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Abstract 
The UK government has committed to generate 20% of the country's energy from renewable 

sources by 2020.  This paper investigates energy reduction in houses by using an innovative solar 

thermal collector combined with a heat pump system.  The dynamic lumped parameter model for a 

small house is derived and the combined heating system is used to provide the typical hot water and 

heating requirement. The goal is to maintain thermal comfort inside the house and reduce the 

amount of electricity consumption used for heating and hot water. This is achieved by reducing the 

electricity costs through optimising the operation of the heat pump, integrating the available solar 

energy, and by shifting electricity consumption to the cheaper night time tariff. Models of 

conventional controller on-off and a multi-variable model predictive control (MPC) are developed 

and used for several different climatic conditions. The results showed that the model predictive 

controller performed best by providing better comfort, consuming less electric energy and better 

use of cheap night time electricity by load shifting and storing heat energy in the heating tank.  
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1. Introduction 
According to the International Energy agency [1]  the primary energy use has grown by 40% from 

1994 to 2004. Overall there is an average energy and CO2 increase of 2% and 1.8% each year 

respectively. The main source of energy consumption in the domestic sector is space heating, which 

accounted for 60% of the total domestic energy consumption in 2011. Water heating accounted for 

18%, lighting 19% and cooking for a 3% [2] of a typical household bills. Currently, the use of solar 

thermal collectors combined with heat pump systems is becoming popular due to their low electrical 

cost. A heat pump is mainly used to increase the temperature of hot water generated by the solar 

collectors. It is acknowledged that the solar heating systems are challenging to control due to the 

swings in day to day and season to season energy flows and also the varying thermal comfort 

demands. The control system is an important component of any renewable system and is critical for 

increasing the performance of such systems.  

The long-term performance of a combined solar collector and heat pump system was studied by 

Huang et al.[3] and was found that its electricity price was cheaper than conventional gas system.  

The performance of a solar-assisted heat pump water heating system was monitored by Hawlader et 

al.[4]  . They showed that the performance of the system is influenced significantly by collector area, 

speed of the compressor, and solar irradiation. The performance of a combined solar water heater 

and heat pump was investigated by Nutaphan et al.[5] using a simulation program. The economical 

mass of hot water in the storage tank and the refrigerant mass flow for optimum operation of the 

system were investigated. Predictive control strategies are well known in building control       

research [6]. An MPC is used for chillers to optimally store the thermal energy in the tanks by using 

the predictions of the building load and outside weather conditions [7]. In another study a detailed 

building model is applied for building predictions [8]. Model predictive control has also been used 

for reducing peak electricity demand in building climate control [9]. Different predictive control 

strategies for a solar hot water system with non-predictive strategies are compared by  Grünenfelder 

et al [10]. It is shown in simulation that for a small storage tank, the predictive control saves energy 
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cost when compared with non-predictive strategies. A weather predictor based on observed 

weather data is used by Henze et al [11-13]. The system under study uses active and passive building 

thermal storage systems. Building heating systems using MPC with weather prediction have shown 

to save between 15% and 28% of the energy consumption [14].  

This paper will investigate the performance of a combined solar thermal collector and heat pump 

system. To control the system, a conventional (on-off) and an advanced control system (MPC) are 

simulated and the energy saving and load shifting of the controllers are compared. Mathematical 

model of the building and heating system is developed to predict the future behaviour of the whole 

system according to the outdoor weather conditions and occupancy pattern of the building.  

2. Experimental Heating system  
The full size solar system and the heat pump are installed at the School of Civil and Building 

Engineering of Loughborough University. It consists of a solar panel, a heat pump and three 

accumulator tanks. The buffer tank is heated up with the help of a heat pump and when it is 

required this hot water is transferred into either the heating tank or the hot water tank. The heating 

tank is also connected to the solar thermal collector. During the night, when electric tariffs are low, 

the heat pump can be used to heat up all the tanks. 

A general schematic diagram of the system is shown in Figure 1. The heat pump is connected to the 

buffer tank.  
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Figure 1: Solar System Combined with Heat Pump Schematic 

The main components of the system are described below. 

2.1. Accumulation System 
 The accumulation system consists of three tanks. The first tank is the buffer tank for the heat pump, 

and it has a capacity of 300l. It is heated by the heat pump, and it can supply hot water to the other 

two tanks as required. The hot water tank is connected to the buffer tank, it has a capacity of 300l, 

and it is located inside the heating tank. The heating tank is 450l capacity, and it provides hot water 

to the room fan coil units for heating.  

2.2. Solar Collector 
Solar collectors are used to collect solar radiations and to raise the water temperature of the heating 

tank. It is the preferred energy source of the system, because it uses only a minimal amount of 

electricity to power the circulation pump. The solar collector consists of 2 flat plate collectors 2𝑚2 in 

area each, covering a total area of 4𝑚2. 

2.3. Heat Pump 
The installed system is a single stage air source heat pump. It is the only way to heat the hot water 

tank, and it can be used as an auxiliary energy source for the heating tank when necessary. The heat 
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pump is directly connected to the buffer tank. The rated electric power of the heat pump is 6kW, but 

the actual power consumption may be lower, and the delivered thermal power is higher due to the 

additional energy drawn from the heat source.  

The single heat pumps are unable to modulate their output power during low load conditions, which 

could lead to overheating of the fluid loop. In order to solve this problem, the buffer tank is required 

in between the load loop and the heat pump.  

3. Modelling 
The system model is important for both the controller design, and for validation. The performance of 

a model based controller depends to a good part on the accuracy of the plant model. The nonlinear 

model of the whole system is implemented in Simulink, and a linearised plant model is used to 

formulate the optimisation problem [15, 16].  

The building was modelled by considering wall layers as lumped components and considering each 

layer as a thermal resistor and a thermal capacitor. The tanks are modelled as heat stores with a 

known thermal capacity. The development of heat pump model was based on curve fitting to 

manufacturer’s data. 

3.1. Building 
 

The building under consideration is a two room building; a hall and a bedroom. However the hot 

water and heating energy consumption is based on a typical house [17]. The hall has a south facing 

window. The dimensions of both the rooms are 4.27m*4.57m and they are 2.44m high.  The 

schematic layout of the building is shown in Figure 2.  
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Figure 2: Building Layout. 

A typical construction element consists of different layers of different materials. All the external 

walls and roof are considered of the same basic construction. The model used by Gustafson [18] is 

applied here. The building materials and properties of the external walls, roof and partition wall 

between hall and bedroom are summarised in Table 1. 

Wall/Roof 
  

Thickness 
in 𝑚 

Thermal conductivity in 𝑊
𝐾𝑚

 Density in 𝑘𝑔
𝑚3  

  
 

Brick 0.1 0.84 1700 
 

Polystyrene 0.0795 0.034 35 
 

Concrete 0.1 0.51 1400 
 

Plaster 0.013 0.025 900 
 

Partition 
Wall    

  

Gypsum 0.025 0.25 900 
 

Air 0.1 0.15 𝐾 𝑚2

𝑊
 (Resistance) 1.204 

 
Gypsum 0.025 0.25 900 

 
Table 1: Building Model Specifications. 
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The building construction is divided into number of layers and each layer is modelled separately. The 

advantage of this method is that it takes into account the time varying effect of heat moving from 

the inside to the outside of the building, and this is essential to model the correct response of the 

room air and radiation temperature to a change in heating. Solar gain was only considered in the hall 

area as it has the window. The fabric solar heat gain through the walls and roofs is considered as 

negligible because of the low thermal conductivity of the construction. Each layer of the 

construction is modelled separately in Simulink and considered as a single lump element. A wall with 

𝑁 layers can be seen in Figure 3.  

 

Figure 3: Wall Divisions. 

 

The heat transferred from indoor air to the wall can be summarised in the following equation: 

 𝑞𝑐𝑜𝑛𝑣 = 𝑞𝑐𝑜𝑛𝑑 +  𝑞𝑠𝑡𝑜𝑟𝑒𝑑 (1) 

𝑞𝑠𝑡𝑜𝑟𝑒𝑑 is the stored heat energy inside the wall layer or heat energy of lumped capacitance.  

 ℎ𝑖𝑛(𝑇𝑖𝑛 − 𝑇𝑖) =
𝑘𝑖
𝐿𝑖

 (𝑇𝑖 − 𝑇𝑖+1) +  
𝑑𝑇𝑖
𝑑𝑡

�𝑐𝑝,𝑖𝜌𝑖𝐿𝑖� 
(2) 

 

 
𝑑𝑇𝑖
𝑑𝑡

=
ℎ𝑖(𝑇𝑖𝑛 − 𝑇𝑖) −

𝑘𝑖
𝐿𝑖

 (𝑇𝑖 − 𝑇𝑖+1)

𝑐𝑝,𝑖𝜌𝑖𝐿𝑖
 

(3) 
 
 

 

   



8 
 

 

For middle layers the material also has capacitance and therefore heat storage capacity of the 

material is taken in to account. The heat balance equation is: 

 𝑞𝑐𝑜𝑛,1 = 𝑞𝑐𝑜𝑛𝑑,2 +  𝑞𝑠𝑡𝑜𝑟𝑒𝑑 

 

(4) 

 𝑘𝑖
𝐿𝑖

 (𝑇𝑖−1 − 𝑇𝑖) =
𝑘𝑖+1
𝐿𝑖+1

 (𝑇𝑖 − 𝑇𝑖+1) +  
𝑑𝑇𝑖
𝑑𝑡

�𝑐𝑝,𝑖𝜌𝑖𝐿𝑖 + 𝑐𝑝,𝑖+1𝜌𝑖+1𝐿𝑖+1 � 
(5) 
 
 

 where 𝑖 = 2, 3, … . . , (𝑁 − 1)  

For outer layer the equation for heat energy is: 

 𝑞𝑐𝑜𝑛𝑣,𝑁 = 𝑞𝑐𝑜𝑛𝑑,𝑁−1 +  𝑞𝑠𝑡𝑜𝑟𝑒𝑑 

 

(6) 

 ℎ𝑜𝑢𝑡(𝑇𝑖 − 𝑇𝑜𝑢𝑡) =
𝑘𝑖
𝐿𝑖

 (𝑇𝑖−1 − 𝑇𝑖) + 
𝑑𝑇𝑖
𝑑𝑡

�𝑐𝑝,𝑖𝜌𝑖𝐿𝑖� 
(7) 

In the above equations it is assumed that the wall, roof and floor are divided into 𝑁 layers with 

different properties and i=N.  

3.2 Solar panel and water tanks 
A flat plate collector is used to heat up the heating tank. The useful energy from the solar panel is 

calculated by using the following equation [19]; 

 𝑄𝑈 = 𝐹𝑅𝐴𝑐 [𝜏𝛼𝐼 − 𝑈𝐿(𝑇𝑐 − 𝑇𝑎)] 

 

(8) 

The water tanks are modelled by assuming that the water inside the tanks mixes properly and there 

is no temperature stratification across the tank height. The second assumption is that the heat 

capacity of the tank is the heat capacity of the volume of the water inside the tank. The heat losses 

from the tanks are also considered and the losses from the buffer tank and the heating tank are 

added as the heat gain by the room air i.e. it is assumed that the tanks are placed in the bedroom. 

The hot water losses are added into the heat gain by the heat tank water. 
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3.3. Heat Pump 
Several models for the heat pump Coefficient of Performance (COP) were tested. Initially an existing 

model developed from first principles was used [20], but this model did not give a good match when 

its COP results were compared with the data supplied by the manufacturer.  

As a second step, the dynamics of the absorber and condenser were eliminated in favour of a quasi-

stationary model. This leads to a model with only four remaining factors shown in Table 2. 

α  Thermal efficiency coefficient of compressor 

β  Recovery share of losses into heat  

𝑢𝑇 𝑃  Thermal coefficient on condenser side  

𝑢𝐸  𝑃  Thermal coefficient on evaporator side 

Table 2: Heat Pump Parameters 

This leads to a quadratic equation for the effective COP: 

(𝑢𝑇 + 𝑢𝐸)𝑃 ∗ 𝐶𝑂𝑃2 + (𝑇𝑇 − 𝑇𝐸 − 𝑢𝐸𝑃 − 𝛽(𝑢𝑇 + 𝑢𝐸)𝑃 − 𝛼𝑢𝑇𝑃)𝐶𝑂𝑃 − 𝛼𝑇𝑇
− 𝛽(𝑇𝑇 − 𝑇𝐸 − 𝑢𝐸𝑃) = 0 

(9) 

The above quadratic equation was then used to calculate the COP of the heat pump. Several 

methods were used to find the best fit to the existing data, but none of them provided a good 

match. It was found that plotting the inverse of the ideal COP vs the inverse of the actual COP 

provides a good fit. This plot was then approximated using a quadratic function:  

 𝑦 =  29.278𝑥2  −  4.8281𝑥 +  0.4328 (10) 

where x is the inverse of ideal COP and y is the inverse of actual (manufacturer's) COP.  

It can be seen that the resulting curve gives better results than the previous methods. The plots of 

COP data from different methods are shown in Figure 4 and the inverse plot of both ideal COP and 

manufacturer's COP is shown in the Figure 5. The quadratic equation has an R2 value of 0.9893, 

which is the coefficient of determination and is used to find out how accurate the equation will 

predict the future outcomes. In this case the value of R2 is very close to 1 which means that the 

regression line fits the data very well. It can be concluded that this very simple model provides a 
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good match with the experimental data, and this cannot be said for the two previous models of the 

heat pump. 

 

Figure 4: COP Plots from Different Methods. 

 

Inverse of Ideal COP 

Figure 5: Inverse Plot of Ideal and Manufacturer COP 

Inverse of actual CO
P 
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3.4. Controllers 

Below is a brief overview and comparison of the On/Off and MPC strategies used that are used 
for the experimental heating systems.  
 

3.4.1On-off Controller 
The on-off controller is the simplest type of controller. The controllable device e.g. heat pump in this 

case is turned on and off at certain thresholds. These are set according to a tank temperature error 

as given by  

 𝑒𝑟 = Tr − TT (11) 

in which 𝑒𝑟 is the error between reference temperature 𝑇𝑟 and current tank temperature 𝑇𝑇. The 

controller output is turned on when the error 𝑒𝑟 exceeds a positive threshold, and it remains on until 

𝑒𝑟 exceeds a negative threshold.  The main advantage of the on-off controller is that it is simple and 

easy to implement. It is a feedback controller that does not contain any information about the plant 

dynamics. 

3.4.2 Model predictive controller (MPC) 

 
MPC is a class of computer algorithms that utilizes process models to predict future behaviour of a 

plant. The control signal is obtained by minimizing an objective function in real time [21]. The main 

difference in the various methods is the way the problem is translated into the mathematical model, 

and how this is solved numerically [22]. The main ideas behind predictive control methods are; 

 Explicit use of a model to predict the process output at future time instant (horizon). 

 Obtaining control signal by minimizing an objective function. 

 Using a receding horizon strategy, where at each time step the horizon is moved to cover 

the same period into the future.  
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In MPC the model obtains data from past inputs and past outputs and combines this data with 

future inputs to create a prediction of future output values. The predicted outputs are compared 

with a reference trajectory to determine future output errors. These future errors are then used to 

calculate an objective function based on control inputs and output errors. The objective function is 

fed into optimizer, which tries to find a cost optimal solution while still satisfying constraints on the 

system. The optimiser returns the optimal inputs together with the predicted behaviour and cost. 

Due to the receding horizon approach, only the first input is implemented, and further steps are 

discarded in favour of an updated optimisation results based on the additional information available 

at the next time step.  

The ability of an MPC controller to define and predict objective function makes this control strategy 

one of the most advance control strategies. The model predictive control makes use of the system 

model to obtain the control signal as a minimisation of the objective function. The aim of the 

objective function is to represent the compromise between fast and strong control action, which 

typically increases costs, and quick and accurate following of the reference trajectory. Therefore 

both input values and output errors are penalized. A typical objection function of model predictive 

control is defined by the following equation: 

 
𝐽(𝑘) = �𝑤𝑖+1

𝑦 �𝑦(𝑘 + 𝑖 + 1|𝑘) − 𝑟(𝑘 + 𝑖 + 1|𝑘)�
2

𝑛𝑦

𝑖=1

+ �𝑤𝑖
∆𝑢�𝛥𝑢(𝑘 + 𝑖|𝑘)�

2
𝑛𝑢

𝑖=1

+ �𝑤𝑖
𝑢

𝑛𝑢

𝑖=1

�𝑢(𝑘 + 𝑖|𝑘)

− 𝑢𝑡𝑎𝑟𝑔𝑒𝑡(𝑘 + 𝑖|𝑘)�
2
 

(12) 

In the above equation, wi+1
y , wi

∆u and wi
u are non-negative weights of output, rate of change on 

input and input variables. The weights can be time varying, and this is used to represent changing 
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electricity prices according to a night time electricity tariff. In the multi-variable case, non-negative 

(symmetric) quadratic forms can be used as weights, although many implementations only support 

diagonal matrices. For the simulations, the prediction horizon is set to 24h, to cover a complete cycle 

of daily temperature and electricity cost variations. 

 

Figure 6: Model Predictive Controller Scheme 

Figure 6 shows the basic control scheme used for the research. The energy price, occupancy 

prediction and weather prediction are the time varying external conditions. Together with the 

temperature measurements, these form the inputs to the controller. The plant model, system 

constraints, cost function and objective function are defined as the parts of the MPC controller. For 

every time step these parameters are combined and converted into an optimization problem, which 

then determines the output for the next time step.  

Model predictive control has the ability to include constraints into the MPC formulation. MPC 

constraints can be physical limitations, or they can be used to constrain the operation of the system 

to most efficient condition. The constraints used in this paper are linear constraints that take the 

following form: 
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 𝑢𝑚𝑖𝑛,𝑘  ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥,𝑘 

𝑥𝑚𝑖𝑛,𝑘  ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥,𝑘 

(13) 

 

Linear constraints are most commonly used constraints. Only simple linear weights are used here in 

an attempt to keep the complexity of the optimization problem manageable.  

4. Simulation results 
To compare the effectiveness of the MPC controller to conventional on-off control scheme, two 

scenarios with London location are simulated. The water consumption data is based on existing    

data [17]. Night time electricity price is considered from midnight to 7 am in the morning.  

The water consumption, solar radiations and outside environmental temperature are considered as 

disturbances that are known in advance. The electricity price and energy consumptions are also 

known in advance and are considered a time varying weight.  

Simulations were performed by considering one cold day in the middle of two medium temperature 

days (Case A) and a sunny day in between of two days having medium solar radiations (Case B). The 

building was simulated using Integrated Environmental Solutions (IES) in order to obtain the total 

indoor heat gains. 

4.1. Results: Case A 
 

The results for Case A are shown in Figures 7 and 8. The initial air temperatures of both the bedroom 

and hall were 18oC and 22oC. The air temperatures dropped initially because the wall layers 

temperatures are initialised to 0oC, and they take time to heat up. The on-off controller (Figure 7) 

took 9 hours to bring the hall air temperature to a steady value whereas the MPC controller     

(Figure 8 ) took approximately 3 hours to bring the air temperature to the reference temperature of 

22oC. Throughout the day with MPC better temperature control and thermal comfort in the building 

are also maintained. 
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The first objective of the control problem was to minimize the energy consumption by using night 

time electric tariffs, which are cheaper as compared to day time tariffs and also by using available 

solar energy. The model predictive controller uses more night time electricity while OnOff controller 

uses less night time electricity. From 24:00 to 31:00 (midnight to 7 am: day 2) MPC has used more 

energy than on-Off by taking advantage of cheaper tariffs. MPC then switched off the heat pump 

when it anticipated that day time electric tariffs are coming into action as can be seen in Figure 8. 

MPC also used a minimal amount of electricity to keep the tanks water temperature at desired level.  

The on-off controller could not take electric tariffs into account and therefore uses more energy 

during the day time. After the initial settling period, the on-off controller keeps the temperatures 

between upper and lower limits, which lead to a typical limit cycle shown in Figure 7.  

The second control objective was to do load shifting by using different control strategies. The model 

predictive controller does load shifting as can be seen in MPC control results, Figure 8. The MPC 

started storing heat energy during the night at 24:00 and raised the temperature in the buffer tank 

(T1) and hot water tank (T2) temperatures. The load shifting was stopped when the low electric 

tariffs were ended at 31h and 55h (7 am day 2 and 3) which resulted in heat pump being used at 

lower settings during the next days. The high heat pump signal at 57:00, shown in Figure 8, is 

resulted from the high water consumption at that time.   
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Figure 7: On-Off Control Results Case A 

 

 

Figure 8: MPC Control Results Case A 

The energy over time for Case A showed that the MPC achieves a lower electricity cost than the on-

off controller. The MPC was able to switched off the heat pump at few points e.g. from 59:00 to 

64:00h (11 a.m-4 p.m, day 3). The MPC used more energy at the beginning of the simulation because 

the room temperature became lower and controller used night time electricity. By using more 
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energy at the beginning MPC took less time to bring room air to a steady value than the on-off 

controller. 

4.2. Results: Case B 
The second case simulations were performed by using one sunny day in the middle of two less sunny 

days. The results shown in Figures 9 and 10, demonstrated that both controllers were able to 

maintain the temperatures at desired level. The rise in heating tank temperature (T3) at 36:00h (12 

p.m. day 2) is because of the strong solar radiation which has caused the temperature to exceed the 

reference temperature. Both controllers have used less energy compared to Case A, as the heating 

demand is less because of the sunny day.  

 

Figure 9: On-Off Control Results Case B 
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Figure 10: MPC Control Results Case B 

The results for on-off controller Figure 9 shows that tank temperature's fluctuations are less than 

the room air temperature's fluctuations, due to higher temperature range for the tanks.  

The MPC has used less energy during the second day and the energy used is only to heat up the hot 

water tank as the heat tank has enough energy because of the solar energy as shown in Figure 10.  

 

Figure 11: Energy Price in Pounds per day 
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The simulation results shown in Figure 11 demonstrated that the MPC saved about 9% of the energy 

cost. This is mainly due to the fact that model predictive controller used cheaper night time 

electricity and heat pump was used at low settings or even was turned off during the day time.   

The on-off strategy is the easiest to apply, as it does not require any tuning and requires essentially 

no computation. The MPC controller on the other hand has a number of requirements: it needs a 

plant model, selected weights, and it also needs measurements and predictions of external 

parameters.  

5. Conclusions 
Overall the model predictive controller proved to have a greater potential in the area of load shifting 

and use of renewable energy. The simulation results showed that the MPC consumed less energy 

than the on-off controller. The model predictive controller also used cheaper night time electricity 

and the heat pump was used at low settings or even was turned off during the day time.  The room 

temperatures maintained at the desired level and the set points achieved very quickly. Overall the 

MPC controller maintained good thermal comfort in the building. 

One of the main limitations of MPC was found to be the use of linear model requirement which did 

not match the heat transfer between the tanks. The error increases as the tank temperature deviate 

from the nominal values used for linearization, and the effect on temperature stability is 

exacerbated by the long cycle time of the MPC controller. It may be possible to reduce this issue by 

using energy transfer rate rather than mass flow rate as a control input. Alternatively, an underlying 

control structure with faster response time could limit the effect on room temperatures.  

The second limitation was that the MPC controller could not optimise secondary (non-linear) effects, 

because they are not contained in the model. The most important one is the change in effectiveness 

of the heat pump (COP) due to changes in the tank temperature. Therefore, the controller does not 

try to keep the tank temperature low unless this goal is explicitly included in the cost function. 
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In general, the system is most suitable for residential market and the results highlight the 

importance of advanced controls for combined solar and heat pump systems in order for the system 

to operate efficiently and maintain good thermal comfort in the building.  The MPC controller 

demonstrated to maintain better thermal comfort and less temperature fluctuation. 
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