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Abstract: 
 
In the increasing competition which pervades the automobile sector, it is necessary to 

develop simple methods to enable prediction of suspension loading level envelope in an 

early development stage. For this purpose, the FORD specified standard driving 

manoeuvres, based on kerb strike and pothole braking, inducing worst case loading 

scenarios are employed. The damaging nature of these tests and the relatively expensive 

physical prototypes make simple simulation models essential. These models should cope 

with an initial rudimentary assessment, but must suffice to predict the maximum wheel 

centre loads with a reasonable degree of accuracy. 

 

Enhanced model features are required to represent edge-type tyre deformation and 

impulsive bumper deflection. State of the art approaches are physical tyre models 

extended to rim clash modelling and rheological bumper models embedded in an multi-

body system (MBS) environment. These enhancements lead to increased complexity. 

  

The thesis proposes a minimal parameter vehicle model, tailored to predict vertical 

suspension loads caused by the FORD kerb strike manoeuvre. Since the focus is put on 

model simplicity, an in-plane bicycle model is extended to 7 degrees of freedom. Non-

linear and hysteretic characteristics of the bump-stop elements are included through use 

of a spatial map concept, based on displacement and velocity dependent hysteresis. 

Furthermore, a static tyre model is described to predict the radial stiffness against 

penetration of an edge and flat-type rigid body geometry. The full mathematical model 

is derived on the basis of the shell theory and represented in terms of few geometrical 

input parameters. A distinct tyre model, representing the tyre belt as a multi-link chain is 

also derived to confirm the assumptions made in the simple mathematical model. Model 

validation is supported through experiments at both component and system levels. It is 

shown that the bumper map concept provides an accurate, yet simple alternative to a 

rheological model, if applied to polyurethane foam type bumpers. This approach is also 

confirmed for the tyre model, substituting a comprehensive physical model approach. 

 

Keywords: Vehicle Suspension, tyre modelling, spatial map concept, multi-body 

system  
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Chapter 1: Introduction 

 

As the computation performance increased over the past years, the trend goes towards 

enhanced simulation model complexity taking more and more physical effects and 

structure details into account. A high grade model complexity enables to optimize the 

design in a final stage. However, in an advanced stage of a chassis development, only the 

main dimensions and parameters are available whereas final details are not established. 

In this stage, concept studies and basic investigations are required and model simplicity 

is preferred to complexity for an easy model set up and variation. 

 

In the advanced chassis development stage, the load assumption defines the basis for any 

following design activity. Therefore, a simple vehicle simulation model and simple 

driving events specified are beneficial for an initial load assumption, as suspension loads 

and deflections are related to both vehicle features and driving manoeuvres. Arbitrary 

manoeuvres in general lead to combined body rotation modes, a superposition of roll-, 

pitch- and yaw-motion. To analyse such events, three dimensional vehicle modelling is 

required, which does not ideally match with the desire of model simplicity. To address 

this aspect, FORD has specified worst case driving manoeuvres 'Skid against Kerb' 

(SaK), 'Drive over Kerb' (DoK) and 'Brake into Pothole' (BiP), intended to investigate 

the lateral-, vertical- and longitudinal suspension travel- and load range. As neither DoK 

nor BiP manoeuvre are expected to cause relevant roll- or yaw motion, the latter events 

are applicable to a simplified plane vehicle model approach. 

 

1.1 FORD specified standard driving manoeuvres 

The Skid against Kerb (SaK) manoeuvre describes a side impact of a sliding vehicle 

against a kerb with the intention to cause the maximum lateral loads. This driving event 

is not further considered in this thesis, dedicated to predict the vertical suspension loads. 

The DoK manoeuvre, as shown in Figure 1.1, is intended to generate the maximum 

vertical suspension force and wheel centre deflection relative to the body and represents 

the central aspect of this research project. The manoeuvre is defined by a straight 

crossing of a bar with rectangular cross section in a free roll mode decoupled from power 

train. The intention is to simulate a kerb strike. Such events cause large scale vertical 
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deflections of the suspension, in general limited by a jounce bumper element, its initial 

contact position and deformation range. The bumper engagement during the DoK 

manoeuvre is of an impulse kind nature and in most cases causes a deformation using the 

full bumper deflection range. 

The vehicle speed is specified for two velocity levels, 25 and 40 kph. Kerb height can be 

adjusted for different vehicle classes to cope with various tyre- and ground clearance 

dimensions.  

 
Figure 1.1: Drive over Kerb (DoK)  and Brake into Pothole (BiP) driving manoeuvre 

 

The BiP manoeuvre (Figure 1.2) is intended to generate the maximum longitudinal 

suspension forces and wheel centre deflection. The manoeuvre is initiated with a 100% 

braking at approximately 1.5 meters in front of a rectangular pothole.  The braking point 

is adjusted to remain a pothole entrance velocity of 35 km/h at the entry edge. As the 

brakes are blocked permanent, the wheel remains in full slide mode during the pothole 

pass. According to experience, the maximum lateral suspension load level occurs during 

the wheel clash against the rear pothole edge. To test abuse load cases, a belt to rim clash 

in contact with the kerb edge is intended for both BiP and DoK manoeuvre. 

 

 
Figure 1.2: Brake into Pothole (BiP) driving manoeuvre 
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The simple rectangular obstacle cross section geometry used in both events allows an 

easy transition into a mathematical formulation. Furthermore, the boundary conditions 

(speed level, obstacle geometry) can easily be adjusted and reproduced to physical 

testing and simulation. 

 

 

1.2 Instigation of research work 
A common feature of both tests is an impulse like jounce bumper and tyre engagement 

which cause large scale deflections over the full deformation range and a belt to rim 

clash against the kerbstone. This aspect drives the challenge for the tyre and bumper 

simulation approach aligned with the requirement of simplicity. 

In FoE, current simulation models are based on three dimensional, full vehicle MBS 

models in conjunction with a flexible tyre model, the so called F-tyre [3]. This physically 

based, comprehensive dynamic tyre model is represented by an MBS structure that takes 

structural- and pneumatic force response caused by belt and sidewall deformations into 

account. It is intended to simulate longitudinal-, lateral- and vertical force response. To 

set up and parameterise such models is a complex task and requires several standardized 

physical tests [8]. In FoE, the demand for a simplified tyre model was raised, condensed 

to cope with the limited boundary conditions in connection with the exclusive 

application to BiP and DoK application. 

Another important aspect in abuse driving simulation is the bumper dynamic force 

transfer. The current bumper simulation approach in FoE is based on a simple static 

force response curve in combination with a viscous damping. It is FoE experience and 

addressed in literature [56] that the dynamic force response of foam type bumper 

elements made of polyurethane can significantly deviate from static behaviour. Whereas 

the static force response can easily be recorded from physical testing, a damping 

coefficient can not be measured directly. This shortfall can be avoided by the use of 

rheological models that will be discussed in the subsequent literature review. With these 

models, dynamic force response features can be simulated accurately, but in general they 

do not fulfil the demand of model simplicity. Kerb strike simulations performed with the 

current simple bumper model approach revealed peak load level within a wide band 

width of twenty to eighty kN, depending on the estimated damping value. Measured 

vertical bumper peak loads recorded on a front McPherson suspension of a FORD CD 
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car achieved a level of forty kN during kerb strike tests. This uncertainty reinforces the 

need for an improved bumper simulation method that addresses the bumper specific 

hysteresis features in case of impulsive load application. 

 

 

1.3 Aim of the Project 
The aim of this project is to set up a minimal parameter vehicle model tailored to 

simulate the FORD specified DoK event. It is intended to predict the worst case vertical 

loads envelope for wheel centre and jounce bumper in the advanced development stage. 

The model shall be applicable for upfront engineering, parameter studies and plausibility 

checks based on a minimal set of input parameters. 

 

Special focus shall be set on a simple modelling approach for bumper and tyre subjected 

to impulsive kind loads caused by the nature of kerb strike events. Thus, the tyre model 

shall be condensed to the limited scope of a simplified kerb contact. It shall be applicable 

to simulate the static force response for full range tyre deflection against an edge type 

radial deflection. To cope with the demand of model simplicity, only the pneumatic 

induced force response shall be addressed, whereas the tyre structure compliance shall be 

neglected. 

 

The bumper simulation concept shall take the hysteresis features into account. Bumper- 

and tyre model validity shall be demonstrated on the basis of kerb strike relevant 

component tests. 

 

The vehicle model shall be set up for a FORD specified CD car and assessed to bumper 

measurements gained from physical kerb strike tests. Finally, a parameter study shall 

reveal the plausibility of the model results. The following literature study in particular 

addresses these items. 
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The objectives can be summarized as follows: 

• Develop a minimal parameter vehicle model, tailored for the simulation of the 

vertical suspension load after kerb strike. It shall be adapted to the FORD 

specified boundary conditions for DoK and shall also protect upgrade 

compatibility to simulate the BiP event at a later stage. 

 

• Generate a valid alternative to a rheological approach for a bumper model that 

takes the velocity induced hysteresis into account. 

 

• Derive a tyre model to simulate the pneumatic induced static force response 

against flat and edge type radial deformation. 

 

• Validate the bumper and tyre models by an assessment to appropriate physical 

testing on component level. 

 

• Validate the vehicle model equipped with the bumper and tyre simulation 

approaches on system level by a full vehicle DoK testing. 

 

• Carry out a parameter study to verify the plausibility of the vehicle model on 

basis of a specific FORD vehicle. 

 

 

1.4 Novelty 

The bicycle model as shown in Figure 1.59 at the end of the literature study, derived as 

an MBS simulation, is a known concept. The novelty aspects in this thesis are considered 

for the concepts used to simulate the jounce bumper element, presented in chapter 3, and 

the tyre simulation model, described in chapter 4. 

The jounce bumper simulation is based on a spatial map concept and takes the velocity 

related hysteresis of polyurethane type bumper elements into account. The mathematical 

concept enables the direct transfer of measured force response data into a map of 

standardized format, embedded into a feedback loop to the solver. This approach 

represents an alternative to the rheological model published in [56]. 
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A mathematical model, aimed to analyse the internal tyre structural stress and the force 

response to radial deformation, is presented in this thesis. The mathematical model 

describes a simplified tyre structure and is based on classical structure approaches, in 

particularly shell theory [58], [59], [60]. It can effectively be used to analyse the internal 

tyre structural stress and the quasi static force response against a flat- and edge type 

radial deformation. 

Beside the mathematical model, a plane, truss-type flexible ring model is discussed. This 

model is considered to be applicable for the contact deformation against arbitrary 

geometries. The virtual work principle is used in combination with a numerical iteration 

to provide solutions for a static force response curve. The flexible ring model was used 

to confirm the solutions gained from the mathematical model. Both models were 

assessed to physical test results. The virtual work principle is of advantage because it 

provides solutions without the burden involved with the solving of either an equation 

system but pays the price with a computer intensive iteration. The algorithm is casted in 

the format of 'stand alone' software, independent from the central solver used for the 

vehicle model. Both mathematical and flexible ring tyre models are based on four 

parameters derived from cross section geometry and pneumatic pressure. 
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Chapter 2: Literature study 
 

 

2.0 Structure of study 
The thesis intends to cover aspects of vehicle, tyre- and bumper dynamics subjected to 

harsh vertical driving manoeuvres. This chapter is devoted to review of literature 

addressing vehicle dynamics, with a focus on large scale vertical suspension travel or 

abusive driving manoeuvres that cause large tyre radial deformation. Subsequent, a brief 

introduction is made to general methods for modelling mechanical systems and their 

application to vehicle, tyre and polymeric element simulations. As a large number of 

vehicle, tyre and polymeric models exist, targeted for very different purposes of 

investigations, a selection of these is made with regard to harsh vertical and longitudinal 

driving events. The overview of vehicle modelling is extended to gain an insight into the 

physical aspects of the tyre contact patch and related simulation methods. With regard to 

abusive manoeuvres, a key role is envisaged for jounce bumper load transfer 

characteristics. Thus, the study is extended to a general summary of mechanical 

properties of elastomers and the commonly employed simulation approaches, where 

additionally sources dealing with bumper testing and simulation are discussed. The study 

culminates with description of underlying choices made in various modelling approaches 

in literature.  

 

2.1 Vehicle testing and simulation under abusive manoeuvres 
An abusive driving manoeuvre is intended to investigate a vehicle subjected to loads that 

are beyond the usual levels expected in the normal operational envelope of a vehicle 

usage. High/impulsive loads typically occur while traversing extreme obstacles such as 

potholes or kerb sides. Such manoeuvres reveal the system loading limits for plastic 

deformation and are also intended to confirm the so-called chain of failure event, which 

highlight failed components with defined load levels. 

  

These investigations are in general performed through physical testing and thus are quite 

cost intensive, as prototype vehicles in most cases are partially destroyed through the 

testing procedure. Therefore, there is interest in an effective simulation approach. 
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An early abusive simulation study was performed by Rai and Solomon in 1982 [1]. The 

authors set up a 3D vehicle simulation model using ADAMS, a standardized commercial 

multi-body system (MBS) software. The vehicle model incorporated 26 DoF. A simple 

tyre model, based on a linear spring and viscous damper was used. Separate jounce and 

rebound bumper models were linked through external FORTRAN subroutines to the 

ADAMS environment. Bumpers were defined as non-linear force-deflection curves, 

based on fourth order polynomial fits of measured characteristics. The simulation was 

intended to analyze the lower ball joint forces of a McPherson strut front suspension. 

Thus, the kinematics and inertias of the control arm, steering knuckle, strut and the tie 

rod were included in the MBS model. The driving manoeuvres included kerb side 

impact, rail track and chuck hole crossing as shown in Figure 2.1. The intention was to 

define an envelope for the ball joint loads. 

 

 
Figure 2.1: Kerb side impact, rail track and chuck-hole crossing abusive manoeuvres [1] 

 

The authors published the various force traces obtained for the ball joint load time 

history (Figure 2.2) and concluded that a more comprehensive tyre and bumper 

simulation method would be required for the proper simulation of vertical suspension 

loads. 

 
Figure 2.2: Ball joint load simulation results after railroad crossing [1] 
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Unfortunately, no scales were provided with their graph plots (Figure 2.2).  

 

Appropriate tyre models which included features allowing a more detailed coverage of 

effects induced by kerb strike events were proposed by Bäcker and Gallrein [2] and 

Gipser [3]. These models enable deformation of a belt, extending to the wheel rim clash, 

which is typically encountered during kerb strike.  

 

Haga et al. [4] assessed these models for durability studies in the first instance. They set 

up a full quarter car front suspension on a rotating drum, shown in Figure 2.3 in order to 

activate tyre excitation. The drum was equipped with elliptic cleats of different sizes up 

to a vertical height of 46 mm in order to cause longitudinal and radial tyre actuation. 

 
Figure 1.3: Drum rig set up and 46 mm height cleat geometry [4] 

 

Data acquisition was performed for speed of 20 and 40 km/h. An assessment of flexible 

tyre belt models demonstrated close correlation with the measurements of the vertical 

force as shown in Figure 2.4.  

 
Figure 2.4: Vertical force assessment for a 48 mm cleat at 20 km/h [4] 
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The illustration on the right side of the Figure reveals that even at the maxium vertical 

force position, the cleat does not cause a belt-to-rim clash condition, which would be 

expected for an abusive kerb strike event. Thus, Haga et al. [4] extended the testing 

conditions to large tyre deformations and applied it to a single tyre test rig, tailored for 

severe events [5]. The drum rig was replaced by a horizontal test bench to establish roll- 

over kinematic conditions which matches closer to prevailing longitudinal loading 

conditions. These are expected for obstacle roll-over manoeuvres on flat ground. A cleat 

crossing event, as shown in Figure 2.5, addresses these issues. Consequently, the CDTire 

model 40 (addressed later in the thesis) was extended by Bäcker and Gallrein [6] to cope 

with very large tyre deformations that cause a belt to rim clash conditions. 

 

 
Figure 2.5: Principal set up and operation of the Fraunhofer LBF horizontal test rig for 

large deformations [6] 

 

Vertical and horizontal forces were recorded for simulation studies involving use of a 

cleat of 40 mm height, using a 205/45 R 16 sized tyre at 5 km/h as shown in Figure 2.6. 

 
Figure 2.6: Longitudinal (FX) and vertical force (FZ) after cleat crossing at 5 km/h for 

tyre size 205/45 R16 [6] 
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 These sources demonstrate the general force response characteristics of a full range 

radial tyre deformation, followed by a moderate belt to rim clash. This effect is seen as a 

relevant feature which needs to be appreciated in any simulation study of kerb strike 

events. 

 

An alternative proposal for a full vehicle simulation on basis of an MBS model that 

includes FEM structures was performed by Yoon and Kye [7] in 2004. The vehicle 

model was set up as a hybrid approach on the basis of an MBS structure, embedding 

single FEM component structures. Figure 2.7 illustrates the model concept, exemplarily 

for the lower control arm of a McPherson front suspension. 

 

 
Figure 2.7: Lower control arm FEM structure embedded into MBS vehicle model [7] 

 

The vehicle model was equipped with a flexible tyre model using FTire, provided by 

Gipser [8] to simulate a severe pothole crossing at 50 km/h and a five inch (12.7 cm) 

square kerb profile, crossing at a speed of 30 mph. The FTire is addressed in more detail 

in the following tyre paragraph. Results for the vertical wheel centre forces are shown in 

Figure 2.8. 
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Figure 2.8: Pothole geometry and vertical wheel force simulation results for pothole- 

and kerb crossing [7] 

 

It is noted that the peak load reported for the pothole braking manoeuvre exceeds the 

level observed for the kerb strike event. The following item addresses general methods 

used for structural analysis. 
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2.2 General simulation approaches used for structure analysis 
Common to all physical-based simulation approaches, aiming to model machines and 

mechanisms is the problem of defining appropriate structural properties and represent 

these in a mathematical formalism. Broadly, three main methods for description of 

structures are used [9]: 

 

- continuous structure 

- Finite Element (FE) structure and 

- Multi – Body system (MBS) structure 

 

A vehicle, as any other physical solid structure, by its nature is a continuous system. 

Mass and stiffness are distributed continuously within the structural geometry. However, 

analytical formulations which describe a continuum are known for simple structure 

geometries only, such as rope, beam, plate, disc or shell elements. Unfortunately, the 

number of solutions found for such structures is even more limited, because certain 

simplifying assumptions have to be made, such as homogeneity, isotropy as well making 

restrictive conditions [10], [11]. As the result of these shortcomings, the continuous 

structural approach is not suitable for detailed overall vehicle modelling, but remains 

useful to analyse discrete problems such as a modal structural analysis e.g. applied to an 

elastic ring representing a tyre belt [12]. 

 

Finite Element structures consist of elastic, straight line edged elements endowed with 

inertial properties [13]. The elements are linked by nodes and therefore approximate the 

structural geometry by a polygon contour (grid). The element stiffness and inertial 

properties are usually idealized by shape functions derived from beam, plate or shell 

theories and are related to the grid nodes which transmit load. The sub-division of a 

structure into elements (discretization), in general, is performed using numerical 

algorithms. This process results in a set of linear equations according to the number of 

elements. In case of improper discretization, e.g. large element size not suitable to 

recognize localized conditions, the numerical results found for stress and strain can 

significantly deviate from the intended real physical structural behaviour. On the other 

hand, a fine level of discretization can easily raise the number of equations to an 

excessive level. Thus, a convergence study is needed to establish an appropriate size and 
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number of elements. FE structures are mainly used for static stress-strain and modal 

analyses, but in general exceed the computational available power to simulate 

comprehensive driving manoeuvres in the time domain. 

 

Other than the FEM, the Multi-Body system approach, as applied in this thesis, is based 

on the concept of sub-dividing a continuum into a set of linked single elements. 

Structural elastic and inertial properties are addressed separately in the model by two sets 

of elements. Elasticity and damping are described by massless spring and damping 

elements which link the structural elements (these are the system compliances), whereas 

the inertia properties are represented by rigid bodies only. In contrast to the FEM 

approach, the MBS structural sub-division depends on the engineering judgement 

intended to align the properties of the structural model with the simulation task. This 

implies that different simulation purposes in general would lead to a unique model 

architecture. 

 

1.2.1 Mathematical formulation of an MBS system 

The rigid bodies of an MBS structure are defined by their inertia properties, their 

position and orientation in space and by the nature of their linkages to other bodies and 

any attachments to the ground [16]. The mathematical formulation is condensed to the 

dynamic force balance comprising: 

- inertial forces of the rigid bodies 

- structural internal forces 

- external applied forces 

 

This force balance leads to a set of second order ordinary differential equations; the 

equations of motion. In general, each rigid body has six DoF, three translational and 

three rotational. For each DoF, an equation of motion can be set up. Thus, the number of 

equations corresponds to the number of 6p, where 'p' stands for the number of bodies 

used in the model architecture. However, the total number of system DoF can be reduced 

by kinematic constraints such as joints, or restraints such as massless bars or straps. 

These constraints can be of holonomic or non-holonomic in nature, depending on 

whether their formulation depends on the element location only (holonomic) or their 

state of motion (rheonomics). Furthermore, constraints can be separated for being time-
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dependent (rheonomic) or time-independent constraints (scleronomic) [16]. By taking 

this into account, the system number of DoF reduces to f = 6p – m, where 'm' represents 

the number of constraint functions. 

 

1.2.1.1 System kinematics 

All approaches applied to set up the equations of motion initially depend on the 

kinematic formulation of the velocity and acceleration state. This state needs to be 

derived upfront (initial conditions) for each rigid body of the system. The system state is 

defined by the components of the position vector T
fqqq ),...,,( 21=q  which contains 

all the system DoFs. These coordinates are known as the generalized and represent the 

minimal set, mandatory to comprehensively describe the system motions. To analyse this 

minimal number of degrees of freedom, the Chebychev-Gruebler – Kutzbach equation 

can be used [14], where f is the number of generalized coordinates, p = number of 

bodies, c = number of constraint elements in the system and Nj stands or the number of 

constraints of the j'th constraint element. 

∑
=

+−=
c

J
jiNpf

1
)1(6          (2.1) 

 

An instant derivation of the CoG (centre of gravity) velocities from generalized 

coordinates can be a difficult task, especially if complex kinematic constraints need to be 

recognized. Alternatively, the system state is also defined by the three components of a 

position vector T
SSSS zyx ),,(=r derived for an inertial coordinate system. The vector 

points on the CoG position of each rigid body and is extended by three orientation angles

γβα ,, , which describe the body rotational orientation relative to the inertial system. 

Besides the DoF, the position vector includes also the kinematic constraint formulations. 

Despite the fact that the minimal parameter vehicle model proposed in chapter 4 does not 

contain kinematic constraints and thus, a derivation of constraint formulations was not 

applied in this thesis, the following shall present the general method of how constrained 

formulations can be derived. 

Location and position vectors are related by the Jacobian matrices for translation TJ  and 

rotation RJ  [14], [15], [16]. Matrix TJ  describes the relation between the Cartesian 

position vectors Sir and the generalized coordinates q  of the MBS system. 
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This matrix allows the formulation of the translational velocities and accelerations of the 

CoG positions relative to the inertial system by means of the matrix operations: 

 

SiTiTiSi

SiTiSi

vqJqJv
vqJv





+⋅+⋅=

+⋅=
        (2.3) 

 

where: 
T

SiSiSiSi
Si

T
SiSiSiSi

Si t
z

t
y

t
x

tt
z

t
y

t
x

t 







∂
∂

∂
∂

∂
∂

=
∂
∂

=







∂
∂

∂
∂

∂
∂

=
∂
∂

= 2

2

2

2

2

2

2

2

,,,,,
r

v
r

v   

and: 
T

f
T

f

t
q

t
q

t
q

tt
q

t
q

t
q

t 










∂

∂

∂
∂

∂
∂

=
∂
∂

=







∂

∂

∂
∂

∂
∂

=
∂
∂

= 2

2

2
2

2

2
1

2

2

2
21 ,...,,,,...,, qqqq 

 

The rotational Jacobian matrix RiJ  describes the relationships between the infinitesimal 

components of the rotation vectors is  and the generalized coordinates q . These 

differential components of the rotation vectors T
i qs ∂∂  are derived from the total 

rotation matrix iS (which may be either of roll-pitch and yaw or Euler transformations): 
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by the partial derivation: 
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which then establishes the Jacobian matrix of rotations RJ  
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and finally leads to the matrix equation for the angular velocities and accelerations: 
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As mentioned before, the effort required to derive the kinematics of the translational and 

rotational body motions by means of matrix operations pays back in case of complex 

systems, as the process can be performed in a fully schematic manner. 

 

1.2.1.2 System dynamics formulation by equations of motion 

A significant volume of literature exists in dealing with the derivation of the equations of 

motion e.g. [17], [18], three general concepts are commonly used: 

- Newton – Euler method 
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- D' Alembert principle 

- Constrained Lagrangian dynamics 

 

(a)- The Newton – Euler formulation 

Historically, the Newton – Euler approach marks the origin method. After kinematic 

formulations are established by the vectors and matrices SiSiiSiiSi ωvωvSr  ,,,,, , the 

equations of motion are derived separately for each single body with regards to 

translation (Newton) and rotation (Euler). This leads to two matrix equations for the 

forces and moments ipi mf ,  by making use of the principles of linear and angular 

momentum as: 

 

iiPiiPiP

Siii m
ωJωJm

vf
⋅+⋅=

⋅=



        (2.5) 

 

In the general case discussed here, the vectors iPi mf , contain both, external applied 

forces EiPEi mf , and the internal reaction forces respectively, moments: ZiPZi mf , . 

The (3, 3) matrix iPJ  represents the rotational inertial tensor for each of the 'i' rigid 

bodies, aligned parallel to the inertial system, thus: 
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Similar to the schematic approach, applied for the kinematic formulations, the Newton – 

Euler equations of motion can now be set up in a format of standardized matrix vector 

operations by using: 

 

iP
T
iiiP JSSJ ⋅⋅=   

 

in combination with the Jacobian matrices derived before to express iSi ωv , . This leads 

to: 
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),,(),,()(),( tttt qqqqq dgqM  =+⋅         (2.6) 

 

where M describes a (6p,f) mass matrix, g contains coriolis and centrifugal force vector 

and d describes the vectors of the active external forces Ed and the internal reaction 

forces Zd . The latter forces, in general, are unknown but can be eliminated by a left side 

multiplication with the (f,6p) total Jacobian matrix ges
TJ . 
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which then appears in its final format as: 
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      (2.7) 

 

where the first term summarizes the inertial forces and moments, followed by the 

gyroscopic and centrifugal components and the generalized forces on the right side of the 

equation.  

 

(b)- D' Alembert principle: formulation using the virtual work principle 

For the case that the internal reaction loads ZipZi mf , , caused by system constraints are 

not of interest, the derivation of the equations of motion can be simplified by applying D' 

Alembert's principle of virtual work [19]. By the nature of holonomic constraints, its 

reaction forces Zd  do not contribute to the virtual work, as these forces are orthogonally 

applied to the bodies DoF. Thus, their scalar product with the generalized coordinate 

vector is zero always: 

 

0=⋅ qd δT
Z  
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Thus, the task reduces to the formulation of the virtual work equations for each system 

DoF to those of inertial and potential forces only. 

 

(c)- Lagrangian dynamics 

An even more sophisticated method was developed by Lagrange, who extended the 

D'Alembert's principle of virtual work to include the system kinetic energy kE [16]: 

 

( )∑
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+⋅=
p

i
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T
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12
1 ωJωvv        (2.8) 

 

As shown for Newton – Euler, the translational and rotational velocities iSi ωv ,  can be 

derived by using Jacobian matrices that in addition are used to derive a generalized force 

vector d as follows: 
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The forces and moments iPi mf , contain both, external and reaction loads applied to each 

as:  

 

ZiPEiPiPZiEii mmmfff +=+=  

 

The generalized forces d are related to the kinetic energy according to the Lagrange 

equation  
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After applying partial derivatives with respect to the generalized coordinates qq , and 

time, the equations of motion appear in its final matrix format as: 
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),,(),,()(),( tttt qqqqq dgqM  =+⋅  

 

For the special case, where the applied forces can be considered to be conservative 

(potential forces like gravity or spring forces that cause no deviation of the system's 

energy state), the generalized force vector d can be expressed by the potential energy  
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where EW represents the work applied by external forces and the Lagrange formula 

exhibits in the format 
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This expression was used for the derivation of the equations of motion for the vehicle 

model set up in this thesis. 

 

1.2.1.3 Numerical treatment of equations of motion 

To solve the equations of motion derived for a mechanical system, in general represented 

as a coupled set of ordinary second order differential equations, a mathematical 

integration is required. Analytical solutions in the frequency domain are applicable to 

systems of a few degrees of freedom only, e.g. quarter car suspension [20], [21]. For 

more detailed models, a numerical solution in the time domain is appropriate. From the 

large number of numerical methods existing, the Runge-Kutta integration turns out to be 

universally used, because of its good balance between accuracy and numerical effort. 

This is described in the appendix A, numerical methods used, and in [22], [23]. 
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2.3 Vehicle simulation models 
In general, the purpose of a vehicle model is to analyse its dynamic response in: 

 

- longitudinal 

- lateral and 

- vertical 

 

directions for defined driving manoeuvres. The manoeuvres themselves can be 

categorized as addressing one of the following items:  

- handling 

- comfort 

- NVH 

 

The handling describes the vehicle behaviour subjected to lateral and longitudinal tyre 

patch forces developed in cornering, braking and accelerations. Such events are 

performed on relatively even roads of long wave low frequency, vertical contour 

profiles. Force transfer is mainly determined by the tyre to ground contact friction 

characteristics. 

 

In case of rough, short wave road profiles like a cleat, the vertical excitation dominates 

the aspect of a vehicle comfort ride analysis. 

 

An NVH analysis is intended to investigate the relevant modal behaviour with regards to 

the system eigen-frequencies. The emphasis is put on the system response for a variety 

of the excitation frequencies (frequency sweep). Whereas NVH investigations in general 

are restricted to small amplitudes, handling and comfort ride analysis can also include 

large displacement excitations. Thus, the first two categories; handling and comfort, can 

be separated in terms of the severity of their impact upon the vehicle system, namely: 

- durability and 

- abuse 

 

Durability driving events are used to generate component load time histories for the 

purpose of strength and fatigue analysis and provide the database needed to confirm the 
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expected lifetime of the system. These tests should cover the operational loads 

considered for a normal customer usage profile, whereas abuse manoeuvres should 

confirm the envelope of the system load limits for component plastic deformations 

(failure criteria). They are also intended to reveal the chain of evnts leading to failure, as 

mentioned earlier. This concept is aimed to avoid the transfer of excessive loads to those 

suspension components that must not be isolated for safety reasons, such as lower ball 

joints in a McPherson strut. These so-called victim components, e.g. the lower control 

arm of a McPherson suspension, are designed to yield at a defined load level, tailored to 

relax the load path by plastic deformation in an abuse case. 

 

It is a matter of fact that the ideal vehicle model to simulate arbitrary driving manoeuvres 

does not exist in comprehensive sense. Thus, the model concept in general needs to be 

adopted for simulation purposes. A model, that combines all the six degrees of freedom 

(three dimensional, full vehicle model e.g. [24], [25], will necessarily lead to a high 

degree of complexity. It remains an engineering task to condense a model to those 

degrees of freedom that are relevant for the analysis of the dynamic behaviour within the 

frequency range of interest. The decision as to which degrees of freedom are relevant for 

simulation purposes depends on the driving manoeuvre to be analysed. In the case of a 

straight kerb crossing/climbing event, no relevant roll motion is expected. Therefore, the 

model complexity can be condensed to cover an in-plane motion only. Models, 

condensed to contain the essential relevant degrees of freedom only, are called minimal 

model and can be found in e.g. [21], [26]. These may be considered as dynamics within a 

reduced configuration space. Such models can effectively be used for optimization tasks 

as demonstrated in [27]. The following discussion about existing vehicle models is 

ordered by degree of complexity and focuses on vertical load simulation studies. 

 

2.3.1 Quarter car suspension model 

The most rudimentary model to study pure vertical body motions is the quarter car 

suspension model shown in Figure 2.9 [21].  
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Figure 2.9: Quarter car suspension model [21] 

 

The model comprises two lumped masses, the un-sprung wheel m1, including brakes and 

suspension and the sprung body mass m2, representing a quarter of the vehicle body. The 

tyre stiffness is given as k1, whilst k2 is an equivalent stiffness to represent the vertical 

vehicle suspension. Damping is assumed to be viscous and is neglected for the tyre. 

Longitudinal and lateral response, as well as rotational body motion (pitch, roll and yaw 

rigid body modes) are neglected. For the assumption of linear spring and damper 

elements, an analytical solution can be readily obtained in the frequency domain which 

allows the mathematical formulation of a transfer function H to describe the relationship 

between an input signal 0ẑ (harmonic displacement excitation caused by the road profile) 

and the output signals 21 ˆ,ˆ zz  (motions of masses m1, m2). 
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By means of Fourier series, the method can be extended to the application of an arbitrary 

periodic signal, which can be transformed into a set of single harmonic functions. A 

superposition of the single harmonics reconstructs the original signal. In case of a linear 
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system, also the transfer functions found for each single harmonic excitation of the set 

can be superimposed to analyse the system response [21]. 

 

Models like this are mainly used to describe ride comfort effects and to detect the 

relevant frequency bands where amplified excitation of the masses m1 and m2 are 

observed. 

 

2.3.2 Plane vertical vehicle models 

The structure concept of a quarter car suspension model can be extended to include also 

the pitch motion by using a planar model, also known as a bicycle model. Models for 

different applications are shown in Figure 2.10. 

 

 
Figure 2.10: Samples for plane vehicle model architecture [21] 

 

This concept decouples the front and rear axles, but integrates them into the vehicle 

body. The approach can easily be extended to allow the application of longitudinal loads 

by introducing an additional D0F as described in more detail in chapter 2. 

 

2.3.3 Spatial vehicle models 

To also include roll and yaw rotations, the model needs to be extended to a spatial model 

as shown in Figure 2.11. 
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Figure 2.11: Three dimensional vertical model [21] 

 

This concept can further be improved in order to enable an analysis of bending and 

torsion modes by discretisation of the body structure as shown in Figure 2.12. 

 
Figure 2.12: Three dimensional model and warp body mode for  

discretised body structure [21] 

 

Although such models can still be analysed by linked transfer functions [21], the 

modelling in the format of an MBS system, as already described, is seen as the more 

appropriate approach and, therefore, is preferred by most research workers. 

 

2.3.4 Spatial models that include suspension kinematics 

One thing that the vehicle models discussed so far have in common is that a detailed 

modelling of the suspension kinematics is generally neglected. Furthermore, the non- 

linear character of the suspension force response, typically seen at large wheel travels, in 



   Chapter 2: Literature study 
 

 27 

the state of bumper engagement, are not considered. An example for a model approach 

that addresses these items was presented by Rahnejat [14] on the basis of a double 

wishbone front quarter suspension shown in Figure 2.13. 

 
Figure 2.13: The quarter SLA suspension model [14] 

 

The suspension consists of five parts, two control arms, steering knuckle, spindle and 

wheel, subjected to a vertical load defined by the quarter of the total vehicle mass of 

1600 kg. All suspension parts are considered to possess translational and rotational 

inertia, linked by idealized spherical (ball joints) and revolute joints (bushings). The 

model is subjected to a single bump crossing, where the tyre patch motion, imposed by 

the bumper contour, was derived from a kinematic roll over trace. The event results in a 

heavy impact taken by a vertical jounce bumper. Bumper element and tyre force 

response W are modelled as follows: 

dt
dzCKW n += δ          (2.11) 

 

In this formula, K is the tyre stiffness, C is a (viscous) damping coefficient, dz/dt 

describes the damper actuation speed, and bumper deformation velocity and δ stands for 

the contact deformation of tyre respectively bumper. By choosing the power n to be 

smaller, equal or greater than unity, a regressive, linear or progressive spring 

characteristics can be established individually for tyre or bumper. Figure 2.14 illustrates 
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the kinematic deflection and simulation results gained for the bumper force at time 

instant t = 0.4 sec. 

 
Figure 2.14: Jounce bumper reaction force and animated sequence of suspension 

articulation [14] 

 

This result already demonstrates the necessity of a structural invariant simulation 

approach by recognizing a bumper model for the prediction of a vertical force level 

transferred to the body structure. To further improve simulation accuracy, a general trend 

is to increase the level of model detail. For the application to vertical load simulation, the 

main focus is set on the simulation of bushings, bumpers and tyre behaviour under 

dynamically applied loads. 

 

A further example for a fully non-linear model approach that includes bushings and a 

rigid tyre model was presented by Ammon et al. [28]. The authors propose a modular 

model architecture where the substructures as the tyre, hydraulic steering, bumpers etc, 

are linked to a core vehicle model. This architecture combines modules of large 

difference in stiffness. To avoid a common small integration time step size for the entire 

model, adequate to cope with the 'stiffest' subsystem, a decentralized solving and 

independent time step size control was realized in the solver algorithm. Special 

emphasise was put upon the tyre model, a distinguished rigid ring approach called BRIT 

(Brush and Ring Tyre Model). A more detailed description of tyre and bumper 

simulation approaches is given below. 
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2.3.5 Vehicle model parameter set up 

To set up a model, its parameters, such as inertial properties, stiffness and damping 

coefficients need to be established. Two approaches are common practise: 

- Direct parameter measurement performed for single components 

- System response parameter identification 

 

The first item can be seen as a classical approach [29]. The parameters are established by 

individual component analysis / measurements. The latter method (system response) 

requires the existence of a parametric model in advance of the parameter identification 

process. A system response measurement is embedded into a feedback loop with the 

model for a recursive identification of the specific model parameters [30]. 

 

It can be observed that the number of parameters required to set up the model in general 

increases with model complexity. 

 

 

2.4 Tyre simulation models 
The tyre is the direct and exclusive interface to the ground and therefore a key element 

for vehicle dynamics. As discussed for the vehicle model, the purpose of a tyre model is 

to simulate longitudinal, lateral and vertical dynamics. With the thesis intention to be 

focused on the simulation of DoK, the emphasis is put upon the vertical and longitudinal 

aspects of tyre mechanics and simulation approaches. In general, two modelling 

approaches are identified: 

- mathematical model 

- physical modelling 

 

The intention addressed with a mathematical model is to establish appropriate shape 

functions that replicate common characteristics known from recorded force response 

traces. This approach avoids the need to consider the physical mechanism of action, 

which otherwise needs to be realised in a physical modelling concept. A mathematical 

formulation, which describes the common shape of the force response trace, can be 

derived for e.g. a polynomial. Equipped with a unique set of coefficients (parameters), 

the formulation can be adapted to best fit the recorded trace.  
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2.4.1 Mathematical tyre models 

An example for a mathematical model, intended to calculate the tyre vertical force 

response caused by a radial penetration against a flat rigid ground, is given by Rahnejat 

[14]: 

 

dampstiffvert WWW ±=          (2.12) 

 

The two components mark the tyre stiffness and damping terms, where the damping 

Wdamp is positive for jounce and negative for rebound. The stiffness term Wstiff is 

represented by the vertical tyre stiffness value K, the radial deflection δ  and an 

exponent n. As the static force response against radial belt penetration can be of 

progressive, linear or regressive character, depending on the geometry of the penetrating 

body, an exponential function was chosen:  
n

stiff KW δ⋅=  

The exponent n typically reveals values around 1.1 for flat tyre patch contact to rigid 

ground (progressive characteristics) and is found to be less then one (regressive) for edge 

type contacts. A quasi static force response shape against flat ground in the absence of 

damping is shown in Figure 2.15. 

 
Figure 2.15: Vertical tyre force (stiffness contribution) [14] 

 

The damping term depends on the radial tyre deformation rate over time.  
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dtdCWdamp /δ⋅=  

 

Such mathematical model concepts can be categorized as a heuristic approach and can 

also be derived for the lateral and longitudinal force responses as shown in [31], [32], 

[33], but in contrast to the vertical force response characteristics, the lateral forces acting  

in plane of tyre patch depend significantly on friction. Therefore, some general 

characteristics of rubber contact friction will be addressed before these models are 

presented. 

 

2.4.1.1 Tyre patch contact friction properties 

Rubber friction is velocity (rate) dependent and thus can be modelled using viscoelastic 

elements. A general variation of friction coefficient µ  with sliding velocity v is shown 

in Figure 2.16, taken from [21].  

 
Figure 2.16: Total friction components from adhesion and hysteresis [21] 

 

The graph shows the total friction coefficient µ  with the sliding velocity V. The total 

friction characteristics can be explained as a superposition of two components, adhesion 

and hysteresis. The adhesion describes the bonding forces on basis of single molecule 

contact (poles). The integral value of the poles distributed over the tyre contact patch 

area determines the adhesive component of the friction coefficient. In the sliding mode, 

instant bonding forces of single molecule will cause a stretching of linked molecule 

chains directed in plane of the sliding contact area, until bond braking occurs at the limit 
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of adhesion. Based on this concept, the pole contact force frequency increases with the 

sliding velocity and, in an analogy with the case of resonance, the adhesion losses 

achieve a maximum at a specific excitation frequency. This frequency is a specific 

material property of both the rubber and ground surfaces. 

 

The second component takes the roughness of the contact surface into account. An 

uneven surface contour enforces a molecule chain actuation vertical to the sliding 

contacting plane. Therefore, flat surfaces cause a smooth increase of the friction 

resistance with sliding speed, whereas rough surface reveal a higher gradient. Thus, the 

accumulated work caused by the vertical pole motion (hysteresis) continuously increases 

with the sliding speed. 

 

2.4.1.2 Brush model 

The descriptive brush model developed by Willumeit [21] allows a simple mathematical 

formulation of the tyre lateral and longitudinal force responses in conjunction with the 

above mentioned contact friction characteristics. Because the brush model in conjunction 

with the rubber contact friction behaviour is fundamental for the understanding of 

Pacejka's Magic Formula tyre model (discussed later), the brush model is briefly 

highlighted here. Willumeit [21] considers the belt as a flexible band, equipped with 

radial brush elements. After transition into the contact area, these brushes bend and cause 

discrete elemental reactions which represent the linear shear stress distributionτ . A 

brush bending condition for free roll motion in absence of driving or braking wheel 

moments is shown in Figure 2.17. 

 



   Chapter 2: Literature study 
 

 33 

 
Figure 2.17: Brush model [21] 

 

A kinematic relation for the belt and brush end velocities is determined by the difference 

of the radii of belt and ground. In case of a driving moment, the belt velocity Vb 

increases and decreases in braking. Thus, driving and braking slips can be defined as 

follows: 

 

Vs
VbVs

Vb
VsVb

brdr

−
=

−
= δδ        (2.13) 

 

It is noted that the condition shown in Figure 2.17 confirm a negative driving slip 

although the accumulated shear stress is zero. 

 

Figure 2.18 a, b demonstrate the shear stress distribution for no slip (Vb = Vs) and under 

slip conditions (Vb > Vs). The model is based on the assumption that the initial shear 

state 
0τ  which describes the brush shear condition in transition to ground, shown at the 

left hand side of the tyre patch contact, remains constant. This is assumed to be 

independent of the actual drive or brake slip level. Furthermore, the shear stress is 

considered to change linearly along the contact length, depending on the slip. Although a 

physical slip relative to ground is considered for the belt, a bonding contact to ground is 

assumed for the brushes in bending mode for any slip level (a) and (b) in Figure 2.18. 
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Figure 2.18: Brush model for zero- and positive increasing driving slip [21] 

 

The maximum shear stress is reached for the brushes in transition to the sliding mode (c) 

when the bending forces exceed the friction limit as indicated by the dashed line. The 

limit is defined by the level p⋅µ , whereµ  is the tyre patch friction coefficient and p the 

contact pressure, assumed to be constant over the tyre patch length. A circumferential 

force Fu, directed longitudinal to the tyre contact patch, can be derived from the integral 

of the shear stress over the tyre patch area of width b. Thus, 
)( xτ  is a linear shape 

function depending on the prevailing drive slip condition
drδ . 

∫ ⋅⋅=
l

x dxbFu
0

)(τ
         (2.14) 

The integral achieves its maximum value for the sliding condition along the full contact 

patch length (Figure 2.18 d). 

 

Similar considerations can be made for a brake slip condition. Figure 2.19 shows the 

characteristic shape of a longitudinal force in the tyre patch as a function of drive and 

brake slip for the assumption of a constant friction coefficient. 
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Figure 2.19: Longitudinal friction force Fu as function of driving slip for constant 

friction coefficient [21] 

 

With this assumption, the aspects discussed for adhesion and hysteresis with regards to 

their affect on the friction coefficient, have been neglected thus far. The model was 

therefore extended to a case of variable friction for the sliding brush and by applying the 

friction coefficient as a function of slip. In Figure 2.16, it is visible that the adhesive 

friction initially rises with slip, but drops in the transition to hysteresis-induced friction. 

This leads to a drop in friction force at higher slip values as indicated in Figure 2.20: 

 
Figure 2.20: Longitudinal friction force Fu as function of driving slip for slip dependent 

friction [21] 

 

These aspects are incorporated in the 'Magic Formula' tyre model as described below. 
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2.4.1.3 Pacejka's 'Magic Formula' 

Analogous considerations, as applied for the longitudinal force response, can be assigned 

also to steady state side force and reaction moment behaviour. This leads to similar 

characteristics for the self-aligning torque and slip angle as shown in Figure 2.21.  

 

 
Figure 2.21: Steady state tyre characteristics [32] 

 

Pacejka et al. [32] derived a common mathematical formulation, which commonly fits 

for all force components, known as 'magic formula'. The equation can be tuned to fit the 

curves by adjusting four coefficients B, C, D and E, where: 

 B = stiffness factor, C = shape factor, D = peak factor and E = curvature factor 

where: Sh = horizontal shift, Sv = vertical shift 

 

The 'Magic Formula' is: 

 

{

ShXx
SvxyXY

xBxBExBCDxy

+=
+=

⋅−⋅⋅−⋅⋅⋅=
)()(

)]}arctan([arctan(sin)(    (2.15) 

 

Figure 2.22 illustrates the effect of coefficient variation, in this case the curvature factor 

E was varied. 
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Figure 2.22: Coefficients appearing in tyre magic formula [32] 

 

The mathematical models, in general, are very effective with regards to calculation time, 

as they are analytical as opposed to numerical. On the other hand, they allow neither an 

insight nor interpretation with regard to the structural system behaviour during load 

transfer. The examples addressed in this review are restricted to quasi-static applications 

or steady state conditions only. To obtain a better understanding about cause and effects 

and also to include dynamic features into the simulation, physical models may be 

preferred, although additional effort for the numerical treatment needs to be taken into 

account. 

 

 

2.4.2 Physical tyre models 

Other than mathematical models, the physical tyre modelling is aimed to describe the 

force transfer by addressing the inertial and elasticity properties of the tyre structure. 

This can either be achieved by a direct analytical formulation of the continuous structure 

(e.g. ring model) or based on a transfer of the continuous tyre structure in discrete 

elements as discussed for the vehicle structure concept previously.  
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2.4.2.1 Rigid ring model 

From a descriptive viewpoint, the assumption of a single rigid ring element represents 

the most rudimentary approach for a continuous tyre structure (see Figure 2.23). 

 
Figure 2.23: Schematic representation of the rigid ring model [35] 

 

The ring has a mass and represents the rotational and lateral inertia of the tyre. In case of 

a rotation, it also can take gyroscopic reactions into account. As the elasticity properties 

are neglected in a rigid ring, the tyre structural stiffness and damping properties are 

addressed by visco-elastic elements to simulate longitudinal, lateral and radial load 

transfers from the tyre contact patch to the wheel rim. The ring contour describes the 

road profile depending on the contour curvature. To model the contact with the ground, a 

slip model, such as the brush model, can be appended. An example for a rigid ring 

model, available in a commercial software package, was developed by Oertel and 

Fandre, the so called 'Reifenmodel für Komfortuntersuchung' or RmodK, also known as 

the Comfort Durability Tyre (CDTyre). Its simplest representation is the model 20, 

shown in Figure 2.24. It is designed as a planar structure, intended for ride and comfort 

analysis, applicable to long wavelength surfaces [34]. 
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Figure 2.24: CD Tyre Model 20, resp. RmodK20 [34] 

 

It is obvious that the scan properties of a rigid ring model are limited to smooth ground 

profiles and cannot easily cope with the demand for a realistic roll over simulation if 

applied to a short wavelength road contours or obstacles such as a cleat. To distinguish 

the model response capability to traverse short wave profiles or sharp road irregularities, 

the so-called enveloping properties, a tandem mechanics proposed by Schmeitz (2004) 

[35] was combined with a rigid ring approach to develop the SWIFT tyre model, based 

on a rigid ring approach. The virtual tandem mechanics transforms the real road profile 

(scanned signal) into a tyre effective excitation contour as a function of road height, 

forward slope and local curvature. 

 
Figure 2.25: Schematic representation of the SWIFT model [35] 
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The model consists of two rigid elliptical discs that are assembled in a distance 'ls' 

related to the tyre patch length. Both discs do not rotate, but can move in vertical 

direction. Each disc has at least one contact point to the ground, thus can be considered 

as a slider which describes the road contour in a slow motion. The effective road profile 

is then related to the mid-point’s vertical displacement w′ and an inclination angle yβ of 

the slider shown in Figure 2.26. 

 
Figure 2.26: Tandem-cam enveloping model [35] 

 

The cam dimensions are established from a best fit assessment of a real tyre roll-over 

signal versus a best fit cam profile signal gained from the slider mechanism. As the 

enveloping features of a tyre are related to its pneumatic pressure and the tyre patch 

length, the model can be extended to address the pressure influence on the enveloping 

properties, using a relationship that describes the patch length 'a' as function of the 

vertical tyre deflection zρ , where 21 , aa pp are fitting parameters, 0r is the unloaded tyre 

radius and zρ is the tyre vertical deflection. 
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Despite these applications, the desire for an extension towards a flexible ring structure is 

obvious for the purpose of road profile excitation simulations, especially if applied to 

large radial tyre deflections and rim clash conditions. 

 

1.4.2.2 Flexible ring modelled as a continuous system 

Early physical modelling approaches make use of the classical beam theory, applied to 

the elastic ring.  An early model for an in-plane thin ring structure of homogeneous 

isotropic material to analyse its modal behaviour was provided by Timoshenko in 1932 

[12]. In 1965, Böhm [36] extended the planar flexible ring towards a 3D spatial model, 

where he represents the tyre belt by the mathematical formulation of a continuous 

structure. This was equipped with a radial and lateral bedding to take into account the 

sidewall effects of a tyre carcass. Böhm derived the equations of motion for the four 

DoF, namely the radial (w), circumferential (u) and lateral (v) belt deflection, radial and 

lateral belt bending and also recognized the belt torsion (ψ ). The following lists the 

equations of motion: 
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The remaining unknowns, belt cross-section shear forces Q (radial) and V (lateral), are 

addressed by two further equations: 
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Torsional and bending stiffness, as well as the bedding compliances were analytically 

derived on the basis of geometrical data taken from the sidewall and the belt steel inlays. 

Böhm used the model in a numerical example to analyse the belt deflection and torsion 

for a rectangular shaped side load distribution, derived from Fourier series and also for 

modal analysis. The model is computational effective, but its application is restricted to 

small deflections only. 

 

The mathematical formulation of equations of motion for an elastic ring structure is 

given by Soedel in 1981 [37] for a planar structure taking radial and circumferential 

deformation into account. The equations of motion derived for the radial and tangential 

deflection of a flexible ring were found as follows: 
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Continuous structure models are typically be used for modal analysis to investigate the 

system natural frequencies or the structural damping. Such an application is provided by 

Popov et al. [38] where the authors use a flexible continuous ring tyre model as a 

baseline to investigate the simplest single-valued proportional damping in assessment to 

more sophisticated approaches discussed in the paper. For a correlation to physical 

testing, the tyre structure was assembled to a rigid supported wheel in absence of ground 

contact. Single point radial penetration was performed in the format of a frequency 

sweep to gain structure excitation signals from sensors distributed uniformly along the 

tyre belt contour. The agreement between physical experiment and theoretical results is 

witnessed by an assessment of the frequency response functions. 

 

2.4.2.3 Flexible ring modelled as a discretized truss or a beam model 

An alternative to modelling the belt as a continuous structure is the discretization 

approach, where the belt structure is subdivided into single elements linked by revolute 
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joints. The elements can either be assumed rigid (truss type) or elastic in bending (beam 

type). Pacejka [33] distinguishes between these two concepts as: 

1) Truss models neglect the belt bending stiffness 

2) Beam models include the belt bending stiffness 

 

Tsotras and Mavros [39] used the analytical equations (2.19) derived for the continuous 

ring structure as a baseline to benchmark both the truss and the beam concepts. The 

study confirmed that the beam model achieves almost perfect agreement with the 

predictions of the ring model throughout the frequency range. It also shows that 

differences are negligible for modal analysis within the low frequency range. 

 

A commercial model for an in-plane flexible ring is the CDTire model 30 proposed by 

Gallrein et al, [2]. As shown in Figure 2.27, a discretized chain-like structure of single 

mass points, radially supported by Kelvin-Voigt elements attached to the rim was used to 

model the belt. Additional elements attached to the rim address the radial belt to rim 

contact stiffness and are intended to model a belt-to-rim clash condition. The single belt 

masses are equipped with sensor type visco-elastic elements in outboard direction to 

define the contact to the ground. 

 
Figure 2.27: CDTire Model 30, resp. RmodK30, an in-plane flexible ring model [34] 

 

This model can cope with large in-plane deformations as expected in a cleat type 

obstacle crossing and was used by Haga [5] to investigate the vertical and longitudinal 

tyre force responses in a traversing over an elliptic cleat. For the belt-to-rim clash 
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simulation, the model was equipped with additional contact elements at the rim contour 

as shown in Figure 2.27. 

The effect of these elements on the rim clash force response simulation is demonstrated 

by Baecker and Gallrein [6] as shown in Figure 2.28. These features are considered to be 

essential for a realistic kerb strike simulation. The model addresses this aspect by the 

superposition of two radial force components, a linear component (index LIN), used to 

represent the stiffness of the belt-to-rim contact and a non-linear part (index NL), 

describing the radial deflection force required for the pneumatic tyre structural 

deformation. Thus: 

 
R

NL
R

LIN
R frfrf += )()(         (2.20) 

 

Both components are functions of the radial deflection 'r', Figure 1.28 illustrates the force 

response with (right) and without rim contact stiffness formulation. 

  
Figure 2.28: Force response in rim clash condition with and without rim  

contact formulation [6] 

 

Although the flexible ring model exemplarily represented by the CDTire model 30 is 

suitable for radial, longitudinal and lateral loads, the concept of a single ring remains 

limited to 2D load profiles and obstacle contours that do not vary along the tyre width 

and are positioned perpendicular to the direction of travel. To cope with the demand of 

3D obstacle geometries, such as cleats with variable height or arbitrarily positioned 

cobble stones, an obvious approach is to combine a set of coupled flexible rings as 

realized in the model 40 of the CDTire family. 
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Figure 2.29: 3D tyre model combining a set of flexible ring structures [34] 

 

In its latest version [40], the belt to rim contact formulation used in model 40 was 

extended with a flexible rim model to further improve the contact simulation. A 

comparison for flexible- (red) and rigid rim found for harsh cleat crossing simulation at 

11 km/h is shown in Figure 2.30: 

 

  
Figure 2.30: Rim flexibility impact on contact force during cleat crossing [40] 
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2.4.2.4 Flexible tyre modelled as MBS structure 

The tyre models discussed up to now can be interpreted as extensions of the Magic 

Formula, a mathematical description of the tyre typical stationary force transfer 

characteristics, embedded in a ring type structure analysis. In its subsequent development 

status as discussed in the foregoing, these models achieve high accuracy assessed to 

measurements also for short wavelength and uneven rigid road profiles. For a ground 

surface considered to be not rigid, such as mud, the concept is assumed to be less 

compatible, if ever. To improve the model concept from these kinds of limitations, an 

alternative approach was proposed by Gipser [3]. This model disregards the ring 

structure and alternatively builds the tyre belt by discrete elements in the mathematical 

format of an MBS system. The steel belt is modelled by 50 up to 150 rigid block 

elements. Each rigid assumed block element can perform lateral and rotational in-plane 

and out-of-plane motion, suspended by elastic spring and damper elements that interlink 

the neighbouring elements and also provides attachments to the rim.  The stiffness of the 

in-plane belt elements is quite high, corresponding to a steel belt structure and are related 

to the pneumatic tyre pressure in order to represent the additional stiffening effects 

caused by the sidewalls. Figure 2.31 shows the structural components of the so-called 

Flexible Tire, briefly FTire. 

 
Figure 2.31: FTire belt stiffnes components, a) in-plane bending, b) out-of-plane 

bending, c) belt torsion against rim (red) and twist in between blocks (blue) and d) lateral 

bending [3] 

 

Instead of a brush model, a number of 5 to 40 contact elements are used to simulate the 

frictional properties in the contact tyre patch. The elements are aligned parallel in the 

longitudinal direction attached to each block element as shown in Figure 2.32. 
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Figure 2.32: Contact elements attached to belt blocks [3] 

 

The contact elements are free of inertia and linked by Maxwell elements to the belt 

blocks and its neighbouring elements. The deflection of the contact elements depends on 

the road profile as well as the position state of the block elements relative to each other. 

The belt blocks tangential and radial deflections results from the equilibrium condition of 

the block shear- and friction forces, where the friction forces are a function of the shear 

velocity of the block relative to the ground and its contact pressure. 

 

Solutions are provided by a numerical integration of the equations of motion in the time 

domain. Conventional solvers, in general, tend to have problems in solving small inertias 

attached to stiff springs, as used in the belt representing linked block structure. Such 

problems can be caused by large accelerations gained for relatively small deflections due 

to the small inertias. This can lead to extremely small step sizes and the calculation is 

stopped in case the step size falls below the smallest digital unit defined by the machine 

precision. To cope with this aspect, a local subsystem integration solver is used that runs 

with a unique step size control algorithm, independent of the interaction with the calling 

MBS solver, e.g. ADAMS. 

 

This tyre model concept allows the modelling of the force response and distribution of a 

tyre patch in contact to arbitrary 3D ground surface contours and even extreme, abusive 

type kerb strike manoeuvres as shown in Figure 2.33 (right). 
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Figure 2.33: Tyre patch force distribution in contact to rough ground (left) and abuse 

type kerb strike simulation [3] 

 

2.4.2.5 Flexible tyre modelled as FEM structure 

The largest discretization level in general is achieved by the application of the finite 

element method FEM to model a tyre structure. A visual example is shown in Figure 

2.34. 

 
Figure 2.34: ABAQUS FE tyre model example taken from [41] 

 

A principle advantage of the FEM structure is the fact that only the geometry and the 

orientation of individual tyre components like steel and textile cord belt plies in 

conjunction with its material properties are required to set up the entire tyre model. Thus, 

this alleviates the user from the task of defining the need for a structural concept and its 
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discretization. Furthermore, the FEM concept does not require a structural analysis to 

define system properties like stiffness and damping features as demanded for an MBS 

model. The FEM model is generated on a 2D tyre substructure that represents the cross 

sections as shown in Figure 2.35. The substructure is then extended along the rim radius 

to form the final 3D torus structure. 

 
Figure 2.35: 2D substructure of a FEM tyre model [42] 

 

FEM tyre models represent a very detailed level of the tyre structural components and, 

therefore, they can effectively be used for detailed static analysis as e.g. footprint 

pressure distributions [42] shown in Figure 2.36. 

 
Figure 2.36: Footprint stress distribution analysis [42] 

 

As the FEM method defines both stiffness and inertia for each element, modal effects 

such as the system relevant eigenmodes can easily be analysed as well as for a complex 

structure. 
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Figure 2.37: Six eigen-modes for a free finite element tyre [41] 

 

The FEM tyre model concept has the drawback of a high level of detail with the demand 

for significant computational power, equivalent to the discretization level, when used to 

analyze driving events in the time domain. As such studies are performed mainly by 

using MBS structure models, a modal reduction process can be applied to the FE 

structure aimed to reduce the number of DoF [41]. Of course, by reducing the number of 

nodes, also the frequency range and number of eigenmodes, that can be analyzed, will 

reduce. This aspect sets a limit for the application of the modal reduction method. 

However, with this concept, an FEM based tyre model can be transferred into a format 

feasible to be used as a substructure, embedded in an MBS environment. 

 

 

2.4.3 Tyre model parameter identification 

What all models discussed so far have in common is that a proper parameter 

determination would be essential for the simulation quality. Other than FEM models, 

which depend on the comprehensive knowledge of material and geometry data only, the 

parameterisation task has two aspects. Firstly, the handling related parameters are needed 

to best fit the Magic Formula coefficients and secondly the structure related parameters 

such as belt bedding factors, compliance or bending stiffness are needed for ring 
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structure models. Both parameter sets are, in general, established on the basis of dynamic 

tyre physical testing on a drum rig as shown in Figure 2.38. 

 
Figure 2.38: Tyre drum test rig [43] 

 

For the RmodK, the CDTire model, its structure eigen-frequencies are also needed. In 

case of MBS models such as FTire, the element inertias and the properties of the linking 

elements need to be determined. As an example, a CDTire model 40 data set can contain 

up to 190 parameters. It is noted that each parameter data set needs to be established 

unique for every pneumatic pressure level. Although the parameterization in many cases 

is embedded into an automated feedback control loop strategy which transfers measured 

data directly into a parameter data set as shown in Figure 2.39 [2], a physical testing on a 

drum, for each pneumatic pressure level in general is usually required. 
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Figure 2.39: Automated parameter identification in a feedback loop testing on drum [2] 

 

To avoid the effort of setting up unique data sets for each single pneumatic pressure 

level, the SWIFT model was applied to a concept that allows an extrapolation of the 

parameter data set gained for a single pneumatic pressure. In this manner, a range of 

inflation pressures, which envelopes the initial data set [35] can be covered. However, 

despite these efforts to gain properly calibrated parameter sets by means of widely 

automated processes, its identification requires intensive testing and therefore is regarded 

as a costly operation. 
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2.4.4 Summary and conclusions from tyre literature review 

The tyre models discussed in this review represent pure mathematical and also physical 

approaches summarized in Table 2.1. 

 
Table 2.1: Tyre models overview 

 

The models cover a wide range of complexity commencing from empirical models, such 

as the Magic Formula, which can be expressed by a few coefficients only, up to a 

detailed FEM modelling approach. The model choice depends on the application task 

and also on the computational performance available. An overview about the 

complexity, in relation with the various simulation tasks intended, is shown exemplarily 

for the discussed CDTire in Figure 2.40. 

 
Figure 2.40: Model complexity over frequency range and simulation purpose based on 

the CDTire model family [34] 
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For the simulation of for example a kerb strike manoeuvre, as intended in this thesis, the 

diagram reveals a high end demand for the model detail level, even within a low 

frequency range in between 1 to 10 Hz. The model detail level must be defined by a 

number of parameters required for the model set up as shown in Figure 2.41. 

 
Figure 2.41: Model detail level and number of parameters for the CDTire family [34] 

  

To analyze the peak wheel spindle force for an abusive kind single kerb strike event, the 

inertia of the tyre structure is considered to have a negligible impact on the peak load 

level, because the tyre structure mass is hardly affected by the kerb deformation. The 

tyre structure modal behaviour relevant for NVH performance in the higher frequency 

range is also not seen to be relevant for a single event kerb strike simulation. It is 

considered that the model level of detail can significantly be reduced for the assumption 

that the description of the structural compliance can be neglected. Aligned with this 

assumption, the necessity for a detailed description of the structure compliance is no 

longer required. To confirm the validity of this assumption, an overview about the main 

effects contributing to quasi-static vertical force is given in Figure 2.42. 
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Figure 2.42: Components of vertical tyre force for deflection against flat rigid ground 

[21] 

 

It can be seen that the main contributor to the vertical load magnitude is the pneumatic 

pressure resistance against flat deformation of the tyre patch, component (IV), followed 

by the force increase caused by the pneumatic stiffening effect on the sidewalls, 

component (II). The vertical force contribution caused by the structural deformation (I) 

is about ten percent for the case shown and depends on the tyre architecture, whereas the 

increase in pneumatic pressure effect on vertical force (III) is negligible. 

 

In this thesis, a quasi-static tyre model is proposed to simulate the in-plane radial force 

transfer for a flat and an edge-type deformation is proposed. The model is defined by 

only a few geometrical parameters taken from the tyre cross-section in conjunction with 

the pneumatic pressure. Neither a parameter determination process, based on physical 

tests on a drum, nor an investigation of specific material data properties, such as those 

needed for FEM tyres, are required to set up the model. Model concept simplicity is 

achieved by focussing on the pneumatic components II and IV only, namely the sidewall 

stiffening and resistance against tyre patch deformation for a radial, edge-type 

deformation.   
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2.5 Bushings and Bumpers in chassis applications 
A vehicle these days is unthinkable without bushing and bumper elements. Polymers are 

used as base material in such components, intended to reduce noise and vibrations, tune 

the ride and handling dynamics, attenuate harsh impacts and to limit wheel travel. Focus 

is set on the latter aspect in this thesis. 

The literature survey related to this subject commences with general physical properties 

of rubber-like materials concerning their static and dynamical behaviour. It continues 

with known concepts for modelling this behaviour and then proceeds with current design 

concepts used for jounce bumper elements in chassis applications for conventional 

passenger cars. 

 

2.5.1 Physical properties of polymers at static deformation 

The operational deformation range of steel components in general is limited to a narrow 

linear elastic range and rarely exceeds a strain level of 1%, whereas polymer elements 

allow strains up to several hundred percent [44], [45] without residual strain deformation 

after relaxation. Their elastic force response is of linear characteristic only for a small 

deformation range and changes to a viscous – elastic behaviour with rising actuation 

frequency (dynamic hardening). 

The reason for these differences compared with metals can be explained by physical 

effects aligned with the polymer material structure. Metals, as most other solid materials, 

are of crystalline structure. Each element (molecule) is located at a certain grid place, 

linked to other elements by intermolecular grid forces. The location of the molecules in 

the grid is defined by the state of minimum potential   energy. A deformation caused by 

an external force is equivalent to a raise in potential energy, thus the elasticity of such 

materials is called elastic energy. A simple imagination for elastic energy is given in 

Figure 2.43: 

 
Figure 2.43: Energy elasticity of crystalline material [44] 
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In contrast to the solids, polymers consist of long chain molecules that are distributed 

with irregular orientation. The chains are not fixed in position, but free to move relative 

to each other. After the polymerization process, the individual chains are cross-linked  

within the body volume as shown in Figure 2.44. 

 
Figure 2.44: Polyethylene chain molecule in schematic form (left) and irregular polymer 

material structure (right) [45] 

 

The chain orientation can be characterized as fully irregular in case all chain directions 

are represented equally, thus there is no overall direction. This state of minimal order or, 

in other words, maximum disorder is defined by the maximum level of entropy. For an 

axial load, the chains become aligned to the direction of deformation, thus its system 

entropy drops with rising orientation level shown in Figure 2.45. A material elasticity 

that depends on the system entropy level is called elastic entropy. 

 

 
Figure 2.45: Maximum entropy level for relaxed polymer material (a) and reduced 

entropy in stretched condition (b) [45] 
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A typical trace for a force- elongation diagram is shown in Figure 2.46 (left). It was 

taken from a polymer material under uniaxial loading and reveals an elastic, but highly 

non-linear response characteristics. Furthermore, two other typical features, namely the 

hysteresis and the so-called Mullins effect can be observed on the right hand side of 

Figure 2.46, where the vertical axis is aligned with the material stress and the horizontal 

axis scales the material strain. The graphs show several compression and expansion 

loops performed towards three discrete strain levels, 0.3, 0.6 and 1.0, where the 

compression strokes trace the upper stress level, followed by the expansion at relaxed 

stress. This effect is known as hysteresis. 

 
Figure 2.46: Non linear force response (left) [45] and Mullins effect (right) [46] 

 

It further can be seen that the initial compression trace, indicated by the fine line, 

deviates from the compression traces gained from repetition loops towards the same 

deformation level. The repetition cycles show reduced hysteresis compared with the 

initial cycle, which can be interpreted as a superposition of both effects. 

Both effects, hysteresis and Mullins, occur already at quasi-static deformation levels and 

can be explained by the polymer material structure. Hysteresis can be understood as 

internal friction between the chain molecules during deformation, whereas the Mullins 

effect is caused by local cracks of internal bonds in between the interlinked chains during 

initial deformation. The cracked bonds do longer contribute to the load transfer in 

subsequent cycles. Thus, Mullins can be seen as a non-recurring event, as long as the 

strain is not exceeded to the level achieved during initial deformation, whereas the 

hysteresis remains as a permanent material feature. 

A further parameter that has an impact on the elasticity is the temperature. In case of 

elastic energy, rising temperature leads to reduced elasticity, as the molecules oscillate 
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relative to the grid position of maximum potential energy. The energy level drops with a 

rising amplitude. An elastic entropy material reveal a diminished elasticity module with 

rising temperature, because heat drives the molecular oscillation, thus it supports the 

state of maximum disorder. Ingredients, in most cases soot, behave like rigid particles of 

material embedded in the chain structure and are used to improve the durability. These 

particles do also have a rising effect on the material stiffness and significantly increase 

the coulomb type friction forces [44]. This holds not only for the static, but also under 

dynamic actuation, which will be addressed below. 

 

 

1.5.2 Physical properties of polymers under dynamic deformation 

As discussed for the static case, sliding motion of chain molecules relative to each other 

can be considered also for dynamic deformation of polymer materials. In contrary to the 

static case, where the resistance against deformation can be characterized by a drop in 

entropy that goes along with a coulomb type friction, the dynamic actuation reveals an 

additional, velocity related (viscous) frictional behaviour. However, at a certain 

frequency range, the chains can not follow the actuation any longer and, analogously, 

can be considered to behave like a hydraulically blocked viscous damper. The 

consequence is an increased resistance against deformation. In other words, the material 

stiffens up as shown graphically for a section contour along the rising frequency in 

Figure 2.47 (left cube section). This behaviour is in full analogy, but conversely to the 

effect of temperature as shown in the right cube section.  If the temperature drops to a 

certain value, the material strength ramps up non-linearly from a rubber-like into the 

glassy state [44], [45]. 
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Figure 2.47: Material elasticity module over frequency and temperature developed from 

the original [44] 

 

The glassy state can be imagined as a kind of frozen- (temperature related) or blocked 

(frequency) condition which then matches with the properties of elastic energy These 

effects are also known as temperature,  frequency-hardening. 

Frequency and temperature levels required to cause final transition into a glassy state, are 

in general not met by the upper operational range limits achieved in chassis applications. 

However, because of the wide transition range from rubber- to glassy frequency state 

(note the logarithmic scale of the frequency axis), already the start of transition to 

frequency hardening is a relevant feature, which needs to be taken into account in 

simulation approaches [44]. 

 

2.5.3 Simulation of polymer material 

Simulation approaches which address the dynamic response characteristics of polymers, 

can be categorized into three main concepts [47], mathematical [46], [48], 

phenomenological [49], [50], [51] and physical models, that rebuild the structure 

geometry through FE elements. 

 

1.5.3.1 Mathematical models 

Mostly the first two approaches are of common practise. A simple mathematical model 

to simulate the force response of a jounce bumper is already discussed in section 2.4.4 

and can be found in [14]. 
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dt
dzCKW n += δ  

 

This approach depends on the measured force response data to derive coefficients for 

stiffness K and damping constant C. Other authors use polynomials to derive element-

typical force response shape functions [48], [49]. 

As mentioned before, mathematical models are favoured for their superior numerical 

efficiency, but often do not embody the exact hysteresis features. 

 

1.5.3.2 Rheological models 

A more pertinent method (phenomenological) can be achieved through use of a 

rheological model. The concept is based on a combination of spring- and damper 

elements that are assembled to a system. The rheology specifies two fundamental 

element types, Kelvin – Voigt and Maxwell [19]. A Kelvin – Voigt element consists of a 

spring and a viscous damper element aligned parallel, whereas the Maxwell element 

describes an in line configuration of both elements. Furthermore, an in line assembly of 

Kelvin-Voigt elements is called a Kelvin-Voigt group, a parallel assembly of Maxwell 

elements is named Maxwell group, shown in Figure 2.48, (a) and (b). 

 
Figure 2.48: Kelvin-Voigt group (a) and Maxwell group (b) [19] 
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Both groups are effectively equivalent and can either simulate a solid material or a 

viscous fluid, depending on the parameter set up. For the parameters ∞=∞η , both 

configurations represent a solid material, whereas a viscous fluid is defined as 0=∞E . 

Equipped with this variability, the rheological concept covers a wide variety of material 

characteristics [19]. 

 

It can be shown that the force response of the Maxwell group shown in Figure 2.49 can 

be adjusted to replicate the features of an entropy elasticity element. The model can be 

used to properly simulate the transition from rubber behaviour to the glassy state as 

shown in the cross-section along the logarithmic scaled frequency axis (left cube side). It 

also predicts the softening with rising amplitudes, as the coulomb friction impact fades 

out at a certain deformation range. 

 
Figure 2.49: System model for viscous elastic material properties (left) and elasticity 

over excitation frequency and amplitude (right) [44] 

 

An example of a more complex model, tailored to address the force response simulation 

derived for a hydro-bushing, is presented by Svensson and Hakansson [52] in Figure 

2.50. 
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Figure 2.50: Rheological model concept (left) used for the simulation of a hydro 

bushing (right) [51] 

 

The authors propose a concept for an automated parameter fit in conjunction with the 

physical testing process. General methods for polymer physical testing and data 

acquisition are outlined below. 

 

2.5.4 Data acquisition for polymer components 

Data acquisition is primarily carried out for a frequency band width of up to several kHz 

[52], [53]. In general, the specimen is subjected to a force actuation, where the force and 

displacement are measured over a frequency sweep. Two main concepts of test rigs are 

of common practice, (a) a support of the specimen within a rigid frame and alternatively 

(b), an assembly within a two mass system as shown in Figure 2.51. 

 
Figure 2.51: Polymer test rig concepts to test polymer elements [52], [53] 
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Using the rig concept a), harmonic force actuation can be performed up to a few hundred 

Hz. Deformation 'y' and its phase angle to the actuation force are the signals used to 

establish the dynamic stiffness. The dynamic stiffness is defined by the relation of 

excitation force-deformation amplitude. The phase angle is used to evaluate damping. At 

low excitation frequencies also large amplitudes can be tested. 

If an extended frequency band is investigated, the rig concept b) is of advantage, where 

the large mass1 is used as a quasi-static load, linked with mass2 via springs. Mass2 and 

the springs are adjusted to a low resonance frequency with regards to mass1. The rig is 

instrumented with two acceleration sensors in conjunction with the actuation force 

sensor. This enables the analysis of the force-deflection state of the system by post-

processing. The achievable frequency range lasts up to several kHz. 

Both concepts have in common the specimen displacement as a consequence of the 

excitation force amplitude and frequency. Thus, it cannot be adjusted directly, apart from 

very low frequencies that match with a quasi-static load case. 

 

2.5.5 Jounce bumper elements in suspension applications 

A fundamental aspect of severe abusive kind vertical driving events is the jounce bumper 

force transfer in case of impulsive kind actuation. The jounce bumper limits the 

maximum vertical wheel travel in upward (jounce) direction, whereas the rebound stop 

defines the lowest position at full hang. In this text, only jounce bumpers are addressed 

as the maximum vertical loads are experienced in the jounce mode. Location and design 

of jounce bumpers strongly depend on the suspension architecture. It is a general design 

concept principle to choose a position of minimal gear ratio with regards to the wheel 

vertical displacement. This is intended to limit the force level to full jounce position.  

 

2.5.5.1 Jounce bumper in a Mc Pherson strut concept 

As an example from a wide range of different suspension architectures, a McPherson 

type front strut, most commonly used in conventional passenger car applications, is 

shown in Figure 2.52. The bumper is attached to the body top mount and becomes 

engaged with the upper end of the damper tube in jounce mode. As illustrated, the free 

travel to the initial bumper engagement, counted from design position, is rather small 

compared with the compression range of the bumper. Thus, the bumper is engaged 

already during 'normal' driving events, not only in an abusive manoeuvre. A smooth 
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transition from free travel range (linear road spring characteristics) towards the 

progression caused by the bumper engagement is achieved by a design of relatively thin 

bumper walls and its wavy contour.  

 
Figure 2.52: Jounce bumper assembly in a Mc Pherson front strut 

 

The consequence of a small gear ratio and the aspect discussed above go along with the 

need for a large bumper compression length, if a mild progression to jounce is desired. 

The illustration provided in Figure 2.53 reveals the need for large material 

compressibility, as the bumper volume in full jounce is condensed to the space available 

between the lower top mount shell and the upper line of the compression length. 

 
Figure 2.53: Space available for bumper volume in full jounce position 

 

Solid polymer materials are in general almost incompressible with a Poisson's ratio 

approximately 0.5 [45]. An exception is the foam type polymer materials [54], which 
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most common representative is polyurethane. During the polymerization, polyurethane 

emits CO2, which blows the volume and is embedded in the format of gas bubbles 

within the material structure in the final material condition shown in Figure 2.54. 

 
Figure 2.54: Compressibility and material structure of polyurethane [54] 

 

Foam type bumpers made of polyurethane are a common standard in automotive 

industry, because of its cost effectiveness and superior material properties as 

- compressible and highly flexible 

- easy adjustable stiffness 

- high dynamical durability 

- low creep 

- low cost and weight 

 

 

2.5.6 Testing of bumper elements 

The test rigs described so far are mainly used to generate frequency sweeps intended to 

investigate the dynamic stiffness and damping properties of polymer materials. In 

general, these tests are performed for small amplitudes that enable an actuation also at 

high frequency. In an abusive manoeuvre, the bumper is actuated in an impulsive manner 

which does not comply with the nature of the rigs described under 2.5.4. An effective 
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method is seen in the drop test concept, where a specified mass is released at a certain 

height and hits the bumper element mounted on a grounded force cell. 

 
Figure 2.55: Bumper drop test rig [56] 

 

The test specification can easily be defined by the potential energy and impulse derived 

from mass and height. 

 

 

2.5.7 Dynamic features of foam type polyurethane bumpers 

Based on drop test results, Austrell and Wirje [56] investigated the difference in static- 

and dynamic behaviour of polyurethane bumpers. The authors could demonstrate that 

such bumpers show significant deviation in force transfer to static force response (dashed 

lines) if applied to impulsive deformation (solid lines) recorded from drop tests shown in 

Figure 2.56. 
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Figure 2.56: First bounce impact data at 96, 189 and 286 J (solid lines), and comparison 

to corresponding quasi-static loading (dash dotted lines) [56] 

 

The authors developed a rheological bumper model based on a Maxwell element 

intended to simulate the dynamic bumper load curve and to address their typical 

hysteresis properties. Model validation was performed by comparison with physical drop 

tests as well as harmonic actuation force response data. 

 
Figure 2.57: Simulation results (dotted line) compared to drop test results (solid) [56] 
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Because of the bumper construction, large displacement and high end force capacity is 

required for a harmonic actuation. Conventional hydraulic equipment is often terminated 

to fulfil both requirements simultaneously because the maximum oil volume flow sets 

the limit for piston velocity. 

 

2.5.8 Summary and conclusions drawn from bumper literature review 

In comparison to metal properties, polymer materials are difficult to describe with 

regards to their physical effects and stress-strain behaviour. Beside pure mathematical 

models, also rheological models have been discussed, where the latter are seen as the 

more sophisticated and up to date approach, as these models can easily be included in a 

MBS structure. An analysis on basis of the FEM is not considered in this thesis, as the 

numerical effort and complexity involved with this approach does not fit with the 

strategy of simplicity aimed in this thesis and favoured in industry. 

All methods discussed require an element specific data acquisition, mainly gained by 

means of physical testing. Jounce bumpers, in particular foam-type bumpers, possess a 

large compression length needed for a smooth engagement. Their dynamic force 

response in general deviates from static applications. For a physical testing, this aspect 

has to be taken into account by the feasibility to apply large deformation amplitudes. 

This necessarily causes high actuation velocity and bumper block force level. The 

capacity of hydraulic equipment is often limited with regards to this combination of 

demands. Therefore, the drop test is established as a common standard for the validation 

of foam type bumpers, but less applicable for the data acquisition purpose. To overcome 

the limitations of hydraulic equipment, a mechanical crank was proposed by the author 

in [56] and [57]. The rig, shown in Figure 2.58 is suitable for large amplitude harmonic 

actuation and is addressed in chapter 5 and in the appendix B. 
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Figure 2.58: Concept of bumper test rig kinematics and physical test set up [57, 58] 

 

The rig recordings are casted into a standardized format of a 3D force response map, 

tailored to be used as a mathematical model. 

 

 

2.6 Literature summary and influence on present thesis 
The study shows that several kind of vehicle models exist for the purpose to predict 

wheel centre and component loads with good accuracy derived from abuse kind 

manoeuvres. This statement can be extended to be valid also for existing tyre- and 

bumper models. In summary, following findings and conclusions are noted: 

 

1) The concept of Multi Body System (MBS) is confirmed to be the state of the art 

method applied to set up the mathematical formulation of vehicle simulation 

models. MBS is preferred to the Finite Element Method (FEM), because of 

superior numerical efficiency and reduced model complexity. 

 

2) The effort for a model parameterization in general rises with the model 

complexity level. This awareness explains the advantages of minimal parameter 

models, if these are tailored to the application of special boundary conditions. 

 

3) A detailed tyre model, that includes the features of a belt to rim clash condition, 

is required for an abuse kind kerb-strike simulation. 
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4) A detailed model for the bumper, which limits the vertical wheel travel, 

addressing the non linearity and dynamic force response features of such 

components, is obligatory for a decent force prediction. 

 

5) A structure-variant vehicle model architecture is required to cope with the 

boundary conditions raised in the foregoing items 3 and 4. 

 

 

A common nature of these models is their high grade of complexity with regards to the 

number of parameters needed and, in some cases, its complex data acquisition methods, 

especially in conjunction with tyre- and bumper simulation. 

In this thesis, focus is put upon investigation of the macro-scaled structure by using a 

minimal parameter input set. In the end, the question which should be answered is 

whether a reasonable load assumption can be made for BiP and DoK manoeuvres on the 

basis of a minimal parameter model. Thus, all parameters that are assumed to have none 

or minor effect on the wheel centre- and bumper load level are neglected in the 

developed model. 

 

 

2.6.1 Conclusions drawn for the vehicle model requirements 

Based on the findings from the foregoing literature study, it can be considered that a 

decent tyre- and bumper model is an obligatory ingredient, that needs to be included in 

the vehicle simulation model [14], [56]. This necessarily leads to the requirement of a 

structure-variant model formulation. A one-dimensional concept, as the quarter car 

suspension model presented in [21], does not include the feature of a body pitch motion, 

which is seen as a relevant attribute of DoK or BiP driving manoeuvres. As both DoK 

and BiP event do not cause relevant side forces or roll motion, a planar (bicycle model) 

was selected for the vehicle model concept, but extended to take fore-aft wheel travel 

into account (see Figure 2.59). This extension covers the foresight of model upgrade 

compatibility, intended to match with longitudinal loads expected for BiP manoeuvres, 

planed for a later stage. 

Aligned with this planar model concept, the effects of suspension kinematics, apart from 

the bumper position relative to the wheel travel, were neglected. These are considered to 
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be of minor influence on the total force level expected in wheel centre and top mount for 

a kerb strike. A further aspect is seen in the fact, that a detailed suspension kinematic 

formulation consequently leads to a spatial model architecture, which is not aligned with 

the purpose of simplicity.  

Due to the moderate velocity level specified for the tests (max 40 km/h), wheel angular 

momentum effects are not taken into account.  

 
Figure 2.59: Bicycle model concept to simulate DoK and BiP manoeuvre 

 

 

2.6.2 Conclusions drawn for tyre and bumper model requirements 

The literature sources, presented in this study, confirm the impulse-kind nature of kerb 

strike events [6], [7], [14], [40]. Both manoeuvres, BiP and DoK, lead to full-scale 

jounce bumper and tyre deformation and in general to a belt to rim clash in contact with 

the kerbstone edge. Because of these observations, emphasis needs to be put upon a 

thorough modelling of the jounce bumper characteristics to match with the dynamic 

effects in connection with impulsive kind actuation. In particular, the bumper position 

relative to bump stop element and its non-linear, viscous-elastic behaviour is seen as a 

key contributor to vertical load level [56]. A map concept, described in chapter 5, was 

applied to address the bumper non-linear force response and hysteresis for impulse kind-, 

dynamic actuation expected from a kerb strike manoeuvre. 

 

In line with the aspects discussed for the vehicle model, an in-plane tyre model was used 

to simulate the kerb-strike. The feasibility to address a belt-to-rim clash during kerb 

strike is considered to be an essential model feature, needed for an authentic force 

prediction [3]. As discussed for the vehicle model, this requirement implies the need for 

a structure variant formulation also for the tyre model. 
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The model can be simplified by addressing the pneumatic radial force response of the 

tyre only, which neglects its structural stiffness and inertia, as the latter effects are in 

general of minor importance for conventional tyres, depending on the actual geometry 

[21]. Based on these findings, the tyre vertical load transfer can be simplified by the 

application of a quasi static approach. The tyre presented in this thesis is defined by four 

geometric cross sectional parameters and the pneumatic pressure. A tyre belt-to-rim 

clash condition during kerb strike at full tyre deflection range is addressed by an 

assumed constant rim stiffness. 
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Chapter 3: Methodology 
 

 

3.0 Introduction 
In this chapter, the methods used in the thesis are summarized. The numerical methods 

used to set up and run the different simulation models are presented first, followed by 

validation methods, where the data acquisition and test conditions are briefly presented. 

A more detailed description is given in the appropriate subsequent chapters. 

 

3.1 Numerical methods 
Here, the numerical methods are described for the modelling approaches used for the 

vehicle, the tyre and the bumper simulation. Table 3.1 shows a methods overview: 

 

 
Table 3.1: Numerical methods overview 
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3.1.1 Vehicle simulation 

The vehicle model is defined by its equations of motion that contain the inertia, stiffness 

and damping properties of the system. These equations were derived by the application 

of Lagrange’s equation [14]. The vehicle model, described in detail in chapter 4, does 

not incorporate any kinematic constraints, thus the Lagrange approach in the format of 

equation (2.10) [17] addressed in item 2.2.1.2 (c) could be used to derive the equations 

of motion. 

Solutions found for the vehicle trajectories and force responses are derived by numerical 

integration in the time domain using the Runge-Kutta method. A detailed explanation of 

this approach is given in appendix A. The simulation models exist in the format of a 

FORTRAN source code written by the author. Tyre and bumper deflection and their 

appropriate reaction forces are treated as external forces provided by modular 

subroutines during the numerical integration. 

All results presented in the thesis are derived from a fixed integration time step of 1.0E-

04 seconds. The time interval of the impulsive bumper strike event after kerb crossing is 

about 5.0E-02 seconds, thus a high resolution of 500 data points is provided during the 

bumper engagement with the time step specified. 

 

3.1.2 Bumper simulation 

The bumper force response is gained from interpolation within a two parametric map to 

establish the force as function of bumper deflection and deformation velocity. Force 

response traces for the map data set up were recorded from physical harmonic bumper 

actuation at 10Hz frequency. The force data acquisition was performed for a set of seven 

actuation amplitudes starting from 40 up to 55 mm as described in chapters 5 and 7. The 

data recordings in the time domain are post processed to the format of single data points 

over circular frequency in a resolution of 15 degrees. The appropriate feedback force for 

a given bumper deflection and velocity state is calculated by numerical cubical spline 

interpolation which is described in appendix A and in [23], [64]. The spline coefficients 

required for the interpolation are derived in a pre-processing step in advance of the 

Runge-Kutta numerical integration. 
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3.1.3 Tyre simulation 

Two model approaches are proposed in chapter 6: A full analytical model based on 

pneumatic pressure and the tyre cross section geometry and secondly a chain model 

representing the tyre belt structure by discrete chain elements. Whereas the analytical 

model provides direct solutions for the force response based on the deflection mode, the 

chain model is combined with the virtual work principle to derive the force response 

resulting from the belt equilibrium condition. Changes in the boundary conditions are 

addressed by a numerical iteration process as discussed in chapter 6, item 6.6.2. 

 

 

3.2 Convergence study 
Numerical results in general can vary with the step size specified for the numerical 

integration. In case of large step sizes, model relevant features in the high frequency 

range of the analyzed event may be missed. With a transition towards smaller step sizes, 

higher frequency responses are addressed and the numerical result converges towards the 

exact solution. Such a convergence study shall confirm the specified step size used for 

the simulation to be appropriate for the specific model application. Numerical robustness 

can be demonstrated by a step size sensitivity analysis of the response. As mentioned in 

3.1.1, all simulation results are derived for a step size of 1.0E-04 seconds. The bumper 

force response map module revealed to be the most sensitive component in the vehicle 

model with regards to a step size variation. A deviation of the bumper force was found in 

the range of only 2% for a step size increase from 1.0E-04 towards 1.0E-03 seconds. 

Significant deviations (approx. 10%) were observed for a step size of 2.0E-03 seconds, 

which confirms the robustness of results for the specified step size. 

 

 

3.3 Validation 
The validation of the simulation models was performed separately on both component 

level (bumper and tyre models) and on system level (vehicle model, incorporating the 

bumper and tyre models). An overview about the validation methodologies is shown in 

table 3.2:  
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Table 3.2: Validation methods overview 
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3.3.1 Data acquisition 

The sensors used for the experimental testing, such as load cells and potentiometers 

provide an analogous signal to the data acquisition system. This data in general needs to 

be amplified before the data logging and post-processing can be done in a PC 

environment. The IMC CRONOS-V data acquisition system as shown in Figure 3.1 was 

used to record all experimental testing.  

 

 
Figure 3.1: CRONOS-V data acquisition system 

 

The CRONOS-V combines data recording, amplification of the analogous signal and 

post processing in a single unit and allows data logging to a sample rate up to 50 kHz for 

4 channels. Not just the vehicle testing but all other experimental data from bumper map 

testing and tyre force response measurements was recorded with this acquisition system. 

 

3.3.2 Vehicle model validation 

The validation of the vehicle simulation model was performed by a comparison of top 

mount force simulation results with measured signals recorded for DoK. A kerb of 135 

mm height was negotiated in a free rolling mode with two velocities, 25 and 40 kph as 

described in chapter 1. The vertical top mount force and the vertical wheel travel relative 

to body was measured on a FORD vehicle (CD340), equipped with sensors at the front 

suspension. The DoK event and vehicle instrumentation are shown in Figure 3.2. 



   Chapter 3: Methodology 
 

 79 

 
Figure 3.2: DoK event and vehicle instrumentation 

 

 

The top mount load cell used, GTM (Gassmann Theiss Messtechnik) series K, is 

specified for a load range up to 63 kN. It was mounted in between the body structure and 

the McPhesron strut topm mount. Thus, the recording represents the integral vertical 

force signal combining spring, damper and bumper force. 

A string potentiometer ASM model WS31 with a displacement range of 500 mm was 

used for the wheel displacement measurements. The potentiometer housing was fixed to 

the strut body tower while the string end was attached to the spring plate of the 

McPherson strut. 

Both signals were recorded in the time domain at a sample rate of 10 kHz. 

 
 
3.3.3 Bumper model validation 

The bumper force response simulation concept is based on a two-dimensional parametric 

map consisting of measured force response data recorded for harmonic actuation at a 

circular frequency of 10 Hz. This matches with the conditions of a kerb strike as 

described in more detail in chapter 5. To generate a harmonic displacement actuation for 

various amplitudes in the range of 40 – 55 mm, a rig was designed as shown in Figure 

3.3: 
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Figure 3.3: Bumper Rig design principle sketch (left) and load cell instrumentation 

(right) 

 

A FORD manufactured load cell (1- 80 kN) was used in combination with a WayCon 

linear potentiometer (line range 200 mm) to record force and displacement over time at a 

frequency of 10 kHz. 

To validate the bumper force response map simulation concept presented in chapter 5, a 

drop test simulation was set up by making use of the recorded map. The results gained 

from drop test simulation were compared to those gained by experimental data taken 

from literature published by Austrell and Wirje in [56] for validation.  

 

3.3.4 Tyre model validation 

The tyre model validation was done on the basis of both numerical comparison to FE 

results and also physical testing. As a physical testing of the internal tyre stress is 

considered as a difficult, if not impossible task, FE results were generated by using the 

FoE Chassis CAE ABAQUS tyre models to confirm the analytical formulas derived for 

tyre internal stress analysis in chapter 7. These FE models, developed within the FORD 

Chassis Engineering CAE group, exist for two tyre sizes, 205/55-R16 and 235/40-R18. 

A detailed description is given in chapter 6. 

The physical testing was performed on component level where the tyre force response 

was recorded for a quasi static radial deformation against both an edge type (blade) and a 

flat geometry. The test facility representing the set up for an edge geometry is shown in 

Figure 3.4: 
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Figure 3.4: Quasi static measurement of radial force response 

 

A FORD manufactured load cell calibrated for the load range up to 80 kN was adjusted 

in between the hydraulic cylinder and the blade type geometry. Displacement signals 

were taken from the sensor integrated in the hydraulic cylinder. The recordings were 

logged in a resolution of 10 force data points per mm radial displacement. 

 

 

3.4 Closure 
A brief overview of the methodology used for the simulation model concepts, numerical 

algorithms set up and solving has been provided. In addition, the methods of 

experimental testing for the purpose of validation were presented, in hope that similar 

work can be performed by the interested reader. 
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Chapter 4: Minimal Parameter vehicle model 
 

 

4.0 Introduction 
In this chapter the vehicle model concept, its elements and boundary conditions are 

presented. The model’s mathematical formulations, as well as its simplifying 

assumptions are stated.  

 

4.1 Vehicle Model Concept 
As outlined in the literature study, a multi-body approach was chosen for the 

mathematical formulation of the vehicle model. 

As both, DoK and BiP event can be expected not to cause significant side forces or roll 

motion, a planar (2-dimensional) vehicle model (bicycle model) was selected and 

extended to take into account fore-aft wheel travel (Figure 4.1). Due to the moderate 

traverse velocities specified for the tests (max 40 km/h), wheel angular momentum 

effects are also ignored.  

 
Figure 4.1: Minimum Parameter vehicle model concept to simulate  

DoK and BiP manoeuvres 

 

As mentioned earlier, the nature of both manoeuvres lead to an impulse-like, full-scale 

jounce bumper deformation and in general to a tyre belt-to-rim clash during contact with 

the kerbstone edge. Emphasis is put upon modelling of jounce bumper characteristics 
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and tyre behaviour under severe impacts. A map concept, outlined in chapter 5, was 

applied to address the bumper hysteresis, a typical feature for these polymer type 

components. 

The tyre model, which is described in detail in chapter 6, is condensed to address the 

pneumatic radial force response of the tyre only, neglecting its structural stiffness and 

inertia. 

 

4.1.1 Model element overview 

The individual inertias of the suspension links were combined to a lumped parameter un-

sprung wheel mass. The exact suspension geometry, kinematics and individual 

component stiffness were merged to combined vertical and lateral stiffness elements. 

Figure 4.2 shows an overview of the vehicle model components listed below: 

 

1. sprung mass and rotational inertia 

2. un-sprung masses including wheel, hub, brake, lumped suspension 

3. road spring’s constant stiffness 

4. shock absorber’s constant damping 

5. jounce bumpers (map concept) 

6. rebound stop’s non-linear stiffness (no damping) 

7. kinematics of free wheel travel and jounce / rebound contacts 

8. longitudinal stiffness / damping of wheel centre against body 

9. tyre 

 

 
Figure 4.2: Minimum parameter vehicle model 
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4.2 Derivation of the equations of motion 
As the suspension kinematics was reduced to the bump position and engagement, no 

algebraic equations to define kinematic constraints are required. The model consists of 

three bodies, m1 and m2 representing the un-sprung wheel mass and m3 for the sprung 

body. A rotational DoF is considered for the body, addressed by the rotational inertia J 

as shown in the upper image of Figure 4.3. The structure matches with a conventional 

bicycle model as described in [17] and [20], but is extended by three longitudinal DoF 

X1, X2 and X3 to in total seven system DoF. Forces and moments are indicated as bold 

arrows in the lower image. 

 
Figure 4.3: Degrees of freedom (upper) and loads shown in a free body diagram 

 

The mathematical formulation of the dynamic force balance to derive the equations of 

motion can be written in its matrix representation as follows: 
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     (4.1) 

 

Indices i = 1…3 stand for the vertical, j = 1…3 for the longitudinal and k = 1 for the 

rotational DoF. Indices i, j and k stand for the DoF only and shall not be understood as 

the mass component indices used for m1, m2 and m3, although these match for the 

longitudinal and vertical DoF. In particular, the vector multiplied with matrx [C] in 

equation 4.1 is of the fomat {z1, z2, z3, x1, x2, x3, φ1}𝑇. As φ is the only rotational 

DoF, its index k = 1 is dropped out in the following derivations. 
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The first product (matrix [M]) contains the inertial forces, followed by the internal 

system force responses (matrices [C] and [D]) and the external forces applied to the 

system (right side of equation 4.1). To establish the equations of motion, matrices [M] 

for mass and rotational inertia, [D] damping and [C] stiffness, need to be derived. 

Lagrange expounded the relationship between energy terms and the equations of motion 

of a system. As shown in chapter 1, these equations can be derived analytically by partial 

derivatives with respect to the generalized degrees of freedom q of the system. 

Lagrange’s equation (4.2) was used for the derivation [14]. 
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In contrast to the classical bicycle model, the system properties of the model will vary 

for the case of bumper engagement at appropriate vertical wheel displacement states. 

Three suspension bumper engagement states need to be differentiated, shown in Fig. 4.4: 

 
Figure 4.4: Suspension bumper engagement states 

 

1. free wheel travel (no contact to jounce or rebound bumper) 

2. wheel travel retainer in contact with jounce bumper 

3. wheel travel retainer in contact to rebound stop 

 

 

4.2.1 Equations of motion for the system in free travel mode 

For case 1 above, the system is considered to be free of any wheel travel restrictions; in 

other words, neither jounce nor rebound occurs. Therefore, the model structure does not 

change with deflection state; the system structure is invariant. 

Equation 4.2 is used to derive the matrices [M], [D] and [C] that describe the equations 

of motion for the system in free travel mode. 
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 (a) Mass matrix 

The formulation of the potential and kinetic energy addressed in equation (4.2) is 

performed for each degree of freedom. The first two terms contain the kinetic energy and 

are used to derive the mass matrix [M]. For case 1, wheel centres in free travel mode (no 

bumper engagement), the vertical components iz  lead to the terms: 

∑ ⋅= 2

2
1

ii zmEkin   

 

The longitudinal components jx  reveals:  
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Partial derivative with respect to the generalized coordinate q  and time t leads to the 
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Also: 
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for all the DoF, as the kinetic energy, in this case, is not a function of the general 

coordinate q. 

Combined equations (4.3) – (4.5) represent the first term of equation (4.1), the mass 

matrix is established as: 
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(b) Stiffness matrix 

The third term in equation (4.2), namely the partial derivatives of the potential energy, 

lead to the stiffness matrix. In this case, the base geometry a, b, c with respect to the 

location  of body centre of gravity must be taken into account (see Figure 4.5). 

 

 
Figure 4.5: Centre of gravity geometry and element overview 

 

For the stiffness and damping configuration as shown in Figure 4.5 

Potential energy: 
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Considering small deflection angleϕ , the expression simplifies to sinφ ≈  φ, cosφ ≈  1, 

leading to the linearized formulation: 
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The partial derivatives with respect to the system degrees of freedom yields: 
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Rearranging the terms with respect to the deflections x, z derives the stiffness matrix [C] 

as follows: 
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 Equation (4.9) 

 

 

(c) Damping matrix 

Lagrange's equation in the format of equation (4.2) was presented in chapter 2 for the 

assumption of a conservative system (see equation (1.10)). An analogy is made for the 

derivation of the damping matrix. The products [ ] qC ⋅  and [ ] qD ⋅  in equation (4.1) 

represent the internal force responses of the system transferred by the spring and damper 

elements. 

 

In this model, the damper elements are defined as viscous-type and linear in character 

with regards to velocity. As each damper element is combined with a linear spring in 

parallel, the damping matrix [D] must to be of analogous structure as the stiffness matrix 

[C]. Thus, matrix [D] is of identical structure as stiffness matrix [C], but contains the 

appropriate damping values. 
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Equation (4.10) 
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(d) External forces 

The right side of equations (4.1) and (4.2) represent the external force vector Fe applied 

to the system. For the vehicle, it is considered that the external forces beside the gravity 

only apply to the wheel centre, caused by the kerb strike. The equilibrium condition for 

the undisturbed vehicle on an even ground (no kerb strike, just vertical equilibrium 

wheel forces zF1 , zF2  and gravity) can also be derived using the right side of equation 

(4.2) as: 
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         (4.11) 

 

All other partial derivatives with regards to the coordinates x1, x2, x3 and ϕ  clear out to 

be zero. 

 

The system deflections are measured from the wheel centre positions related to the un-

deformed state. For a static equilibrium position, such as expected for an undisturbed 

free travel mode on even ground, the gravity of the sprung mass m3 (body) causes a 

vertical deflection of the road springs. This deformed state, in the following named 

design position, is defined by a set of body CoG coordinates, vertical deflection z3 and 

pitch angle φ relative to the wheel centres. These initial conditions are derived in section 

4.3. 

 

 
4.2.2 Equations of motion for the system in bumper engaged mode 

The matrices [M], [D] and [C] derived so far, represent the system in clearance to 

bumper and rebound stop contact. All other load transfer components such as springs 

and dampers are permanently engaged in the load transfer path in absence of any 

bumper or rebound stop engagement. Thus, matrices [M], [D] and [C] define the vehicle 

structure in its wheel centre free travel mode. 
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At a certain level of vertical wheel travel relative to body, the travel will be additionally 

restricted by the jounce bumper or rebound stop engagement. The structural 

characteristics, therefore, vary with deflection level. This structure variation is addressed 

by a bumper-rebound stop engagement analysis as follows: 

To solve the system of equations in the time domain, the Runge- Kutta numerical 

integration method is applied. The results are time functions for the trajectories (state 

vector for each system component with respect to position and velocity) and the 

acceleration and internal force response vectors. To analyse the bumper engagement 

condition, the system deformation state is investigated with respect to the wheel centre 

position relative to the bumpers for each calculation time step. In the model, the link 

extending from the unsprung mass to engage with the bumper is considered rigid. 

Therefore, the front bumper engagement JB1z can be derived from the vertical 

coordinates z1  and z3 in conjunction with the pitch angleϕ . Figure 4.6 illustrates the 

bumper deflection JB1z. 

 
Figure 4.6: Free jounce wheel travel UJB1 and jounce bumper deflection JB1z on a 

front suspension 

 

With the foregoing, the jounce bumper deflection of the front suspension is defined by: 

 

ϕ⋅+−−= azUJBzzJB 3111         (4.12) 

 

where UJB1 is the free wheel travel to jounce bumper contact, related to the equilibrium 

condition. 

Accordingly, the rear suspension jounce bumper deflection (marked by index 2) 

becomes:  

 

ϕ⋅−−= bUJBzzJB 222         (4.13) 
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For the rebound stop an illustration analogous to Figure 4.5 is shown in Figure 4.7:   

 
Figure 4.7: Free rebound wheel travel URB1 and rebound stop deflection RB1z on a 

front suspension 

 
The front suspension rebound stop engagement RB1z is defined by: 

 

3111 zaURBzzRB +⋅−−−= ϕ        (4.14) 

 

And for the rear suspension:  

 

3222 zbURBzzRB +⋅+−−= ϕ        (4.15) 

 

where, URB1 and URB2 are the free wheel travel to rebound stop contact. 

 

 

4.2.3 Rearrangement of matrix equation for structure variant system 

The derived matrices [C], [D] represent the internal force response, caused by springs 

and dampers. It is the nature of internal forces that they do not change the momentum of 

the total system as they act in an anti-symmetric manner to the linked components. On 

the contrary, the external forces in general cause a deviation in the system momentum, 

except that they do act as an anti- symmetric oriented couple on a common action line. 

 

So far, matrices [C], [D] are derived for the wheel centres in a free travel mode without 

jounce bumper or rebound stop engagement (case 1). They represent the structure 

invariant internal forces. In the case of bumper or rebound stop engagement, matrix [C] 

or [D] needs to be upgraded by the additional structure variant internal forces of these 

components. However, equation (4.1) can be considered as a general force balance of 
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inertial, external and internal forces. Therefore, the additional structure invariant 

internal forces, caused by their engagement, can be processed as a couple of two 

external forces of equal magnitude and common action line, but oriented anti- 

symmetrically. They can, therefore, be balanced with the external force vector Fe on the 

right side of equation (4.1). By doing so, the stiffness matrix derived in equation (4.9) 

can remain as a structure invariant feature and does not need to be modified. 

 
The external force vector Fe is derived for the following cases for front and rear 

suspensions: 

• free travel 

• jounce bumper engagement 

• rebound stop engagement 

 

 

Case1: Free wheel travel 

No engagement, for front and rear 
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Case 2: Jounce bumper engagement 

For the following derivation, a linear spring characteristic is assumed for the jounce 

bumper and the rebound stop. 

Front the jounce bumper engagement force 1JBF  , using equation (4.12): 
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Rear jounce bumper engagement force 2JBF , using equation (4.13), becomes: 
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Case 3: Rebound stop engagement 

Front rebound stop engagement force 1RSF , using equation (4.14), becomes: 
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Rear rebound stop engagement force 2RSF , using equation (4.15), becomes: 
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4.2.4 Jounce bumper force response map application 

The above formulations of equations (4.17) to (4.20) represent a linear force response 

characteristic for the jounce bumper and the rebound stop, addressed by constant 

stiffness coefficients CJB1, 2 and CRB1, 2. By making use of the jounce bumper map 

concept previously described, the vehicle model is linked to an external subroutine map 

which feeds back the bumper and rebound forces JBF , RBF  relevant to the prevailing 

initial conditions; z  and dtdzz /= . The map concept takes the nonlinearity and 

hysteresis of these polymeric-type elements into account. The terms containing CJB and 

CRB in equations (4.17) to (4.20) are replaced by the jounce / rebound force responses 

JBF  and RBF , obtained from the map subroutine feedback to solver. 

 

 

4.2.5 External tyre force application 

In the case of a kerb strike, the loads applied to the wheel centre are determined by the 

deformation state caused by the tyre-kerb impact. The concept to establish the tyre force 

response after a radial deflection f against a flat or an edge type contact is described in 

chapter 4. The reaction force is provided by an external subroutine that feeds back the 

tyre deformation force vector to the Runge-Kutta solver for each time step of 

calculations. This is balanced against the external force vector Fe. 

In Figure 4.8, the force response for a radial tyre deflection is illustrated. 
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Figure 4.8: Tyre response force feedback to external load vector Fe  

and tyre contact modes 

 

4.2.6 Tyre force analysis in kerb strike mode 

Two types of tyre contacts are considered in the model; a flat contact to even (flat) and 

rigid ground and a purely edge type deformation to simulate the contact with a rigid 

kerb. In the model, the current deformation state is defined by the belt contour circle 

interference with the kerb contour or a ground line. The DoK manoeuvre commences in 

a roll mode towards the tyre rim, where the belt is in pure flat contact to the ground. 

After the (circular assumed) belt contour enters into contact with the edge of the kerb, a 

radial deflection is considered at the overlap with the contour. This is the basis of a tyre 

force response analysis addressed in chapter 6. Consequently, the wheel centre is lifted 

vertically, causing a shift from a flat contact to ground towards an edge type loading 

against kerb. During dual contact condition (transition towards pure edge type contact), 

the tyre force is analysed by a superposition of both flat-type and edge-type contacts as 

indicated in Figure 4.8 (right). 

 

 

4.3 Initial conditions set up 
In the first stage of both the driving manoeuvres considered in this thesis, the vehicle 

rolls at a constant speed on a flat ground towards the kerb or a pothole. Rolling 

resistance is neglected in the model, only vertical wheel centre forces F1z and F2z are 
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applied to attain the model in equilibrium. The longitudinal components F1x, F2x are set 

zero. 

 

4.3.1 Equilibrium position parameters 

To establish the initial conditions which yield vehicle equilibrium condition, the 

principle of virtual work has been applied. To attain equilibrium for the undisturbed roll 

mode only two DoF; z3 andϕ  need to be addressed: 

 
Figure 4.9: System parameters to establish the equilibrium conditions (upper) and 

infinitesimal deflections from equilibrium (lower sketch) 

 

The upper sketch in Figure 4.9 shows the vehicle model in full hang condition. When 

lowered to the ground, a vertical deflection z3 and the pitch angle ϕ  result from tyre 

touch down condition, until the final equilibrium position is reached. 

 

To establish z3 andϕ , further virtual deflections 3zδ  and δϕ  are applied in equilibrium 

condition to cause a virtual work applied to the system. In case of small virtual 

deflections applied to a system in equilibrium, the virtual work done is known to be zero 

[17], [18]. The virtual work equations for z3 and ϕ  are derived as follows: 

 

ϕδϕϕδϕϕ
δδδ

0cos2cos1
30323133

=⋅⋅⋅+⋅⋅⋅−
=⋅−⋅−⋅

bzFazF
zzzFzzFzgm

   (4.21) 



 Chapter 4: Minimum parameter vehicle model 
 

 98 

Jounce bumper or rebound stop forces do not need to be considered as they are in general 

not engaged under vehicle static equilibrium condition. Using the system parameters 

shown in Figure 4.5, the forces F1z and F2z can be expressed by the spring stiffness and 

system deflections z3 and ϕ . 

)3(22
)3(11
ϕ
ϕ
⋅−⋅=
⋅+⋅=

bzzCzF
azzCzF

        (4.22) 

 

Doing so, the static equilibrium condition is established by equations (2.21) and (2.22): 
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4.3.2 Generic suspension geometry parameters defined for model input 

A sketch of the geometrical parameters is provided in Figure 4.10 for a McPherson front 

suspension. The jounce bumper (JB) and the rebound stop (RBS) engagement, in 

general, are defined by the upper end of the damper tube. This defines the datum line 

(zero level) for the vertical wheel centre travel z1.  

 
Figure 4.10: Model geometry input parameter for road spring (RS), jounce bumper (JB) 

and rebound stop (RBS) elements 



 Chapter 4: Minimum parameter vehicle model 
 

 99 

The positions of the road spring (RS), the jounce bumper (JB) and the rebound stop 

(RBS) elements are defined relative to the upper spring seat position attached to the 

sprung mass m3. Vertical dimensions F0 to F5 are used as model input parameters to 

define the z1 datum line, the free wheel travel, the full operational range and engagement 

space of the bumper and the rebound stop elements respectively. 

The longitudinal dimension 'a' to the CoG is considered to be the common x- component 

for RS, JB and RBS front suspension elements. It can be seen that the dimensions are 

general parameters, independent from the actual suspension concept selected for the 

vehicle. 

 

4.3.3 The method of solution  

The model simulation is embedded in a FORTRAN code to have the full flexibility to 

include specific features such as the map concept and the analytical tyre model, 

described in chapters 5 and 6. The integration of the coupled differential equations (4.1) 

is performed in the time domain, using the the Runge – Kutta method. A documentation 

and description of the numerical method is provided in appendix A. 

 

 

4.4 Closure 
A minimal parameter model is derived for a vehicle tailored for use with the FORD 

specified extreme driving manoeuvres; drive over kerb (DoK). As the drive events do not 

cause relevant side forces or roll motion, a planar model is chosen. The known bicycle 

model is extended to lateral degrees of freedom and linked to external subroutines to 

include jounce bumper and tyre force responses, based on the concepts described in 

chapters 5 and 6. The model is set up in the format of a structure-variant architecture to 

differentiate between free vertical wheel travel and bumper engagement modes. 
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Chapter 5: The Jounce bumper simulation model 
 

 

5.0 Introduction 
In this chapter, a revised map concept is presented, intended to simulate the response 

force for large scale jounce bumper deformations. These conditions are typically seen in 

severe driving manoeuvres such as a kerbstone crossing. The concept was applied to a 

foam type front suspension jounce bumper made of polyurethane, but is considered to 

have potential to be used for general simulation of other polymeric elements used in 

chassis applications, such as engine mounts or hydro-bushings.. It is an integral part of 

the vehicle model discussed in chapter 4, but can also be linked as an external subroutine 

and onto a common multi- body simulation environment like ADAMS. 

 

5.1 The Existing concepts 
The most common approaches used to simulate the viscoelastic force response / transfer 

of polymeric elements can be categorized into three main concepts; mathematical, 

phenomenological and physical models [47]: 

 

5.1.1 Mathematical models 

Mathematical functions (e.g. polynomials) are derived to describe the force transfer 

function taken from measurements.  The functions approximate the trace of a measured 

signal [48], [49]. They do not distinguish between static and dynamic effects. It is, 

therefore, difficult to extend simulation studies beyond the scope of the measured 

boundaries. A unique model must be derived for each element type. Mathematical skills 

are required to select an appropriate formula, tune the shape of the graph and adapt it to 

the measured force response trace. In most cases, the advantage is rapid simulations in a 

multi-body system environment. A typical function can be of the form 𝐹 = 𝑓(𝑥, 𝑥̇, … ). 

 

5.1.2 Phenomenological models 

Spring and viscous damper elements can be combined to form a so-called Maxwell or 

Kelvin – Voigt elements. These elements are described in chapter 2 and are shown in 

Figure 2.48.  Such structure models (called rheological models) can be used to simulate 
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the viscoelastic behaviour of polymeric elements [19], [56]. These models separate the 

physical effects of stiffness and damping and, therefore, allow usage beyond the 

measured data. The model must be derived and calibrated uniquely for each element 

type. Specific MBS modelling skills are required to set up rheological models and in 

general it is difficult to calibrate the model to fit the entire actuation scale. Compared 

with mathematical models, the run time for rheological models, in most cases, is longer 

than the mathematical models in multi-body system environments. 

 

5.1.3 Physical models 

The finite element (FE) method replicates the component geometry by a mesh-type 

structure and, therefore, allows for physical modeling of continuous structures of 

polymer elements. However, the modelling of a hydro-bush or a foam-type element (e.g. 

jounce bumpers), requires detailed knowledge of the material properties. The number of 

meshing elements used correlates to the number of equations to be solved. Hence, 

detailed FE models can lead to a large system of equations, which increases the solver 

run time. A further aspect is the observation that the numerical solution procedure tends 

to divergence problems if the deformation range for a single element exceeds specific 

limits (often beyond linear viscoelasticity). Special solver strategies, like MARC address 

some of these shortfalls. 

 

5.1.4 Common features of highlighted concepts 

Force response measurements gained from physical component tests are required for the 

first two of above mentioned approaches for setting up and calibration of the simulation 

model. In theory, an FE-based physical model does not necessarily depend on 

component force response tests, with existing high level of confidence regarding material 

properties. However, these properties need to be tested instead of the actual components. 

All the aforementioned models have the common requirement of component-specific 

tests or determination of material properties prior to model set up. 
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5.1.5 Current bumper simulation concept in the Ford of Europe (FoE) 

Ford of Europe uses a mathematical model concept to simulate the load transfer of 

polymer structures. The force response trace, in general a non-linear curve gained from a 

quasi static actuation, is transformed into an interpolation polynomial and embedded into 

a multi-body system (MBS) environment. Such characteristic curves are used for both, 

jounce and rebound deflection behaviour. No distinction is made between the jounce and 

the rebound bumper force responses (hysteresis), typical for polymer components, in this 

approach. An additional viscous damper element, attached in parallel only allows for a 

rudimentary curve-fitting, especially in the case of an impulse- like actuation as seen on 

jounce bumper response during the kerb-stone crossing events. 

 

As known from Ford vehicle test studies and outlined in the literature study (chapter 2), 

the jounce bumper characteristics are known to be a key feature with regards to the 

vertical peak load levels. All this explains the effort put towards more realistic 

representation of bumper force-response under impulsive conditions.  

 

5.1.6 The proposed map concept  

The concept is intended to improve the dynamic force response characteristics by taking 

the velocity-related hysteresis into account, covering the full range of jounce bumper 

deflections. The idea is to extend the current “universal” parametric static force response 

function of deflection s, F(s), by a second parameter 'velocity' towards a 3D map F(s, v). 

This look up table approach would avoid the burden of setting-up an element specific 

polymer model and takes the influence of actuation velocity into account. Measured 

force response data gained from harmonic actuations is transferred into a standardised 

numerical format that would allow an effective solver interaction. The concept follows 

the idea of a heuristic modelling approach, namely to find a good solution based on 

limited knowledge within a reasonable time frame. 

 

The aim of the proposed concept can be summarised as follows: 

• Extension of the current static force response curve towards a force response map, 

appropriate to cover the velocity-relevant hysteresis characteristics of bumper 

components used in chassis applications. 
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• Development of a standardised numerical method, applicable for general types of 

chassis polymeric elements for lateral and rotational degrees of freedom. 

• Specification of a standardised test procedure to generate the relevant force response 

data, applicable for element-specific full deformation range actuation. 

• Easy application and fast run-time within existing MBS simulation environments, 

such as ADAMS. 

 

 

5.2 Force response map concept 
As an introduction to the proposed concept, the process of the map data acquisition and 

preprocessing are first demonstrated. The data acquisition is discussed for a foam-type 

jounce bumper used in the MacPherson front suspension of the CD340 (FORD Galaxy) 

shown in Figure 5.1. 

 
Figure 5.1: Jounce bumper element, MacPherson front suspension for the Ford Galaxy 

 

The bumper is a single degree of freedom vertical compression element which does not 

transfer any tensile forces. Therefore, the force response (shown in Figure 5.2) for a set 

of displacement actuation amplitudes (left) remains within the positive range (i.e. in 

compression). It should be noted that the map concept is generally applicable for lateral 

and rotational degrees of freedom for both positive and negative deformation ranges. 

The bumper map database consists of a set of force response curves gained from 

harmonic displacement actuation tests as indicated in Figure 5.2. Although the bumper 

excitation mode during the kerb-crossing event can be of an arbitrary shape and is not 

necessarily sinusoidal, a harmonic excitation was selected to gain the force response 
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data. The validity of the approach in simulating an arbitrary motion on basis of map data 

gained from harmonic actuation is confirmed by a correlation study of map simulation-

to-physical drop test results. This is because, in general, a bumper drop test excitation 

deviates from harmonic motion. The amplitudes and circular frequency need to be 

specified properly in order to represent the considered load case (in this example the 

drive over kerb maneouvre) prior to any force response data acquisition. 

 

5.2.1 Specification of operational range 

To define the relevant harmonic actuation, firstly the expected operational range with 

regard to the maximum deflection and velocity (Smax, Vmax) needs to be specified. 

These values should envelope the worst case driving conditions and can either be gained 

from measurement of deflection over time recorded during the drive event, or 

alternatively be interpreted from the boundary conditions of the manoeuvre itself. In the 

current study, the latter approach is undertaken, as follows: 

 

The CD340 bumper maximum deflection 'Smax' is limited to approximately 60 mm, 

defined by the bumper block length. The block length is achieved for the condition that 

the gas inclusions of the foam type material converts into an incompressible form. As the 

bumper deformation is linked to the damper tube motion, the bumper deflection velocity 

'Vmax' is limited by the hydraulic blocking speed of the damper, measured as 3.5m/s. 

 

 

5.2.2 Specification of related frequency 

To specify the event’s relevant circular frequency ω  for a harmonic actuation, the 

quotient ω  = Vmax / Smax is determined as the data acquisition frequency: πω 2=f . 

The relevant value for the drive over kerb manoeuvre is approximately 10 Hz. 

 

5.2.3 Generation of the map database 

A set of force response curves is recorded from a sinusoidal displacement actuation, 

performed at the relevant frequency for a set of amplitudes (S1 to S7). The force traces 

are recorded as functions of time and are subsequently transformed into a function of the 

harmonic phase angle, ϕ . The amplitudes should provide a uniform distribution over the 
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bumper force range as shown in Figure 5.2, which reveals the force response gained 

from common actuation frequency of 10 Hz. 

 

 
Figure 5.2: Sinusoidal actuation force response  

time history of a jounce bumper element 

 

5.2.4 Post-processing of map data 

The data in its recorded cannot efficiently be used directly for generation of a map. Post-

processing is required to condense the large data quantity. The traces recorded for any 

given amplitude Si are subdivided into equi-distant angular intervals. Single force values 

(splines) are selected at each interval border. In Figure 5.3, a phase angle interval of 15  

width is applied. 
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Figure 5.3: Splines gained from a single jounce bumper force response trace at interval 

width of 15  

 

A cubic spline interpolation function is used to approximate the trace in between two 

splines. For the approximation, a third order polynomial is used: 

 
3

3
2

210 zAzAzAAF ⋅+⋅+⋅+=        (5.1) 

 

The variable z represents a local coordinate within the current interval in between two 

neighbouring splines, A0, A1, A2 and A3 are a set of coefficients, specified to fit the 

curve shape [23]. 

The coefficients are derived in numerical preprocessing and stored in a three dimensional 

array (A). The array contains the comprehensive force response information condensed 

into a compact numerical format. The regular array structure enables fast access and, 

therefore, an efficient map for solver interaction process discussed in section 5.3. 

Figure 5.4 illustrates the data organisation of the array. The coefficients which define the 

force response trace of number 'k = 4' within the range of interval 'i = 5' are stored in (A) 

under the corresponding line and register indices. 
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Figure 5.4: Organisation of array 'A' stored by cubic spline coefficients 

 

5.2.5 Map visual interpretation 

The following provides a visual interpretation of the 2-parameter map concept, intended 

to gain a more descriptive insight into the method. The harmonic motion is defined as: 

 

( )

( ) )cos(
)sin(

0

0

tSv
tSs

t

t

ωω

ω

⋅⋅=

⋅=
 

 

Both expressions can be presented in a phase diagram s over v, characterised by an 

ellipsoidal trace (Figure 5.5). 
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Figure 5.5: Phase diagram S over V for a harmonic actuation 

 

In conjunction with the expression for the circular frequency phase angle: tωϕ = , a 

generalised velocity ( ) ω/tv  can be defined as: 

( )

( ) )cos(

)sin(

0

0

ϕ
ω

ϕ

⋅=

⋅=

S
v

Ss

t

t

         (5.2) 

 

For the generalised velocity, the phase diagram reveals a format of concentric circles in 

the xy plane. Because of the circular shape, also the phase angleϕ  can be visualized [17]. 

 
Figure 5.6: Concentric circles found for generalised velocity in a phase diagram 

 

For a compressive element (push), only the phase angle range πϕ <<0  is applicable for 

the force response as shown in Figure 3.7, whereas push - pull elements (bi-directional) 

require the full circular range in the phase diagram. 
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Figure 5.7: Generalised phase diagram for generalised velocity 'V/ω ' and phase angleϕ  

for a push element 

 

The three dimensional perspective (Figure 5.8) shows bumper force response traces (red) 

aligned to the z- axis, whereas the black traces indicate force trace vertical projections to 

the xy plane. The inner trace was recorded for an actuation amplitude S0 = 40 mm. The 

amplitudes were increased in steps of 5 mm towards the circumfluent traces up to 

amplitude S4 = 60 mm. 

 
Figure 5.8: Force response traces (red) and their vertical projections (black)  

into a phase diagram  
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A side view of the 3D map (Figure 5.9, zx plane) illustrates the typical shape known 

from the hysteresis loops. 

 

 
Figure 5.9: Jounce bumper hysteresis loops gained through harmonic actuation 

 

 

5.3 Map-to-Solver interaction 
The following explanation concerns the selection process for a relevant feedback force 

F(s, v) derived from the map data. 

The map concept is embedded into the vehicle multi-body system, presented in chapter 

4. Bumper engagement forces are addressed as additional external forces. Therefore, a 

map force response strategy needs to be integrated as a feedback loop into the numerical 

environment in order to solve the vehicle’s equations of motion. Equations of motion 

(second order differential equations) can be solved by time marching numerical 

integration. The integration is performed for discrete time increments, resulting in the 

system state vectors (displacement, velocity and acceleration of each system degree of 

freedom at an instant of time). For each time step, a set of initial conditions 's' and 'v' are 

required in order to calculate the instantaneous state vector. The aim of the map to solver 

interaction link is to feed back the bumper force, corresponding to the initial conditions 

at any step of integration. 
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5.3.1 Definition of Map Datum Point related to initial conditions 

All force response curves are gained from harmonic actuation of common (the drive 

event related) circular frequencyω . To receive a force response from the map, the datum 

point, corresponding to the initial conditions, must be within the map range defined by 

the largest circle. The datum point shown in Figure 3.10 is located in between the third 

and fourth radius (map data array index k = 3, 4), counted outwards from the map centre. 

It is determined by a polar vector R, aligned to the direction of the angle ϕ . Therefore, 

the corresponding phase angleϕ  and vector R can easily be derived from the current 

initial conditions S and V as: 

ω
ϕ

/
tan

V
S

=    ( )22 /ωVSR +=       (5.3) 

 
Figure 5.10: Determination of phase angle from initial conditions 'S' and 'V/ω ' 

 

5.3.2 Interpolation of the datum force response 

The force related to the datum point is approximated by two interpolations; in 

circumferential and radial directions. For the interpolation in the circumferential 

direction, the spline coefficients, derived from the pre-processing, are used. An 

elongation of the polar vector R defines three circular intersection points; two inner ones 

at radii S1 and S2 and an outer point S3. Force values F1, F2 and F3 are related to the 

intersection points (see Figure 5.11). The forces are commonly located within the same 

phase angle interval (map data index 'i', see Figure 5.4). If 1ϕ and 2ϕ are the phase angles 

that frame the 'i' th interval 21 ϕϕϕ <<  and 1ϕϕ −=z  being the local variable, the forces 

F1 to F3 can be directly approximated by the spline coefficients stored in the array A as: 
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      (5.4) 

 

 
Figure 5.11: Circumferential approximation F1, F2 and F3 

 

In a second operation, the forces F1, F2 and F3 are used to perform a radial interpolation 

along the datum vector R as shown in Figure 3.10. A polynomial of second order is used 

as: 

( )
2

210 sKsKKF S ⋅+⋅+=         (5.5) 

 

Using the approximations found for F1, F2 and F3, the coefficients Ki are determined by 

the three equations: 
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Figure 5.12: Radial approximation F 

 
2

210 RKRKKF ⋅+⋅+=         (5.6) 

 

The two operations directly lead to the map feedback force F(S, V), related to the initial 

conditions (S, V). 

 

The flow chart, shown in Figure 5.13, summarises the map-to-solver feedback structure: 
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Figure 5.13: Map-to-Solver feedback loop flow chart 

 

In a separate preprocessing action, the three dimensional array A3D is set up with the 

map spline coefficients prior to the numerical integration of the structural equations of 

motion. During the solution of the MBS, the force corresponding to the initial conditions 

S(t), V(t) is retrieved in a feedback loop for each time step.  

 

  



 Chapter 5: The jounce bumper simulation model 
 

 115 

5.4 Concept potential and limitations 

 
5.4.1 Potential 

The map concept is intended for application in simulation of large scale deformations 

which cover the full range of component deflection. The focus for application is seen in 

the simulation of severe driving manoeuvres The results, presented in chapter 7, 

validation, confirm concept applicability for the bumper simulation with good degree of 

accuracy. 

The software developed is a FORTRAN code of modular structure. It can easily be 

applied as an external subroutine in any MBS environment. 

As the map method may be regarded as a standardised process, applicable for lateral and 

rotational DoFs, an application to other chassis relevant polymeric element types would 

not require a large effort. Therefore, the vision is to develop further specifications for the 

actuation parameters discussed in section 5.2.2 to also address the suspension bushings. 

In its standardised format, the map force response data generation can be attached to the 

bushing and bumpers supplier statement of work task list. 

 
5.4.2 Limitations 

The following lists the limitations of the expounded map concept: 

 

(a) Superposition effects 

Each degree of freedom (lateral or rotational) is addressed individually. Thus, any 

interaction effects, caused by superposition of multiple DoF is not covered by the map 

concept. 

 

(b) Frequency 

A shortfall of the process is the limitation to only one discrete frequency used for the 

data acquisition, which is determined by the operational range (Smax, Vmax). The map 

concept is, therefore by its nature, not valid for a frequency sweep simulation study, 

which may be considered as a fundamental requirement for NVH investigations. The 

operational range must be known or estimated prior to the map data acquisition. 

 



 Chapter 5: The jounce bumper simulation model 
 

 116 

(c) Operational range 

Contrary to a rheological model, the map concept cannot be extended beyond the 

operational range defined by the force response data acquisition process. However, the 

common practice of range extension by data approximation known from 2D static force 

response curves can also be applied by equally to the three dimensional map concept. 

 

(d) Data acquisition 

The data acquisition requires special equipment and in general cannot be provided by 

means of hydraulic actuation, as the force requirement in conjunction with the velocity 

demand leads to oil flow rates beyond the scope of ordinary equipment. 

The physical force response data acquisition is generally limited in terms of: 

• actuation amplitude 

• operational range relevant frequency 

• maximum force level 

 

If hydraulic cylinders are intended for the harmonic actuation, the limitations are linked 

to the combination of the three above stated parameters. A maximum force level requires 

a minimum cylinder cross-section. Frequency and amplitude define the oil volume flow. 

To overcome this problem, a mechanical crank concept discussed in chapter 7 is 

developed and used for the bumper force response map data acquisition. 

 

(e) Memory effects 

The concept is valid only for elements that reveal no significant memory effect. The 

nature of a memory effect is that the force response gained for discrete initial conditions 

depends on the history of motion that leads to a specific state. The foam-type jounce 

bumpers used in the current study are proven to have no significant memory effect above  

the actuation velocity of 0.5 m/s [56]. 
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5.5 Closure 
The map concept highlighted in this chapter describes a numerical method to simulate 

the force transfer function, taking into account the velocity related hysteresis 

characteristics of a jounce bumper element in chassis applications.  Force response 

measurements performed for harmonic excitation are used as the basis for the simulation. 

The concept was derived particularly for a polyurethane-type jounce bumper used in the 

McPherson front suspension used in the CD340 (Ford Galaxy). 

 

The numerical concept is considered to be generally applicable, including for other 

polymeric type chassis elements, such as conventional or hydro-bushings, for the 

purpose of impulse-like, full deflection range actuations. A physical validation, as shown 

for the bumper element, would be required. In doing so, the burden to set up a unique, 

element-specific model can be avoided. 

 

The force response data set is condensed into a compact numerical format, using cubic 

spline interpolations to enable an effective solver interaction, linked to MBS. The force 

response data acquisition method is simple, but in conjunction with the bumpers it can 

exceed the limitations of conventional hydraulic equipment. 

 

The database is generated for a discrete operational frequency only. The frequency 

response scope is therefore limited and cannot be extended beyond the measured range. 

The method is neither applicable for NVH investigations nor for elements that reveal 

significant memory effects. 

 

The map concept, including data acquisition, data transformation to map format and 

integration with an MBS solver can be incorporated into a standardised process. 
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Chapter 6: Minimal parameter in-plane static tyre model  
 

 

6.0 Introduction 
The model discussed here is intended to approximate the static contact force response of 

a conventional belt tyre used for passenger cars for the case of radial penetration in 

contact with a rigid body. The rigid body contact geometry is assumed to be a straight 

line (edge contact) or plane surface (flat contact), acting over the complete width of the 

belt. Force response traces obtained for the above mentioned tyre deflections typically 

reveal an almost linear character [21]. Therefore, the radial tyre force response is often 

simulated by using a linear spring model [28]. In general, experimental testing or other 

efforts are required to derive the spring stiffness for such a model. The aim of the model 

proposed here is to avoid such experimental efforts and instead derive the force response 

analytically from a minimum set of geometrical parameters and the pneumatic pressure. 

The model will be shown to match the static force response with reasonable accuracy for 

flat and edge contact. It will be used for an in-plane kerb strike simulation DoK as 

defined in chapters 1 and 2 to evaluate the maximum vertical load level. An edge-type 

kerb-to-rim clash is the intended nature of this test in order to cause a radial deflection 

over the full tyre deformation range. The maximum wheel force level is expected for the 

clash condition (Figure 6.1 right), followed by a roll-over motion to climb the kerb. The 

post-clash belt contact will necessarily transform from an edge-type to a flat geometry. 

To adhere to the principle of simplicity, this contact transition is not considered to be a 

part of the simulation model. The kerb geometry is, therefore, defined as a blade-type 

obstacle as shown in Figure 6.1 left. 

 
Figure 6.1: Simplified kerb simulation and real kerb strike 
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6.1 Structural components of conventional passenger car belt tyres 
The tyre structural components are shown in Figure 6.2. Item (1) shows the tyre 

protector (tread), comprising pure rubber material, underlay by bandages (2). Two steel 

layers (3) are weaved from cables (steel belt), supported by shoulder elements (4) in its 

transition to the rubber made sidewalls (5). The tyre carcass consists of two nylon cord 

layers (body ply; item 6). These radially oriented nylon cords (6) are wrapped around a 

ring made from a steel wire bundle (bead; item 7) and the bead profile (8). The bead is 

surrounded by a linen textile (9) guided by the shafer elements (10), which protect the 

sidewall cord structure attached to the bead. A thin rubber coating (liner; 11) surrounds 

the carcass cord layers and protects the tyre from pneumatic pressure loss. During the 

vulcanization process, the rubber components are melted to form a compound structure 

with the other elements. 

 
Figure 6.2: Belt tyre structure components [21] 

 

In the following, the combined structure consisting of components 1 to 4 is addressed as 

the belt, whereas components 5 to 10 are specified as sidewall. Components 4 and 7 are 

considered to act as a revolute joint that link the sidewall to the belt and to the rim 

structure.  
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6.2 General assumptions for physical properties of conventional 

passenger car tyres 
 

These are: 

• The mass of the tyre structure is approximately 20% of the total un-sprung mass, 

attached to the wheel centre. Only a small portion of the tyre mass is appreciably 

deformed during a radial kerb strike. It is, therefore, assumed that the inertial 

forces caused by tyre deformation are small compared with the total inertial force 

of the un-sprung mass resulting from the 'Drive over Kerb' event. 

• Static measurements revealed that the force required for radial deformation of the 

tyre structure to be smaller than 10 % compared with the total force. 

• The increase in tyre pneumatic pressure during radial deformation was measured 

against that of the flat contact to rim and remained within 10%.  

 

The following assumptions were made with respect to the tyre structure: 

• The belt inlay (steel wire) causes a high circumferential stiffness, but it is 

designed to be flexible in bending.  

• Radially-oriented nylon cords within the sidewall structure provide large 

longitudinal stiffness in the radial direction, but also a high degree of bending 

flexibility.  

• The circumferential stiffness of the sidewall structure is considered to be small in 

comparison with the circumferential stiffness of the belt. 

 

 

6.3 Definition of the Tyre model 
As a consequence of the above assumptions, the simulation task was reduced to the 

calculation of the in-plane pneumatic induced force, where stiffness caused by the 

deformation of the rubber structure and its inertial effects are neglected in the model. 

The tyre structure is condensed down to two elements, the belt and the sidewalls as 

shown in Figure 6.3. Both elements are simplified in respect of geometry, inertia and 

stiffness. 
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(a) Geometry: 

• The steel belt geometry is assumed to be cylindrical for an un-deformed tyre (free 

of external loads). 

• The sidewall geometry is assumed as an ideal torus section, attached to the belt 

and the bead (see Figure 6.4). 

 

(b) Inertia: 

• Both elements; the belt and the sidewall, are considered to be massless. 

 

(c) Stiffness: 

• The belt is considered to behave as an inextensible ring, rigid in the 

circumferential and axial directions. It is considered to behave like an ideal 

membrane with regards to bending stiffness in circumferential direction. 

 

• The sidewall cords are considered as rigid in its longitudinal (along the cords 

centre line) direction. The sidewall structural stiffness perpendicular to the cords 

but in-plane with the sidewall (in its circumferential direction) is considered to be 

of negligible stiffness and with no resistance against shear deformation. The wall 

is also assumed to behave membrane like, ideally flexible in bending. 

 

(d) Pneumatic pressure: 

• This is assumed to remain constant during any radial deformation. 

 

6.3.1 Geometrical parameters of the tyre model  

Four geometrical parameters taken from the real cross-section, indicated in the right half-

section of Figure 6.3 are defined so as to describe an idealised tyre model. 

 

• Ra, belt outer radius  

• ri, rim radius 

• bt, belt width 

• fc, height of sidewall arc 
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Figure 6.3: Tyre model geometrical parameters taken from the real cross-section 

 

The sidewall structure is simplified as a radial membrane in shape of an xz in-plane 

toroidal section (see Figure 6.4). All the following derivations are based on the above 

simplifications and assumptions. 

 

 
Figure 6.4: The sidewall model structure considered as toroidal membrane section 
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6.4 Full analytical tyre model based on shell theory 
Based on the tyre structure assumptions made above, full analytical formulas are derived 

for the pneumatic caused internal stress and the force response against radial deformation 

is provided in the next items by making use of the membrane theory. 

 

6.4.1 Derivation of analytical model properties for an un-deformed tyre 

The internal stress applied to the tyre model elements is analysed for the tyre in its un-

deformed state. In this case, the belt contour is assumed to be an ideal right circular 

cylinder linked to the sidewalls, considered as a toroidal membrane section as shown in 

Figure 6.4. In particular, the internal radial stress σ1 at the sidewall-to-belt link and the 

circumferential belt force Fg are derived (see Figure 6.7). 

 

(a) Derivation of torus membrane stress 

Timoshenko [59] derived a general in-plane stress relationship for a doubly-curved 

element of a thin-walled vessel structure subjected to an internal pressure p, as shown in 

the shaded element of Figure 6.5. 

 
Figure 6.5: In-plane stress on double curved thin walled vessel at constant pressure [59] 

 

With R1 and R2 being the vessel radii of curvature, the equilibrium condition in the 

radial direction applied for the shaded membrane element reveals: 

 

tc
p

RR
=+

21
21 σσ           (6.1) 

 

where tc is the wall thickness of the vessel shell element. 
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When applied to a torus structure, shown in Figure 6.6, R1 is considered as the radius of 

the torus cross-section in the xy plane, whilst R2 stands for the outer contour radius in 

the planar section xz plane. 

 
Figure 6.6: Curvature radii R1, R2 and membrane stresses 1σ , 2σ  in a torus section 

 

For tc being the wall thickness of the membrane and p the pneumatic pressure, the 

equilibrium condition in the y-direction leads to the radial stress, 1σ : 

 

( )22
1 sin2 Rmrptcr −⋅⋅=⋅⋅⋅ πασπ        (6.2) 

 

Using the first part of the geometrical relationship: 
21

sin
R
r

R
Rmr

=
−

=α , the radial 

stress of the sidewall can be derived as a function of radius r: 

 







 +⋅⋅=

r
Rm

tc
Rp 1
2

1
1σ         (6.3) 

 

In combination with equation (6.1), the circumferential stress 2σ  reveals to be constant 

all over the toroidal section xy, thus: 
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const
tc

Rp =⋅=
2

1
2σ          (6.4) 

 

 (b) Application of the shell theory to derive belt and sidewall stresses  

Equations (6.3) and (6.4) represent the toroidal membrane stress for an ideal isotropic 

elastic material. When applied to a tyre structure, it must be noted that the material 

elasticity is no longer isotropic as the belt structure is almost rigid in the circumferential 

direction, whereas the sidewalls are quite flexible. Therefore, the circumferential stress 

2σ would mainly transfer through the belt structure, resulting in Fg (see Figure 6.7). In 

line with the model assumptions with regard to stiffness, listed under section 6.3 c, the 

sidewall circumferential stress 2σ can be assumed to be zero in the deviation of equation 

(6.4). A deviation of 2σ does also change the radial balance to 1σ  , according to equation 

(6.1). 

Despite these deviations, equation (6.3) can be applied to calculate the tyre sidewall 

stress 1σ  which defines the line load Qsg linked to the belt edges: 

 

)1(
2
1

)(1 Ra
RmRptcQsg Rar +⋅⋅=⋅= =σ        (6.5) 

 

Similarly, the sidewall line load Qsr at the rim contact can be found as: 

 

)1(
2
1

)(1 ri
RmRptcQsr rir +⋅⋅=⋅= =σ        (6.6) 

 

The equilibrium condition in the z- direction, shown in Figure 6.7, was used for the 

derivation of the belt force Fg. A cylindrical shell element representing the belt is 

applied to the sidewall stress 1σ  and the circumferential belt force Fg. Both loads hold 

the shell in equilibrium against the pneumatic force in the z- direction, caused by 

pressure p applied to the projected shell area (see Figure 6.7). 
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Figure 6.7: Belt shell structure applied to sidewall stress and belt force Fg. Right: the 

tyre cross-sectional geometry 

 

∫
=
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2
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By using equation (6.3) and the four geometrical relations: 

1
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8
41
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the integration leads to the circumferential belt force Fg as: 

 

[ ])1()( fcRRmRabtRapFg −⋅+−⋅⋅=       (6.7) 

 

6.4.2 Assessment of analytical method versus FEM results 

To validate equations (6.5), (6.6) and (6.7), their predictions were compared with results 

from an FE analysis as shown in Figure (6.8). The FE results were provided by the 

FORD Chassis CAE group in FoE. Chassis CAE makes use of an ABAQUS tyre model. 

It is based on the standard ABAQUS TYRE described in [42], but parameterized and 

validated by Chassis CAE. 

The comparison was done for two tyre sizes 235/40-R18 and 205/55-R16 (see chart 6.1).  
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Figure 6.8: Intersection load analysis based on ABAQUS FE tyre simulation 

 

 
Chart 6.1: Overview of internal load validation results for 205/55-R16 and 235/40-R18 

 

The deviations found between analytical and FE results for the belt force Fg, sidewall 

line loads Qsg to the belt and Qsr to the rim are on average smaller than 10% for an un- 

deformed tyre stress analysis. 
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6.4.3 The tyre model to simulate force response against radial deformation 

When the tyre is loaded in contact with even ground or forms an edge contact with a 

kerbstone, a local radial penetration occurs. The local radial deformation causes a global 

belt and sidewall deformation, and therefore, affects the entire tyre structure. Hence, in 

general a comprehensive structural analysis is required to calculate the force response. 

This approach is addressed by the chain model in section 6.5. Nevertheless, the simple 

model concept derived in this section can replace a detailed tyre structural analysis by 

simple geometrical assumptions for the belt deformation state. 

 

Two patch geometries are outlined; a flat contact with the ground and an edge-type 

contact.  

For a flat contact, the maximum belt contact length to ground is approximated by the 

tangent section shown in Figure 6.9, left. A circular shape is assumed for the residual 

belt, which is not in contact with the ground. Because of its simplicity, it is 

acknowledged that this approach violates the assumption of a constant belt length 

(imcompressibility of the rubber compound). Tyre force response curves obtained from 

the flat contact deformation are known to be of almost linear character with a slight 

progression [14], [21], [26]. Therefore, the maximum force required to deform the belt 

into rim contact position is analysed and subsequently linearised over the radial belt 

deflection range. 

 

To analyse the edge contact, an analogy to a hinge bridge structural analysis [61] is 

made, which is used in civil engineering. The belt length affected by radial deformation 

(effective length Le) is approximated by the span width of a hinge bridge as shown in 

Figure 6.10. To validate the simplified approaches, the results are assessed against an 

ABAQUS FE tyre model. 

 

(a) Flat contact model 

The analysis is based on a membrane assumption, where the flexible belt is considered to 

transfer the effect of internal pressure to an ideal planar and rigid ground by neglecting 

the structural effects. The maximum contact patch length can be approximated by a 

horizontal line tangential to the rim at the deflection level fmax, where the belt contacts 

the contour of the rim of radius ri (Figure 6.9).  
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Figure 6.9: Flat contact of a simplified tyre and a Euclidean circular geometry 

 

Using the Euclidean law: qph ⋅=2  (Figure 6.9, right), the maximum length of the 

contact patch hrim becomes: 

 

))(2()( riRaRariRahrim −−⋅−=   

 

Thus, linearisation leads to the tyre patch contact length hp as:  

 

f
riRa

hrimhp f ⋅
−

⋅= 2)(  

 

Hence, the contact force against flat ground can be approximated by equation (6.8):  

 

bthppFc f ⋅⋅= )(          (6.8) 

 

(b) Edge contact model 

The contacting profile is assumed to be a blade-type obstacle in an allusion to a hinge 

bridge pylon. It represents an idealised line contact over the belt width as shown in 

Figure 6.10. The hinge bridge span width Le is considered to behave analogous to the 

belt radian length Le (effective length) subjected to radial deformation. 
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Figure 6.10: Edge contact for a simplified tyre geometry 

 

Circumferential forces Fg hold the belt structure in equilibrium against the pneumatic 

force applied to the projected area 2Ra*bt and the sidewall line stress σ1 (Figure 6.7). 

With an increasing radial deflection f (Figure 6.11, right), the projected belt area and 

hence the belt force Fg decreases. This effect is recognised by the correction of the belt 

force Fg in equation (6.9): 

 

Ra
fRaFgFgcorr 2

2 −
⋅=         (6.9) 

 

With the assumption of a common belt force magnitude at the upper and lower belt ends 

and an analogy to the hinge bridge rope equations (6.10) [61] derived for constant line 

load q (see Figure 6.11 left), this leads to equation (6.11).  

 

Rope equations: 
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H
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⋅

= 4tan
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Ra
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⋅
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8

2

   (6.11) 

 

 
Figure 6.11: Belt load analogy to equations for a rope 

 

 

The left hand side of Figure 6.11 shows the hinge bridge rope (dashed line), attached to 

the horizontal equilibrium force H. The rope is shown for half its span-width (effective 

length Le). On the right hand side of Figure 4.11, the half tyre is attached to the 

horizontal belt forces. For an edge contact, the belt is considered to act analogous to a 

simply supported rope ( corrFgH = ). Based on the analogy assumption (6.11) the 

horizontal belt force H can be estimated by using the equations (6.7) and (6.9) derived 

from shell theory, whereas the vertical component βtanHV =  preliminary remains 

unknown in absence of the rope angle β. A view on the rope equation (6.10) reveals that 

this angle is related to the effective length Le. Rearranging equation (6.11) by taking into 

account btpq ⋅=  and maxfriRahc =−= , the effective length Le for a full range of 

radial deflection to rim contact can be estimated by equation (6.12). 

 

Ra
hcRa

bt
fcRRmRaRahcLe

2
2)1()(22 −
⋅



 −⋅+

−⋅⋅⋅=     (6.12) 
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Now, equations (6.10) and (6.12) are used to analyse the tangent angle β of the rope 

(Figure 6.11) for the case of maximum deflection maxf : 

 

Le
fmax

max
4tan =β          (6.13) 

 

Strictly speaking, both effective length Le and the tangential angle β are non-linear 

functions of the radial deflection f. However, the agreement to physical testing and FE 

results was improved by a linearization of β over deflection f and by neglecting the 

correction factor (2Ra – f) / 2Ra used for the derivation of constant length Le, which 

simplifies equation 6.12: 

 





 −⋅+

−⋅⋅⋅=
bt

fcRRmRaRahcLe )1()(22               (6.12-a) 

 

With the assumptions made above, equations (6.9) to (6.12-a), the radial belt force Fc for 

an edge contact can be approximated by: 

 

( )
)(2

/)1()2(
28

tan22
max

max

riRaRa
btfcRRmRaRafRa

fbtpFg
Le
f

f
fHVFc

corr −⋅⋅
−⋅+−⋅−

⋅⋅⋅=⋅⋅=

⋅⋅⋅=⋅= β

 (6.14) 

 

Beside the deflection f, equation (6.14) is reduced to the pneumatic pressure p and four 

geometrical parameters taken from the tyre cross-section.  

 

6.4.4 Numerical results assessment to FE model 

An assessment of the force response (Fc) of the numerical results for the flat contact’s 

simple model (linear membrane) was made against ABAQUS FE structural analysis. 

Results gained for flat contact are shown in chart 6.2: 
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(a) Flat contact 

 

 
Chart 6.2: Flat contact vertical force for linear membrane  

and those of ABAQUS FE model 

 

The results reveal a good fit for small deflections (20mm) only. The deviations increase 

with rising deformation and decreasing pressure. The reason for the difference is 

considered to be due to the omission of the tyre structural stiffness and sidewall effects. 
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(b) Edge contact 

An assessment of the numerical results for edge-type contact for the simple model (rope 

analogy) is made against the FE structural analysis. These are shown in chart 6.3. 

 
Chart 6.3: Edge contact vertical Force for the linear membrane model versus the FE 

model for tyre types 205/55-R16, 235/40-R18 

 

Deviation less 10% is noted for the tyre size 205/55-R16. In contrast to the flat contact, 

the edge contact simple model over-predicts the force level for tyre size 235/40-R18. The 

deviations increase with rising deformation and pressure, but even for 3bar and 60mm 

deflection (conditions for close to rim contact) the deviation does not exceed 20%. 
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6.5 Physical tyre model based on chain type structure 
One feature that both the simple models presented above have in common is that the belt 

contour shape is determined by the definition of the contact patch length hrim ( for the 

flat contact model, see Figure 6.9) and by the equivalent length definition Le for the 

edge-type contact. In both cases, the belt contour is a consequence of these definitions, 

which does not necessarily fulfil the physical equilibrium condition. Furthermore, the 

effect of belt-to-sidewall deformation and its interaction with the sidewall forces is 

neglected in the simple model approach. To confirm the validity of these simplified 

conditions, a physical chain model, based on the virtual work principle is derived for the 

edge-type contact problem. The aim is to find the edge contact force that matches with 

the desired radial deformation and simultaneously fulfils the belt equilibrium condition. 

 

(a) Chain model structure 

The continuous belt structure is divided into discrete rigid bar elements of tyre axial 

length 'bt' and in-plane length 'cl', (see Figure 6.12). The bars are oriented in the wheel’s 

axial direction and linked by revolute joints at their side edges to form a roller chain-like 

ring structure of radius Ra. The bar elements’ in-plane length 'cl' corresponds to a one 

degree geometrical resolution of the in-plane angle tα , resulting in 360 elements, 

representing the full circular belt. Rope forces Fsw derived from the sidewall membrane 

stress are attached to the bar ends. The belt circumferential force Fg, as well as the 

sidewall forces Fsw are transferred by the assumed revolute joints.  

 
Figure 6.12: Chain structure of tyre belt (left) and cross section (right) 
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The above model structure is used to investigate the static force response of a radial 

deformed tyre belt shown in Figure 6.13. Using equation (6.5) the sidewall force Fsw at 

the bar ends, shown in Figure 4.12, is: 

 

( ) tt RmRaRpRaQsgFsw αα ⋅+⋅⋅=⋅⋅=
2
1       (6.15) 

 

Similarly, the sidewall force at the rim is: 

 

( ) tt RmriRpriQsrFri αα ⋅+⋅⋅=⋅⋅=
2
1  

 

(b) Derivation of radial force response    

For static radial deformation, the tyre belt must be in equilibrium with the radial applied 

external force Px (Figure 6.13). 

 
Figure 6.13: Tyre belt chain model in radial deformation state 

 

Considering a symmetric deformation (Figure 6.13 left), the analysis can be reduced to 

that of the lower half belt. In-plane sidewall forces Fs and pneumatic forces Fp are 

attached to each belt bar element. The pneumatic forces are directed perpendicular to 

each bar element and are of constant magnitude, whereas the sidewall forces Fs are 

directed towards their attachment points (crosses in Figure 6.13 right), fixed to the rim 

and vary in magnitude. 
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6.5.1 Model simplifications, boundary and initial conditions 

 

(a) Shear stress 

A consequence of the radial belt deflection is the occurrence of shear deformations in the 

sidewalls (Figure 6.14). 

 
Figure 6.14: Element shear deformation caused by the radial tyre deflection 

 

The shear stress, caused by the sidewall shear deformation, is neglected in the current 

model. 

 

(b) Boundary support condition 

In the case of a radial load Px, applied to the belt’s free-end, only a small deflection in 

the x- direction is expected at the supported end of the belt, linked to the floating bearing 

shown in Figure 6.15 (left). Hence, the bearing force Bx can be considered to be small in 

relation to the external force Px at the belt free-end for the case of a fixed bearing as 

shown in the right hand sketch.  A simplification is achieved for the support 

configuration shown in right hand sketch, as it retains a deformation of the belt relative 

to the rim. 

 
Figure 6.15: Simplified boundary conditions for tyre belt model 
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(c) Element forces at initial condition 

A circular contour is defined for the polygonal belt structure in case that the radial force 

Px becomes zero and all the other forces; Fs and Fp attached to the elements are directed 

radially and would be of a constant magnitude as shown in Figure 6.16 (left). 

 

 
Figure 6.16: Circular tyre belt contour and tyre cross section in initial condition 

 

In this case, the in-plane radial component Fs of the sidewall force Fsw is derived from 

equation (6.15) as: 

 

( ) αα
α

cos1
cos2

⋅+⋅⋅⋅=
⋅=

RmRaRp
FswFs

t

       (6.16) 

 

and the pneumatic force Fp remains 

 

tRabtpFp α⋅⋅⋅=  

 

The forces to maintain equilibrium at the free belt end are: 

  

[ ])1()(
0

fcRbtRabtRapFgPz
Px

−⋅+−⋅⋅==
=
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6.5.2 Sidewall force to belt interaction      

  

It is the nature of pneumatic forces (Fpi) to act perpendicular to the surface. Therefore, 

their directions always correspond to the element angles iγ as shown in Figure 6.16. They 

are of constant magnitude, whereas the sidewall forces (Fsi), shown in Figure 6.15 

(right) vary in magnitude as a function of belt deformation and are always directed 

towards their attachment points fixed to the rim.  

 

The sidewall force Fsw, acting on the belt bar element ends, is derived for the un- 

deformed circular tyre (initial condition) under section 6.5, equation (6.15). Its 

magnitude depends on pressure p, the span length hc and the sidewall slack hang fc, 

shown for the initial condition in Figure 6.17 (left). The span length is defined by the 

position of the belt bar ends and the invariant rope attachment point to the rim. 

 

 
Figure 6.17: Element sidewall force Fs for initial condition and radial belt deflection 

 

In the case of a span width deviation 's' (Figure 6.17, right), the slack hang 'sh' increases 

whereas span width 'Ls' and the sidewall force Fs decrease with the rising deviation 's'. 

For the loaded tyre, the span width 'Ls' is not necessarily directed radially, but is a 

function of the belt deflection state. The span width deviation 's', caused by the belt 

deformation, is used as a variable to define the sidewall force Fsw. Four cases are 

discussed as follows: 
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Case 1: 

The maximum span width is limited by the sidewall radian 'bc' at zero slack hang 'sh'. 

This condition defines a singularity as it results in the sidewall force Fsw becoming 

infinite (case 1, Figure 6.18). In this case, the span width deviation 's' is defined as 

negative and achieves its maximum magnitude 'ac' for the sidewall contour in full 

stretch. 

∞=

−=

Fsw
acs

 

 

Case 2: 

For the unloaded tyre (circular belt shape), the span width corresponds to the radial tyre 

width 'hc' against the rim (s = 0). For the span width deviation 's' to become zero, the 

sidewall force Fsw is defined in equation (6.15) as: 

( ) 12/1
0

FswRmRaRpFsw
s

t =⋅+⋅⋅=
=

α
 

 

Case 3: 

For a positive span width deviation (s > 0) towards the rim attachment, the sidewall force 

decreases as the slack hang 'sh' increases, hence: 

1
0

FswFsw
hcs

<
<<  

 

Case 4: 

For the belt contact to the rim condition, the sidewall force is approximated by equation 

(6.17); the formula for the circumferential stress of a cylindrical vessel of radius Rk: 

 

2

2/

FswRaRkpFsw

bcRk
hcs

t =⋅⋅⋅=

=
=

α

π
        (6.17) 
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Figure 6.18: Analysis of sidewall force Fsw 

 

The graph in Figure 6.19 shows an approximation curve considered for the sidewall 

force Fsw as a function of span width deviation s. The origin of the axis system is 

defined by the unloaded tyre condition. 

 
Figure 6.19: Approximation of sidewall force Fsw as function of span width deviation s 
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Equation (4.18) is used to approximate the curve shown in Figure 4.19: 

 

usac
gsFsw

)(
)(

+
=          (6.18) 

 

Approximation parameters g and u were derived by using the discrete solutions defined 

for the span width deviation s = 0 and s = hc: 

 

1)0( Fsw
ac
gsFsw u ===         (6.19) 

2
)(

)( Fsw
hcac

ghcsFsw u =
+

==        (6.20) 

 

Rearranging equations (6.19) and (6.20) leads to: 
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⋅+=

⋅=
 

 

Equating the above equations reveals that for the first parameter u: 
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         (6.21) 

 

Equation (6.21) is substituted into (6.19) leading to the second parameter g as: 

 
uacFswg ⋅= 1           (6.22) 
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6.5.3 The derivation of sidewall deformation state 

 

(a) Span width belt- to rim attachment points. 

The span width Ls is defined by the sidewall-rim connector points (xi, zi) on the rim 

contour and (xa, za) on the belt bar elements marked with cross symbols in Figure 6.20. 

The rim connector attachment points are defined by the geometry pitch angle tα  , 

whereas the belt connector positions are a function of the deflection element angles iγ . 

 
Figure 6.20: Sidewall force connector points xi, zi and xa, za on rim and belt elements 

 

Directions of the sidewall forces Fsw are aligned along the two line points (xa, za), (xi, 

zi) on the belt and rim. The coordinates are derived as follows: 

 

Rim connector points: 

( )
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       (6.23) 

 Belt connector points: 
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The attitude angles iε and the span width lengths 'Lsi ' can be derived with respect to the 

coordinates obtained using equations (6.23) and (6.24). Thus: 

 

( ) ( )22

tan

iiiii

ii

ii
i

zazixaxils

xaxi
zazi

−+−=

−
−

=ε
       (6.25) 

 

 

b) Direction of the sidewall force 

Only the in-plane (x-z plane) component Fs of the sidewall force Fsw is relevant to 

simulate the belt deformation as the tyre axial components (y-direction) cancel each 

other. The in-plane component is defined by the cosine of the sidewall tangent angleα

shown in Figure 6.21. 

 
Figure 6.21: Tyre cross-section showing the sidewall tangent angleα  

 

For 'bc' being the radian length of the membrane cross-sectional contour, direction angle 

α is defined by the geometric relations: 

 

2
sin1

21
lsR

bcR

=⋅

=⋅

α

α
 

 

Combining the above equations leads to: 
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bc
ls

=
α
αsin           (6.26) 

 

For discrete relations of the span widths lsi with the arc length bc, the reference angles 

iα  can be determined by analysis of the function derived in equation (6.26). The graph 

of the function f(α ) = sinα /α  is illustrated in Figure 6.22. 

 
Figure 6.22: Graph for the function f(α ) = sinα /α  to determine  

discrete sidewall force angle 

 

Combining equations (6.17) to (6.26), the in-plane sidewall force Fs, acting on a belt bar 

element in equation (6.16) can be determined. 
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6.6 The Mathematical concept for modeling the radial belt deformation 
A common method used to analyze a static equilibrium condition for a multi-body 

system is to formulate the force balance for each single element. In conjunction with 

compatibility conditions defined by the element constraints, a linear equation set can be 

obtained. Solution can then be obtained using Gaussian algorithm or through matrix 

inversion. For a chain type structure representing the half belt modeled with a 1  

elemental resolution, there are 180 equations. Adding the constraint formulations, 

solution for a matrix of 360 by 360 is required. To avoid this large computational 

burden, the principle of virtual work is used as an alternative analytical concept. As this 

concept delivers direct solutions for all system degrees of freedom, the need for matrix 

inversion becomes obsolete. The external loads Fsi and Fpi applied to the system 

components (chain elements) are functions of the system degrees of freedom (element 

angles γi) in this approach. Thus, a set of solutions found for a given instantaneous 

equilibrium condition needs correction of the applied external forces. This feedback loop 

needs to be embedded in the solver algorithm, shown in item 6.6.2. In item 6.6.1, the 

derivation of the virtual work equations applied to the belt chain structure is discussed. 

 

6.6.1 Virtual work principle applied to in-plane belt deformation 

The boundaries described in 6.5.1 c represent an equilibrium condition for the belt chain 

structure considered (Figure 6.23). A virtual deflection jδγ applied to any single element 

j, compatible with the element constraints, causes a virtual work applied to the system. 

According to the principle, this work should be zero for a system in static equilibrium 

state [17].  

 

0=⋅= ∑
j

jj rFW 
δδ          (6.27) 

 

It is noted that the principle is effectively applicable for systems only that are free of 

energy dissipation, which applies to the model properties outlined in item 6.5 (a). The 

vector r describes the local deflection of an external force application point. 
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(a) Virtual work derived for the first single belt element 

The principle of virtual work is applied to the belt contour represented by the in-plane 

element angles iγ  for a given load Px, Pz attached to the free right belt element shown in 

Figure 6.23 (left). 

  
Figure 6.23: Belt structure to derive virtual work equation 

 

A virtual deflection 1δγ  applied to the first degree of freedom 1γ  transfers the chain 

structure into the dashed shape shown in Figure 6.23 (right). All other angles iγ (i = 2, n) 

are assumed to remain unchanged. The transfer of the force application points is defined 

by the vectors ir
 , commonly aligned by 1γ  against x- axis. The magnitude of 1r

  is 

defined by 12/ δγ⋅cl , the other deflections niri ,2, =
  are of common magnitude 1δγ⋅cl . 

With the aforementioned, the virtual work applied to the system of the 'n' elements 

caused by Fpi and Fsi becomes:  
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The term that sums up the virtual work found for the second element is: 
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                    (6.28-2) 

(b) General formulation of virtual work for plane chain structures 

After rearranging (6.28-1, 2), the generalized formulation for the first (n-1) elements can 

be written as: 

 

 

∑

∑

+=

+=

++++⋅

++++⋅
−=

−=

n

ij
jjii

n

ij
jjii

i

PzFszFpzFszFpz

PxFsxFpxFsxFpx

ni

1

1

)()(
2
1

)()(
2
1

tan

1,1

γ
    (6.29) 

 

And for the last (i.e. the nth) element: 
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Angles iε  describe the sidewall attitudes (Fig. 6.20) derived from equations (6.23–25). 
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A simple example consisting of three elements subjected to pneumatic pressure as shown 

in Figure 6.23 is chosen to confirm the equilibrium condition for the angles defined in 

equations (6.29) and (6.30). Case #1 and #3 show pneumatic forces Fp, perpendicular to

iγ . Pneumatic force directions taken from case #1 are copied to case #2. Simple static 

analysis confirms that for all the three cases, the structure is in equilibrium for the 

external load Px and Pz attached to the free end of the chain. 

 

Case1:     Case 2:    Case 3: 

 
Figure 6.23: Example for three elements applied to pneumatic force Fp  

and the external load P 

 

For pressure forces Fpi and the external force Px,z applied to the structure in direction 

and magnitude as shown in Figure 6.23, equation (6.29) is used to determine 1γ and 2γ , 

and (6.30) for 3γ , confirming the results for the equilibrium angles iγ . 
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6.6.2 Method of Iteration 

The above mentioned example is used as an introduction to the iteration concept: 

In an analogy to tyre structure, case #1 represents the circular polygon contour of a radial 

unloaded belt (Px = 0) in equilibrium. A variation of the external load vector P, such as 

that exhibited for case #2, results in a radial deflection (-x direction) of the belt structure 

for magnitude of a unit elemental length. It is noted that in case #2, although in 

equilibrium, the forces Fpi do not act perpendicular to the 1st and 3rd element anymore 

and, therefore, violate the nature of a pneumatic force. For a radial load Px = -½ Fp and 

the vertical load Pz = ½ Fp, applied as shown in equilibrium case #3, the orthogonality 

condition is fulfilled. Thus, case #3 represents a physically valid load case for the tyre 

model defined as a chain structure. 

The aim of the iteration process is to find a static equilibrium force vector P which 

corresponds to a specified in-plane deformation of the tyre belt. The variation of P 

applied to the belt free end defines a new deformation state of the system. Thus, a 

specified deformation fx, fz can be achieved by a displacement controlled iteration loop 

applied to the components Px and Pz, using equations (6.29) and (6.30) until the 

specified deformation fx, fz is achieved for the free belt end with reasonable accuracy 

(see Figure 6.24, left). 

 
Figure 6.24: Deflections fx, fz of the tyre belt structure (left) and alignment of 

pneumatic force direction (right) 

 

For the case fz being zero, the radial component Px represents the tyre contact force 

which induces the radial deflection fx. It is noted, that each iteration step changes all the 

belt elemental angles iγ . Thus, the pneumatic force vectors Fpi, by definition 
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perpendicular to the elements, are functions of the structural degrees of freedom. 

Directional alignment is sought for pneumatic and sidewall forces (Fpi, Fsi) after each 

iteration step as indicated for the pneumatic forces in Figure 6.24 (right). The solid force 

is displaced to the position indicated by the dashed force vector, but remains unchanged 

in direction and magnitude. Subsequently, the dotted force is aligned perpendicular to the 

displaced element (dashed chain geometry). 

 

(a) Definitions 

The position angles of the belt elements are defined by iγ , measured from the negative z- 

axis (see Figure 6.25). Pneumatic force directions are defined by the angles iϕ  measured 

from the x- axis. Angles iε  define the sidewall forces Fsi, also measured from the 

positive x-axis. 

 
Figure 6.25: Angle definitions and x, z coordinate system 

 

(b) Initial condition 

The initial condition for the iteration process is defined by the circular contour of the 

belt. For this geometry the internal elemental forces (sidewall Fsi and pneumatic forces 

Fpi) are defined in magnitude and direction by the geometric pitch angle tα  as: 

 

iit
t

i i εϕα
α

γ ==⋅−+= )1(
2

        (6.31) 

 

The initial values for the magnitudes of the sidewall forces are set by equation (6.16), the 

magnitude of the pneumatic pressure remains constant during the iteration. 
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6.6.3 Iteration subdivision 

The chain contour, representing the geometry equilibrium condition of a tyre belt model 

is considered to remain within the fourth quadrant, defined by the x, z coordinate system 

defined in Figure 6.26. For the case that the force P applied to the free end extends 

stability limits, solutions are found also in other quadrants. In this case, the chain 

geometry can flip into a folded condition and the iteration concept does not converge 

towards a tyre belt appropriate solution. 

To avoid such buckling problems, the iteration was subdivided into a number of steps. 

 

(a) Stage 1: adjustment of initial position 

To control the iteration of the external force P, the position Sx and Sz of the free belt end 

attached to P is analyzed after each iteration step by the elemental angle sum of iγ as: 
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         (6.32) 

 

where cl stands for the width of a chain element (Figure 6.26). 

 
Figure 6.26: Belt free end position Sx after first iteration step 

 

For the position vector Sx = 2Ra (wheel radius) and Sz = 0, the circular belt contour is 

achieved. Under this condition, Pz corresponds to the belt force Fg, derived from 

equation (6.7), and Px is zero. These values can preferably be set as default initial values 

to speed up the iteration process for P. A correction of the pneumatic and sidewall force 
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directions iϕ , iε  is obsolete as they were initially set to match the ideal radial geometry 

by equation (6.31). 

 

(b) Stage 2: application of specified deformation 'f' 

During the second P iteration, the position vector S is modified with regard to the 

specified deformation fx, fz. 

 

fzSz
fxRaSx

=
−= 2

          (6.33) 

 

All direction angles iϕ  aligning the pneumatic forces and iε , the direction of sidewall 

forces, as well as the force magnitudes remain unchanged during the iteration for P until 

the specified position vector S is confirmed using equation (6.32). 

 
Figure 6.27: Belt free end position after second part of the iteration process 

 

(c) Stage 3: correct the pressure force direction iϕ  

As mentioned in the iteration concept, the alignment of the pneumatic force direction to 

achieve orthogonality with the belt bar elements is performed during the third iteration 

stage. The alignment of force direction angles iϕ  to the elemental position angles iγ is 

performed in ten steps: 
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iicorri
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As each alignment step changes the end position vector S, a subsequent correction is 

performed by an iteration of P to refit the specified belt deformation. 

 
Figure 6.28: Alignment of pneumatic force Fp direction perpendicular to belt elements 

 

(d) Stage 4: correct sidewall force direction iε  

In an analogy to stage 3, the alignment of the sidewall force directions to match with the 

rim connecting points is performed in ten steps. Equations (6.29), (6.30) and (6.31) are 

used to calculate the sidewall force angles iε : 

 

iicorri

iii

i
stepsalignmenttenFor

εεε
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−=∆

10

 

 

It is noted that a simultaneous alignment of the pneumatic force directions is continued 

during the iterative process for the sidewall forces in the stage 4. 



 Chapter 6: Minimal parameter in-plane static tyre model 
 

 155 

 
Figure 6.29: Alignment of sidewall forces Fs directions with rim connecting points 

 

(e) Stage 5: correct sidewall force magnitude Fs 

The deformed belt geometry results in a span width deviation 's' of the sidewall 

membrane between an element and its rim connection point. Thus, the sidewall force 

magnitude (see 6.5.2) needs to be adopted. The reduced sidewall force magnitude is 

indicated in Figure 6.30 at the right hand side of the belt structure. Correction is 

performed in 10 steps analogous to the stages 3 and 4 of the iteration process. As in stage 

4, the correction of pneumatic and sidewall force directions continues simultaneously 

with the correction of the sidewall force magnitude. 

 

 
Figure 6.30: Complete alignment of pneumatic- and sidewall forces 
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6.6.4 Numerical results for iteration stages 1 to 5 

Figure 6.31 provides a visual impression to demonstrate the impact of the individual 

iteration parts on the belt contour shape of tyre size 205/55-R16, with 2 bar pneumatic 

pressure. The red contour trace represents the final shape after each iteration stage. Px 

and Pz are the equilibrium forces at the right-sided belt free end. The final contour is 

shown in Figure 6.31 down right. 

 

 
Figure 6.31: Final belt contour after iterations stages 1 to 5 

 

Part 1 of the iteration is intended to adjust the belt contour in its initial position Sx = 2Ra 

and Sz = 0 at the chain end. The belt shape reveals a perfect circular contour as would be 

expected for purely tangential loading Pz. The radial force at the right sided chain free 

end Px is zero, Pz represents the circumferential belt force of the unloaded tyre. 

After a deflection in the negative x-direction to the rim contact position (part 2) the belt 

contour becomes symmetrical with respect to the z- axis as the pneumatic and sidewall 
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forces remain constant in magnitude and direction. Thus, the vertical force magnitude Pz 

remains unchanged. 

 

The symmetrical state is maintained with perpendicular alignment of the pneumatic 

forces against the belt contour, performed in part 3, which affects both the radial and 

vertical forces. With the alignment of the sidewall force directions in part 4, the belt 

contour reveals a non-symmetric shape. This action causes a significant increase in the 

radial force magnitude. 

 

Finally, an adjustment of the sidewall force magnitudes reveals the final belt contour. It 

is noted that the radial force almost doubles in magnitude during the last iteration step. A 

final contour plot displays the belt shape, being close to a circular contour until it 

deviates in the last quarter towards its free end.  

 

Figure 6.32 illustrates the shape history recorded for 15 mm deformation steps of radial 

deformation. 

 
Figure 6.32: Belt deflection traces against edge type radial deformation 

 

235/40-R18 

205/55-R16 

Le = 1/3 bl 

Le = 1/4 bl 
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A visual analysis indicates the belt length Le affected by the radial deformation to be 

approximately 1/3 and 1/4 of the total belt lengths 'bl' respectively. This corresponds to 

0,67m for the 205/55-R16 and 0,5m for the 235/40-R18 sized tyres. The comparison to 

the effective length calculated on the basis of equation (4.12) shows 0,25m (205/55-R16) 

and 0,35m (235/40-R18) respectively. These results reveal an underestimation for Le 

with the assumptions made for the simple edge contact model approach in section 6.2. 

 

6.6.5 The chain model applied to edge and flat tyre patch contact geometries 

The belt deformation profile is related to the geometry of the penetrating body. External 

forces P that act as a contact line on a single element as indicated in Figure 6.10, are 

considered to be an edge-type contact. As long as the penetrating structure deviates from 

the tyre curvature, the initial plane deformation would always start from a contact line. 

For a blade-type structure deforming the tyre, the contact line remains valid for the full 

deformation range to the rim contact as shown for the upper half belt in Figure 6.33 

(left). 

In the case of a flat contact geometry (plate), the belt element at the free end is limited in 

deformation when it forms a planar contact with the penetrating body as shown for the 

lower half belt in Figure 6.33 (left). 

 
Figure 6.33: Flat and edge type tyre patch contact 

 

To analyze the lower half belt, the elements in flat contact with the penetrating structure 

can be decoupled and handled separately from the iteration process as shown in Figure 

6.33, right-hand side. Superposition of both the structure parts finally reveals the contact 
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force by combining the free belt elements with the decoupled elements in a planar 

contact. 

As only a half the tyre belt structure is considered, two independent iterations need to be 

performed for a combined, edge and flat type contact, to simulate the belt deformation 

caused by a kerb stone impact as indicated in Figure 6.33. 
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6.7 Numerical results 
The results listed in section 6.6.4 were performed on the basis of the tyre size 205/55-

R16 with a 2 bar inflation pressure against an edge-type radial deformation. The analysis 

was performed for 180 elements, resulting in a one degree resolution for the half belt 

contour. In the following sections, numerical force response results for the simple model 

(equations (6.8) and (6.14)) as well as the chain model discussed in items 6.5 and 6.6 are 

presented for flat and edge contact exemplarily for two tyre sizes 205/55-R16 and 

235/40-R18. 

 

6.7.1- Numerical results for simple model force response 

The numerical results for the simple model force response against a flat (equation (6.8)) 

and an edge-type contact (equation (6.14)) are shown in Figure 6.34. 

 

 
Figure 6.34: Numerical results for simple model flat and edge contact force response 
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The force response magnitude, gained from the flat contact exceeds the edge-type force 

level. This is expected as the deformed tyre volume, caused by the flat contact 

deformation is necessarily larger compared with the edge deformation. In contrast to the 

linear flat contact force traces, the edge contact results show a slight regression. 

 

6.7.2- Numerical results for chain model force response against edge contact 

An overview of force – deflection traces calculated for the two sizes of tyre; 205/55-R16 

and 235/40-R18 analyzed for 1, 2 and 3 bar inflation pressures are shown in Figure 6.35. 

For both tyre sizes, deflections are obtained up to the  rim contact condition. As only the 

half belt was analyzed, the radial reaction force Px was corrected by a factor of two to 

represent the wheel force level. 

 

 
Figure 6.35: Chain model results for Radial Force Px and Belt Force Pz over radial 

deflection against an edge-type contact 
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The traces calculated for the radial force Px have a regressive characteristic, typical of 

edge-type deformation and are confirmed by experimental data shown in chapter 7. A 

decrease in the belt force magnitude Pz with an increasing deformation confirms the 

assumption made for the simple edge-type contact model discussed in section 6.4.3 b. 

 

6.7.3- Assessment of simple and chain edge-type contact model force responses 

A direct assessment of the results obtained from simple full analytical approach and the 

chain model iteration is shown in Figure 6.36. For both tyre sizes, a regression trace 

characteristic is visible, but it is more pronounced with the chain model. 

 

 
Figure 6.36: Edge force response assessment for simple- and chain model 
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6.8 Closure 
In this chapter, an in plane static tyre model was derived based on internal stress analysis 

derived from membrane theory. Simple analytical models were developed to predict the 

force response against radial belt deformation in contact to a blade type edge- and a flat 

geometry to represent a kerb stone and flat ground. Beside the pneumatic pressure, the 

model parameters are condensed to four geometry parameters taken from the tyre cross 

section. The simple models are based on assumptions made for the belt deformation 

mode. 

 

A more detailed model, where the belt is subdivided into a chain like structure of single 

bar elements attached to sidewall ropes, was set up for the edge type contact to confirm 

the assumptions made for the simple model. Virtual work principle in conjunction with a 

force iteration process was used to derive solutions in static equilibrium to external 

applied radial loads. The model was used to analyze the sidewall impact on belt 

deformation contour; radial force response was assessed to results gained from simple 

model. 
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Chapter 7: Model Validation 
 

 

7.0 Introduction 
The numerical results are verified by experimental measurements. The measurements 

were obtained at both component level, as well as system level (full vehicle test drive 

over kerb). All the test work was initiated and guided by the author in conjunction with 

the test facilities in FoE, namely the structural testing and crash test laboratories. For 

those components, which were considered as being particularly relevant for the vertical 

force response addressed in chapter 4, force response data was recorded as function of 

deformation (static tyre test) and deformation velocity (dynamic bumper test). 

 

7.1 Static tyre Test 
Force response trace records were obtained under quasi-static conditions, as the tyre 

simulation model concept does not include any structural inertial effects. The radial 

deformation was performed for a flat and edge-type geometries (plate and blade tests) as 

shown in Figure 7.1. The traces were recorded for two tyre sizes; 205/55-R16 and 

235/40-R18. In contrast to force response against a plate (flat geometry representing a 

rigid even ground) widely documented in the literature (e.g. [21], [26], [33], [36]), data 

representing an edge-type contact is not so common.  The blade geometry shown in 

Figure 7.1 was chosen to represent contact with an edge-type obstacle such as a kerb 

stone. 

 
Figure 7.1: Plate and blade geometry force response test set up 
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Tests were conducted for three nominal pneumatic pressure levels; 1, 2 and 3 bars. 

Nominal pressure was applied as initial condition at circular belt contour in the absence 

of any external load. The pressure level was monitored during the entire deformation 

range, commencing with a circular belt contour and up to the belt-to-rim contact. A 

further test with an open valve was used to measure the pure structural component of the 

force response. 

 

7.1.1 Assessment to measurements 

The measured force response traces, shown in Figure 7.3 were obtained from the plate 

deformation (flat ground). They reveal the typical progressive shape in contrast to the 

regressive characteristics seen against the blade penetration (edge-type contact). 

 

The pneumatic pressure level is related to the tyre volume deviation ratio. It depends on 

the gas volume ratio of the unloaded tyre (circular belt contour) and the volume in the 

deformed state. It is obvious that this ratio is linked to the tyre cross-section and the 

geometry of the penetrating body. 

 

The largest increase in the pneumatic pressure was found to be for the 205/55R16 during 

deformation against a plate as shown in Figure 7.2. Its deviation remained within 10 % 

of the nominal pressure level. 

 
Figure 7.2: Pneumatic pressure over radial deflection against plate 

 

The graphs in Figure 7.3 show the total force response recorded and compared with 

those predicted numerically. These are for blade contact deformation performed for the 

tyre sizes 235/40-R18 and 205/55-R16 
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Figure 7.3: Measured edge- and flat contact force response compared with 

simple model results 

 

The recordings are compared with the simple model approach (Figure 7.3) and to the 

chain model, virtual work approach (Figure 7.4). 

 

 
Figure 7.4: Measured edge contact force response compared with chain model results 
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7.1.2 Conclusion 

Although the simple analytical model, proposed in section 6.2, is intended to cover the 

pneumatic force component only, the comparison with the experimental data which also 

includes the structural force deformation component still shows good correlation. 

Simulation results found for the chain model seem to over-estimate the regressive 

character of the force response trace. 

 

7.2 Dynamic Bumper Test 
As explained in chapter 5, the bumper visco-elastic behaviour and hysteresis is 

considered to be of significant effect for the vertical load level. Therefore, dynamic 

testing was applied to take into account these properties in the force response map. In 

contrast to NVH related measurements that cover a wide frequency range [52], [53], the 

bumper map data was obtained from harmonic displacement actuation, performed for a 

single frequency only, this being the drive over kerb relevant frequency of 10 Hz. 

Whereas NVH data do not necessarily cover the full component deflection range, this 

feature is required for the bumper actuation to be relevant for the drive over kerb impact 

simulation. 

A sinusoidal actuation of amplitude 60 mm at 10 Hz frequency with a maximum force 

level of 40kN, as required to fulfill the CD340 bumper boundary conditions, in general 

exceeds the limits of conventional hydraulic equipment used in the OEM's. To overcome 

this shortfall, a mechanical crank actuation concept was designed as shown in Figure 7.5. 

 

 
Figure 7.5: Concept of bumper test rig kinematics (left) and  

in compression mode for 2/πϕ =  
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A short block taken from a 2l combustion engine was linked via the engine connecting 

rod to a vertical beam. The beam is supported to the ground by a revolute joint. The 

crankshaft of the short block is driven y an eddy current dynamometer at a constant 

speed of 600 rpm in order to cause an in-plane rotational oscillation of the beam around 

the ground support joint at 10 Hz. The beam is linked to the bumper element by a 

bumper actuation mechanism that transfers the rotational beam motion into a 

translational bumper actuation without violating the beam kinematic constraints. 

 

The force response is measured by a load cell mounted on the wall support. The vertical 

wall support position and the bumper actuation mechanism on the beam are of adjustable 

height to allow positioning for various deformation amplitudes applied to the bumper. 

The lateral bumper position is set for a bumper engagement during the first half of the 

harmonic period only (compression phase). The system initial condition is defined for 

the beam vertical position in contact with the bumper at crank angle 0=ϕ . This 

adjustment leads to a bumper contact at the maximum actuation velocity, desired to 

simulate a kerb strike impact. For a counter clockwise crank rotation, the jounce bumper 

becomes compressed as shown in Figure 5.5 for the crank position 2/πϕ = . 

 

The bumper is in compression mode for crank angles 0=ϕ andπ , it loses contact in 

between πϕ = and π2 . An illustration of the bumper rig is shown in Figure 7.6. 

 

 
Figure 7.6: Bumper test rig 
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It is noted that the beam displacement is not of a pure harmonic characteristic as the 

analysis of the exact crank kinematics reveals components of second order that cause a 

deviation from pure sinusoidal motion [14]. 

However, the trace of the displacement over time shown in Figure 7.7 demonstrates a 

quasi-harmonic character. It is considered, that the deviation from an exact sinusoidal 

actuation remains small and is of minor consequence for the purpose of the force 

response map. 

 
Figure 7.7: Displacement for jounce bumper actuation over time 

 

The rig was used to generate a set of force response curves recorded from sinusoidal 

actuation with the relevant frequency for a set of amplitudes (S1 to S7) as described in 

section 5.2. These amplitudes account for the range of operational compression range as 

shown in Figure 7.8. 

 
Figure 7.8: Bumper force response after sinusoidal displacement actuation 
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7.2.1 Map validation concept 

As already mentioned, the force response map is generated on the basis of harmonic 

actuation. A kerb strike event cannot be considered to cause a sinusoidal actuation to the 

bumper in compression mode. To validate the concept’s functionality, the simulation 

must provide reasonable force responses also for any arbitrary actuation that would 

deviate from harmonic motion. Although the drive over kerb test is intended to be 

repeatable with regard to its boundary condition, a direct measurement of the bumper 

forces in a full vehicle test remains difficult. A simple alternative is a drop test [54], [55]. 

 

7.2.2 Drop test 

A drop test, as indicated in Figure 7.9, consists of a single mass, rested at a specified 

vertical height above the bumper element. The mass is released freely under the 

influence of gravity, falling down guided by rods and causes an applied impulse onto the 

bumper. The rig can be considered to be free of significant damping. The force response 

is measured over time by using a load cell installed beneath the bumper. 

 

The drop test rig and a table of test parameters are shown in Figure 7.9. 

 

 
Figure 7.9: Drop test rig and test table. Source [55] 

 

Such a test causes a harmonic state of motion for the special case of a linear spring 

characteristics only [63]. As the bumper element behaves in a non-linear manner, the 
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displacement gained from a drop test is accordingly non-harmonic. Thus, the drop test 

concept fulfills the requirement of a non-harmonic motion. 

For the validation of the proposed map concept, a numerical drop test simulation model 

(single mass subjected to gravity) was set up and combined with a map force response 

subroutine, described in chapter 5. The simulation results were compared with the force 

response measured traces from the physical tests published in [55]. Simulation and 

measured data were gained for three energy levels, 96, 189 and 286 Joules, 

corresponding to a fall height of 0.43 m yielding a 2.9 m/s impact velocity.  

 

7.2.3 Simulation results 

Force response measurements from sinusoidal actuations were generated on the bumper 

test rig shown in Figure 7.6. The recorded data was post-processed and transformed into 

the standardised map format as discussed in section 5.3. To obtain a visual impression of 

the drop simulation results, the blue drop force response trace is shown in a 3D chart 

(Figure 7.10) in conjunction with the red force traces recorded from sinusoidal actuation. 

 
Figure 7.10: Drop test force response trace simulation result (blue) for 286 J (68 kg) 
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A vertical projection of the force response trace down to the x- y- plane (Figure 7.11) 

proves the deviation of the drop motion in bumper contact (blue trace) from the 

harmonic motion of the map input force traces (red). 

 
Figure 7.11: Drop motion trace simulation result for 286 J (68 kg drop test) during 

jounce bumper contact 

 

The simulation results are compared with the physical measurements taken from [55]. 

Figure 7.12 demonstrates good correlation found for hysteresis loop shape and the peak 

force magnitudes.  

 
Figure 7.12: Assessment of force simulation (light) and measured drop test forces (bold) 
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To demonstrate the improvements of the map concept methodology, a drop test 

simulation was performed on the basis of a non-linear bumper force response curve, 

taken from a quasi-static jounce trace. As no damping was considered in the drop test 

simulation for the non-linear spring characteristics, the force response trace, shown in 

Figure 7.13, does not reveal any hysteresis. Contrary to the peak load of about 40 kN 

being close to the measured value, the conventional non-linear model predicts about 60 

kN for the 300 joule drop test simulation. 

 
Figure 7.13: Drop test assessment for un-damped non linear spring, map concept and 

physical test 

 

7.2.4 Conclusions 

Based on the assessment of numerical predictions made here, it can be concluded that for 

the case of the polyurethane jounce bumper investigated, the assumption could be 

confirmed that the map concept is applicable for the purpose of simulation of the bumper 

force response gained from arbitrary shape of impulsive motion with reasonable 

accuracy. 
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7.3 Full vehicle Test 
A drive over kerb test as described in the introduction was performed for a CD340 

(FORD Galaxy). Two speed levels; 25 and 40 km/h were tested for a kerb strike event, 

crossing a beam of rectangular cross-section adjusted to 135 mm height shown in Figure 

7.14. The crossing was performed in the direction normal to the beam with the intention 

of a simultaneous strike for both wheels. The vehicle crosses the bar in a free rolling 

mode, with no braking or acceleration. 

 

 
Figure 7.14: Drive over kerb test set up 

 

The vehicle was equipped with tyres of size 235/40-R18, adjusted to a pneumatic 

pressure of 2 bar. The vehicle was loaded according to the FORD specification standards 

determined for passenger cars. 
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7.3.1 Instrumentation 

To record the vertical suspension force, a load cell was installed at the top mount 

position. As the top mount consolidates the load path of the road spring, damper and the 

bumper, the recording reveals an integral signal of all the three resistive components and, 

therefore, represents the total vertical suspension force. 

 

A string potentiometer was attached to the spring plate and grounded at the body 

structure to measure the vertical wheel displacement relative to the vehicle body. An 

overview of the sensor and load cell application is shown in Figure 7.15. 

 

 
Figure 7.15: Load cell and string potentiometer instrumentation 

 

7.3.2 Assessment of simulation and measured results 

The assessment is based on the measured force over time traces gained for the top mount 

force and the vertical wheel displacements compared with simulation results. Simulation 

results are obtained by implementation of equations 4.1, 4.9-4.11, 4.16-4.20 and 4.22 

(vehicle), 5.1, 5.3, 5.5-5-6 (jounce bumper) and 6.12a, 6.14 (tyre). The model input 

parameters are shown in table 8.1 on page 186. 

 

7.3.2.1 Top mount force 

A comparison of the recorded vertical suspension top mount force time history (signal) 

with the predictive simulation results is shown in Figure 7.16:  
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Figure 7.16: Top mount force and vertical wheel centre deflection over time for drive 

over kerb test 

 

The results show good correlation for the vertical suspension force level, whereas the 

shape of the signal does not match the characteristic of the measured trace. The 

simulation reveals that the bumper force component has a larger magnitude in the load 

path compared to that of the spring, damper and bumper vertical suspension force as 

shown in Figure 7.17. 
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Figure 7.17: Simulation of spring, damper and bumper force component of top mount 

force during kerb strike 

 

The results shown in Figures 7.16 and 7.17 were achieved after an implementation of a 

linear spring element into the model to simulate the body stiffness. Figure 7.18 shows the 

spring element representing the body stiffness linked to the bumper element in a series 

connection in order to account for the transfer of the full bumper force.  
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Figure 7.18: Accounting for the vehicle body stiffness 

 

For the case where the vehicle model is set up with the assumption of a rigid body (as 

described in chapter 4), the jounce bumper attachment to the body is assumed to be rigid 

as well. With this assumption, the predicted bumper force becomes excessive as shown 

clearly in Figure 7.19 and does not match that measured, especially at higher vehicle 

speeds (40km/h). The reason is the impulsive nature of the force response, typical for 

jounce bumpers at large deformations. 

 

 
Figure 7.19: Simulation of bumper kerb strike force for rigid attachment to the vehicle 

body assumption 

An iteration method described here is intended to approximate the load reduction 

expected as a result of body top mount compliance. Figure 7.20 shows a linear spring, 

representing the top mount body stiffness CBO1z in combination with a (non linear) 

bumper stiffness C(s). The force response of both elements is shown as a function of 

deflection for bumper F(s) and body F(u). In general the body stiffness is of higher 

magnitude compared with the bumper within its initial deflection range, visualized by 

the slopes of the curves in Figure 7.20. 
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Figure 7.20: Non linear bumper- and linear vehicle body force response. 

 

The iteration starts with an impact against the bumper, which is assumed to be in a rigid 

attachment mode. The initial peak force F1 in conjunction with bumper deflection s1 is 

not considered to be affected by body compliance in absence of body deformation (u = 

0). The first iteration is based on the assumption that the bumper deflection s1 will 

decrease in the case of elastic body deformation. Thus, F1 would cause a body deflection 

of u1 = F1/CBO1z and the bumper deformation would relax by the amount of the body 

deflection u1, down to s2 = s1 – u1 (Figure 7.21). With this assumption, a revised 

bumper force F2 can be determined. 

 
Figure 7.21: Bumper force F2 and deflection s2 after first iteration. 

 

Whereas F1 (rigid attachment) can be considered to exceed the real top mount force F, a 

relaxation of the bumper element by u1 will result in an exacerbated effect of body 

compliance. Thus, the real force F is expected to be within the interval [F1, F2], where 
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F2 < F < F1. An equivalent top mount deflection u2 = F2/CBO1z can be derived 

analogous to u1. Subsequent iterations refine the interval as illustrated in Figure 7.22. 

 
Figure 7.22: Bumper force F3 and deflection s3 after second iteration. 

 

The iteration stops when a specified small difference abs(Fi+1 – Fi) is achieved. 

It is evident that the bumper peak load cutback depends on the body stiffness COB1z 

and the initial force response F1 against rigid body. The cutback is marginal within the 

initial bumper deformation range as long as the bumper stiffness C(s) does not exceed 

the body stiffness COB1z. A limitation is set for F1 if the related body deflection u1 

exceeds the initial bumper deflection s1 which leads to the condition u2 < 0. 

 

 

7.3.2.2 Wheel displacement 

An assessment of the vertical wheel displacement reveals unsatisfactory correlation 

between the measured signal and simulation results (Figure 7.23). This can be explained 

considering the limited ability of the simulation to deal with combined edge and flat 

contact as roll over the kerb progresses. The missing component here is the transition 

from the initial edge type tyre contact towards a flat contact to kerb in the later stage 

during the roll over mode. A combined edge and flat type contact was indicated in Figure 

6.33 as an optional feature of the chain type simulation model, but not yet implemented 

in the simulation. 
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Figure 7.23: Vertical wheel displacement relative to body 

 

 

Another aspect addressed with the deviations seen in the wheel travel results is that the 

stiffness and damping properties are modelled as linear, whereas for the system (beside 

the road spring) a non-linear behaviour is considered. The simulation model does address 

non-linearity for the bumper and tyre only, whereas the damper, rim and the body 

stiffness are modelled as linear elements. 

 

However, the order of the force peaks fits well to that expected in a kerb strike event as 

shown in Figure 7.24. 
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Figure 7.24: Subsequence of peak force during kerb strike event 

 

The tyre peak load achieves a magnitude of approx. 30 kN after kerb crossing at 25 kph 

(upper window in Fig. 7.24), which is in good agreement to the load level reported in [7]. 

It can be observed that the peak force applied to the tyre (black) occurs in advance of the 

maximum bumper force (red). Thus, the tyre loads cannot directly be related to the 

bumper peak force, such as in a quasi static case. Furthermore, the shape of the force 

trace also reveals the transition from pneumatic radial belt force to that of a rim contact 

force at a load level of approximately 10kN. This contact force level is also confirmed by 

the experimental data shown in Figure 7.3, found for tyre size 235/40-R18 under rim 

contact condition against a blade shape with a pneumatic pressure of 2 bar. In contrast to 
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the pneumatic force, the rim force component increases in significance for the vertical 

velocity state of the wheel after the kerb strike. 

 

7.3.3 Plausibility study for tyre force response in the kerb contact mode 

The following demonstrates the plausibility of the wheel force signals resulting from the 

DoK simulation. Figure 7.25 illustrates the time signal of the vertical force F1z applied 

to the wheel in traversing over the kerb mode. Besides the force F1z, characterised by 

discontinuities numbered (1) to (6), traces for vertical wheel centre position z1 and radial 

tyre deflection f1 are also shown. 

 
Figure 7.25: Plausibility plot for kerb climbing mode 

 

The vertical force, caused by a purely flat type contact to the ground remains constant 

until the tyre belt strikes the rim at (1) as also shown in Figure 7.26. Thereafter; from (1) 

to (2), the total force is a superposition of flat and edge-type contact force and ramps up 

the wheel centre vertical position z1. The transfer from flat to purely edge-type load is 

complete at point (2), where z1 achieves the level of the initial flat contact patch radial 

deflection (see Figure 7.26). 



 Chapter 7: Model validation 
 

 184 

 
Figure 7.26: Illustration of tyre contact modes (1) to (3) 

 

At point (3), the radial deflection f1 is limited by the rim radius ri, causing a rim clash 

condition until position (4) is reached. The drastic force increase is caused by the radial 

contact stiffness of the rim against the kerb edge and leads to the maximum gradient seen 

for z1. After point (4), the contact remains in pure edge-type contact mode until point 

(5), where the wheel loses contact and bounces to the flat ground at point (6) as shown in 

Figure 7.27. 

 
Figure 7.27: Illustration of tyre contact modes (3) to (6) 
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7.3.4 Conclusion 

Although attributes that are considered to be key contributors to the vertical load level, 

such as a proper simulation of the dynamic bumper engagement and tyre force response 

characteristics are addressed in the vehicle model, the physical testing revealed that body 

vertical stiffness should not be neglected. This is important in order to match the 

predictions with the measured top mount forces, especially for the abusive test operation 

performed at higher speed level of 40 kph at kerb height 135mm.  

 

7.4 Closure 
In this chapter vehicle model validation was performed by comparison with 

measurements on component and system levels. The results confirm that the tyre force 

response against a static, in-plane radial deformation can be approximated by simple 

analytical formulae, as derived in chapter 6, with reasonable accuracy. The results 

obtained from an edge-type simple model show a better correlation with the 

measurements compared with the data obtained from the more complex chain model. 

 

The validation of the map approach applied to the foam type jounce bumper 

demonstrates good correlation with the results obtained for drop testing published in 

[55]. The assessment shows that the map approach, based on sinusoidal actuation, is also 

applicable to simulate non-sinusoidal motions such as those resulting from drop tests. 

 

A vehicle (CD340 FORD Galaxy) was instrumented with load cells to record the vertical 

front suspension top mount load during DoK. The assessment of the integral signal 

traced for spring, bumper and damper loads could be calibrated with reasonable accuracy 

after a further linear spring element was added to the model to represent body vertical 

stiffness. This indicates that the model can effectively be used for parametric studies as 

discussed in chapter 6 subject to minimal calibration of the model. Load prediction in 

total absence of a validated reference remains quite uncertain. 
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8.0 Introduction  
The aim of the minimal parameter model presented in the previous items is to predict the 

effect of a loading scenario in the early design phase and to perform relevant parametric 

studies in order to assess different system concepts. A parametric study is intended to 

investigate the influence of system parameters upon a specific system attribute of 

interest. In general, it can be performed in various ways, for example through physical 

testing, where a given attribute is measured for several sets of parameter stack ups. In 

many cases, the effort can be reduced by using a parametric simulation model instead of 

physical prototype testing. The study can also demonstrate the plausibility of the model 

used. The following study is addressed to investigate the vertical suspension force level 

in conjunction with the drive over kerb test, described in chapter 7, section 7.3. 

 

8.1 Conceptual study 
In this chapter, the model parameters are altered to investigate the trend with regards to 

the vertical suspension load level. The study is confined to the front suspension response. 

The set of model parameters is divided into two main parts addressing geometry and 

kinetic attributes separately. The scope of the study includes the front suspension 

relevant geometric and kinetic vehicle parameters, influenced by the drive over kerb test 

boundary conditions for the kerb height and vehicle velocity. In table 8.1 and Figure 8.1, 

an overview of the comprehensive set of vehicle model parameters is listed for CD340: 

 
Table 8.1: CD340 vehicle model input parameter list 
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Figure 8.1: Vehicle model input parameters 

 

Geometry data listed in table 8.1 are gathered from the FORD CAD system, the kinetic 

parameters were extracted from the vehicle dynamics ADAMS models, developed and 

validated by the FORD Chassis Engineering department. On particular the stiffness 

values were measured under quasi static conditions on the FORD K&C rig (kinematics 

& compliance). 

In chapter 7, the model was validated by comparing its predictions with measured data 

obtained from DoK for two distinct velocities, 25 and 40 kph. The operational condition 

tested at 25kph was used as a datum base line in conjunction with a set of suspension 

parameters, adjusted to the nominal dimensions specified for the FORD Galaxy 

(CD340). Figure 8.2 shows the traces calculated for the wheel and top mount vertical 

force components, resulting from the vehicle model for the baseline parameter set up. 

The responses reveal a difference in the force level and a time shift for the maxima. The 

parameter study, therefore, was conducted individually for the vertical components of 

the wheel and the top mount forces. 
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Figure 8.2: Vertical wheel- and top mount force DoK simulation results for baseline 

model set up 

 

The relevant individual parameters are varied whilst the others are kept at their base line 

values, representing the vehicle nominal design condition. The nominal condition of the 

investigated parameter is related to the initial value on the variational factor axis. 

 

 

8.2 Geometrical parameters 
The geometrical parameters are subdivided into three categories, defining: 

- the main vehicle dimensions related to the wheel base and the CoG position 

- suspension geometry, defining the free travel to the bump event 

- tyre cross-sectional geometry 

 

8.2.1 The main vehicle dimensions 

For this case, the influence of the centre of gravity (CoG) position is ascertained by a 

variation of the parameters a, b and h as shown in Figure 8.3. The sum a + b specifies the 

wheel base, whereas the individual parameters 'a' and 'b' determine the relative position 

of the CoG with respect to the wheel centres. Therefore, the influence of the wheel base 

and the CoG’s relative position on vertical load was determined separately. Results are 

shown in Figure 8.4. 
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Figure 8.3: Vehicle main dimensions wheel base (a+b) and CoG height (h) 
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Figure 8.4: Impact of wheel base (a+b) and CoG position a, h on wheel - and top mount 

load 

 

The effect of wheelbase and CoG height variations on the vertical generated force level 

remains almost neutral for both the wheel and the top mount (i.e. negligible differences). 

This indicates that the influence of the sprung mass rotational inertia is not significant in 

conjunction with the lever arms a, and the height h. 

A CoG position variation relative to the wheel centres increases the load level for the 

case that its position is more proximate to the front suspension with a marked influence 

upon the top mount force. This would be expected, as the resistance of the top mount 

against vertical shift increases with the CoG balance towards the vehicle front end. The 

same effect can be considered for the wheel, but attenuated by the suspension vertical 

elasticity.   

 

8.2.2 Suspension geometry 

The suspension geometry, defined in the model, consists of six parameters F0 – F5. 

These parameters are not independent of interaction and do not represent a minimal 

parameter set. The parameter set configuration is intended to allow for an easy model set 

up, based on the component dimensions. Figure 8.5 shows the front suspension geometry 

under static equilibrium condition; in undisturbed roll mode towards the kerb. 
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Figure 8.5: Suspension geometry parameters 

 

The dimension considered to be relevant for vertical DoK loads is the free wheel jounce 

travel UJB1 to bumper engagement. It is defined by the bumper engagement position F1 

relative to the upper spring seat on the one hand, and the spring compression in vehicle 

equilibrium condition on the other hand. There is, therefore, no single geometrical 

feature, as the configuration is a result of the equilibrium condition,  thus depending on 

the spring rate as well. The bumper length itself, (F1 – F0), could not be varied in this 

study, because it is an integral attribute of the force response map described in chapter 3. 

A variation of bumper length would require individual map data sets, not readily 

available. Each dimension F0, F1, F4 or F5 can be used to vary the free travel UJB1. The 

variation was adjusted within 10% of its nominal value; i.e. relative to the vehicle design 

condition UJB1 = 21 mm (CD340, FORD Galaxy). Dimensions F2 and F3 determine the 

rebound engagement, post jounce stroke and, therefore, are not considered in this study. 

Results are shown in Figure 8.6. 
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Figure 8.6: Impact of vertical free travel on wheel- and top mount vertical peak load 

 

The wheel peak force occurs in advance of the bumper full engagement, this is the 

reason why the wheel peak load level remains unaffected by a marginal change in the 

free travel, whereas the top mount peak load shows a decreasing trend with an increasing 

UJB1 travel. This is in line with the fact that the system dissipates more energy through 

viscous damping with an increased free travel. Therefore, the bumper becomes engaged 

at a reduced system energy level. 

 

8.2.3 Tyre geometry 

As described in chapter 6, besides the pneumatic pressure, tyre geometry has also an 

influence on the belt circumferential force and thus determines the tyre radial reaction 

force characteristics. In this study, the belt width bt, the belt and rim radii, Ra and ri, as 

well as the sidewall lateral deflection fc, as shown in Figure 6.7, are investigated. 

 

The tyre size 205/55-R16 is used as the baseline with a 2 bar inflation pressure. 
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Figure 8.7: Tyre geometry parameters 

 

The radii Ra and ri also influence the wheel roll characteristics whilst climbing over a 

kerb. The roll effect is investigated by a combined variation of Ra and ri in order to 

maintain the sidewall geometry, height (hc = Ra – ri) and lateral deflection fc, at the 

baseline condition. Thus, the influence of the roll radius R on the vertical force level can 

be analysed with a minimal effect on the tyre force response characteristics. In a separate 

variation of the single parameter Ra, the effect of a sidewall height variation hc is also 

investigated. Some results shown in Figure 8.8 reveal non-linear response behaviour. To 

obtain a better understanding about the cause and effect, time signals for variation level 

0.9, datum level 1.0 and 1.1 are supplemented to the variation diagrams. 
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Figure 8.8: Impact of tyre cross section geometry on vertical load level during DoK 
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A common feature seen for all the variations is the advanced timing of the wheel 

maximum force with respect to the top mount peak load. The maximum wheel force 

level and impulse contribution occurs for the rim under the kerb clash condition in all the 

cases shown. The top mount force can be considered as a reaction to the system impulse 

of the unsprung mass, imparted during the kerb clash. The wheel and the top mount force 

levels are increased with the harshness of the clash condition. The wheel impulse 

magnitude determines the delay in the top mount response. 

 

A wide tyre (bt) has more resistance against radial deformation. The kerb clash appears 

later in time and is less pronounced and the top mount force peak occurs later in time. 

A similar trend is seen for the variation of the roll radius R (variation of Ra and ri). 

Beside the fact, that a large wheel radius is of advantage for a smooth roll mode on an 

uneven ground, a larger belt radius leads to an increase in the circumferential belt force 

as shown in equation 6.7. The latter is in line with the radial tyre stiffness and thus 

confirms the trend as seen for the belt width. 

 

The variation of the sidewall height (hc) directly determines the belt-to-kerb contact 

radial travel towards the rim clash condition. Thus, an increase of hc relieves the rim 

clash and also leads to a delay of the top mount peak load. This parameter shows the 

strongest influence compared with the other tyre geometrical parameters, namely roll 

radius and width, recognized through the revised vertical force scope scale adjusted to 0 

– 80 kN. 

 

A tyre geometry parameter that is not within the automotive industry scope of control is 

the sidewall lateral deflection fc, as it is a given feature designed by the tyre 

manufacturer. Nevertheless, its influence was monitored in this study as shown in Figure 

8.9. 
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Figure 6.9: Variation of sidewall lateral deflection fc 

 

As shown by equation (6.14), the radial belt contact force against an edge tyre 

penetration decreases for small sidewall slack hang fc. The tyre behaves less stiff against 

radial deformation. Thus, a rim clash to kerb occurs advanced and harsh in case of small 

corrugated tyre sidewalls (see time history for variation level 0.9) compared to large 

sidewall warpage (level 1.1). This explains the higher wheel forces for variations smaller 

one, whereas the top mount load remains almost unaffected. Although fc has no 

significant impact on vertical loads, it strongly affects the internal sidewall stress as 

shown by equations (6.5) and (6.6) in chapter 4. 
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8.3 Kinetic parameters 
The system parameters which describe those elements that contribute to the dissipative 

kinetic energy, such as mass, stiffness and damping are considered as kinetic parameters 

in this study. Another parameter, tyre pneumatic pressure p, is also addressed in this 

category as it is relevant for the tyre radial stiffness. An overview of the kinetic 

parameters is shown in Figure 8.10. 

 
Figure 8.10: An overview of kinetic model parameters  

 

 

8.3.1 Discrete vehicle masses and rotational inertia 

For the front suspension analysis, the unsprung mass m1, sprung mass m3 and rotational 

inertia J are varied. Results are shown in Figure 8.11. 
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Figure 8.11: Variation of sprung – and un-sprung mass m1, m3 and rotational inertia J 
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A rise in the wheel unsprung mass increases both the top mount and wheel force levels. 

The increase in force is evenly balanced for the top mount and the wheel, whereas a 

variation of the sprung mass m3 reveals concentrated effect on the top mount. In contrast 

to the influence of mass, the rotational inertial effect on the force level appears to be 

negligible. This indicates a small body resistance against rotation for a force applied via 

the relatively long lever arm a, which confirms the conclusions made for the wheel base. 

 

8.3.2 Suspension, rim and body stiffness 

The spring stiffness C1z determines the spring compression in the usual design position 

as shown in Figure 8.5. A variation of C1z would cause a simultaneous deviation in the 

free travel UJB1. To investigate the effect of stiffness, the bumper position F1 is adjusted 

in parallel to keep the free travel adjusted to its nominal condition. Results are shown in 

Figures 8.12 and 8.13.  

 
Figure 8.12: Variation of vertical and longitudinal suspension stiffness 
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Figure 8.13: Variation of rim- and body stiffness 

 

A variation in stiffness within the 10% range does not reveal any change in the vertical 

force level of similar significance as seen for the mass variation. An exception is 

observed for the rim stiffness that mainly drives the impulse as discussed for the tyre 

geometry in section 8.2.3. 

 

The wheel peak load occurs in advance of bumper full range engagement. Therefore, the 

variation of the body stiffness has no effect on the wheel force level, whereas a rising 

trend can be seen for the top mount loads as would be expected. 
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8.3.3 Suspension damping 

The model is set up with viscous type damping elements. A variation of damping 

parameter is performed for the longitudinal and vertical damping coefficients D1x and 

D1z. Results are shown in Figure 8.14. 

 

 
Figure 8.14: Variation of suspension damping 

 

The results found for the variation of the vertical damping show an inverse trend against 

each other. This can be explained by the fact that an increased damper rate D1z would 

tend to ramp up the wheel resistance against jounce. As a consequence, the force level 

rises with the damping rate. On the other hand, the damper dissipates kinetic energy of 

the un-sprung mass. This is why the bumper engagement occurs at a lower energy level. 

This condition is equivalent to a reduced fall height of a drop test (see chapter 5, section 

5.2) which explains the decreasing trend shown for the top mount force in the upper plot 

of Figure 8.14. 
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8.4 DoK test parameters 
In sections 8.2 and 8.3, the parameters which describe the vehicle physical properties are 

discussed. Here the two parameters that describe the boundary conditions for the drive 

over kerb test, namely step height hs and vehicle speed Vx are investigated. The 

influence of parameter hs is strongly non-linear. This is the reason why the diagrams are 

supplemented by the force traces to show the effects in a more descriptive manner 

(Figure 8.15). 

 

 
Figure 8.15: Variation of DoK manoeuvre boundary conditions step height (hs) and 

vehicle speed (Vx) 
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Results obtained from the kerb height variation show a significant increase in the peak 

load for the maximum kerb height (note the enlarged scale on the vertical axis). This 

indicates that the specified kerb height (hs = 135mm) is already at a critical level for the 

vehicle parameter set configuration, considering a load level beyond 50 kN. On the other 

hand, the reduced kerb height does not even cause a rim-to-kerb clash, as shown in the 

time trace plots for 0,9 hs. 

The results found for the variation of vehicle speed Vx confirm the assumption that the 

load level is expected to increase for a rise in vehicle velocity. For the vehicle parameter 

set up investigated, the load increase is balanced towards the top mount force, but starts 

at a lower level. The trace character for wheel and the top mount of course depend on the 

individual component stiffness of the rim contact and the jounce bumper. 

 

8.5 Parameter assessment 
Finally, the influence of the parameters discussed in this study are assessed with regards 

to their individual effect intensity upon the vertical load level on the wheel (Fw) and on 

the top mount (Ftm). To simplify the analysis, the traces of the variation graphs are 

linearized within the variation range performed (in between 0.9 to 1.1). The slopes of the 

linearized graphs, namely the force deviation over the variation band width, are taken as 

a measure to indicate the significance of a given parameter. A ranking of the normalized 

slopes is shown in Figure 8.16. Positive sign indicates a rising force level for a given 

parameter’s increasing value from the nominal vehicle condition. The ranking is 

evaluated by the sum of normalized slope magnitudes for both Fw and Ftm for each of 

the used parameters. 

 

It can be noted that the ranking shown in chart 8.1 is representative for the specific 

vehicle model set up concerned in this study. It cannot be interpreted as a general pattern 

for all passenger cars, as the weighting of parameters depend on the individual values 

set. 
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Chart 8.1: Ranking of model parameters 

 

The ranking chart reveals the tyre sidewall height hc as the dominant parameter and, 

therefore, defined by the ranking level (-1) with respect to its influence on the top mount 

load. This was chosen as a datum for the normalized ranking illustration. For the case, 

that the top mount load would need to be reduced to cope with design targets, the most 

efficient modification of the parameter set up would be an increase of the tyre sidewall 

height. This parameter of course is an integral property of standardized tyre architecture 

and can only be varied in conjunction with a tyre geometry set up of a revised tyre size. 

Doing so, the parameter influence of tyre roll radius R, width bt and sidewall lateral 

deflection fc would also need to be taken into account.  

Step size hs and vehicle speed Vx are test boundary conditions, specified as sign off 

requirements and should not be varied, other than for the purpose of a test evaluation. 

An alternative to the tyre modification is given by a reduction of sprung mass m3, and 

shifting the CoG position (variation of a). Subsequent in ranking, the un-sprung mass 
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m1, tyre pneumatic pressure p, free jounce travel UJB1 and last, not least the wheel 

radial stiffness Crim and vertical damping D1z are metrics expected to have potential to 

relieve or worsen the top mount load level. The remaining parameters are considered to 

be of negligible influence. Surprisingly this can be seen for the influence of the 

suspension spring stiffness C1z. The conclusion is, that the bumpers, typically featuring 

a distinctive progression, dominate the vertical loads. In this context, it is a surprising 

model outcome that the body stiffness CBO1z does not have a strong influence upon the 

top mount level. This was not expected, as the model validation discussed in chapter 7, 

indicated this parameter as being essential for a successful calibration. The reason is 

assumed to be the low speed level (25km/h) used to conduct the study. The low speed 

test condition does not induce excessive loads such as those seen for higher speeds 

(40km/h), thus body stiffness in this case is less significant. 

A similar discussion can be conducted to address the parameters affecting the wheel 

force level. To obtain a more general overview about the influence of the parameters, a 

decision matrix shown in table 8.2 provides a parameter evaluation for the model set up. 

 
Table 8.2: Parametric evaluation for CD340 front suspension, effect on vertical load 
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The chart shows signs ( + ) for an increase  and ( - ) for a decrease in the vertical load 

with a rising magnitude for a parameter value, an empty bracket (  ) indicates a neutral 

effect. 

 

 

8.6 Closure 
A parametric study is conducted to evaluate the influence of model parameters upon the 

vertical wheel and top mount loads and to evaluate the model consistency. The 

parameters were varied within a 10% range of a baseline, defined by the nominal 

conditions for a FORD Galaxy (CD340). The study was performed for the 

comprehensive front suspension model parameter set up. The influence of various 

parameters was evaluated individually, followed by an interpretation with regards to the 

physics of the system response. The study results are summarized in a ranking chart and 

a decision matrix to assess and evaluate the influence of model parameters. 
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Chapter 9: Source Code structure 
 

 

9.0 Introduction  
The entire software used to set up the vehicle model, bumper force transfer simulation 

and the tyre force response is comprehensively developed on basis of author’s written 

FORTRAN tools. This includes also numeric applications, such as solver and 

interpolation methods described in appendix A. No commercial software was used. A 

reason for avoiding commercial codes is that new approaches, like the map concept 

routine or the tyre chain model can be developed and tested in a fully controlled software 

environment, without the need to fulfil boundary conditions specified in a commercial 

code. Furthermore, numerical effects generated from a 'black box' do not need to be 

considered. The FORTRAN source code is, therefore, a stand-alone document and is 

seen as an integral part of this thesis. 

As the code is of modular structure, single elements, such as the bumper force response 

module, can be linked to commercial MBS solvers as external subroutines. 

In this chapter, the code module structure and its input / output files are presented. 

 

9.1 Code Modular Structure 
An overview about the source code modules is shown in Figure 9.1.  

 
Figure 9.1: Code structure overview 
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The left column reveals the source code hierarchy on top the main program followed by 

subroutine levels SRL1 – SRL5. The hierarchy describes the subsequence of the call-, 

respectively feedback relation between the modules. Below the main program 

CAR_DOC, the modules are divided into two groups to sort the pre-processing of the 

structure invariant system properties on the left, and the solving of the structure variant 

system in the time domain on the right side. 

 

 

9.2 Source code modules 
The main program CAR_DOC reads in all the structure invariant system parameters 

described in the parameter study, chapter 8. A first pre-processing is initiated by the call 

of INVMAT to generate the inverse mass matrix. This allows use of the mathematical 

expressions of the form shown in the appendix A, equation A.4: 

 

[ ] ( )}{][}{][}{}{ 1 XCXDFEMX ⋅−⋅−= −        (9.1) 

 

It is noted that also non-diagonal, full set matrices (dynamical coupled structures) are 

inverted by INVMAT. The module RUKU_DOC can be seen as the central executive 

unit. It continues the pre-processing (left) and initiates the solving in the time domain, 

shown on the right. The following items provide the module specific input and output for 

pre-processing and solving. 

 

9.2.1 Pre-processing 

Based on the vehicle speed specified for the DoC event, module STRU_IV sets up initial 

values ix and ix , iz and iz  in longitudinal and vertical directions, beside the body pitch 

angle ϕ andϕ , for all system degrees of freedom (see Figure 9.2). The initial condition is 

defined by a free roll on an even ground towards the kerb. Thus, it describes a quasi-

static condition in z  and a constant velocity in x - direction. The vehicle remains in 

design position, where vertical velocities iz  are commonly zero. All longitudinal 

velocities ix  are of constant magnitude as specified for the DoC event. 
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Figure 9.2: STRU_IV initial value set up 

 

For further pre-processing, STRU_IV calls the modules TYRSTART and BUMSTART. 

TYRSTART is used to derive initial tyre patch deformation values tpx and tpz, caused 

by the static equilibrium loads in vehicle design position and the initial wheel centre 

distance towards the kerb (see Figure 9.3). Index 1, 2 defines the front / rear wheel. 

 
Figure 9.3: TYRSTART, initial tyre patch deformation and WC distance to kerb 

 

BUMSTART analyses the initial suspension free travel UJB and URB to jounce bumper 

and rebound stop engagement for the vehicle in design position. 

 
Figure 9.4: BUMSTART, initial jounce- and rebound free travel UJB1,2 and URB1,2 

front and rear suspension 
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The pre-processing operation is finalized by BUMSTART which also delivers spline 

coefficients for the force response map, based on recorded traces gained from sinusoidal 

actuation. To do so, this module transfers the discrete spline points to MAPSPLIN, 

where the equation system is set up and solved in conjunction with module GAUSS.  

 
Figure 9.5: MAPSPLIN, spline coefficients to set up three dimensional bumper map 

array A 

9.2.2 Solving 

In contrast to the pre-processing, dealing with the structure invariant parameters, the 

modules organized in the solving block deal with the structure variant attributes that 

change over time. 

 

The solving operation in the time domain is centrally organized by the RUKU_DOC 

module. As indicated by the module name, it is based on a conventional Runge-Kutta 

integration presented in appendix A. For each single time step, RUKU_DOC performs a 

comprehensive structure analysis with regards to the time variant system parameters. It is 

also used as the main source for the output files listed in item 9.3. 

Depending on the current vehicle deflection- and velocity state, as well as the wheel 

position relative to the kerb, additional forces, caused by bumper engagement and belt-

to-kerb contact, are applied as external forces, defined in module STRU_VAR (see also 

chapter 4, item 4.2). STRU_VAR separates between tyre- (TYRPOS, TYRFOR) and 

bumper forces (BUMFOR) in subordinated level SRL3. 
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(a) Tyre response 

Before the tyre force response can be derived by TYRFOR, the module TYRPOS is used 

to detect the current wheel position relative to the kerb and to analyse a possible contour 

geometry intersection in between the belt and the kerb as shown in Figure 9.6.  

 

 
Figure 9.6: TYRPOS, wheel centre position relative to kerb at current time step. 

 

In case of an intersection with the rigid assumed kerb (contact condition), module 

TYRFOR is called to quantify the radial belt deformation f1 against edge and to 

calculate the response force in conjunction with TYRIMP. 

 

 
Figure 9.7: TYRFOR, wheel centre position relative to kerb at a current time step 

 

After a differentiation is performed for pure flat, combined flat, edge and pure edge 

contact, the actual force response is provided by module TYRIMP. This is the interface 

to the actual tyre model, linked to the pure analytical equations 6.9 to 6.14 derived in 

chapter 6, item 6.4.3. Alternatively, the chain iteration model, item 6.5, can be linked 

here. The chain model would additionally need to be equipped with the five separate 

iteration steps addressed in chapter 6, item 6.6.3. 
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(b) Bumper response 

In a first step, BUMFOR analyses the current bumper engagement status, shown for a 

front jounce bumper in Figure 9.8: 

 

 
Figure 9.8: BUMFOR, bumper engagement at a current time step 

 

 

In case of engagement, the current deformation state, displacement 'S' and deflection 

speed 'V', is transferred to MAPFOR to generate the bumper force response. The map to 

solver interaction concept was derived in chapter 5, section 5.3. An illustration of the 

map concept that shows the force response Fdatum as a function of 'S' and 'V' is given in 

Figure 9.9: 

 

 
Figure 9.9: MAPFOR, force response F, function of displacement S and deflection 

velocity V 
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MAPFOR represents the final step in the process chain of structure variant system 

analysis under the central module STRU_VAR. The solution continues by module 

MATVEC to perform the matrix – vector multiplications: 

 

}{][}{

}{][}{

XDF
XCF

D

C

⋅=

⋅=
         (9.2) 

 

These vectors represent the internal reaction forces found for spring and damper 

elements addressed in equation 7.3, used to calculate the accelerations in module 

RKSTEP, where all four Runge-Kutta steps are performed. 

 

[ ] ( )}{][}{][}{}{ 1 XCXDFEMX ⋅−⋅−= −        (9.3) 

 

 

9.3 Output files and formats 
Table 9.1 shows a list of standardized output files of CAR_DOC. All output files (.TMP) 

are in ASCII format. 

 
Table 9.1: Standard output files of CAR_DOC 

 

The output files defined by units 40, 300, 301 and 304 can directly be derived from the 

solver operations, whereas the top mount total forces (302) and the wheel centre forces 

(303) are derived separately. 
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9.3.1 Top mount forces 

The top mount combines three separate load path 

- road spring 

- suspension damper and 

- jounce bumper 

 

in a single component. The principle is depicted in Figure 9.10: 

 

 
 

Figure 9.10: Top mount force components spring Fs, damper Fd and bumper Fb 

 

The total top mount force applied to the body structure is derived by the sum of (300), 

(301) and (304). 

 

 

9.3.2 Wheel centre forces 

For the evaluation of the spindle loads, two options are discussed. On the one hand, the 

force can be quantified by the external tyre forces reduced by the inertia terms 

determined by the wheel acceleration. On the other hand, the complete dynamic 

equilibrium is assembled by the additional spring, damper and, in case of engagement, 

bumper forces.  
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Figure 9.11: Top mount force components spring Fs, damper Fd and bumper Fb 

 

For the front wheel, this assumption leads to:  

 

zWCxWCWC

bdzszztyrezWC
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_
2

_
2

11__

11__

)(

+=

++=+⋅−=

+=⋅−=


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   (9.4) 

 

 

9.4 Closure 
In this chapter an overview about the source code structure and its in- and output files is 

given. The software is a FORTRAN code of modular structure, subdivided into main- 

and subroutine units. The individual modules, such as bumper force response map or the 

tyre chain model, can be used as stand alone items also. Thus, these modules enable 

upgrade compatibility for a BiP event simulation and also can be linked as external 

subroutines to commercial multi body solvers like ADAMS. 
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Chapter 10: Thesis summary and outlook 
 

10.1 Conclusions and contribution to knowledge 
Based on the results provided in this thesis, the following overall conclusions can be 

drawn.  

 

• It is important to develop an accurate model for the jounce bumper to include its 

hysteretic behaviour when subjected to loading, particularly of impulsive nature 

such as kerb strike or pot-hole braking. Under these conditions the bumper 

undergoes dynamic contact forces which act over its full deflection range. In case 

of a simplified model, based on a static force response curve only, the hysteresis 

and thus, the dissipation of energy, would be neglected. This would typically lead 

to an over-estimation of the peak load. An assessment to drop test measurements 

has revealed deviations of up to 30% as shown in Figure 7.13. 

 

• The bumper force response map simulation concept, based on data derived from 

harmonic bumper actuation is also applicable to analyse force response gained 

from non-harmonic actuation, such as that typically expected after a kerb strike. 

This was confirmed by assessment of response to drop tests (Figures 7.11, 7.12). 

 

• In general, conventional hydraulic test equipment is not suitable for recording the 

force response traces which are required for the map input. This is particularly 

true in case of large bumper deformation range which consequently demands for 

large actuation amplitudes, combined with high end bumper force levels of the 

order of 40 kN. In conjunction with a kerb strike, the relevant actuation 

frequency (in this case 10 Hz) and the flow capacity limit the feasibility for 

conduct such tests. A mechanical crank was developed to overcome this 

shortcoming. 

 

• A simple mathematical tyre model (equation (6.14)), based on the input of a few 

geometrical parameters and pneumatic pressure suffices to model the static force 

response against kerb edge radial contact deformation in the deflection range up 
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to a rim clash. The tyre structural compliance contribution to the overall force 

response does not normally exceed a range of 10% for a flat contact with the 

ground. This statement, already addressed in literature [21] (Figure 2.42) remains 

also valid for an edge type contact. This was confirmed by an assessment of static 

measurements performed for a pneumatic pressure of 2 bar (Figure 7.3). 

 

• The tyre pneumatic pressure level can be considered to remain almost constant in 

case of flat and edge type radial penetrations up to the full deflection range 

extending to a rim contact (Figure 7.2). Thus, a constant pressure approach used 

in both mathematical and chain type tyre models is justified. 

 

• For the FORD specified kerb strike event, the force level caused by the belt to 

rim contact clash significantly exceeds the pneumatic force response of full tyre 

deflection. Thus, a thorough specification of the rim stiffness is obligatory for the 

wheel force analysis (Figures 7.24, 7.25). 

 

• At “high” speed impact (40 km/h) the top mount force simulation drastically 

exceeds those measured form a vehicle. This mismatch could be attenuated by 

the introduction of a stiffness element to represent the vehicle body compliance. 

This observation confirms the importance of considering the vehicle body 

structural behaviour in kerb strike events and other abusive boundary conditions. 

 
 

10.2 Achievement of aims 
The objectives of the research, set in the introduction chapter have been achieved. These 

are addressed below. 

 

Objective 1: Develop a minimal parameter vehicle model, tailored for the 

simulation of the vertical suspension load after kerb strike. It shall be adapted to 

the FORD specified boundary conditions for DoK and shall also protect upgrade 

compatibility to simulate the BiP event at a later stage. 
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In chapter 4, a conventional in-plane bicycle model concept was extended to 7 degrees of 

freedom to take into account the fore- aft wheel centre suspension movement. The model 

is tailored to simulate DoK and includes a mathematical tyre model. Wheel travel is 

limited by a non-linear jounce bumper model and a rebound stop element. In all, a total 

number of 35 parameters define the entire vehicle model. Upgrade compatibility to BiP 

is arranged through the modular code structure. 

 

Objective 2: Generate a valid alternative to a rheological approach for a bumper 

model that takes the velocity induced hysteresis into account. 

 

A spatial map concept is described in chapter 5 to address the energy dissipation effects 

in the force response under impulsive conditions for the full range of jounce bumper 

deformation range. The concept, including data acquisition, transformation to map 

format and integration to a solver can be incorporated into a standardized process. This 

methodology is considered as a novel, enabling an easy simulation of velocity- related 

hysteresis of polymeric elements. The concept is considered to be applicable also to 

conventional and hydro-bushings.  

 

Objective 3: Derive a tyre model to simulate the pneumatic induced static force 

response against flat and edge type radial deformation. 

 

In chapter 6, a mathematical static force response model was derived for both flat and 

edge type contact. The model simulates the pneumatic force response and neglects the 

structural compliance for simplicity reasons. It is defined by four geometrical parameters 

besides the pneumatic pressure. Tyre structural assumptions made for the mathematical 

model are confirmed by a detailed truss-type physical model and physical testing. 

 

Objective 4: Validate the bumper and tyre models by an assessment to 

appropriate physical testing on component level. 

 

A drop test simulation assessment correlation with physical measurements is performed 

to validate the jounce bumper force response map results in chapter 7. A comparison 
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with a simplified analysis based on a static force response curve shown in Fig. 7.13 

reveals some shortcomings, if the hysteresis effects are neglected. 

Tyre model validation is performed against physical static tests for two sizes, 205/40-

R16 and 235/55-R18 and at various pressure levels as shown in Fig. 7.3 and 7.4. The 

dynamic behaviour was addressed in a plausibility study (Figure 7.25). 

 

Objective 5: Validate the vehicle model equipped with the bumper and tyre 

simulation approaches on system level by a full vehicle DoK testing. 

 

In chapter 7, a physical full DoK test is reported with an instrumented vehicle. 

Recordings of the top mount force and wheel centre deflection are compared with the 

simulation results in Fig. 7.16 and show good conformance. 

 

Objective 6: Carry out a parameter study to verify the plausibility of the vehicle 

model on basis of a specific FORD vehicle. 

 

A full parametric study for 20 independent vehicle parameters is carried out in chapter 8, 

based upon the FORD vehicle CD340. The study is supplemented by a plausibility 

discussion and chart 8.1 for a parameter ranking with regards to vehicle-specific impact 

with different vertical load levels. 
 

 

10.3 Critical assessment of approach and suggestions for future work 
An analysis of the vehicle simulation results gained for the top mount forces shows 

reasonable conformance with physical tests for velocity range up to 25 km/h, but reveals 

a significant over-estimation for a crossing speed of 40 km/h (Figure 7.19). This 

deviation is because of the rigid attachment of the jounce bumper to the vehicle body. An 

additional linear stiffness element was used to correlate the simulation results to the 

measured force signal. This observation confirms that vehicle body structural stiffness is 

a significant parameter which needs to be taken into account, especially for higher 

vehicle velocities in kerb strike. This aspect requires a detailed vehicle body structural 

analysis to determine the load path for a vertical top mount force directed via the body 

structure towards the attachment points. Such investigation can be performed by means 
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of an inertial relief analysis, a standard method in FEM. Detailed body structure models 

are in general not at hand in the beginning of a development program, thus carry over 

experience must be used instead. 

 

The data acquisition for the jounce bumper force response map was performed via a 

mechanical crank. Force response traces were gained when the crank rotational speed 

achieved a level equivalent to the specified frequency. During the rig rotational ramp up 

operation towards the specified frequency, the bumper element is subjected to an 

actuation and hence, a bumper preconditioning cannot be avoided. Therefore, it is 

intended to update the bumper rig to allow decoupling of the bumper engagement during 

the ramp up process. 

 

The mathematical tyre model is set up to analyse radial force response against either an 

edge or a flat type contact. A combination of both modes, as expected to occur during a  

kerb roll over mode, where the initial edge contact is considered to become a combined 

edge and flat type contact (Figure 6.33). This transition is not currently addressed by the 

developed model. In principle, the chain type truss model is suitable to be applied to 

such a combined form of contact as described under paragraph 6.4. 

 

With the DoK minimal parameter model, it is intended to predict the vertical suspension 

load envelope. This represents a first milestone of the overall vision of a comprehensive 

loading model. The model is compatible for an upgrade to a Brake into Pothole (BiP) 

simulation, as it is of a modular structure with key features, such as the tyre and bumper 

simulation concepts. The model can be extended to perform a longitudinal load analysis 

as well. As the nature of a lateral force impact would induce roll of the vehicle, the 

existing model tailored to the DoK event cannot easily be adapted to analyse such 

manoeuvres.  A completely different model may be required. 

 

To cope with BiP, the tyre modelling should preferably be extended to the chain type 

physical truss model, proposed in this thesis. This would allow a combined flat and edge 

contact, as well as having the potential to take the brake-induced circumferential force 

component into account. The proposed model would need to be extended for this 

purpose. 
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A key feature required to model BiP is the suspension longitudinal stiffness 

characteristics. On a front McPherson suspension geometry, this is mainly determined by 

the linking elements (conventional and hydro-bushings) to the vehicle body structure. 

The map concept is considered to be applicable to these chassis polymer elements in its 

standardized format, but would need to be validated by further physical testing. As for 

the jounce bumper, relevant actuation frequencies for the data acquisition would need to 

be defined for the specific bushing positions and applications. 
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 Appendix A: Numerical methods used 
 

 

A.0 Introduction  
Analytical solutions of equations of motion, in general deliver precise results or closed 

form solutions, but usually embody various assumptions. Numerical methods are often 

used as an alternative, if an analytical solutions cannot be obtained and are usually 

approximate, but with lesser degree of assumptions. In such cases, an approximation 

derived from numerical methods is accepted as a substitute for the exact analytical 

solution. Analytical mathematical results can be derived directly from algebraic terms, 

whereas solutions derived from numerical methods are in general the result of an 

approximation process. An example is applying Newton integral calculus to find the area 

below the graph of a function. An approximation for the area can also be found by 

summing up the rectangular areas below the stepped polygon in the graph. Deviations 

from the exact analytical solution can be minimized by increasing the number of 

elements, thus the computational effort. This is effected by increasing the number of 

polygon edges or by using rectangular trapezoids instead of rectangles for a better curve 

fit. This describes a common nature of numerical methods; its precision is linked to the 

numerical effort expended and the method used. 

 

Here, those numerical methods are described which are relevant to the subject matter of 

this thesis. The scope includes two main topics: 

- Numerical integration of coupled, second order ordinary differential equations in 

the time domain. 

- Curve interpolation, using third order spline functions. 

 

The first topic is concerned with the solution of equations of motion derived in chapter 2 

for the vehicle simulation model, whilst the second topic is used to derive the data 

condensation of the map approach, described in chapter 5. 
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A.1 Numerical integration of differential equations 
Beside a variable x , differential equations also contain expressions of derivatives of x , 

such as dxdyy =′ , 22 dxydy =′′  and so forth. It can generally be expressed as 

).,...,,,,( )1()( −′′′= nn yyyyxfy  To obtain a solution, the equations needs to be 

integrated with respect to x for n times. Analytical mathematics provides several, to 

some extend creative methods in order to solve the differential equations. Unfortunately, 

the number of equations, that can be solved analytically, is limited to a few special cases 

only, whereas a graphical or numerical solution can be provided in almost every case. 

From the wide range of this subject, this appendix is limited to the application methods 

for equations of motion. Initially, the structure and properties of such equations are 

presented, followed by a discussion of the general features known for first order 

equations, intended to explain the method of numerical integration.  Finally, the detailed 

Runge-Kutta process and its application to solve a set of coupled differential equations is 

described. 

 

A.1.1 Structure and attributes of coupled equations of motion 

The differential equations discussed in this thesis are functions of time. Thus, they are of 

the general form: ),...,,,,( )1()( −= nn yyyytfy  , where dtdyy /=  . Multi-body 

dynamics applications, such as the vehicle model discussed in chapter 2, are limited to 

second order equations: ),,( yytfy  = and contain multiple degrees of freedom. Each 

individual degree of freedom is expressed mathematically by an ordinary differential 

equation, also known as the equation of motion. The mathematical formulation derived 

for the assembled system, therefore, forms a set of coupled equations. In this context, the 

term coupled expresses the fact, that the single equation structure takes into account the 

physical interactions with the other degrees. The mathematical formulation of the set of 

equations can be organised in the form of a matrix structure as shown below: 

 

[ ] }{}{][}{][}{ FEXCXDXM =⋅+⋅+⋅        (A.1) 

 

The matrices M, D and C were derived in chapter 4, in which the vectors X , X  and X

represent the system motion and deformation state (i.e. the state vectors), FE stands for 
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the external force vector. Matrix sizes conform to the systems number of degrees of 

freedom and contain coefficients m, d and c which are multiplied with the vector 

components x , x  and 𝑥. The term 'ordinary' is used in cases where the coefficients are 

constants (they are no functions of time) and addresses the fact that they only contain the 

derivatives with respect to a single parameter (time in this case). This is in contrast to 

partial differential equations, which contain derivatives of more than one variable, for 

example time and temperature gradients used in a heat transfer problem. The largest 

order derivative ( x ) defines the 'order'. 

The equation of motion for a single degree of freedom system can be rearranged to the 

highest order derivative as shown in (A.2), representing a function of x , x  and t  in the 

format of a so-called initial value problem. 

 

( )[ ] ),,(1 xxtfxcxdfe
m

x t  =⋅−⋅−⋅=       (A.2) 

 

In terms of physics, it means, that for an instant time t  and a discrete set of initial values 

for x  and x , a discrete solution for the instantaneous acceleration x can be determined. 

A two step subsequent integration of equation (A.2) leads to the system time history for x 

and x . It can be shown that a single equation of second order (A.2) can always be 

separated into two equations of first order (A.3) by substituting yx =  [17], [22]. 

 

),,(][1
),(

)( yxtfxcydfe
m

yx

xtfyx

t =⋅−⋅−⋅==

==





      (A.3) 

 

This format can also be derived starting from a vector equation (A.1), as follows: 

 

[ ] ( )}{][}{][}{}{ 1 XCXDFEMX ⋅−⋅−= −   

 

In case of a system with two degrees of freedom, the outlined format would be: 
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The matrix format can be expanded to twice the number of equations, transformed to 

first order forms. To do so, coupled vectors combining xx , , are transformed to xx ,  on 

both sides of the equation. For simplicity reasons, the mass matrix shall be considered to 

be diagonal: 02112 == mm . Thus, the inversion of M leads to: 





















⋅























−





















⋅





















=





















2

1

2

1

2

22

2

21

2

22

2

21

1

12

1

11

1

12

1

11

2

1

22

11

2

1

2

1 1000
0100

0
0

1000

0100
0000
0000

x
x
x
x

m
d

m
d

m
c

m
c

m
d

m
d

m
c

m
c

fe
fe

m

m
x
x
x
x













 (A.5) 

 

A matrix - vector multiplication and rearranging of xxx ,,  proves the equivalence of 

equations (A.4) and (A.5). For the substitutions: 
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equation (A.4) can finally be transformed into first order, also known in the state variable 

format as: 
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A more general format of (A.5) is expressed as: 
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{ }FE
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
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= −−− 111 0
00

}{
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}{      (A.7) 

 
The first order state variable format is the standard condition to apply the Runge-Kutta 

integration used in this thesis. Before the operational sequence of the integration method 

is described, a visual insight into the nature of the first order differential equations is 

provided. 

 
A.1.2 General features of ordinary first order differential equations 

In contrast to a 'conventional' function )(xfy = , a first order differential equation 

),( yxfy =′ depends on two parameters x  and y . In visual sense, the equation can be 

interpreted as the gradient at a given point on a map defined by coordinates x and y . For 

a given equation ),( yxfy =′ , a discrete solution can be developed graphically by 

sketching line elements of slope y′ , calculated for any point ),( yx  according to the 

given equation, into a gradient map shown in Figure A.1. Starting from an arbitrary set 

of initial values 00 , yx , a discrete solution )(xfy = can be developed stepwise by 

following the gradients on the map. Three discrete solutions found for initial values

00 =y , 10 , xxx =  and 2x  are exemplary as indicated by the bold dashes. 

 
Figure A.1:  Gradient map and discrete solutions for the first order  

differential equation ),( yxfy =′  

 

It is obvious, that discrete solutions depend on the initial value set [12] (for instance, the 

initial values 1,0 xxy == deliver the discrete solution indicated by the bold dashed 
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straight line, whereas the solutions for 20 , xxxx ==  reveal curved traces in this case). 

For the purpose of a better visualization, points with gradients of common magnitude can 

be linked to form a curve; the so-called isoclines. These curves are not necessarily linear 

traces, but in this example the isoclines are defined by parallel diagonals of the gradient 

one. A focus on line elements at a discrete value of  x  exhibits a gradient variation along 

the vertical y-direction. For the special case that the gradient map reveals vertical 

isoclines only, it can be concluded that all line element gradients remain constant in the 

y- direction. In other words, y′ is not a function of y . This feature marks the character 

of 'conventional' functions )(xfy =′ in contrast to differential equations ),( yxfy =′ and 

indicates that 'conventional' functions can also be seen as a special case of differential 

equation. The feature, gradient being a function of y as well, is one reason for numerical 

inaccuracy caused by a 'gradient error' during integration. This is discussed next. 

 

A.1.3 Numerical integration method and deviation order to analytical solution 

As mentioned in the introduction (A.0), a numerical integration can be interpreted as a 

summation of the area enclosed between the abscissa and the graph of a function. On the 

other hand, the derivative y′  quantifies the slope of the graph )(xy at an instant value of 

x . The process of numerical integration will be first demonstrated on the basis of the 

Euler - Cauchy method, shown for a 'conventional' function )(xfy =′  in Figure A.2: 

 
Figure A.2: Graphical illustration of Euler – Cauchy numerical integration and 

quadrature error 
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The right hand side figure shows the function )(xfy =′ to be integrated with respect to 

x . Circles indicate the accurate analytical solutions, bold points show approximated 

values. As the solution depends on the initial values, also known as initial conditions, the 

numerical integration process is commenced by defining 0x , 0y  shown in the left hand 

figure. The derivative is illustrated by a tangent. Its slope is quantified by the function 

value )( 00 xfy =′ shown on the right figure. A new integral value )(ˆ 11 xfy = can be 

approximated by adding the rectangle )( 010 xxy −⋅′ to the initial value 0y . For 01 xxh −= , 

the approximation law for this approach is: 

 

 10011 )(ˆ yhyyxfy ≈⋅′+==  

 

 It is noted that the approximation 1ŷ  does not precisely with the exact analytical value 1y

, thus, the bold illustration. The deviation 11 ŷyy −=∆ , known as quadrature error, is 

caused by neglecting the shaded area on top of rectangle 01ˆ yy − . The error necessarily 

increases with the step size 01 tt − , as well as the number of integration steps. Despite the 

fact that the approximations found for the integral values 1ŷ , 2ŷ etc, deviate from the 

analytical solutions 1y , 2y , the values calculated for the derivatives 1y′ , 2y′  remain 

accurate (circles), as the gradients in 1y  and 1ŷ  y are of common magnitude. 

This changes in case of a differential equation ),( yxfy =′ , where the derivative y′  is 

now a function in y- direction too, as illustrated in the gradient map in Figure A1.1. The 

quadrature error will then be superimposed by a deviation of the tangent gradients in 1y

and 1ŷ , known as gradient error. This is indicated by the bold dots in the right hand side 

graph of Figure A.3, and further increases the numerical deviation. 
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Figure A.3: Graphical illustration of numerical gradient error 

 

The gradient error by its nature is a specific feature of the individual differential equation 

and can hardly be avoided [22], whereas the quadrature error depends on the numerical 

method used to approximate the integral increment Y∆ for the next time step. To assess 

the accuracy of different approximation methods, the increment derived from Taylor 

Series is used as a scale. At an instant point )( 00 xfy = of a steady function )(xfy = , the 

Taylor Series can be used to approximate )( 01 hxfy += next to 0x by the term 
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A formal integration of the series delivers the most accurate solution possible to tune the 

integral towards the analytical result for n →∞ . 
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To minimize the quadrature error, the approximation method used to calculate the 

integral increment Y∆ must match as many higher order terms h of the Taylor series as 

possible. For example, the increment of one of the simplest approximation methods, the 

Euler – Cauchy rule, is of the form: 
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hyYYY ⋅=−=∆ 001  
 

This matches the first term in h only, higher orders are neglected (shaded areas in Figure 

A.2). The error of the quadrature method is of magnitude 2
02

1 hy ⋅′ , named order 2h . It 

can be shown that the error will further reduce if trapezoids are used instead of 

rectangles to approximate the integral increment [22]. The trapezoidal rule reveals: 
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This approach matches with Taylor Series terms up to 2h , deviations are of order 3h . 

Following this logic, improved numerical integration concepts are intended to include as 

many orders as possible with reasonable amount of approximation effort. The Runge-

Kutta method, discussed next, is of deviation order 5h and delivers a good compromise in 

accuracy and numerical effort. 

 

A.1.4 Runge-Kutta numerical integration of first order differential equations 

The Runge-Kutta integration process belongs to the group of single step methods, 

meaning that only one set of initial values 0x , 0y  is required to start the integration 

process. Multi-step methods depend on several initial values defined also within the 

surrounding of 0x and not discussed here. 

The integration starts at a given initial values 0x , 0y . Four Runge-Kutta steps, indicated 

by roman numbers I to IV, are defined to approximate the integral increment after a step 

of size h . In a first operation, the gradient Iy′  is calculated at 0x , followed by a first 

approximation for the integral increment hyk II ⋅′= . 

 

I. II fyxfy ==′ ),( 00  

 hfk II ⋅=  
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Related to this gradient, a half sized step is performed towards 20
hxxII += . A 

preliminary integral increment at this point is approximated by 20
I

II
kyy += to be used 

in step II: 

 

II. IIIIIIII fyxfy ==′ ),(  

 hfk IIII ⋅=  

 

A repetition of the half step is performed at 20
hxxx IIIII +== , but using an improved 

integral increment tuned by IIk  to be 20
II

III
kyy += : 

III. IIIIIIIIIIII fyxfy ==′ ),(  

 hfk IIIIII ⋅=  

 

A fourth, full step is performed by using the improved approximations derived from 

preceding half steps, hxxIV += 0  and IIIIV kyy += 0 . 

 

IV. IVIVIVIV fyxfy ==′ ),(  

 hfk IVIV ⋅=  

 

All the four integral decrements IVIIIIII kkkk ,,,  represent preliminary results only. An 

average value K  is derived to cover as many Taylor Series terms as possible: 

 

 [ ]IVIIIIII kkkkK +++= 22
6
1  

 

Finally, a new set of initial conditions kyyhxx II +=+= 00 ,  can be used to initiate 

the subsequent approximation of similar type. The Runge-Kutta steps are summarized in 

the table shown in table A.1 [22]. 
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Table A.1: Runge-Kutta numerical calculation steps [22] 

 
A.1.5 Runge-Kutta integration applied to system of coupled equations of motion 

The explanations so far have been for a single first order differential equation. Equations 

of motion in general are of second order and usually coupled, corresponding to a number 

of system degrees of freedom. Equation (A.4), represented in state variable format (A.8), 

is used here as an example to demonstrate the method applied to the integration of two 

coupled second order equations in the time domain. 

 

The two second order differential equations of motion in matrix format 
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were transferred to four first order equations into state variable format by using the 

substitutions (A.6). 
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 (A1.8) is equivalent to the four single equations E1 to E4: 
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Initial values for x , x  at 0=t  according to the substitutions (A.6) are set as follows: 

 

{ }
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The following table shows an overview of the four Runge-Kutta steps applied to 

equation set (A.9). The numbers placed in front of the terms indicate the sequence of 

calculation steps. In operation 1.1 to 1.4 the given initial values are used to commence 

the integration process. Subsequently, operations 2.1 to 2.4 deliver integral 

approximations for RK step II. Improved integral increments are available after 

operations 3.1 to 3.4, followed by improved integration in RK step III and so on. The last 

operation set has the indices 7.1 to 7.4 and delivers the integral increments kIV. 
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Table A1.2: Runge-Kutta table for two degree of freedom system  

in state variable format 

 

A replacement according to (A.6) delivers the vectors { }X  and { }X  of the system 

trajectories. 

 

In an alternative approach, the equations of motion can be integrated directly in the given 

format of second order (A.1 and A.2 for a single degree of freedom). Thus, a substitution 

and transformation into state variable form can be avoided [17]. The integrations xx  ⇒
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and xx ⇒  are then performed in two simultaneous steps. The same example given by 

equation A1.4 is used to demonstrate this process:  
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The mass matrix again is assumed to be diagonal in order to simplify the example. The 

matrix- vector products can be written in the format of two coupled single equations G1 

and G2 as: 
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             (A.10) 

 

G1 and G2 are of identical structure as E3, E4 derived from equation (A.8), but in the 

format of second order this time. Table A.3 [17] illustrates the subsequence of the 

Runge-Kutta steps. 

 

In contrast to the foregone process, where the integral increments (expressed by Ik  to 

VIk ) are calculated in the first operation set (1.1 to 1.4), the alternative approach just 

delivers the values for the highest order derivatives (accelerations in case of equations of 

motion). The formal integration (indicated by the multiplication of step size h ) is 

performed during the subsequent operations (2.1 to 2.4) in two steps for xx  ⇒  and 

xx ⇒ , which directly derives the system trajectories, thus avoids the burden of a re-

substitution. On top of that, the process appeals more descriptive compared to the state 

variable method. 
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Table A.3: Runge-Kutta table for second order equations of motion 

 

For the case of multiple degrees of freedom, it is reasonable to organise the numerical 

treatment through matrix- vector multiplications. Matrix equation (A.4) can be used 

directly to perform the operation steps 1.1, 1.2 in a single operation, delivering the 

accelerations of the system degrees of freedom by a matrix- vector multiplication. The 

four subsequent algebraic operations, 2.1 to 2.4, deliver new interim values required to 

set up the next matrix- vector multiplication combining 3.1 and 3.2 and so forth. Finally, 

operations 7.1 to 7.4 deliver a new set of initial values for the next time step. 
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A.1.6 Appropriate step size control 

It is noted in section A.1.3, that both quadrature and gradient errors are related to the step 

size used for the numerical operations. The Runge-Kutta integration offers a simple 

method to adjust and control the step size based on a proposal raised by Collatz [23], 

[62]: 

 

2
1

4
1

≤
−
−

≤
III

IIIII

kk
kk

 

 

The recommendation is as follows: If the ratio exceeds the value ½, the step size should 

be reduced. In case the ratio falls below a limit of ¼, the step size can be increased. As 

the ratio can easily be monitored during the calculation, an effective step size control can 

be embedded into the numerical algorithm. 

It is noted that the equation systems derived for a multi-body structure can cause 

convergence problems during the numerical integration in conjunction with step size 

control operators. Especially this is the case, when the system consists of large inertias 

supported by soft springs in combination with small masses attached by stiff springs. 

This leads to system eigen-values which are widely split, with the equations showing 

these features referred to as stiff. Hints to cope with this can be found in [14]. 
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A.2 Numerical interpolation 
In chapter 5, a map concept is introduced to simulate the dynamic force transfer. The 

map database, comprising a set of measured force response traces, is condensed to the 

format of a three dimensional array, containing spline coefficients, applicable to 

reproduce these traces through method of interpolation. 

The general idea of an interpolation is to generate a mathematical function that is 

determined by a few discrete points only. This function should precisely match the 

discrete points and should reasonably approximate the course of the function in between 

two adjacent points.  

From the various interpolation methods based on polynomials, such as Lagrangian, 

Newtonian etc, some methods (depending on the current problem) can result in an 

'oscillatory' trend. The effect of an oscillation is an over or underestimation of values in 

between the known discrete points [64], especially if the polynomial is of high order. 

The cubical spline interpolation is based on third order polynomials. It is, therefore,  

robust with regards to oscillation, thus it is chosen for the map data processing in this 

thesis. 

 
A.2.1 Third order spline interpolation 

The process of a third order spline interpolation is explained here in Figure A.4: The 

graph of a function defined by 1+N  given points 00 , yx  to NN yx , , named splines, may 

be approximated by an interpolation within each of the N intervals. These intervals do 

not necessarily need to be of equal width. Derivatives iy′ at the discrete splines are 

graphically indicated by tangents. 

 
Figure A.4: Cubical Spline interpolation 



 Appendix A 
 

 244 

The functions used to approximate the trace in each single interval may be defined by 

unique third order polynomials of a local variable z  as follows: 
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Based on these functions, the derivatives become: 
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Combining (A.11) and (A.12), applied to the first interval, conditional equations for the 

first set of spline coefficients 0,IA , 1,IA , 2,IA  and 3,IA  can be established as: 
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Solving the four equations (A.14) delivers the relations for the coefficients to fit the first 

interval I:  
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Analogous relations are found for the remaining intervals as: 
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A.2.2 Derivation of gradients 

It is noted that the magnitudes of the derivatives iy′  are generally unknown. To fulfil the 

requirement of a smooth trace transition in between two neighboured intervals, the 

polynomials should match in magnitude y , gradient y′  and curvature y ′′  in each spline. 

For example, at location 1x  the spline functions IS , IS ′  and IS ′′ of local variable 

01 xxzz I −== within interval I must match with the spline functions IIS , IIS ′  and IIS ′′  

for 0=z derived for interval II. The first two conditions IS and IS ′   (A.11) and (A.12) 

respectively have been used to derive the conditional equations (A.14), IS ′′  and (A.13) 

respectively and used to derive the expressions for the unknown derivatives iy′ . 
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By using solutions (A.15) and (A.16), the curvature in the spline, that connects first and 

second intervals becomes: 
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and described in terms of y′ and y , the first equations related to first and second interval 

can then be set up as: 
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In full analogy, further equations for the next interval transitions, two to three, three to 

four and so on, can be written as: 
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This leads to a linear system of equation (A.19) of 1−N  equations for 1+N  unknowns 

iy′ : 

 
Table A.4: Linear equation system (A.19) 
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Further equations, needed to solve the equation system, can be set up by several 

definitions of boundary conditions, applied at the end points Nyy ,0 . Three options are  

common practise [23]: 

 

1) Specified gradients: Nyy ′′ ,0 . 

2) Curvature fade outs: 0,00 =′′=′′ Nyy , also known as natural spline. 

3) Periodic splines: NNN yyyyyy ′′=′′′=′= 000 ,, . 

 

The first two options are used in this thesis and derived here in more detail. 

 

 

1) Gradient 

Option 1 may simply be realised by adding the specified values Nyy ′′ ,0  to the right 

hand side of the equation system (A.19). Thus, the number of unknowns iy′  now matches 

with the umber of equations 1−N , and the system can be solved. 

 
Table A.5: Linear equation system for specified gradient 

 

2) Curvature 

Option 2 in conjunction with (A.13) and (A.15) leads to further conditional equations, 

which can be added to extend the equation set to 1+N  equations as: 
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Derived from (A.15), the coefficients are defined as: 
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Filled in and described in terms of yy ,′ , the two equations required to solve the system 

(A.19) are found to be: 
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Table A.6: Linear equation system for zero curvature at curve ends 

 

The approximation results found can be interpreted as an elastic deflection line of a 

simply supported beam in bending mode, attached to the splines iy , representing the 

simply supported end condition. In case of option 2, the beam ends fade out straight 
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without curvature, aligned to the conditions 00 =′′=′′ Nyy . In case of specified gradients, 

bending moments can be considered applied at the end supports. 

 

A.2.3 Gradient estimation 

In the case of a large number of splines, the solution of the linear equation system to 

derive the gradients iy′  can be tedious. An alternative to the 'exact' derivation is to 

approximate the gradients. In a first step, the given splines iy are used to form a polygon 

trace shown in Figure A1.5.  

 

 
Figure A.5: Polygon trace defined by splines iy  

 

Gradients for the intervals ...,,, IIIIII  can easily be derived as: 
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To approximate the gradients at the splines iy , averages of the neighboured intervals are 

used: 
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Two remaining approximations are needed at the curve ends in 0y  and Ny . It is noted 

that this approach is feasible in conjunction with option 1 (gradient) only, as the 

remaining unknown gradients 0y′  and Ny′  are specified by the user. It is difficult (if not 

impossible) to approximate the gradients in the sense of case 2 (curvature) in this way, in 

order that they would precisely match the requirement 00 =′′=′′ Nyy . It is also obvious, 

that these simplifications do not exactly represent a simply supported beam, deviations in 

gradient would result in external moment being applied at the simple supports. 

However, the gradient estimation is effectively applicable to approximate a large number 

of splines taken from curves that do not show extreme volatility. 
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Abstract. The paper presents a minimal parameter vehicle simulation model to predict 
the vertical suspension loads expected for abuse driving manoeuvres, such as a kerb 
strike event. This causes impulsive bump-stop loads. Since the aim is to specifically 
study impulsive bump-stop and tyre characteristics, an in-plane bicycle model suffices, 
when it is extended to 7 degrees of freedom. Non-linear and hysteretic characteristics of 
the bump-stop elements are included by a parametric map concept, based on 
displacement and velocity dependent hysteresis. Furthermore, a static tyre model is 
described, tailored to predict the radial stiffness against penetration of an edge with a 
flat-type rigid body geometry. The tyre model is derived on the basis of classical shell 
theory and represented in terms of few input parameters. Model validation is supported 
through experiments at both component and system levels. 
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1 INTRODUCTION 
With increasing computational power, complex simulation models allow design 

optimization in the final development phase. However, at an early stage, most details, 
other than main dimensions, are unknown. For concept studies, for example in the early 
stages of chassis development, and prediction of component loads, model simplicity is 
preferred. This approach is followed in the current paper with a minimal parameter 
vehicle model. Suspension and tyre characteristics should possess many attributes for 
ride comfort, durability and vehicle handling [1,2]. This paper is concerned with jounce 
bumper and tyre behaviour under severe impulsive conditions, where their elasto-
kinetics are usually assessed for various load case scenarios [3]. FORD has specified the 
worst load case manoeuvre to be drive over kerb (DOC). A 2-dimensional (planar) 
vehicle model, extended to take into account fore-aft wheel travel (Figure 1) is used. 
Large scale wheel motions lead to impulsive action which can induce significant jounce 
bumper impact and gross tyre deflections. Emphasis is put upon modelling of jounce 
bumper characteristics and tyre behaviour under severe impacts.  

 
Figure 1: A schematic representation of the simplified vehicle model. 

 

2 VEHICLE MODEL 
As the vertical and longitudinal suspension stiffnesses are defined by idealized 

spring and damper elements, no kinematic constraint formulation is required. 
 
2.1 Model element overview 
 

The inertias of the suspension links are lumped with the unsprung wheel mass. The 
suspension geometry, kinematics and individual component stiffness are merged into 
combined vertical and longitudinal stiffnesses. Figure 2 shows an overview of the 
vehicle model, where: 
 

(1) sprung mass and rotational inertia 
(2) unsprung masses including wheel, hub, brake and lumped suspension 
(3) road springs (constant stiffness) 
(4) shock absorbers (constant damping) 
(5) jounce bumpers (map concept presented in item 4) 
(6) rebound stops non-linear stiffness (no damping) 
(7) kinematics of free wheel travel and jounce / rebound contacts 
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(8) longitudinal stiffness / damping of wheel centre against body 
(9) tyre 

 

 
Figure 2: Minimum parameter vehicle model 

 
2.2 Equations of motion 
 

The basis of the model is a bicycle model [4], extended by three additional longitudinal 
degrees of freedom as shown in Figure 3. 

 
Figure 3: Degrees of freedom and external loads for simple vehicle model. 

 
The equations of motion in a matrix form are: 
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[M] is the inertial matrix, [C] and [D] are the effective stiffness and damping matrices. 
The external applied forces constitute the RHS of the equation. Matrix [D] is of 
equivalent structure to [C]. 
 
In contrast to the classical bicycle model, the system properties of the model shown in 
figure 2 vary for different vertical wheel displacement states. These states are:  
 

4. free wheel travel (no jounce or rebound) 
5. jounce 
6. rebound 

 
Figure 4 shows the vehicle front suspension in vertical free travel- (left) and in bump 
stop engagement mode (right). 
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Figure 4: Free vertical wheel travel UJB1 and jounce bumper engagement JB1z on a front suspension. 

 
For free travel mode (case 1 above) the Matrices [C] and [D] do not include structural 
stiffness and damping characteristics associated with jounce and rebound bumpers, 
which should be included in cases 2 and 3 above. As equation (1) should be generic, 
then the additional structure invariant internal reactions caused by jounce and rebound 
are represented in the form of a couple of  external forces of equal magnitude and 
common action line, but oriented anti-symmetrically. They can, therefore, be balanced 
with the external force vector Fe on the right side of equation (1). By doing so, stiffness 
and damping matrices can remain in their structure invariant form and do not need to be 
modified. Hence, for case 1:  
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And for cases 2 and 3 at front suspension:  
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2.3 Jounce bumper force response map application 
 

The concept of jounce bumper map is used to feed back the bumper force JBF  to fit the 
initial conditions z  and dtdzz /=  according to the current bumper deformation state. 
This map concept takes the non-linearity and hysteresis of these polymeric elements into 
account. 



Appendix B 
 

 255 

2.4 External tyre force application 
 

In kerb strike, the tyre loads are derived from the deformation of its radial belt contact. 
The kerb is assumed to be a simplified vertical rigid blade, promoting an edge-type line 
contact. Therefore, the need for a complex analysis for a combined flat and edge belt-to-
kerb contact is removed. The bumper and tyre contact forces are balanced with the 
external force vector Fe as indicated in figure 5. 

 
Figure 5: Tyre response force feedback to external load vector Fe. 

3 BUMPER MODEL 
The jounce bumper is regarded as a 1-DOF vertical compression-only element. It 

attenuates the effect of impact load transmission to the vehicle body post impulsive 
event, be it kerb or pothole impact. It is made of polyurethane (PUR) foam, commonly 
used in vehicle suspensions. Its force response characteristic is a combination of both a 
polytropic deformation of gas chambers and compression of the gas volume surrounding 
the polymeric structure. The material properties, such as density depend on the specific 
boundary conditions applied during the polymerization process. It is, therefore, difficult 
to investigate the bumper force response other than through physical testing. 

 

3.1 Map data acquisition 
During a kerb strike manoeuvre described in the introduction, the bumper may deform to 
its full extent. Although the bumper excitation mode during kerb strike can be fairly 
arbitrary, a harmonic excitation is assumed to obtain its force response data. The validity 
of this assumption is confirmed through experimental drop tests, as in general a bumper 
drop test excitation mode deviates somewhat from a harmonic response. 
 
The quotient ω  = Vmax / Smax is used to specify circular actuation frequency relevant 
for the drive over kerb (DOK) event. With Vmax being limited by the damper blocking 
speed and Smax specified by the bumper deflection range, πω 2=f  determines the 
DOC relevant frequency to be 10 Hz. Thus, the recorded data does contain the velocity 
related damping hysteretic characteristics. Figure 6 shows the bumper actuation 
kinematics and the physical rig used to generate the map data. 
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Figure 6: Concept of bumper test rig kinematics and physical test set up. 

 
Any small deviations from harmonic response due to higher order crank kinematics are 
neglected. 
 
 Figure 7 shows the results obtained for various excitation amplitudes. 
 

 
 

Figure 7: Sinusoidal actuation and force response of a jounce bumper element. 
 

3.2 Map data pre-processing 
A cubical spline interpolation is used to condense the recorded data into a third order 
polynomial: 
 

3
3

2
210 zAzAzAAF ⋅+⋅+⋅+=        (4) 

 

Variable 'z' represents a local coordinate system (figure 8). The figure shows the 
organisation of data into an easily accessible array, containing the polynomial 
coefficients in equation (4).  
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Figure 8: Organization of array 'A' to store map data cubical spline coefficients. 

3.3 Map to solver interaction 
The stored map feeds back the force response corresponding to an initial condition S and 
V for an instantaneous condition in each integration time step. In conjunction with the 
expression for the circular frequency phase angle tωϕ = , a generalized velocity ( ) ω/tv  
can be defined as: 
 

( )
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)sin(

0

0

ϕ
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v

Ss

t

t

         (5) 

 

For the generalized velocity 'vg', the phase diagram s/vg reveals a format of concentric 
circles in the x- y plane and also the phase angleϕ  (figure 9, LHS) .The three 
dimensional plot on the RHS is the recorded characteristic force response map. 
 

 
 

Figure 9: Force response traces (red) and their vertical projections (black) in a phase diagram. 
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Also note: 

ω
ϕ

/
tan

V
S

=    ( )22 /ωVSR +=     (6) 
 

The force related to the datum point is approximated by two interpolations, 
circumferential- and radial. In circumferential direction (figure 10, left), array A is used 
to find F1, F2 and F3 followed by radial interpolation (figure 10, right). 
 

 
 

Figure 10: Circumferential and radial interpolation 
 
To ascertain the validity of the map concept, simulation results are compared with a drop 
test applied to a bumper element. Figure 11 below shows good conformance of harmonic 
simulation results to the measured drop test data. 
 

 
 

Figure 11: Assessment of force simulation (blue) and measured drop test forces (red) 
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4 TYRE MODEL 
The model is simplified to address the radial force response of the tyre, neglecting its 

structural stiffness and inertia. The tyre structure is simplified by including two primary 
elements, namely the belt and the sidewall, as shown in figure 13. The model is fully 
defined by the pneumatic pressure, p, and four dimensions of the cross section (Ra, ri, bt 
and fc), as illustrated in fig. 13. The belt and sidewall are considered as ideal isotropic 
membranes, free from resistance against bending. All tyre model derivations are based 
on the above simplifications and assumptions. 

In the absence of radial deformation, the belt contour is assumed to be of ideal 
cylindrical shape. The internal radial stress at the circumferential interface between 
sidewall and belt, as well as the belt force Fg, are derived by making use of shell theory. 
Timoshenko [6] formulated a general in plane stress relation (7) for a double curved, thin 
shell element and applied it to a torus structure, as shown in figure 12. 
 

t
p

RR
=+

21
21 σσ           (7) 

 

 
Figure 12: Curvature radii R1, R2 and membrane stress 1σ , 2σ  in a torus structure. 

 
In eq. 7 t indicates the wall thickness of the membrane and p is the pneumatic pressure. 
Considering equilibrium in the y- direction leads to the radial stress 1σ . 
 

( )22
1 sin2 RmRptR −⋅⋅=⋅⋅⋅ πασπ        (8) 

 

Using the geometric relation 
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the radial stress of the sidewall is found equal to 
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The circumferential belt force, Fg, is derived considering equilibrium in the z-direction, 
as shown in figure 13. A cylindrical shell element representing the belt rests in 
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equilibrium under the action of sidewall stress, 1σ , circumferential belt force, Fg, and 
pneumatic pressure, p. This situation is expressed by equation (10): 
 

 
Figure 13: Belt shell structure applied to sidewall stress 1σ  and belt force Fg. 
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Using equation (9) and the geometrical relations 
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integration of (10) leads to the circumferential belt force, Fg, as follows: 
 

[ ])1()( fcRRmRabtRapFg −⋅+−⋅⋅=       (12) 
 

Using equation (9) the sidewall line loads Qsg and Qsr at the belt and rim attachments 
are 
 

)1(
2
1

)(1 Ra
RmRptQsg RaR +⋅⋅=⋅= =σ        (13) 

)1(
2
1

)(1 ri
RmRptQsr riR +⋅⋅=⋅= =σ        (14) 

 

For modeling purposes the DOC manoeuvre is simplified to a drive-over-blade 
situation whereby the tyre model rolls over a blade-type obstacle. The associated tyre 
force is derived for an idealized edge type line contact to the belt as shown in figure 14. 
 

 
Figure 14: Edge contact simplified tyre geometry. 
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As indicated in figure 14, with increasing radial deflection, f, the projected belt area 
decreases, as does the associated belt force, Fg. This effect is incorporated by correcting 
the belt force, Fg, according to equation 15: 

Ra
fRaFgFgcorr 2

2 −
⋅=         (15) 

 

With the assumption of equal belt force magnitudes at the upper and lower belt edges, 
the deformed belt appears to resemble a rope subjected to constant line load, q, as 
indicated in figure 15. Taking into account the rope equations (16), as derived for 
constant line load q [7], the horizontal belt force at the tyre-blade contact interface can be 
derived as shown in equation 17.  
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Figure 15: Belt load analogy to rope equation. 

 
The left-hand-side of figure 15 shows the rope (dashed line) subjected to a horizontal 
force, H. The rope is shown for half span width (effective length Le). On the right-hand-
side of figure 15, each half of the tyre is subjected to belt forces, Fgcorr. Assuming an 
edge contact, the belt is considered to behave similarly to a simply supported rope, with 

corrFgH = . Rearranging equation 16 and substituting btpq ⋅=  provides an estimation 
of the effective length, Le, for the extreme case of belt-to-rim contact: 
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fcRRmRaRaLcLe
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Equations 16 and 18 are used to calculate the tangent angle of the rope, α , (figure 15), 
hence the tangential rope force Fs acting at the edge-contact is calculated as: 
 

αcos
corrFg

Fs =           (19) 
 

Combining equations 15, 16, 18 and 19, the radial belt force, Fc, for an edge contact can 
be approximated as: 
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The validity of the analytical tyre model was assessed by comparing the predicted 
radial force with experimentally measured forces, as well as forces obtained by Finite 
Element Analysis (FEA). Both physical tests and FEA were conducted for three nominal 
pneumatic pressures (1, 2 and 3 bar) and three deflection levels (20, 40 and 60 mm). A 
comparison between FEA, measured and analytical results is provided in figure 16. 
Despite the simplicity of the modeling approach, the radial forces calculated analytically 
agree well with those predicted by FEA and experiments. 
 

 
Figure 16: Analytical edge contact force response compared to experimental and FEA results. 

 

5 SYSTEM VALIDATION 
A drive over kerb test as described in the introduction was performed with a CD340 

(FORD Galaxy). The test was carried out at two different speeds, namely 25 and 40 kph. 
The vehicle was driven at a free rolling mode over a beam of rectangular cross section of 
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135 mm height. The crossing was performed in a direction perpendicular to the beam 
with the intention of simultaneous impact of both wheels with the bar. The experimental 
test setup is shown in figure 17. 

 
Figure 17: Drive over kerb test set up 

 
The vehicle was equipped with 235/40-R18 tyres operating at a pressure of 2 bar. The 
vehicle was loaded according to the FORD specification standards for passenger cars. 
 
5.1 Validation of the full model 
A comparison between the measured (red line) and simulated (blue line) top mount force 
time-histories is shown in figure 18: 
 

 
 

Figure 18: Top mount force and vertical wheel centre deflection over time for drive over kerb test. 
 
The results show very good agreement in terms of force levels. Discrepancies in the 
actual shape of the experimental and simulation time-histories can be attributed to the 
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simplifications implemented in the model. The simulation allows the individual 
contribution of the spring (blue line), damper (green line) and bumper (red line) to be 
assessed, as illustrated in figure 19. The bumper force appears to be the dominant 
contributor during severe kerb-strike events, as expected.  
 

 
 

Figure 19: Simulation of spring, damper and bumper force component of top mount force during kerb 
strike. 

 

6 CONCLUSION 
A minimal parameter vehicle model has been proposed, specifically tailored to 

simulate vertical suspension loads during the abusive DOK manoeuvre specified by 
FORD. Reasonable correlation with experimental data was demonstrated both at 
component and system levels. Using the proposed simulation tool, parametric studies can 
be carried out at an early design stage, when only a few design parameters are known. 
Alternatively, the model can be used later on in the development phase, in order to 
predict the effect of design stages. In the latter case, calibration of the model based on 
existing vehicle data would be advisable. 

 

ACKNOWLEDGEMENTS 
This research project has been supported by FORD MOTOR COMPANY. This 

support is gratefully acknowledged. 



Appendix B 
 

 265 

REFERENCES  
 
[1]  C. Campbell. Automotive suspensions. Chapman Hall, London, 1981.  

[2]  H. Rahnejat. Multi-body dynamics: Vehicles, Machines and Mechanisms. 
 PEP/SAE Joint Publishers, Bury St Edmunds (UK), Warrendale, PA, USA, 
 1998. 

[3]  W. Matschinsky. Road vehicle suspensions. PEP, Bury St Edmunds, 2000. 

[4]  Thomson, T., Theory of vibrations with applications, fourth edition, Stanley 
 Thornes Ltd,  1993. 
 
[5]   Austrell, P. E., Wirje, A., A viscoelastic bump Stop model for multi-body 
 simulations  based on impact test data, fifth european conference on 
 Constitutive Models for Rubber (ECCMR), France, 2007. 
 
[6]   Timoshenko, S., Strength of materials, part II, advanced problems, second 
 edition,Van  Nostrand Comp., 1962. 
 
[7]  Beer, G., Baustatik 2, Skript zur Vorlesung, Institut für Baustatik TU Graz, S-2-

 03/2004. 

 


	Aim of the Project        4
	2.1 Literature addressing abuse kind vehicle testing and simulation   7
	2.2 General simulation approaches used for structure analysis   13
	Mathematical formulation of an MBS system    14
	System kinematics      15
	System dynamics formulation by equations of motion  17
	Numerical treatment of equations of motion   21
	2.3 Vehicle simulation models       22
	Quarter car suspension model      23
	Plane vertical vehicle models      25
	Spatial vehicle models       25
	Spatial models that include suspension kinematics    26
	Vehicle model parameter set up      29
	2.4 Tyre simulation models       29
	Mathematical tyre models      30
	Tyre patch contact friction properties    31
	Brush model       32
	Pacejka's 'Magic Formula'     36
	Physical tyre models       37
	Rigid ring model      38
	Flexible ring modeled as continuous system   41
	Flexible ring modeled as a discretized truss- or beam model 42
	Flexible tyre modelled as MBS structure    46
	Flexible tyre modelled as FEM structure    48
	Tyre model parameter identification     50
	Summary and conclusions from tyre literature review   53
	2.5 Bushings and Bumpers in chassis applications     56
	Physical properties of polymers at static deformation   56
	Physical properties of polymers under dynamic deformation  59
	Simulation of polymer material      60
	Mathematical models      60
	Rheological models      61
	Data acquisition for polymer components     63
	Jounce bumper elements in suspension applications   64
	Jounce bumper in a Mc Pherson strut concept   64
	Testing of bumper elements      66
	Dynamic features of foam type polyurethane bumpers   67
	Summary and conclusions drawn from bumper literature review  69
	2.6 Literature summary and influence on present thesis    70
	Method of Iteration       150
	Chapter 7: Model Validation
	Assessment to measurements      165
	Chapter 8: Parameter study
	8.1 Conceptual study        186
	8.2 Geometrical parameters       188
	The main vehicle dimensions      188
	Suspension geometry       190
	Tyre geometry        192
	8.3 Kinetic parameters        197
	Discrete vehicle masses and rotational inertia    197
	Suspension -, rim - and body stiffness     199
	Suspension damping       201
	8.4 DoK test parameter        202
	8.5 Parameter assessment       203
	8.6 Closure         206
	Chapter 9: Source Code structure
	9.1 Code Modular Structure       207
	9.4 Closure         215
	Chapter 10: Thesis summary and outlook     216
	10.1 Conclusions and contribution to knowledge     216
	10.2 Achievement of aims       217
	10.3 Critical assessment to approach and suggestions for future work  219
	List of references         222
	Appendix A: Numerical methods used
	A.1 Numerical integration of differential equations    228
	Structure and attributes of coupled equations of motion   228
	General features of ordinary first order differential equations  231
	Numerical integration methods and deviation to analytical solution  232
	Runge-Kutta numerical integration of first order differential equations 235
	Runge-Kutta integration applied to systems of coupled equations of motion 237
	Appropriate step size control      242
	A.2 Numerical interpolation       243
	Third order spline interpolation      243
	Derivation of gradients       245
	Gradient estimation       249
	Appendix B: ECCOMAS Multibody Conference paper  251
	Notation
	F0 – F5 Front suspension geometry parameters       [m]
	Fc  Radial tyre force          [m]
	Figure 1.1: Drive over Kerb (DoK)  and Brake into Pothole (BiP) driving manoeuvre
	Figure 1.2: Brake into Pothole (BiP) driving manoeuvre
	1.3 Aim of the Project
	The thesis intends to cover aspects of vehicle, tyre- and bumper dynamics subjected to harsh vertical driving manoeuvres. This chapter is devoted to review of literature addressing vehicle dynamics, with a focus on large scale vertical suspension trav...
	2.1 Vehicle testing and simulation under abusive manoeuvres
	An abusive driving manoeuvre is intended to investigate a vehicle subjected to loads that are beyond the usual levels expected in the normal operational envelope of a vehicle usage. High/impulsive loads typically occur while traversing extreme obstacl...
	These investigations are in general performed through physical testing and thus are quite cost intensive, as prototype vehicles in most cases are partially destroyed through the testing procedure. Therefore, there is interest in an effective simulatio...
	An early abusive simulation study was performed by Rai and Solomon in 1982 [1]. The authors set up a 3D vehicle simulation model using ADAMS, a standardized commercial multi-body system (MBS) software. The vehicle model incorporated 26 DoF. A simple t...
	Figure 2.1: Kerb side impact, rail track and chuck-hole crossing abusive manoeuvres [1]
	The authors published the various force traces obtained for the ball joint load time history (Figure 2.2) and concluded that a more comprehensive tyre and bumper simulation method would be required for the proper simulation of vertical suspension loads.
	Figure 2.2: Ball joint load simulation results after railroad crossing [1]
	Unfortunately, no scales were provided with their graph plots (Figure 2.2).
	Appropriate tyre models which included features allowing a more detailed coverage of effects induced by kerb strike events were proposed by Bäcker and Gallrein [2] and Gipser [3]. These models enable deformation of a belt, extending to the wheel rim c...
	Haga et al. [4] assessed these models for durability studies in the first instance. They set up a full quarter car front suspension on a rotating drum, shown in Figure 2.3 in order to activate tyre excitation. The drum was equipped with elliptic cleat...
	Figure 1.3: Drum rig set up and 46 mm height cleat geometry [4]
	Data acquisition was performed for speed of 20 and 40 km/h. An assessment of flexible tyre belt models demonstrated close correlation with the measurements of the vertical force as shown in Figure 2.4.
	Figure 2.4: Vertical force assessment for a 48 mm cleat at 20 km/h [4]
	The illustration on the right side of the Figure reveals that even at the maxium vertical force position, the cleat does not cause a belt-to-rim clash condition, which would be expected for an abusive kerb strike event. Thus, Haga et al. [4] extended ...
	Figure 2.5: Principal set up and operation of the Fraunhofer LBF horizontal test rig for large deformations [6]
	Vertical and horizontal forces were recorded for simulation studies involving use of a cleat of 40 mm height, using a 205/45 R 16 sized tyre at 5 km/h as shown in Figure 2.6.
	Figure 2.6: Longitudinal (FX) and vertical force (FZ) after cleat crossing at 5 km/h for tyre size 205/45 R16 [6]
	These sources demonstrate the general force response characteristics of a full range radial tyre deformation, followed by a moderate belt to rim clash. This effect is seen as a relevant feature which needs to be appreciated in any simulation study of...
	An alternative proposal for a full vehicle simulation on basis of an MBS model that includes FEM structures was performed by Yoon and Kye [7] in 2004. The vehicle model was set up as a hybrid approach on the basis of an MBS structure, embedding single...
	Figure 2.7: Lower control arm FEM structure embedded into MBS vehicle model [7]
	The vehicle model was equipped with a flexible tyre model using FTire, provided by Gipser [8] to simulate a severe pothole crossing at 50 km/h and a five inch (12.7 cm) square kerb profile, crossing at a speed of 30 mph. The FTire is addressed in more...
	Figure 2.8: Pothole geometry and vertical wheel force simulation results for pothole- and kerb crossing [7]
	It is noted that the peak load reported for the pothole braking manoeuvre exceeds the level observed for the kerb strike event. The following item addresses general methods used for structural analysis.
	2.2 General simulation approaches used for structure analysis
	Common to all physical-based simulation approaches, aiming to model machines and mechanisms is the problem of defining appropriate structural properties and represent these in a mathematical formalism. Broadly, three main methods for description of st...
	- continuous structure
	- Finite Element (FE) structure and
	- Multi – Body system (MBS) structure
	A vehicle, as any other physical solid structure, by its nature is a continuous system. Mass and stiffness are distributed continuously within the structural geometry. However, analytical formulations which describe a continuum are known for simple st...
	Finite Element structures consist of elastic, straight line edged elements endowed with inertial properties [13]. The elements are linked by nodes and therefore approximate the structural geometry by a polygon contour (grid). The element stiffness and...
	Other than the FEM, the Multi-Body system approach, as applied in this thesis, is based on the concept of sub-dividing a continuum into a set of linked single elements. Structural elastic and inertial properties are addressed separately in the model b...
	1.2.1 Mathematical formulation of an MBS system
	The rigid bodies of an MBS structure are defined by their inertia properties, their position and orientation in space and by the nature of their linkages to other bodies and any attachments to the ground [16]. The mathematical formulation is condensed...
	- inertial forces of the rigid bodies
	- structural internal forces
	- external applied forces
	This force balance leads to a set of second order ordinary differential equations; the equations of motion. In general, each rigid body has six DoF, three translational and three rotational. For each DoF, an equation of motion can be set up. Thus, the...
	1.2.1.1 System kinematics
	All approaches applied to set up the equations of motion initially depend on the kinematic formulation of the velocity and acceleration state. This state needs to be derived upfront (initial conditions) for each rigid body of the system. The system st...
	(2.1)
	An instant derivation of the CoG (centre of gravity) velocities from generalized coordinates can be a difficult task, especially if complex kinematic constraints need to be recognized. Alternatively, the system state is also defined by the three compo...
	Location and position vectors are related by the Jacobian matrices for translation  and rotation  [14], [15], [16]. Matrix describes the relation between the Cartesian position vectors and the generalized coordinates  of the MBS system.
	(2.2)
	This matrix allows the formulation of the translational velocities and accelerations of the CoG positions relative to the inertial system by means of the matrix operations:
	(2.3)
	where:
	and:
	The rotational Jacobian matrix  describes the relationships between the infinitesimal components of the rotation vectors  and the generalized coordinates. These differential components of the rotation vectors  are derived from the total rotation matri...
	by the partial derivation:
	which then establishes the Jacobian matrix of rotations
	(2.4)
	and finally leads to the matrix equation for the angular velocities and accelerations:
	with:
	As mentioned before, the effort required to derive the kinematics of the translational and rotational body motions by means of matrix operations pays back in case of complex systems, as the process can be performed in a fully schematic manner.
	1.2.1.2 System dynamics formulation by equations of motion
	A significant volume of literature exists in dealing with the derivation of the equations of motion e.g. [17], [18], three general concepts are commonly used:
	- Newton – Euler method
	- D' Alembert principle
	- Constrained Lagrangian dynamics
	(a)- The Newton – Euler formulation
	Historically, the Newton – Euler approach marks the origin method. After kinematic formulations are established by the vectors and matrices, the equations of motion are derived separately for each single body with regards to translation (Newton) and r...
	(2.5)
	In the general case discussed here, the vectors contain both, external applied forcesand the internal reaction forces respectively, moments:.
	The (3, 3) matrix  represents the rotational inertial tensor for each of the 'i' rigid bodies, aligned parallel to the inertial system, thus:
	Similar to the schematic approach, applied for the kinematic formulations, the Newton – Euler equations of motion can now be set up in a format of standardized matrix vector operations by using:
	in combination with the Jacobian matrices derived before to express . This leads to:
	(2.6)
	where describes a (6p,f) mass matrix, contains coriolis and centrifugal force vector and describes the vectors of the active external forces and the internal reaction forces . The latter forces, in general, are unknown but can be eliminated by a left ...
	which then appears in its final format as:
	(2.7)
	where the first term summarizes the inertial forces and moments, followed by the gyroscopic and centrifugal components and the generalized forces on the right side of the equation.
	(b)- D' Alembert principle: formulation using the virtual work principle
	For the case that the internal reaction loads , caused by system constraints are not of interest, the derivation of the equations of motion can be simplified by applying D' Alembert's principle of virtual work [19]. By the nature of holonomic constrai...
	Thus, the task reduces to the formulation of the virtual work equations for each system DoF to those of inertial and potential forces only.
	(c)- Lagrangian dynamics
	An even more sophisticated method was developed by Lagrange, who extended the D'Alembert's principle of virtual work to include the system kinetic energy[16]:
	(2.8)
	As shown for Newton – Euler, the translational and rotational velocities can be derived by using Jacobian matrices that in addition are used to derive a generalized force vector as follows:
	The forces and moments contain both, external and reaction loads applied to each as:
	The generalized forces are related to the kinetic energy according to the Lagrange equation
	(2.9)
	After applying partial derivatives with respect to the generalized coordinates and time, the equations of motion appear in its final matrix format as:
	For the special case, where the applied forces can be considered to be conservative (potential forces like gravity or spring forces that cause no deviation of the system's energy state), the generalized force vector can be expressed by the potential e...
	where represents the work applied by external forces and the Lagrange formula exhibits in the format
	(2.10)
	This expression was used for the derivation of the equations of motion for the vehicle model set up in this thesis.
	1.2.1.3 Numerical treatment of equations of motion
	To solve the equations of motion derived for a mechanical system, in general represented as a coupled set of ordinary second order differential equations, a mathematical integration is required. Analytical solutions in the frequency domain are applica...
	2.3 Vehicle simulation models
	In general, the purpose of a vehicle model is to analyse its dynamic response in:
	- longitudinal
	- lateral and
	- vertical
	directions for defined driving manoeuvres. The manoeuvres themselves can be categorized as addressing one of the following items:
	- handling
	- comfort
	- NVH
	The handling describes the vehicle behaviour subjected to lateral and longitudinal tyre patch forces developed in cornering, braking and accelerations. Such events are performed on relatively even roads of long wave low frequency, vertical contour pro...
	In case of rough, short wave road profiles like a cleat, the vertical excitation dominates the aspect of a vehicle comfort ride analysis.
	An NVH analysis is intended to investigate the relevant modal behaviour with regards to the system eigen-frequencies. The emphasis is put on the system response for a variety of the excitation frequencies (frequency sweep). Whereas NVH investigations ...
	- durability and
	- abuse
	Durability driving events are used to generate component load time histories for the purpose of strength and fatigue analysis and provide the database needed to confirm the expected lifetime of the system. These tests should cover the operational load...
	It is a matter of fact that the ideal vehicle model to simulate arbitrary driving manoeuvres does not exist in comprehensive sense. Thus, the model concept in general needs to be adopted for simulation purposes. A model, that combines all the six degr...
	2.3.1 Quarter car suspension model
	The most rudimentary model to study pure vertical body motions is the quarter car suspension model shown in Figure 2.9 [21].
	Figure 2.9: Quarter car suspension model [21]
	The model comprises two lumped masses, the un-sprung wheel m1, including brakes and suspension and the sprung body mass m2, representing a quarter of the vehicle body. The tyre stiffness is given as k1, whilst k2 is an equivalent stiffness to represen...
	By means of Fourier series, the method can be extended to the application of an arbitrary periodic signal, which can be transformed into a set of single harmonic functions. A superposition of the single harmonics reconstructs the original signal. In c...
	Models like this are mainly used to describe ride comfort effects and to detect the relevant frequency bands where amplified excitation of the masses m1 and m2 are observed.
	2.3.2 Plane vertical vehicle models
	The structure concept of a quarter car suspension model can be extended to include also the pitch motion by using a planar model, also known as a bicycle model. Models for different applications are shown in Figure 2.10.
	Figure 2.10: Samples for plane vehicle model architecture [21]
	This concept decouples the front and rear axles, but integrates them into the vehicle body. The approach can easily be extended to allow the application of longitudinal loads by introducing an additional D0F as described in more detail in chapter 2.
	2.3.3 Spatial vehicle models
	To also include roll and yaw rotations, the model needs to be extended to a spatial model as shown in Figure 2.11.
	Figure 2.11: Three dimensional vertical model [21]
	This concept can further be improved in order to enable an analysis of bending and torsion modes by discretisation of the body structure as shown in Figure 2.12.
	Figure 2.12: Three dimensional model and warp body mode for
	discretised body structure [21]
	Although such models can still be analysed by linked transfer functions [21], the modelling in the format of an MBS system, as already described, is seen as the more appropriate approach and, therefore, is preferred by most research workers.
	2.3.4 Spatial models that include suspension kinematics
	One thing that the vehicle models discussed so far have in common is that a detailed modelling of the suspension kinematics is generally neglected. Furthermore, the non- linear character of the suspension force response, typically seen at large wheel ...
	Figure 2.13: The quarter SLA suspension model [14]
	The suspension consists of five parts, two control arms, steering knuckle, spindle and wheel, subjected to a vertical load defined by the quarter of the total vehicle mass of 1600 kg. All suspension parts are considered to possess translational and ro...
	(2.11)
	In this formula, K is the tyre stiffness, C is a (viscous) damping coefficient, dz/dt describes the damper actuation speed, and bumper deformation velocity and stands for the contact deformation of tyre respectively bumper. By choosing the power n to ...
	Figure 2.14: Jounce bumper reaction force and animated sequence of suspension articulation [14]
	This result already demonstrates the necessity of a structural invariant simulation approach by recognizing a bumper model for the prediction of a vertical force level transferred to the body structure. To further improve simulation accuracy, a genera...
	A further example for a fully non-linear model approach that includes bushings and a rigid tyre model was presented by Ammon et al. [28]. The authors propose a modular model architecture where the substructures as the tyre, hydraulic steering, bumpers...
	2.3.5 Vehicle model parameter set up
	To set up a model, its parameters, such as inertial properties, stiffness and damping coefficients need to be established. Two approaches are common practise:
	- Direct parameter measurement performed for single components
	- System response parameter identification
	The first item can be seen as a classical approach [29]. The parameters are established by individual component analysis / measurements. The latter method (system response) requires the existence of a parametric model in advance of the parameter ident...
	It can be observed that the number of parameters required to set up the model in general increases with model complexity.
	2.4 Tyre simulation models
	The tyre is the direct and exclusive interface to the ground and therefore a key element for vehicle dynamics. As discussed for the vehicle model, the purpose of a tyre model is to simulate longitudinal, lateral and vertical dynamics. With the thesis ...
	- mathematical model
	- physical modelling
	The intention addressed with a mathematical model is to establish appropriate shape functions that replicate common characteristics known from recorded force response traces. This approach avoids the need to consider the physical mechanism of action, ...
	2.4.1 Mathematical tyre models
	An example for a mathematical model, intended to calculate the tyre vertical force response caused by a radial penetration against a flat rigid ground, is given by Rahnejat [14]:
	(2.12)
	The two components mark the tyre stiffness and damping terms, where the damping Wdamp is positive for jounce and negative for rebound. The stiffness term Wstiff is represented by the vertical tyre stiffness value K, the radial deflection  and an expon...
	The exponent n typically reveals values around 1.1 for flat tyre patch contact to rigid ground (progressive characteristics) and is found to be less then one (regressive) for edge type contacts. A quasi static force response shape against flat ground ...
	Figure 2.15: Vertical tyre force (stiffness contribution) [14]
	The damping term depends on the radial tyre deformation rate over time.
	Such mathematical model concepts can be categorized as a heuristic approach and can also be derived for the lateral and longitudinal force responses as shown in [31], [32], [33], but in contrast to the vertical force response characteristics, the late...
	2.4.1.1 Tyre patch contact friction properties
	Rubber friction is velocity (rate) dependent and thus can be modelled using viscoelastic elements. A general variation of friction coefficient  with sliding velocity v is shown in Figure 2.16, taken from [21].
	Figure 2.16: Total friction components from adhesion and hysteresis [21]
	The graph shows the total friction coefficient  with the sliding velocity V. The total friction characteristics can be explained as a superposition of two components, adhesion and hysteresis. The adhesion describes the bonding forces on basis of singl...
	The second component takes the roughness of the contact surface into account. An uneven surface contour enforces a molecule chain actuation vertical to the sliding contacting plane. Therefore, flat surfaces cause a smooth increase of the friction resi...
	2.4.1.2 Brush model
	The descriptive brush model developed by Willumeit [21] allows a simple mathematical formulation of the tyre lateral and longitudinal force responses in conjunction with the above mentioned contact friction characteristics. Because the brush model in ...
	Figure 2.17: Brush model [21]
	A kinematic relation for the belt and brush end velocities is determined by the difference of the radii of belt and ground. In case of a driving moment, the belt velocity Vb increases and decreases in braking. Thus, driving and braking slips can be de...
	(2.13)
	It is noted that the condition shown in Figure 2.17 confirm a negative driving slip although the accumulated shear stress is zero.
	Figure 2.18 a, b demonstrate the shear stress distribution for no slip (Vb = Vs) and under slip conditions (Vb > Vs). The model is based on the assumption that the initial shear state  which describes the brush shear condition in transition to ground,...
	Figure 2.18: Brush model for zero- and positive increasing driving slip [21]
	The maximum shear stress is reached for the brushes in transition to the sliding mode (c) when the bending forces exceed the friction limit as indicated by the dashed line. The limit is defined by the level, where is the tyre patch friction coefficien...
	(2.14)
	The integral achieves its maximum value for the sliding condition along the full contact patch length (Figure 2.18 d).
	Similar considerations can be made for a brake slip condition. Figure 2.19 shows the characteristic shape of a longitudinal force in the tyre patch as a function of drive and brake slip for the assumption of a constant friction coefficient.
	Figure 2.19: Longitudinal friction force Fu as function of driving slip for constant friction coefficient [21]
	With this assumption, the aspects discussed for adhesion and hysteresis with regards to their affect on the friction coefficient, have been neglected thus far. The model was therefore extended to a case of variable friction for the sliding brush and b...
	Figure 2.20: Longitudinal friction force Fu as function of driving slip for slip dependent friction [21]
	These aspects are incorporated in the 'Magic Formula' tyre model as described below.
	2.4.1.3 Pacejka's 'Magic Formula'
	Analogous considerations, as applied for the longitudinal force response, can be assigned also to steady state side force and reaction moment behaviour. This leads to similar characteristics for the self-aligning torque and slip angle as shown in Figu...
	Figure 2.21: Steady state tyre characteristics [32]
	Pacejka et al. [32] derived a common mathematical formulation, which commonly fits for all force components, known as 'magic formula'. The equation can be tuned to fit the curves by adjusting four coefficients B, C, D and E, where:
	B = stiffness factor, C = shape factor, D = peak factor and E = curvature factor
	where: Sh = horizontal shift, Sv = vertical shift
	The 'Magic Formula' is:
	(2.15)
	Figure 2.22 illustrates the effect of coefficient variation, in this case the curvature factor E was varied.
	Figure 2.22: Coefficients appearing in tyre magic formula [32]
	The mathematical models, in general, are very effective with regards to calculation time, as they are analytical as opposed to numerical. On the other hand, they allow neither an insight nor interpretation with regard to the structural system behaviou...
	2.4.2 Physical tyre models
	Other than mathematical models, the physical tyre modelling is aimed to describe the force transfer by addressing the inertial and elasticity properties of the tyre structure. This can either be achieved by a direct analytical formulation of the conti...
	2.4.2.1 Rigid ring model
	From a descriptive viewpoint, the assumption of a single rigid ring element represents the most rudimentary approach for a continuous tyre structure (see Figure 2.23).
	Figure 2.23: Schematic representation of the rigid ring model [35]
	The ring has a mass and represents the rotational and lateral inertia of the tyre. In case of a rotation, it also can take gyroscopic reactions into account. As the elasticity properties are neglected in a rigid ring, the tyre structural stiffness and...
	Figure 2.24: CD Tyre Model 20, resp. RmodK20 [34]
	It is obvious that the scan properties of a rigid ring model are limited to smooth ground profiles and cannot easily cope with the demand for a realistic roll over simulation if applied to a short wavelength road contours or obstacles such as a cleat....
	Figure 2.25: Schematic representation of the SWIFT model [35]
	The model consists of two rigid elliptical discs that are assembled in a distance 'ls' related to the tyre patch length. Both discs do not rotate, but can move in vertical direction. Each disc has at least one contact point to the ground, thus can be ...
	Figure 2.26: Tandem-cam enveloping model [35]
	The cam dimensions are established from a best fit assessment of a real tyre roll-over signal versus a best fit cam profile signal gained from the slider mechanism. As the enveloping features of a tyre are related to its pneumatic pressure and the tyr...
	(2.16)
	Despite these applications, the desire for an extension towards a flexible ring structure is obvious for the purpose of road profile excitation simulations, especially if applied to large radial tyre deflections and rim clash conditions.
	1.4.2.2 Flexible ring modelled as a continuous system
	Early physical modelling approaches make use of the classical beam theory, applied to the elastic ring.  An early model for an in-plane thin ring structure of homogeneous isotropic material to analyse its modal behaviour was provided by Timoshenko in ...
	(2.17)
	The remaining unknowns, belt cross-section shear forces Q (radial) and V (lateral), are addressed by two further equations:
	(2.18)
	Torsional and bending stiffness, as well as the bedding compliances were analytically derived on the basis of geometrical data taken from the sidewall and the belt steel inlays. Böhm used the model in a numerical example to analyse the belt deflection...
	The mathematical formulation of equations of motion for an elastic ring structure is given by Soedel in 1981 [37] for a planar structure taking radial and circumferential deformation into account. The equations of motion derived for the radial and tan...
	(2.19)
	Continuous structure models are typically be used for modal analysis to investigate the system natural frequencies or the structural damping. Such an application is provided by Popov et al. [38] where the authors use a flexible continuous ring tyre mo...
	2.4.2.3 Flexible ring modelled as a discretized truss or a beam model
	An alternative to modelling the belt as a continuous structure is the discretization approach, where the belt structure is subdivided into single elements linked by revolute joints. The elements can either be assumed rigid (truss type) or elastic in b...
	1) Truss models neglect the belt bending stiffness
	2) Beam models include the belt bending stiffness
	Tsotras and Mavros [39] used the analytical equations (2.19) derived for the continuous ring structure as a baseline to benchmark both the truss and the beam concepts. The study confirmed that the beam model achieves almost perfect agreement with the ...
	A commercial model for an in-plane flexible ring is the CDTire model 30 proposed by Gallrein et al, [2]. As shown in Figure 2.27, a discretized chain-like structure of single mass points, radially supported by Kelvin-Voigt elements attached to the rim...
	Figure 2.27: CDTire Model 30, resp. RmodK30, an in-plane flexible ring model [34]
	This model can cope with large in-plane deformations as expected in a cleat type obstacle crossing and was used by Haga [5] to investigate the vertical and longitudinal tyre force responses in a traversing over an elliptic cleat. For the belt-to-rim c...
	The effect of these elements on the rim clash force response simulation is demonstrated by Baecker and Gallrein [6] as shown in Figure 2.28. These features are considered to be essential for a realistic kerb strike simulation. The model addresses this...
	(2.20)
	Both components are functions of the radial deflection 'r', Figure 1.28 illustrates the force response with (right) and without rim contact stiffness formulation.
	Figure 2.28: Force response in rim clash condition with and without rim
	contact formulation [6]
	Although the flexible ring model exemplarily represented by the CDTire model 30 is suitable for radial, longitudinal and lateral loads, the concept of a single ring remains limited to 2D load profiles and obstacle contours that do not vary along the t...
	Figure 2.29: 3D tyre model combining a set of flexible ring structures [34]
	In its latest version [40], the belt to rim contact formulation used in model 40 was extended with a flexible rim model to further improve the contact simulation. A comparison for flexible- (red) and rigid rim found for harsh cleat crossing simulation...
	Figure 2.30: Rim flexibility impact on contact force during cleat crossing [40]
	2.4.2.4 Flexible tyre modelled as MBS structure
	The tyre models discussed up to now can be interpreted as extensions of the Magic Formula, a mathematical description of the tyre typical stationary force transfer characteristics, embedded in a ring type structure analysis. In its subsequent developm...
	Figure 2.31: FTire belt stiffnes components, a) in-plane bending, b) out-of-plane bending, c) belt torsion against rim (red) and twist in between blocks (blue) and d) lateral bending [3]
	Instead of a brush model, a number of 5 to 40 contact elements are used to simulate the frictional properties in the contact tyre patch. The elements are aligned parallel in the longitudinal direction attached to each block element as shown in Figure ...
	Figure 2.32: Contact elements attached to belt blocks [3]
	The contact elements are free of inertia and linked by Maxwell elements to the belt blocks and its neighbouring elements. The deflection of the contact elements depends on the road profile as well as the position state of the block elements relative t...
	Solutions are provided by a numerical integration of the equations of motion in the time domain. Conventional solvers, in general, tend to have problems in solving small inertias attached to stiff springs, as used in the belt representing linked block...
	This tyre model concept allows the modelling of the force response and distribution of a tyre patch in contact to arbitrary 3D ground surface contours and even extreme, abusive type kerb strike manoeuvres as shown in Figure 2.33 (right).
	Figure 2.33: Tyre patch force distribution in contact to rough ground (left) and abuse type kerb strike simulation [3]
	2.4.2.5 Flexible tyre modelled as FEM structure
	The largest discretization level in general is achieved by the application of the finite element method FEM to model a tyre structure. A visual example is shown in Figure 2.34.
	Figure 2.34: ABAQUS FE tyre model example taken from [41]
	A principle advantage of the FEM structure is the fact that only the geometry and the orientation of individual tyre components like steel and textile cord belt plies in conjunction with its material properties are required to set up the entire tyre m...
	Figure 2.35: 2D substructure of a FEM tyre model [42]
	FEM tyre models represent a very detailed level of the tyre structural components and, therefore, they can effectively be used for detailed static analysis as e.g. footprint pressure distributions [42] shown in Figure 2.36.
	Figure 2.36: Footprint stress distribution analysis [42]
	As the FEM method defines both stiffness and inertia for each element, modal effects such as the system relevant eigenmodes can easily be analysed as well as for a complex structure.
	Figure 2.37: Six eigen-modes for a free finite element tyre [41]
	The FEM tyre model concept has the drawback of a high level of detail with the demand for significant computational power, equivalent to the discretization level, when used to analyze driving events in the time domain. As such studies are performed ma...
	2.4.3 Tyre model parameter identification
	What all models discussed so far have in common is that a proper parameter determination would be essential for the simulation quality. Other than FEM models, which depend on the comprehensive knowledge of material and geometry data only, the paramete...
	Figure 2.38: Tyre drum test rig [43]
	For the RmodK, the CDTire model, its structure eigen-frequencies are also needed. In case of MBS models such as FTire, the element inertias and the properties of the linking elements need to be determined. As an example, a CDTire model 40 data set can...
	Figure 2.39: Automated parameter identification in a feedback loop testing on drum [2]
	To avoid the effort of setting up unique data sets for each single pneumatic pressure level, the SWIFT model was applied to a concept that allows an extrapolation of the parameter data set gained for a single pneumatic pressure. In this manner, a rang...
	2.4.4 Summary and conclusions from tyre literature review
	The tyre models discussed in this review represent pure mathematical and also physical approaches summarized in Table 2.1.
	Table 2.1: Tyre models overview
	The models cover a wide range of complexity commencing from empirical models, such as the Magic Formula, which can be expressed by a few coefficients only, up to a detailed FEM modelling approach. The model choice depends on the application task and a...
	Figure 2.40: Model complexity over frequency range and simulation purpose based on the CDTire model family [34]
	For the simulation of for example a kerb strike manoeuvre, as intended in this thesis, the diagram reveals a high end demand for the model detail level, even within a low frequency range in between 1 to 10 Hz. The model detail level must be defined by...
	Figure 2.41: Model detail level and number of parameters for the CDTire family [34]
	To analyze the peak wheel spindle force for an abusive kind single kerb strike event, the inertia of the tyre structure is considered to have a negligible impact on the peak load level, because the tyre structure mass is hardly affected by the kerb de...
	Figure 2.42: Components of vertical tyre force for deflection against flat rigid ground [21]
	It can be seen that the main contributor to the vertical load magnitude is the pneumatic pressure resistance against flat deformation of the tyre patch, component (IV), followed by the force increase caused by the pneumatic stiffening effect on the si...
	In this thesis, a quasi-static tyre model is proposed to simulate the in-plane radial force transfer for a flat and an edge-type deformation is proposed. The model is defined by only a few geometrical parameters taken from the tyre cross-section in co...
	2.5 Bushings and Bumpers in chassis applications
	A vehicle these days is unthinkable without bushing and bumper elements. Polymers are used as base material in such components, intended to reduce noise and vibrations, tune the ride and handling dynamics, attenuate harsh impacts and to limit wheel tr...
	The literature survey related to this subject commences with general physical properties of rubber-like materials concerning their static and dynamical behaviour. It continues with known concepts for modelling this behaviour and then proceeds with cur...
	2.5.1 Physical properties of polymers at static deformation
	The operational deformation range of steel components in general is limited to a narrow linear elastic range and rarely exceeds a strain level of 1%, whereas polymer elements allow strains up to several hundred percent [44], [45] without residual stra...
	The reason for these differences compared with metals can be explained by physical effects aligned with the polymer material structure. Metals, as most other solid materials, are of crystalline structure. Each element (molecule) is located at a certai...
	Figure 2.43: Energy elasticity of crystalline material [44]
	In contrast to the solids, polymers consist of long chain molecules that are distributed with irregular orientation. The chains are not fixed in position, but free to move relative to each other. After the polymerization process, the individual chains...
	Figure 2.44: Polyethylene chain molecule in schematic form (left) and irregular polymer material structure (right) [45]
	The chain orientation can be characterized as fully irregular in case all chain directions are represented equally, thus there is no overall direction. This state of minimal order or, in other words, maximum disorder is defined by the maximum level of...
	Figure 2.45: Maximum entropy level for relaxed polymer material (a) and reduced entropy in stretched condition (b) [45]
	A typical trace for a force- elongation diagram is shown in Figure 2.46 (left). It was taken from a polymer material under uniaxial loading and reveals an elastic, but highly non-linear response characteristics. Furthermore, two other typical features...
	Figure 2.46: Non linear force response (left) [45] and Mullins effect (right) [46]
	It further can be seen that the initial compression trace, indicated by the fine line, deviates from the compression traces gained from repetition loops towards the same deformation level. The repetition cycles show reduced hysteresis compared with th...
	Both effects, hysteresis and Mullins, occur already at quasi-static deformation levels and can be explained by the polymer material structure. Hysteresis can be understood as internal friction between the chain molecules during deformation, whereas th...
	A further parameter that has an impact on the elasticity is the temperature. In case of elastic energy, rising temperature leads to reduced elasticity, as the molecules oscillate relative to the grid position of maximum potential energy. The energy le...
	1.5.2 Physical properties of polymers under dynamic deformation
	As discussed for the static case, sliding motion of chain molecules relative to each other can be considered also for dynamic deformation of polymer materials. In contrary to the static case, where the resistance against deformation can be characteriz...
	Figure 2.47: Material elasticity module over frequency and temperature developed from the original [44]
	The glassy state can be imagined as a kind of frozen- (temperature related) or blocked (frequency) condition which then matches with the properties of elastic energy These effects are also known as temperature,  frequency-hardening.
	Frequency and temperature levels required to cause final transition into a glassy state, are in general not met by the upper operational range limits achieved in chassis applications. However, because of the wide transition range from rubber- to glass...
	2.5.3 Simulation of polymer material
	Simulation approaches which address the dynamic response characteristics of polymers, can be categorized into three main concepts [47], mathematical [46], [48], phenomenological [49], [50], [51] and physical models, that rebuild the structure geometry...
	1.5.3.1 Mathematical models
	Mostly the first two approaches are of common practise. A simple mathematical model to simulate the force response of a jounce bumper is already discussed in section 2.4.4 and can be found in [14].
	This approach depends on the measured force response data to derive coefficients for stiffness K and damping constant C. Other authors use polynomials to derive element-typical force response shape functions [48], [49].
	As mentioned before, mathematical models are favoured for their superior numerical efficiency, but often do not embody the exact hysteresis features.
	1.5.3.2 Rheological models
	A more pertinent method (phenomenological) can be achieved through use of a rheological model. The concept is based on a combination of spring- and damper elements that are assembled to a system. The rheology specifies two fundamental element types, K...
	Figure 2.48: Kelvin-Voigt group (a) and Maxwell group (b) [19]
	Both groups are effectively equivalent and can either simulate a solid material or a viscous fluid, depending on the parameter set up. For the parameters, both configurations represent a solid material, whereas a viscous fluid is defined as. Equipped ...
	It can be shown that the force response of the Maxwell group shown in Figure 2.49 can be adjusted to replicate the features of an entropy elasticity element. The model can be used to properly simulate the transition from rubber behaviour to the glassy...
	Figure 2.49: System model for viscous elastic material properties (left) and elasticity over excitation frequency and amplitude (right) [44]
	An example of a more complex model, tailored to address the force response simulation derived for a hydro-bushing, is presented by Svensson and Hakansson [52] in Figure 2.50.
	Figure 2.50: Rheological model concept (left) used for the simulation of a hydro bushing (right) [51]
	The authors propose a concept for an automated parameter fit in conjunction with the physical testing process. General methods for polymer physical testing and data acquisition are outlined below.
	2.5.4 Data acquisition for polymer components
	Data acquisition is primarily carried out for a frequency band width of up to several kHz [52], [53]. In general, the specimen is subjected to a force actuation, where the force and displacement are measured over a frequency sweep. Two main concepts o...
	Figure 2.51: Polymer test rig concepts to test polymer elements [52], [53]
	Using the rig concept a), harmonic force actuation can be performed up to a few hundred Hz. Deformation 'y' and its phase angle to the actuation force are the signals used to establish the dynamic stiffness. The dynamic stiffness is defined by the rel...
	If an extended frequency band is investigated, the rig concept b) is of advantage, where the large mass1 is used as a quasi-static load, linked with mass2 via springs. Mass2 and the springs are adjusted to a low resonance frequency with regards to mas...
	Both concepts have in common the specimen displacement as a consequence of the excitation force amplitude and frequency. Thus, it cannot be adjusted directly, apart from very low frequencies that match with a quasi-static load case.
	2.5.5 Jounce bumper elements in suspension applications
	A fundamental aspect of severe abusive kind vertical driving events is the jounce bumper force transfer in case of impulsive kind actuation. The jounce bumper limits the maximum vertical wheel travel in upward (jounce) direction, whereas the rebound s...
	2.5.5.1 Jounce bumper in a Mc Pherson strut concept
	As an example from a wide range of different suspension architectures, a McPherson type front strut, most commonly used in conventional passenger car applications, is shown in Figure 2.52. The bumper is attached to the body top mount and becomes engag...
	Figure 2.52: Jounce bumper assembly in a Mc Pherson front strut
	The consequence of a small gear ratio and the aspect discussed above go along with the need for a large bumper compression length, if a mild progression to jounce is desired. The illustration provided in Figure 2.53 reveals the need for large material...
	Figure 2.53: Space available for bumper volume in full jounce position
	Solid polymer materials are in general almost incompressible with a Poisson's ratio approximately 0.5 [45]. An exception is the foam type polymer materials [54], which most common representative is polyurethane. During the polymerization, polyurethane...
	Figure 2.54: Compressibility and material structure of polyurethane [54]
	Foam type bumpers made of polyurethane are a common standard in automotive industry, because of its cost effectiveness and superior material properties as
	- compressible and highly flexible
	- easy adjustable stiffness
	- high dynamical durability
	- low creep
	- low cost and weight
	2.5.6 Testing of bumper elements
	The test rigs described so far are mainly used to generate frequency sweeps intended to investigate the dynamic stiffness and damping properties of polymer materials. In general, these tests are performed for small amplitudes that enable an actuation ...
	Figure 2.55: Bumper drop test rig [56]
	The test specification can easily be defined by the potential energy and impulse derived from mass and height.
	2.5.7 Dynamic features of foam type polyurethane bumpers
	Based on drop test results, Austrell and Wirje [56] investigated the difference in static- and dynamic behaviour of polyurethane bumpers. The authors could demonstrate that such bumpers show significant deviation in force transfer to static force resp...
	Figure 2.56: First bounce impact data at 96, 189 and 286 J (solid lines), and comparison to corresponding quasi-static loading (dash dotted lines) [56]
	The authors developed a rheological bumper model based on a Maxwell element intended to simulate the dynamic bumper load curve and to address their typical hysteresis properties. Model validation was performed by comparison with physical drop tests as...
	Figure 2.57: Simulation results (dotted line) compared to drop test results (solid) [56]
	Because of the bumper construction, large displacement and high end force capacity is required for a harmonic actuation. Conventional hydraulic equipment is often terminated to fulfil both requirements simultaneously because the maximum oil volume flo...
	2.5.8 Summary and conclusions drawn from bumper literature review
	In comparison to metal properties, polymer materials are difficult to describe with regards to their physical effects and stress-strain behaviour. Beside pure mathematical models, also rheological models have been discussed, where the latter are seen ...
	All methods discussed require an element specific data acquisition, mainly gained by means of physical testing. Jounce bumpers, in particular foam-type bumpers, possess a large compression length needed for a smooth engagement. Their dynamic force res...
	Figure 2.58: Concept of bumper test rig kinematics and physical test set up [57, 58]
	The rig recordings are casted into a standardized format of a 3D force response map, tailored to be used as a mathematical model.
	2.6 Literature summary and influence on present thesis
	The study shows that several kind of vehicle models exist for the purpose to predict wheel centre and component loads with good accuracy derived from abuse kind manoeuvres. This statement can be extended to be valid also for existing tyre- and bumper ...
	1) The concept of Multi Body System (MBS) is confirmed to be the state of the art method applied to set up the mathematical formulation of vehicle simulation models. MBS is preferred to the Finite Element Method (FEM), because of superior numerical ef...
	2) The effort for a model parameterization in general rises with the model complexity level. This awareness explains the advantages of minimal parameter models, if these are tailored to the application of special boundary conditions.
	3) A detailed tyre model, that includes the features of a belt to rim clash condition, is required for an abuse kind kerb-strike simulation.
	4)  A detailed model for the bumper, which limits the vertical wheel travel, addressing the non linearity and dynamic force response features of such components, is obligatory for a decent force prediction.
	5) A structure-variant vehicle model architecture is required to cope with the boundary conditions raised in the foregoing items 3 and 4.
	A common nature of these models is their high grade of complexity with regards to the number of parameters needed and, in some cases, its complex data acquisition methods, especially in conjunction with tyre- and bumper simulation.
	Figure 2.59: Bicycle model concept to simulate DoK and BiP manoeuvre
	The literature sources, presented in this study, confirm the impulse-kind nature of kerb strike events [6], [7], [14], [40]. Both manoeuvres, BiP and DoK, lead to full-scale jounce bumper and tyre deformation and in general to a belt to rim clash in c...
	Figure 6.21: Tyre cross-section showing the sidewall tangent angle
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	Figure 6.32: Belt deflection traces against edge type radial deformation
	Figure 6.33: Flat and edge type tyre patch contact
	Figure 6.34: Numerical results for simple model flat and edge contact force response
	Figure 6.36: Edge force response assessment for simple- and chain model
	Chapter 7: Model Validation
	7.0 Introduction
	The numerical results are verified by experimental measurements. The measurements were obtained at both component level, as well as system level (full vehicle test drive over kerb). All the test work was initiated and guided by the author in conjuncti...
	7.1 Static tyre Test
	Force response trace records were obtained under quasi-static conditions, as the tyre simulation model concept does not include any structural inertial effects. The radial deformation was performed for a flat and edge-type geometries (plate and blade ...
	Figure 7.1: Plate and blade geometry force response test set up
	Tests were conducted for three nominal pneumatic pressure levels; 1, 2 and 3 bars. Nominal pressure was applied as initial condition at circular belt contour in the absence of any external load. The pressure level was monitored during the entire defor...
	7.1.1 Assessment to measurements
	The measured force response traces, shown in Figure 7.3 were obtained from the plate deformation (flat ground). They reveal the typical progressive shape in contrast to the regressive characteristics seen against the blade penetration (edge-type conta...
	The pneumatic pressure level is related to the tyre volume deviation ratio. It depends on the gas volume ratio of the unloaded tyre (circular belt contour) and the volume in the deformed state. It is obvious that this ratio is linked to the tyre cross...
	Figure 7.3: Measured edge- and flat contact force response compared with
	simple model results
	The recordings are compared with the simple model approach (Figure 7.3) and to the chain model, virtual work approach (Figure 7.4).
	Figure 7.4: Measured edge contact force response compared with chain model results
	7.1.2 Conclusion
	Although the simple analytical model, proposed in section 6.2, is intended to cover the pneumatic force component only, the comparison with the experimental data which also includes the structural force deformation component still shows good correlati...
	7.2 Dynamic Bumper Test
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	8.2.3 Tyre geometry
	As described in chapter 6, besides the pneumatic pressure, tyre geometry has also an influence on the belt circumferential force and thus determines the tyre radial reaction force characteristics. In this study, the belt width bt, the belt and rim rad...
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	A common feature seen for all the variations is the advanced timing of the wheel maximum force with respect to the top mount peak load. The maximum wheel force level and impulse contribution occurs for the rim under the kerb clash condition in all the...
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	As shown by equation (6.14), the radial belt contact force against an edge tyre penetration decreases for small sidewall slack hang fc. The tyre behaves less stiff against radial deformation. Thus, a rim clash to kerb occurs advanced and harsh in case...
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	Figure 8.10: An overview of kinetic model parameters
	8.3.1 Discrete vehicle masses and rotational inertia
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	A rise in the wheel unsprung mass increases both the top mount and wheel force levels. The increase in force is evenly balanced for the top mount and the wheel, whereas a variation of the sprung mass m3 reveals concentrated effect on the top mount. In...
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	8.3.3 Suspension damping
	The model is set up with viscous type damping elements. A variation of damping parameter is performed for the longitudinal and vertical damping coefficients D1x and D1z. Results are shown in Figure 8.14.
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	Appendix A: Numerical methods used
	A.0 Introduction
	A.1.1 Structure and attributes of coupled equations of motion
	The differential equations discussed in this thesis are functions of time. Thus, they are of the general form: , where . Multi-body dynamics applications, such as the vehicle model discussed in chapter 2, are limited to second order equations: and con...
	(A.1)
	The matrices M, D and C were derived in chapter 4, in which the vectors, andrepresent the system motion and deformation state (i.e. the state vectors), FE stands for the external force vector. Matrix sizes conform to the systems number of degrees of f...
	The equation of motion for a single degree of freedom system can be rearranged to the highest order derivative as shown in (A.2), representing a function of, and  in the format of a so-called initial value problem.
	(A.2)
	In terms of physics, it means, that for an instant time  and a discrete set of initial values for  and , a discrete solution for the instantaneous accelerationcan be determined. A two step subsequent integration of equation (A.2) leads to the system t...
	(A.3)
	This format can also be derived starting from a vector equation (A.1), as follows:
	In case of a system with two degrees of freedom, the outlined format would be:
	(A.4)
	The matrix format can be expanded to twice the number of equations, transformed to first order forms. To do so, coupled vectors combining, are transformed to  on both sides of the equation. For simplicity reasons, the mass matrix shall be considered t...
	(A.5)
	A matrix - vector multiplication and rearranging of proves the equivalence of equations (A.4) and (A.5). For the substitutions:
	(A.6)
	equation (A.4) can finally be transformed into first order, also known in the state variable format as:
	A more general format of (A.5) is expressed as:
	(A.7)
	The first order state variable format is the standard condition to apply the Runge-Kutta integration used in this thesis. Before the operational sequence of the integration method is described, a visual insight into the nature of the first order diffe...
	A.1.2 General features of ordinary first order differential equations
	In contrast to a 'conventional' function, a first order differential equation depends on two parameters  and . In visual sense, the equation can be interpreted as the gradient at a given point on a map defined by coordinatesand. For a given equation, ...
	Figure A.1:  Gradient map and discrete solutions for the first order
	differential equation
	It is obvious, that discrete solutions depend on the initial value set [12] (for instance, the initial values deliver the discrete solution indicated by the bold dashed straight line, whereas the solutions for  reveal curved traces in this case). For ...
	A.1.3 Numerical integration method and deviation order to analytical solution
	As mentioned in the introduction (A.0), a numerical integration can be interpreted as a summation of the area enclosed between the abscissa and the graph of a function. On the other hand, the derivative quantifies the slope of the graph at an instant ...
	Figure A.2: Graphical illustration of Euler – Cauchy numerical integration and quadrature error
	The right hand side figure shows the function to be integrated with respect to . Circles indicate the accurate analytical solutions, bold points show approximated values. As the solution depends on the initial values, also known as initial conditions,...
	It is noted that the approximation does not precisely with the exact analytical value, thus, the bold illustration. The deviation, known as quadrature error, is caused by neglecting the shaded area on top of rectangle. The error necessarily increases...
	This changes in case of a differential equation, where the derivative is now a function in y- direction too, as illustrated in the gradient map in Figure A1.1. The quadrature error will then be superimposed by a deviation of the tangent gradients in a...
	Figure A.3: Graphical illustration of numerical gradient error
	The gradient error by its nature is a specific feature of the individual differential equation and can hardly be avoided [22], whereas the quadrature error depends on the numerical method used to approximate the integral increment for the next time st...
	A formal integration of the series delivers the most accurate solution possible to tune the integral towards the analytical result for .
	To minimize the quadrature error, the approximation method used to calculate the integral incrementmust match as many higher order terms of the Taylor series as possible. For example, the increment of one of the simplest approximation methods, the Eul...
	This matches the first term in only, higher orders are neglected (shaded areas in Figure A.2). The error of the quadrature method is of magnitude, named order. It can be shown that the error will further reduce if trapezoids are used instead of rectan...
	This approach matches with Taylor Series terms up to , deviations are of order. Following this logic, improved numerical integration concepts are intended to include as many orders as possible with reasonable amount of approximation effort. The Runge-...
	A.1.4 Runge-Kutta numerical integration of first order differential equations
	The Runge-Kutta integration process belongs to the group of single step methods, meaning that only one set of initial values, is required to start the integration process. Multi-step methods depend on several initial values defined also within the sur...
	The integration starts at a given initial values,. Four Runge-Kutta steps, indicated by roman numbers I to IV, are defined to approximate the integral increment after a step of size. In a first operation, the gradient is calculated at, followed by a f...
	I.
	Related to this gradient, a half sized step is performed towards. A preliminary integral increment at this point is approximated by to be used in step II:
	II.
	A repetition of the half step is performed at, but using an improved integral increment tuned by  to be:
	III.
	A fourth, full step is performed by using the improved approximations derived from preceding half steps,  and .
	IV.
	All the four integral decrements  represent preliminary results only. An average value  is derived to cover as many Taylor Series terms as possible:
	Finally, a new set of initial conditions  can be used to initiate the subsequent approximation of similar type. The Runge-Kutta steps are summarized in the table shown in table A.1 [22].
	Table A.1: Runge-Kutta numerical calculation steps [22]
	A.1.5 Runge-Kutta integration applied to system of coupled equations of motion
	The explanations so far have been for a single first order differential equation. Equations of motion in general are of second order and usually coupled, corresponding to a number of system degrees of freedom. Equation (A.4), represented in state vari...
	The two second order differential equations of motion in matrix format
	(A.4)
	were transferred to four first order equations into state variable format by using the substitutions (A.6).
	A replacement according to (A.6) delivers the vectors  and  of the system trajectories.
	In an alternative approach, the equations of motion can be integrated directly in the given format of second order (A.1 and A.2 for a single degree of freedom). Thus, a substitution and transformation into state variable form can be avoided [17]. The ...
	(A.4)
	The mass matrix again is assumed to be diagonal in order to simplify the example. The matrix- vector products can be written in the format of two coupled single equations G1 and G2 as:
	(A.10)
	G1 and G2 are of identical structure as E3, E4 derived from equation (A.8), but in the format of second order this time. Table A.3 [17] illustrates the subsequence of the Runge-Kutta steps.
	In contrast to the foregone process, where the integral increments (expressed by  to ) are calculated in the first operation set (1.1 to 1.4), the alternative approach just delivers the values for the highest order derivatives (accelerations in case o...
	Table A.3: Runge-Kutta table for second order equations of motion
	For the case of multiple degrees of freedom, it is reasonable to organise the numerical treatment through matrix- vector multiplications. Matrix equation (A.4) can be used directly to perform the operation steps 1.1, 1.2 in a single operation, deliver...
	A.1.6 Appropriate step size control
	It is noted in section A.1.3, that both quadrature and gradient errors are related to the step size used for the numerical operations. The Runge-Kutta integration offers a simple method to adjust and control the step size based on a proposal raised by...
	The recommendation is as follows: If the ratio exceeds the value ½, the step size should be reduced. In case the ratio falls below a limit of ¼, the step size can be increased. As the ratio can easily be monitored during the calculation, an effective ...
	It is noted that the equation systems derived for a multi-body structure can cause convergence problems during the numerical integration in conjunction with step size control operators. Especially this is the case, when the system consists of large in...
	A.2 Numerical interpolation
	In chapter 5, a map concept is introduced to simulate the dynamic force transfer. The map database, comprising a set of measured force response traces, is condensed to the format of a three dimensional array, containing spline coefficients, applicable...
	The general idea of an interpolation is to generate a mathematical function that is determined by a few discrete points only. This function should precisely match the discrete points and should reasonably approximate the course of the function in betw...
	From the various interpolation methods based on polynomials, such as Lagrangian, Newtonian etc, some methods (depending on the current problem) can result in an 'oscillatory' trend. The effect of an oscillation is an over or underestimation of values ...
	A.2.1 Third order spline interpolation
	The process of a third order spline interpolation is explained here in Figure A.4: The graph of a function defined by  given points  to , named splines, may be approximated by an interpolation within each of the N intervals. These intervals do not nec...
	Figure A.4: Cubical Spline interpolation
	The functions used to approximate the trace in each single interval may be defined by unique third order polynomials of a local variable  as follows:
	(A.11)
	Based on these functions, the derivatives become:
	(A.12)
	(A.13)
	Combining (A.11) and (A.12), applied to the first interval, conditional equations for the first set of spline coefficients , ,  and  can be established as:
	(A.14)
	Solving the four equations (A.14) delivers the relations for the coefficients to fit the first interval I:
	(A.15)
	Analogous relations are found for the remaining intervals as:
	(A.16)
	A.2.2 Derivation of gradients
	It is noted that the magnitudes of the derivatives  are generally unknown. To fulfil the requirement of a smooth trace transition in between two neighboured intervals, the polynomials should match in magnitude, gradient and curvature in each spline. F...
	(A.17)
	By using solutions (A.15) and (A.16), the curvature in the spline, that connects first and second intervals becomes:
	and described in terms of and , the first equations related to first and second interval can then be set up as:
	(A.18)
	In full analogy, further equations for the next interval transitions, two to three, three to four and so on, can be written as:
	This leads to a linear system of equation (A.19) of  equations for  unknowns :
	Table A.4: Linear equation system (A.19)
	Further equations, needed to solve the equation system, can be set up by several definitions of boundary conditions, applied at the end points. Three options are  common practise [23]:
	1) Specified gradients: .
	2) Curvature fade outs: , also known as natural spline.
	3) Periodic splines: .
	The first two options are used in this thesis and derived here in more detail.
	1) Gradient
	Option 1 may simply be realised by adding the specified values  to the right hand side of the equation system (A.19). Thus, the number of unknowns now matches with the umber of equations, and the system can be solved.
	Table A.5: Linear equation system for specified gradient
	2) Curvature
	Option 2 in conjunction with (A.13) and (A.15) leads to further conditional equations, which can be added to extend the equation set to  equations as:
	Derived from (A.15), the coefficients are defined as:
	Filled in and described in terms of , the two equations required to solve the system (A.19) are found to be:
	Table A.6: Linear equation system for zero curvature at curve ends
	The approximation results found can be interpreted as an elastic deflection line of a simply supported beam in bending mode, attached to the splines , representing the simply supported end condition. In case of option 2, the beam ends fade out straigh...
	A.2.3 Gradient estimation
	In the case of a large number of splines, the solution of the linear equation system to derive the gradients  can be tedious. An alternative to the 'exact' derivation is to approximate the gradients. In a first step, the given splines are used to form...
	Figure A.5: Polygon trace defined by splines
	Gradients for the intervals  can easily be derived as:
	To approximate the gradients at the splines , averages of the neighboured intervals are used:
	Two remaining approximations are needed at the curve ends in  and . It is noted that this approach is feasible in conjunction with option 1 (gradient) only, as the remaining unknown gradients  and  are specified by the user. It is difficult (if not im...
	However, the gradient estimation is effectively applicable to approximate a large number of splines taken from curves that do not show extreme volatility.
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