. 2

4 Conclusions

We have investigated the state estimation problem
where the input variables in the state space model are
not fully observed but rather they are available only at
an aggregate level. A Bayesian approach is used to derive
a modified Kalman filter by pooling the prior knowledge
about the state vector at the aggregate level with the
measurements provided by the observation equation at
the original level of interest. As a result, the unobserved
input variables are taken out via data aggregation. This
method can be applied to estimate the state vector at the
original level of interest without imposing any further
assumptions on the unobserved input variables.

Unlike many existing filters for unknown inputs, the
filter developed in this paper is an MMSE estimator.
Under the assumption of Gaussian noise terms, it can be
obtained without imposing the unbiasedness condition
and it is shown to be optimal within the class of all
estimators having a finite second moment.

The developed filter provides a unified approach to
state estimation where the availability of input infor-
mation ranges from all to nothing. In particular, it in-
cludes the classical Kalman filter (where all inputs are
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observed) and the filter for unknown inputs as its special
cases.

Appendix. Proofs of lemmas

4.1 Proof of Lemma 1

Let f(µ), f(γ) and f(λ) be the marginal probability
density functions of µ, γ, and λ respectively, and let
f(Y |β) be the likelihood function. Note that for given µ,

γ and λ follow N
((

φ
µ

)
,
(
W C̃
C̃T W̃

))
, where C̃ denotes the

covariance matrix. Since f(µ) ∝ 1, we obtain f(γ, λ) =∫
f(γ, λ|µ)f(µ)dµ ∝

∫
f(γ, λ|µ)dµ = f(γ), where the

final equality can be obtained by direct calculation of
the integral. By Bayes’ rule, the posterior distribution
f(β|Y ) is

f(β|Y ) ∝ f(Y |β)f(β) ∝ f(Y |β)f(γ)

∝ exp{−(Y −Xβ)TV −1(Y −Xβ)/2

− (Γβ − φ)TW−1(Γβ − φ)/2}.

By completing the square on β, the exponent can be
rewritten as −(β − θ)TΣ−1(β − θ)/2 + constant. This
shows that the posterior distribution is a Gaussian dis-
tribution with mean θ and covariance matrix Σ. 2

4.2 Proof of Lemma 2

To show (i), we note that the left-hand-side of the
equation in part (i) can be rewritten as

{[P−1 + CTR−1C]− P−1/2[I − P 1/2DT (DPDT )−1

×DP 1/2]P−1/2}−1.

The matrix I − P 1/2DT (DPDT )−1DP 1/2 is the or-
thogonal projection matrix onto an orthogonal comple-
ment of the column space of P 1/2DT . Now taking this
orthogonal complement as P−1/2F , we obtain that

I − P 1/2DT (DPDT )−1DP 1/2

= P−1/2F (FTP−1F )−1FTP−1/2.

So the left-hand-side of the equation in part (i) becomes

{[P−1 + CTR−1C]− P−1F (FTP−1F )−1FTP−1}−1.

It then follows by applying the matrix inversion lemma
(see, e.g. Simon (2006), pp12) twice, first to the whole
equation, and then to [P−1 + CTR−1C]−1. The proof
for part (ii) is similar after inserting the result in part
(i) into the left-hand-side of the equation in part (ii). 2
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