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Abstract— In this paper a new combination of the model of the
interaural spatial cues and a model that utilizes spatial properties
of the sources is proposed to enhance speech separation in
reverberant environments. The algorithm exploits the knowledge
of the locations of the speech sources estimated through vision.
The interaural phase difference, the interaural level difference
and the contribution of each source to all mixture channels are
each modeled as Gaussian distributions in the time-frequency
domain and evaluated at individual time-frequency points. An
expectation-maximization (EM) algorithm is employed to refine
the estimates of the parameters of the models. The algorithm out-
puts enhanced time-frequency masks that are used to reconstruct
individual speech sources. Experimental results confirm that the
combined video-assisted method is promising to separate sources
in real reverberant rooms.

Index Terms— Speech separation, reverberation, spatial cues,
expectation-maximization, time-frequency masking

I. INTRODUCTION

Humans are experts at focussing on a single source when
multiple sources are active. Machines, in contrast, are not
as good. Machine audition is required since it would en-
able multiple applications such as hearing aids, automatic
speech recognition, source separation in meeting room and
teleconference environments. Different approaches have been
proposed for source separation, for instance, frequency-domain
convolutive blind source separation (BSS), beamforming, com-
putational auditory scene analysis (CASA). Time-frequency
(TF) masking is used for source separation and relies on
the assumption that only a single source is active at each
TF unit [1]. The TF approach is capable of handling the
underdetermined problem where the number of sources is
more than the number of sensors.

It has been reported that humans perceive sound as a mul-
timodal process [2], [3]. We propose a source separation al-
gorithm for two-channel reverberant mixtures by using source
location information estimated through video. We model the
interaural level difference (ILD) and the interaural phase
difference (IPD) following the approach in [4] and model
the contribution of each source to all mixture channels as in
[5] as Gaussian distributions in the time-frequency domain.
The parameters of the models are updated through the EM
algorithm. In the E-step, the probabilities are calculated using
the observations and the initial values of the parameters. In the

M-step, the parameters are refined based on the observations
and the probabilities from the expectation-step. This model
requires knowledge of the properties of the room such as
its dimensions, the sensor-to-speaker distances and the wall
reflection coefficient which are partly found through video.
The proposed combined algorithm outputs soft TF masks
for individual sources in the reverberant mixture. The masks
are then used to reconstruct the sources. In Section II we
discuss the probabilistic models and the video processing. The
model parameters are defined in Section III whereas the EM
algorithm in Section IV. In Section V we provide simulation
results and conclusions follow in Section VI.

II. ALGORITHM OVERVIEW

For a two-channel recording the left and right convolutive
mixture signals, as shown in Fig. 1, can be written as l(t) =∑I

i=1 si(t) ∗ hli(t), and r(t) =
∑I

i=1 si(t) ∗ hri(t), where
si(t) denote the speech signals, hli(t) and hri(t) are the room
impulse responses (RIR) from source i to the left and right
sensors respectively, and ∗ denotes the convolution operation.
The time domain signals are then transformed to the TF
domain using the short-time Fourier transform (STFT).

A. The ILD and IPD models
The ratio of the STFTs of the left and right channels

yields: L(ω,t)
R(ω,t) = 10α(ω,t)/20ejϕ(ω,t), where α(ω, t) is the ILD,

measured in dB, and ϕ(ω, t) is the IPD. The IPD observations
are constrained to be in the range [−π, π). We model a
source with a frequency-dependent interaural time difference
(ITD) τ(ω), and a frequency-dependent ILD following [4].
The recorded IPD, ∠(L(ω,t)

R(ω,t) ) for each TF unit, cannot always
be mapped to the corresponding τ due to spatial aliasing. The
model requires that τ and the length of h(t) must be smaller
than the Fourier transform window used (64ms). The phase
residual error, the difference between the observed IPD and the
predicted IPD (by a delay of τ samples), in the interval [−π, π)
is given as, ϕ̂(ω, t; τ) = ∠(L(ω,t)

R(ω,t)e
−jωτ ). The phase residual

is modeled with a Gaussian distribution denoted as p(·) with
mean ξ(ω) and variance σ2(ω) that are dependent on fre-
quency, p(ϕ(ω, t)|τ(ω), σ(ω)) = N (ϕ̂(ω, t; τ)|ξ(ω), σ2(ω)).
The ILD is also modeled with a Gaussian distribution with
mean µ(ω) and variance η2(ω), p(α(ω, t)|µ(ω), η2(ω)) =
N (α(ω, t)|µ(ω), η2(ω)).
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Fig. 1. Signal notations. The left and right sensor convolutive mixtures are
transformed to the TF-domain to obtain L(ω, t) and R(ω, t).

B. The spatial covariance model

The stereo mixture x(t), obtained by concatenating l(t)
and r(t), can be expressed as x(t) =

∑I
i=1 imgi(t), where

imgi(t) = [imgli(t), imgri(t)]
T is the spatial image of the ith

source to the left and right channels. With the assumption that
the sources are uncorrelated, we model x(ω, t), the STFT of
x(t), as a zero-mean Gaussian distribution with the covariance
matrix [5] Rx(ω, t) =

∑I
i=1 vi(ω, t)Ri(ω), where vi(ω, t)

is the scalar variance and Ri(ω) is the covariance matrix
utilizing the spatial properties of the source i. The probability
distribution of the model is given by [6]

P (x(ω, t)|v(ω, t),R(ω)) =∏
ω,t

1

det(πRx(ω, t))
exp(−xH(ω, t)R−1

x (ω, t)x(ω, t)) (1)

where (·)H is the Hermitian transpose. The spatial covariance
Ri(ω) of the source i is modeled as the sum of the covariance
of the direct path and the covariance of the reverberant part
[5] [7]

Ri(ω) = di(ω)dH
i (ω) + σ2

reverb

[
1 Ω(dlr, ω)

Ω(dlr, ω) 1

]
(2)

where di(ω) is the direct-path direction vector, σ2
reverb is the

variance related to the reverberant part and Ω(dlr, ω) depends
on the distance between left and right sensors dlr and fre-
quency ω. The reverberation observed at both the microphones
is assumed to have the same power and its intensity has diffuse
characteristics, Ω(dlr, ω) =

sin(2πωdlr/c)
2πωdlr/c

. The variance of the

reverberant part is given by σ2
reverb = 4β2

A(1−β2) , where A is
the total wall area and β is the wall reflection coefficient
calculated from the room reverberation time (RT60) using
Eyring’s formula [7].

1) Estimating the direction vector di(ω): To calculate the
approximate positions of the speech sources in a room we
use at least two fully calibrated color video cameras. In this
work overall complexity is not being considered, rather, proof
of concept is the focus. To detect the head of a speaker
i in an image, we use the combination of skin color and
gradient histograms. We combine the gradient histogram for

robustness as the color-based detector alone can fail when a
similar colored object is around the target. Further details can
be found in our other recent works [8] and [9]. To obtain the 3-
D real world Cartesian coordinates the center of the detected
head is determined as the approximate position of the lips
of the speaker in image coordinates ιci = [xi, yi]

T , where c
represents the camera index, c = 1, 2. In 3-D space each point
in each camera frame defines a ray. Intersection of both rays
is found by using multi-view geometry, which finally helps in
calculation of the location for a speaker Zi = [pxi , pyi , pzi ] in
3-D real world coordinates [10].

The elevation (θi) and azimuth (ϕi) angles of arrival to
the center of the sensors of each speaker i are calculated as

θi = tan−1
(

pyi
−p

′
yc

pxi
−p′

xc

)
and ϕi = sin−1

(
pyi

−p
′
yc

ri sin(θi)

)
, where

ri =
√
(pxi − p′

xc
)2 + (pyi − p′

yc
)2 + (pzi − p′

zc)
2, while

p
′

xc
, p

′

yc
and p

′

zc are coordinates of the center of the sensors.
The direct-path weight vector di(ω) for frequency ω and
for source i = 1, ..., I , can be derived [11] as di(ω) =
[hli, hri]

T , where hli = exp(−jω/c(sin(θi). cos(ϕi).p
′

xl
+

sin(θi). sin(ϕi).p
′

yl
+ cos(θi).p

′

zl
)), hri = exp(−jω/c

(sin(θi). cos(ϕi).p
′

xr
+ sin(θi). sin(ϕi).p

′

yr
+ cos(θi).p

′

zr )),
p

′

xm
, p

′

ym
and p

′

zm , m being the left or right sensor index, are
the 3-D positions of the sensors and c is the speed of sound in
air at room temperature. The normalized vector di(ω) is used
in the model.

C. Combining the models and generating masks
To form an accurate mask for each source the ILD and IPD

models, and the spatial covariance model using the direct-
path direction vector obtained with the aid of video are
used in conjunction. Estimating the model parameters is a
hidden maximum-likelihood problem and thus the expectation-
maximization (EM) algorithm is used for its solution as in [4].
Considering the models to be conditionally independent, we
combine them given their corresponding parameters as
p(α(ω, t), ϕ(ω, t), x(ω, t)|Θ̃) = N (α(ω, t)|µ(ω), η2(ω)) .
N (ϕ̂(ω, t)|ξ(ω), σ2(ω)) . N (x(ω, t)|0,Rx(ω, t)), where Θ̃ de-
notes all of the model parameters.

III. MODEL PARAMETERS

All of the model parameters Θ̃ can be collected as a
parameter vector

Θ̃ = {µi(ω), ηi(ω), ξiτ (ω), σiτ (ω), vi(ω, t), ψiτ} (3)

where µi, ξiτ , and η2i , σ2
iτ are respectively the means and

variances of the ILD, IPD models, and vi is the scalar variance
related to the spatial covariance model. The parameter matrix
Ri(ω) required to calculate Rx(ω, t) is found using a priori
knowledge of the properties of the room and the di(ω) as
explained in Section 2.1. The subscript i indicates that the
parameters belong to the source i, and τ and ω show the
dependency on delay and frequency. The parameter ψiτ is the
mixing weight, i.e. the estimate of the probability of any TF
point belonging to source i at a delay τ , and is estimated as
in [4]. The log value of the likelihood function (L) given the
observations can be written as
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L(Θ̃) =
∑
ω,t

log p(α(ω, t), ϕ(ω, t), x(ω, t)|Θ̃)

=
∑
ω,t

log
∑
i,τ

[ N (α(ω, t)|µi(ω), η
2
i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω))

. N (x(ω, t)|0,Rx(ω, t)). ψiτ ]

(4)

and the maximum likelihood solution is the parameter vector
which maximizes this quantity.

IV. THE EXPECTATION-MAXIMIZATION ALGORITHM

The algorithm is initialized with the estimated locations of
the sources provided by video as explained in Section II-B.1.
In the expectation step (E-step) the probabilities are calculated
given the observations and the estimates of the parameters as

ϵiτ (ω, t) = ψiτ . N (α(ω, t)|µi(ω), η
2
i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω))

. N (x(ω, t)|0,Rx(ω, t)))

(5)

where ϵiτ (ω, t) is the expectation of the hidden variable
miτ (ω, t), which is unity if the TF point belongs to both source
i and delay τ and are zero otherwise. In the maximization step
(M-step), the parameters are updated using the observations
and ϵiτ (ω, t) from the E-step. The IPD and ILD parameters
and ψiτ are re-estimated as in [4]. The spatial covariance
matrix of the ith source Ri(ω) is obtained through assistance
from video as discussed previously and vi(ω, t) is estimated
as [5]

vi(ω, t) =
1

2
tr(R−1

i (ω)R̂x(ω, t)) (6)

where R̂x(ω, t) is the covariance of the observed mixture and

is estimated as R̂x(ω, t) =
∑

ω′,t′ w(ω′−ω,t′−t)x(ω′,t′)xH(ω′,t′)∑
ω′,t′ w(ω′−ω,t′−t)

where w is a 2-dimensional TF window.
The spatial covariance model contributes once at the second

iteration, as in the first iteration the occupation likelihood
ϵiτ (ω, t) is calculated with only the ILD and IPD models.
Since ϵiτ (ω, t) contains the correct order of the sources as
in [4] the permutation problem is bypassed. The probabilis-
tic masks for each source can be formed as Mi(ω, t) ≡∑

τ ϵiτ (ω, t). In the next section we confirm the effectiveness
of the proposed approach experimentally.

V. EXPERIMENTS AND RESULTS

We perform two sets of experiments. Firstly, we simulate
sources with varying reverberation conditions with different
model complexities. We also provide results for a smaller
separation angle. Secondly, we give results for experiments
on the AV16.3 audio-visual corpus [12] containing real room
recordings. Experiments related to the AV16.3 dataset are
discussed in Section V-A. Room dimensions are (9× 5× 3.5)
meters. The speakers are localized in the room through the
video processing as explained in Section II-B.1. The speakers’
locations and the direction vector di(ω) obtained are then
used in the algorithm. The audio and video observations

are manually and independently synchronized. Models with
different complexities for the ILD and IPD, Θildipd, were
evaluated similar to [4]. For instance, the ILD and IPD model
complexity of Θ00 will have no ILD contribution and an IPD
model with zero mean and a standard deviation that varies only
by source, whereas ΘΩΩ uses the full frequency-dependent
ILD and IPD model parameters. The desired source was
located at 0◦ azimuth and the interferer was positioned either
at 15◦ or 75◦. Speech utterances were randomly chosen from
the TIMIT acoustic-phonetic continuous speech corpus [13].
The first (16k×2.5) samples of the utterances were used and
were normalized to unity variance before convolving with the
RIRs which were generated using the image method [14]. The
signal-to-distortion ratio (SDR) as in [15] was used to evaluate
the performance of the algorithms. We compare the proposed
approach with [4], referred to as Mandel, and initialize it with
the source location information found through video so that
both algorithms utilize the same resources.
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Fig. 2. SDR in dB for varying RT60s comparing the proposed method with
Mandel for the Θ00 model in (a) and ΘΩΩ model in (b). The interferer was
located at 75◦ azimuth.

In Fig. 2 the two sources were simulated for varying RT60s
for the Θ00 and ΘΩΩ models with the interferer positioned
at 75◦. In Fig. 2(a), the Θ00 model, with the minimum
contribution of the ILD and IPD models, the spatial covariance
model contributes to show an overall improvement of the
proposed method over Mandel at all RT60s. While in Fig.
2(b), where the most complex model is considered, the ILD,
IPD and the spatial covariance all contribute to improve the
performance over the competing method. Table I summarizes
results for the Θ00 model with a smaller source separation
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angle of 15◦. This is a difficult case as the interaural cues of
the sources are very similar. With the ILD and IPD models
not doing very much, the spatial covariance model contributes
to give a considerable improvement over its counterpart with
average improvement of around 1.2dB over all RT60s.

TABLE I
SDR(DB) AS A FUNCTION OF RT60S COMPARING THE PROPOSED

METHOD WITH MANDEL FOR THE Θ00 MODEL. THE MASKER IN THIS

CASE WAS LOCATED AT 15◦ AZIMUTH.

RT60 (ms) 130ms 210ms 300ms 485ms
Mandel 5.53dB 3.73dB 1.81dB 0.52dB

The proposed 7.36dB 4.98dB 2.82dB 1.22dB
Improvement 1.83dB 1.25dB 1.01dB 0.70dB

A. Results for the AV16.3 Corpus

The AV16.3 corpus [12] contains real multispeaker record-
ings. We used the data from the available two-speaker case,
where they were seated and simultaneously active as shown
in Fig. 3. Speech mixtures from the third and seventh sensor
of the microphone array 1 were utilized. To evaluate the
performance of the proposed method for the AV16.3 dataset,
we conduct listening tests and provide mean opinion scores
(MOS tests for voice are specified by ITU-T recommendation
P.800).

We extract two mixtures, one from 4.5-7 seconds and the
other from 5.5-8 seconds, when both speakers are active
and static for the experiments. The direction vector di(ω) is
estimated as explained in Section II-B.1 and is used in the
algorithm. The MOSs in Table II (five people participated in
the listening tests) highlight the improved performance of the
proposed algorithm.

Fig. 3. Image from camera 1 on the top and camera 2 on the bottom. Both the
speakers are seated, simultaneously active and static for the time slots under
consideration. The third and seventh sensor mixtures of the microphone array
1 were used.

TABLE II
MEAN OPINION SCORES FOR THE STATIC TWO-SPEAKER CASE OF THE

AV16.3 CORPUS.

Time slot Mean Opinion Score (MOS)
(seconds) Mandel The proposed
4.5-7 3.3 3.9
5.5-8 3.1 3.6

VI. CONCLUSION

A new multimodal source separation algorithm was pro-
posed which integrates the model of the interaural parameters
and the spatial covariance model. The models together make
use of the estimate of the source location information which
was derived through video processing. Experimental results
indicated that the proposed algorithm can perform well even
when the separation angle between the sources is small in
contrast to the algorithm utilizing only interaural parameters.
Due to the robust nature of the presented video localization
scheme, the algorithm can be used in multi-speaker scenarios
although this study considered only the two speaker case.
Nevertheless the algorithm performs better at higher levels of
reverberation than its counterpart, improvement is still needed
in these adverse situations.
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