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1.  INTRODUCTION  
 
Railway-generated ground vibrations cause significant disturbance for residents of nearby 
buildings even when generated by conventional passenger or heavy-freight trains [1,2].  If 
train speeds increase, the intensity of railway-generated vibrations generally becomes larger. 
For modern high-speed trains the increase in ground vibration intensity is especially high 
when train speeds approach certain critical velocities of waves propagating in a track-ground 
system. The most important are two such critical velocities:  the velocity of Rayleigh surface 
wave in the ground and the minimal phase velocity of bending waves propagating in a track 
supported by ballast, the latter velocity being referred to as track critical velocity. Both these 
velocities can be easily exceeded by modern high-speed trains, especially in the case of very 
soft soil where both critical velocities become very low.   
     As has been theoretically predicted by the present author [3,4], if a train speed  v  exceeds 
the Rayleigh wave velocity  cR  in supporting soil a ground vibration boom occurs. It is 
associated with a very large increase in generated ground vibrations, as compared to the case 
of conventional trains. The phenomenon of ground vibration boom is similar to a sonic boom 
for aircraft crossing the sound barrier, and its existence has been recently confirmed 
experimentally [5,6] (see also chapter 11).  The measurements have been carried out on 
behalf of the Swedish Railway Authorities when their West-coast Main Line from 
Gothenburg to Malmö was opened for the X2000 high-speed train.  The speeds achievable by 
the X2000 train  (up to 200 km/h)  can be larger than lowest Rayleigh wave velocities in this 
part of Sweden characterised by very soft ground. In particular, at the location near Ledsgärd 
the Rayleigh wave velocity in the ground was around 45 m/s, so the increase in train speed 
from 140 to 180 km/h lead to about 10 times increase in generated ground vibrations [5] (see 
chapter 11).  The above mentioned first observations of ground vibration boom indicate that 
now one can speak about “supersonic”  (“superseismic”) or, more precisely, “trans-Rayleigh” 
trains [7-9].  The increased attention of railway companies and local authorities to ground 
vibrations associated with high-speed trains stimulated a growing number of theoretical and 
experimental investigations in this area (see, e.g. [10-13]).  
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     If train speeds increase further and approach the track critical velocity, then rail 
deflections due to applied wheel loads may become essentially larger. Possible very large rail 
deflections around this speed may result even in train derailment, thus representing a serious 
problem for train and passenger safety [6,14-16].  From the point of view of generating 
ground vibrations outside the track, these large rail deflections can be responsible for an 
additional growth of ground vibration amplitudes, as compared to the above mentioned case 
of ground vibration boom [7,9,17].   
      In the present paper we review the current status of the theory of ground vibration boom 
from high-speed trains. Among the problems to be discussed are the quasi-static pressure 
generation mechanism, effects of Rayleigh wave velocity and track wave resonances on 
generated ground vibrations, effects of layered geological structure of the ground, and 
waveguide effects of the embankments.  The results of theoretical calculations for TGV and 
Eurostar high-speed trains travelling along typical tracks are compared with the existing 
experimental observations.  
 
 
2.  QUASI-STATIC PRESSURE MECHANISM OF GENERATING GROUND 

VIBRATIONS   
 
In what follows, an idealised model of a train comprising N carriages is considered.  It is 
assumed that the train is travelling at speed  v  along the track with sleeper periodicity  d  
(Fig. 1,a).   
 
                                                              Fig. 1 here  
 
 
One can distinguish several mechanisms of railway-generated ground vibrations which may 
contribute to the total ground vibration level in different frequency bands.  Among these 
mechanisms one can mention the quasi-static wheel-axle pressure onto the track, the effects 
of joints in unwelded rails, the unevenness of wheels or rails, and the dynamically induced 
forces of carriage- and wheel-axle vibrations excited mainly by unevenness of wheels and 
rails.  
        Among the above mentioned mechanisms, we consider only the most common one 
which is present even for ideally flat rails and wheels - a quasi-static pressure of wheel axles 
onto the track. The quasi-static pressure generation mechanism causes downward deflections 
of the track beneath each wheel axle (Fig. 1,b).  These result in distribution of the axle loads 
over the sleepers involved in the deflection distance [3,4,18].  Thus, each sleeper acts as a 
dynamic vertical force applied to the ground during the time necessary for a deflection curve 
to pass over the sleeper. In the framework of the wheel-axle pressure mechanism it is these 
forces that result in generating ground vibrations by passing trains.  As will be demonstrated 
below, this mechanism is also responsible for railway-generated ground vibration boom.  The 
role of other generation mechanisms is discussed elsewhere [9].  
 
2.1  Track dynamic properties  
An essential aspect of analysing the above mentioned quasi-static pressure generation 
mechanism is calculation of the track deflection curve as function of the applied axle load and 
train speed.  One can treat each rail as an Euler - Bernoulli elastic beam of uniform mass  m0  
(m0  includes the contribution of sleeper) lying on a visco-elastic half space  z > 0  and use the 
following dynamic equation to describe its vertical deflections (see, e.g. [19]):  



 3 

 
    EI ∂4w/∂x4+ m0 ∂2w/∂t2 + 2m0ωb ∂w/∂t+ αw  =  T δ (x-vt) .                     (1) 

 
Here  w  is the beam deflection magnitude,  E and I are Young's modulus and the cross-
sectional momentum of the beam, ωb is the circular frequency of damping,  α  is the 
proportionality coefficient of the equivalent Winkler elastic foundation modelling the elastic 
ground,  x  is the distance along the beam,  T  is a wheel load applied to each rail and 
considered as a vertical point force,  v  is a train speed, and  δ (x)  is the Dirac’s delta-
function.   

      It is useful first to discuss free wave propagation in the supported beam without damping, 
i.e., to analyse equation (1) with  T = 0  and  ωb = 0.  In this case, the substitution of the 
solution in the form of harmonic bending waves    
 

      w = A exp(ikx - iωt)                                                     (2) 
 
into (1)  gives the following dispersion equation for track waves propagating in the system:  
 

    ω = (α + EIk4)1/2/m0
1/2 .                                                (3) 

 
Here  k  is the wavenumber of track waves, and  ω  is circular frequency. In the quasi-static 
(long-wave) approximation (k = 0) the dispersion equation (3)  reduces to the well known 
expression for the so called track on ballast resonance frequency:   ωtb = α 1/2/m0

1/2.  For 
example, for typical soil and track parameters  α  = 52.6 MN/m2 [20], and  m0 = 300 kg/m  
this gives  Ftb = ωtb/2π = 67 Hz.  The frequency  Ftb  represents the minimal frequency at 
which track waves can propagate.  It also follows from equation (3) that the frequency-
dependent velocity of track wave propagation  c = ω/k  is determined by the expression  

   c = (α/k2 + EIk2)1/2/m0
1/2  ,                                            (4) 

which shows that  at  k =  (α/EI)1/4    the velocity  c  has a minimum  

  cmin = (4αEI/m0
2)1/4.                                                 (5)  

The value  cmin  is often referred to as track critical velocity.  For the above mentioned typical 
track and ballast parameters and for the value of  EI  equal to  4.85 MNm2  it follows from (5) 
that  cmin =  326 m/s  (1174 km/h),  which is much larger than the speeds of the fastest modern 
trains.  However, for very soft soils, e.g. alluvial soils, characterised by very low  α, the 
values of  cmin  can be as low as 60-70 m/s and can be easily exceeded by even relatively 
moderate high-speed trains.  

      In practice, the value of  cmin  for a particular location can be estimated using eqn (5) in 
which the stiffness of equivalent Winkler foundation  α  is expressed in terms of real elastic 
moduli of the ground. There are different theoretical models that give such expressions (see, 
e.g. [16]). Generally, it follows from these models that track critical velocity is normally 
larger by 10-30 %  than Rayleigh wave velocity for the same ground.  

     The solution of equation (1) with the right-hand side different from zero has different 
forms for small and large values of time  t. In the problem under consideration we are 
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interested in an “established” solution for large values of  t  which describes the track 
deflections being at rest relative to the co-ordinate system moving at train speed v - the so 
called stationary solution. Obviously, this solution must depend only on the combination  x - 
vt.  Using the notation  p = β( x - vt), where β = (α/4EI)1/4, it is easy to obtain the stationary 

solution of (1) in the Fourier domain, W(p),  (see, e.g. [19]), where  W(p) = w z e dzipz( ) −

−∞

∞

∫ . 

Taking the inverse Fourier transform of W(p) gives the analytical expressions for  w(x-vt)  
which have different forms depending on whether  v < cmin , v = cmin or  v > cmin.  In 
particular, if train speed  v  approaches the minimal phase velocity  cmin  from below,  the rail 
deflection amplitudes  w  experience a large resonance increase limited by track damping.  
Assuming for simplicity that there is no damping in the system  (ωb = 0), one can obtain the 
exact solution for  v < cmin  in a very simple form [19]:  
 

  w(x-vt) = (T/8EIβ3δ)exp(-βδ|x-vt|)[cos(βη(x-vt) + (δ/η)sin(βη|x-vt|)],              (6) 

 
where  δ = (1 - v2/c2

min)1/2  and  η = (1 + v2/c2
min)1/2.  One can see that, since the factor  δ = (1 

- v2/c2
min)1/2   is present in the denominator of the expression (6), the track deflection  w  

increases as the train speed approaches the minimal track wave velocity. Note that in the 
considered example without damping it follows from (6) that  w → ∞   when  v → cmin.  The 
transition of  v over  cmin  can be considered only with taking damping into account. In this 
case the approximate analytical expressions for  w (x-vt)  in the three cases,  v < cmin , v = cmin 
or  v > cmin.,  can be found [19].  It follows from these expressions that the amplitudes of rail 
deflections near track wave resonance, v = cmin,  are determined by the influence of damping. 
For typical values of damping these amplitudes are by 2 - 3 times larger than the 
corresponding static values.  The corresponding large rail deflections at train speeds 
approaching track critical velocity may affect the railway line operation result even in train 
derailment.  Different aspects of this problem are now widely investigated (see, e.g. [6,14-
16]).   
 
2.2  Forces applied from sleepers to the ground  
To calculate dynamic forces  P(t-x/v)  applied from sleepers to the ground, e.g.  P(t) - for a 
sleeper located at  x = 0, one should take into account that  P(t)  is proportional to the track 
deflection  w(vt)  and to the sleeper periodicity  d:   
 

   P(t) = 2αw(vt)d,                                                       (7) 
 
where  α  is a constant of Winkler foundation, and the presence of two rails has been taken 
into account.  It is convenient to exclude  α  and  d  from equation (7). To do so one can use 
integration of the quasi-static equation (1), i.e., with  m0∂2w/∂t2 = 0, over  x.  The integration 
results in the formula   
 

   αwmax
stdNeff

st  = T                                                      (8) 
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which, combined with equation (7), gives the following expression for P(t)1):   
 

  P(t) = 2T[w(vt)/wmax
stNeff st].                                         (9)  

 
Here index “st” corresponds to the quasi-static solution of equation (1) (in particular, wmax

st  
is the maximum value of  w(vt) in the quasi-static approximation), and Neff

st  is the effective 
number of sleepers equalising the applied quasi-static wheel load  T :  
 

   ∑
∞

−∞=

=
m

st
max

st
eff

T
w

mdw
N

T )( ,                                          (10)  

where  m  denotes a number of a current sleeper. Numerical solution of equation (10) shows 
that the value of  Neff

st  may be approximated with good accuracy by a simple analytical 
formula  Neff

st = 0.625π/βd = 0.625x0
st/d, where  x0

st = π/β  is the effective quasi-static track 
deflection distance. Using this formula in equation (9) results in the following expression:  

    P(t) =  3.2T[w(vt)/wmax
st](d/x0 

st).                                   (11) 
 
As will be shown below, to describe generation of ground vibrations by moving trains one 
needs to know the frequency spectrum of a force applied from each sleeper to the ground,  
P(ω),  rather than its time dependence, P(t).  Note that, whereas a time-domain solution  P(t)  
has different forms  for  v < cmin ,  v = cmin  and  v > cmin  [19],  its Fourier representation P(ω)  
is described by the same formula for all these cases.   Keeping in mind that for x = 0  the 
relationship  W(p) = -2πβvW(ω)  holds, where  ω = pβv , one can derive the following 
expression for P(ω):  

      P(ω) =  
484

8.12

min
22

min

2

44

4

2

+−−

−

β
ω

β
ω

β
ω

π

c
gi

cv

v
Td

 ,                               (12)  

where  g = (m0/α)1/2ωb  is a nondimensional damping parameter.  Typical forms of the vertical 
force spectra  P(ω)  calculated for a train travelling on very soft soil at speeds  v = 20, 50 and 
70 m/s    (corresponding to the cases  v < cR ,       cR <v < cmin,   and  v > cmin  respectively) are 
shown in Fig. 2.   
 
                                                                Fig. 2 here  
 
Calculations were performed for the soft soil using the following parameters of train, track, 
and soil:  T = 50 kN,  d = 0.7 m,  β = 1.28 m-1, cR = 45 m/s, cmin = 65 m/s, and g = 0.1.  For 
relatively low train speeds, i.e., for  v < cR,  the dynamic solution (12) for the force spectrum 
P(ω)  goes over to the quasi-static one [18].  As train speeds increase and approach or exceed 
the minimal track wave velocity, the spectra  P(ω)  become broader and larger in amplitudes, 
and a second peak appears at higher frequencies.   
                                                           
1)  In the author’s earlier papers [7-9], instead of the sleeper periodicity  d, the sleeper thickness  ∆d  has been 
used erroneously in equations (7) and (8).  Fortunately, this did not affect the expression (9) following from (7) 
and (8) because of  the exclusion of  α  and  d.  The author is grateful to G. Degrande for pointing this out.   
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      The values of  P(ω)  in the model under consideration are limited by track wave damping 
described by the nondimensional damping parameter g.  The effect of track damping on the 
spectra  P(ω)  is more pronounced for  v > cmin.  For low train speeds,  v < cR,  the effect of 
track damping is negligibly small.  
 
3.  GREEN’S FUNCTION OF THE PROBLEM  
 
As the next step, one has to derive the Green’s function for the problem under consideration. 
It describes ground vibrations generated by individual sleepers which can be regarded as 
point sources in the low-frequency band.  
 
3.1  Homogeneous elastic half-space 
We recall that for a homogeneous elastic half space the corresponding Green’s function can 
be derived using the results from the well-known axisymmetric problem for the excitation of 
an elastic half space by a vertical point force applied to the surface (see, e.g. [21,22]).  The 
solution of this problem, which should satisfy the dynamic equations of  elasticity for a 
homogeneous medium subject to the stress-free boundary conditions on the surface outside 
the point of force application, gives the corresponding components of the dynamic Green's 
tensor  (or, for simplicity, the Green's function)  Gzi  for an elastic half space.  For the 
problem under consideration, only Rayleigh surface wave contribution (the Rayleigh part of 
the Green's function) is considered since Rayleigh waves transfer most of the vibration 
energy to remote locations.  For these waves the spectral density of the vertical vibration 
velocity at the surface of homogeneous half space  (z=0)  may be written in the form (see 
also [18]) 
 

     vz(ρ,ω) = P(ω)Gzz(ρ,ω) = P(ω)D(ω)(1/√ρ) exp(ikRρ - γkRρ),                    (13) 

where   

      D(ω) = (1/2π)1/2(-iω)qkR
1/2kt

2exp(-i3π/4) /µF'(kR) .                         (14) 

 
Here    ρ = [(x-x')2 + (y-y')2 ]1/2   is  the  distance  between the source  (with current 
coordinates   x', y')  and the point  of  observation  (with the coordinates  x, y),  ω = 2πF   is a 
circular frequency,   kR = ω/cR  is the wavenumber of a Rayleigh surface wave,  cR  is  the 
Rayleigh wave velocity,   kl = ω/cl   and   kt = ω/ct   are  the wavenumbers of longitudinal and 
shear bulk elastic waves, where  cl = [(λ + 2µ)/ρ0]1/2  and  ct = (µ/ρ0)1/2  are longitudinal and 
shear wave velocities,  λ and µ are the elastic Lame′ constants,  ρ0  is mass density of the 
ground, and  q = (kR

2 - kl
2 )1/2.   The factor  F'(kR)  is a derivative of the Rayleigh determinant  

 
     F(k) = (2k2 - kt

2 )2 - 4k2(k2 - kt
2)1/2(k2 - kl

2)1/2                               (15) 
 
taken at  k = kR ,  and  P(ω)  is a Fourier transform of  P(t)  (see equation (12)).  
 
To describe the spectrum for successive passage of two axle loads separated by the distance  
a  (the case of a bogie),  Pb (ω),  one should use the following relationship between  Pb(ω)   
and P(ω)  [18]:  
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   Pb(ω) = 2P(ω)cos(ωa/2v) .                                             (16) 

 
 In writing eqn (13) we have accounted for attenuation in soil by replacing  1/cR  in the 
exponential of the Green’s function by the complex value  1/cR + iγ/cR , where  γ = 0.001 - 
0.1  is a constant  describing the "strength" of dissipation of Rayleigh waves in soil  [23].  
 
3.2  Effect of layered ground structure 
To consider the influence of layered geological structure of the ground on generating ground 
vibrations in a rigorous way, we would have to use the Green’s function for a layered elastic 
half space, instead of that for a homogeneous half space.  As a rule, such a function, that 
contains information about the total complex elastic field generated in a layered half space 
considered (including different modes of surface waves and modes radiating energy into the 
bulk (leaky waves)), can not be obtained analytically (see also chapter 10). However, for 
description of railway-generated ground vibrations, the problem can be simplified by 
considering an approximate engineering approach which takes into account the effects of 
layered structure on the amplitudes and phase velocity of only the lowest order surface mode 
which goes over to a Rayleigh wave in the limit of a homogeneous half space.  The 
propagating modes of higher orders and leaky modes are generated less efficiently by surface 
forces associated with sleepers.  
 
We recall that in layered media surface waves become dispersive, i.e., their phase velocities 
cR  depend on frequency:  cR = cR(ω).   For shear modulus of the ground  µ  normally having 
larger values at larger depths, there may be several surface modes characterised by different 
phase velocities and cut-off frequencies.  As a rule, these velocities increase at lower 
frequencies associated with deeper penetration of surface wave energy into the ground (see, 
e.g. [24]).  For simplicity, we will assume in further consideration that the Poisson ratio  σ  of 
the layered ground and the mass density   ρ0   are constant. Taking the above mentioned into 
account and starting from the Green’s function for a homogeneous half space  Gzz(ρ,ω)  (see 
equations (13) and (14)), we will construct its modification  GL

zz(ρ,ω)  describing 
approximately the effects of layered medium on generation and propagation of a lowest order 
surface Rayleigh type mode. It can be shown that such an approximate Green’s function can 
be written in the form [8]:  
 

    vz(ρ,ω) = P(ω)GL
zz(ρ,ω) = P(ω)DL(ω)(1/√ρ) exp(ikR

Lρ - γkR
Lρ),                (17) 

 

   DL(ω) = (1/2π)1/2(-iω)qL(kR
L)1/2(kt

L)2exp(-i3π/4)/µL(ω)FL'(kR
L ).                 (18) 

 
Here  kR

L  =  ω/cR(ω)   is the wavenumber of a lowest order Rayleigh mode propagating with 
frequency-dependent velocity cR(ω); terms  kl

L = ω/cl
L(ω)  and  kt

L = ω/ct
L(ω) are “effective” 

wavenumbers of longitudinal and shear bulk elastic waves at given frequency  ω  (these 
wavenumbers are inversely proportional to the longitudinal cl

L(ω) and shear ct
L(ω)  wave 

velocities averaged over the “effective” depth of Rayleigh wave penetration into the ground 
which is close to Rayleigh wavelength).  In the model under consideration, these velocities 
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and the corresponding “effective” shear modulus µL(ω)  are expressed in terms of frequency-
dependent Rayleigh wave velocity cR(ω)  using the well known relations:   
 

      cR(ω)/ct
L(ω)  = (0.87 + 1.12σ)/(1+σ),                                 (19) 

 
     ct

L(ω)/cl
L(ω)  = [(1 - 2σ)/2(1 - σ)]1/2 ,                                (20) 

 
    µL(ω) = ρ0[ct

L(ω)]2.                                              (21) 
 
The term  qL  is defined as  qL = [(kR

L)2 - (kl
L)2]1/2,  and the factor  FL

’(kR
L)  is determined 

according to the following relationship [24]:   
 

     FL
’(kR

L)   =  N(σ)(kR
L)3 ,                                          (22) 

 
where  N(σ)  is a dimensionless function of the Poisson ratio  σ  (e.g., for  σ = 0.25, the 
function N(σ) takes the value  -2.3).  
 
The dependence of Rayleigh wave velocity on frequency,  cR(ω),  is determined by the 
particular profile of layered ground, characterised by the dependence of its elastic moduli  λ,  
µ  and mass density  ρ0  on vertical coordinate  z.  Figure 3,a  shows a widely used simplified 
model of layered ground consisting of a single top elastic layer with the parameters λ1, µ1 
and  ρ01 placed on an elastic half space with the parameters  λ2, µ2 and  ρ02. Figure 3,b 
demonstrates some more complicated layered structures in the assumption that they are 
characterised mainly by its shear stiffness  µ  as a function of  z.    
 
                                                            Fig. 3  here  
 
For all ground profiles the determination of the velocity  cR(ω)  is a complex boundary-value 
problem which, generally speaking, requires numerical calculation.  In the above described 
engineering approach we consider published values of the wave velocity functions  cR(ω)  
using where possible their simple analytical approximations. In particular, the frequency-
dependent Rayleigh wave velocity for layered media characterised by monotonous change of 
their mechanical parameters with depth (e.g. for simple two-layered systems) can be 
approximated by the function  
 

    cR(ω) =  (c1 - c2 )exp(-α‘ω/2π) + c2 ,                                    (23)  
 
where  c1 and c2 are values of cR(ω) for ω = 0 and ω = ∝  respectively,  the parameter α‘ 
describes  “strengths” of dispersion (it depends on the thickness of characteristic layer and on 
the difference between the elastic moduli in the depth and on the surface of the ground).  
Figure 4 shows typical functions  cR(ω)  calculated according to equation (23) for the value of 
the parameter α‘ = 0.1.  Curve Cd1 corresponds to a soft layer  (c2 = 125 m/s)  placed on a 
stiff ground (c1 = 200 m/s). Curve Cd3 describes a stiff layer  (c2 = 200 m/s)  placed on a soft 
ground (c1 = 125 m/s).  The value of the parameter  α‘ = 10  describes the situation when the 
effect of ground substrate can be neglected and functions cR(ω)  are determined entirely by 
the upper layers (curves Cd2 and Cd4 - respectively for soft and stiff layers).   
 
                                                               Fig. 4 here  
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For non-monotonous layered media (see Fig. 3,b), which result in Rayleigh-type mode 
velocities  cR(ω)  being non-monotonous functions of frequency (with maxima or minima at 
certain frequencies) the simple formula (23) is no longer applicable and other approximate 
analytical expressions must be sought.   
   One can expect that the most significant effect of layered structure on generating ground 
vibrations by high-speed trains is due to the wave phase variations caused by frequency-
dependent Rayleigh wave velocities, rather than to the changes in wave generation efficiency 
due to the stratification. In particular, for the considered case of monotonous layered system 
with soft upper layer, the increase in Rayleigh wave velocities at low frequencies might 
violate the trans-Rayleigh condition  v > cR  responsible for generation of very intensive 
ground vibrations associated with ground vibration boom, thus causing a reduction in the 
low-frequency components of generated ground vibration spectra.   
 
 
4.  CALCULATION OF GENERATED GROUND VIBRATIONS   
 
To calculate ground vibrations generated by a train one needs to take into account the 
superposition of waves generated by each elementary source (sleeper) activated by wheel 
axles of all carriages, with the time and space differences between sources (sleepers) being 
taken into account. Using the Green's function this may be written in the form [4-9, 18]  
 

      vz(x,y,ω) = 
−∞

∞

−∞

∞

∫∫ P(x',y',ω)GL
zz(ρ,ω)dx'dy' ,                             (24) 

 
where  P(x',y',ω)  describes the space distribution of all load forces acting along the track in 
the frequency domain.  This distribution can be found by taking a Fourier transform of the 
time and space dependent load forces P(t, x', y'=0) applied from the track to the ground. Note 
that the function  P(t, x', y'=0)  does not depend on layered structure of the ground and 
remains the same for both homogeneous and inhomogeneous half spaces.  In the model under 
consideration, all properties of track and train, which determine generation of ground 
vibrations, are described by the above mentioned function of load forces P(t, x', y'=0).   
 
4.1  Vibrations from a single axle load  
 
It is useful first to consider ground vibrations generated by a single axle load. For a single 
axle load moving at speed  v  along the track, the load function has the form [4,18]: 

    P(t, x', y'=0) = 
m=−∞

∞

∑ P(t-x'/v)δ(x'-md)δ(y'),                                 (25)  

 
where delta-function  δ(x'-md)  takes the periodic distribution of sleepers into account. 
Taking the Fourier transform of (25), substituting it into (24) and taking equations (17) and 
(18) into account results in the following formula for the vertical vibration velocity of  
Rayleigh  waves  generated at  z = 0,  x=0,  y=y0   by a single axle load  moving along the 
track at speed  v: 
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    vz(x=0, y=y0, ω) = P(ω)DL(ω)
m=−∞

∞

∑ exp[i(ω/v)md + (i-γ)(ω/cR(ω))ρm]/ ρm ,        (26) 

 
where   ρm = [y0

2 + (md)2]1/2.  
 
4.2  Vibrations from a complete train  
To take account of all axles and carriages  one should use a more complicated load function 
[4,18] (see also chapter 10 which gives a modified form of this function):  
 

      P(t, x',y'=0)= 
n

N

m =

−

=−∞
∑∑

∞

0

1
An[P(t - (x'+nL)/v) + P(t - (x' + M +nL)/v)]δ(x'-md)δ(y'),  

      (27) 
 
where  N  is the number of carriages, M  is the distance between the centres of bogies in each 
carriage and  L is the total carriage length.  Dimensionless quantity  An  is an amplitude 
weight-factor to account for different carriage masses.  For simplicity we assume all carriage 
masses to be equal (An=1). 
 
Taking the Fourier transform of (27), substituting it into  (24) and making simple  
transformations, we obtain the following  expression for the frequency spectra of vertical 
vibrations at  z=0, x = 0 and y = y0  generated by a moving train [4,7-9].  
: 
 

      vz (x=0, y=y0, ω) = P(ω)DL(ω)
n

N

m =

−

=−∞

∞

∑∑
0

1

[exp(-γωρm/cR(ω))/ ρm][1+ exp(iMω/v)]. 

                                        exp(i(ω/v)(md + nL) + i(ω/cR(ω))ρm)  .  
      (28) 

 
Note that the expressions (26) and (28) are applicable to trains moving at arbitrary speeds.  In 
particular, for trains travelling at conventional speeds (v < cR) they describe peaks in ground 
vibration spectra corresponding to the well known sleeper passage frequencies and other 
train-speed dependent combination frequencies [18]. Indeed, the peaks correspond to the 
frequencies determined by the condition  (ω/v)(sd + qL)= 2πl,  where  s,q,l =1,2,3,... 
Obviously,  q=0  corresponds to the passage frequencies  fps = (v/d)l.  Other more frequent 
maxima are determined either by the carriage length L  (s=0)  or by a combination of both 
parameters  (for  q≠0, s≠0)  (for experimental validation of these predictions for high-speed 
trains travelling at speeds below the Rayleigh wave velocity see chapter 10).  
 
 
5.  TRANS-RAYLEIGH TRAINS 
 
5.1  General discussion 
For  "trans-Rayleigh trains", i.e., trains travelling at speeds higher than Rayleigh wave 
velocity in the ground, a separate analytical treatment can be done to elucidate the special 
features of the problem [4, 9]. It is easy to show that maximum radiation of ground vibrations 
takes place if the train speed  v  and the frequency-dependent Rayleigh wave velocity  cR(ω)  
satisfy the following condition:   
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     cosΘ = 1/K = cR(ω)/v ,                                           (29) 

 
where  Θ   is the observation angle. This relationship implies that elastic surface waves 
radiated by all sleepers activated by moving loads are combined in phase at the point of 
observation and, as a result, a ground vibration boom takes place.  Since the observation 
angle  Θ  must be real  (cosΘ ≤ 1), the value of  K = v/cR(ω)  should be larger than 1, i.e., the 
train speed  v  should be larger than Rayleigh wave velocity  cR(ω).  In this case ground 
vibrations are generated as quasi-plane Rayleigh surface waves symmetrically propagating at 
angles  Θ  with respect to the track, and with amplitudes much larger than in the case of  
"sub-Rayleigh trains". The formation of a ground vibration boom is illustrated in Fig. 5 
showing the spatial distributions of the ground surface vertical displacements generated at a 
chosen frequency component by a single axle load moving at different speeds over a small 
part of a track consisting of 10 sleepers.  
 
                                                            Fig. 5 here 
 
The results are shown for sub-Rayleigh speed - (a) and trans-Rayleigh speed - (b). It is seen 
that in the first case the generated ground vibrations propagate almost in all directions, 
whereas in the second case they are concentrated around the angles Θ  determined by 
equation (29).  
     The amplitudes of railway-generated ground vibrations for  v > cR  are determined by two 
features.  The first one is that under this condition the surface waves radiated by different 
sleepers are combined in phase. Therefore, an increase by the number of effectively radiating 
sleepers of the track, i.e., about 200 times for typical values of γ = 0.05, can be expected 
compared to the average vibration level for conventional trains. The second feature is the 
dependence of the function  P(ω), determined by equation (12), on train speed  v.  The 
analysis shows that function P(v,ω)  provides an average increase of about 10 times for the 
increase of train speed  v  from  13.88 m/s  (50 km/h)  to  138.8 m/s  (500 km/h).  Thus, a total 
increase of ground vibration amplitudes by  1000-2000 times  (60-66 dB)  can be expected in 
the case of trans-Rayleigh trains for such increase in train speeds.   
      It also follows from equations (26) and (28) that the amplitudes of generated ground 
vibration boom do not  depend on the sleeper periodicity  d. They are  determined only by the 
track distance considered  [4,9].  Note that this conclusion remains valid also in the limiting 
case  d → 0.  This means that radiation of ground vibration boom by trans-Rayleigh trains 
may take place also on tracks without sleepers, i.e. on slab tracks.  However, for conventional 
low-speed trains   (v << cR),  the exponential functions inside the sums in (26) and (28) 
oscillate quickly as d → 0, and the sums themselves become close to zero, indicating that 
ground vibrations in the form of waves are not generated.  This agrees with the well known 
result of the elasticity theory [25] indicating that, for loads moving along a free surface of an 
elastic half space at speed  v < cR ,  radiated waves do not appear (only localised quasi-static 
fields can accompany the moving load).  Thus, the presence of sleepers is essential for 
generating ground vibrations by conventional trains due to the mechanism of quasi-static 
pressure considered here.   
    If train speed increases even further, then the second critical velocity, cmin, makes its 
contribution to the amplitudes of generated ground vibrations - through the function P(ω). 
However, since this function can increase by only 2-3 times for realistic values of track wave 
dissipation (see section 2.2), its effect on generated vibrations may result only in the increase 
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of amplitude by the same amount. It is therefore less important for generating ground 
vibrations outside the track than the first critical velocity, cR .  
 
5.2 Ground vibrations from TGV or Eurostar trains   
 
Numerical calculations of ground vibrations generated by high-speed trains can be carried out 
according to equations (26) or (28) for different values of train speed, different parameters 
characterising Rayleigh wave dispersion in layered ground, and for different geometrical and 
physical parameters of both track and train. For relatively short 5-carriage trains it is 
normally sufficient to carry out the summation over m  in equations (26) and (28) from  m=-
150  to  m=150,  the corresponding length of track being greater than the total train length  
NL  and the attenuation distance of Rayleigh waves at the frequency band considered.  In 
many practical situations, the frequency-dependent Rayleigh wave velocity for layered media 
can be approximated by equation (23).   
     Figure 6 shows surface graphs of the ground vibration spectra (in linear units, relative to 
the reference level of 10-9 m/s) generated by a single axle load  2T = 200 kN  moving at 
speeds ranging from 10 m/s to 320 m/s  for homogeneous (a) and layered (b) ground.  
 
                                                               Fig. 6 here 
 
The results are given for the frequency band  0 - 50 Hz and for the value of ground 
attenuation  γ = 0.05.  The Poisson's ratio of soil was set at  0.25,  and the mass density  ρ0  
was  2000  kg/m3.  Units of calculation were ∆v = 10 m/s  and  ∆F = 1 Hz.  Values of the 
parameter  α‘  in equation (23) corresponding to homogeneous and layered grounds were  10 
and 0.1 respectively. Other parameters were:  cmin = 326 m/s, g = 0.1, β = 1.28 m-1,  y0 = 30 
m, where  y0  is the distance from the track to the observation point.  
     One can see that with the increase of train speed the ground vibration level generally 
grows.  For relatively low train speeds, the peaks corresponding to the train passage 
frequencies are almost invisible because of the huge increase of ground vibration level in the 
trans-Rayleigh range  (v ≥ cR(ω)). This increase goes even further for train speeds 
approaching the minimal track wave velocity  (cmin = 326 m/s  in this example). Comparison 
of Figures 6,a and 6,b shows that the effect of a two-layered structure results in decrease of 
generated vibrations at low frequencies.  
     Figure 7 illustrates the ground vibration spectra (in dB, relative to the reference level of 
10-9 m/s) generated by complete TGV or Eurostar trains travelling on homogeneous ground 
for both sub-Rayleigh  and trans-Rayleigh train speeds (respectively  v = 50 km/h - curve  
Vz1 and  v = 500 km/h  -curve  Vz2), and for layered ground at the same train speeds  (curves 
Vz3 and Vz4 respectively).  
 
                                                          Fig. 7 here 
 
The train consists of N=5 equal carriages with the parameters  L = 18.9 m  and  M = 15.9 m. 
Since the bogies of TGV and Eurostar trains have a wheel spacing of 3 m and are placed 
between carriage ends, i.e., they are shared between two neighbouring carriages, to use 
equation (28) one should consider each carriage as having one-axle bogies (a = 0) separated 
by the distance M = 15.9 m. Other parameters of track and ground used in calculations are 
the same as in Figure 6.  One can see that for homogeneous ground (curves  Vz1 and Vz2) 
the averaged ground vibration level from a train moving at trans-Rayleigh speed  500 km/h  
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(138.8 m/s)  is by approximately 70 dB higher than from a train travelling at speed   50 km/h  
(13.8 m/s). Including the effect of layered ground, however, results in decrease of ground 
vibration level from a trans-Rayleigh train at low frequencies (curve Vz4).  Note, that for 
trains travelling at low speeds the effect of layered ground structure is small (curves  Vz1 and 
Vz3 are almost indistinguishable).  
    Calculated ground vibration frequency spectra  vz(f)  (in dB, versus the reference level of 
109 m/s)  generated by complete TGV or Eurostar trains travelling on a very soft 
homogeneous ground at different speeds are shown  in Fig. 8 for three values of train speed:  
v = 20, 50 and 70 m/s  (curves V1, V2 and V3 respectively).  
 
                                                              Fig. 8 here  
 
The parameters used in calculations were:  T = 100 kN, γ = 0.05, β = 1.28 m-1, d = 0.7 m, cR 
= 45 m/s, cmin = 65 m/s,  g = 0.1  and  y0 = 30 m.  One can see that for the trans-Rayleigh 
train speed of 50 m/s corresponding to the case  cR <v < cmin  the overall level of generated 
ground vibrations is much higher than for sub-Rayleigh train speed of 20 m/s. For train speed 
of 70 m/s exceeding the value of track critical velocity,  cmin,  a significant increase takes 
place at higher frequencies of generated ground vibration spectra. However, since the 
amplitudes of high-frequency components are generally low, the overall increase due to the 
track wave resonance is not very large in comparison with the one associated with ground 
vibration boom.   
    It is interesting to compare the above described theory with the recent observations made 
on the high-speed railway line from Gothenburg to Malmö, near Ledsgärd (see the 
Introduction). For a very rough estimate, the layered structure of the ground can be ignored, 
and the same parameters of TGV trains can be used (instead of X2000 train parameters). 
Calculations of the vertical ground vibration velocity averaged over the frequency range 0-50 
Hz have been carried out (this roughly corresponds to a peak level of vibration velocity used 
in the observations).  We also used the reported low value of Rayleigh wave velocity in the 
ground (cR = 45 m/s), assuming that the Poisson ratio of the ground σ  was 0.25.  To facilitate 
the comparison of the predicted increase in ground vibration level with the observed one the 
amplitudes of generated ground vibrations were calculated in linear units  (m/s).  
      The resulting amplitudes as functions of train speed are shown in Fig. 9 for two values of 
track critical velocity - cmin = 65 m/s (curve V1) and  cmin = 10000 m/s  (curve V2)  (the latter 
very large value of  cmin  describes the hypothetical case when track dynamics effects can be 
completely ignored).   
 
                                                        Fig. 9 here  
 
One can see that in both cases the predicted amplitudes of the peak vertical velocity of 
generated ground vibrations change from  2.10-5 m/s  at  v = 140 km/h  (38.8 m/s)  to 16.10-5 
m/s  at  v = 180 km/h  (50 m/s).  Thus, the estimated 8 times increase in ground vibration 
level following from the above theory for the given train speeds and Rayleigh wave velocity 
is in reasonable agreement with the 10 times increase recently observed experimentally for 
the Swedish high-speed railway line built on the soft ground [5].  
      According to the conclusions of section 3.2, if one had taken into account the actual 
ground stratification at Ledsgärd [6] (which can be approximated by a non-monotonous four-
layered system, with the “slowest” layer being positioned beneath the top layer), the 
predicted values of peak vibration velocity would be roughly the same. The only difference 
could be expected in the form of generated ground vibration spectrum which would have 
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lower values at low and high frequencies, in agreement with the Rayleigh wave velocity on 
the site having a minimum at certain frequency around 4 Hz.  
     If we assume that a train speed increases further and approaches or exceeds the track 
critical velocity  (cmin = 65 m/s), then the comparison of curves V1 and V2 shows that the 
level of generated ground vibrations also becomes larger (by approximately 1.5-2 times, as 
compared to the case of absence of track dynamics effects).  This increase is not as large as 
in the case of ground vibration boom. However, since it occurs in combination with the 
latter, this gives a noticeable amplification of the resulting ground vibration impact.   
 
5.3  High-speed trains travelling underground  
For high-speed underground trains the contribution of bulk shear and longitudinal elastic 
waves (S- and P-waves respectively) is often more essential than that of Rayleigh waves 
considered in the previous sections  [26].  Obviously, radiated S- and P-waves can also be 
significantly amplified if train speeds are high enough and the conditions  v > ct  or  even  v 
> cl  hold, in addition to the trans-Rayleigh condition  v > cR  considered so far (we recall 
that  cR < ct < cl.).  In such cases one can expect that these waves will be radiated into the 
ground as conical Mach waves propagating at the angles  Θt = arccos(ct/v)  and  Θl = 
arccos(cl/v)  relative to the track, in addition to the relatively low-amplitude Rayleigh waves 
radiated as quasi-plane waves along the surface at the angles Θ = arccos(cR/v).  The most 
likely contribution to the ground vibration boom from underground trains might be that of 
radiated S-waves since their velocity  ct, being only about 10% higher than the velocity of 
Rayleigh waves, can be more easily exceeded by moving trains than the velocity of 
longitudinal (compressive) waves  cl .  In the presence of layered structure in the ground 
around the tunnel, the S-waves initially radiated at the angles Θt = arccos(ct/v)  relative to 
the track, may experience total internal reflection from the lower layers characterised by 
higher shear wave velocities and return to the surface.  Repeated reflections from the ground 
surface and from lower layers may cause a waveguide propagation of S- and P-waves which 
will affect the total vibration field in relatively remote locations.   
    In comparison with surface trains, the case of underground trains is more difficult for 
theoretical description, partly because of the influence of the tunnel geometry making the 
problem of constructing the corresponding Green's function extremely complex. We recall 
that physical meaning of the Green’s function for the problem under consideration is that it 
describes ground vibrations generated by an individual sleeper which may be regarded as a 
point source in the low-frequency band.  In the case of underground trains, i.e., for sleepers 
placed on the bottom of a tunnel, bulk acoustic waves usually make a major contribution to 
the ground vibration field near the surface (especially if the tunnel is deep enough), in 
contrast to the case of above-ground trains where Rayleigh surface acoustic waves prevail.  
     The approximate analytical approach described here considers the problem in the low-
frequency approximation, i.e., the characteristic wave-lengths of generated bulk acoustic 
waves in the ground are assumed to be essentially larger than the diameter of the tunnel (Fig. 
10).  For simplicity, we only consider the case of homogeneous ground.  
 
                                                           Fig.10 here  
 
 
In the above mentioned low-frequency approximation the formal expression for the vertical 
component of the particle velocity of ground vibrations generated on the ground surface by 
trains travelling underground may be written as follows [26]:  
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      vz(x,y,ω) = 
−∞

∞

−∞

∞

−∞

∞

∫∫∫ P(x',y',z’,ω)Gzz(r,ω)dx'dy'dz’ .                       (30)  

 
Here  Gzz(r,ω)  is the correspondent component of the elastic Green’s tensor (Green’s 
function) satisfying the boundary conditions on the ground surface and describing the 
vertical component of the particle vibration velocity due to a vertical point force located on 
the bottom of the tunnel,  r = [(x-x’)2 + (y-y’)2 + (z-z’)2]1/2  is the distance from the current 
elementary source to the observation point, and  P(x',y,'z’,ω)  describes the Fourier transform 
of the total distribution of vertical load forces along the underground track.   
     For low frequencies of radiated waves (around 10-15 Hz) the approximate expression for 
the far-field Green’s function  Gzz(r,ω)  at the observation point taken on the surface  (z = 0)  
may be written in the zero approximation versus the tunnel diameter  a  (i.e. independent of  
a), with only bulk elastic waves being taken into account [26]: 
 
       Gzz(r,ω)|z=0 = (iω/4πρ0r)[ei(ω/c

l
)r(1+Rl(ω,ϕ))cos2(ϕ) - ei(ω/c

t
)r(1+Rt(ω,ϕ))sin2(ϕ)]. 

 
     (31) 

 
Here terms with the exponents  ei(ω/c

l
)r and ei(ω/c

t
)r  describe contributions of radiated 

longitudinal and shear bulk waves,  Rl(ω,ϕ))  and  Rt(ω,ϕ)  are the corresponding reflection 
coefficients from the surface for the incident longitudinal and shear waves respectively (note 
that each of these coefficients takes account of both waves reflected from the surface - 
longitudinal and shear), and  ϕ   is the observation angle relative to the vertical direction 
(cosϕ = (z-z’)/r).  The dependence on frequency in  Rl(ω,ϕ))  and  Rt(ω,ϕ) takes account of 
impedance load resulting from the influence of buildings or other engineering structures on 
the surface.  In what follows we assume, without loss of generality, that  Rl(ω,ϕ)) = 0  and  
Rt(ω,ϕ) = 0,  i.e. consider that all the energy of radiated waves is absorbed by the structure.  
     The load-force distribution along  underground tracks may be written in the form similar 
to that for the surface tracks (see equation (27)).  For a complete train moving at speed  v  
along the track lying underground at the depth H  this distribution has the form [26] 
 

     P(t, x',y',z’)=
n

N

m =

−

=−∞
∑∑

∞

0

1
An[P(t-(x'+nL)/v)+P(t-(x'+M+nL)/v)]δ(x'-md)δ(y')δ(z’-H).  

   (32) 
 
All other notations in equation (32) are the same as in the previous sections.   
     Taking the Fourier transform of (32) and substituting it into equation (30) with account of 
(31), one can obtain the following expression for the frequency spectra of vertical vibrations 
at  z=0, x=0 and  y=y0   generated by an underground train [26]: 
 

    vz (0, y0, ω) = [iωP(ω)/4πρ0]
n

N

m =

−
∑

=−∞

∞
∑

0

1
 [1+exp(iMω/v)] exp[i(ω/v)(md + nL)]× 

 
                   (1/rm){exp[(-γlωrm/cl)+i(ω/cl)rm ]cos2(ϕm)-exp[(-γtωrm /ct)+i(ω/ct)rm ]sin2(ϕm)}.  
 

    (33) 
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Here  rm = [y0
2+(md)2 + H2]1/2 ,  cos(ϕm)= H/rm, and P(ω) is a Fourier transform of  P(t) 

described by equation (12).   In writing (33) we have taken into account attenuation in soil by 
replacing  1/cl  and  1/ct  in the exponentials by the complex values  1/cl + iγl/cl  and  1/ct + 
iγt/ct ,  where  γl,t <<1 are the constants describing "strength" of dissipation of longitudinal 
and shear waves in the soil.  To generalise equation (33) to describe the action of two axle 
loads separated by the distance  a  (the case of a bogie) one should replace  P(ω)  by  Pb(ω),  
according to (16).  
     It follows from equation (33) that, similarly to the case of surface trains (see section 4.2), 
the spectrum of ground vibrations from underground trains is quasi-discrete, with the 
maxima at frequencies  determined by the condition  (ω/v)(sd + qL)= 2πl,  where  s,q,l 
=1,2,3,...   
     Calculations according to equation (33) show that for underground trains travelling at 
conventional speeds the main contribution to the vertical component  vz  of the total ground 
vibration field at the ground surface is usually due to the radiated shear bulk waves rather 
than to the longitudinal bulk waves.   
      In the case of high-speed underground trains, the analysis of equation (33) shows that it 
has two maxima for the values of observation angles satisfying the conditions:  cosΘt = ct/v  
- for radiated shear waves, and  cosΘl = cl/v  - for radiated longitudinal waves.  Since cosΘt 
and cosΘl must be less than 1 it follows from these conditions that the maxima can be 
achieved if the train speeds are high enough and the conditions  v > ct  or  even  v > cl  hold.  
In such cases the corresponding waves waves are radiated into the ground as conical waves 
propagating at the angles  Θt = arccos(ct/v)  and  Θl = arccos(cl/v)  relative to the track.   
     The results of calculations of the amplitudes of generated ground vibrations  at  frequency  
15 Hz  (in dB re 10-9 m/s) as functions of the tunnel depth  H  for  Y0 = 30 m  are shown in 
Fig.11 for two values of train speed: v = 13.8 m/s (conventional speed) and v = 80 m/s (trans-
shear speed for the ground considered).  The vertical components of ground vibration 
velocity on the ground surface are indicated as Vz1 and Vz2  respectively for  v = 13.8 m/s 
and v = 80 m/s. The corresponding separate contributions of longitudinal and shear elastic 
waves are shown as VzL1,  VzS1 and  VzL2, VzS2.   
 
                                                        Fig. 11 here  
 
The parameters of a TGV high-speed train with N = 5 carriages are the same as in the 
previous examples. Other parameters are the following: the elastic parameters of the ground 
are  ct = 76 m/s,  cl = 129 m/s , and  cR = 70 m/s (corresponding to the Poisson's ratio σ 
=0.25), the mass density of soil ρ0  is  2000  kg/m3, and the wheel load  T  is  100 kN.  The 
soil attenuation parameters  γl,t  were chosen as 0.05, and the effect of track wave velocity 
was neglected.  
     It is seen from Fig. 11 that ground vibrations generated by an underground train travelling 
at speed  v  larger than shear wave velocity in the ground  ct  are essentially larger than those 
generated by the same train moving at conventional speed (the speed-related amplification of 
the total ground vibration field varies from about 50 dB to 20 dB for the tunnel depth H 
changing from 2 m to 100 m).  For practical values of  H  (less than 60-70 m) the 
contributions of shear waves for the given Poisson’s ratio is essentially higher than the 
contribution of longitudinal waves. For larger depths, the contributions of shear and 
longitudinal waves first become comparable with each other, causing an oscillatory 
behaviour of the resulting field versus H, and then longitudinal waves prevail.  Note in this 
connection that the difference between the ground vibration levels corresponding to the 
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contributions of longitudinal waves at  v = 13.8 m/s  and  v = 80 m/s  (about 20 dB, or 10 
times) is attributed entirely to the effect of the function  P(v,ω)  determined by equation (12) 
(see also section 5.1) since no ground vibration boom is experienced with regard to 
longitudinal waves in the case considered. Therefore, the observed additional increase of up 
to 30 dB in the resulting ground vibration field is associated with the ground vibration boom 
for radiated shear waves.  
     Generated ground vibrations (in dB re 10-9 m/s) as functions of the observation distance 
from the track  Y0  for H = 30 m at frequency 15 Hz are shown in Fig. 12 for the same values 
of train speed (v = 13,8 m/s and 80 m/s) and the same train, track and ground parameters –
curves Vz01 and Vz02 respectively.  One can see that in both cases the fields decrease with 
the distance  Y0, especially in the case of ground vibration boom in respect to shear waves.  
 
 
                                                          Fig. 12 here 
 
 
    The results of calculations of total ground vibration spectra generated by the same TGV 
train comprising five carriages (N = 5) and travelling underground at speeds v = 13,8 m/s 
and 80 m/s are shown on Fig. 13 (curves Vz1 and Vz2 respectively). The train, track and 
ground parameters are the same as in Figs.11 and 12,  H =  30 m and Y0 = 30 m.  For 
comparison, on the same figure the spectra are shown generated by the same train travelling 
above the ground for Y0 = 30 m (curves Vz1R and Vz2R). In the latter case, which was widely 
discussed in the previous sections, the Rayleigh wave contribution prevails.   
 
 
                                                           Fig. 13 here  
 
One can see that in the case of ground vibration boom which is present at  v = 80 m/s  for 
both underground and surface trains, a very large increase in generated ground vibrations is 
observed, albeit for an underground train this increase is less pronounced, especially at 
higher frequencies.  One can see that the shapes of ground vibration spectra for underground 
and above ground trains travelling at the same speeds are very similar. This implies that the 
shapes of ground vibration spectra are determined mainly by track and train geometrical 
parameters rather than by the tunnel depth and consequently by types of predominantly 
generated elastic waves.  
     We remind the reader that the low-frequency approximation used in this section to 
describe ground vibrations from underground trains is inaccurate for frequencies higher than 
10-15 Hz. To improve the situation, one can take into account the next term in the series 
expansion of the Green’s function for the problem under consideration [27]. This term is 
proportional to the product of tunnel diameter and characteristic wavenumber of radiated 
ground vibrations.   
 
 
5.2  Waveguide effects of the embankments on generated ground vibration fields  
 
Lots of interesting phenomena can be expected when high-speed railway lines are built on the 
embankments. In particular, one can mention possible waveguide effects of the embankments 
on generated ground vibration boom which have been first discussed in Ref. [4]. The 
possibility of the embankments acting as waveguides for generated ground vibrations is 
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closely related to the fact that Rayleigh surface waves associated with ground vibration boom 
are usually radiated at small angles relative to the track. This is why a dominant part of the 
radiated energy can be expected to be trapped and dissipated within the embankment itself, 
without significant leakage to the area outside. In what follows we briefly discuss the process 
of generating ground vibration boom by high-speed trains travelling along the tops of the 
embankments.  
      The effect of railway embankments on generated ground vibrations can be considered by 
means of construction of the specific Green's function for an elastic half space with an 
embankment. Such a Green’s function must take into account the internal reflections of 
generated surface Rayleigh waves from the geometric boundaries between the embankment's 
top flat and side slop surfaces, and between side slop surfaces and the low ground. For 
simplicity, we assume that elastic properties of the embankment are the same as those of the 
supporting ground. Also, we consider only reflections from the boundaries between the 
embankment's top flat surface having the width 2W and side slop surfaces, assuming that side 
slop surfaces transfer smoothly to the ground, so that no additional reflections take place.  
    The theory of Rayleigh wave reflection from the boundary between two surfaces 
intersecting at obtuse angle  Θ  has been earlier developed by the present author (see, e.g. 
[24], p. 277). The corresponding expression for the Rayleigh wave reflection coefficient has 
the form  
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where  β = π - Θ,  and  α  is the incidence angle of Rayleigh wave versus the normal to the 
boundary between the two surfaces; other notations are the same as in the previous sections. 
It follows from (34) that R is independent of frequency and is defined only by the angle β  
(measured in radians), Poisson’s ratio of the ground  σ  and the angle of incidence  α.  Note 
that the expression (34) has been derived for relatively small β and α.  Therefore, it becomes 
invalid for α approaching π/2, where  |R(α)| becomes larger than 1. To extrapolate |R(α)| for 
arbitrary α, we introduce a truncated reflection coefficient Rt(α) in the following way:  
 

    Rt(α)=  R(α) Φ(1- |R(α)|) + iΦ(|R(α)|-1),                                 (35) 
 
where  Φ(z)  is a Heaviside step function. The behaviour of the amplitude and phase of Rt(α) 
is shown in Fig. 14 for β = 300  and Poisson’s ratio σ = 0.25.  
 
                                                      Fig. 14 here  
 
For the problem under consideration, one can use the above mentioned reflection coefficient 
to represent the corresponding Green’s function for a top area of the embankment. This can 
be done in a way similar to a ray approach to the representation of the field in an ideal 
waveguide, i.e. by considering the waveguide contribution to the Green’s function in 
question as an infinite sum of Rayleigh waves radiated by imaginary sources with the 
amplitudes defined by multiples of the reflection coefficient Rt(α). Then, for a point source 
located at y’ = 0 and for observation points located in the flat top area inside the 
embankment, i.e. for  y < |W|, the resulting Green’s function has the form  
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                            Gzz(ρ,ω) = D(ω)[(1/√ρ(0)) exp(ikRρ(0)  - γkRρ(0)) +  

                                              
n=

∞

∑
1

(Rtn
(1))n(1/√ρn

(1)) exp(ikRρn
(1) - γkRρn

(1)) +  

                                              
n=

∞

∑
1

(Rtn
(2))n (1/√ρn

(2)) exp(ikRρn
(2) - γkRρn

(2))] . 

      (36) 
 
Here  D(ω) = (1/2π)1/2(-iω)qkR

1/2kt
2exp(-i3π/4) /µF'(kR)   (see also equations (13) and (14)),  

and  ρ(0) = [(x-x')2 + (y)2 ]1/2,   ρn
(1) = [(x-x')2 + (2Wn-y)2 ]1/2,   ρn

(2) = [(x-x')2 + (-2Wn-y)2 ]1/2,  
Rtn

(1)  and  Rtn
(2)  are the values of the reflection coefficient (35) taken for the angles α = αn1  

and α = αn2  defined by the expressions  αn1 = arccos[(2H – y)/ρn
(1)]  and  αn2 = arccos[(2H 

+ y)/ρn
(2)]  respectively; other notations are the same as in the previous sections.  For points 

of observation outside the embankment, i.e. for  y > |W|,  the expressions for the Green’s 
function are constructed in a similar way and include also the transmission coefficient  Tt(α)  
for Rayleigh waves passing through the boundary between flat top and side areas of the 
embankment. For shortness, these expressions are not displayed here.  The spatial 
distribution of surface vibration velocity (in arbitrary units) inside and outside the 
embankment corresponding to the above mentioned Green’s function is shown on Fig. 15.  
Calculations have been made for the frequency 30 Hz within the area 48 x 48 m2, the width 
of the embankment 2H being equal to 8 m. One can see that the embankment results in 
redistribution of Rayleigh waves radiated at sliding angles  α  relative to the embankment’s 
direction. The corresponding Rayleigh waves become trapped and propagate as waveguide 
modes, rather than as free cylindrically divergent waves.  
 
                                                      Fig.15 here  
 
     Substitution of this Green’s function into equation (30) in the way described in the 
previous sections allows calculation of ground vibrations generated by high-speed trains 
travelling along the embankments. Since the resulting expressions are too bulky and contain 
triple summation - over sleepers, carriage axles,  and imaginary sources, we consider only the 
simplest example of a single axle load travelling along the embankment at speed which is 
slightly higher than Rayleigh wave velocity in the ground.  
    Figure 16 shows the spatial distribution of ground vibration field (in arbitrary units) 
generated by a single axle load travelling at trans-Rayleigh speed  v =  47 m/s along the 
embankment of 8 m  width and with the slop angle  β = 300 over a part of a track consisting 
of 20 sleepers.  The area considered is 48 x 48 m2.  Other parameters used in the calculation 
were:  cR = 45 m/s ,  σ = 0.25, and  ρ0 =  2000  kg/m3. The track parameters are the same as 
in the previous figures, and the effect of track bending waves is neglected.  
 
                                                       Fig. 16 here  
 
     One can see from Fig. 16 that generated ground vibrations are propagating predominantly 
along the embankment where their amplitudes are much larger than in the outside area. This 
demonstrates that the embankments can act as waveguides for generated ground vibration 
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boom, reducing the hazardous impact of very intensive vibrations on the built environment. 
In the same time, the waveguide effects may result in a large increase of ground vibrations 
inside the embankment. These waveguide-induced additional vibrations of the embankment, 
which propagate at speed of the train, are expected to amplify the quasi-static bending 
deflections in the system track-ground accompanying moving axle loads. As a result of this, 
very large vibrations of the embankment might be observed at train speeds around the 
velocity of Rayleigh waves, i.e. before achieving the value of track critical velocity.  
 
 
6.  CONCLUSIONS  
 
The theory of generating ground vibrations by high-speed trains described in this chapter 
shows that if train speeds exceed the velocity of Rayleigh surface waves in the supporting 
soil a ground vibration boom occurs associated with a very large increase in amplitudes of 
generated vibrations. Crossing the track wave critical velocity results in further increase of 
generated ground vibrations, albeit not as dramatic as in the case of ground vibration boom.   
 
Recent experimental observations of ground vibration boom generated by Swedish X2000 
trains confirm the main predictions of the theory. This implies that Railway-generated 
ground vibration boom is no longer an exotic theoretical effect. It is a today’s reality for 
high-speed railways crossing soft soil, and so are “supersonic” or “trans-Rayleigh” trains.  
Builders and operators of high-speed railways must be aware of possible consequences of 
ground vibration boom, as well as dynamic rail deflections.  One can expect that, with the 
general trend of increasing operating train speeds, this phenomenon will occur in many 
countries, especially in those with railways built on soft soil.   
 
Problems associated with track-soil critical velocities may take place also for underground 
trains. In this case the first critical velocity is the velocity of shear bulk elastic waves, and the 
ground vibration boom for train speeds exceeding this velocity represents a Mach cone of 
shear waves radiated from the tunnel.  
 
Waveguide effects of the embankments may cause concentration of ground vibration energy 
radiated by trans-Rayleigh trains. This can reduce ground vibrations outside the embankment. 
However, the vibrations of the embankment itself may increase significantly. Since these 
guided vibrations propagate at speed of the train, they may amplify the quasi-static bending 
deflections in the system track-ground moving with the train.   
 
It is too early on at this stage to foresee how the phenomenon of railway-generated ground 
vibration boom and its amplification due to track dynamics effects will be reflected in future 
standards on noise and vibration from high-speed trains. However, one can expect that such 
an important parameter as Rayleigh wave velocity in the ground for the sites considered will 
be present in such standards indicating maximal train speeds beyond which excessive ground 
vibrations can be expected.   
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FIGURE  CAPTIONS  
 
Fig. 1.  Geometry of track and train - (a) and the wheel-axle pressure mechanism of 

generating ground vibrations - (b).  
 
Fig. 2.  Spectra of vertical forces applied from each sleeper to the ground (in Ns) for three 

values of train speed  v corresponding to the cases  v < cR ,  cR <v < cmin,  and v > cmin 
respectively:  v = 20 m/s  (curve P1),  50 m/s  (curve P2), and 70 m/s  (curve P3);  
frequency  f  is in Hz.  

 
Fig. 3.  Some  typical profiles of layered ground.  
 
Fig. 4.  Approximate analytical functions describing frequency-dependent Rayleigh wave 

velocities  cR(ω)  for monotonous ground profiles:   
            cd1 = (c1-c2)exp(-α’1 f) + c2,   cd2 = (c1-c2)exp(-α’2 f) + c2,   
            cd3 = (c2-c1)exp(-α’1 f) + c1,  cd4 = (c2-c1)exp(-α’2 f) + c1;   
            α’1=0.1  and  α’2 =10.  
 
Fig. 5.  Spatial distributions of the surface vertical displacements (in arbitrary units)  

generated at the frequency component f = 31.4 Hz by a single axle load moving 
through a small part of a track consisting of 10 sleepers;  the results are shown for 
sub-Rayleigh speed - (a) and for trans-Rayleigh speed - (b).   

 
Fig. 6.  Spectra of ground vibration velocity (in linear units, relative to the reference level of 

10-9 m/s) for a single axle load moving along the track at speeds from 10 m/s to 320 
m/s on the surface of a homogeneous (a) and layered (b) half space. The results are 
shown in the form of surface graphs for the frequency band 0 – 50 Hz.  Mesh: ∆v = 10 
m/s  and  ∆F = 1 Hz.  
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Fig. 7.  Ground vibration spectra (in dB, relative to the reference level of 10-9 m/s) generated 
by complete TGV or Eurostar trains travelling on homogeneous ground at sub-
Rayleigh and trans-Rayleigh speeds (respectively:  v = 50 km/h – curve Vz1 and v = 
500 km/h – curve Vz2) and on layered ground at the same speeds (curves Vz3 and 
Vz4 respectively).   

 
Fig. 8.  Ground vibration spectra (in dB, relative to the reference level of 10-9 m/s) generated 

by TGV trains comprising N = 5 equal carriages for three values of train speed  v  
corresponding to the cases  v < cR ,  cR <v < cmin,  and v > cmin respectively:  v = 20 
m/s  (curve  v1),  50 m/s  (curve  v2) and 70 m/s  (curve  v3); );  frequency  f  is in Hz.   

 
Fig. 9.  Ground vibration velocities averaged in the frequency range of 0-50 Hz  (in 10-5 m/s) 

for TGV trains comprising N = 5 equal carriages;  the resulting amplitudes as 
functions of train speed  v  (in m/s)  are shown for two values of track critical 
velocity: - cmin = 65 m/s  (curve V1a) and  cmin = 10000 m/s  (curve V2a)  (the latter 
very large value of  cmin  describes the hypothetical case when track dynamics effects 
can be ignored). 

 
Fig. 10.  Trains travelling in underground tunnels. 
 
Fig. 11.  Ground vibration amplitudes  (in dB, relative to the reference level of 10-9 m/s) 

generated by underground TGV trains comprising  N = 5 equal carriages at frequency 
f = 15 Hz as functions of the tunnel depth  H  (in m ); the results are shown for two 
values of train speed:  v = 13,8 m/s (conventional speed) and  v = 80 m/s  (trans-shear 
speed for the ground considered); the vertical components of ground vibration 
velocity on the ground surface are indicated as Vz1 and Vz2  respectively for  v = 
13.8 m/s and v = 80 m/s. The corresponding separate contributions of longitudinal 
and shear elastic waves are shown as VzL1,  VzS1 and  VzL2, VzS2.   

 
Fig. 12. Ground vibration amplitudes  (in dB, relative to the reference level of 10-9 m/s) 

generated by underground TGV trains comprising  N = 5 equal carriages at frequency 
f = 15 Hz as functions of the observation distance from the track  Y0  (in m ); the 
results are shown for two values of train speed:  v = 13,8 m/s (conventional speed) 
and  v = 80 m/s  (trans-shear speed for the ground considered); the vertical 
components of ground vibration velocity on the ground surface are indicated as Vz01 
and Vz02  respectively for  v = 13.8 m/s and v = 80 m/s.  

 
Fig. 13.  Ground vibration spectra  (in dB, relative to the reference level of 10-9 m/s) 

generated by underground TGV trains comprising  N = 5 equal carriages for two 
values of train speed:  v = 13,8 m/s (conventional speed) and  v = 80 m/s  (trans-shear 
speed for the ground considered) – curves Vz1 and Vz2  respectively; for 
comparison, the ground vibration spectra are shown generated by the same train 
travelling above the ground (curves Vz1R and Vz2R respectively) .  

 
 
Fig. 14.  Amplitude and phase of the truncated Rayleigh wave reflection coefficient  Rt(α)  

from the boundary between two surfaces crossing at the angle  Θ = 1500  (β = 300)  as 
functions of the incidence angle  α.    
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Fig. 15. Spatial distribution of the surface vertical displacements (in arbitrary units) generated 
at the frequency component f = 30 Hz by a single axle load moving over a single 
sleeper placed on the embankment  (the Greens function for the system considered); 
calculations have been made within the surface area 48 x 48 m2 for the width of the 
embankment 2W = 8 m.   

 
Fig. 16. Spatial distribution of the surface vertical displacements (in arbitrary units) generated 

at the frequency component f = 30 Hz by a single axle load moving at trans-Rayleigh 
speed  v = 127 m/s  over a part of the track consisting of 20 sleepers placed on the 
embankment;  calculations have been made within the surface area 48 x 48 m2 for the 
width of the embankment 2W = 8 m.   
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