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Abstract—Recent research efforts have resulted in efficient
support for IPv6 in Low power Wireless Personal Area Net-
works (6LoWPAN), with the “IPv6 Routing Protocol for Low
power and Lossy Networks” (RPL) being on the forefront as
the state of the art routing approach. However, little attention
has been paid to IPv6 multicast for networks of constrained
devices. The “Multicast Forwarding Using Trickle” (Trickle
Multicast) internet draft is one of the most noteworthy efforts,
while RPL’s specification also attempts to address the area but
leaves many questions unanswered. In this paper we expose our
concerns about the Trickle Multicast (TM) algorithm, backed
up by thorough performance evaluation. We also introduce
SMRF, an alternative multicast forwarding mechanism for
RPL networks, which addresses TM’s drawbacks. Simulation
results demonstrate that SMRF achieves significant delay and
energy efficiency improvements at the cost of a small increase in
packet loss. We have extended the TCP/IP engine of the Contiki
embedded Operating System to support both algorithms. Both
implementations have been made available to the community.
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I. INTRODUCTION

Over the past decade, research community members have
invested considerable efforts towards the seamless integra-
tion of wireless sensor networks (WSNs) with the internet.
Previous work has demonstrated that pure IPv6-based WSN
architectures are not only viable but can also outperform
application-centric designs [1]. Significant standardisation
efforts have contributed to mature, interoperable imple-
mentations of embedded IPv6 stacks, such as uIPv6 which
is distributed as part of the Contiki embedded Operating
System. Among those standards are RFC 4944 [2] and
RFC 6282 [3]. Published by IETF’s 6LoWPAN work group,
they discuss techniques for IPv6 datagram fragmentation and
header compression, achieving their efficient transmission
within IEEE 802.15.4 low power radio frames. For those
networks (6LoWPANs), the emerging standard for routing
is the “IPv6 Routing Protocol for Low power and Lossy
Networks” (RPL) [4].

Despite all recent advances in the area of 6LoWPAN net-
working, IPv6 multicast has been somewhat overlooked by
the community. The “Multicast Forwarding Using Trickle”
internet draft (or Trickle Multicast - TM) [5] poses among
the most suitable candidates. In this context, this paper’s
contributions are the following:

• We scrutinise TM from a design perspective and we
present our concerns, backed up by simulation results.

We demonstrate that its performance is very sensitive
to configuration changes and we recommend optimal
parameters for various scenarios.

• We present SMRF, our lightweight, RPL-specific “State-
less Multicast RPL Forwarding” algorithm. We discuss
how it addresses open issues and demonstrate that it
out-performs TM in terms of delay and energy con-
sumption.

• We have extended Contiki’s TCP/IP stack to support
both algorithms. The source code has been released to
the community for adoption and further scrutiny as part
of our port of the Contiki OS [6] and is soon to be
merged with the official Contiki distribution.

II. RELATED WORK

Clausen and Herberg conducted relevant research with fo-
cus on RPL networks [7]. Despite the fact that this work only
discusses broadcast communication, it offers some important
insight on related issues and techniques. Koutsonikolas et
al. investigate multicast in WSNs, but without discussing
6LoWPAN-specific problems [8].

In RPL networks, nodes advertise unicast downward paths
inside Destination Advertisement Object (DAO) messages.
A section in the RPL internet draft discusses its “Storing
with multicast support” Mode of Operation (MOP). In this
MOP, DAO messages are also used to relay multicast group
registrations. Those DAOs are identical to the ones carrying
unicast information except for the type of prefix being
advertised (a routable multicast IPv6 address). This approach
leaves many open issues, as we discuss in sec. II-A.

A. Multicast Forwarding with Trickle

Trickle [9], [10] is an algorithm that governs the fre-
quency of periodic information exchange among neigh-
bouring nodes in a low power, lossy network. It provides
a method of propagating information efficiently, without
constantly flooding the network with control messages.
The algorithm only dictates the behaviour of timers, in
other words when nodes should exchange messages, not
how nor their format. In simple terms: when two single-
hop neighbours share the same knowledge (agree), control
message exchange rate slows down exponentially, achieving
energy and bandwidth efficiency. Conversely, when a change
is detected, the trickle timer is reset to a minimum interval
(called Imin) and changes propagate within milliseconds.



The algorithm’s properties make it very attractive for any
protocol involving “periodic” exchange of state information.
Trickle was originally designed for data dissemination and
network reprogramming but has since then been adopted by
multiple works. For example, it handles the frequency of
RPL DIO (upward route advertisement) messages [4]. It also
forms the basis of the “Multicast Forwarding with Trickle”
algorithm, further discussed in the remainder of this session.

Multicast mechanisms for wired networks maintain net-
work topology information in order to forward packets to
their intended destinations. Due to memory restrictions, this
is a very challenging task in networks of constrained nodes.
TM specifies a method of supporting IPv6 multicast without
having to rely on topology maintenance [5].

With TM, each multicast datagram must carry a Multicast
Option header (in the shape of an IPv6 Hop-by-Hop Option
extension header - HBHO). Network nodes maintain a cache
of recently seen multicast packets, uniquely identified with
the assistance of the HBHO. Upon reception of a multicast
datagram a node inspects the multicast option and, if the
packet is new, it gets added to the cache.

Neighbouring nodes exchange information about their
cache contents through ICMPv6 datagrams, at a frequency
controlled by trickle timers. If the receiving node’s cache
contents don’t match the information in the ICMPv6 data-
gram, the node resets its trickle timer to its minimum
interval (Imin) in order to facilitate quick propagation of
new packets. Inconsistency is also triggered upon reception
of a new multicast datagram. At every trickle interval,
nodes forward inconsistent datagrams to their single-hop
neighbours inside link-layer broadcast frames.

1) Advantages: By design, TM has two very significant
advantages. Generality: TM will work, without modifica-
tions, alongside any IPv6 routing protocol. Reliability: By
caching and maintaining per-datagram state information, TM
increases its reliability (high packet delivery ratio / low loss).
The exact reliability levels are heavily influenced by the
choice of Imin and the underlying duty cycling algorithm.

2) Concerns: i) Scalability: TM replaces topology main-
tenance with per-packet state. This raises concerns regarding
scalability with traffic volume and number of traffic sources.

ii) Performance: In order to avoid duplication, nodes
never forward multicast datagrams immediately. Instead,
they cache them and wait for ICMPv6 control messages.
When an inconsistency is detected, the packets causing it are
scheduled for transmission during the next trickle interval.
This forwarding delay has an impact on end-to-end delay
and can be heavily influenced by trickle parametrization.
The trickle RFC [10] dictates that “A protocol specification
that uses Trickle MUST specify: Default values for Imin,
Imax, and k...”. Currently, this is not the case for TM; its
internet draft only outlines examples with an indicative value
(100ms) [5]. As we demonstrate in section IV, this value can
lead to very poor performance. Experimental results guide

us to more suitable alternatives.
iii) Complexity: Nodes maintain two trickle timers, a

sliding window for each source of multicast traffic and a
cache of recent multicast datagrams. They also need to be
able to create and process a new type of ICMPv6 message
and a new type of HBHO extension header. Especially in the
case of incoming ICMPv6 messages, a node needs to compare
all entries in the message against all cached messages. This
raises concerns in terms of code size and memory footprint.

iv) Multicast vs Broadcast: Due to lack of topology main-
tenance and group registrations, TM will forward multicast
messages to all parts of the network, regardless whether
they are needed or not. Any datagram with a routable
multicast IPv6 destination address is in practice treated as
a network-wide broadcast, causing energy and bandwidth
inefficiencies.

v) Arrival Order: Due to its store and forward nature and
per-packet state maintenance, TM is very susceptible to out-
of-order datagram arrivals. Depending on the requirements
of a multicast application, this trait can be a serious problem.

III. STATELESS MULTICAST RPL FORWARDING - SMRF

The principal rationale behind SMRF is that nodes partic-
ipating in an RPL network exchange topology information
in order to build a Destination-Oriented Directed Acyclic
Graph (DODAG) (the basic RPL construct) and populate their
routing tables. Since each node will maintain a state of the
network topology anyway, we can capitalise on it in order
to perform multicast forwarding without having to define
and implement further control messages. Additionally, by
being a tree structure, a DODAG is a particularly attractive
candidate to form the basis of multicast forwarding.

When a network uses the “Storing with multicast support”
Mode of Operation (MOP), nodes join a multicast group
by advertising its address in their outgoing DAO messages,
which only travel upwards in the DODAG. Upon reception
of such message from one of its children, a router makes
an entry in its forwarding table for this multicast address.
Conceptually this entry indicates that “a node under us in
the DODAG is a member of this group”. This router will
then i) advertise this address in its own DAOs and ii) relay
multicast datagrams destined to this address.

This RPL built-in mechanism addresses the problem of
propagating group membership information towards the
DODAG root. However, it suffers from two severe drawbacks:
i) It lacks a method to prevent a node from accepting the
same datagram twice or more. ii) The RPL internet draft
specifies that each router should copy multicast datagrams
to a subset of its link layer neighbours, for instance only
its preferred parent or only those children that are regis-
tered group members. This destination filtering can only
be achieved by using frames with a unicast destination at
the link layer. Thus, a node would have to transmit each
datagram multiple times, once per intended recipient. This



Table I
EXAMPLES OF SMRF CONFIGURATION PARAMETERS AND RESULTING

FORWARDING DELAY

Duty Cycling Configuration Outcome

Algorithm CCI Fmin
Spread

D Final Delay
(ms) (ms) (ms) (ms)

ContikiMAC 125 ≤ 125 1 125 125
ContikiMAC 125 ≤ 125 4 125 [125 , 500]

NullRDC 0 0 ignored 0 Immediate
NullRDC 0 31.25 8 31.25 [31.25 , 250]

would incur additional costs in terms of traffic, delay and
processing time and would be largely inefficient in dense
networks. It would also increase memory requirements, since
each router would need to maintain associations between
multicast groups and neighbour subsets.

SMRF is a multicast forwarding algorithm that uses infor-
mation provided by RPL’s group membership information
and addresses both those drawbacks. A node will accept an
incoming multicast datagram if, and only if the datagram’s
link layer source address is the link layer address of the
node’s preferred parent, which can be looked up in the
recipient’s local neighbour cache. If the message passes this
check then:

• It will get delivered up the local stack if, and only if
the node is a member of the multicast group.

• It will get forwarded if, and only if there is an entry
for the datagram’s IPv6 destination address (multicast
group) in the node’s routing table (“a node under us is
also a member”).

A. Cross-layer optimizations

Channel Check Interval (CCI) is a duty cycling parameter
which corresponds to the time between two consecutive
radio-on cycles. SMRF introduces a short delay (D) between
accepting a datagram and copying it forward. This delay
is defined as D = max(Fmin,CCI), where Fmin is a
configuration parameter and CCI is the value reported by
the underlying duty cycling algorithm. Configuring SMRF
with a non-zero value for Fmin is particularly useful in the
case of duty cycling algorithms with a CCI = 0ms, such
as NullRDC, which keeps RF hardware always on.

In order to mitigate the negative effect of hidden termi-
nals, SMRF can also optionally further delay the transmission
by a random factor. This is parametrised on Spread, a
positive integer. The final forwarding delay is a random
number in [D,Spread ∗D] with granularity equal to D.
Table I outlines the resulting forwarding delays for various
configuration values and duty cycling algorithms.

B. Benefits and Drawbacks

With SMRF, multicast traffic can only travel downwards in
the DODAG. This makes the algorithm useful for applications
such as code dissemination or network management. Since

Figure 1. Simulated tree topologies differentiated by network density. solid
line with ND ≈ 0.14, dashed (ND ≈ 0.36) and dotted (ND ≈ 0.71).
The solid black node acts as RPL root and multicast traffic source.

each node will only consider packets received from its
preferred parent and will forward each packet at most once,
it guarantees that each datagram can be received at most
once per node, without need for a method of uniquely
identifying messages.

The gain in comparison to TM is multi-fold: SMRF uses
multicast groups to differentiate between nodes that are
interested in a flow and those that are not. Instead of blindly
forwarding all datagrams to all nodes, multicast datagrams
will only reach parts of the network with nodes that have
expressed an interest in the flow by joining a group.

SMRF does not define any control messages of its own. It
operates based on RPL parent information and on multicast
group membership information, carried inside RPL DAO
messages, as specified in [4]. SMRF is stateless. Nodes do not
need to maintain per-packet information. A decision whether
to forward a datagram or not is taken based on information
available at the moment of its arrival, irrespective of other
packets of the same flow. A positive side-effect of this “on
the spot” approach is that SMRF will never entangle packet
ordering. Compared to TM, SMRF achieves lower end-to-
end delays and demonstrates better energy efficiency. This
is further analysed in sections IV-B and IV-C.

The trade-off in order to achieve the aforementioned im-
provements, is a decrease in packet delivery ratio (increased
packet loss), compared to TM which is by design more reli-
able. Packet delivery ratio is scrutinised for different traffic
rates under multiple network topologies in section IV-A.

IV. EVALUATION

In order to evaluate the algorithms, we performed a
series of experiments in Contiki’s cooja simulator, with
common parameters outlined in Table II. Our discussion
in the following paragraphs uses the term network density
(ND). In this context, ND is defined in the same way as
the density of an undirected graph with edge set E and set
of vertices V (eq. 1), with ND ∈ [0, 1]. ND = 0 for an
edgeless graph and ND = 1 for a complete graph.

ND =
2 |E|

|V | (|V | − 1)
(1)



Table II
SIMULATION CONFIGURATION

Nodes 21 sky motes (1 traffic source, 20 sinks)
Radio Medium Unit Disk Graph Medium (UDGM)

Ranges TX: 50m, Interference: 60m
MAC Layer IEEE 802.15.4

Duty Cycling ContikiMAC & NullRDC
Iterations 10 for each parameter permutation

RNG Seeds New seed each iteration
Duration 5 minutes of actual time each iteration

Traffic Pattern CBR (exact rate discussed in text)
Message Size 4 app. layer bytes (variable number of bytes on link)

TM Params Imin ∈ {125, 250, 375, 500, 625, 750}ms
SMRF Params Fmin = 0ms (Spread is ignored)

Fmin = 31.25ms, Spread ∈ {2, 4, 8}

This is a link layer metric: an edge between nodes A
and B exists if, and only if the two nodes are single-hop
neighbours (can directly hear each other) and under the
assumption of symmetric links, which holds true for cooja’s
UDGM environment. If this assumption didn’t hold then the
network would have to be modelled as a directed graph,
creating a need for a more complex density metric.

We ran our experiments in multiple tree topologies (Fig-
ure 1). By keeping node transmission range constant and
by increasing the length of each edge, we can achieve
topologies that allow us to examine the algorithms under
different network densities. For each of those topologies, we
experimented with two duty cycling algorithms: NullRDC
and ContikiMAC (which is actually a duty cycling layer,
despite the misleading ‘MAC’ suffix in its name). For
TM, we used six different configurations of Imin and for
SMRF four different (Fmin , Spread) pairs (Table II). We
ran ten iterations (each one with a different random seed)
per topology, per configuration, per traffic rate. For each
permutation we evaluated three metrics: i) packet delivery
ratio, ii) end to end delay and iii) energy consumption.

From an application layer perspective, our multicast traffic
was Constant Bit Rate (CBR) with a payload of 4 bytes.
For each of the configurations above, we experimented with
four multicast flows differentiated by the interval between
two successive message transmissions (250, 500, 750ms and
1sec). As a result of IPv6 extension headers and 6LoWPAN
header compression, layer two frames varied in size between
35 and 61 bytes. Thus, we use the inter-packet interval to
refer to the flows, instead of bytes/sec.

A. Packet Delivery Ratio

As discussed in section II-A, TM is designed to be reliable,
especially when operating in dense networks with high
path redundancy. Investigating its behaviour for different
Imin values, we observe that packet delivery ratio can
vary between perfect (0% loss) and extremely poor. The
bar charts in Figure 2 and 3 illustrate the results for both
algorithms over both duty cycling layers. In both cases,
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Figure 2. Packet Delivery Ratio over NullRDC.
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Figure 3. Packet Delivery Ratio over ContikiMAC.

configurations with similar results are averaged out as a
single bar. Since inter-packet interval did not influence the
results significantly, each bar presents the result average
across all four different values.

In the case of a NullRDC network and when configured
with Imin = 125ms, TM achieves 100% delivery ratio
regardless of network density and traffic rate. Delivery ratio
drops with higher Imin values. Losses occur if a node cache
is full when a new packet arrives. This happens when a
new datagram overwrites an older one before the latter gets
copied further down the line. SMRF on the other hand only
forwards each datagram once and was expected to demon-
strate a higher packet loss rate. Results confirm this, but they
also indicate that loss rate is lower than what we anticipated.
Over NullRDC, the (0 , 0) SMRF configuration severely
under-performs its Spread > 0 counterparts. The reason
is that D = 0 is very susceptible to hidden terminals, which
was the original motivation behind introducing Spread.

We performed the same measurements over ContikiMAC
and results are significantly different, as illustrated in Fig-
ure 3. The first observation is that with ContikiMAC, packet
loss rates are higher across the board. This is caused
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Figure 4. Energy Consumption for various network densities under different levels of traffic.
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Figure 5. End to end delay for different algorithm configurations, over both RDC layers. Left: Over NullRDC. Right: Over ContikiMAC.

by the fact that TM relies heavily on link-local multicast
messages (link layer broadcasts) to exchange cache content
information between nodes. Due to the technique used by
ContikiMAC to transmit frames (packet trains), link layer
broadcasts are fundamentally inefficient [11].

Over ContikiMAC, lowering TM’s Imin has an ad-
verse result: delivery ratio decreases instead of increasing.
Imin = 125ms stands out as having underperformed
compared to its counterparts, with Imin = 500ms yielding
optimal results for all densities. Additionally, results confirm
TM’s improvement with increasing density, a result of its
ability to exploit path redundancy. Since packet trains indi-
rectly mitigate the hidden terminal problem, the performance
of SMRF’s (0 , 0) configuration is comparable to the delivery
ratio exhibited when Spread > 0. Depending on network
density, SMRF can actually deliver more packets than TM
when the latter is configured with a sub-optimal Imin.

B. End to End Delay
As discussed in sections II-A and III, after our initial

analysis we anticipated TM to exhibit high delays compared

to the very straightforward SMRF. Figure 5 illustrates the
results over both duty cycling algorithms. For clarity, in the
case of TM we have cherry-picked Imin = 125ms and
Imin = 500ms, the two values which performed best in
terms of losses for NullRDC and ContikiMAC respectively.

For TM in the case of NullRDC we observe similar
results as those for our analysis of Packet Delivery Ratio
(Figure 5a). Reducing the Imin value yields significant
performance improvements: As Imin decreases, trickle
timers reset more often, nodes exchange cache content
information more frequently and inconsistencies are detected
earlier, leading to lower hop-by-hop forwarding delay. A
similar observation applies for SMRF’s Spread: Increasing
its value effectively increases forwarding delay. The effect
is augmented over multiple hops, leading to longer end to
end delays. However, results confirm our expectations: Any
SMRF configuration is faster than TM with Imin = 125ms,
with gains increasing further when TM’s Imin is suboptimal.

For ContikiMAC, TM’s end to end delay behaves in a
similar fashion to packet delivery ratio with respect to Imin



values. Reducing Imin has a positive impact until the value
of 500ms. Any further reductions cause a radical perfor-
mance degradation, with Imin = 125ms severely under
performing. The difference between the two algorithms is
even more extreme than in the case of NullRDC, as shown
in Figure 5b, with SMRF being over 5 times faster than
TM. Same as in the previous section, this is a result of
ContikiMAC’s broadcast inefficiency due to packet trains.

C. Energy Consumption

Through the facilities provided by Contiki’s energy con-
sumption estimation module (energest) [12], we measured
the time each node spent in each of the following three states
over the duration of each experiment: i) MCU active, ii) RF
listening / receiving, iii) RF transmitting. We then converted
time values to estimated energy consumption based on
typical datasheet levels at an operating voltage of 3.0V.

NullRDC keeps radio transceivers always on (no duty
cycling). As a result, the majority of energy is consumed
during idle listening or packet reception, with the remaining
factors contributing insignificantly. For this reason, we only
consider ContikiMAC for the evaluation of the two algo-
rithms in terms of energy consumption. Figure 4 illustrates
average (per-node) energy consumption algorithm under
different multicast traffic rates. The main difference between
the two algorithms is caused by radio transmissions, with
TM consuming more energy in this state due to its periodic
ICMPv6 control datagram exchange and due to the fact that
each node may end up forwarding the same cached datagram
multiple times (until all its neighbours have received it or
until it gets replaced by a newer one in the node’s cache).
In the case of SMRF, radio reception and radio transmission
contribute to total consumption at a ratio of about 1:1.
Consumption attributed to micro-controller activity is also
higher in the case of TM, providing an indication of the
algorithm’s increased complexity compared to SMRF.

In contrast to our anticipation, network-wide energy con-
sumption decreases as multicast traffic rate increases. This
may seem surprising but it is a reasonable side-effect of
increased packet losses at higher traffic rates. Lastly, higher
network densities lead to lower energy consumptions, with
the effect being more substantial in the case of TM, since
the algorithm is “density-aware” by design [5].

V. CONCLUSIONS AND FUTURE WORK

In this work we have demonstrated that TM’s performance
and energy consumption are very sensitive to changes in the
value of configuration parameter Imin, with the optimal de-
pending on the choice of underlying duty cycling algorithm.
On the other hand, SMRF is less susceptible to variances
of this nature and is faster and more energy efficient in
exchange for an occasional slight reliability drop.

We are currently in the process of conducting further
simulations, investigating out-of-order packet arrivals with

TM and the performance of both algorithms on a hop-by-
hop basis. Additionally, we are running experiments on a
hardware test bed in order to evaluate the accuracy of the
simulated findings. Lastly, we are looking into the complex-
ity, code size and memory footprint of both algorithms.
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