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Abstract

Biofilms are colonies of bacteria attached to the surface at a solid-fluid

interface. Bacteria in biofilm produce exo-polysaccharides (EPS) that

form a gel-like matrix in which the bacteria are embedded. Biofilms

have numerous consequences in industrial and medical settings, both

positive (bioreactors, digestion) and negative (blocking, as corrosive

damage of materials/devices, food contamination, clinical infection).

The use of antibiotics or mechanical clearing can be effective at re-

moving biofilms, but such treatments are not always effective or ap-

propriate in all situations. Recently, non-thermal atmospheric plasma

treatments have been proposed as an alternative (or complementary)

form of treatment, that can target sites of infection with minimal dam-

age to the surroundings (e.g. host cells in a clinical setting). These

plasmas generate a multitude of chemical species, most of which are

very short lived, that can infiltrate and diffuse into the biofilm killing

the bacteria within. The aim of this thesis is to develop a multi-

dimensional mathematical model to investigate the effect of a non-

thermal plasma on biofilms in time and space and to identify key

factors that determine effectiveness of the treatment.

Most of the chemical products of cold plasmas are too short lived,

or too reactive, to be effective in killing the biofilms, it is the longer

live species, e.g. ozone, hydrogen peroxide, acid species, that pene-

trated the biofilm and do the most damage. However, the EPS in

biofilms is an effective barrier against ozone and hydrogen peroxide.

No published biofilm model combines multi-dimensional growth with

a detailed description of EPS production, hence a new mathematical

model is developed and applied to simulating plasma treatment.



The thesis is split broadly into two parts. The first part presents a

new biofilm model framework that simulates growth in response to any

number of substrates (e.g. nutrient, oxygen). The model combines an

Individual based model (IbM) description of bacteria (individuals or

clusters) and substrates are described as a continuum. Novel features

of the framework are the assumption that EPS forms a continuum over

the domain and the explicit consideration of cellular energy (ATP).

Simulations of this model demonstrate the contrast between biofilm

grown with topical nutrient sources (forming irregular, bumpy biofilm)

and basal nutrient source with topical oxygen such as biofilm grown

on agar (forming regular spatially uniform biofilms).

The former is in broad agreement with experiments whilst the latter,

to our knowledge, has been the subject of very little experimental

study.

The second part extends the modelling framework to consider the

effect of the plasma species. The simulations demonstrate that pene-

tration is a key factor in their effectiveness, for which EPS plays a key

role in preventing spread within and beyond the plasma treated zone.

The simulations provide estimates of the timescale of equilibration of

the main plasma species, predict the effect of combining these species

and demonstrate how the constituents of the biofilm can change fol-

lowing treatment. A number of recommended suggestions for future

theoretical and experimental study are discussed in the conclusions.
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Chapter 1

Introduction

Biofilms are slimy colonies of bacteria, which grow on solid surfaces in a fluid

environment. Some kinds of biofilms are used in the production of industrial

goods or for water treatment. However, some of them cause damage in an in-

dustrial setting and disease in humans. A characteristic feature of most bacterial

biofilms is the presence of an exopolysacchurades matrix produced by the bacte-

ria, which helps maintain the structure of the biofilm. These substrates offer the

bacteria an ideal living environment and help protect the bacteria from antibiotic

agents. Consequently, the removal of harmful biofilms is not always an easy task.

Among the more recent methods of biofilm removal is the application of cold

plasma [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In this thesis we discuss a new mathematical

modelling framework designed to describe biofilm growth and use this model to

investigate the cold plasma treatment of biofilms. In this chapter, Section 1.2

will give a brief introduction of bacterial biology and biofilms, which will later

form the basis of the modelling framework. The next section will discuss the

basic biology of biofilms, including their living environments, metabolism, forma-

tion, structure, effects, uses, the extracellular polymeric substance (EPS), and its

functionality.

1



1. Introduction

1.1 Biology of Bacteria

In microbiology, cells are categorised into prokaryotic and eukaryotic. Eukaryotic

cells are all cells of unicellular and multicellular microorganisms which contain a

nucleus. This category contains all animal, plant, and fungal cells. Prokaryotes

have, in the past, been viewed as a group that largely exists as single cells, with

a few exceptions (e.g. myxobacteria [11, 12]); however, more recently, as our

understanding of microbiology and biofilms has become greatly enhanced, it has

been generally realised that biofilms share many of the features of multicellular

organisms. It is estimated that there are about 4 − 6 × 1030 prokaryote cells

on earth [13]. They are divided into two groups, namely, bacteria and archaea

[14]. Though they have similar morphological features, the metabolic processes of

these two kingdoms are quite different: Archaea have metabolic pathways more in

common with the Eukaryotes (e.g. gene translation and transcription). Bacteria

are a larger group among the prokaryotes, and play an important role in all

natural environments. They decompose organic material, such as dead animals,

plants, and the waste from the metabolic pathways of living organisms, and in

turn become food for other creatures. Bacteria also play a key role in maintaining

the balance of the atmospheric gasses, such as by consuming carbon dioxide and

generating oxygen.

In the following subsections, we will discuss in some detail the biology relevant

to the modelling in the future chapters.

1.1.1 Bacteria Morphology

The size of bacterial cells may vary, depending on their environment [15], but

they are typically 1–5 µm in length [16]. The smaller sized bacteria cells are

able to take up nutrients and export waste from their metabolism faster than can

larger cells, therefore, they gain more nutrients and grow faster than larger cells

under low nutrient concentrations. The shape of a single cell is either spherical or

rod-shaped (round-ended cylinders), the so-called cocci and bacillus, respectively.

Sometimes cells aggregate together and form various shapes of clusters or chains

as shown in Figures 1.1 and 1.2.

The internal structure of bacterial cells is shown in Figure 1.3. The bacte-

2



1. Introduction

Figure 1.1: Example of the various aggregation arrangements in cocci cells.

Figure 1.2: Example of the various aggregation arrangements in bacillus cells.

rial circular DNA (Deoxyribonucleic acid) are irregularly shaped and form the

nucleoid. The nucleoid, unlike in eukaryote cells, has no bounding membrane,

therefore some of the DNA molecules are replicated and isolated from chromo-

somal DNA, and form the plasmids [17]. The largest number of molecules in

bacterial cells are called ribosomes. Their function is to read the inherited fac-

tor from RNA (Ribonucleic acid) to synthesise amino acids and form protein

3



1. Introduction

molecules. There is a thick liquid called the cytoplasm, which fills the void space

inside the cell membrane and contains all the organelle of the bacteria cells in-

cluding the nucleoid, plasmids, and ribosomes. Some of the important metabolic

pathways occur in the cytoplasm, such as glycolysis and the TCA cycle, which

produce energy. Energy production will be discussed in detail in Section 1.1.3.

There are two groups of bacterial cell walls: Gram-positive and Gram-negative

cell walls (see Figure 1.4). In general, Gram-positive cell walls consist of plasmide

membrane, periplasmic space, and petidoglycon. The Gram-negative cell walls

contain a further two layers outside of these, with another layer of periplasmic

space and an outer membrane. The outer membrane prevents the bacteria from

being phagocytosed by macrophages when in an animal body, or digested by en-

zymes, and works as a barrier to protect the cell from antibiotic agents. Outside

the cell wall, there are a number of short protein tubes all around the cell surface.

The short protein tubes are called fimbrias, so-called pili. The function of the pili

is cell adhesion to other biotic and abiotic surfaces. Other cell mobilities, such as

swimming and cell rotation [18], depend on flagellas, which are long, whip-like,

and consist of more than 20 proteins [19]. Flagellas also involve cell adhesion to

solid surfaces [18]. Different species of bacteria may have different numbers of

flagella, with various arrangements (see Figure 1.3b) [19].

1.1.2 Environment

Any environment that can sustain life will harbour at least one, but probably

many, species of bacteria. The favoured environment, however, can vary consid-

erably across species, depending on the temperature, pH, levels of oxygen, carbon

dioxide, sulphur, etc. Most bacteria grow in temperatures between 25–30◦C and

pH values of about neutrality (pH 7)[16] though they will tolerate to a certain

extent conditions outside those which could be considered optimal.

All bacteria require some form of organic compound from which to generate

new proteins and use for energy production. The necessary molecules contain

carbon, hydrogen, nitrogen, sulphur, and some iron. For example, bacterial cells

require carbon and nitrogen to generate energy ATP (Adenosine-5’-triphosphate,

see Section 1.1.3) via respiration; for the production of new protein and amino

4



1. Introduction

(a)

(b)

Figure 1.3: Schematic of (a) bacteria cell structure (b) flagella of Monotrichou,
Lophotrichous, Amphitrichous and Peritrichous.

5



1. Introduction

Figure 1.4: Schematic of Gram-negative (left) and Gram-positive (right) cell
walls.

acids, nitrogen as well as sulphur are also required. These essential compounds are

all absorbed from the environment and processed to form those molecules which

are required for the cell to function, grow, and divide. The specific requirements

for bacteria vary considerably from species to species, e.g. oxygen is highly toxic

for some bacteria [20] but greatly enhances energy creation in others.

1.1.3 Cell Energy: Adenosine-5’-triphosphate (ATP)

In order for a bacterial cell to function, including cell growth, division, and

movement, an intracellular energy source is requires. Adenosine-5’-triphosphates

(ATPs) is a kind of coenzyme, used to release the intracellular energy in many

cellular processes, such as digestion, compound synthesis, cell mobility, growth,

and division [16, 21]. A single molecule of ATP consists of three phosphate

groups, a ribose sugar, and an adenine ring (Figure 1.5a). These three phosphate

groups are connected by two high energy phosphoanhydride bonds. The process

of breaking down high-energy bonds between two phosphate groups is known as

hydrolysis and releases energy by forming a lower-energy bond [22, 23, 24], re-

ducing the ATP molecule to adenosine diphosphate (ADP) (Figure 1.5b). ADP

can be recycled and converted back to ATP by adding a phosphate group. The

concentration of ATP in a living cell is about 1-10 µM [25], which is typically

a thousand times higher than the concentration of ADP. This means there is a

6



1. Introduction

(a) (b)

Figure 1.5: The chemical composition of (a) ATP and (b) ADP.

large amount of free energy available to the cell [26].

The most well known energy producing metabolic process is that of glucose.

ATP can be produced from glucose by several metabolic processes, including

glycolysis, the tricarboxylic (TCA) cycle, and electron transport [27] (requiring

oxygen) resulting in glucose being broken down into carbon dioxide and water.

Glycolysis is a series of reactions that converts a molecule of glucose into two

pyruvate molecules, and occurs in both aerobic and anaerobic conditions. In the

first stage of glycolysis, two molecules of ATP are hydrolysed to ADP and release

the energy stored in the high energy bond for catabolism of the glucose from the

structure of a six-carbon ring to two three-carbon molecules. However, in the

following reactions, four ATP molecules are synthesised with two molecules of

NADH. The net products of the glycolysis metabolism are two molecules of ATP

and two molecules of NADH.

NADH is a reduced form of the coenzyme NAD+ (nicotinamide adenine din-

ucleotide phosphate). This process maintains the ratio of NAD+ to NADH, like

ATP and ADP, to be about constant. After the NAD+ has been reduced to

NADH, replenishment by oxidation is required. The reactions which convert be-

tween NAD+ and NADH are examples of redox reactions. These reactions, which

7



1. Introduction

operate in both aerobic and anaerobic respiration, are summarised as follows.

NAD+ +H+ + 2e− � NADH

(←− oxidation; −→ reduction)

Two pyruvates, the end products of glycolysis, are converted to two acetyl-

Coenzyme A, the so-called acetyl-CoA, molecules. While the reduction reac-

tions are taking place, two NADH molecules are reduced from NAD+ molecules.

Acetyl-CoA enters an aerobic respiration metabolism called the tricarboxulic

(TCA) cycle, also called the Krebs cycle or the citric acid cycle, and is oxi-

dised to CO2 and water completely, in some aerobic organisms. One molecule of

ATP, three molecules of NADH, and one molecule of FADH2, which is another

co-enzyme involved in the citric acid cycle, are produced during one turn of the

TCA cycle.

The electron transport chain is a series of reactions that transfers electrons

from electron donors, NADH and FADH2, to the electron acceptors, which are

oxygen molecules in oxygen presented conditions, and interact with hydrogen ions

to form water. This series of reactions induces ATP syntheses. The oxidation

of one molecule of NADH to NAD+ induces 2.3 molecules of ATP. Similarly, the

oxidation of one molecule of FADH2 induces 1.4 molecules of ATP [27]. Through

the overall metabolisms of glycolysis, the TCA cycle, and the electron transport

chain under aerobic conditions, a glucose molecule induces 29.85 ATP molecules

(Figure 1.6) [27]. In anaerobic conditions, anaerobic respiration takes place. The

electron transport chain uses inorganic molecules with less redox potential, such

as nitrate or sulphate, instead of oxygen, as electron acceptors. Therefore, fewer

ATP molecules are synthesised [16].

1.1.4 Energy Storage

Some living cells produce polysaccharides, lipids, and polyphosphate as energy

storage substrates to store energy [28]. One such compound, produced only by

some bacterial cells, is called poly-β-hydroxybutyrate (PHB). PHB is produced

and stored by bacterial cells in well nourished conditions and is consumed in the

8



1. Introduction

Figure 1.6: Schematic of ATP production during cellular respiration.

synthesis of ATP when carbon sources, such as glucose, are in short supply [29].

The amount of PHB contained in a bacterial cell is, at most, 50% of dry weight of

the cell [29]. In some bacterial species, such as Bacillus cereus, PHB can only be

produced during aerobic respiration [29], whilst others are able to produce PHB

during both aerobic and anaerobic respiration [30, 31]. However, PHB synthesis is

inhibited when the oxygen concentration exceeds 5% [29]. When cells metabolise

PHB to generate energy, the reaction rate in anaerobic degradation is slower than

in aerobic degradation[29]. The energy produced by PHB degradation seems to be

utilised for cell survival with growth mostly suppressed. The biomass production

by PHB is about 4%–10% of the production by nutrient [30]. However, cell

division is completely suppressed, due to its much higher energy demands [29].

PHB production, like ATP synthesis, is a series of oxidation reactions using

glucose as the source. The glucose is converted to pyruvate via glycolysis, then

further transformed to acetyl-CoA, in the same processes as ATP synthesis. For

PHB production, acetyl-CoA does not entirely enter the TCA cycle, but instead

enters the cycle of the PHB production-degradation metabolic process and is

9



1. Introduction

Glucose Pyruvate

Acetyl-CoA

Pyruvate

Acetyl-CoA

Poly-β-hydroxybutyrate

NAD+

2 x

ADP ATP
NAD+ NADH2

2

2
2 NAD NADH

NAD+ NADH

NADH

TCA Cycle

1 ATP + 3 NADH + 1 FADH

(6.6 ATP)
(2.3 ATP)

(9.3 ATP)

Feast: 1 Glucose                            18.2 ATP + 2 Poly-β-hydroxybutyrate

(a)

Poly-β-hydroxybutyrate2 x Acetyl-CoA
TCA Cycle

NADHNAD+ (2.3 ATP)

1 ATP + 3 NADH + 1 FADH
(9.3 ATP)

Starvation: 2 Poly-β-hydroxybutyrate                                 11.6 ATP

(b)

Figure 1.7: Schematic of PHB production and degradation metabolisms in (a)
feast [31] and (b) starvation conditions [29].

converted to poly-β-hydroxybutyrate. While in starvation, PHB is converted

back to acetyl-CoA and enters the TCA cycle to produce ATP (Figure 1.7).

One molecule of PHB may produce up to 4.925 molecules of ATP [32] and 0.54

molecules of ATP under anaerobic conditions [33].

10



1. Introduction

1.2 Introduction of Biofilms

The biofilm phenotype is one of the bacterial phenotypes. Others are the plank-

tonic, the spore, and the ultramicrobacteria phenotypes [34]. These three living

forms have their own benefits for bacterial growth and proliferation.

1. Planktonic phenotype. This phenotype is where bacterial cells move by

swimming with their flagella freely in liquids. Therefore, they are able to

find the environment most suitable for their growth and away from any

toxic activity.

2. Spore phenotype. A spore is a bacteria cell that has a cell coat. There-

fore, these bacteria are highly resistant to a poor living environment. Spores

are able to survive in extreme conditions, in environments which may be

acidic, hot, cold, or toxic. Some of the planktonic species can form them-

selves into spores under pool living conditions and then transform back to

plankton when the environment improves [35].

3. Ultramicrobacteria (UMB). Ultramicrobacteria are very small bacteria,

with a size of from 0.2 to 0.3 µm [36]. These kinds of bacteria are the dor-

mant forms of large cells, i.e., the UMB cells have reduced their metabolic

rate and have stopped growing. This form allows bacteria to survive under

extreme conditions [37].

4. Biofilm phenotype. The main differences between biofilm cells and plank-

tonic cells are a community structure. Biofilm cells are connected by pili

and interact with each other [34]. Some of the planktonic cells are able

to lose their flagella and adopt this phenotype. Once planktonic cells lose

their flagella, they may aggregate and produce a matrix of an extracellu-

lar polymeric substrate (EPS) to form biofilms. The growth rate and gene

transcription of bacterial cells in biofilms are different from those of their

planktonic forms [38]. The cells in mature biofilms may detach from the

biofilms. The detached biofilm cells return back to the plankton phenotype

and swim using their flagella to find new places and to form new biofilms.

11



1. Introduction

Biofilms are hydrophilic structures developed by biofilm phenotype bacterial

cells. The definition of a biofilm is that the bacterial cells are embedded in a

matrix of extracellular polymeric substances (EPS), which are produced by the

cells and irreversibly attached to various surfaces [38]. They are highly hydrated

structures [39]. The constituents of a biofilm can vary considerably and dynami-

cally, consisting mostly of water, bacteria, and the EPS [39, 40], as well as abiotic

materials, such as ions, in dependence on the growth environment. Biofilms

adhere to various surfaces such as solid–air, air–water, and mostly solid–liquid

interfaces, including water pipes, blood vessels, teeth, medical devices, and river

beds [38, 40, 41, 42, 43]. The extracellular polymeric substrates, which account

for 50%–90% of the total organic carbon of the biofilm [44, 45, 46], is composed of

polysaccharides and various ingredients. The details of the EPS and its function

will be discussed in Section 1.2.2. The structure of biofilms can vary considerably,

depending on the cell species, the nutrient loading, and the bulk flow. Liquid flow

encourages bacterial adhesion and biofilm formation. The fluid transports sub-

strates, including nutrients and oxygen, to the biofilm and through the water

channels between the cells or between the cells and the EPS in the biofilm [47],

thereby creating the ideal environment for bacterial growth [39, 41]. The nutri-

ent and oxygen concentration gradients depend on the hydrodynamics, the mass

transport, and biofilm activities [48] such as consumption. The hydrodynamics

and the mass transfer (diffusion) boundary layers are formed above the biofilm

surface in the bulk fluid. The boundary layer is thinner in a high turbulence

condition than in a static or low-flow liquid, and, therefore, the cells are able

to obtain more nutrients than in low-flow or static environments. However, too

strong a turbulence may cause the biofilm cells’ detachment [45]. The distribu-

tion of nutrient and oxygen concentrations in the biofilm environment affects the

cells’ growth and the biofilms’ formation [40, 43]. The structure of biofilms has

been investigated extensively using confocal laser scanning microscopy (CLSM)

[40, 43, 49, 50]. Observations show that the shape of the biofilms is mushroom-

like or finger-like and is formed smoothly at the surface under nutrient reach

conditions. Conversely, at low-nutrient levels, the biofilm surface tends to be

more uneven and the bacterial cells are aggregated [43, 51]. The internal distri-

bution of the cells and the EPS in a biofilm has also been investigated by CLSM
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[52, 53, 54]. Due to the difference in nutrient concentrations, the bacteria are

not uniformly distributed in biofilms [52]. Bacteria cells are mostly close to the

biofilm surfaces and the bacterial cells near the surface are more active than the

embedded cells [51, 54, 55, 56, 57, 58, 59, 60, 61].

1.2.1 Biofilm Formation

Biofilm development can be described as a sequence of processes involving initial

attachment, cell growth, EPS production, biofilm maturation, and bacteria de-

tachment. Once the bacterial cells have adhered to a surface, they start growing

and producing EPS to form a biofilm. The general steps of biofilm formation are

as follows (see Figure 1.8):

1. Adhesion. Drifting or actively swimming bacterial cells can use their flag-

ella to adhere irreversibly to a surface [40]. The flagella of the bacteria cells

overcome the surface’s electro-static repulsive forces between the cell surface

and the substratum, reducing the attachment energy required [40, 62, 63].

After the cells adhere to the surface, they tend to aggregate and adhere to

each other using external structures of fimbriae and pili [40].

2. Colonisation and EPS production. Once settling on a surface, bacte-

rial cells start growing and produce EPS to form a biofilm; amongst the

functions of EPS is to maintain the structure of the biofilm and enhance

the attachment to the surface as it develops [40]. In some species, e.g.

Pseudomonas aeruginosa, EPS production is regulated by a cell–cell sig-

nalling process called quorum sensing [64, 65, 66, 67], whereby extensive

production of EPS is delayed until the initial colony has reached a suf-

ficient population: presumably this means that lone, newly colonised in-

dividual cells are better able to survive by not needlessly wasting energy

on EPS, which would have limited benefit for the early biofilm. Biofilm

growth depends on a range of environmental factors, such as pH, tem-

perature, and nutrient levels (e.g. oxygen, carbon source, and nitrogen)

([16, 38, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]). When a nutrient is at suf-

ficient levels, a wide range of bacterial species produce EPS and an energy
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(1) (2) (3) (4) (5)

Figure 1.8: Schematic of the development of a biofilm from initial colonisation
to maturation. (1) Individal bacterial cells adhere to a surface. (2) Cells aggre-
gate and form an early micro-colony with low EPs, (3)–(4) Biofilm development
and maturation to form complex structures (e.g., mushroom formations). (5)
Detachment and spread to new locations.

storage substrate poly-β-hydroxybutyrate (PHB) [29], a metabolic product.

When starved of carbon and other energy sources, cells take their energy

from the PHB in order to survive [29].

3. Detachment. Biofilms studied in the laboratory are often grown on a

surface over which flows a fluid containing nutrients. The shearing force

of the bulk flow of this fluid can lead to the shedding of individual cells

and to their detachment, or sloughing, from the biofilm material [40]. The

environment can also influence bacterial detachment, for example, nutrient

limitation enhances dispersal [40]: the detached cells may settle elsewhere

to form a new colony [40].

In laboratory experiments, it has been observed that biofilms grow more read-

ily in high-shear flow conditions than in laminar-flow conditions [38, 40]. One

reason for this is that the cells are in contact with the surface more frequently in

turbulent flow, enhancing the cells’ adherence to surfaces [38]. In turbulent flow,

biofilms tend to form streamline patches and filamentous streamers, (see Figure

1.8) due to the drag force of the bulk flow. Downstream from the flow, biofilms
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tend to become tapered, due to the lift force and recirculation [40].

1.2.2 Extracellular Polymeric Substrate (EPS)

Extracellular polymeric substrate (EPS) is a highly hydrated gelatinous matrix

which can be more than 90% of the total dry mass of the biofilm [78]. The chem-

ical components of EPS vary, depending on the bacterial species and the growth

environment [79]. They generally consist of glycolipids, lipids, proteins, peptides,

nucleic acid, and mostly, but not necessarily, lipopolysaccharides [80, 81, 82].

In some cases, extracellular DNA (e-DNA) is found in EPS [83]. EPS not only

encloses the bacteria, but also plays an important role in biofilm formation and

growth. Flemming et al. [83] divided the function of EPS into seven categories:

structural, sorptive, surface-active, enzymatic, redox-active, informative, and nu-

tritive.

Structural EPSs fill and form the space between the cells. They are respon-

sible for the biofilm’s adhesion to biotic and abiotic surfaces [82, 83] and water

retention, by which a large amount of water molecules are bonded by the hy-

drogen bonds in the EPS molecules [39, 47]. An example of structural EPS is

neutral extracellular polysaccharides, or exopolysaccharides. Exopolysaccharides

are long, linear and branched molecules which sustain the biofilms’ structure and

expand the biofilm volume [59, 84]; therefore, biofilms are able to form complex

structures, such as mushroom-like or finger-like[50, 78] shapes, rather than flat,

thin and well compacted structures. Additionally, during the expansion, the wa-

ter channels and the void spaces formed in the biofilm enhance the transportation

of solutes including oxygen [47, 85]. This leads to the biofilm cells’s obtaining

more easily the nutrients and oxygen than through these compounds’ diffusing

directly through the EPS matrix. However, antibiotics are also able to diffuse into

the biofilms through these water channels and void spaces. It has been reported

that compounds that do not react with the EPS and with a molecular mass of

less than 10,000 Dalton, are able to diffuse into an EPS–water mixture without

diffusion limitation, because of the high volume fraction of the water and the

water channel in biofilms [46]. However, those compounds which react with EPS

have such penetration hindered. Due to diffusion limitation, biofilm cells grow
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more slowly but survive more easily than when in the planktonic form [39, 40].

Sorptive EPSs refer to charged polymers [82, 83]. These EPSs are able to

accumulate nutrients and xenobiotics, such as ion charge and toxic metal ions

[78]. Therefore, in some cases, biofilms are used for water purification [86, 87, 88,

89, 90, 91, 92, 93].

The functions of surface-active EPSs is to export those cell components which

are waste substances from the cell metabolism [78, 82, 83]. The surface-active

EPSs, for example amphiphilics, are also able to react and destroy any antibac-

terial and antifungal activity [82] to protect the bacteria in the biofilm. Some

of the enzymes which surround the bacterial cells are able to digest and degrade

the EPS to low molecular-mass organic molecules, which can be used by cells as

nutrient sources [78, 94, 95]. All of the EPS components are able to be degraded

and become a nutrient source. However, some components are more complex and

therefore the degradation processes are slow [78, 96, 97].

Informative EPSs are involved in biofilm cohesion and cell aggregation. These

EPSs develop networks between cells for cell–cell recognition and communication

[78]. Due to lots of genes’ being released from the cells, genetic material exchange

occurs in the EPS [82]. Additionally, redox activity also occurs in the EPS, due

to the EPS’s being negatively or positively charged [98] and acting as an electron

acceptor or donor [78].

One of the structural EPS molecules, polysaccharide, is the most recognised

EPS conpound in biofilm studies. Polysaccharide is a large-sized compound com-

posed of various types of monosaccharide units: the most basic unit is formed of

carbohydrates and the chemical formula is CnH2nOn, where n ∈ [3, 10], connected

by a glycosidic bond [99, 100]. The sizes of the EPS molecules are larger than

100 kDa1 [101, 102] and are about 2.3 × 106 Da on average [103]: therefore, an

EPS molecule consists of several hundred or thousand monosaccharide units.

1.2.3 Biofilm Effects and Uses

The bacterial cells living in a biofilm are generally more resistant to unfavourable

environments than when in a planktonic state. The fact that a biofilm provides

1Da is an atomic mass unit equal to the molar mass, g/mol.

16



1. Introduction

a stable and robust environment in which bacteria can grow and divide is ex-

ploited in many industrial applications. For example, in water purification and

soil cleaning [86, 87, 88, 89, 90, 91, 92, 93], biofilms absorb the metal ions in the

water, use their structure to block contamination, and consume these pollutants

as nutrients. The gelling structure of the biofilms are being used to increase the

viscosity of food and industrial products, such as frozen food and toothpaste [46].

Recently, scientists have been investigating the use of biofilms as biofuels [104]

and sources of plastics [105].

Biofilms can have a severe negative impact in health care, through bacterial

infection, and in industry. They cause some health problems in the human body,

for example, bacteraemia and endocarditis may occur due to biofilm’s developing

in the blood vessels and medical devices [42]; bacterial cells of Vibrio cholerae from

a biofilm can survive acid environments such as the human stomach [106, 107] and

then transform back to the planktonic form once in the small intestine and cause

cholera; cystic fibrosis results from Pseudomonas aeruginosa formed biofilms in

the lungs [108, 109]; and can cause other diseases and infections such as leprosy,

syphilis, dental caries [108, 110], urinary catheters [109], infactious kidney stones

[111], and chronic wound [112]. In industrial settings, for example, microbial

contamination can induce corrosion of metals [113], damage the water cooling

system due to adhesion and blocking of the water flow as well as decreasing

the heat transfer [86]; water retention due to the biofilm can lead to battery

self-depletion while biofilms develop on the cells of the batteries [86]. Current

techniques to remove or reduce biofilms include the application of mechanical

force and of toxic chemicals, such as shearing forces and antibiotics [114, 115,

116, 117]. However, these methods are not suitable for the biofilms which grow

on living tissue, and they do not kill the bacteria effectively. An additional issue

that has arisen in the last 50 years is the increasing emergence of multiple drug-

resistant strains such as MRSA (Multiple-resistant Staphylococcus aureus), due

to the extensively use of antibiotics [118]. The development of antimicrobial

strategies is very important, whether to replace antibiotic treatments or to at

least reduce the dependence on them. A novel strategy that is being investigated

by many research groups is the application of cold plasma therapy to destroy

biofilms [2, 5, 119, 120, 121]. The aim is to treat exposed biofilm with plasma
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and leave the underlying host tissue undamaged. This will be discussed further

in Chapter 5.

1.3 Thesis Synopsis

The aim of this thesis is to propose a new modelling framework for biofilm growth,

which will qualitatively match the experimental observations, and to use this

framework to investigate the effects of plasma treatment on biofilms. The thesis

is divided into two parts. The first part aims to develop a modelling framework

of biofilm growth. In Chapter 2, the previous methods used in biofilm growth

models are reviewed and evaluated. In Chapter 3, a new model framework of

biofilm growth with a compressible diffusible continuous EPS matrix is developed.

The model assumes that the bacterial cell behaviour depends on the intracellular

energy (e.g. ATP) produced by themselves. In Chapter 4, the model framework is

examined, using various simulations, to investigate the effect of EPS on the biofilm

formation and multi-species biofilm growth. Furthermore, the model is applied

to simulate the biofilm growth on agar plates. The second part of the thesis, a

brief introduction to non-thermal atmospheric plasma and its biological effects,

is given in Chapter 5. In Chapter 6, the various models of plasma treatment on

biofilms are presented. Some conclusions and perspectives for future research are

located in Chapter 7.
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Chapter 2

Review of Mathematical Models

of Biofilm Growth

Mathematical modelling of biofilm growth can help understand key aspects of

biofilm growth and provide a relatively inexpensive framework to investigate

new ways to control biofilm growth. Mathematical modelling of biofilms is

a developing field in biological mathematics. Over the past 30 years, biofilm

models have tried to simulate the range from single species models growing in

a one-dimensional setting [122, 123] to multi-dimensional, multi-species models

[124, 125]. A wide range of modelling approaches has been employed in biofilm

modelling: they can be divided broadly into continuum, discrete [126], or hybrid

models, combining continuum modelling with either cellular automata, Clazier–

Graner–Hogeweg [151], or individual-based models. In this chapter, a brief review

of these models with their advantages and disadvantages for biofilm simulations

will be discussed.

2.1 Continuum Models

Continuum models treat the cell components of the biofilm, the EPS, and all the

substances considered as continuous materials and use differential equations [123,

127, 128, 129, 130, 131, 132, 133]. Such approaches have been used to investigate

not only higher dimensions and to attempt to describe the various shapes observed
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using recent microscopy techniques [52, 134, 135], but have also examined the

various biofilm mechanisms, for example, the role of EPS in biofilm formation [52],

cell mobility due to biofilm growth [122, 128], and biofilm disinfection [133]. The

benefit of the continuum models is that the systems of differential equations in

the continuum approaches can be solved relatively quickly by standard numerical

methods, or even analytically for the simpler models, and the results successfully

provide the fractions of both live and dead cells in the population and the EPS

in the biofilm. The approaches, however, present the biofilm globally rather than

the micro-structure.

2.2 Cellular Automaton Models (CA Models)

A cellular automaton (CA) model divides the computational system domain into

a fixed regular grid to form a lattice. Each grid-cell in the lattice will be in

one of a limited number of statuses, e.g., not occupied by any cell, occupied by

the species “A,” occupied by the species “B,” . . . etc. The first CA approach to

describe biological behaviour was a discrete model referred to as “John Conway’s

game of life” [136]. In this model, the grid-cell can have one of two statuses:

alive or dead, where the process of switching the status of a cell from one to

the other depends on simple rules based on the status of the neighbouring cells.

The model describes the simplest system of change in a cell population in discrete

time. Since then, the CA approach has been widely used for biological population

simulation. One of the most famous examples is the simulation of growth patterns

in bacterial colonies presented by Ben-Jocob et al. [137]. The bacterial simulation

considers nutrient diffusion and consumption, bacterial movement, proliferation,

sporulation, and communication. The individual cells are treated as “walkers”

and walk in the system randomly, depending on the intracellular energy. The

intracellular energy is produced by consuming nutrients. When the energy reaches

a critical level, cell division occurs.

The first application of the CA approach to biofilm growth simulation was pre-

sented by Wimpenny and Colasanti [138]. They took the nutrient concentration

to be discrete and to be stored in the grid-cells of the lattice. Thus, the status

of a grid-cell consisted of the nutrient concentration and whether the cell was
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alive or dead. Cell growth was governed by the level of nutrient in the grid-cell

which the cell occupied. When the cell density reached a fixed critical level, the

cell divides. During reproduction, the new cell is inserted into that neighbouring

empty grid-cell with the highest nutrient concentration. They used this frame-

work to investigate the role of nutrients in the growth of a multi-species biofilm.

Around the same time, Picioreanu et al. [139] also presented a biofilm model

which applied the CA approach and modelled a limiting substrate, e.g. a nutri-

ent, as a continuum described by reaction–diffusion equations. This hybrid model

has been widely used in various studies of biofilms, not only multi-dimensional

biofilm growth [140] and multi-species [141], but also the effects of liquid flow on

biofilm detachment [142, 143], substrate transportation in biofilms [144, 145, 146],

and the effects of nutrient availability on biofilm formation [144, 145, 147]. Sim-

ulations using the CA approach produce results that mimic well the growth and

formation of irregular structures. However, an important factor of biofilm for-

mation, extracellular polymeric substrate (EPS) production, has been neglected

in those simulations. Laspidou and Rittmann [148] proposed a theory of EPS

and investigated EPS production. In their further study [92], they presented

a unified multi-component cellular automaton (UMCCA) model, combining the

CA approach and the theory they proposed about the EPS and the other two

microbial productions [148, 149]. The EPS was taken as the third possible status

of the grid-cell, in addition to active and inert biomass. They used this model to

investigate the biomass and the EPS distribution in the biofilm and the effects of

the nutrient and the microbial products on the biomass distribution [150].

2.3 Cellular Potts Model (CPM)

The Potts model was proposed by Potts in 1951. It is widely used in the research

of lattice statistics. The model approach assumes that for each node of the lattice

has a state from among a limited number of spin states. The spin of the nodes

may be changed by interacting with neighbouring nodes, and this interaction

is described by a Hamiltonian formulation. The Potts model was first applied

to the simulation of biological behaviour by Glazier and Graner in 1992 [151].

They extended the Potts model to simulate biological cell sorting. The extended
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model is called the cellular Potts Model (CPM) or the Glazier–Graner–Hogeweg

(GGH) model. In this approach, the spin of the lattice site in the Potts model

is referred to as the index of an individual cell, and a cell can occupy more

than one grid-cell, therefore, the cells’ shape was deformable, rather than fixed;

furthermore, the model described the cell surface energy by a Hamiltonian. This

very early CPM approach did not consider cell behaviour such as growth and

division. Since then, the Cellular Potts Model has been further developed and

widely used in the simulation of biology including avascular tumour development

[152] and biofilm growth [153]. Cell growth is considered as increasing the volume

of the cell by occupying the neighbouring lattice sites. The extracellular matrix

(ECM), such as EPS, is assumed to be an infinitely compressible, non-diffusible

and non-deformable special cell located in the lattice sites other than the sites

which are occupied by bacterial cells [153, 154]. The Hamiltonian formulation is

used to describe the cells’ movement due to cell–cell and cell–ECM interactions

by the change of their surface energy. The nutrients and oxygen are taken to

be diffusible substrates and described by continuum diffusion–reaction equations

due to the fact that the size of their molecules is relatively small compared to the

size of the cell. Although Poplawski et al. [153] considered EPS in their paper,

they focussed on the interaction of the cells and the EPS and neglected some

important properties of EPS, for example, its production and movement. The

small scale size of the cellular Potts model ensures the accurateness of the size

and the shape of a single cell, however, it can be computationally expensive in

a large domain simulation [155]. The most famous computation program for the

cellular Potts model is called CompuCell3D (http://www.compucell3d.org).

2.4 Individual-based Models (IbMs)

Individual-based models (IbMs), sometimes referred to as agent-based models, are

widely used for cellular simulation, such as tumour growth [156, 157, 158], tis-

sue growth and folding [159], activated sludge flocs [160], myxobacteria [161] and

biofilm formation [162, 163, 164, 165, 166], as well as biofilm control [167, 168].

The IbM approach is similar to the CA and CPM approaches: the bacterial

biomass is taken to be discrete, and the diffusible substrates are modelled as con-
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tinua. However, the IbM assumes the cells are circular (2D) or spherical (3D)

particles, or, most commonly, a group of cells. Therefore, cell particles are not

bounded by the lattice sites but are able to move freely in the system. Fur-

thermore, Janulevicius et al. [161] simulated the bacterial cells with streptococci

aggregation by a chain of circular particles.

Most of published works using IbM approaches to biofilm formation have

investigated the growth, death, and detachment of the cell particles as dependent

on diffusible substrates, such as the nutrients, nitrite, and oxygen. Such research

has focussed on particle growth [125, 169], substance transport [170], multi-species

[164], etc. However, EPS have been absent from these models until the relatively

recent works of Kreft, Wimpenny [162] and Xavier et al. [166]. In these models,

under certain conditions, the bacterial particles shell EPS as new, incompressible,

circular/spherical, inert particles. This approaches has the advantage of being

relatively simple, but can not predict EPS levels over the whole of the biofilm

only concentrations of EPS at localised zones. EPS matrix of biofilms has been

treated as the continuum matrix by Alpkvist et al. [171] and Mabrouk et al. [172].

They combined the continuum EPS matrix with the IbM approach to simulate

biofilm growths. In their hybrid models, the bacterial biomass was assumed to

form the discrete circular/spherical particles adapted from the IbM approach, and

EPS was described as a incompressible viscous fluid modelled as a continuum.

The movement of cell particles were described by pushing by EPS flux which

caused by release the pressure generated during the biofilm growth in the model

of Alpkvist et al. [171]. However, in the simulations of Mabrouk et al. [172], they

were described by the Brownian motion with a movement constant depends on

the local EPS concentration.

2.5 The modelling approach developed in this

thesis

After reviewing these models, I concluded that each model has its own advantages

and disadvantages. The continuum model treats the biomass, the extracellular

polymeric substrate (EPS), the nutrients and oxygen as continuous structures,
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and therefore the system of equations is continuous. The equations can be solved

quickly by a series of numerical methods. However, stochastic or random events

are not so easy to incorporate and the results are only able to describe the general

structure of biofilms, rather than their details. Furthermore, the application of

continuum models in 2D and 3D requires that the force balances between the

particles, the EPS, and the extracellular fluid to fully characterise the movement

of the cells and other biofilm components. One such approach would be the

application of mixture theory which has been investigated in a recent thesis of

Newstead [173], using and extending the ideas of a tumour growth model [174].

The main issue within this approach is the suitable choice of assumptions for the

force balancing, as there is a paucity of data for the parameters. For example, in

the viscous elastic model of Newstead’s thesis, the model is based on a viscous

flow, which is only relevant to biofilms grown in static environments or very

low shear flow. The issues of flow regimes and force balance in biofilm is an

interesting one, but will not be pursued in this thesis. The hybrid approaches

of CPM and CA models are able to illustrate the biofilm structure in detail by

describing the biomass and EPS concentrations in a discrete lattice; furthermore,

CPM approaches are able to simulate the deformable cell structure. However, the

position of the biomass and EPS of those approaches are limited by the mesh. The

individual-based model (IbM) amends the disadvantages of the previous models

of the discrete approaches; only the IbM approaches are not restricted by the

geometry of the mesh used, so that the direction of the particle movement is

governed by the growth and environment but not the geometry.

In this thesis we are concerned with designing a framework that will well

describe, both qualitatively and quantitatively, the biofilm growth and the effect

of a cold plasma treatment on the biofilm structure. For this we need our model

to simulate the collation of live and dead cells and diffusible substrates. The

IbM approach is well suited to these requirements and is the approach adopted

in this thesis. The framework builds on the previous approaches proposed by

[156, 160, 164, 166, 169, 171]. There are minor amendments in the handling of

particle movement but the main difference is the treatment of the EPS, which is

assumed to be a compressible, diffusible substrate that can force the movement

of particles at high concentration. This is discussed in detail in the next chapter.
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The framework is then used in a novel study of plasma treatment in Chapters 6;

the relevant biology, chemistry, and physics of which will be discussed in Chapter

5.
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Chapter 3

The New Framework Model of

Biofilm Growth with

Compressible EPS Matrix

In this chapter we propose a new hybrid individual-based modelling (IbM) frame-

work for biofilm growth. As discussed in Chapter 2, IbMs of biofilm growth have

been proposed by several research groups. In Kreft et al., [169], EPS was gen-

erated as an incompressible outer surrounding shell of material around a circu-

lar/spherical cell particle, which was able to be a shell to form separate EPS

particles. In Alpkvist et al. [171], EPS was treated as a incompressible viscous

fluid phase in a multiphase model. In both their models, the EPS was either

present at a fixed concentration or completely absent at a particle’s point within

a biofilms: a consequence of this is that the EPS will always propagate move-

ment where the growth of one particle can force the movement of a distant particle

even though there is only EPS between them. In the approach presented in this

chapter, the EPS is compressible and will only exert a pressure and propagate

movement at high concentrations, for example, an elastic-like expansion force or

repulsion via electrostatic forces between closely packed EPS strands. A conse-

quence of this new approach is that particles will not necessarily move due to the

movement or growth of distant particles, as the EPS will not automatically trans-

mit this movement, as it does in the aforementioned modelling approaches. This
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modelling approach is relevant for simulations in 2D and 3D scenarios, though

there will be a greater focus on the 2D case. As with all the existing IbM ap-

proaches to biofilms, the bacterial particles will treated as discrete objects, and

all other agents, such as the nutrients, the oxygen, and the chemical species, will

be treated as continua.

3.1 Simulation Domain and Meshing

The biofilm system discussed in this thesis will be simulated on two dimensional

domains, defined by the region x ∈ [0, Lx] and z ∈ [0, Lz], where the substratum

is set at z = 0. In presenting the framework, it is convenient to label the various

domains in the system, which are illustrated in Figure 3.1. Let Ω be the compact,

but not necessarily connected, domain occupied by the particles and/or the EPS,

and let the line Φ(x, z, t) = 0 be the line of the biofilm and water–air interface.

The region within Ω occupied by particles is defined by

Γ = {x ∈ Ω : x is inside a particle},

Γκ = {x ∈ Ω : x is inside the particle κ, for κ = 1..N(t)},

where N(t) is the total number of particles present at time t, which may change

in time. Since the particles are not allowed to overlap with each other, we have

Γi ∩ Γj = ∅ for indices i 6= j (i, j = 1..N(t)) and that Γ = Γ1 ∪ Γ2 ∪ ... ∪ ΓN . For

x ∈ Ω, we define a function Wj(x, t) by

Wκ(x, t) =

{
1 if x ∈ Γκ(t);

0 if x /∈ Γκ(t).
(3.1)

The function εΩ(t) is defined as the total void volume fraction in the domain Ω,

namely

εΩ =

∫
Ω

∑N
κ=1(1−Wκ(x, t))dx∫

Ω
dx

. (3.2)

The particle volume fraction is thus 1− εΩ(t).
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Figure 3.1: Schematic of a biofilm domain. The biofilm occupies the region Ω, the
particles occupy the region Γ, and the biofilm and water/air interface is defined
by Φ(x, t) = 0.

The system domain is divided into a grid of rectangular cells, which, in general,

are of size dx × dz. However, throughout this thesis, we set dz = dx, hence the

simulation domain consists of a uniform square grid, as shown in Figure 3.2, to be

used to determine the position of the particles. Particle growth and movement are

affected by any number of substrates, such as EPS, nutrients, and oxygen, and the

concentrations of these are calculated at the mid-point of each cell, bounded by

the solid line in Figure 3.2a. We note that particles are not constrained by the grid

and are free to move in any direction. The dashed grid connects the mid-points of

the solid line grid, along which the finite volume approximation for the continuous

variables is made. The grid size is chosen so that the grid squares cannot be

entirely occupied by particles, otherwise the finite-volume method described in

Section 3.5 will fail without extensive modification. However a grid that is too

large makes particle overlap detection very computationally expensive. More

details regarding the grid size are given in Section 3.6.

3.2 Particle Growth and Death

The framework in 2D assumes that the particles are rigid discs representing in-

dividual bacteria or single-species clusters of bacterial cells (this is discussed fur-

ther in the next section). Particles that represent bacterium will be in one of

two states: alive and dead. When they represent a cluster of cells, then they will
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Figure 3.2: Diagram showing the domain meshes. The solid lines show the mesh
used for the particles, whilst the continuum variables are calculated on the nodes
of the dashed grid, located at the centre points in the solid mesh.
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consist of a mixture of live and dead biomass denoted by CL and CD, respectively,

such that CL+CD equals the total biomass of a single paricle cylinder of thickness

Ly. The choice of this thickness is completely arbitrary and it follows that the

total biomass Cκ
L + Cκ

D is proportional to Ly. The growth and death of particle

j can be written using ordinary differential equations of the form

dCκ
L

dt
= Ψκ

b −Ψκ
d , (3.3)

dCκ
D

dt
= (1− φ)Ψκ

d −Ψκ
s , (3.4)

where Ψκ
b is the rate of biomass production by bacterial growth, Ψκ

d is the biomass

death rate, Ψκ
s is the dead biomass degradation rate, and φ ∈ [0, 1] is the fraction

of the live biomass that is released as a nutrient source when the live biomass

dies [166]. In general, the biomass growth and death rates depend on many

environmental factors, such as the nutrient level, the oxygen level, and the pH.

All forms of bacterial behaviour require a single factor, the intracellular energy

source in the form of Adenosine-5’-triphosphate (ATP). This was discussed in

some detail in Chapter 1, Section 1.1.3. We assume that the energy available to

a cell is propotional to the concentration of APT. The reaction ATP → ADP

releases energy for cellular processes whilst the reverse reaction ADP → ATP

requires nutrients and possibly oxygen. The turnover of ATP is assumed to be

rapid in comparison to particle growth, and we assume that the ATP level in

particle κ, as a normalised variable Aκ ∈ [0, 1], is in a quasi steady-state:

Aκ =
M∑
m=1

F κ
m(X), (3.5)

where M is the number of ATP generating pathways, F κ
m(X) is the ATP gener-

ation rate from pathway m, and X is the concentration of the ATP generating

substances, such as glucose and poly-β-hydroxybutyrate (PHB).
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3.3 Computational Particles: Cell or Clusters

The choice of whether a particle is a single cell or a cluster is an important one

computationally. Later in the thesis we will be simulating a biofilm containing

many millions of cells, which, if treated individually, would take many weeks to

run on available machines. As a consequence, in all the simulations to follow, the

particles are assumed to represent clusters of cells, so that such cell numbers can

be represented by relatively few particles. Henceforth, “particle” will refer to a

cluster of cells, though many aspects will be relevant also to single cell particles.

The radius of particle κ, κ = 1..N(t) is determined from the formula

rκ =

√
Cκ
L + Cκ

D

ρcπLy
, (3.6)

where ρc is the density of the biomass and Ly is the particles thickness discussed

in Section 3.1.

To avoid an infinite growth of the particles, the particles are limited to a

maximum size with maximum radius Rmax. When a particle grows, it may divide

to produce two identical daughter cell particles (Figure: 3.3). The threshold

radius for the division of a particle κ, Rκ
D, is determined on the formation of

the particle, and is chosen randomly from a normal distribution with mean =

(Rmin + Rmax)/2 and variance 5 (the random number generator was created by

Chandler and Northrop [175]) such that Rκ
D ∈ [Rmin, Rmax]; a random value lying

outside this range will be set to Rmax or Rmin as appropriate. As a cell divides,

we assume the mother cell divides equally into two daughter cells with no biomass

loss. In contrast to previous studies, we have assumed that the arrangement of

the daughter cells is such that the centre of mass is maintained on division, which

has a greater physical foundation than does assuming that one of the daughters

shares the same centre point as the mother cell, assumed in [164, 166, 169]. The

orientation of the daughter cells following the division is chosen at random with

a uniform distribution.

31



3. Mathematical Model of Biofilm Growth

Figure 3.3: Schematic of cell particle growth and division. The centre of mass of
the mother and daughter cells is maintained during growth and division.

3.4 Inter-Cellular Variables

The cell particles are assumed to contain intracellular agents either produced

within the particles or absorbed from the environment. The agents could be

inside live cells, dead cells, or both, for example, ATP and PHB are two agents

that belong inside particles. Note that in both these examples, we are interested

only in their levels in the live cells. To write down a general equation for the

evolution of an agent, we let Zκ be the mean amount of an agent per unit mass of

the appropriate cells, i.e., live cells, dead cells or both. The unit of measurement

for the agents can be the concentration, the mass, or any unit required. Therefore,

the change of the amount of agent in the particles κ can be written as

1. Agent in live cells:

d(Cκ
LZ

κ)

dt
= Rκ

ZC
κ
L + JκZ −Ψκ

dZ
κ. (3.7)

2. Agent in dead cells:

dCκ
LZ

κ
L

dt
= Rκ

ZL
Cκ
L + JκZL −Ψκ

dZ
κ
L, (3.8)

dCκ
DZ

κ
D

dt
= Ψκ

dZ
κ
L +Rκ

ZD
Cκ
L + JκZD −Ψκ

sZ
κ
D. (3.9)

3. Agent in both live and dead cells:

d((Cκ
L + Cκ

D)Zκ)

dt
= Rκ

Z(Cκ
L + Cκ

D) + JκZ −Ψκ
sZ

κ
D. (3.10)
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The parameters Zκ
L and Zκ

D are the mean amount of an agent per unit mass

of, respectively, live and dead biomass in the particle κ; the Rκ
Zi

are the net

production of the agent per target biomass; the JκZi are the net absorption rate

of agent into/out of the particle from/to the environment; and the Ψκ
i Z

κ
i are the

amount of agent gain or loss when the live biomass dies and the dead biomass

decomposes. The equations (3.7) to (3.10) can be rewritten by applying Equation

(3.3) and (3.4), yielding

1. Agent in live cells:

dZκ

dt
= Rκ

Z +
JκZ
Cκ
L

− Ψκ
b

Cκ
L

Zκ. (3.11)

2. Agent in dead cells:

dZκ
L

dt
= Rκ

ZL
+
JκZL
Cκ
L

− Ψκ
b

Cκ
L

Zκ
L, (3.12)

dZκ
D

dt
= Rκ

ZD
+
JκZD
Cκ
D

+
Ψκ
d

Cκ
D

Zκ
L − (1− φ)

Ψκ
d

Cκ
D

Zκ
D. (3.13)

3. Agent in both live and dead cells:

dZκ

dt
= Rκ

Z +
JκZ

(Cκ
L + Cκ

D)
+

(φΨκ
dZ

κ + Ψκ
sZ

κ −Ψκ
sZ

κ
D −Ψκ

bZ
κ)

(Cκ
L + Cκ

D)
. (3.14)

3.5 Freely Diffusing Substances

A number of chemical species can freely diffuse throughout the biofilm domain

and will even cross bacterial cell walls, e.g., oxygen, glucose, and other small-

molecule agents. We will assume that such small molecules form a continuum in

the domain. As extra cellular fluid flow is expected to be very slow, the evolution

of these substances will be dominated by their reaction and motion via diffusion.

Thus the general equation to describe the evolution of such an agent, say X, will

be of the reaction–diffusion type, i.e.,

∂X

∂t
= −∇ · JX +RX , (3.15)
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where JX is the flux of agent X and RX is the net production rate. In cases

where the flux and reactions occur much more rapidly than the other processes,

then the quasi-steady form, namely

0 = −∇ · JX +RX , (3.16)

could be adopted. Specific forms for JX and RX will be discussed in later sections.

Since the particles are discrete object in the domain, Rx is not going to be a

smooth function for most agents. For ease of notation, we rewrite Equations

(3.15) and (3.16) in finite volume form

∂

∂t

∫
Ωc

XdΩc = −
∫
∂Ωc

JX · nd∂Ωc +

∫
Ωc

RXdΩc, (3.17)

0 = −
∫
∂Ωc

Jx · nd∂Ωc +

∫
Ωc

RXdΩc, (3.18)

where Ωc ⊆ Ω is a compact region, ∂Ωc is the boundary of the region, and n is

the normal vector in the outward direction to the boundary, ∂Ωc.

3.6 EPS Production and Diffusion

The approach to modelling the EPS sets this current work apart from all previous

IbM models. The EPS consists of long strands of polysaccharides, each one being

a chain of up to 6000 saccharide links. Though these molecules are large they will

be diffusible, though at considerably lower rates than the oxygen and glucose. At

low concentrations, the EPS is not likely to spread quickly or impact much on

particle movement. At sufficiently high concentration then, the EPS is assumed

to expand in order to lower the local concentration, creating a pressure that

can influence particle motion. This expansion force could be due to an elastic

response, rather like sequencing and then letting go of a ball of hair, or by the

presence of electrostatic forces between the EPS strands. Thus, in this modelling

framework, the EPS is compressible until it reaches a high concentration due to,

for example, compression by particles.

We assume that the EPS exists only in the spaces between the particles, and
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denote by E(x, t) the extracellular concentration of the EPS. The pressure force

generated by a high concentration of the EPS will force the EPS into regions of

lower concentration, and we will assume that the EPS flux will be proportional

to the negative of its gradient (−∇E); the motion of EPS will be mathematically

identical to diffusion. The flux of the EPS in the space between particles is given

by

JE(E) = −DEK(E)∇E, (3.19)

where DE is a “diffusion coefficient” and K(E) is a switch function between

negligible and non-negligible pressure force due to EPS concentration. Suitable

functional forms of KE are open to question. As EPS is a large molecule, the

diffusion rate is likely to be very small when E is small, i.e., KE(E) w 0. As

E increases, we expect KE(E) to increase, hence K ′E(E) > 0. As E gets large,

then KE(E) w constant or KE(E) ∝ E may be reasonable assumption. In what

follows we assume KE(E) → 1 as E → ∞, so that E will diffuse linearly with

diffusion coefficient DE. We assume a Hill function form for KE(E), i.e.,

K(E) =
Eη

Eη +Kη
E

, (3.20)

where KE and η are the constants of the Hill function, such that K(KE) = 1/2

means that at E = KE, the EPS is diffusing at half of the maximum rate and η

determines the steepness of the switch. Since EPS is produced by particles and

exists only in the extra-particular space, the most compact form for expressing

the evolution equation for E is to write the equation in finite volume form. Let

Ωc ⊆ Ω be a region of the biofilm and let Γc ⊆ Γ be the region in Ωc occupied by

particles, so that ΩE = Ωc/Γc is the region of the extracellular space. Then the

conservation of EPS concentration in Ωc is given by

∂

∂t

∫
Ωc

εcEdΩc = −
∫
∂Ωc

J · nd∂Ωc +

∫
Ωc

QΛ(κ)dΩc −
∫

Ωc

εcEdΩc, (3.21)
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where εc is the volume fraction of extracellular space in Ωc, given by

εc =

∫
Ωc

∑N
κ=1(1−Wκ(x, t))dΩc∫

Ωc
dΩc

, (3.22)

where Wκ(x, t) is given by Equation (3.1). The function J represents the effective

EPS flux across the boundaries of Ωc with outward normal n. Since EPS can

only diffuse through extracellular space, the effective flux is given by

J = JE(E)
N∑
κ=1

(1−Wκ(x, t)). (3.23)

The EPS production rate QΛ(κ) in Ωc is proportional to the live biomass and

we write

QΛ(κ) =
N∑
κ=1

Wκ(x, t)µ
Λ(κ)
E U

Λ(κ)
E Θκ, (3.24)

for x ∈ Ωc, where µ
Λ(κ)
E is the maximum EPS production rate, U

Λ(κ)
E is a nor-

malised production rate function dependent on substrates X, and Θκ is the live

cell fraction, defined as

Θκ =
Cκ
L

Cκ
L + Cκ

D

. (3.25)

Suitable functional forms for U
Λ(κ)
E will be discussed later.

The final term in Equation (3.21) represents the EPS decay and consumption

rate, which will be discussed in detail in Sections 4.1.2 and 6.1.5.

The finite volume form of Equation (3.21) will be used in the numerical so-

lution, where Ωc will represent a dx × dz grid cells of the lattice described in

Section 3.1. For numerical purposes, EPS is assumed to be released into the

dashed lattice sites where the particle is located (see Figure 3.4). The ratio of the

EPS production rate in these lattice sites is proportional to the volume fraction of

particles in the sites. The numerical algorithm assumes that within each grid cell

Ωc there is extracellular space, into which EPS can be released from a particle.
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Figure 3.4: EPS concentration in four neighbouring grid cells containing a par-
ticle. The particle will release EPS into each of the four grid cells at a rate
proportional to the fraction of particles in the cell. It is assumed that this EPS
disperses evenly in each cell, leading to concentration differences between cells
and hence EPS gradients.

If the size of the grid is smaller than the maximum particle size, then a particle

may occupy a whole lattice site, in which case there will be no space available in

this site into which to release EPS, consequently the numerical algorithm will fail

in its present form. Hence, the size of the grid has to be set to be at least larger

than the particle size, i.e., dx ≥ 2Rmax.

3.7 Movement of Cell Particles

In the absence of other particles, EPS, and solid boundaries, the particles will

grow and divide and, at least for the first division, the centre of mass of the

particles will be fixed. As particles grow it is inevitable that they will overlap

with their neighbours, and thus the particle must move, and move its neighbours,

if necessary, to arrange themselves so that the overlaps have been eliminated.

Overlapping solid boundaries must also be avoided in the algorithm. Furthermore,

at high EPS concentrations, the “EPS pressure” can generate movement. The

modelling framework takes into account all these factors.

Let Bκ
p be the total displacement vector of the particle index κ over a time
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Figure 3.5: The boundary conditions: (a) Impenetrable boundary at z = 0. When
a particle overlaps with the boundary z = 0, it moves upward to just attach to
the boundary. (b) Periodic boundaries at x = 0 and x = L where L is the length
of the domain. If a particle penetrates the boundary x = 0 (x = L) then an
identical particle appears with the relative position at the other boundary x = L
(x = 0).

increment, then the net movement is given by the sum of those factors described

above, namely

Bκ
P = Bκ

C + Bκ
E + Bκ

B. (3.26)

where Bκ
C , Bκ

E, and Bκ
B are the displacement vectors due to the pushing by

neighbouring cell particles, the EPS pressure, and the solid boundaries, respec-

tively. During the movements, the moving particles may cross the boundaries (see

Figure 3.5). If the boundary is impermeable, the particles will “bounce” back in

the direction normal to the surface so that it just touches it (Figure 3.5(a)), i.e.,

Bκ
B = pκn where pκ is distance through which the particle of index κ crossed the

solid boundary and n is the normal vector to the surface (Figure 3.5(a)). If the

boundary the particle crosses is periodic, then Bκ
B = 0 and the overhanging part

of the particle will appear at the other end of the domain (see Figure 3.5(b)). In

the present framework, the only impermeable boundary is at z = 0 and the two

side boundaries are assumed to be periodic. We note that Bκ
B = 0 for all interior

particles.

Particles may push neighbouring particles to gain space for growth. To check
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whether a “primary” particle overlaps its neighbours, it is convenient to set the

size of computational grid to be dx = 2Rmax (see Sections 3.1 and 3.6). Due to

the fact that the maximum radius of a particle does not exceed Rmax, a particle

occupies at most four lattice squares next to each other. Therefore, the algorithm

for checking for overlapping particles examines the distance of the particles lo-

cated in the 3 × 3 grid-cells around the centroid of the primary particle. If an

overlap is detected, then the overlapped particles are forced to move apart (Fig-

ure 3.6(b)) by the displacement vector Bκ
C for κ = 1..N(t), which is a modified

from that of Kreft et al. [168], given by,

Bκ
C =

∑
i

$rκ + ri − di

1 +
(
rκ
ri

)2 fi, (3.27)

where i is the index of the neighbouring particles which overlap the primary

particle, rκ and ri are the radius of the primary particle and neighbouring particle

i, respectively. The overlapping distance of primary and neighbour particle is

represented by di. The constant $ is a factor to adjust the average minimum

distance between particles to a realistic value (we used $ = 1.3, [169]). The

direction of movement of the particles is parallel to the vector fi, which is the

unit vector in the direction of the line connecting the centres of the primary and

neighbouring particle i. There are two features of Equation (3.27) that improve

on related forms in previous IbM biofim studies [162, 164, 165, 166, 168, 176].

Firstly, the equation ensures that the smaller particles move further than the

larger ones when they are in contact. Secondly, it conserves the centre of mass

of the particles.

As discussed in Section 3.6, a high EPS concentration can generate an EPS

expansion force in the direction −∇E. This pressure has the ability to move the

particles. The vector, Bκ
E for κ = 1..N(t), is the movement of the particle of

index κ by the EPS, and is assumed to be proportional to the flux of the EPS,

Jiκ , hence

Bκ
E = σ∆tJiκ , (3.28)

where σ is a drag coefficient, ∆t is the numerical time increment, and iκ is the
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Figure 3.6: (a) Schematic of the effect of a very high EPS concentration (dark
grey) on cell motion as EPS spreads to low concentration regions. (b) Diagram
of particle spread to avoid overlap, with the centre of mass preserved.

index of the dashed grid-cell in which particle κ is located. This expression

represents the cumulative effect of the EPS gradient in the neighbouring boxes

around the particle.

3.8 Boundary Conditions

The boundary conditions of the computational domain are assumed to be periodic

at the two side boundaries and impermeable at the bottom boundary (see Figure

3.1). The figure also illustrates the biofilm free surface, which changes in time

through expansion of particles and EPS. In this thesis, two scenarios of biofilm

growth are considered: biofilm growth in water and on a growth medium (see

Figure 3.7). For the diffusion of substances, the upper boundary is either at the

line Φd(x, t) = 0, which is defined by hz above the highest point of the biofilm and

perpendicular to the substratum (see Figure 3.7a), in the case of a biofilm growing

in water; or at the biofilm surface, Φ(x, t) = 0, in the case of a biofilm growing in

air. For the models of biofilm growth in water, the line of the upper boundary is

the interface of the bulk fluid and the diffusion layer. The concentrations of the

solutes are set to be constants in the bulk fluid and diffuse from the boundary.

For the models of the biofilm growing in air, the nutrient source is placed at the
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base of the system, and diffuses up to the biofilm–air interface, Φ(x, t) = 0; the

other agents, such as oxygen and antibiotics, are set to diffuse downward from

Φ(x, t) = 0. In the present framework, the bulk fluid is assumed to be static,

therefore, there is no shear stress in the system. The boundary conditions are

given by

1. Periodic boundaries:

X(0, z, t) = X(Lx, z, t) for z ∈ [0, Lz] and t ≥ t0,

∂X(0, z, t)

∂x
=

∂X(Lx, z, t)

∂x
for z ∈ [0, Lz] and t ≥ t0. (3.29)

2. Case of solutes diffused from bulk fluid:

X(x, Lz, t) = X0 for x ∈ [0, Lx] and t ≥ t0,

∂X

∂z
= 0 at z = 0. (3.30)

3. Case of solutes diffused from the substratum:

X(x, 0, t) = X0 for x = 0..Lx and t ≥ 0,

∇X · n = 0 at Φ(x, t) = 0. (3.31)

where n = (±)∇Φ/|∇Φ| is the outward normal.

3.9 Computational Algorithm and Methods

In the simulations to follow, the domain is seeded with a few cells, randomly

positioned on the solid surface. Features such as the initial particle size and

particle division size, Rκ
D, are set. The lattice spacing is set to form a grid of

cells of size dx× dx, where dx = 2Rmax is the optimum, not being too small (so

there is always space for EPS to be introduced during production) or too large

(minimising the number of neighbouring particles for overlap checking). The

computational time-step for the particle growth is chosen by ∆t ≤ R2
max

µR2
min

, where

µ is the maximum growth rate of the particle, such that the particles cannot grow
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(a)

(b)

Figure 3.7: The model settings of biofilm growth. Biofilm growth in (a) water
and (b) on a growth medium.

to exceed the maximum radius in one time-step. The global parameters including

the size of the computational domain and the time and space steps are listed in

Table 1 in Appendix A. The computational algorithm divides the framework into
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Continuous substances

Particle growth and division 

Chose a particle

Particle growth Check for division
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Particles position adjustment

Figure 3.8: The computational procedure of biofilm model simulation.

four distinct units. For each time-step, these units are executed in sequence.

These units are

1. Continuous substance unit: The aim of this unit is to solve for the

continuous extracellular substances, for example, EPS, oxygen, and nutri-

ent concentrations in the system, by applying the finite volume method

discussed in Sections 3.5 and 3.6. The time dependent reaction–diffusion

equations are solved by the alternating direction implicit (ADI) method

and the quasi steady-state reaction–diffusion equations are solved by the

inexact overlapped block Broyden’s method [177]. Furthermore, Equation

(3.21) being a nonlinear PDE, is discretised using standard central differ-

ences and an Euler time-step.

2. Particles pushed by EPS unit: In this unit, the new positions of the par-

ticles are determined following their displacement by EPS pressure. Firstly,

a particle is chosen at random to be the target particle, then it is pushed

43



3. Mathematical Model of Biofilm Growth

by the EPS, in the direction BE determined in Section 3.7. Next a second

particle is chosen at random and then displaced by the local pressure of the

EPS. This process is repeated until all the particles have been chosen, at

which point the algorithm moves to the next unit.

3. Particle growth and division unit: This unit is a sub-loop for particle

growth and division. Firstly, a particle is randomly chosen from among

the N particles, and then the Equations (3.3) and (3.4) are solved for the

particle growth and death, respectively, using a simple Euler method. After

that, the radius of the particle is determined by Equation (3.6) and then

a check is made to see if the particle has exceeded its division size. If the

radius of the particle is greater than the division radius then it divides

into two identical daughters as discussed in Section (3.3). When this has

been done, a second particle is chosen randomly from the remaining N − 1

particles. This procedure is then repeated until all the particles have been

treated, and checked for cell division.

4. Particle position adjustment unit: The aim is to eliminate particles

that overlap. Those particles are moved to a non-overlapping arrangement.

Firstly, a “reference state” of the particles is recorded. Secondly, a particle is

chosen randomly as the primary particle, then a check is made as to whether

it overlaps with any of its neighbours according to the reference position.

If overlap(s) are found, then the primary particle is moved according to

Equation (3.26) discussed in Section 3.7. A second particle is then selected

at random, which becomes the new primary particle. Once more, a check is

made for any overlaps in the reference state, and it is moved if required. The

process is repeated for all particles. If no overlaps were detected then the

algorithm is complete for this time-step. However, if there were overlaps,

then a new “reference state” of the particles is recorded and then the process

of random selection, overlap check, and particle movement is repeated. This

will continue until a reference state has no overlaps, at which point the time-

step is complete.

We note that in units 2, 3, and 4, particles are selected at random, rather

than in a fixed sequence. This is to ensure there is no behavioural bias that may

44



3. Mathematical Model of Biofilm Growth

result from particles in one region being dealt with before particles in another

region.

3.10 Summary

In this chapter, a new IbM framework of biofilm growth was presented. Bacterial

cells are assumed to form circular/spherical particles representing an individual

or a cluster of live and dead cells. In Sections 3.7 and 3.9, we described how the

framework eliminates particle overlap caused by particle growth. The activity of

particles is governed primary by the energy (Aκ) which in turn is governed by

the availability of environmental agents, e.g., oxygen and nutrients. In Section

3.2, 3.4-3.6 the evolution equations were presented in generic form for particle

state and energy (Section 3.2), inter-cellular variables (Section 3.4), environmen-

tal agents (Section 3.5), and EPS (Section 3.6); they almost always involve differ-

ential equations. Though the ODEs that result can be solved using any standard

numerical method, the discrete nature of the particles means that finite volume

techniques are the the most efficient. The new features of the framework are

1. Compressible diffusible EPS. The diffusion depends on the pressure gradient

caused by concentration differences.

2. Energy production. Particle behaviour, including growth, EPS production,

and oxygen and nutrient consumption, are governed by the energy level of

the particles.

3. Inter-cellular agent production. The agents are contained in either or both

live and dead biomass.

4. Improvement in the particle displacement vector. The improved vector

ensures that the smaller particles move further than larger ones when they

are in contact, and conserves the centre of mass of the particles.

In Chapters 4 and 6 we will apply the framework to investigate growth and

plasma treatment. There, specific reaction and flux terms will be presented.

————————————————————————
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Chapter 4

The Biofilm Growth Model

In this chapter, the modelling framework presented in the previous chapter is

examined in a range of scenarios of biofilm growth. The various scenarios include

single species, two species, topical nutrient sources (i.e., biofilm growth on a solid

substratum), and basal nutrient source (e.g., biofilm growth on semi-permeable

agar matrices). In our investigation we will pay particular attention to the role

of the EPS in biofilm formation and structure.

4.1 Scenario 1: Single Species – EPS Producing

Strain

4.1.1 Cell Mechanism

In this section, we will describe the application of the model framework to simu-

late the growth of a single species biofilm, in which the bacteria have the following

relevant properties,

1. Produces EPS.

2. Is a facultative anaerobe, i.e., an aerobic bacterium that has some capacity

to survive in low oxygen environments.

Many bacteria have such properties, including Pseudomonas aeruginosa, Staphy-

lococcus, and E. coli. Figure 4.1 summarises the key metabolic pathways assumed
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in the simulation. Bacteria take up nutrients (i.e., carbon sources) and oxygen

to reproduce biomass, manufacture EPS, and generate energy (in the form of

ATP). The intracellular energy enhances cell growth and division and inhibits

cell death. When cells die, they may shrink by losing water and/or biotic com-

pounds, whereby the biotic compound are then made available as nutrients. The

rates of cell growth and the death of cells in the particles are described by Equa-

tions (3.3) and (3.4), where for the functions Ψκ
b , Ψκ

d , and Ψκ
s , we use

Ψκ
b = (µ+ βg(1))AκH(Xs, KXsb,mXsb

)Cκ
L, (4.1)

Ψκ
d = βg(Aκ)C

κ
L, (4.2)

Ψκ
s = φβg(Aκ)C

κ
L, (4.3)

so that

dCκ
L

dt
= ((µ+ βg(1))AκH(Xs, KXsb,mXsb

))

−βg(Aκ))C
κ
L, (4.4)

dCκ
D

dt
= (1− φ)βg(Aκ))C

κ
L. (4.5)

The constant µ is the maximum growth rate of the particle (i.e., the growth rate

at Aκ = 1), and β is the maximum death rate; φ is the ratio of dead biomass

decomposed and converted to nutrients when live cell biomasses die; and Xs is

the available nutrient concentration. Nutrient availability is described by the Hill

function H(Xs, KXsb,mXsb
) ∈ [0, 1]; namely

H(X,KX ,mX
) =

Xm
X

Xm
X +K

m
X

X

, (4.6)

where the constant KX is the Hill coefficient, such that H(KX , KX ,mX
) = 1/2,

and m
X

governs how fast the function “jumps” from 0 to 1 in the vicinity of

X = KX . The Hill function becomes a simple switch function when m
Xsb

. The

function g is a death switching function, which is assumed to be monotonically
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Figure 4.1: Plot of (a) general bacterial cell mechanism and (b) metabolism of
EPS and ATP syntheses.
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decreasing in Aκ ∈ [0, 1]. The form for g(Aκ) we adopt is

g(Aκ) =
1

1 + Aκ/ka
, (4.7)

where ka is an energy “threshold” level. The assumption that the cells are faculta-

tive anaerobes means that if there are plenty of nutrients, then the cells will grow,

or at least survive, in the absence of oxygen (see Figure 4.2). As discussed in Sec-

tion 1.1.3, the metabolism of glucose has anaerobic and aerobic parts in which we

assume a fraction of ω and (1−ω), respectively, of the total amount of ATP pro-

duced. As shown in Figure 4.1, for glucose ω w 2/29.85. We further assume that

the bacteria does not compensate for any lack of oxygen by metabolising more

glucose along the anaerobic pathway. Applying these assumption, the equation

for Aκ is as follows

Aκ = H(Xs, KXsA,mXsA
)(ω + (1− ω)H(XOx, KXOxA,mXOxA

)), (4.8)

where XOx is the available oxygen concentration. The level of aerobic respiration

is governed by a Hill function switch in oxygen concentration, so that in low oxy-

gen conditions, the level of ATP will be a fraction ω of its maximal level given

a nutrient concentration. Figure 4.3 shows the energy level (non-dimensionlised,

Aκ ∈ [0, 1]) as a function of the nutrient and oxygen concentrations. The en-

ergy level drops to zero as the nutrient concentration decreases, but does not

necessarily drop to zero with low oxygen, as the cells are able to generate energy

anaerobically with sufficient nutrient.

4.1.2 EPS Production

The pathway of the processes including EPS production is summarised in Fig-

ure 4.1b. EPS production by live cells requires both nutrients and energy. In

the extracellular environment, EPS can break up into smaller molecules due to

digestion enzymes which are then available again as a nutrient. We assume the

EPS production rate depends on the nutrient and energy levels as follows

UE(Aκ, Xs) = AκH(Xs, KXsE,mXsE
), (4.9)
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negative growth indicates death of the biomass.

 0.001

 0.01

 0.1

 1e-05

 0.0001

 0.001
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Energy Level

Nutrient Concentration (g/L)

Oxygen Concentration (g/L)

Energy Level

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 4.3: Plot of energy level against oxygen and nutrient concentrations. The
values of the parameters are listed in Table 2 in Appendix A.
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and that the decay rate is linear,

RE = βEE, (4.10)

where βE is the EPS decay constant; noting that as we are only considering one

species in this section, the Aκ term has been dropped. We have assumed that sub-

stantial EPS will only occur in the presence of sufficient nutrients, described once

again by a Hill function H(Xs, KXsE,mXsE
). The equation for EPS, expressed in

finite volume notation, is thus

∂

∂t

∫
Ωc

εcEdΩc = −
∫
∂Ωc

J · nd∂Ωc +

∫
Ωc

QdΩc − βE
∫

Ωc

εcREdΩc, (4.11)

where

Q =
N∑
κ=1

Wκ(x, t)µEAκH(Xs, KXsE,mXsE
)Θκ. (4.12)

and the εc is the extracellular void fraction in a computational grid box Ωc. We

recall that µ
E

is the maximum EPS production rate and Θκ is the fraction of live

biomass at the point x, where x ∈ Γκ and Wκ(x, t) is given by Equation (3.1).

Figure 4.4 shows the EPS production rate as a function of the nutrient and

oxygen concentrations. Due to the fact that EPS production is dependent on

nutrients and energy but not explicitly on oxygen, the shape of the plot of EPS

production is similar to that in Figure 4.3.

4.1.3 Freely Diffusing Substrates

Oxygen and the nutrient are assumed to freely diffuse around the whole domain,

through particles, cell membranes, as well as the extracellular space. They are

consumed within the live portion of the particles. The time scales for the reaction

and diffusion of the nutrient and oxygen are rapid, over O(100µm) in comparison

to growth, the quasi steady form of the reaction–diffusion equations are applied

for these agents. For simplicity, we will bundle all carbon source compounds into

one generic nutrient variable. Thus, the mass balance equation of the nutrient
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Figure 4.4: EPS production plotted against oxygen and nutrient concentrations.
The values of the parameters are listed in Table 2 in Appendix A.

and oxygen concentrations are, in finite volume form,

0 = −
∫
∂Ωc

JXs · nd∂Ωc +

∫
Ωc

RXsdΩc, (4.13)

0 = −
∫
∂Ωc

JXOx · nd∂Ωc +

∫
Ωc

RXOxdΩc, (4.14)

where JXs and JXOx are the fluxes and RXs and RXOx are the net consumption

rates for the nutrient and oxygen, respectively. We assume Flick’s law for the

fluxes, hence

JXs = −DXs∇Xs. (4.15)

JXOx = −DXOx∇XOx, (4.16)

where DXs and DXOx are the diffusion coefficients of the nutrient and oxygen;

because we have assumed there are no barriers to diffusion, then their value will

be approximately that of water. The nutrient is only consumed at a point within

a particle, i.e., x ∈ Γ, during the processes of biomass reproduction, energy

synthesis, and EPS production; and obtained within particles while cells die and

extracellularly while the EPS decays. Furthermore, nutrient consumption only
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occurs in live cells, thus the general reaction rate of the nutrient is given by

RXs = RXsEXs +
N∑
κ=1

Wκ(x, t)Θκ(R
κ
Xsd −R

κ
XsA −R

κ
XsE −R

κ
Xsb), (4.17)

where RXsEXs and RXsd are the rates of nutrient generation from decomposed

EPS and dead biomass, respectively; and RXsA, RXsE, and RXsb are the rates of

nutrient consumption from energy production, EPS production, and cell growth,

respectively. In each case the nutrients are produced or consumed at a rate

proportional to the rates of each process, hence

RXsEXs = µ
XsE

λE, (4.18)

Rκ
Xsd = µ

Xsb
φβg(Aκ), (4.19)

Rκ
XsA = δXsAH(Xs, KXsA,mXsA

), (4.20)

Rκ
XsE = µ

E
ρ
EXs

AκH(Xs, KXsE,mXsE
), (4.21)

Rκ
Xsb = δXsb(µ+ βg(1))AκH(Xs, KXsb,mXsb

), (4.22)

where µ
XsE

and µ
Xsb

are the amount of nutrient produced per concentration of

EPS decomposed and per volume of decomposed biomass, respectively; δXsA is

the consumption rate constant for energy synthesis (noting that nutrients are

consumed here at the same rate regardless of the presence of oxygen); ρ
EXs

is

the amount of nutrient mass per unit EPS mass; µE is the EPS production rate

constant (see Equation (4.12)); and δXsb is the mass of nutrient per unit volume

of cells during growth.

Since oxygen is only consumed during aerobic respiration in ATP synthesis in

live cells, the reaction of oxygen, RX , is given by

RXOx = Rκ
XOxA

=
N∑
κ=1

Wκ(x, t)ΘκδXOxAXs ((1− ω)

× H(Xs, KXsA,mXsA
)H(XOx, KXOxA,mXOxA

)), (4.23)

where δXOxAXs is the oxygen consumption rate constant for energy synthesis. The

term ((1−ω)H(XOx, KXsA,mXsA
)H(XOx, KXOxA,mXOxA

)), which is adapted from
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Figure 4.5: Plot of (a) nutrient and (b) oxygen net consumption against nutrient
and oxygen concentrations. The values of the parameters are listed in Table 2 in
Appendix A.

Equation (4.8), indicates the level of oxygen consumption in energy generation

via aerobic respiration. As an example, the net consumption rates of nutrients

and oxygen are plotted in Figure 4.5a and 4.5b.

4.1.4 Simulations and Results

In this section, we present the results from some simulations of the model under

various settings. The aim is to verify whether the system can generate results

consistent with observation, and to check whether changing the parameters leads

to results that would be expected when using different bacterial strains (mu-

tants) or under altered environmental conditions. First, the simulations will be

presented using parameters that will be referred to as the standard parameter set.

Secondly, we will investigate how varying the parameters affects the long term

biofilm development. Following this, the results from simulations with a nutrient

source placed at the bottom of the system will be presented. As far as I know,

this case has not been investigated before using mathematical models. Last, the

simulation of bacterial cells which are able to survive in anaerobic conditions will

be presented.

In order to visualise the results, the health and activity of a particle is defined

by the fraction of the live cell biomass in the particle and will be presented
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Figure 4.6: The colour of particles illustrates the percentage of live cell biomass
in the particles.

using the colour scheme shown in Figure 4.6. In general, particles will be shown

with a darker shade of blue as the dead biomass increases, becoming black when

80% of the cells are dead. As biomass dies, the “sickly” particle will be grey and

alternately white when there is< 2% live biomass. It is assumed that all biological

behaviour, including growth and EPS production, stop when the live cell biomass

< 2%, and will therefore be treated as completely dead. The parameters and their

values are listed in Table 2 in Appendix A.

4.1.4.1 Simulation 1: Standard Single Species of Biofilm Growth Mod-

els

In this section, two “standard” simulations of single-species biofilm growth are

presented. In the first case, a single particle is seeded at the centre of the base and

the radius of the particle is chosen randomly within the range r1 ∈ [Rmin, Rmax].

In the second simulation, twenty particles are randomly seeded at the bottom of

the domain and the size of those particles are also randomly chosen, i.e., rκ ∈
[Rmin, Rmax], for κ ∈ [1, 20]. Figure 4.7 shows the domain of this standard biofilm

growth. The “standard simulation” refers to the case in which the following

statements are satisfied:

• Biofilms grow in a bulk fluid and attach at the bottom of the domain.

Biofims are attached to the bottom and grow in a nutrient/oxygen diffusion

layer. The depth of this layer is a fixed distance to the top of the biofilm.
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Table 4.1: Crucial parameters and their values used in the simulation

a dimensionless
b the ratio of EPS prduction per biomass formed, fEb = ρE/ρb = 0.2

parameter description value reference
ka energy threshold 8.126× 10−5 a Assumed
µE maximum EPS production

rate
0.0544 1/h [178]

DE EPS diffusion coefficient 150 µ m2/h Assumed
σ drag coefficient of particle

movement pushed by EPS
2 a Assumed

δXsb nutrient consumption for
biomass reproduction

138.598 g/L Calculation b

• Above the diffusion layer is the “bulk fluid” which contains nutrient and

oxygen at fixed concentrations.

• The bulk fluid is assumed stationary.

• EPS are produced by all live cells and released to the space between parti-

cles.

According to the assumptions, the boundary conditions (3.29) and (3.30) are

applied. Table 4.1 shows some of the crucial parameters used in this section.

The parameters may change between the simulations depending on the model

settings.

Results

Two simulations of single-species biofilm growth were followed for up to 10 days

from seeding. Simulation 1-1 is the biofilm formation starting with one particle

placed at the centre of the base of the domain; Simulation 1-2 is the biofilm

growth starting with 20 particles seeded randomly at the bottom boundary. In

both simulations, the initial size of the particles is set randomly. Figure 4.8a and
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Figure 4.7: Plot of the “standard” biofilm growth scenario.

Figure 4.8b show the initial seeding of the particles in Simulations 1-1 and 1-2,

respectively.

In the early stage, the nutrients and oxygen are able to penetrate through

the biofilm so that all particles are adequately nourished (Figure 4.9) and EPS

is produced at a high production rate and expands the particles to form a loose

structure (see Figures 4.8c and 4.8d). The biofilms form a semi-circular bulge

(Figure 4.8c) and several irregular bulge shapes (Figure 4.8d). Inside the biofilm,

a high EPS concentration pushes the particles, resulting in the sparse distribu-

tion of the particles, leading to their occupying more space. However, the particle

distribution is denser at the biofilm surface due to the fact that the higher nu-

trient and oxygen concentration there leads to more growth and division: EPS

production, however, is not rapid enough to build up such high concentrations

that will force cells to expand there. We note, in Figure 4.8d, the emergence

of three bulges correspond to the initial particle clusters shown in Figure 4.8b.

Figure 4.9 shows the nutrient and oxygen concentrations in the biofilms after two

days growth. At this stage, nutrient and oxygen are able to penetrate through

both biofilms, resulting high energy level in both biofilms. Consequently, biofilms

produce high concentration of EPS (See Figure 4.10).

Figures 4.11a and 4.11b show the simulated old biofilm after four days for

Simulations 1-1 and 1-2, respectively. In both cases, a region of dead/inert par-

ticles is located at the centre of the base of the biofilm due to the inability of

nutrients and oxygen to penetrate the outer layer of live cells (Figure 4.12). Since

the particles near the surface of the biofilm are have access to higher levels of nu-

trients and oxygen, they have more energy available and produce EPS at a greater
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Figure 4.8: Particle distributions of initial seeding and after one day of biofilm
growth. (a) Initial seeding of Simulation 1-1; (b) initial seeding of Simulation 1-2;
(c) after one day of growth in Simulation 1-1; and (d) after one day of growth in
Simulation 1-2.

rate(Figure 4.13). The region of highest EPS concentration inside the biofilm is

moved from the bottom to near the surface of the biofilm. Here EPS is at a

sufficient concentration to force particles apart and be fairly uniformly spread.

In this stage, the biofilm in Simulation 1-1 becomes a larger semi-circular bulge,

and, in Simulation 1-2, the irregular bulges have merged to form a thick bed of

biofilm across the surface.

After 10 days, the biofilms have grown very large, 600µm thick or more, which
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Figure 4.9: Plot of nutrient and oxygen concentration in both cases of biofilms at
1 day old. (a) and (c) show nutrient concentration distribution for Simulations
1-1 and 1-2, respectively. (b) and (d) show oxygen concentration for Simulations
1-1 and 1-2, respectively.

would be at the upper end of that observed in experiments [85]. In Simulation 1-

1, the biofilm has grown into a tower-like structure (Figure 4.14): such structures

are often described as “mushroom”, though in most experiments, the biofilms

are grown in flow chambers in which the shear force from the flowing bulk fluid

flattens the top of the towers, and hence are more mushroom-like in shape. As

cells near the top of the tower have access to more nutrients and oxygen (Figure

4.16a and b), they will grow faster and produce more EPS then those at the

side: hence the growth in the vertical direction exceeds that in the horizontal

direction, leading to the formation of a tower-like structure. For Simulation 1-2,

in Figure 4.15, the results are more interesting. Here the three towers, noting that
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Figure 4.10: Plot of energy level and EPS concentration distribution in both
cases of biofilms after one day. (a) and (c) show the energy distributions for
Simulations 1-1 and 1-2, respectively. (b) and (d) show the distributions of EPS
concentration for Simulations 1-1 and 1-2, respectively.

the left and right towers are the same from the periodic boundary condition, are

developing at different rates, where the larger one, being closer to the nutrients,

appears to be out competing the two smaller towers. Close examination of the

live particles near the surface (or Figure 4.17(d) for energy level) show that the

thickness of the live layer (the blue particles) is almost double that of shortest

one. We note the tallest tower originated from the densest initial cluster towards

the right of the domain in Figure 4.11b. This simulation seems to highlight the

advantage of cells clustering early on, so as to form a biofilm, or tower, that will

out compete its neighbours. The results are perhaps not unexpected, in the taller

tower, being closer to the nutrient/oxygen source will grow faster and will in time
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Figure 4.11: Plot of four-day old biofilm structure with particle distribution and
EPS concentration for (a) Simulation 1-1 and (b) Simulation 1-2.

kill off the smaller towers.

Figure 4.18 illustrates the profile of the biofilm thickness and the contribution

of the live and dead biomass in the biofilm through 10 days of growth. The

thickness is defined as the height of the highest tower in the biofilm, volume

fraction of live/dead particles along the biofilm depth is calculated by the total

volume of live/dead contribution of particles in the calculation depth divided

by the volume of biofilm at the same depth. The biofilm increases its thickness

linearly; however, the total live biomass becomes nearly stationary (in fact it is

slowly decreasing, probably due to the smaller towers struggling because of the

larger tower). The peak of the mean volume fraction of the live biomass travels

at a nearly constant speed (Figure 4.18) with the increasing biofilm thickness,

whilst the highest point of the average volume fraction of dead particles steadies

at the bottom (Figures 4.18c and 4.18d). The nutrients and oxygen are able to

penetrate the biofilm during the first two days, but are exhausted before reaching

the bottom as the biofilm grows large (Figures 4.19a and 4.19b). Figures 4.19c

and 4.19d show the average EPS concentration with the height of the biofilm

throughout 10 days and the total concentration growth with time.
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Figure 4.12: The nutrient and oxygen concentrations of 4-day old biofilm in
Simulations 1-1 and 1-2. (a) Nutrient and (b) oxygen concentration of Simulation
1-1; (c) Nutrient and (d) oxygen concentration of Simulation 1-2.
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Figure 4.13: Plot of EPS concentration ((a) & (c)) and energy level ((b) & (d))
of 4-day old biofilm in Simulations 1-1 and 1-2. (a) and (b) are from Simulation
1-1; (c) and (d) are from Simulation 1-2.
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Figure 4.14: Plot of particle distribution with EPS concentration of 10-day old
biofilm (Simulation 1-1).
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Figure 4.15: Plot of particle distribution with EPS concentration of 10-day old
biofilm (Simulation 1-2).
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Figure 4.16: Plot of the nutrient, oxygen , EPS concentration and energy level
after 10 days’ growth in Simulation 1-1. Clockwise from top left: nutrient con-
centration, oxygen concentration, energy level and EPS concentration.
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Figure 4.17: Plot of the nutrient, oxygen and EPS concentration and energy
level after 10 days’ growth in Simulation 1-2. Clockwise from top left: nutrient
concentration, oxygen concentration, energy level and EPS concentration.
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Figure 4.18: Evolution of (a) biofilm thickness, (b) live and dead biomass against
time, (c) average volume fraction of live particles and (d) average volume fraction
of dead particles against depth of biofilm throughout 10 days of biofilm growth
in Simulation 1-2.
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Figure 4.19: Evolution of the average concentration of (a) nutrients, (b) oxygen
and (c) EPS against the biofilm thickness through 10 days of growth, and (d)
the total EPS concentration in the biofilm against the time of biofilm growth in
Simulation 1-2.
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4.1.4.2 Simulation 2: EPS Effect on Biofilm Formation

In order to make explicit the role of EPS in biofilm formation in the previous

simulation, we simulated here biofilm growth with no EPS production, i.e., an

EPS production rate of µE = 0 (Simulation 2-1), and the case in which EPS

is produced but plays no part in particle movement, i.e., a drag coefficient of

σ = 0 (Simulation 2-2). Furthermore, we investigated biofilm growth with a high

EPS expansion rate, i.e., we increased the EPS diffusion coefficient to 500µm2/h

(Simulation 2-3). These simulations are modifications of the standard single

species biofilm growth simulation Simulation 1-2 from the previous section, in

which the same model and boundary conditions were applied with only a single

parameter changed.

Results

Figure 4.20 shows the particle distribution after 10 days growth in Simulation

2-1 (no EPS production). In contrast with the biofilm structures in the standard

case (see Figure 4.15), the biofilm in this simulation is less height (about 500 µm

as opposed to 800 µm) and the particles are denser (see Figure 4.21), due to the

biofilm’s not having expanded its volume and having particles being forced apart

by EPS. The well packed particles mean less penetration of nutrients and oxygen

into the biofilm; consequently, the active particle region is thinner. However, the

total cell biomass of the biofilm is slightly higher than in Simulation 1-2 (Figure

4.22): this is due to the nutrient’s being preserved from EPS production and

used instead to generate energy and create biomass. Like that of Simulation

1-2, towers of particles develop and the larger one having an advantage and

growing more than the smaller ones. Here, the nutrients and oxygen need to

travel further through the diffusion layer and to reach the lower surface towers,

and the consequential reduction in the concentration of the nutrient and oxygen

means the living layer is thinner than that of the larger tower.

Figure 4.23 shows the particle distribution and EPS concentration in the

biofilm of Simulation 2-2 (no particle movement from EPS, i.e. BE = 0) at

10 days of biofilm growth. The biofilm form is thicker than the previous case

(Simulation 2-1) due to a part of the nutrient’s being used to produce EPS and
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Figure 4.20: Plot of the particle distribution of Simulation 2-1 after 10 days
growth.

the particles’ not being expanded by an EPS flux. However, EPS still diffuses

out. Hence, the particles are densely packed and embedded in a thick layer of

EPS (Figure 4.23a).

Figure 4.24 shows the particle distribution and EPS concentration in Simu-

lation 2-3 after 10 days of biofilm growth. The additional diffusivity of the EPS

has a dramatic effect on growth and particle distribution. The main tower has

grown to nearly 1000µm as opposed to about 700µm in Simulation 1-2 and 500µm

in Simulation 2-1. Furthermore, particles are spaced much further apart due to

the effective increase in drag by the faster moving EPS; we note from Equations

(3.23) and (3.28) that the effective coefficient of drag is σDE, which increases

with DE. The total live and dead biomass in these cases is similar (Figure 4.25),

suggesting that EPS has little effect on bacteria growth, but is significant in how

fast the biofilm grows.
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Figure 4.21: Comparison of the evolution of volume fraction of particles in (a)
Simulation 2-1 and (b) 1-2.
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Figure 4.22: Comparison of total live and dead biomass against time between
Simulations 1-2 and 2-1.
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Figure 4.23: Plots of (a) the particle distribution and (b) the EPS concentration
of Simulation 2-2 after 10 days.
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Figure 4.24: Plot of the particle and EPS distribution in the biofilm of Simulation
2-3 after 10 days.
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Figure 4.25: Comparison of total live and dead biomass between Simulations 1-2,
2-2 and 2-3.
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Figure 4.26: Schematic of the domains of biofilm growth on a semi-solid growth
medium.

4.1.4.3 Simulation 3: Single-species of Biofilm Formation Grown on

a Semi-Solid Substratum

In this section we use the model framework to simulate biofilm colonies grown

on agar plates (Figure 4.26). Experiments on bacteria grown on plates are very

common, including investigation of cold plasma treatment (see Chapters 5 and

6). Despite their wide spread experimental use, the mathematical modelling of

biofilm in this scenario is rather minimal and limited to surface spreading bacteria

an soft agar, i.e., a phenomenon known as swarming (see [179, 180, 181]).

The key difference in this scenario from that investigated in the previous

sections is in the boundary conditions: here, the carbon source diffuses from the

agar at the bottom, hence

Xs = Xs0,
∂XOx

∂z
= 0, at z = 0,

∇Φ · ∇Xs = 0, XOx = XOx0, at Φ(x, t) = 0, (4.24)

i.e., the nutrient concentration is fixed at the bottom and there is zero flux of

nutrient on the biofilm surface (recall that Φ(x, t) = 0 defines the biofilm edge

in the domain, see Figure 3.1). The same boundary conditions in reverse are

imposed for oxygen.
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Results

Figure 4.27 shows the initial seeding of the particles of the simulation and the

biofilm structure on day 1 of growth. By day 1, the biofilm forms several bulges

and the general biofilm structure, including the particle distribution (Figure

4.27b), EPS concentration (Figure 4.27c) and energy levels (Figure 4.27d), are

similar to those of Simulation 1-2 (Figure 4.8d in Figure 4.10) due to the biofilm’s

being similarly well nourished throughout (Figures 4.27e and 4.27f). As would be

expected from this scenario, the cells near the biofilm receive the most nutrients

but the least oxygen. We note that the location of the bulges correlates with the

initial location of the particles.

By day 3, the bulges have merged so that the biofilm becomes relatively flat

across the domain (Figure 4.28a). Because the nutrient is sourced from the bot-

tom and the oxygen from the top, growth is more rapid along the agar surface

than in the upward direction, a notable contrast to the situation in Simulation

1-2. The thinner sections of the biofilm grow faster than the thicker parts, even-

tually forming a structure that is fairly uniform in the x-direction, with all the

substrates similarly distributed (Figures 4.28b–4.28d). We note that the oxygen

only penetrates half-way through the depth of the biofilm, while a limited con-

centration of nutrient diffuses through to the biofilm surface. This results in most

of the active particles’ being present in a central band across the biofilm.

The biofilm structure after 10 days is shown in Figure 4.29. The biofilm is

divided into three layers: two inert/dead particle layers, one at the surface due

to a lack of nutrients and one at the bottom due to a shortage of oxygen, and

an active particle layer in the middle. Since the most active particles are located

in the middle of the biofilm, this is where the highest EPS production and faster

particle proliferation and division occurs. This leads to the inert/dead particles

to be pushed upwards or downward where they are forced to pack densely in the

top and bottom region.

Figure 4.30 shows the profile of biofilm thickness and the evolution of total

live and dead biomass against time, as well as the average volume fraction of

live and dead particles against the height of the biofilm over 10 days of growth.

Comparing this simulation to that of the standard case (Simulation 1-2), the
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biofilm thickness no longer appears to be increasing linearly. Due to increasing

dead particle layers at the top and bottom of the biofilm (Figure 4.30d), the

active particles obtain less and less oxygen/nutrients. Consequently, the profile

of total live biomass reaches a maximum at an early stage of growth and then

drops slightly, and more rapidly afterwards.

The evolution of the average concentration of nutrients, oxygen, and EPS

against the height of the biofilm, and the total concentration of EPS against

the time of biofilm growth, are shown in Figure 4.31. It seems that oxygen is

able to penetrate deeper in older biofilms as the thickening top layer consists of

dead, non-oxygen consuming cells, through which oxygen can diffuse. Similarly,

nutrients can penetrate a little deeper for the same reason. From Figure 4.31d,

we note that the net EPS production rate is decreasing after 50 hours of growth.

This is because EPS is only produced at the central band of the biofilm, and

decays at the top and bottom. Therefore, the growth of the EPS concentration

is slightly higher than its decomposition.

In order to confirm that the densely packed regions are caused by the particles’

being pushed by the EPS, we increased the diffusion coefficient of the EPS from

100 to 200 µm2/h and the simulation starts with one particle placed at the middle

of the basal nutrient (Simulation 3-2). Figure 4.32a shows the biofilm growth

after three days. The structure of the biofilm is similar to that of the biofilm

in Simulation 1-1. At this stage, the particles are adequately nourished by the

nutrient and the oxygen, therefore, the biofilm’s shape is semi-circular. However,

after four days of growth, the bulge of the biofilm has flattened (see Figure 4.32b)

due to the thick biofilm, so that less nutrient and oxygen reach the top or bottom

of the biofilm than reach the side. This leads to a faster biofilm growth in the

horizontal direction than vertically. By the eighth day, the structure of the biofilm

(Figure 4.33a) clearly shows a spread of particles at the middle band and two

denser layer with dead/inert particles above and below it. This is because the

particles in the middle band are healthier than the particles in the other two

regions. Hence they produce more EPS and this leads to a higher concentration

of EPS in the middle layer. Consequently, EPS is forced to move in order to

release the pressure and this carries the particles towards both the surface and

the bottom of the biofilm. The biofilm structure after 10 days (Figure 4.33b)
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shows that the biofilm become flat and smooth with clear three, dead–live–dead,

layers.
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Figure 4.27: The initial seeding of the particles and the biofilm structure at day
1 of Simulation 3-1. (a) Initial particle distribution. After one day: (b) particle
distribution, (c) EPS concentration, (d) energy level, (e) nutrient concentration
and (f) oxygen concentration.
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Figure 4.28: The biofilm particle distribution and the substrate concentration at
day 3 in Simulation 3-1. (a) Particle distribution; (b) EPS concentration, (c)
energy level, (d) nutrient concentration and (e) oxygen concentration.
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Figure 4.29: The biofilm particle distribution after 10 days in Simulation 3-1. (a)
Particle distribution; (b) EPS concentration and (c) energy level.
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Figure 4.30: Evaluation of (a) biofilm thickness, (b) live and dead biomass against
time, (c) average volume fraction of live particles and (d) average volume fraction
of dead particles against depth of biofilm over 10 days.

83



4. Biofilm Growth Model

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  100  200  300  400  500

Av
ar

ag
e 

C
on

ce
nt

ra
tio

n 
(g

/L
)

Height (µm)

Avarge Nutrient Concentration

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7
Day 8
Day 9

Day 10

(a)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0  100  200  300  400  500

Av
ar

ag
e 

C
on

ce
nt

ra
tio

n 
(g

/L
)

Height (µm)

Avarge Oxygen Concentration

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7
Day 8
Day 9

Day 10

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  100  200  300  400  500

Av
ar

ag
e 

C
on

ce
nt

ra
tio

n 
(g

/L
)

Height (µm)

Avarge EPS Concentration

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7
Day 8
Day 9

Day 10

(c)

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250

EP
S 

C
on

ce
nt

ra
tio

n 
(g

/L
)

Time (hours)

(d)

Figure 4.31: Evaluation of the average concentration of (a) nutrient concentration,
(b) oxygen concentration and (c) EPS concentration against the biofilm thickness
over 10 days of growth, and (d) the total EPS concentration in the biofilm against
time of growth.
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Figure 4.32: Plots of the particle distribution and EPS concentration of Simula-
tion 3-2 after (a) 3 days’ and (b) 4 days’ growth.
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Figure 4.33: Plots of the particle distribution and EPS concentration of Simula-
tion 3-2 after (a) 8 days’ and (b) 10 days’ growth.
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4.1.4.4 Simulation 4: Anaerobic Growth

As mentioned in Section 4.1.1, this framework is able to simulate a biofilm which

can be grown or survive in an anaerobic environment by controlling the energy

“threshold” level constant ka (see Equation (4.7)). In this section, two cases of the

simulation of biofilm growth are presented: one is the standard model (Simulation

4-1) and the other is the case in which the biofilm is growing on agar with the

nutrients diffusing from the bottom of the domain (Simulation 4-2). Here we set

the parameter ka = 4.05838× 10−6, so that the biomass reproduction and death

rates are at an equilibrium when no oxygen is present, i.e., in Equation (4.4)
dCκL
dt

= 0, when XOx = 0. All other parameters are the same as those listed in

Table 4.1.

Results

Figures 4.34–4.36 show the results of the biofilm growth over the 10 days in Sim-

ulation 4-1. Compared to the standard simulation (Simulation 1-2), the biofilm

structures, including particle distribution and the concentrations of EPS, oxygen,

and nutrient, are similar. The biofilm forms several tower-like bulges, with the

most active particles at the top of the biofilm and the highest EPS concentra-

tion regions at the head of the bulges. The thickness of the biofilm increases

approximately linearly. However, the active particle regions in Simulation 4-1 are

larger compared to Simulation 1-2 due to the particles’ being able to tolerate an

anaerobic environment: therefore, the total live biomass in the biofilm is greater.

Figure 4.37 shows the particle distribution after 10 days and the substrate

concentration in the computational domain of Simulation 4-2. Once again, the

biofilm forms a flat, uniform structure with particles well packed throughout the

biofilm, since the particles at the bottom are all alive and therefore proliferate to

fill the space. Consequently, the EPS is compressed into the tiny spaces between

the particles and, hence, the concentration of EPS is high in the biofilm. Despite

the lower concentration of nutrient diffusing from the base through the biofilm to

the biofilm surface, the particles at the surface are all alive at this stage due to

their lesser requirements as to the nutrient concentration level needed for their
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Figure 4.34: Evolution of (a) biofilm thickness, (b) live and dead biomass against
time, (c) average volume fraction of live particles and (d) average volume frac-
tion of dead particles against depth of biofilm over 10 days of biofilm growth in
Simulation 4-1.

survival. However, if the biofilm growth continues after the 10-day study period,

the particles at the biofilm surface will die out eventually and form a dead layer

of particles.
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Figure 4.35: Evolution of Simulation 4-1 of the average concentration of (a)
nutrients, (b) oxygen and (c) EPS against the biofilm thickness over 10 days of
growth, and (d) the total EPS concentration in the biofilm against time of growth.
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Figure 4.36: Plot of EPS concentration and particle distributions after 10 days
in Simulation 4-1.
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Figure 4.37: Plots of (a) the particle distribution and (b) EPS, Substance con-
centrations and energy level of Simulation 4-2 after 10 days’ growth.
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4.2 Scenario 2: A Two Species Simulation

In this section we will apply the new framework to investigate the growth of a

two species biofilm, consisting of

1. An EPS-producing strain that produce EPS

2. A non EPS-producing strain (PHB-producing strain) that has the capacity

to store nutrient in the form of PHB, which gives it the ability to survive

for a time in low nutrient concentration.

This is a system similar to that investigated by Xavier et al. [166], and this

investigation serves as a demonstration of the adaptability of the new framework

to a multi-species system.

The cell behaviour for the EPS-producing strain is adapted from the previous

simulation (see Figure 4.1), with the process of EPS production as described in

Section 4.1.2. The PHB-producing strain is assumed to produce the intracellular

storage energy compound PHB instead of the extracellular polymeric substances

(EPS). The relevant parameter values for the standard simulation in this case are

listed in Tables 2 and 3 in Appendix A.

4.2.1 Cellular Processes

The cell mechanisms of both the EPS and PHB-producing strains are assumed to

be the same as presented in Figure 4.1a. The metabolisms of the EPS and energy

synthesis of the EPS-producing strain are adapted from Scenario 1 (Figure 4.1).

For the PHB-producing strain, the cells consume nutrients to synthesise energy,

and use the energy as well as the nutrients to reproduce biomass during high

levels of nutrient concentration. However, when the nutrients are absent, the

PHB-producing strain converts the PHB produced and stored inside the cells

to generate energy, in order to keep themselves alive. The growth and death

processes are similar to the EPS-producing strain and the live and dead cell

biomass evolves according to
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Figure 4.38: Plots of (a) PHB and ATP synthesises under well nourished condition
and (b) PHB consumption and ATP synthesis under starvation.
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dCκ
L

dt
= ((µΛ(κ) + βΛ(κ)g(1))AκH(Xs, KXsb,mXsb

)

−βΛ(κ)g(Aκ))C
κ
L, (4.25)

dCκ
D

dt
= (1− φ)βΛ(κ)g(Aκ))C

κ
L, (4.26)

g(Aκ) =
1

1 + Aκ/ka
, (4.27)

H(Xs, KXsb,mXsb
) =

X
m
Xsb

s

X
m
Xsb

s +K
m
Xsb

Xsb

, (4.28)

where the index Λ(κ) indicates the strains of the particle indexed κ. Here, Λ(κ) =

1 refers to the EPS-producing strain and Λ(κ) = 2 represents the PHB-producing

strain. The energy is produced by either nutrients or PHB for the PHB-producing

strain particles and by nutrients only for the EPS-producing strain particles. The

energy level function Aκ is given by

Aκ = (FΛ(κ)
s + FΛ(κ)

p ), (4.29)

where

FΛ(κ)
s = H(Xs, KXsA,mXsA

)

(ωΛ(κ) + (1− ωΛ(κ))H(XOx, KXOxA,mXOxA
)), (4.30)

FΛ(κ)
p = ψG(Xs, Pκ)(τ

Λ(κ) + (1− τΛ(κ))H(XOx, KXOxA,mXOxA
)), (4.31)

where Pκ is the fraction of PHB per live biomass in particle κ (Pκ = 0 in the

EPS-producing strain) and G(Xs, Pκ) is the contribution from PHB reserves given

by

G(Xs, Pκ) =
P 2
κ

K2
p + P 2

κ

K2
PXs

X2
s +K2

PXs

. (4.32)

The functions Fs and Fp are the energy levels generated from nutrients (equivalent

to Equation 4.8) and PHB, respectively. We note that Aκ = 1 between the

two species does not necessarily represent the same level of energy (i.e., ATP
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Figure 4.39: Plots of energy level against nutrient concentration and PHB level
(a) under anaerobic conditions and (b) in an oxygen present environment.

concentration), it is simply the upper bound of energy for the respective species.

This means that ω1 = 2/29.85 (see Figure 4.1b) and ω2 = 2/18.2 (see Figure

4.38a); with ψ being the ratio of energy output between one units of PHB and

one unit of nutrient, it follows from Figure 4.38b that τ 2 = 2/11.6. Note that

Equation 4.31 only holds if Λ(κ) = 2, otherwise F 1
p = 0 in this case. The function

G(Xs, Pκ) governs when ATP production is dominated by nutrient or PHB, the

latter only occurring when the nutrient level is low (noting G(Xs, Pκ) will be small

if Xs � KXs). The constants Kp and KXs are the threshold concentrations of

PHB and nutrient, respectively, at which G(Xs, Pκ) changes between low and high

levels. Surface plots of energy levels in cell particles under different conditions

are illustrated in Figure 4.39 and Figure 4.40.

4.2.2 Intra-Cellular Substance- PHB Production and Con-

sumption

PHB is assumed to be an intracellular substrate only existing in live cells; there-

fore, Equations (3.7) are applicable. The mass balance of PHB production and

consumption is given by

d(Cκ
LPκ)

dt
= Rκ

PC
κ
L + JκZ −Ψκ

dPκ, (4.33)
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Figure 4.40: Plots of energy level against oxygen and nutrient concentrations in
the context of (a) no intracellular PHB and (b) a maximum level of PHB.

where Pκ is the fraction of PHB per live biomass in the particle indexed by κ,

and Rκ
PC

κ
L is the PHB production and consumption rate by the live biomass. The

second term on the right hand side of the equation describes the PHB absorp-

tion/release rate from/to the environment. Since PHB is assumed to exist only

in the live biomass, PHB is not absorbed or released by biomass, i.e., JκZ = 0.

The third term refers to the PHB loss when live biomass dies. Equation (4.33)

can be rewritten by applying Equations (3.11):

dPκ
dt

= Rκ
P −

Ψκ
b

Cκ
L

Pκ. (4.34)

The processes of PHB production and consumption are summarised in Figure

4.38. In order to synthesise PHB, the PHB-producing strain consumes nutrients

via both aerobic and anaerobic respirations at different production rates. When

nutrients are absent, the cells of the PHB-producing strain consume the PHB

stored inside themselves to generate energy. We have assumed that the rate of

PHB production and consumption is given by

Rκ
P = AκY

Λ(κ)
p H(Xs, KXsP ,mXsP

)(ξ + (1− ξ)H(XOx, KXOxP ,mXOxP
))(1− Pκ

P ∗κ
)

−δPAFΛ(κ)
p , (4.35)
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Figure 4.41: Plots of net PHB production and consumption against oxygen and
nutrient concentrations in (a) no intracellular PHB and (b) PHB present condi-
tions. The negative value means consumption.

where Y
Λ(κ)
P is the maximum production rate of PHB, ξ is the fraction of PHB

production rate under anaerobic respiration, δPA is the consumption rate of PHB

to produce energy when nutrients are absent, and P ∗κ is the maximum fraction

of PHB contained per live biomass in a particle indexed by κ. The term (1 −
Pκ/P

∗
κ ) ensures that the total mass of PHB produced and stored in the particle

indexed by κ does not exceed the maximum. The production and consumption

of PHB against nutrient and oxygen concentrations is shown in Figure 4.41. The

maximum PHB that may be contained in a particle being half of the live biomass

in the particle [29], i.e., P ∗κ = 1
2
.

4.2.3 Freely Diffusing Substances

As presented in the first scenario, the nutrients and oxygen are considered in this

scenario. Since the diffusion and reaction rates of these two solutes are assumed to

be fast compared to the biofilm growth, a quasi-steady state of reaction–diffusion

equation, viz., Equation (3.18), is applied. The reaction–diffusion equation for

nutrient concentration is adapted from Equations (4.13) and (4.15), giving

0 = −
∫
∂Ωc

JXs · nd∂Ωc +

∫
Ωc

RXsdΩc, (4.36)
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where

JXs = −DXs∇Xs, (4.37)

and the reaction term RXs is the same as that in Equation 4.17 but amended

to account for nutrient consumption in PHB production by the PHB-producing

strain. The reaction term in full is

RXs = RXsEXs

+
N∑
κ=1

Wκ(x, t)Θκ(R
κ
Xsd −R

κ
XsA −R

κ
XsE −R

κ
Xsb −R

κ
XsP ), (4.38)

where

RXsEXs = µ
XsE

λE, (4.39)

Rκ
Xsd = µ

Xsb
φβΛ(κ)g(Aκ), (4.40)

Rκ
XsA = δ

Λ(κ)
XsA

H(Xs, KXsA,mXsA
), (4.41)

Rκ
XsE = µ

E
ρΛ(κ)
EXs

AκH(Xs, KXsE,mXsE
), (4.42)

Rκ
Xsb = δXsb(µ

Λ(κ) + βΛ(κ)g(1))AκH(Xs, KXsb,mXsb
), (4.43)

Rκ
XsP = δ

Λ(κ)
XsP

C
Λ(κ)
L AκY

Λ(κ)
P H(Xs, KXsP ,mXsP

)

× (ξ + (1− ξ)H(XOx, KXOxP ,mXOxP
))(1− Pκ

P ∗κ
), (4.44)

where Rκ
XsP

represents the nutrient consumption by PHB production and δXsP

refers to the concentration of nutrient use per concentration of PHB production.

We note ρ2
EXs

= 0 (the PHB-producing strain does not produce EPS) and δ1
XsP

=

0 (the EPS-producing strain does not produce PHB).

The reaction–diffusion equation for the oxygen concentration is derived from

Equations (4.14) and (4.16),

0 = −
∫
∂Ωc

JXOx · nd∂Ωc +

∫
Ωc

RXOxdΩc, (4.45)
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where

JXOx = −DXOx∇XOx, (4.46)

and the reaction term, RXOx , is the oxygen consumption rate during energy pro-

duction and PHB synthesis, namely

RXOx =
N∑
κ=1

Wκ(x, t)Θκ(R
κ
XOxA

+Rκ
XOxP

), (4.47)

where

Rκ
XOxA

= (δ
XOxAXs

(1− ωΛ(κ))H(Xs, KXsA,mXsA
)

+δ
XOxAP

ψ(1− τΛ(κ))G(Xs, Pκ))H(XOx, KXOxA,mXOxA
), (4.48)

Rκ
XOxP

= δΛ(κ)
XOxP

C
Λ(κ)
L Y

Λ(κ)
P (1− ξ)AκH(XOx, KXOxP ,mXOxP

)

× H(Xs, KXsP ,mXsP
)(1− Pκ

P ∗κ
), (4.49)

where Rκ
XOxA

and Rκ
XOxP

are the oxygen consumption rate for energy generating

and PHB production, respectively. The constant δ
XOxP

is the oxygen concentra-

tion use per biomass of PHB yield, and δ
XOxAXs

and δ
XOxAP

are the maximum

oxygen consumption rates for energy and PHB production, respectively.

4.2.4 Simulation Results

In this section, two simulations of two-species biofilm growth are presented, first

with the nutrients sourced at the top (Simulation 4-1), and, second, sourced from

the bottom (Simulation 4-2). The activity of a particle is defined by the fraction

of live biomass in the particle and is illustrated by the colour chart in Figure 4.42.

The EPS-producing strain particles and the PHB-producing strain particles with

fractions of live biomass from 100% to just more than 20% are coloured by light

to dark blue and light yellow to red, respectively. The particles whose fraction of

live biomass ranges from less than 20% down to 4% are coloured by black to light

grey with dark blue or red circles depending on the particle strains. Finally, the

white-coloured particles represent the inert or dead particles in which the fraction
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of live biomass is less than 2%.

Figure 4.42: The colours of particles illustrate the percentages of live cell biomass
in the two type of particles. The first line of particles represents the EPS-
producing strain and the second line of particles is the PHB-producing strain.
The particles with percentages of live cell biomass from less than 20% down to
4% are coloured black to light grey; the white-coloured particles represent the
inert or dead particles which indicates that the percentage of live biomass in the
particles is less than 2%.

In both simulations, 20 particles are initially seeded, 10 of the EPS-producing

strain and 10 of the PHB-producing strain. Figure 4.43 shows the initial seeding

of the particles and the particle distributions after one day of biofilm growth.

After one day, the structure of both biofilms is similar. The biofilms’ surfaces

are rough due to the formation of several bulges. EPS is present mainly where

the EPS-producing strain particles are located, though by diffusion some has

infiltrated areas where the particles of the PHB-producing strain are located. We

note that the particles of PHB-producing strain are highly packed, whilst the

EPS-producing strain particles are slightly pushed by the EPS, resulting in more

dispersion.

By day 4, the biofilms in Simulations 4-1 and 4-2 have covered the domain,

where, as before, the particles are begining to form tower structures (Figure 4.44a)

or becoming uniformly flat (Figure 4.45a). Due to the limited capacity for the

EPS producers to resist sustained low nutrient levels, the EPS-producing strain
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Figure 4.43: Particle distributions of initial seeding and after one day of biofilm
growth in Simulation 4-1 (left) and Simulation 4-2 (right). (a) and (b) The initial
seeding of particles, and (c) and (d) particle distribution after one day of growth.

particles located at the bottom of the biofilm are mostly inert or dead. Meanwhile,

the PHB-producing strain particles at the similar locations are able to use their

stored energy, PHB, to enable them to extend their lives. In Figure 4.45a, the

PHB-producing strain is clearly surviving better in the lower regions near the

nutrient source whilst the EPS producers are nearly dead. Despite the presence

of two cell types, the resulting biofilm is relatively smooth on the surface, with

the healthier particles existing in a band across the middle where non-negligible

levels of nutrients and oxygen intersect. This results in the higher production of

101



4. Biofilm Growth Model

EPS and faster proliferation of particles in the middle of the biofilm than at the

surface or bottom and, consequently, the particles are pushed up- or downwards

leading to the top and bottom being more packed then the middle region. Note

that some EPS has diffused into regions where the PHB-producing strain particles

are predominant and forces the particles to move towards each other, so that the

particles are more compact at the regions of PHB-producing strain particles to

which the EPS diffuses rather than in the regions of the PHB-producing strain

particles with no EPS effects.

Figures 4.46 and 4.47 show the biofilm structures after 10 days of growth.

Unsurprisingly, the biofilm of Simulation 4-1 develops a tower structure, mainly

consisting of the EPS-producing particles with the active particles at the biofilm’s

surface and inert or dead particles below. The biofilm of Simulation 4-2 continues

from the day 4 situation to produce, once again, a biofilm with three distinct

layers: live cells sandwiched between two layers of dead cells, though the PHB

particles seem to be slightly better able to survive in the dead zones. In Simulation

4-1, the EPS-producing strain particles are forced to move by the EPS, which

gives them a distinct advantage as they gain the nutrients more easily from the

surface than do the PHB-producing strain particles. Though it is noteworthy

that a group of PHB producers have “hitched a lift” with the main tower of EPS

producers (see the left side of Figure 4.46a). Figure 4.48 shows the evolution

of the volume fraction of total live EPS and PHB cells in the biofilms for both

simulations, i.e., the total volume of live EPS and PHB cells/volume of biofilm.

In Figure 4.48a, we can clearly see the extent of the advantage the EPS producers

have over the PHB producers for long term biofilm growth, as the EPS has helped

move these particles to the nutrient source. For Simulation 4-2 (Figure 4.48b),

the contributions of volume fractions of live EPS amd PHB-producing strain

particles are shown to be similar, due to the more homogenous structure of the

biofilm. Interestingly, the PHB strain has a slight adavantage due to the EPS

having the adverse effect of pushing the live particles into the inert/dead layers,

consequently the PHB producers seem to remain level whilst the EPS producers

are continuing to decline at day 10.
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Figure 4.44: Plots of Simulation 4-1, showing (a) particle distribution, (b) nu-
trient, (c) oxygen, and (d) EPS concentration and (e) energy distribution of the
four-day old, standard growth multi-species biofilm.
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Figure 4.45: Plots of Simulation 4-2, showing (a) particles distribution, (b) nu-
trient, (c) oxygen, and (d) EPS concentration and (e) energy distribution of the
four-days old, multi-species biofilm grown on the growth medium.
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Figure 4.46: Plots of (a) particle distribution and (b) Clockwise from top left: nu-
trient concentration, oxygen concentration, energy level, and EPS concentration
in Simulation 4-1.
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Figure 4.47: Plots of (a) particles distribution and (b) EPS concentration after
10 days of biofilm growth in Simulation 4-2.
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Figure 4.48: Volume fraction of live EPS and PHB-producing strain particles
against time in (a) Simulation 4-1 and (b) Simulation 4-2.
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To emphasise the role of PHB in cell survival, a simulation of the biofilm

growth under an eight-hour feast–starvation cycle is presented (Simulation 4-3).

The nutrient drops to 0.01 g/L for eight hours after every eight hours of high

nutrient concentration (0.6 g/L) growth. The feast–starvation cycle is applied to

the four-day old biofilm in Simulation 4-1 and continues for four days. During

the starvation periods, the particles of the EPS-producing strain stop producing

EPS and become inert or start dying. This leads to their stopping consuming

oxygen and, as a consequence, the oxygen can pass through the region of the

EPS-producing strain particles. Whilst the particles of the PHB-producing strain

survive by consuming the intracellular energy source PHB and uptake oxygen.

Therefore, the oxygen concentration is lower in the region occupied by the PHB-

producing particles than where there are EPS-producing strain particles. The

structure of the biofilm and EPS concentration after six days of growth, as well as

concentrations and energy levels, are shown in Figure 4.49. The PHB-producing

strain particles survive well during starvation periods and continue growing during

the nutrient feast periods. Conversely, the EPS-producing strain particles die

during the starvation periods and are unable to recover during the nutrient feast

periods. Consequently, only small amount of the EPS-producing strain particles

remain alive at the surface of the biofilm. By four days, the particles of the

EPS-producing strain are nearly all dead.
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(a)

(b)

Figure 4.49: Particle distribution of the two-species biofilm (a) before the feast–
starvation cycle and (b) after four days of the feast–starvation cycle.

4.3 Summary

In this chapter, the modelling framework proposed in Chapter 3 was applied to

biofilms growing in various situations consisting of one or two species of bacte-

ria. The main theme throughout was to establish the role of EPS in the various

situations, to see whether or not it is always an advantage for a bacterium to

produce EPS. The reaction terms used were qualitatively similar to those used
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in previous studies (e.g., [166, 171]), but an explicit treatment of energy (i.e., the

variable Aκ), which has been absent in previous studies, means that some adap-

tions were needed. The parametrisation is always a challenge in biofilm modelling

and those listed in Appendix A are a combination of published values and ap-

proximations aimed at producing simulations that will provide results consistent

with observation.

A recurring theme in the results of Section 4.1.4, where the nutrients were

sourced from the top, is that EPS enables the biofilm to grow more rapidly and,

in particular, the taller “tower” of particles out competes the particles in neigh-

bouring towers: these EPS producers seem to be have a competitive advantage

in this scenario. This is further emphasised in the two-species case, where the

non-EPS producers struggle to survive, unless they get carried up a tower (Figure

4.46a).

The situation in which the nutrients are sourced at the bottom and the oxygen

from the top has rarely, if ever, been modelled in a biofilm context, which is rather

surprising, as this is a very common experimental assay. Though these assays are

rarely grown for more than two or three days, the model predictions of how they

may develop up to 10 days are interesting. For the first four to five days, the

results suggest that there is relatively rapid expansion along the surface, whilst

growth above the surface slows, as both the nutrient and the oxygen fail to reach

all depths. Prolonged growth leads to a distinct three layer structure of dead–

live–dead cells. The assumption that the particle can be dragged along with

the EPS leads to a situation in which continual EPS production is a distinct

disadvantage, by forcing particles into regions of low nutrients and oxygen where

they perish. The PHB producers in Simulation 5-2, on the other hand, are able

to persist while the EPS producers decline (Figure 4.48).

Due to the number of particles in the system, there is enormous scope for

further exploration. The results in this section illustrate the compatibility with

experiments as well as demonstrate the key role of EPS in biofilm development.
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Chapter 5

Plasma Treatment

In the remainder of the thesis, we will focus on the use of cold plasma to treat

biofilms. This will involve extending the framework to simulate cold plasma

application and its subsequent effects on the biofilm. To accomplish this, we will

first discuss what plasmas are and how they kill/remove biofilms. In this chapter,

a general introduction to plasmas will be presented: we will then focus on one

kind of plasma, called non-thermal atmospheric-pressure plasma or cold plasma.

Cold plasma can be delivered in a number of ways that can trigger different effects

on the biofilms. This will be discussed in detail.

5.1 Introduction to Plasma

Plasma consists of ionized gas and is considered to be the fourth state of matter,

alongside the solid, liquid, and gaseous states. It consists of electrons, atoms,

photons, free radicals, and negatively or positively charged ions [182], which are

generated from the break up of atoms and molecules due to collisions with ener-

getic particles. The charged ions and electrons lead to the plasma’s becoming a

good electrical conductor and strongly responsive to electromagnetic fields. Al-

though plasma is an ionized gas, its total electrical status is quasi-neutral, i.e.,

the positively charged particles are balanced by negatively charged particles. The

ionization degree of plasma is determined by the ratio of the density of the charged

particles to that of the neutral gas, and in cold plasmas this ratio is usually in
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High-Temperature Plasmas
(Equilibrium Plasmas)

Low-Temperature Plasmas (Non-equilibrium Plasmas)

Ti ≈ Te ≥ 107K
e.g. fusion
plasma

Thermal Plasmas Non-thermal Plasmas
Te ≈ Ti ≈ T ≤ 2× 104K. Ti ≈ T ≈ 300K;

e.g. atmosphere arc plasma. Ti � Te ≤ 105K.
e.g. low-pressure
glow discharge

Table 5.1: The temperatures of ions and electrons in different types of plasma,
where Ti is the temperature of the ions, the temperature of the electrons is rep-
resented by Te, and T refers to the temperature of the plasma. The unit of
temperature is degrees Kelvin [184].

the range of 10−7 to 10−4 [183]. For this reason, these plasmas are also called

weakly ionized plasmas. On the other hand, completely ionized plasmas have an

ionization degree that is close to 1. These are much hotter discharges and they

are utilized in nuclear fusion systems.

Cold plasmas are non-equilibrium systems in which different species have dif-

ferent translational, rotational, vibrational and excitation temperatures. Due to

their lighter mass, electrons are preferentially heated by the applied electric field

and hence electrons have a higher temperature than the ions and the neutrals

[183]. The temperature of the electrons is typically on the order of 1–10 eV

(104–105K), whereas the ions and neutrals can remain close to room temperature

(300K) [182].

The clinical application of plasmas will have to be highly temperature regu-

lated for, e.g., the skin surface will be damaged if too much heat is generated. We

will thus focus only on non-thermal plasmas, delivered at atmospheric pressure

and room temperature (see Table 5.1).

5.1.1 Non-thermal Plasma — Gas–Liquid Electrical Dis-

charge Plasma

Non-thermal plasmas have been applied widely in many fields, including medi-

cal treatment [6, 8, 10, 35, 185, 186] and air pollution control [187]. One type

of non-thermal plasma, called the gas–liquid electrical discharge, has been in-

vestigated for water purification [10, 188, 189] and bacterial treatment (see, for
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example, [2, 5, 9, 10, 190, 191, 192, 193]), including biofilm treatment [120, 194].

These gas–liquid electrical discharges use a needle as a high-voltage electrode

and a liquid phase, water, as the ground electrode, with gas flowing through a

tube surrounding the needle electrode (see Figure 5.1). Typical gasses include

air, oxygen (O2), nitrogen (N2), and helium (He). When the high-voltage pin

electrode is submerged in water, as in Figure 5.2, high energy and electric field

(109 V/m) are required to produce plasma in the liquid phase [195]. On the other

hand, if the pin electrode is placed just above the water–air interface, around 2–

3 mm (Figure 5.1), less energy and a lower electric field (106 V/m) are required

to generate a plasma jet that sway above the water’s surface (Figure 5.3 1). In

most applications for biofilm removal, the plasma device will be positioned with

a gap of air between the pin electrode and the biofilm, and we will focus on this

scenario in what follows.

Figure 5.1: Gas–liquid electrical discharge device.

1These experiments were done with Jingjing Liu, School of Electronic, Electrical and Sys-
tems Engineering, Loughborough University.
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Figure 5.2: Gas–liquid electrical discharge device with needle electrode submerged
in water.

Figure 5.3: The gas–liquid electrical discharge plasma.

5.1.1.1 Plasma Geometry

The plasma jet that appears at the gap between the pin and the water can be

divided into two regions: the ionization region, which is near the high-voltage
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pin electrode, and the drift region (See Figure 5.4). The ionization region is a

high-energy area that causes the cold gas to interact with energetic electrons,

resulting in the ionization of the gas molecules in the vicinity of the needle. This

area is the region of the primary production of the energetic chemical species.

The drift region connects the ionization region and the ground electrode. Here

charged species are forced to move by an electric field that is weaker than in

the ionization region. The ions and electrons collide with the neutral species

throughout the discharge, generating a rich cocktail of reactive species that reach

the liquid phase.

Figure 5.4: The geometry of DC plasma. Plasma flow onto a surface as a bean
at the top of which ionization occurs.

5.1.1.2 Plasma Chemistry

Atmospheric pressure plasmas are highly collisional. For example, the electron-

neutral collision frequency in atmospheric pressure helium plasma is on the order

of THz, i.e., electrons undergo 1012 collisions per second. Collisions can be clas-

sified as elastic and inelastic, depending on the nature of the energy exchange

between the colliding particles. If the colliding particles exchange only kinetic

energy, the collision is referred to as an elastic collision. Elastic collisions lead
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to momentum exchange and temperature equilibration. On the other hand, if

the energy exchange involve changes in the potential energy of one or both of

the colliding particles, the collision is said to be inelastic. Ionisation, excitation,

and dissociation are examples of inelastic collisions. The large number of inelas-

tic collision taking place in a plasma leads to the formation of a large number

of reaction species [183]. For example, the collision of an electron with a water

molecule may break one of the bonds between the hydrogen and oxygen atoms,

so the water molecule is dissociated into one hydrogen atom and one hydroxyl

radical:

e+H2O −→ H +OH•+ e. (5.1)

From a particle point of view, not only collision and reaction in the gas phase

are important, but also the reaction between plasma species and the biological

target.

5.2 Plasma Treatment of Biofilms

The air-liquid plasma has two effects to the biofilms, a physical effect and a

chemical effect. The physical effect refers to the direct impact of the plasma jet

on to the biofilms. This may result in biofilm dispersion and splash and induces

the biofilm to detach. On the other hand, the chemical effect involves the chemical

reaction of plasma species and the biofilms. Various agents produced by plasmas

contribute to the inactivation of bacterial cells. The possible agents from cold

plasma that lead to sterilization and other biological effects are listed under four

categories by Laroussi and Leipold [185, 191, 192, 196]. The four categories they

proposed for bacterial inactivation are

1. Heat: Heat generation is significant in some types of plasma: for example,

in equilibrium plasmas, the temperature may be over 107K. For bacterial

sterilisation, the temperatures do not need to be that high but should still

be over 100 ◦C [196]. In terms of clinical application, heat is unlikely to

be important in bacterial sterilisation by cold plasmas operated at room

temperature.
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2. Ultraviolet radiation: Plasmas produce radiation with wavelengths rang-

ing from 200 nm to 1000 nm [188], which includes ultraviolet radiation,

visible radiation, so-called visible light, and near-infrared radiation. The

biological effects of ultraviolet (UV) light have been widely investigated

[197, 198] and it has been reported that UV radiation in the range 200 nm

to 400 nm induces cell mutation [199]. Furthermore, radiation in the range

from 220 nm to 280 nm and doses about 0.1 1 mJ/cm2 are able to cause cell

death by damaging their DNA [200]. Laroussi and Leipold [192] measured

UV radiation production in gas–liquid cold plasmas. They found that these

plasmas produce UV radiation in the 200 nm to 280 nm range, but the doses

were lower than 50µmJ/cm2. Furthermore, Cvelbar et al. [3] reported that

UV photons produced by low-temperature plasmas are restricted to about

1 µm depth in the biotic material. Therefore, they concluded that the ef-

fects of UV radiation on bacterial cell degradation are very limited in this

system.

3. Charged particles (electrons and ions): Kelly-Wintenberg et al. [201]

and Laroussi et al. [202] applied plasmas to bacterial cells and observed the

disruption of the cells’ membranes. Mendis et al. [203] proposed the hy-

pothesis that the outer membrane of Gram-negative bacterial cells, such as

E. Coli, is disrupted by the tension of the electrostatic force that is created

by charged particles. This hypothesis was experimentally tested on Gram-

positive bacterial cells, Bacillus subtilis, by Laroussi et al. [204]. They

found that although Gram-positive bacterial cells lack outer membranes on

their cell wall, they are able to sustain higher tensions of electrostatic force,

since they have thicker cell walls.

4. Reactive species: Plasma chemistry is complex as it involves many re-

actions and species. For example, Liu et al. [205] identified 576 reactions

and 46 chemical species in plasmas generated in He + H2O gas. These

plasmas are a good source of reactive oxygen species (ROS) such as sin-

glet oxygen ( 1O2), ozone (O3), hydrogen peroxide (H2O2) and hydronium

(H3O
+). The reactive species formed from gas–liquid plasmas were also

reported by Goree et al. [5], Burlica et al.[206], Shih and Locke [207] and
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Figure 5.5: Schematic of the pH value drop in water during liquid–gas cold plasma
exposure in He gas (red), N2 gas (green) and O2 gas (blue).

Brisset et al. [208]. The bactericidal properties of these reactive species

have been investigated in a number of studies [114, 188, 209, 210, 211]. For

example, high-oxidation-potential species, O3 and H2O2, are able to oxidise

cell walls and organelles to cause the cell to die. Acid species, such as nitric

acid (HNO3), lower the pH value of the environment (See Figure 5.51),

affecting bacteria behaviour and causing death at low pH [117].

Figure 5.6 shows the results of two cases, (1) the plasma is generated in

nitrogen gas and (2) in oxygen gas, experiments shown in Figure 5.3 . In different

kinds of plasma, the chemistry will be very different (see [212, 213]), but, as we

see from the figure, the pH drop between these two cases are very similar in

terms of evolution and asymptote (a pH w 2.8). Translated into hydrogen ion

concentration, the differences are more notable with nitrogen gas, producing the

slightly more acidic environment. We note that the seemingly discrete changes in

concentration in Figure 5.6b are due to the rounding of the pH by the pH meter.

We simply assume an ordinary differential equation to describe the change of

hydrogen ion concentration in the target water during plasma treatment. The

1The data is obtained from the experiment done by Jingjing Liu, School of Electronic,
Electrical and Systems Engineering, Loughborough University.
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Figure 5.6: Plots of (a) pH drops and (b) hydrogen concentration produced by
gas–liquid cold plasma. The plasma jets are generated in oxygen and nitrogen
gas and the water capacities of the treatment target are about 300 ml.
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equation is

dXH+

dt
= µ

X
H+
− δX′

H+
XH+ , (5.2)

where µ
X
H+

is the rate at which hydrogen ions enter the target system and δX′
H+

is the hydrogen ion decay rate by acid sequester agent produced in the target

system during plasma treatment. Equation (5.2) can be solved analytically and

the result is

XH+(t) =
µ
X
H+

δX′
H+

+

(
X0H+ −

µ
X
H+

δX′
H+

)
exp(−δX′

H+
t), (5.3)

where X0H+ is the initial concentration of hydrogen ions. By fitting the experi-

mental data to the function (5.3), we compute the rate of hydrogen ion concen-

tration increase in the system µ
X
H+

and its decay rate δX′
H+

in the water. Since

the total capacity of the target water in the plasma treatment experiment is 300

ml and we assume that the surface area of the plasma jet is a circle with 1 mm

diameter, we obtain a constant flux of hydrogen ion through the plasma jet region

into the target system.

In summary, charged particles and reactive species are the key factors that

harm bacterial cells in clinically relevant cold liquid–gas plasmas. Charged par-

ticles, however, are confined by the electric field and therefore in indirect plasma

treatments charged species are expected to play a negligible role. The relevant

species are those that are relatively long lived and are molecularly stable enough

to diffuse and penetrate deeply into the biofilms. The main agents with these

properties are hydrogen peroxide (H2O2), ozone (O3), and Nitric acid (HNO3).

Their action will be discussed in detail.

5.2.1 Biological Effects of Ozone on Bacterial Cells and

Biofilms

The toxic effects of ozone on E. Coli have been reported in various studies [214,

215, 216, 217]. It has been found that cells under short-term ozone exposure are

able to increase the permeability of their cell membranes [216] by oxidising the
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membranes contents, such as lipids and proteins [217]. In this case, ozone has

no effect on cell viability, but does damage the intracellular components of the

cells, including the DNA and nucleic acid [216] and induces cell mutation [214].

As the ozone doses and contact time that are applied to the bacterial cells are

increased, the membranes of the cells are destroyed [214, 215] and the DNA suffers

degradation [218], resulting in cell death. The concentration of ozone that is

required for Escherichia coli bacterial cell degradation has been studied by Finch

et al. [219]. They found that increasing the ozone exposure time has no significant

effect on further cell death. They offered the explanation that the reaction rates

of the ozone and bacteria reactions are zero due to the low concentrations of

either ozone or bacteria. In most of the cases they studied, it was because of

the low concentration of ozone, since ozone is a highly reactive compound with

a relatively short half-life, in the range from 1–1000 s. The reaction kinetics of

ozone with organic compounds and inorganic compounds were also studied by

Hoigne et al.[220, 221, 222]. Furthermore, Hunt and Marinas [223] proposed the

reaction rate of ozone with E. coli cells.

The effects of ozone on biofilms are not completely the same as the effects

of ozone on planktonic bacteria. A comparison of ozone effects on biofilms and

planktonic cells was made by Viera et al. [224, 225], who found that the bacterial

cells that live in biofilms were more resistant to ozone exposure, due to the EPS’s

restricting the penetration of the dissolved ozone [224]. One of their hypotheses

is that ozone molecules mainly react with the EPS [211]. As stated in Section

1.2.2, EPS consists of large strands of monosaccharide units linked together by

glycosidic linkages to form chains that can have a total molecular mean of over

100 KDa. Ozone reacts with the EPS at the linkage [226, 227, 228, 229] thereby

breaking the chains in to smaller strands and producing O2 as a result [230].

However, it is unlikely that the relevant levels of ozone will break up an EPS

molecule completely. Wang et al. [228] investigated the decomposition of EPS

molecules by exposing them to a constant concentration of an ozone/air mixture:

the average size of the EPS molecules was found to decrease from 61 kDa to

20 kDa in an hour and to 10 kDa after 10 hours.
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5.2.2 Biological Effects of Hydrogen Peroxide on Bacterial

Cells and Biofilms

Hydrogen peroxide is a strong oxidiser with high-oxidation potential, which is just

lower than that of ozone. These molecules diffuse freely through the cell mem-

brane [231, 232] and cause damage to the DNA inside bacterial cells by redox

reactions [231, 233]. Furthermore, hydrogen peroxide reduces ATP production

by restricting electron transport from NADH to NAD+ [234, 235] and inhibits

ADP phosphorylation [236]. The magnitude of the biological effects of hydrogen

peroxide depends on the cell activation. It causes larger damage to cells grow-

ing in optimal conditions than cells with an inert status [233, 234]. Although

hydrogen peroxide is harmful to bacterial cells, it is one of the by-products of

cells metabolic processes, such as aerobic respiration [231, 232, 237]. The pro-

duction of hydrogen peroxide depends on the energy level of the cell and the

respiration condition [234]. To avoid damage, bacterial cells contain an enzyme,

called catalase, to decompose hydrogen peroxide and release water and oxygen

as by-products [232, 238]. This enzyme has been found in almost all aerobic

organisms and some anaerobic organisms intracellularly [232, 239], though there

are exceptions (e.g., Pseudomonas aeruginosa [240]). It can be released as an

extracellular enzyme. Catalase is a large-molecular-weight protein, with a molar

mass of about 2.4 × 105g/mol [241], containing four heme groups [231]. During

the catalase reaction, a hydrogen peroxide molecule oxidises a heme group to an

oxyferryl species and releases a water molecule. The second hydrogen peroxide

molecule regenerates the oxyferryl species to the resting state enzyme for the next

catalase reaction and produces another water molecule and an oxygen molecule

[239]. Let Enz(Por-FeIII) and Cpd I(Por+ − FeIV = O) denote the catalase en-

zyme and oxyferryl species, respectively. The reaction can be summarised as

follows

Enz(Por-FeIII) +H2O2 −→ Cpd I(Por+ − FeIV = O) +H2O,

Cpd I(Por+ − FeIV = O) +H2O2 −→ Enz(Por-FeIII) +H2O +O2, (5.4)
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i.e., two H2O2 molecules are broken down to two H2O and one oxygen. The

hydrogen peroxide decomposed by the catalase reaction has been quantified by

units of catalase activity: one unit of catalase activity is defined as one µmol of

hydrogen peroxide decomposed in one minute [231, 239]. The typical catalase

activities are from 2.07× 104 to 2.738× 105 units per milligram of protein [239].

Therefore, the typical concentration of hydrogen peroxide inside a cell is about

0.1 µM [233, 234].

Although catalase activities protect bacterial cells from being oxidised by

hydrogen peroxide, the capability of the activities is limited. Hydrogen peroxide

may oxidise the polysaccharide cell wall before the intracellular catalase activates

effectively [242], leading to the leakage of intracellular materials. The relative

resistance to chemical oxidation, including the action of H2O2, between bacteria

in biofilm and planktonic forms have been investigated by Cochran et al. [243] and

Kiraly et al. [244]. It was found that bacterial cells in biofilms are more resistant

and less sensitive to hydrogen peroxide than their planktonic counterparts. They

concluded that the EPS matrix plays an important role in resistance to hydrogen

peroxide. Hydrogen peroxide, being an active oxidant, reacts, like ozone, with

polysaccharides in the EPS by oxidative depolymerization, breaking the glycosidic

bonds [229, 245]. Thus this reaction with EPS limits the penetration potential of

H2O2 in the biofilm, thereby protecting the cells from excessive exposure [246].

5.2.3 Biological Effects of an Acidic Environment on Biofilms

Bacterial species can be categorised into three groups, depending on the range

of the pH value of the environment in which they can live: acidophiles (pH

range 0.5–5), neutralophiles (pH range 5–9), and alkaliphiles (pH range 9–12)

[16, 247]. The majority of the bacterial species are neutralophiles. Although

bacterial cells live in a wide range of external pH environments, the cytoplasmic

pH (i.e., the intracellular pH) of the bacterial cells is maintained in a narrow

range around neutrality [247]. When bacterial cells experience an external pH

shock, the cytoplasmic pH is changed. However, the cells are able to recover the

intracellular pH rapidly by the application of various pH homeostasis mechanisms.

The major acid-resisting mechanisms are as follows.

123



5. Plasma Treatment

1. Buffering Capacity. The cells maintain their cytoplasmic pH by intra-

cellular buffering molecules, including proteins, polyamines, polyphosphates

and inorganic phosphates, as well as charged compounds at the cell mem-

branes or cell walls [247].

2. Proton Pumps. Proton pumps refer to the F1F0-ATPases, also called F-

ATPases, and the complex enzymes of the electric transport chain, which

relate to ATP synthesis. During ATP synthesis, F1F0-ATPases transport

the protons (hydrogen ions) into the cytoplasm: the enzymes of the electric

transport chain pump the protons out of the cytoplasm through the cell

membrane to maintain the proton-motive force (PMF)1. When cells expe-

rience an acid shock, the cytoplasmic pH drops, since a large amount of

proton molecules suddenly crosses the cell membranes into the cytoplasm,

leading the PMF to drop. In order to maintain the PMF, the enzymes of

the electric transport chain accelerate energy consumption and the amount

of protons being pumped out of the cell membrane [247, 248, 249].

3. Production of Alkali. Bacterial cells are able to produce alkali com-

pounds, such as ammonia (NH3) and arginine [247, 249, 250], which com-

bine with protons in the cytoplam and increase the cytoplasmic pH.

4. Inorganic Ion influxes. Many bacteria species, including E. Coli, trans-

port potassium ion (K+) into the cytoplasm of the cells to be exchanged

with the protons under low-pH environment [247, 248] leading to a rise in

the intracellular pH.

5. Regulators. Bacterial cells are able to regulate their gene expression in

response to the living environment, in order to adapt to the change in

the environment [247, 249]. This induces an acid tolerance in these cells,

enhancing their survival prospects in a low pH environment [251].

6. Cell Membrane Structure Changing. Bacterial cells also increase the

acid resistance of their membrane by changing membranal composition,

1PMF is the chemical potential energy caused by the different proton concentrations inside
and outside the cell membrane.
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such as by the synthesis of cyclopropane fatty acid and tetraether lipids

[247, 249].

7. Biofilms. It is known that biofilms are more resistant to low pH environ-

ments than are planktonic cells [252, 253, 254, 255, 256]. However, the acid

resistance of the EPS matrix is limited [257, 258]. Rowbury et al. [259, 260]

offered the explanation that when the biofilm cells experienced acid shock,

this signals a warning to the other untreated cells to change their gene

expression.

Although bacterial cells are protected by various mechanisms of acid tolerance,

the cells are affected by pH changes. For example, acid saponifies the lipids in

cell walls and leads to the cellular membrane’s becoming solvable [261]; it also

reduces ATP synthesis [262, 263, 264, 265]. Furthermore, in biofilm formation,

acid restricts EPS production [266, 267, 268, 269] and damages the EPS structure

by acid hydrolysis of the glycosidic linkages [270].

5.3 Summary

In this chapter, a brief introduction to plasma physics and chemistry was pre-

sented and how the products of cold plasma can effect biofilms. Due to the lim-

itation of how cold plasma is to be applied in a clinical setting, features such as

heat, UV, charged particles, and radical species are only likely to have a marginal

effect on biofilm sterilisation, with their effects limited to a layer of about 1–2

µm at the surfaces. The main damaging effects of the treatment will be through

the introduction of stable and toxic species, and chief among these are ozone,

hydrogen peroxide, and acid-forming species (e.g., nitric acid).

Ozone and hydrogen peroxide are strong oxidisers and are able to diffuse

freely into bacterial cells. The bacterial cell walls and the intracellular materials

are oxidised when the cells are exposed to these chemical species, leading to cell

death. However, in biofilms, the EPS matrix offers protection to bacterial cells.

When these oxidising agents enter biofilms, they react with the EPS into oxygen

and water, in which the EPS molecules are broken smaller molecules by breaking

the glycosidic linkages. Due to the large size of an EPS molecule, the average
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size of the EPS does not decrease significantly after a long exposure, i.e., there

is a limited amount of EPS loss during the treatment. Furthermore, bacterial

cells protect themselves against hydrogen peroxide by catalase activities, which

are hydrogen peroxide decomposition activities caused by catalase enzymes.

The acid resistance of bacterial cells has been widely studied. Bacterial cells

are able to maintain their cytoplasmic pH by various mechanisms. However, an

acidic environment still affects the cells in different ways, such as decreases in the

energy synthesis and in the EPS production of biofilms. The EPS matrix does

not play an important role in acid resistance in biofilms. The EPS is damaged by

the acidic disintegration of its glycosidic linkages when acid is added to a biofilm,

but this seems to have a negligible effect on pH.

In the next chapter we will model plasma treatment as an inward flux of the

main reactive species H2O2, O3 and H+, incorporating the biological activity

discussed above.
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Chapter 6

Mathematical Model of the

Effects of Cold Plasma Species

on Biofilms

In this chapter, the IbM modelling framework is applied to investigate the effects

of cold plasma on biofilm removal. The simulations focus on three factors intro-

duced by the plasma that effect biofilms, as discussed in the previous chapter,

namely ozone, hydrogen peroxide, and pH changes of the environment. To de-

scribe these factors, the model described in Chapter 3 is extended. We investigate

the effectiveness of cold palsma treatment on both single- and two-species biofilm

growth scenarios, as well as the topical and basal nutrient sources (see Section

4).

6.1 Cold Plasma Modelling

As discussed, the physics and chemistry of cold plasma is very complicated, con-

sisting of many usually short-lived species (lasting no more than a few nanosec-

onds). The more stable species, i.e., ozone, hydrogen peroxide, and acid species,

are able to penetrate biofilm via diffusion and cause most of the damage. Conse-

quently, our modelling will take a simplistic view and assume during treatment

there is a localised flux of one or more of these species, which infiltrate the biofilms
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variable description units
XH2O2 hydrogen peroxide concentration g/L
XO3 ozone concentration g/L
XH+ hydrogen ion concentration g/L

Table 6.1: Variables used in the plasma treatment simulations.

in a way similar to that of the nutrients. Each of these three species will affect

the birth and death rates of the cells/particles and their evolution and transport

will be described using reaction–diffusion equations. The three species have the

following key properties.

1. Ozone: Ozone molecules freely infiltrate the bacterial cell wall and oxidise

the organelles, leading to cell death. However, ozone molecules are de-

composed into oxygen by reacting with the glycosidic linkages in the EPS

molecules.

2. Hydrogen peroxide: The disinfection mechanisms of hydrogen peroxide

are similar to those of ozone. The hydrogen peroxide molecules freely cross

the bacterial cell wall and react with the wall and cell organelles. Although

hydrogen peroxide is toxic to bacterial cells, it is produced during aerobic

respiration processes. In order to be protected from the harmful hydrogen

peroxide, bacterial cells contain catalase enzymes to decompose hydrogen

peroxide molecules and stabilise its concentration inside the cell.

3. pH: pH effects the energy output, in which ATP production reduces in

extremely high or low pH environments. The EPS can not significantly

buffer the effects of the pH.

Table 6.1 shows the additional variables used in these plasma treatment sim-

ulations. The parameters are listed in Tables 5–7 in Appendix A.

6.1.1 Birth and Death Rates

According to the discussion in Section 5.2, the model assumes that antibiotic

agents have no effect on cell growth, but increase the rate of cell death. The
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equations of conservation of live and death mass are

dCκ
L

dt
= Ψκ

b −Ψκ
d , (6.1)

dCκ
D

dt
= (1− φ)Ψκ

d , (6.2)

where Ψκ
b and Ψκ

d are modified forms of Equations (4.25) and (4.26), namely

Ψκ
b = ((µΛ(κ) + βΛ(κ)g(1))AκH(Xs, KXsb,mXsb

)Cκ
L, (6.3)

Ψκ
d =

βΛ(κ)g(Aκ) +

M[anti]∑
i=1

RCXi

Cκ
L, (6.4)

where M[anti] is the number of the oxidising agents and the RCXi are the biomass

death rates increased by the ozone and hydrogen peroxide. We write

M[anti]∑
i=1

RCXi = RCX[H2O2]
+RCX[O3]

, (6.5)

where RCX[H2O2]
and RCX[O3]

are the rates of live biomass death due to the hy-

drogen peroxide and ozone, respectively, defined by

RCX[H2O2]
= β

XH2O2
H(XH2O2 , KXH2O2

,m
XH2O2

), (6.6)

RCX[O3]
= β

XO3
H(XO3 , KXO3

,m
XO3

), (6.7)

where XH2O2 and XO3 are the concentrations of the hydrogen peroxide and ozone,

respectively, and β
XH2O2

and β
XO3

are the maximum cell death rates due to the

corresponding species. We again use a Hill function to describe the dependence

of the death rate on the species concentration, where KXi and m
Xi

are the cor-

responding Hill function coefficients.

6.1.2 Energy Synthesis

Energy synthesis is inhibited by the oxidative species and also influenced by the

pH value of the environment. Therefore, the energy production equation (4.29)
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is amended according to

Aκ = (FΛ(κ)
s + FΛ(κ)

p )Υ(XH+)

M[anti]∏
i=1

Ĥ(Xi, Ki,mi), (6.8)

where the functions F
Λ(κ)
s and F

Λ(κ)
p are given by Equations (4.30) and (4.31).

The functions Υ(XH+) and Ĥ(Xi, Ki,mi) are the inhibition of energy production

caused by the pH value of the biofilm growth environment and the oxidative

species, respectively. By definition, the pH value depends on the concentration

of the hydrogen ion XH+ , according to pH = −log10(XH+). In Rosso et al. [77]

they proposed a function Υ(XH+) to describe how bacteria are able to survive

over a wide range of pH, say [pHmin, pHmax], outside of which, the ATP synthesis

rate is too small for the cells to survive. Figure 6.1 illustrates the function of

ATP output, which is given by

Υ(XH+) =


log10

(
Xmin
H+

X
H+

)
log10

(
Xmax
H+
X
H+

)

log10

(
Xmin
H+

X
H+

)
log10

(
Xmax
H+
X
H+

)
−
(
log10

(
X
Opt

H+
X
H+

))2 for Xmin
H+ ≤ XH+ ≤ Xmax

H+ ,

0 Otherwise.

(6.9)

where XOpt
H+ is the value of XH+ which maximises Υ(XH+). The inhibition by

oxidising species is described by

M[anti]∏
i=1

Ĥ(Xi, Ki,mi) = Ĥ(XH2O2 , KXH2O2
,m

XH2O2
)Ĥ(XO3 , KXO3

,m
XO3

), (6.10)

where

Ĥ(Xi, Ki,mi) = (1−H(Xi, Ki,mi)) =
Kmi
i

Xmi
i +Kmi

i

, (6.11)

is the inhibitive Hill function form. We note that as Xi →∞, Ĥ(xi, Ki,mi)→ 0

thus inhibiting ATP production completely.
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Figure 6.1: Energy production inhibition, Υ(pH), of E. coli in various pH values
of the growth environment, where pHmax = 12.17, pHMin = 3.88, and pHOpt = 7.2
[77].

6.1.3 Cold plasma species transport

All three cold plasma species are small molecules/ions and it is assumed that they

can diffuse freely across the cell membranes, in a similar manner to the oxygen and

the nutrients. The finite volume form of the time-dependent reaction–diffusion

equation (Equation (3.17)) for each of the species is

∂

∂t

∫
Ωc

XidΩc = −
∫
∂Ωc

JXi · nd∂Ωc +

∫
Ωc

RXidΩc, (6.12)

where Xi is the concentration of the freely diffusing species i, RXi is the turnover

rate of the species, and JXi is the flux of the diffusing species, which by applying

Fick’s law, is

JXi = −DXi∇Xi. (6.13)

Here, DXi is the diffusion coefficient for species i.

The reaction rate terms of oxygen and the nutrients are affected by the cold

plasma species, and we discuss separately the terms for each freely diffusible
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species.

Nutrient Molecules

The killing of cells by hydrogen peroxide and ozone adds nutrients to the envi-

ronment. The evolution equation for the nutrient will be presented in full, high-

lighting those terms that are different from the original system, i.e., Equations

(4.38) to (4.44). The equation for the nutrients is

∂

∂t

∫
Ωc

XsdΩc = −
∫
∂Ωc

JXs · nd∂Ωc +

∫
Ωc

RXsdΩc, (6.14)

where

JXs = −DXs∇Xs, (6.15)

RXs = RXsEXs +
N∑
κ=1

Wκ(x, t)Θκ(R
κ
Xsd −R

κ
XsA −R

κ
XsE −R

κ
Xsb), (6.16)

and the reaction terms are

RXsEXs = µ
XsE

λE, (6.17)

Rκ
Xsd = µ

Xsb
φ

βΛ(κ)g(Aκ) +

M[anti]∑
i=1

RCXi

 , (6.18)

Rκ
XsA = δ

Λ(κ)
XsA

H(Xs, KXsA,mXsA
), (6.19)

Rκ
XsE = µ

E
ρΛ(κ)
EXs

AκH(Xs, KXsE,mXsE
), (6.20)

Rκ
Xsb = δXsb(µ

Λ(κ) + βΛ(κ)g(1))AκH(Xs, KXsb,mXsb
), (6.21)

Rκ
XsP = δ

Λ(κ)
XsP

C
Λ(κ)
L AκY

Λ(κ)
P H(Xs, KXsP ,mXsP

)

× (ξ + (1− ξ)H(XOx, KXOxP ,mXOxP
))(1− Pκ

P ∗κ
), (6.22)

whereby the only change is in Equation 6.18, which now includes a contribution

from the cells killed by the plasma species from Equation 6.14.
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Oxygen Molecules

Oxygen is consumed during energy and PHB production. However, it is also ob-

tained when oxidative species decompose. The oxygen reaction–diffusion equation

is given by

∂

∂t

∫
Ωc

XOxdΩc = −
∫
∂Ωc

JXOx · nd∂Ωc +

∫
Ωc

RXOxdΩc, (6.23)

where the flux JXOx and reaction term RXOx are given by

JXOx = −DXOx∇XOx, (6.24)

RXOx =

M[anti]∑
i=1

RXOxXi −
N∑
κ=1

Wκ(x, t)Θκ(R
κ
XOxA

+Rκ
XOxP

) (6.25)

where
∑M[anti]

i=1 RXOxXi is the increase of oxygen concentration during the decom-

position of oxidative species Xi, and Rκ
XOxA

and Rκ
XOxP

are from Equation (4.48)

and (4.49), which are given by

Rκ
XOxA

= (δ
XOxAXs

(1− ωΛ(κ))H(Xs, KXsA,mXsA
)

+δ
XOxAP

ψ(1− τΛ(κ))G(Xs, Pκ))H(XOx, KXOxA,mXOxA
), (6.26)

Rκ
XOxP

= δΛ(κ)
XOxP

C
Λ(κ)
L Y

Λ(κ)
P (1− ξ)AκH(XOx, KXOxP ,mXOxP

)

× H(Xs, KXsP ,mXsP
)(1− Pκ

P ∗κ
). (6.27)

The net reaction of the decomposition of these species are summarised by the

following reactions

H2O2 →
1

2
O2 +H2O, (6.28)

and

O3 +X → O2 +OX, (6.29)

where X is the reactant, which is oxidised by combining with an oxygen molecule

133



6. Mathematical Model of the Effects of Cold Plasma Species on
Biofilms

to produce the oxidised molecule OX.

The net oxygen production rate from these reactions are: one mole of hydrogen

peroxide produces half a mole of oxygen and one mole of ozone releases one mole

of oxygen, respectively. Hence,
∑M[anti]

i=1 RXOxXi is given by

M[anti]∑
i=1

RXOxXi = RXOxXH2O2
+RXOxXO3

(6.30)

RXOxXH2O2
=

1

2

(
RXH2O2

[Cat] +RXH2O2
[EPS] +RXH2O2

[decay]

)
, (6.31)

RXOxXO3
= RXO3

[bio] +RXO3
[EPS] +RXO3

[decay], (6.32)

where RXOxXH2O2
and RXOxXO3

are the net rates of oxygen gain during the hy-

drogen peroxide and ozone decompositions, respectively. Hydrogen peroxide can

be broken down by inter-cellular catalase activity Rκ
XH2O2

[Cat], reacting with EPS

RXH2O2
[EPS] and natural decay RXH2O2

[decay]. Similarly, ozone is broken down by

oxidising cell biomass Rκ
XO3

[bio], both live and dead, and EPS RXO3
[EPS], as well

as its natural decay RXO3
[decay]. These terms will be discussed later.

Due to energy production being dependent on the pH of the environment and

the concentration of the oxidative agents, the equations are modified as follows

Rκ
XOxA

= δ
XOxAXs

(1− ωΛ(κ))H(Xs, KXsA,mXsA
)

× H(XOx, KXOxA,mXOxA
)Υ(XH+)

M[anti]∏
i=1

Ĥ(Xi, Ki,mi), (6.33)

where Υ(XH+)
∏M[anti]

i=1 Ĥ(Xi, Ki,mi) is the inhibition of energy production from

Equation (6.8).

Hydrogen Peroxide Molecules

As discussed in Section 5.2.2, hydrogen peroxide is produced during bacterial cells’

aerobic respiration, decomposed by inter-cellular catalase enzyme, and broken

down during oxidising the bacterial biomass and EPS. The reaction–diffusion
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equation, in finite volume form, for hydrogen peroxide is

∂

∂t

∫
Ωc

XH2O2dΩc = −
∫
∂Ωc

JXH2O2
· nd∂Ωc +

∫
Ωc

RXH2O2
dΩc, (6.34)

where

JXH2O2
= −DXH2O2

∇XH2O2 , (6.35)

RXH2O2
= RXH2O2

B −RXH2O2
[Cat] −RXH2O2

[EPS] −RXH2O2
[decay]. (6.36)

The reaction term RXH2O2
B is the hydrogen peroxide production rate during aer-

obic respiration, RXH2O2
[Cat] is the decomposition rate by inter-cellular catalase

activity, RXH2O2
[EPS] is the reaction rate of the reaction between the hydrogen

peroxide and the EPS matrix, and RXH2O2
[decay] is the natural decay of the hy-

drogen peroxide. We write

RXH2O2
B =

N∑
κ=1

Wκ(x, t)Θκµ̂H2O2
δ
XOxAXs

(1− ω)H(Xs, KXsA,mXsA
)

× H(XO2 , KXOxA,mXOxA
)Υ(XH+)

M[anti]∏
i=1

Ĥ(Xi, Ki,mi), (6.37)

RXH2O2
[Cat] =

N∑
κ=1

Wκ(x, t)δCatH(XH2O2 , KMXH2O2
,m

XH2O2
), (6.38)

RXH2O2
[EPS] =

N∑
κ=1

(1−Wκ(x, t))δXH2O2
[EPS]EXH2O2 , (6.39)

RH2O2d
= δXH2O2

XH2O2 , (6.40)

where RXH2O2
B is modified from Equation (6.8); µ̂

H2O2
is the hydrogen peroxide

production rate, δ
Cat

and δXH2O2
[EPS] are the maximum catalase activity rates and

the maximum reaction rate with the EPS matrix, KMXH2O2
is the Hill function

constant for the catalase activity, and δXH2O2
is the decay rate constant. Letting

µ
H2O2

= µ̂
H2O2

δ
XOxAXs

(1 − ω) be the maximum hydrogen peroxide production
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rate, we can rewrite Equation (6.37) as

RXH2O2
B =

N∑
κ=1

Wκ(x, t)ΘκµH2O2
H(Xs, KXsA,mXsA

)

× H(XOx, KXOxA,mXOxA
)Υ(XH+)

M[anti]∏
i=1

Ĥ(Xi, Ki,mi). (6.41)

Ozone Molecules

Ozone molecules break down by reacting with cells, the EPS matrix of the

biofilms, and by natural decay. The finite volume form of the time dependent

reaction–diffusion equation for ozone is

∂

∂t

∫
Ωc

XO3dΩc = −
∫
∂Ωc

JXO3
· nd∂Ωc −

∫
Ωc

RXO3
dΩc, (6.42)

(6.43)

where

JXO3
= −DXO3

∇XO3 , (6.44)

RXO3
= RXO3

[bio] +RXO3
[EPS] +RXO3

[decay]. (6.45)

The reaction terms RXO3
[bio], RXO3

[EPS], and RXO3
[decay] are the decomposition

rates for reacting with the bacterial cells, reacting with the EPS matrix, and the

natural decay, respectively. The terms for RXO3
[bio] and RXO3

[decay] are

RXO3
[bio] = δ

XO3
[bio]
XO3

N∑
κ=1

Wκ(x, t), (6.46)

RXO3
[decay] = δXO3

XO3 , (6.47)

where δ
XO3

[bio]
represents the reaction rate of ozone with biomass concentration

and δXO3
is the decay rate constant (half-life ≈ 10 minutes [210]).

Pan et al. [227] proposed the following reaction between ozone and glycosidic-
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linkages (MβG):

O3 + [MβG]

k1

−→ [MβG−O] +O2, (6.48)

where k1 is the reaction rate, [MβG] is the linkage, and [MβG−O] is the bond

connect to an oxygen molecule. Therefore, the reaction rates of ozone and the

glycosidic bonds are

RXO3
[MβG] = k1XO3 [MβG], (6.49)

R[MβG]XO3
= k1XO3 [MβG]. (6.50)

One molecule of EPS consists of, on average, approximately 3000 MβG linkages

[271]. Since the molar mass of EPS and MβG are 2.3 × 106 and 1.9418 × 102

g/mol, respectively, one can calculate that one g/L of EPS contains 0.25 g/L of

MβG. Therefore, the ozone decomposition rate by the EPS matrix RXO3
[EPS] is

described by applying Equation (6.49), using

RXO3
[EPS] = δ

XO3
[EPS]

XO3E, (6.51)

where δ
XO3

[EPS]
is the reaction rate of ozone with the EPS.

Hydrogen Ion Molecules

It is well known that the diffusion of hydrogen ions is very much dependent on

the sizes, and therefore the diffusion coefficients, of the negative charged ions

in the solution. On macroscopic length scales, the concentrations of these ions

are such that a neutral charge is maintained, and an effective transport term for

hydrogen ions can be derived via the Nernst–Planck equation [272]. In order to

simplify the modelling, we neglect the explicit treatment of the corresponding

negative ionic species, and assume that the hydrogen ion diffusion coefficient is

uniform throughout the domain, with an “effective” diffusion coefficient DH+ .
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The reaction–diffusion equation in finite volume form for H+ is

∂

∂t

∫
Ωc

XH+dΩc = −
∫
∂Ωc

JX
H+
· nd∂Ωc +

∫
Ωc

RXH+dΩc, (6.52)

where

JX
H+

= −DXH+∇XH+, (6.53)

The reaction term RXH+ is the decay rate of the hydrogen ion concentration

caused by the environmental acid sequester agents as mentioned in Section 5.2.3.

The decay rate RXH+ is given by

RXH+
= δXH+ (XHOpt −XH+), (6.54)

where δXH+ is the maximum hydrogen ion decay rate by the environmental se-

quester agents, and XHOpt is the natural concentration of the hydrogen ions,

dependentt on the environment (e.g., the temperature).

6.1.4 Intra-cellular Production

For PHB, the equations are in the same form as 4.2.2, namely

dPκ
dt

= Rκ
P −

Ψκ
b

Cκ
L

Pκ. (6.55)

Here, the net PHB production rate is affected by the pH value, the ozone con-

centraion, and the hydrogen peroxide concentration in the growth environment.

The net production rate is amended to

Rκ
P = AκY

Λ(κ)
p H(Xs, KXsP ,mXsP

)(ξ + (1− ξ)H(XOx, KXOxP ,mXOxP
))(1− Pκ

P ∗κ
)

−δPAFΛ(κ)
p Υ(XH+)

M[anti]∏
i=1

Ĥ(Xi, Ki,mi), (6.56)

where the last term describes the inhibitive effects of the plasma agents on cells

trying to use PHB.
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6.1.5 EPS Production, Reaction and Diffusion

The reaction–diffusion of EPS is described in Sections 3.6 and 4.1.2. However,

long chain EPS molecules are sliced into smaller chained molecules by oxidising

agents. It is assumed that the integrity of the biofilm structure will be maintained

despite these oxidising processes. The EPS decay and consumption rate, RE, in

Equation (3.24) is rewritten as

RE = RE[decay] +

M [anti]∑
i=1

RE[Xi], (6.57)

where RE[decay] is the EPS (linear) natural decay rate and RE[Xi] is the EPS

breaking rate by oxidising agent Xi, which are given by

RE[XH2O2
] = δE[XH2O2 ]

XH2O2E, (6.58)

RE[XO3
] = δE[XO3 ]

XO3E. (6.59)

where the constants δE[XH2O2 ]
and δE[XO3 ]

are the reaction rate constants for the

reactions of the hydrogen peroxide and the ozone with the EPS, respectively.

6.1.6 Boundary Conditions

As in Chapter 3, we consider the two biofilm growth scenarios depicted in Figure

3.7. We model the introduction of hydrogen peroxide, ozone, and hydrogen ions

as constant input fluxes over a portion of the domain [273]. Such fluxes can be

measured in gas and we assume the flux into the more fluid environment of a

biofilm is some fraction of this. The two side boundaries are assumed periodic as

before, and we impose impermeability conditions at the bottom boundary (see

Figure 6.2). The boundary conditions of the plasma’s chemical species Xi are

given by

1. Periodic Condition at x = 0 and x = Lx

Xi(0, z, t) = Xi(Lx, z, t) for z ∈ [0, Lz] and t ≥ t0,

∂Xi(0, z, t)

∂x
=

∂Xi(Lx, z, t)

∂x
for z ∈ [0, Lz] and t ≥ t0. (6.60)
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2. Impermeability Conditions at z = 0 and Φ(x, t) = 0, x /∈ ∂ΩP

∇Xi · n = 0 at Z = 0, (6.61)

∇Xi · n = 0 at Φ(x, t) = 0 for x /∈ ∂ΩP , (6.62)

where n is the inward normal vector and ∂ΩP is the region of the boundary

through which the plasma enters.

3. Plasma input Flux Condition:

−∇(DXiXi) · n = JXi0 at Φ(x, t) = 0 for x ∈ ∂ΩP . (6.63)

where JXi0 is the constant flux of the agent Xi.

In the simulation to follow, the flux conditions are applied to the topmost grid

squares containing either particles or EPS.

6.2 Cold Plasma Treatment Simulations

In this section we present a number of simulations, demonstrating the predicted

range of effects in a number of scenarios. In each case, the biofilm is grown un-

treated for a varied number of days and then we apply the treatment. As the time

scale of the treatment is small (a few minutes as opposed to days for growth),

the particles are fixed (i.e., no growth and movement) during the simulations,

but will die due to the cold plasma species. The width of a cold plasma jet has

been measured to be from 0.1 mm [274] to 0.7 cm [275], depending on the size of

the needle-electrode. We thus extended the width of the domain from 1 mm to

3 mm, due to the periodic boundary conditions, this is easily achieved by fusing

together three 1 mm wide biofilms exploiting the periodic side boundaries. We

apply the plasma at the centre of the extended computational domain as shown

in Figure 6.3. We examine the treatments by hydrogen peroxide, ozone, and acid

produced by cold plasma individually to the immature and mature biofilms from

both the standard and the basal nutrient source simulations. Furthermore, we

simulate the effects of the combination of each of the oxidising agents and the acid
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Figure 6.2: Plot of the boundaries for the plasma’s chemical species. Ωp is the
drifting region of the plasma species and ∂Ωp, colour red, is the intersection of
Ωp and Φ(x, t) = 0.

as ozone and hydrogen peroxide are not typically observed in the same plasma.

We also investigate the role of the EPS on cell survival and its contribution to re-

sistance against the oxidising agents. The simulations assume that the treatment

continues for up to six minutes.

6.2.1 Hydrogen Peroxide

Table 6.2 summarises the simulations presented in this section. The terms low

and high flux describe 1/10 and 1/500 of the hydrogen peroxide flux produced

in the air by a cold plasma jet, as given in Liu et al. [276], the values being

1.7475 × 10−11 and 3.495 × 10−13 mol/(µm2·h), respectively. We firstly present

the effects of hydrogen peroxide on a 3-day old biofilm (Simulation 6-1). Then

in Simulation 6-2, we increase the dose of hydrogen peroxide, in this case to
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Figure 6.3: Plot of the extended computational domain and the plasma jet region
in (a) standard simulation and (b) basal nutrient source.
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Table 6.2: Summary of simulations of the biofilm treatment with hydrogen per-
oxide.

topical nutrient growth basal nutrient source Two species

Low flux?

Immature a Immature a Immature b Immature c

(Simulation 6-1) no EPS effect (Simulation 6-5) (Simulation 6-8)
(Simulation 6-3) Mature e

(Simulation 6-6)

High flux∗
Immature a Mature d Mature e

(Simulation 6-2) (Simulation 6-4) (Simulation 6-7)

? 1/10 of hydrogen peroxide flux produced in air by cold plasma jet.
∗ 1/500 of hydrogen peroxide flux produced in air by cold plasma jet.
a 3-day old biofilm from Simulation 1-2.
b 3-day old biofilm from Simulation 3-1.
c 4-day old biofilm from Simulation 4-1.
d 10-day old biofilm from Simulation 1-2.
e 10-day old biofilm from Simulation 3-1.

investigate the extent of further damage. The effects of EPS on hydrogen peroxide

penetration are investigated in Simulation 6-3, to establish how important is the

role played by EPS in protecting a biofilm over, for example, the barrier generated

by dead particles in the vicinity of the plasma jet. In order to understand the

relationship between hydrogen peroxide resistance and biofilm maturity, we apply

the hydrogen peroxide treatment to a mature 10-day old biofilm (Simulation 6-4).

In Simulations 6-5, 6-6, and 6-7, we repeat those of Simulations 6-1 and 6-2 for

the basal nutrient source case, and then compare the two scenarios.

Figure 6.4 shows the bacterial particle distribution and substrate concentra-

tion after one minute of the treatment in Simulation 6-1. At this stage, the

hydrogen peroxide penetrates about 100 µm into the centre of the biofilm, caus-

ing notable particle death. Comparing the oxygen and nutrient distribution inside

and outside the treated region, we observe that these substrates are able to pen-

etrate deeper, due to the cells’ at the top being dead. Furthermore, the oxygen

concentration in the centre region of the biofilm has also risen by hydrogen per-

oxide decomposition. The live particles in this region obtain higher nutrient and
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oxygen concentrations than particles in the corresponding positions outside the

region. However, the energy production of these particles does not increase, due

to the production’s being inhibited by the hydrogen peroxide. Comparing the

EPS levels between the treated and untreated regions, we observe that there has

been little change, showing that any degradation of EPS by hydrogen peroxide

has been relatively insignificant.

After six minutes of treatment, the hydrogen peroxide seems not to penetrate

significantly further into the biofilm (see Figure 6.5). However, the dead region

of the particles grows slightly thicker than after only one minute of treatment.

This is a result of the fact that the particle death is not instantaneous in regions

of lower hydrogen peroxide concentration. Figure 6.6 shows the survival fraction

over the whole domain according to the formula

survival rate at time t =
fraction of total live biomass at time t

fraction of total live biomass before treatment

We observe that plasma exposure has the most effect in the first minute. After

this, very little further death can be seen. This figure suggests that the maximum

effect can be achieved from a one minute application, and a brief application (< 10

seconds) is not likely to be significantly damaging. We note that 78% survival is

due to the inclusion of the untreated cells in the calculation, the survival fraction

will be much smaller in the treated area.

The hydrogen peroxide concentration and particle distribution from Simula-

tion 6-2 are shown in Figures 6.7 and 6.8. After one minute of exposure (Figure

6.7), compared to the low hydrogen peroxide flux case (Simulation 6-1, Figure

6.4), the hydrogen peroxide diffuses wider and penetrates deeper, reaching the

bottom of the biofilm, a depth of about 150 µm. This results in a thicker and

wider region of dead particles than in Simulation 6-1 over the same exposure pe-

riod. After six minutes of exposure (Figure 6.8), the hydrogen peroxide does not

spread significantly further to the two sides. From Figure 6.6, we can see that

about 10% more cells have been killed than in Simulation 6-1 after six minutes

of treatment.

Figure 6.9 is a repeat of Simulation 6-2 except that the hydrogen peroxide is

not reacting with the EPS (i.e., δXH2O2
[EPS] = 0 and δE[XH2O2 ]

= 0, Simulation 6-
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Figure 6.4: Plots of (from top to bottom) the particle distribution, hydrogen
peroxide, nutrient, oxygen, and EPS concentrations, and the energy level in the
biofilm of Simulation 6-1 after one minute of treatment. The plasma jet is between
1000–2000 µm in each plot. The parameters are listed in Table 5 in Appendix A.
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Figure 6.5: Plots of (from top to bottom) the particle distribution, hydrogen
peroxide, nutrient, oxygen, and EPS concentrations, and the energy level in the
biofilm of Simulation 6-1 after six minutes of treatment.
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Figure 6.6: Plots of the survival rate throughout six minutes of treatment in
Simulations 6-1 to 6-4.

Figure 6.7: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-2 after one minute of
treatment.
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3). The figure shows that within a minute, the hydrogen peroxide has penetrated

throughout the biofilm in the treated region, killing all the cells there. We note

that the hydrogen peroxide is being broken down by catalase reactions in both

the live and the dead cells: this acts as a barrier for significant spread into the

areas away from the plasma jet zone. Consequently, a near steady-state is reached

after about a minute (Figure 6.6), without the protection of EPS, the number of

cells killed has approximately doubled.

Figure 6.11 shows the particle distribution and hydrogen peroxide concen-

tration in the mature 10-day old biofilm (Simulation 6-4) after six minutes of

treatment. Because of the more uneven shape of the biofilm compared to the

younger ones, the mature biofilms have a greater surface area to volume ratio,

enhancing penetration of the plasma species. The number of cells killed in a

mature biofilm is about 50% more than that in a younger one (Figure 6.6). The

simulated biofilm strain forms a live layer near the surface and is unable to sur-

vive in the more protected region within the biofilm, consequently, the biofilm

will be vulnerable to this form of treatment.

Figures 6.12–6.14 show the effect of hydrogen peroxide for Simulations 6-

5, 6-6, and 6-7, respectively, in which the plasma is applied to biofilms with the

nutrient source at the substratum. We observe that hydrogen peroxide penetrates

deeper in a mature biofilm (Figure 6.13) than an immature one (Figure 6.12)

since the EPS concentration is higher at the surface of an immature biofilm

than in a mature one. However, the band of dead particles at the surface of a

mature biofilm reacts and depletes most of the hydrogen peroxide before it reaches

the live cell layer. Thus, a mature biofilm is more resistant than an immature

one to the treatment. In the high flux case, the hydrogen peroxide penetrates

further into the mature biofilm and causes further damage to the biofilm (Figure

6.14). However, most of the particles affected by the hydrogen peroxide had a

low activity level or were dead. Hence, the survival rate of Simulation 6-7 after

six minutes of hydrogen peroxide exposure is slightly higher than in Simulation

6-5 (Figure 6.15). We note, as expected, that the highest survival rate occurs in

Simulation 6-6, which is the low flux treatment on mature biofilm.

In the simulation results shown in Figures 6.16–6.18, cold plasma treatment on

a two-species biofilm is investigated. The plasma treatment is applied to the four-
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Figure 6.8: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-2 after six minutes of
treatment.

Figure 6.9: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-3 after one minute of
treatment.
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Figure 6.10: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-3 after six minutes of
treatment.

Figure 6.11: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-4 after six minutes of
treatment.
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Figure 6.12: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-5 after six minutes of
treatment.

Figure 6.13: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-6 after six minutes of
treatment.
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Figure 6.14: Plots of (from top to bottom) the particle distribution and hydro-
gen peroxide concentration in the biofilm of Simulation 6-7 after six minutes of
treatment.
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Figure 6.15: Plots of the survival rate throughout six minutes of hydrogen per-
oxide treatment simulations 6-5 to 6-7.
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(a)

(b)

(c)

(d)

Figure 6.16: Plots of (a) the particle distributions of 4-day old two-species biofilms
before plasma treatment, (b) a closer look at the biofilm before the cold plasma
treatment, (c) the particle distribution and (d) the hydrogen peroxide concentra-
tion in the biofilm after one minute of treatment. The region of the plasma jet is
between the two dashed lines.
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(a)

(b)

Figure 6.17: Plots of (a) a closer look at the particle distributions in the plasma
treatment region, and (b) hydrogen peroxide concentration in the biofilm after
six minutes of the cold plasma treatment.

day old biofilm of Simulation 4-1 (see Figures 6.16a and 6.16b) for six minutes.

After one minute of treatment, we observe that hydrogen peroxide is limited in

its penetration in regions predominantly occupied by EPS-producing cells, while

it penetrates fully through the regions occupied by the PHB-producing strain,

demonstrating the vulnerability of cells lacking an EPS barrier. Interestingly, in

Figure 6.16c we observe that PHB producers that have been enveloped by EPS-

producing strain (e.g., just to the right of the centre in the Figure) are relatively

untouched by the treatment. These cells remain relatively unscathed after six

minutes, as shown in Figure 6.17.

In Figure 6.18, we have removed the plasma jet after six minutes and allowed

the biofilm to grow for a further four days. We note that the particles outside the

plasma jet grow and push the dead particles killed by the plasma jet inward to

the plasma jet region (see the red circle on the left in Figure 6.18b). The particles

which survive the treatment and are embedded in the biofilm in the plasma jet
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region recover by regaining nutrients and oxygen. The activity of these particles

become even greater than before the treatment (see the red arrow on the right

in Figure 6.18b). This figure illustrates the possibility that a biofilm recovering

from treatment may be very different from before the treatment.

(a)

(b)

Figure 6.18: Plots of the particle distributions of (a) the four days growth biofilm
and (b) the treatment region zoomed in after the plasma treatment.

6.2.2 Ozone

The effects of 1/10 and 1/500 of ozone flux produced in air by cold plasma jet (ob-

tained from [273]) on various biofilms during six minutes of exposure are discussed

and compared with the effects of those of the hydrogen peroxide treatments. The

simulations are listed in Table 6.3. Simulations 7-1 – 7-7 are essentially repeats

of Simulations 6-1 – 6-6, except the ozone has replaced hydrogen peroxide using

the parameters listed in Table 6 in Appendix A.
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Table 6.3: Simulations of the biofilm treatment by Ozone.

topical source basal source

Low flux?

Immature a Immature a Immature b

(Simulation 7-1) no EPS effect (Simulation 7-5)
(Simulation 7-3) Mature d

(Simulation 7-6)

High flux∗
Immature a Mature c Mature d

(Simulation 7-2) (Simulation 7-4) (Simulation 7-7)

? 1/10 of ozone flux produced in air by cold plasma jet.
∗ 1/500 of ozone flux produced in air by cold plasma jet.
a 3-day old biofilm from Simulation 1-2.
b 3-day old biofilm from Simulation 3-1.
c 10-day old biofilm from Simulation 1-2.
d 10-day old biofilm from Simulation 3-1.

Figures 6.19 and 6.20 show the particle distributions, ozone concentrations,

and the EPS, oxygen and nutrient concentrations in the three-day old biofilm after

six minutes of ozone treatment from Simulation 7-1. We observe that a low flux of

ozone is able to penetrate 150 µm into the biofilm, resulting in most particle death

in the plasma jet zone. The treatment also has made some impact on particles

outside the treated region. Similar to the hydrogen peroxide simulations, the

oxygen and nutrient concentrations in the plasma jet region are notably increased

over those in the regions outside the treatment zone, being able to penetrate

through the dead cell regions without being consumed. Furthermore, the oxygen

concentration is also increased by decomposition of the ozone. However, the ozone

flux has little effect on the EPS in the biofilm.

The distribution of particles and ozone distribution after six minutes of ozone

treatment for Simulation 7-2 are shown in Figure 6.21, which shows that the

ozone at the high flux level can fully penetrate the biofilm and kill particles in

the plasma jet region. Furthermore, toxic levels of ozone can penetrate 200 µm

into the neighbouring regions away from the jet. We can see in Figure 6.22 that

higher ozone flux treatment kills more particles than the lower flux treatment.

These figures are very similar to those in Figures 6.19 and 6.21, but it is interesting
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to note from Figure 6.22 that most cell death occurs in the first 30 seconds for

ozone, as opposed to one minute for hydrogen peroxide.

The importance of an EPS’s acting as a barrier to treatment is demonstrated

in Figure 6.23. Here, significant quantities of ozone have penetrated to the bottom

of the biofilm, as well as outside the treatment region, and killed all the bacteria

there. This, again, occurring mainly in the first 30 seconds of treatment (Figure

6.22). Furthermore, without the protection of the EPS, the ozone has killed

approximately twice as many cells as in Simulation 7-1.

Figures 6.11 and 6.24 show that hydrogen peroxide and ozone, given the fluxes

applied, lead to similar results. As before, the particles within the larger towers

are more resistant than those in the smaller ones, in which nearly all cells have

been killed off after about 30 seconds (Figure 6.22).

Figures 6.25 to 6.27 show the particle distribution and ozone concentration

after six minutes of plasma treatment on the basal nutrient sourced biofilm in

Simulation 7-5, 7-6, and 7-7, respectively. In Simulations 7-5 and 7-6, the ozone

molecules both penetrate into the biofilms about 150 µm deep, as well as diffuse

out of the plasma treatment region, and cause particle death. However, the

mature (10-day old) biofilm is covered by a layer of dead particles, which is about

50 µm thick, resulting in less particles’ being killed by the ozone molecules in a

mature biofilm than in a young biofilm (Figure 6.28). Increasing the ozone dose

in the plasma treatment, we observe that, unsurprisingly, the ozone molecules

penetrate further into the biofilm. However, the ozone is still unable to penetrate

all the way through the biofilm and reach the bottom, yet the penetration depth

is enough to pass through the layer of live particles. Consequently, the particles

at the treated region are all dead (Figure 6.27).
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(a)

(b)

(c)

Figure 6.19: Plots of (a) the particle distribution, (b) a closer look at the plasma
jet region, and (c) the ozone concentrations in the 3-day old biofilm after six
minutes of treatment in Simulation 7-1. The region of plasma jet is between the
two dashed lines.
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(a)

(b)

(c)

Figure 6.20: Plots of (a) EPS, (b) oxygen and (c) nutrient concentrations in the
3-day old biofilm after six minutes of treatment in Simulation 7-1.
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(a)

(b)

(c)

Figure 6.21: Plots of (a) the particle distribution, (b) a closer look at the plasma
jet region, and (c) the ozone concentration in the biofilm after six minutes of
treatment in Simulation 7-2.
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Figure 6.22: Plots of the survival rate throughout six minutes of ozone treatment
in Simulations 7-1 to 7-4.

(a)

(b)

Figure 6.23: Plots of (a) the particle distribution and (b) the ozone concentration
in the biofilm after six minutes of treatment in Simulation 7-3.
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(a)

(b)

Figure 6.24: Plots of (a) particle distribution and (b) ozone concentration in the
biofilm after six minutes of low flux ozone exposure in Simulation 7-4.
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(a)

(b)

(c)

Figure 6.25: Plots of the (a) particle distributions of the biofilms after six minutes
of treatment in Simulation 7-5, (b) a closer look at the plasma jet region, and (c)
ozone concentration in the biofilm.
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(a)

(b)

(c)

Figure 6.26: Plots of the (a) particle distributions of the biofilms after six minutes
of treatment in Simulation 7-6, (b) a closer look at the plasma jet region, and (c)
ozone concentration in the biofilm.
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(a)

(b)

(c)

Figure 6.27: Plots of the (a) particle distributions of the biofilms after six minutes
of treatment in Simulation 7-7, (b) a closer look at the plasma jet region, and (c)
ozone concentration in the biofilm.

165



6. Mathematical Model of the Effects of Cold Plasma Species on
Biofilms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

S
u
rv

iv
a
l 
ra

te

time (mins)

Simu 7-5
Simu 7-6
Simu 7-7

Figure 6.28: Plots of the survival rate throughout six minutes of ozone treatment
in Simulations 7-5, 7-6 and 7-7.

6.2.3 pH

The hydrogen ion flux produced by gas–water cold plasma and the decay rate of

hydrogen ion by sequester agents are calculated from the experimental data shown

in Figure 5.6 (see Section 5.1.1.2). However, the exact hydrogen ion flux into the

biofilm during cold plasma treatment and hydrogen ion sequestering capacity in

the biofilm are unknown. The aim of this section is to examine the effects of

different hydrogen ion fluxes on biofilms which have various acid sequestering

capacities. Table 6.4 lists the simulations presented in this section. We note

that the immature (3-day old) biofilms are used in Simulation 8-1 to 8-4 and

8-6 to 8-9, and the mature (10-day old) biofilms are used in Simulations 8-5 and

8-10 in order to investigate the impact of biofilm maturity on the resistance to

the hydrogen ion treatment. The fluxes of the hydrogen ions are chosen to be

1/10 and 1/500 of the flux we calculated from the experimental data in Section

5.1.1.2. Low sequestering capacity refers biofilms with the same hydrogen ion

“sequestering ability” as water, while high sequestering capacity refers to biofilms

with 103 times more sequestering capacity than water. The parameters used in

this section are listed in Table 7, Appendix A.
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Table 6.4: Simulations of biofilm treatment by hydrogen ions.

topical source basal source
Sequestering capacity High ∓ Low ± High ∓ Low ±

Low flux?
Simulation 8-1

Simulation 8-2
Simulation 8-6

Simulation 8-7
Simulation 8-5 † Simulation 8-10 ‡

High flux∗ Simulation 8-3 Simulation 8-4 Simulation 8-8 Simulation 8-9

± Low sequestering capacity refers to biofilms having a capacity no better than that of water.
∓ The decay rate of hydrogen ion concentration by biofilm productions is 103 time higher than

those with low sequestering capacity.
† 10-day old biofilm from Simulation 1-2.
‡ 10-day old biofilm from Simulation 3-1.
? 1/10 of hydrogen ion flux calculated from experimental data.
∗ 1/500 of hydrogen ion flux calculated from experimental data.

Figure 6.29 shows the particle distribution after five seconds and six minutes

of plasma treatment in Simulation 8-1 (high hydrogen ion sequestering and low

input flux). In this case the hydrogen ions penetrate into the biofilm about

100 µm and bring the local environment to a lethal pH value (Figure 6.30),

resulting in particle death in the treatment region (Figure 6.29c). We note that

the hydrogen ion concentration in the biofilm seems to reach a steady-state after

five seconds of the treatment and only has minor effects on the region outside

the plasma treatment zone. The concentrations of the nutrient, oxygen, and the

EPS in the biofilm after six minutes of treatment are shown in Figure 6.31. The

EPS concentration is not significantly affected by the hydrogen ion treatment.

However, the nutrient and oxygen concentrations rise in the plasma jet region

due to their being able to diffuse through the dead particle layer. Consequently,

the particles that survive in the treatment region are well nourished and increase

their energy production (Figure 6.32).

Figure 6.33 shows the progress of the disinfection of biofilm particles for the

case of low hydrogen ion sequestering (Simulation 8-2), so one expects greater

penetration on the part of the hydrogen ions. We observe that the hydrogen ions

have nearly no effect on the particles after five seconds of the treatment, although

at this stage the pH value in the plasma treatment area has dropped to about
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(a)

(b)

(c)

Figure 6.29: Plots of the particle distribution after (a) six minutes of treatment
in Simulation 8-1. (b) and (c) give a closer look at the particle distribution after
five seconds and (c) six minutes of treatment.
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(a)

(b)

(c)

(d)

Figure 6.30: Plots of the hydrogen ion concentration and pH value in the biofilm
in Simulation 8-1. (a) and (b) are the concentrations of hydrogen ions after five
seconds and after six minutes of treatment, respectively. (c) and (d) are the
corresponding pH values.
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(a)

(b)

(c)

Figure 6.31: Plots of (a) nutrient, (b) oxygen, and (c) EPS concentrations after
six minutes of the plasma treatment in Simulation 8-1.
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(a)

(b)

Figure 6.32: Plots of energy level after (a) five seconds and (b) six minutes of
treatment in Simulation 8-1.

2–3 (Figure 6.34a). As for Simulation 8-1, the particles take a little while before

dying in response to low pH. As time advances, the cells die, but interestingly,

death seems to start near the base of the biofilm and rise up to the top (see Figure

6.33). This is presumably due to the cells’ there having less oxygen and nutrients

to produce energy, and they are the more vulnerable to the acidity. The hydrogen

ions are spread out away from the plasma jet region, and damage particles up to

500 µm away (Figures 6.34c and 6.34d).

The results of Simulation 8-3, which combines high hydrogen ion flux in a

biofilm with a high acid sequestering capacity, are shown in Figures 6.35 and

6.36 after six minutes of treatment. Due to the flux of hydrogen ions entering

the biofilm being increased, the hydrogen ions penetrate further and cause more

damage to the biofilm than in Simulation 8-1. However, due to the high acid

sequestering capacity, the hydrogen ion diffusion and penetration are restricted,

reaching a near steady-state after five seconds. We further note that lethal levels

of acid only extend about 100 µm from the jet zone.
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(a)

(b)

(c)

(d)

Figure 6.33: Plots of (a) particle distribution after six minutes of the treatment,
closer looks at the particle distribution after (b) five seconds, (c) 60 seconds, and
(d) six minutes of the treatment in Simulation 8-2.

Figure 6.37 shows the particle distribution and pH value in the biofilm after

six minutes of treatment in Simulation 8-4 (high input flux, low sequestering capa-

bility). In this case, the hydrogen ions have spread all over the simulated biofilm

(Figure 6.37b), killing more than 90% of the particles in three minutes (Figure

6.38). We note from Figure 6.38 that death due to acidity reaches a maximum

between 90–120 seconds; this is slower than ozone and hydrogen peroxide.

We also observe from this figure how significant are the flux and acid seques-

tration in cell killing. In particular, how the bacteria defend themselves against
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(a)

(b)

(c)

(d)

Figure 6.34: Plots of pH value and hydrogen ion concentration after five seconds
and after six minutes of the treatment in Simulation 8-2. (a) pH value after five
seconds of treatment. (b) hydrogen ion concentration after five seconds of treat-
ment. (c) pH value after 60 seconds of treatment. (d) hydrogen ion concentration
after 60 seconds of treatment.
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(a)

(b)

Figure 6.35: Plots of (a) particle distribution after six minutes of the treatment
in Simulation 8-3 and (b) a closer look at the the treatment region.

acidic environments (e.g., using sequestors as buffers) can have a significant im-

pact on the effectiveness of a plasma treatment.

A 10-day old biofilm is used in Simulation 8-5 and the results are compared

with those of Simulation 8-1 in order to investigate the effects of the maturity

of a biofilm on the effectiveness of the acid treatment. Figures 6.39 and 6.40

show the particle distribution, hydrogen ion concentration, and pH value in the

biofilm after six minutes of treatment. The hydrogen ions penetrate part of the

biofilm in the plasma jet region and drop the pH value to about 2 at the surface.

Consequently, a thin layer of particles die. However, the hydrogen ions are not

able to penetrate deeper into the biofilm or diffuse far from the plasma jet region.

The killing rate in this case is higher than for the 3-day old biofilm in Simulation

8-1 (Figure 6.38), due to the impact on the surface area of the plasma jet’s being

slightly larger than in Simulation 8-1, but not really significantly.

Simulations 8-6 to 8-10 are repeats of Simulation 8-1 to 8-5, except the plasma

treatment is on the biofilms with basal nutrient sources. Figures 6.41 and 6.42

show the particle distributions and pH value in the biofilm, respectively, in Sim-

ulations 8-6 to 8-9. The results of the particle distribution and hydrogen ion
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(a)

(b)

Figure 6.36: Plots of (a) pH value and (b) hydrogen ion concentration after six
minutes of treatment in Simulation 8-3.

penetration caused by the treatment in the basal nutrient source biofilms are

similar to the those of the corresponding simulations of the treatment on the top-

ical nutrient source biofilms. However, we note that at the same hydrogen ion flux

with the same hydrogen ion degradation conditions, the basal nutrient sourced

biofilms are damaged slightly more than the topical nutrient source biofilm (Fig-

ure 6.43). This results from the hydrogen ions’ being able to spread faster in the

former case, since the structure of the biofilms is less rough than that of the latter

case. The effects of the plasma treatment on a 10-day old basal nutrient source

biofilm are shown in Figure 6.44. Although the hydrogen ions penetrate into the

biofilm and decrease the pH value in the plasma jet region, they have not reached

the live cell layer to a significant degree, so there is very little death.

175



6. Mathematical Model of the Effects of Cold Plasma Species on
Biofilms

(a)

(b)

Figure 6.37: Plots of (a) particle distribution and (b) pH value after six minutes
of treatment in Simulation 8-4.
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Figure 6.38: Plots of survival rates in Simulation 8-1 to 8-5 throughout six min-
utes.
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(a)

(b)

Figure 6.39: Plots of (a) particle distribution after six minutes of treatment and
(b) a closer look at the plasma jet region in Simulation 8-5.
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(a)

(b)

Figure 6.40: Plots of (a) hydrogen ion concentration and (b) pH value after six
minutes of the treatment in Simulation 8-5.
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(a)

(b)

(c)

(d)

Figure 6.41: Plots of particle distribution after six minutes of the treatment in
Simulations (a) 8-6, (b) 8-7, (c) 8-8 and (d) 8-9.
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(a)

(b)

(c)

(d)

Figure 6.42: Plots of pH values after six minutes of the treatments in Simulations
(a) 8-6, (b) 8-7, (c) 8-8 and (d) 8-9.
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Figure 6.43: Plots of the survival rates throughout six minutes of the treatments
in Simulations 8-6 to 8-10.
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(a)

(b)

(c)

Figure 6.44: Plots of (a) particle distribution, (b) a closer look at the treatment
area, and (c) pH value after six minutes of treatment in Simulation 8-10.
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Table 6.5: Simulations of biofilm treatments by combination of Hydrogen Perox-
ide/Ozone and pH.

Oxidising agent H2O2 O3hhhhhhhhhhhhhhhhhhFluxes ∓
Sequestering capacity±

High Low High Low

High fluxes Simu 9-1 Simu 9-2 Simu 10-1 Simu 10-2
Low fluxes Simu 9-3 Simu 9-4 Simu 10-3 Simu 10-4

∓ Fluxes of hydrogen peroxide/ozone and hydrogen ions are both high or both
low. The fluxes are adopted from the corresponding simulations in the previous
sections.
± The sequestering capacities are adopted from the previous section.

6.2.4 Combination of Hydrogen Peroxide/Ozone with pH

In this section we combine each of the oxidising agents with hydrogen ions to

investigate how this affects biofilm disinfection. Table 6.5 lists the simulations of

plasma treatment on 3-day old topical nutrient sourced biofilms. We assume that

the fluxes of the oxidising agent and the hydrogen ions are both high or low in

each simulation. In order to analyse which compound dominates the degradation

of biofilms, the results are compared to the simulations in the previous sections.

Figure 6.45 compares the survival rates in Simulations 9-1 to 9-4 with those

of the corresponding simulations from the previous sections. We observe that

the effects of combining hydrogen peroxide and hydrogen ions on biofilms are not

additive. In the case of biofilms with a low hydrogen ion sequestering capacity,

the hydrogen ions dominate the killing rates. Hydrogen peroxide dominates the

degradation of the biofilms which have a high hydrogen ion sequestering capacity.

Figure 6.46 compares the survival rates in Simulations 10-1 to 10-4 with those

of corresponding simulations from the previous sections. The results are similar

to the previous comparison: hydrogen ions dominate the killing of biofilms with a

low acid sequestering capacity, and ozone dominates for the high acid sequestering

capacity biofilms. However, in Simulations 10-2 and 10-4, the killing rates are

affected by the ozone in the first 30 seconds, since the hydrogen ions have not yet
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Figure 6.45: Comparison of the effects on 3-day old topical sourced biofilms of
treatments which combine hydrogen peroxide and hydrogen ions. See Tables 6.2,
6.4 and 6.5 for simulation details. Note that in (a) the results for Simulation 9-1
and 6-2 are almost identical.

spread sufficiently widely in the biofilm.

6.3 Summary

In this chapter, the IbM modelling framework was applied to simulate the effects

of plasma treatment on biofilms. Three plasma species were considered: ozone,

hydrogen peroxide, and hydrogen ion. The results show that higher doses of

ozone and hydrogen peroxide cause greater damage to the biofilms. However,
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Figure 6.46: Comparison of the effects on 3-day old topical sourced biofilms of
treatments which combine ozone and hydrogen ions. See Tables 6.3, 6.4 and 6.5
for simulation details.

the duration of the exposure does not cause significant further damage after

about 30 seconds of ozone treatments, and one minute for the hydrogen peroxide

treatments.

In the disinfection of biofilms, the dose of ozone required to kill the bacteria

is less than that required by hydrogen peroxide. The simulations show that the

diffusion of these oxidising agents is blocked by EPS, and diffusion into the regions

away from the plasma treatment zone is very limited because of this. Comparing

the simulations in which the EPS reacts or does not react with the agent shows

significant differences in cell killing (in the simulations, cell death is doubled in
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the non-reacting case).

In the two-species simulations, the non EPS-producing PHB strain was vul-

nerable to direct exposure, but those PHB-particles that were located deep within

the biofilm were protected by the EPS produced by the other species. While the

EPS strain and surface PHB producers were all destroyed by the treatment, the

remaining PHB cells survived and will recolonise the region. Consequently, the

composition of the recovering biofilm may be very different from its starting com-

position, which may have important consequences depending on the bacteria and

the scenario.

The maturity of a biofilm also affects the efficiency of its disinfection by plasma

treatment. Mature biofilms grown in the topical nutrient source condition have a

better ability to decompose these oxidising agents than have the immature ones.

However, the biofilm surface area in contact with the jet plays an important role

in the treatment. Due to the heterogeneous surface of the mature biofilms in our

simulations, the surface area exposed to the cold plasma species is larger than

that of the immature ones. Thus more oxidising agent per unit volume is delivered

into the mature biofilm than to the younger ones. Consequently, more particles

are killed in the former case. On the other hand, the biofilms grown under basal

nutrient source conditions show that the oxidising agents are able to penetrate

more deeply into a mature biofilm than into an immature one, due to the fact that

the concentration of EPS for the immature biofilm is higher. However, mature

biofilms are covered by a layer of dead particles, which act as a barrier against

the oxidising species by being consumed by the dead biomass before reaching

the live particles. Thus, oxidising agents appear inefficient at disinfecting mature

biofilms. The dead particle surface layers formed in the basal nutrient source

biofilm also help protect the “medium-aged” three-day old biofilm, as they are

more resistant to treatment than the topical nutrient sourced biofilms at this

stage. Nevertheless, plasma treatment has been shown to clear biofilms from

agar surfaces [5, 277, 278, 279, 280], which suggests that simulations with the jets

possessing stronger effects (e.g. high input flux, low hydrogen ion sequestering,

etc.) are more likely to represent the biologically relevant situation.

For the acid effects case, hydrogen ion molecules are not blocked and con-

sumed by EPS. However, they can be neutralised by the sequestering agents in

186



6. Mathematical Model of the Effects of Cold Plasma Species on
Biofilms

the biofilms and their growth environments. Therefore, biofilms with a higher

acid sequestering capacity have a better survival rate than biofilms with a low

acid sequestering capacity. The maturity of the biofilm does not decrease the

concentration of hydrogen ions entering the biofilms, nor reduce the penetration

depth. However, the layer of dead particles in the basal nutrient growth biofilm

protects it and reduces the damage caused by the hydrogen ions.

The combined treatment simulations suggest, on the whole, that the agents

have independent effects and do not combine to produce more damage. The drop-

ping of the pH value of the environment to a lethal pH level can be a key factor in

biofilm degradation in the case of biofilms with a low acid sequestering capacity.

However, for biofilms with a high acid sequestering capacity, the oxidising species

dominate the killing of the biofilms.
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Chapter 7

Overall Conclusions

In this thesis, we investigated the growth of bacterial biofilms and the impact on

them of cold plasma treatments of various types, using a new individual-based

modelling (IbM) framework. The framework treats bacteria as discrete particles

whilst all the other factors are treated as a continuum, defined over the whole

computational domain (e.g., the nutrients, oxygen), within the particle (e.g.,

ATP), and outside the particles (e.g., the exopolysacchurades (EPS) matrix).

There are a number of novel aspects of this modelling approach, including the

explicit treatment of energy (as ATP), its preserving the centre of mass in particle

movement, and, in particular, the treatment of the EPS as a continuum. In the

few IbM models that do consider the EPS explicitly, it is either treated as discrete

[124, 166] or as an incompressible substance of fixed concentration [171]. EPS

makes up only a few percentage points of the total biofilm mass, yet it plays a

vital role in biofilm growth as well as protecting the bacteria within (e.g., against

the oxidising agents of cold plasma as demonstrated in Chapter 6).

In our investigation of cold plasma treatment, the model was required to have

the following properties.

• multi-dimensional: to investigate how far beyond the plasma jet region the

treatment will be effective.

• A realistic treatment of EPS, allowing for variation in its concentration,

which will affect the ability of an oxidising agent to penetrate the matrix.

• Energy levels, so that factors such as hydrogen ions ability to affect the
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production of ATP can be explicitly modelled.

• Easily extendable to include additional factors (e.g., multi-species biofilms,

PHB, etc., and arrangements (e.g., arrangements of the sourcing of the

nutrients).

The prior literature has not included a model satisfying all these requirements,

so the new model framework presented in this was developed in Chapter 3 to take

into account all these factors as well as the other factors usually included in IbMs

of biofilms.

In Chapter 4, the basic framework was demonstrated using simulations de-

scribing biofilm growth in various scenarios. The simulations with the topical

sourced nutrients are consistent with much that is reported in the experimental

literature, for example, the structural heterogeneity of live and dead cells due

to nutrient/oxygen limitation. Despite the fact that it is very common to grow

biofilms in agar plates in the laboratory (including in cold plasma studies), they

have been the subject of very little mathematical modelling and, as far as I know,

the simulation of bottom nutrient sourced biofilms has not been undertaken be-

fore. Unlike the top nutrient source case, the bottom fed biofilms grow very

uniformly across the surface with a live layer of cells being sandwiched between

two layers of dead cells that are starved of either oxygen or of nutrients. This is

a very interesting result which, as far as I know, has not been described experi-

mentally. Nevertheless, the simulations suggest that the qualitative structure of

colonies grown on agar are very uniform and probably robust to perturbations

(an interesting scenario that warrants further mathematical investigation).

The chemistry of cold plasma is very complicated, involving many chemical

species, most of which are highly reactive and very short lived. For simplicity,

we focussed on the more stable products resulting from plasma jets. Hydrogen

peroxide and ozone are two well known products that are relatively stable and po-

tentially damaging to biofilms. From the simple experiment described in Chapter

5, acid species will also be significant.

The modelling framework was extended to include these plasma species, to-

gether with simulations, and was described in Chapter 6. With the absence of

direct experimental results for comparison, the simulations do offer some new
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insights and predictions that warrant validation or experimental investigation.

Firstly, the EPS provides a significant barrier against the oxidative species in

their reaction with the oxygen links in the polysaccharide chain; however, with

so much EPS present, EPS decay seems insignificant over the course of a six

minute treatment. The timescale for equilibration varies between species, about

30 seconds for ozone, 60 seconds for hydrogen peroxide, and 90 seconds for the

acid species. This suggests that a rapid exposure to a jet is not likely to be effec-

tive, and each locality must be treated for about a minute to get the full effect.

In practice, the main products of a plasma will be acid and hydrogen peroxide

or acid and ozone: these simulations suggest that the combined treatment is no

more effective than the best one of the individual treatments. Finally, the simu-

lations of the treatment of the two-species biofilm could mean that the recovering

biofilm may be very different from the pretreated one. With biofilms grown on

agar being very straightforward to grow and treat, there are many investigations

that would be of interest to help validate the model. These include the effects

of plasma exposure (to test the O (one minute) timescale of effectiveness), com-

paring resistances between species with different EPS producing properties and

acid-handling properties. The study in this thesis represents a first step into a

theoretical investigation of plasma treatment and new and more detailed experi-

ments will help to drive this work forward.

7.1 Future Work

Though the modelling framework considers a number of factors important to

biofilm growth, it is very much a simplification of reality. The model can produce

results consistent with observations and should be applicable to modelling many

biofilm varieties in different settings. However, there is a wide scope for validating

and improving model, as outlined below.

• EPS dynamics. In this modelling framework, the diffusion and expansion

of the EPS are described by the flux which depends on the pressure gener-

ated by the local EPS concentration. However, how the pressure drives the

EPS to move and the rate of movement are unknown. Furthermore, how
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7. Overall Conclusions

the EPS movement interacts with the bacterial cells in the biofilm is also

unclear. There is no, or at least very little, information in the experimen-

tal literature on the mechanics of EPS in biofilms. The proposed model is

very simple and is likely to be reasonable, at least qualitatively, but any

experiments that measure EPS diffusion or movement in biofilms will help

validate the existing assumptions or indicate the need for modifications of

the model.

• Biofilm detachment. Biofilm detachment is an important, and poorly

understood, process in biofilm development. Such processes could have a

significant effect on biofilm structure, and consequently how they respond to

treatment. For example, if the dead cells on the surface of colonies growing

on agar can be removed (or sloughed off) then the cells in the living layer

will be exposed to more oxygen and thus will grow more. However, they

will be more vulnerable to plasma treatment.

• Fluid media. In the laboratory, biofilms are often grown in flow chambers

in which the fluid media surrounding a biofilm is allowed to flow, thereby

imposing shear forces on the biofilm. Numerous experiments have shown

that shear can have a considerable effect on the biofilm structure and the

transport of oxygen and nutrients. The effects of such flow have been inves-

tigated using IbM approaches (e.g., [142, 281]), and would require a major

extension of the current model.

For the second part of the thesis, the modelling framework was amended and

applied to the research of plasma treatment on biofilms. However, some of the

issues listed below would be interesting to investigate further.

• Plasma species. The chemical species produced in a plasma jet depend on

the gas used to generate it. So, the chemical species can vary considerably.

Thus, the damage to the biofilms by different plasmas can be completely

different. An analysis of which chemical species can penetrate biofilms (or

in water) and in what quantity from a particular cold plasma arrangement

would be very useful in formulating an appropriate model.
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• Acid resistance. The simulation results suggest that the acid created

by a plasma jet can be a key factor in biofilm disinfection. However, we

assumed in our simulations a very simple mechanism protecting against

significant pH change in the biofilm growth environment. Yet, there are

several such mechanisms of acid resistance possessed by bacterial cells, such

as cytoplasmic pH maintenance, ion transport, and alkali production. These

mechanisms may change the hydrogen ion concentration locally and possibly

lead to a different response on the part of a biofilm.

Some of the suggested investigations only require small extensions or mod-

ifications to the current modelling framework. However, others require greater

experimental support. It is hoped that the work described in this thesis offers a

deeper understanding of biofilm growth and response to cold plasma treatments,

which will hopefully motivate and oriente future research in this area.
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Appendix A: Parameters and

Variables

The parameters used in the simulations are listed in the following tables. Due

to lack of experimental data, some of the parameters are assumed or verified by

simulation results. There are 4 crucial parameters which are assumed or verified

are marked by red star, ∗. Changing the values of these parameters may not

changes general shape of biofilms, however, they may change the structure of the

biofilms and the distribution of live/dead particles and EPS (See Section 4.1.4.2

and Section 4.1.4.4). Here, we discuses these parameters in detail below.

• DE is the EPS diffusion coefficient. It controls the movement of the EPS.

Increasing the value of DE increases the spreading of EPS. Therefore, the

biofilms grow higher and wider than with small value of DE. Conversely,

Reducing the value of DE results the compact EPS and small biofilms.

• σ is the coefficient of particle movement push by EPS. If the value is chosen

too large, the particles may move a long distance in a small push by EPS,

i.e. too sensitive to EPS movement. However, if the value is chosen too

small, e.g. σ = 0, the particles remain stationary.

• β is the maximum biomass death rate. It relates to how fast the particles

die out. When the value of β is small, the particles may delay to die

out for several days, even when there is no nutrient and oxygen present.

However, When the value is large, the particles die rapidly, even when the

environment is full of nutrient and oxygen.
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• ka is the energy threshold. It relates to the biofilms survival ability under

anaerobic condition. According to the calculation, when ka ≤ 4.058× 10−6

and in high nutrient concentration environment, dCL
dt
≥ 0. This means

that the particles are able to survive, even reproducing, under anaerobic

condition. On the other hand, when ka greater than that value, the biofilms

die in anaerobic conditions. Changing the value of ka affects the thickness

of live particle layer in the biofilms.

Table 1: The global parameters including size of computational domain and time
and space steps. These constants are used in all simulations unless otherwise
stated.

parameter description value unit

Rmin minimum radius for

which particle division

occurs

3 µm

Rmax maximum radius of par-

ticles can grow

8 µm

Lx width of the computa-

tional domain

1024 µ

Lz height of the computa-

tional domain

1024 µ

Ly the height of cylindrical

particles

1 µm

dx step size of the computa-

tional grids in horizontal

direction

16 µ

dy step size of the computa-

tional grids in vertical di-

rection

16 µ

hz the distance of upper

boundary of diffusion

layer from the highest

point of the biofilm

48 µm
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Table 2: The parameters of EPS-producing strain (Section 4.1).

parameter description value unit reference

DXOx oxygen diffusion coeffi-

cient

8.33× 106 µm2/h [282]

DXs nutrient diffusion coeffi-

cient

4.1667× 106 µm2/h [282]

DE EPS diffusion coefficient 100 µm2/h Varied∗

KE EPS concentration at

which the EPS flux is

half its maximum

0.3 g/L Assumed

η slope constant of Hill

function of EPS flux

3 dimensionless Assumed

k the constant which ad-

justs average minimum

distance between parti-

cles

1.3 dimensionless [169]

σ drag coefficient of parti-

cle movement pushed by

EPS

2 dimensionless Varied ∗

φ ratio of dead biomass de-

composed and converted

to nutrient when live

biomass dies

0.4 dimensionless [166]

qw the fraction of biomass

loss to become water

when live cells die

0 dimensionless Assumed

ρc density of the biomass 200 g/L [171]

µ maximum biomass pro-

duction rate

0.09 1/h [283]

µ
E

maximum EPS produc-

tion rate

5.44× 10−2 g/(Lh) [178]
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µ
Xsb

amount of nutrient pro-

duced per fraction of

biomass lost per volume

10−4 dimensionless Assumed

β maximum biomass death

rate

102 1/h Estimated∗

βE EPS decay constant 1.4× 10−2 1/h [171]

KXsb nutrient concentration at

which biomass produc-

tion is half its maximum

4× 10−3 g/L [282]

m
Xsb

slope constant of Hill

function of biomass pro-

duction using nutrient

source

2 dimensionless Assumed

KXsA nutrient concentration at

which energy production

is half of its maximum

10−2 g/L Assumed

m
XsA

slope constant of Hill

function of energy pro-

duction using nutrient

source

2 dimensionless Assumed

KXOxA oxygen concentration at

which energy production

is half its maximum

3.5× 10−4 g/L [282]

m
XOxA

slope constant of Hill

function of energy pro-

duction using oxygen

source

1 dimensionless Assumed

KXsE nutrient concentration at

which EPS production of

half its maximum

4× 10−3 g/L
same as

KXsb
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m
XsE

slope constant of Hill

function of EPS pro-

duction using nutrient

source

3 dimensionless Assumed

ω weight constant for en-

ergy production via aer-

obic respiration

2/29.85 dimensionless
See Figure

1.6 [27]

δXsA maximum nutrient con-

sumption rate during en-

ergy synthesis

1.086× 102 g/(Lh) [284]

ρEXs the amount of nutrient

consumed per EPS pro-

duction

1/2× 10−3 dimensionless [93]

ka energy threshold

4.058× 10−6 dimensionless calculation±
∗

(bacteria survive in anaerobic environment)

8.126× 10−5 (for standard simulations)

δXsb
nutrient consumption for

biomass reproduction

1.504× 103 g/L calculation∓

(bacteria survive in anaerobic environment)

1.38598× 103 (for standard simulations)

δXOxAXs the maximum oxygen

consumption rate for

energy production using

nutrient source

12 g/(Lh) Assumed

± It is calculated from
dCκL
dt

= 0.

∓ It is assumed that the ratio of nutrient consumption of EPS production and

biomass formation is 0.2, i.e.,
µ
E
ρEXs

δXsb(µ+βg(1))
= 0.2, and then δXsb is solved for.
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Table 3: Parameters for PHB-producing strain, i.e., the species index Λ(κ) = 2
in scenario 2 (Section 4.2).

parameter description value unit reference

µΛ(κ) maximum biomass pro-

duction rate for bacterial

strain Λ(κ)

0.09 1/h [283]

βΛ(κ) maximum death rate for

bacterial strain Λ(κ)

102 1/h Assumed

ωΛ(κ)

weight constant for

energy production via

anaerobic respiration

using nutrient source for

bacterial strain Λ(κ)

2/18.2 dimensionless Λ(κ) = 2

PHB-producing strain (see Figure 1.7a[31])

ψ
the ratio of energy

produced from nutrient

and PHB

11.6/18.2 dimensionless

(ωΛ(κ)/τΛ(κ) for Λ(κ) = 2)

τΛ(κ) weight constant for

energy production via

anaerobic respiration

using PHB source for

bacterial strain Λ(κ)

2/11.6 dimensionless
See Figure

1.7b[29]

Kp PHB level at which en-

ergy production is half of

its maximum

10−2 g/L Assumed

KPXs critical Xs concentra-

tion for PHB usage,

G(Xs, Pκ) ≈ 0 if Xs is

large

10−4 g/L Assumed

KXsP nutrient concentration at

which PHB production is

half its maximum

4× 10−3 g/L
same as

KXsb
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m
XsP

slope constant of Hill

function of PHB pro-

duction using nutrient

source

1 dimensionless Assumed

Y
Λ(κ)
Pana

maximum PHB produc-

tion rate via anaerobic

respiration for bacterial

strain Λ(κ)

0.0514 1/h [30]>

Y
Λ(κ)
Paer

maximum PHB produc-

tion rate via aerobic

respiration for bacterial

strain Λ(κ)

0.46255 1/h [30]>

KXOxP oxygen concentration at

which PHB production

via aerobic respiration is

half its maximum

3.5× 10−4 g/L
same as

KXOxA

m
XOxP

slope constant of Hill

function of PHB produc-

tion via aerobic respira-

tion using oxygen source

1 dimensionless Assumed

δPA maximum PHB con-

sumption rate

0.65956 1/h [30]>

δXsP nurient concentration

consumption per PHB

production

0.1167 g/(L fg) [30]

δXOxP the maximum oxygen

consumption rate in

PHB production via

aerobic respiration

0.021 g/(L fg)

Assumed

(five times

less than

δXsP )
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δXOxAP the maximum oxygen

consumption rate in

energy production via

aerobic respiration using

PHB source

12 g/(Lh) Assumed

> The units of Y
Λ(κ)
Pana

, Y
Λ(κ)
Paer

, and δPA are Cmole[PHB]/(Cmole[biomass]h),

which are converted to g
[PHB]

/(g
[biomass]

h), i.e., 1/h, by applying molecular weight

of biomass, 25.1 g/Cmole, and molecular weight of PHB, 21.5 g/Cmole [30].

Table 4: Variables used in the simulations.

variable description units

Cκ
L live biomass in particle κ fg

Cκ
D inert/death biomass in particle κ fg

Aκ energy level in particle κ dimensionless

Xs nutrient concentration g/L

XXo oxygen concentration g/L

E EPS concentration g/L

Pκ mass of PHB per live biomass in particle κ dimensionless

rκ radius of particle κ µm

t time h
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Table 5: A list of parameters for the hydrogen peroxide simulations in plasma
treatment (Section 6.2.1).

parameter description value unit reference

β
XH2O2

maximum death rate

caused by H2O2

1.8× 102 1/h Assumed

KXH2O2
H2O2 concentration at

which energy production

is half its maximum

1.7× 10−5 g/L [285]

m
XH2O2

slope constant of Hill

function of energy pro-

duction effected by H2O2

5 dimensionless Assumed

DXH2O2
H2O2 diffusion coefficient 7.8× 106 µm2/h [286]

µ
H2O2

the H2O2 production rate 3.4× 10−13 g/(Lh) [285]

δ
Cat

the maximum catalase

activity rate

2.792× 103 g/(Lh) [239]

δXH2O2
[EPS] the maximum reaction

rate of H2O2 with EPS

2.691× 104 g/L [227]

δXH2O2
the decay rate constant

of H2O2

ln(2)/8 1/h

δE[XH2O2 ]
the reaction rate con-

stants for H2O2 with EPS

51.23 g/L [227]

KMXH2O2
H2O2 concentration at

which half maximum

catalase activity

2.176 g/L [239]

JXH2O20
the constant flux of

H2O2 entering the target

biofilms

5.9415× 104 fg/(µm2h) [276]
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Table 6: A list of parameters for the ozone simulations in plasma treatment
(Section 6.2.2).

parameter description value unit reference

β
XO3

maximum death rate

caused by O3

3.994× 102 1/h [223]

KXO3
Hill function coefficient

for O3

3.4× 10−6 g/L Assumed

m
XO3

Hill function constant 5 dimensionless Assumed

DXO3
diffusion coefficient of O3 6.84× 106 µm2/h [286]

δ
XO3

[bio]
the reaction rate of O3

with biomass

3.994× 102 1/h [223]

δXO3
the decay rate constant

of O3

6ln(2) 1/h [210]

δ
XO3

[EPS]
the reaction rate of O3

with EPS

2.691× 104 g/L [227]

δE[XO3 ]
the reaction rate con-

stants for O3 reaction

with EPS

36.29 g/L [227]

JXO30
the constant flux of

O3 entering the target

biofilms

1.435× 105 fg/(µm2h) [273]
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Table 7: A list of parameters for the hydrogen peroxide simulations in plasma
treatment.

parameter description value unit reference

Xmin
H+ the minimum H+ concen-

tration at which cells sur-

vive

10−3.88 g/L [77]

Xmax
H+ the maximum H+ con-

centration at which cells

survive

10−12.17 g/L [77]

XOpt
H+ the optimum H+ concen-

tration at which cells live

10−7.2 g/L [77]

DXH+ diffusion coefficient of H+ 1.53× 107 µm2/h [287]

δXH+ the maximum H+ decay

rate

5.56 g/L

From data

fitting

(Section

5.2)

JX
H+0 the constant flux of

H+ entering the target

biofilms

2.526× 106 fg/(µm2h)
From data

fitting
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and J. Petersen, “Proton transport coupled ATP synthesis by the puri-

fied yeast H+ -ATP synthase in proteoliposomes,” Biochimica et biophysica

acta, vol. 1797, pp. 1828–37, Nov. 2010. 125

[264] P. Kaczmarek, W. Szczepanik, and M. Jezowska-Bojczuk, “Acidbase, co-

ordination and oxidative properties of systems containing ATP, L-histidine

and Ni(II) ions,” Dalton Trans., pp. 3653–3657, 2005. 125

[265] S. Jain and S. Nath, “Kinetic model of ATP synthase: pH dependence of

the rate of ATP synthesis,” FEBS letters, vol. 476, pp. 113–7, July 2000.

125

234



REFERENCES

[266] D. Banerjee, M. Jana, and S. Mahapatra, “Production of Exopolysaccharide

by Endophytic Stemphylium SP,” Micoloǵıa Aplicada International, vol. 21,
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