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Abstract

In the present thesis we construct a new class of holonomy algebras in pseudo-Riemannian

geometry. Starting from a smooth connected manifold M, we consider its (1, 1)-tensor

fields acting on the tangent spaces. We then prove that there exists a class of pseudo-

Riemannian metrics g on M such that the (1, 1)-tensor fields are g-self adjoint and their

centralisers in the Lie algebra so(g) are holonomy algebras for the Levi-Civita connection

of g. Our construction is elaborated with the aid of Manakov operators and holds for any

signature of the metric g.



Preface

A typical situation in modern mathematics is the following. A given problem can

sometimes be better understood and eventually resolved using techniques and tools origi-

nating from an area of mathematics that at first glance is quite remote from the area the

problem originated in. Thus, it will not be a surprise if this thesis goes precisely in such

a direction. Broadly speaking, we can pictorially represent the content of this work with

the following simple diagram

Holonomy

Integrable 

Systems

Projectively 

Equivalent 

Metrics

The three blocks represent the areas of mathematics to be touched on, while the arrows

indicate the “passages” and/or “relations” between them. What we find exciting about

this diagram is that while Holonomy and Projectively Equivalent Metrics are inherently

present in the realm of Differential Geometry, the theory of Integrable Systems stands as a

separate area in mathematics. Incredibly, it is the latter which proves to be of paramount

importance for our investigations. It must be emphasised, however, that by no means

do we attempt to exhaust any of these three rather vast areas. In this thesis, we shall



only discuss a few remarkable relationships between them and show how they yield the

solution to a particular problem.

Without further ado, let us briefly comment on the structure of the text. This thesis

is, first and foremost, aimed at a broad mathematical audience. On the one hand, it is

indeed our utter belief that our approach would catch the eye of an expert and hopefully

would be of good use for further research. On the other hand, our desire to write an

intelligible account of mathematics does not come secondary. The author has done his

very best to find the balance, which would make this text both enjoyable and useful for

readers of various backgrounds. The result of this effort is the following.

In Chapter 1 we give a description of the holonomy problem and state the main

results to be proven. This chapter is concise and straight to the point. It will be the

reader’s discretion thereafter how to proceed further. Some readers might wish to skip

certain sections, or even chapters, and head straight to the proofs of the genuine results,

others would probably need to learn more about the objects involved. Bearing this in

mind, as well as our intent to present as self-contained a text as possible, we gently

start with the minimal prerequisites. These are briefly discussed in Chapter 2. It is the

opinion of the author that this chapter completes the exposition and we also hope that

it could be the straw that even a final year undergraduate could clutch at. In Chapter

3 we advance further the discussion on the actual background. Most of it concerns the

three aforementioned mathematical areas, which allows us to break this chapter into a few

virtually independent sections. Thus, the reader could only read the section(s) of interest.

Nevertheless, we recommend some attention is paid to the opening and closing sections

of this chapter. While in the former we define the leading character in our story, in the

latter we discuss two important relationships between some of these three mathematical

areas, which de facto motivates our approach. The content of the remaining chapters

mostly constitute the original part of this dissertation. However, in two sections we



inevitably include some known material. It is deliberately excluded from the background

chapter as being exclusively relevant to those two specific parts in the text. We mean in

particular the reduction to nilpotent g-symmetric operators and the covariantly constant

linear operators discussed in Sections 4.3 and 5.1, respectively. In the remaining sections

of both Chapters 4 and 5 we elaborate the proofs of the main results of our work. We

conclude the text by appending a few concrete examples which illustrate the main theorem

of Chapter 4. They are represented in such a way that a beautiful pattern is immediately

recognisable.

Last, but by no means least, the fluency of the text remains a primary concern of ours.

For this reason we have decided to write a brief summary to each chapter. We do hope

that this will enhance the reader’s navigation throughout the thesis.
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“Truth is ever to be bound in the simplicity, and

not in the multiplicity and confusion of things”

Sir Isaac Newton



Chapter 1

Introduction

The goal of this chapter is twofold. Firstly, the holonomy problem is discussed to the

extent that an introductory chapter allows. In an attempt to familiarise the reader with

the true character of this problem, the author embarks on describing some of its key

features. However, by no means could this effort result in anything other than a sketchy

survey on this matter. Secondly, and more importantly, the main theorems of the present

thesis are stated. Thus, it is at this juncture for the reader to decide whether or not to

skip the following Preliminaries and Background chapters.

1.1 The holonomy problem

The notion of holonomy has been pervading the realm of differential geometry for almost

ninety years now and has had far reaching implications in both mathematics and physics.

Beyond a shadow of a doubt, it is already a classical concept in differential geometry.

Therefore, it is our first duty to bring into prominence the foremost results on holonomy

as well as some of the recent achievements in the field. It should be noticed that, albeit our

demand for a self-contained text, in the present section it will only be possible to outline

the general framework and briefly trace the history of holonomy. Essentially, we shall

only take a panoramic peek at the latter and shall not dwell on any precise definitions.
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Some ideas will be discussed in detail later in Section 3.2 where we provide the necessary

working knowledge on holonomy for the purposes of our work. It also deserves to be

noticed, that we shall only refer to the key papers on holonomy and therefore cannot

claim any bibliographical completeness. The reader may take care to consult the books

[Ber2], [Bes], [Joy4] and [Sal] for detailed treatments and comprehensive bibliography.

To begin with, let us say a few words about the etymology of holonomy. It is of Greek

origin and stems from the words óλoζ (pronounced ‘olos’ and meaning whole) and νóµoζ

(pronounced ‘nomos’ and meaning law). Curiously, the term holonomic first appeared

in 1894 in a posthumously published work of the German physicist Heinrich Hertz [Her].

His work was on classical mechanics and he spoke about holonomic constraints of a given

mechanical system.

It was not until much later when the term holonomy was used by Élie Cartan in the

context of differential geometry. In his works [Car1,Car2,Car3,Car4] dating back to the

1920s he pioneered the study of holonomy. Cartan considered a Riemannian manifold M

with Levi-Civita connection ∇ such that Hol(∇) ⊂ O(n). He was particularly interested

in symmetric spaces which are characterised by the invariance of the curvature tensor R.

Algebraically, this simply means that the action of the holonomy group on R is trivial.

He then proved in [Car4] that for a given symmetric space the holonomy and isotropy

group coincide up to connected components which enabled him to classify the irreducible

symmetric spaces in the Riemannian case.

It was in the 1950s, however, when other people got interested in holonomy and most

of the seminal results were obtained. In the early 1950s the first major contributions

appeared in the works of Borel and Lichnerowicz [BL] and Ambrose and Singer [AS].

The upshot of the latter paper was the famous Ambrose-Singer Holonomy Theorem. This

striking result asserts that the Lie algebra of the holonomy group is generated by the

curvature of the connection. We shall come back to this theorem in Section 3.2. In 1952,
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de Rham [deRha] proved his famous splitting theorem for Riemannian manifolds, which

was later generalised by H. Wu for arbitrary pseudo-Riemannian manifolds [Wu]. In

order to state and understand this result we need the following brief discussion. Consider

the product manifold M1 ×M2 of M1 and M2. Then at each point (p1, p2) we have the

isomorphism T(p1,p2)M
∼= Tp1M1 ⊕ Tp2M2. Let g1 and g2 be Riemannian metrics on M1

and M2, respectively. Due to the aforementioned isomorphism it is natural to define the

product metric by means of the metric on Tp1M1⊕Tp2M2. Indeed, we define the product

metric g1 × g2 on M1 ×M2 by

g1 × g2(ξ1 ⊕ η1, ξ2 ⊕ η2) = g1(ξ1, ξ2) + g2(η1, η2)

for all ξ1, ξ2 ∈ Tp1M1 and η1, η2 ∈ Tp2M2. We thus equip the product manifold M1 ×M2

with a metric, naturally call it a Riemannian product and write (M1×M2, g1× g2). Now,

a Riemannian manifold (M, g) is said to be reducible if it is isometric to a Riemannian

product (M1 ×M2, g1 × g2). Further, (M, g) is called locally reducible if every point has a

reducible open neighbourhood. Finally, we shall call (M, g) irreducible if it is not locally

reducible. Then, the holonomy group of the product metric g1×g2 is given by the following

proposition.

Proposition 1.1.1 Let (M1, g1) and (M2, g2) be Riemannian manifolds. Then the product

metric g1 × g2 has holonomy group Hol(g1 × g2) = Hol(g1)× Hol(g2).

This proposition is not difficult to proof and naturally motivates the following definition.

We call the holonomy group Holp(M) decomposable if there is a Holp(M) - invariant

decomposition of the tangent space

TpM = V1 ⊕ · · · ⊕ Vr

3



with r > 2 and Vj 6= 0 for all j. If there is no such a decomposition we call Holp(M)

indecomposable. Since the holonomy groups are conjugate we immediately observe that

(in-)decomposability of the holonomy group is independent of the choice of the point

p ∈ M. We can now state the de Rham-Wu splitting theorem.

Theorem 1.1.2 (de Rham-Wu Splitting Theorem) Let (M, g) be a (pseudo)- Rie-

mannian manifold, and suppose that the holonomy group of its Levi-Civita connection is

decomposable. Then locally, (M, g) is isometric to a product metric (Rk1 , g1)×· · ·×(Rkr , gr)

with kj = dimVj, and Hol0p(M) = H1 × · · · × Hr with Hj ⊂ O(Vj, gj). Moreover, if M

is simply connected and ∇ is geodesically complete, then there is a splitting (M, g) =

(M1, g1)× · · · × (Mr, gr), where the holonomy of (Mj, gj) is Hj.

The holonomy group of a Riemannian manifold (M, g) is always contained in the orthog-

onal group O(n) and is therefore compact. Since in this case the indecomposibility is

equivalent to irreducibility of the group, the de Rham theorem along with prior works of

Cartan necessitated the classification of all irreducible non-symmetric subgroups of O(n)

which are holonomy groups for the manifold (M, g). It was Marcel Berger’s pioneering

work [Ber1] which not only gave the first classification theorem, but also and more im-

portantly kindled an active quest on this matter. He proved the following theorem, now

known as the Berger’s list.

Theorem 1.1.3 (Berger) Let (M, g) be an irreducible simply-connected Riemannian

manifold of dimension n which is not locally a symmetric space. Then exactly one of

the following cases holds.

(i) Hol(g)=SO(n),

(ii) n = 2m with m > 2, and Hol(g) = U(m) ⊂ SO(2m),

(iii) n = 2m with m > 2, and Hol(g) = SU(m) ⊂ SO(2m),

(iv) n = 4m with m > 2, and Hol(g) = Sp(m) ⊂ SO(4m),
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(v) n = 4m with m > 2, and Hol(g) = Sp(m)Sp(1) ⊂ SO(4m),

(vi) n = 7 and Hol(g) = G2 ⊂ SO(7), or

(vii) n = 8 and Hol(g) = Spin(7) ⊂ SO(8).

Note that this theorem only classified the possible holonomy groups for an irreducible

simply-connected Riemannian manifold. It was shown later by others that the groups in

the Berger list do occur as holonomy groups. However, this result was a key accomplish-

ment because, above all else, its proof brought about a necessary criterion for a Lie group

to be a holonomy group for a given Riemannian manifold. This criterion is a consequence

of the Ambrose-Singer holonomy theorem and is presently known as the Berger criterion.

It can be formulated as the following proposition.

Proposition 1.1.4 (Berger) Let H ⊂ GL(V) be a Lie subgroup which occurs as the

holonomy group of a torsion free affine connection on some manifold M. Then H must

be a Berger group1. If the connection is not locally symmetric, then H must be a non-

symmetric Berger group.

In 1956, Hano and Ozeki [HO] showed that any (closed) Lie subgroup H ⊂ Aut(V ) can

be realised as the holonomy group of an affine connection (with torsion in general) on

some manifold M and therefore no classification was possible. However, it was the torsion

freeness condition that imposed the non-trivial flavour of the problem and sparkled the

so called Holonomy problem.

The Holonomy problem: Consider a finite dimensional vector space V . Then, what

are the irreducible (closed) Lie subgroups H ⊂ Aut(V ) that can occur as the holonomy

group of a torsion free affine connection?

1In this thesis we shall work with Berger algebras which are properly defined in Chapter 3 (see
Definition 3.2.7).
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Traditionally, this problem is split into two sub-problems. Using Berger’s criterion, one

first attempts to establish which subgroups H ⊂ Aut(V ) are Berger groups. Albeit some-

what laborious, this algebraic part of the problem is usually not difficult. Next, it needs

to be checked which Berger group can occur as a holonomy group. It is this part of the

holonomy problem which is nontrivial. In this thesis we shall follow this approach and

we shall deal with a class of Berger algebras in Chapter 4, whereas in Chapter 5 we shall

prove that they do occur as holonomy algebras.

Some of the major achievements in the field in the past twenty five years are the

following. The holonomy groups G2 and Spin(7) are called exceptional holonomies as

they only occur in dimensions 7 and 8, respectively. Robert Bryant proved locally the

existence of metrics with exceptional holonomies [Bry1]. An example of complete metrics

with exceptional holonomy [BS] followed shortly afterwards. The compact examples of

exceptional holonomy were given by Dominic Joyce [Joy1, Joy2, Joy3]. The irreducible

holonomy algebras of torsion free connections which are not necessarily compatible with

a metric were classified by S. Merkulov and L. Schwachhöfer [MS, Sch]. In [Ber1], Berger

also classified all connected irreducible Berger groups which are subgroups of SO(p, q).

In other words, he gave a list with the candidates for the holonomy group of a pseudo-

Riemannian manifold with metric of signature (p, q). The omission and errata in his list

were corrected by Bryant [Bry2]. However, this only solved the first part of the holonomy

problem as it remained to be shown that all the candidates do occur as holonomy groups.

To the author’s best knowledge, only the classification of holonomy algebras of Lorenztian

manifolds has been settled. For major achievements in the Lorentzian case the reader is

referred to the following papers [BI1, Bou, Gal2, Gal3, GL, Ike1]. A recent work by

Thomas Leistner [Lei] is widely considered as the culmination of the classification of

Lorentzian holonomy groups. While there are a number of results in the non-Lorentzian

case, the classification of holonomy algebras of pseudo-Riemannian metrics of arbitrary
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signature (p, q) is not yet achieved. A striking recent result is the classification of Kählerian

holonomies of complex signature (1, n) (or of real signature (2, 2n)) by Anton Galaev

[Gal4]. Further results on signature (2, n) may be found in [Gal1, Ike2] and on the

signature (n, n) in [BI2]. The reader may also wish to consult the survey on the recent

advances in the theory of holonomy by Bryant [Bry3]. We finish this section by stating a

theorem which encompasses the current knowledge of the known classification results for

holonomy algebras in the pseudo-Riemannian case.

Theorem 1.1.5 (Berger et al., Leistner) Let g ⊂ so(V, h)be an irreducible Berger al-

gebra where (V, h) is a pseudo-Euclidean vector space. If g 6= so(V, h) then g is the

holonomy representation of an irreducible pseudo-Riemannian symmetric space or given

by the following list

u(r, s), su(r, s) ⊂ so(2r, 2s),

sp(1)⊕ sp(r, s), sp(r, s) ⊂ so(4r, 4s),

so(r,C) ⊂ so(r, r),

sp(r,R)⊕ sl(2,R) ⊂ so(2r, 2r),

sp(r,C)⊕ sl(2,C) ⊂ so(4r, 4r),

g2 ⊂ so(7),

gC2 ⊂ so(7,C) ⊂ so(7, 7),

g22 ⊂ so(4, 3),

spin(7) ⊂ so(8),

spin(7,C) ⊂ so(8,C) ⊂ so(8, 8),

spin(4, 3) ⊂ so(4, 4).
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1.2 The main results of the thesis

In this brief section we only proclaim the main results of our work. The original ideas in

this thesis stem from a joint work with Alexey Bolsinov which has been submitted to the

Journal of Differential Geometry as the preprint [BT]. The present document constitutes

an extended version of the latter preprint and culminates in the proof of the following

theorem.

Theorem A Let M be a smooth manifold, p ∈ M be a point and g0 be a symmetric

non-degenerate bilinear form on TpM and L0 : TpM −→ TpM be a g0-symmetric oper-

ator. Then, in a local neighbourhood U of p, there exist a pseudo-Riemannian metric g

and a (1, 1)-tensor field L such that

1)g |TpM= g0,

2)L |TpM= L0,

3)L is g-symmetric,

4) The centraliser gL of L in the Lie algebra so(g) is a holonomy algebra for the Levi-

Civita connection of the metric g.

Thus, the outcome of our work is an example of a new class of holonomy algebras in

pseudo-Riemannian geometry. As the proof of this result is constructive, we end up with

explicit pseudo-Riemannian metrics which do realise the Lie algebra gL as their holonomy

algebra. We must strictly emphasise at this point that Theorem A is of a local character.

Nonetheless, from the perspective of the metric signature it is a result of very general

nature as it holds true in any signature of the metric g. The proof of this theorem is given

in Chapter 5. Before settling Theorem A, however, we prove the following result.
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Theorem B Let (V, g) be a pseudo-Euclidean vector space and L : V −→ V be a g-

symmetric operator with centraliser gL in so(g). Then gL is a Berger algebra.

In contrast to the former result, Theorem B is of purely algebraic nature. It must be

noticed that it is not merely an example of a new class of Berger algebras. As a matter of

fact, its proof is of interest in the first place as it promotes techniques from the theory of

integrable systems on semisimple Lie algebras. It should also be noted that some of these

techniques are readily employed in the proof of Theorem A. Thus, it is this approach we

consider the novelty in our work. The proof of Theorem B is elaborated in Chapter 4.
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Chapter 2

Preliminaries

The purpose of this chapter is to mention the prerequisites for this thesis and to briefly

recapitulate the classical notions such as affine connection, parallel transport, curvature,

torsion and pseudo-Riemannian metric. We make no apology for writing it, since all these

are fundamental concepts for this thesis and worth mentioning. More importantly, it is

the author’s belief that the following few pages make the text easily accessible for readers

of different mathematical backgrounds.

2.1 The prerequisites

Despite our demand for writing as self-contained a text as possible, the prerequisites are

inevitable. Thus, in the lines to follow we shall mention, but not properly define, the

minimum prerequisites for this thesis. Apart from the notions to follow, everything else

will be properly defined in due course.

• Manifold. In this thesis, the letter M (with the exception of Section 3.3) will denote

a smooth manifold of dimension n. A local neighbourhood of M will traditionally

be denoted U . The local coordinates in U will be denoted ui for 1 6 i 6 n. TpM is

the tangent space of M at the point p. The tangent bundle is TM = ∪p∈MTpM. We

exclusively reserve ξ, η and ζ for the tangent vector fields on M. We shall sometimes
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think of them as sections of TM and shall write ξ, η, ζ ∈ Γ (TM). Finally, the dual

space of TpM is the cotangent space of M at p, denoted T∗pM. Then the cotangent

bundle of M is denoted T∗M = ∪p∈MT∗pM and its sections are the differential 1-forms

on M.

• Tensor fields. Let V be an n-dimensional vector space with dual V ∗. Then the

tensors of (r, s)-type are the (r, s)-linear functions

V ∗ × · · · × V ∗︸ ︷︷ ︸
r terms

× V × · · · × V︸ ︷︷ ︸
s terms

−→ R.

Equivalently, they may be thought of as the elements of the tensor product

V r
s = V ⊗ · · · ⊗ V︸ ︷︷ ︸

r terms

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s terms

.

If {ei}ni=1 and {ek}nk=1 are the dual bases for V and V ∗ respectively, then an (r, s)-

type tensor A is uniquely expressed as

A = Ai1...irk1...ks
ei1 ⊗ · · · ⊗ eir ⊗ ek1 ⊗ · · · ⊗ eks .

• Bi-vectors. In this thesis we shall be constantly using the notion of a bi-vector.

Recall that this is the anti-symmetric tensor of rank 2 denoted X = X ijui ∧ uj,

where the ∧ is the usual wedge product. We shall write Λ2V for the vector space

of bi-vectors. Let e1, ...., en be the standard basis of V . Then the standard basis of

Λ2V is the set of bi-vectors {ei ∧ ej | 1 6 i < j 6 n} and dim Λ2V =
(
n
2

)
. We shall

sometimes also make an use of 2-forms denoted X = Xiju
i ∧ uj.

• Lie algebras. We shall use the standard notation for Lie groups and Lie algebras.

Thus, so(n) denotes the Lie algebra of skew-symmetric matrices and [·, ·] its Lie
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bracket. For a given element X ∈ so(n) we define the adjoint action of X on so(n)

as the map adX : so(n) −→ so(n) with adX(Y ) = [X, Y ] for all Y ∈ so(n). Now, by

means of the adjoint action we define the Killing form for the Lie algebra so(n) by

B(X, Y ) = Tr (adXadY ). Recall that the latter is a symmetric bilinear form defining

an inner product on the Lie algebra. Amongst its other properties, the Killing form

is adjoint-invariant in the sense that

B
(

[X, Y ], Z
)

= −B
(
Y, [X,Z]

)
.

We shall make a particular use of this property in the Background chapter.

2.2 Affine connections, parallel transport and curva-

ture

In this section we briefly recall the notions of affine connection, parallel transport and

curvature and state their most important properties. By virtue of the first two we shall

define, in Section 3.2, the notion of a holonomy algebra which is a central concept for this

thesis. The notion of curvature, will pervade this thesis due to its intimate relationship

with holonomy. In this, as well as in the subsequent section, we shall neither dwell on

the details nor the proofs. For a more detailed treatment the reader may refer to the text

books [CCL], [DNF] or [Cha].

Affine connections. To be able to develop differential calculus of all orders on a man-

ifold M, one needs to know how to compare its tangent spaces at different points. This

comparison is possible in the following sense. We define an affine connection on the

tangent bundle of M as the map

∇ : Γ (TM) −→ Γ (T∗M⊗ TM),
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such that for all ξ, η1, η2 ∈ Γ (TM) and α ∈ C∞(M) it satisfies

∇(η1 + η2) = ∇(η1) +∇(η2),

∇(αξ) = dα⊗ ξ + α∇ξ.

It is immediately seen that ∇ maps a zero tangent vector to a zero section and that

∇(−ξ) = −∇ξ. Thus, ∇ is a linear operator from Γ (TM) to Γ (T∗M⊗TM). Further, we

wish to be able to differentiate the elements of Γ (TM). For this purpose, we generalise

the classical notion of a directional derivative in the following way. For a fixed vector field

ξ ∈ Γ (TM) and an arbitrary vector field η ∈ Γ (TM), by means of the standard pairing

between TM and T∗M, we define

∇ξη = 〈ξ,∇η〉. (2.2.1)

Clearly, ∇ξη ∈ Γ (TM). We call it the covariant derivative of the tangent vector η along

the tangent vector field ξ. Now, it is not difficult to derive the following properties of the

covariant derivative. For all ξ, η ∈ Γ (TM), ζ, ζ1, ζ2 ∈ Γ (TM) and f, h ∈ C∞(M) we have

∇(fξ+hη)ζ = f∇ξζ + h∇ηζ,

∇ξ(ζ1 + ζ2) = ∇ξζ1 +∇ξζ2,

∇ξ(fζ) = (ξf)ζ + f∇ξζ.

An affine connection is locally characterised through its values on the basis ∂
∂ui

on TpM,

that is

∇ ∂

∂ui

∂

∂uj
= Γ k

ij

∂

∂uk
.
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Note that we have adopted the Einstein summation convention, which will be much ex-

ploited throughout the text. The smooth functions Γ k
ij are called the components of the

connection ∇.

Parallel transport. Parallel transport is a very important concept in differential ge-

ometry. Above all else, it provides an isomorphism between the tangent spaces of M in

the following manner. A tangent vector field η ∈ Γ (TM) is called parallel if ∇η = 01.

Consider further a parametrised curve γ : [0, 1] −→ M with γ(0) = p and γ(1) = q on M.

Let ξ be a tangent vector field along γ. Then the tangent vector η is called parallel along

γ if ∇ξη = 0. In a local coordinate neighbourhood U of M we have that γ : ui = ui(t),

η = λα ∂
∂uα

and ξ = dui

dt
∂
∂ui

for 1 6 i, α 6 m. Then, the fact that η is parallel along the

curve γ is tantamount to

〈ξ,∇η〉 =

(
dλα

dt
+ Γα

βi

dui

dt
λβ

)
∂

∂uα
= 0,

which implies

dλα

dt
+ Γα

βi

dui

dt
λβ = 0, 1 6 α 6 q.

Now, this is a system of ordinary differential equations and therefore possesses a unique

solution for any given initial data. Therefore, any vector v ∈ TpM given at the point p on

the curve γ determines uniquely a vector field parallel along γ. It is called the parallel

transport of v along γ. In Section 3.2 we shall turn our attention back to parallel transport

in order to define the notion of holonomy.

Curvature. The notion of curvature is intimately related to the one of connection. For

any ξ, η ∈ Γ (TM) we define R(ξ, η) : Γ (TM) −→ Γ (TM) such that

R(ξ, η) = ∇ξ∇η −∇η∇ξ −∇[ξ,η]. (2.2.2)

1Notice that while the zero section is trivially parallel, a parallel non-zero section may not exist in
general.
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It is readily seen that the properties of the covariant derivative imply that R(ξ, η) is linear,

that is

R(ξ, η)
(
fζ1 + hζ2

)
= fR(ξ, η)ζ1 + hR(ξ, η)ζ2

for any tangent vector fields ξ, η, ζ1, ζ2 and any two smooth functions f and h. It is called

the curvature operator of the connection ∇. The following properties are also easily

derived. For any ξ, η, ζ ∈ Γ (TM) and f ∈ C∞(M)

R(ξ, η) = −R(η, ξ),

R(fξ, η) = f ·R(ξ, η).

We shall say a bit more about curvature in the next section.

2.3 A hint of pseudo-Riemannian geometry

We have already mentioned that the general context of this thesis is pseudo-Riemannian.

This necessitates a brief discussion on the basics of pseudo-Riemannian geometry. Let g be

a smooth, everywhere non-degenerate symmetric (0, 2)-type tensor on a smooth manifold

M. Then M is called a pseudo-Riemannian manifold with metric tensor g and is denoted

(M, g). Recall that if we require g be positive definite, then M is called a Riemannian

manifold with metric tensor g. At this juncture it must be noted that not all theorems

in Riemannian geometry have analogues in the pseudo-Riemannian context. However,

the formulae to be discussed below are valid in both cases. Details and proofs may be

found in [CCL] and/or [Cha]. Henceforth (M, g) is to be assumed a pseudo-Riemannian

manifold.

To comprehend the true character of the metric tensor, recall that as a (0, 2)-type

tensor on M it can be locally written in the form g = gijdu
i ⊗ duj for some gij ∈ C∞(U).

Then it is readily seen that at every point p on M, the metric tensor can in fact be thought
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of as the bilinear function g : TpM×TpM −→ R defined by g(ξ, η) = gij(p)ξ
iηj for any two

vectors ξ, η ∈ TpM. We know from the general theory of bilinear forms that a necessary

and sufficient condition for g to be non-degenerate at the point p is that det
(
gij(p)

)
6= 0.

Thus, the non-degeneracy of the metric tensor naturally yields the existence of its inverse

g−1, which is a symmetric (2, 0)-type tensor. In coordinates, we simply write gij and

immediately gikgkj = δij holds true. Thus, the metric tensor and its inverse enable us to

lower and raise tensorial indices. More concretely, for an arbitrary tensor Aj1...jsi1...ir
these

two operations are respectively given by

glkA
kj2...js
i1....ir

= Aj2...jsi1......irl
and glkAj1...jsi1....ir−1k

= Alj1...jsi1......ir−1
.

From these it is not difficult to observe that at each point p on M the metric tensor induces

the canonical isomorphism Tr,s
p M ∼= T r+1,s−1

p M. In particular, we have TpM ∼= T∗pM and

therefore by means of g we can identify vectors with covectors. This fact will prove to be

useful for our subsequent considerations.

At this juncture it is worth reminding the reader the notion of a signature. Let p,

q and r be the number of positive, negative and zero eigenvalues of the metric tensor

respectively. Clearly, p + q + r = dimM. For q = r = 0 the metric is called positive

definite, or Reimannian. If r > 0 the metric is called degenerate and therefore is not of

interest in this thesis. If both p and q are not zero then the metric signature is called

indefinite or pseudo-Riemannian. The signature is traditionally denoted (p, q), while

some authors prefer the more explicit (+,+, · · · ,+,−, · · · ,−). An interesting particular

example of pseudo-Riemannian metrics are the Lorentzian metrics which have signature

(1, q), or equivalently (p, 1).

It has already been mentioned in the introductory chapter, that torsion-freeness makes

the holonomy problem non-trivial. We therefore need to recollect the notion of a torsion.
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It is a straightforward verification that the connection components Γ j
ik do not transform

as a tensor. Nevertheless, the difference T jik = Γ j
ki − Γ

j
ik does transform as a (1, 2)-type

tensor and we can write T = T jik
∂
∂uj
⊗ dui ⊗ duk. We obviously have that T jik = −T jki.

Now, this (1, 2)-type tensor is called the torsion of the connection ∇. Another way of

thinking of T , and at times a better one, is as the map

T : Γ (TM)× Γ (TM) −→ Γ (TM)

defined by

T (ξ, η) = ∇ξη −∇ηξ − [ξ, η],

for any ξ, η ∈ Γ (TM). An affine connection is said to be torsion free whenever its torsion

tensor is zero. Often torsion-free connections are called symmetric connections due to the

obvious identity Γ j
ki = Γ j

ik provided that the torsion tensor is zero.

We are now in a position to recall that the fundamental theorem of (pseudo)-Riemannian

geometry asserts that on any (pseudo)-Riemannian manifold (M, g) there exists a unique

torsion free connection ∇ which is metric compatible. The metric compatibility con-

dition geometrically means that parallel transports with respect to the aforementioned

connection preserve the metric. This “preferred” connection on the (pseudo)-Riemannian

manifold is named after Levi-Civita. Henceforth, ∇ will always be assumed to be a

Levi-Civita connection. The components Γ k
ij of the Levi-Civita connection are called the

Christoffel symbols and are nicely given by means of the metric as

Γ k
ij =

1

2
gkl

(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
. (2.3.1)

We shall make good use of this formula later in Chapter 5. Similarly, the curvature R of
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the Levi-Civita connection ∇ is locally written as

R

(
∂

∂ui
,
∂

∂uj

)
∂

∂uk
= Rl

ijk

∂

∂ul
, (2.3.2)

where the components Rl
ijk are given by

Rl
ijk =

∂Γ l
ik

∂uj
−
∂Γ l

jk

∂ui
+ Γm

ik Γ
l
jm − Γm

jkΓ
l
im. (2.3.3)

Traditionally, the curvature tensorR of the Levi-Civita connection on a pseudo-Riemannian

manifold (M, g), is called the Riemann curvature tensor of (M, g). Sometimes it is conve-

nient to work with the purely covariant version of the Riemann curvature tensor, which

is

Rabcd = gaαR
α
bcd.

We then have the following foremost properties of Rabcd.

The skew symmetry : Rabcd = −Rbacd = −Rabdc,

The interchange symmetry : Rabcd = Rcdab,

The first Bianchi identity : Rabcd +Racdb +Radbc = 0.

We are closing this chapter with the following brief recollection. The geodesics of

an affine connection are defined as the smooth curves whose tangent vectors are parallel

along them. Recall that a smooth curve parametrised by the functions xλ(t) is a geodesic

if and only if the following system of second order differential equations is satisfied

d2uλ(t)

dt2
+ Γ λ

µν

duµ(t)

dt

duν(t)

dt
= 0.
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Chapter 3

The background

The ultimate goal of this chapter is to provide a solid ground, without which this thesis

could hardly claim to be self-contained. Fortunately, the first four sections are virtually

independent and those already known to the reader can be readily skipped. In the first

section we emphasise the practical advantages of pseudo-Euclidean linear algebra for our

approach. In particular, we discuss the technicalities to be thoroughly exploited in due

course. The principle object of interest, the Lie algebra gL, is also introduced. Thus,

the reader is strongly recommended to at least glance through this section. We then

focus our attention on holonomy and discuss, amongst other things, the Berger algebras

and the Berger criterion. These latter two are of seminal importance for this thesis. We

next set our sights at the theory of integrable systems on semi-simple Lie algebras. More

concretely, we swiftly arrive at the notion of a Manakov operator, which proves to be of

foremost importance for our investigations. Incredibly, it is this notion which crucially

determines the course of our quest. Finally, after a brief introduction to projectively

equivalent metrics given in Section 3.4, we conclude the chapter with a blend of holon-

omy, integrability and projectively equivalent metrics. This last section constitutes the

principal motivation for this work.
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3.1 Pseudo-Euclidean linear algebra

To begin with, let us consider a pseudo-Riemannian manifold (M, g) and a linear operator

L : TpM −→ TpM. Recall that we define its g-adjoint L∗ via g(Lξ, η) = g(ξ, L∗η).

Further, we say that L is a g-symmetric (also g-self adjoint) operator whenever the

identity g(Lξ, η) = g(ξ, Lη) holds true for all ξ, η ∈ TpM. For the sake of brevity, we

shall often just write L∗ = L. For computational convenience, however, L>g = gL

will sometimes be preferable. In such a case L and g would stand for the matrices of

the linear operator and the metric tensor respectively. Similarly, we define the g-skew

symmetry property, which in this case reads g(Xξ, η) = −g(ξ,Xη), or X∗ = −X, or in

matrix notation X>g = −gX.

At this point, two remarks deserve to be stressed. Firstly, the aforementioned defini-

tions remain valid in the more general context, i.e., for any vector space V endowed with

a nondegenerate bilinear form g : V ×V −→ V and a given linear operator L : V −→ V 1.

This, de facto justifies the algebraic flavour of this section. Secondly, we use the same

notation for linear operators and their matrices as well as for bilinear forms and their

matrices. However, this ambiguity is harmless due to the following result.

Proposition 3.1.1 Let L : V → V be a g-symmetric operator. Then there exists a basis

in V such that L and g simultaneously reduce to the following block diagonal matrix forms

L =



L1

L2

. . .

Lk


and g =



g1

g2
. . .

gk


(3.1.2)

1Throughout this thesis we shall use both V and TpM and shall bounce between the two assuming the
relevant context. It should be evident for the reader that the latter will be used in a geometric context,
whereas the former in the more general algebraic one.
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where

Li =



λ 1

λ 1

. . .
. . .

λ 1

λ


and gi = ±



1

1

. .
.

1

1


are square matrices of size ni × ni2.

Clearly reminiscent of the Jordan normal form theorem, this result will play an important

role in our work. The reader may care to refer to [LR] and [Tho] for proofs as well as

more general treatment on this matter. Henceforth, the special basis from Proposition

3.1.1 will be referred to as the “canonical basis”, and for computational simplicity we

shall assume that the gis have +1 on their anti-diagonals.

Speaking about a pseudo-Riemannian metric, we fairly naturally think of and some-

what stay attached to its signature (p, q). However, it will prove very useful to our

approach if we “forget” about the signature. By “forget” we mean the following. Firstly,

since the metric can be thought of as a quadratic form, for our purposes it will suffice to

consider the metric as a matrix. Secondly, we recall the following well-known fact from

Linear algebra.

Proposition 3.1.3 Let B(x, x) = bijxixj be a symmetric quadratic form on n-dimensional

vector space V . Then there exists a basis in V such that B takes the form

y21 + · · ·+ y2p − y2p+1 − · · · − y2q ,

where p+ q 6 n. The equality holds true if and only if det(bij) 6= 0.

2Without loss of generality we shall always assume 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. The particular case 1× 1
matrices Li = 0 and gi = ±1 will be perfectly acceptable.
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To exemplify the usefulness of this fact, let us consider the following example. Suppose

we are given a metric tensor with matrix

g1 =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0


.

Write, for the sake of brevity, g1 = antidiag{1, 1, 1, 1, 1}. This matrix clearly corresponds

to the quadratic form Q = 2x1x5 + 2x2x4 + x23. We now use the coordinate change

x1 =
1√
2

(y1+y5); x5 =
1√
2

(y1−y5); x3 = y3; x4 =
1√
2

(y2+y4) and x2 =
1√
2

(y2−y4)

to see that with respect to the new basis we read off Q′ = y21−y25 +y23 +y22−y24. Evidently,

we are dealing with metric of a signature (3, 2). We now invite the reader to verify that

for n = 4, the metric tensor g2 = antidiag{1, 1, 1, 1} is of signature (2, 2). Now, it is not

difficult to perceive the truth of the following fact.

Proposition 3.1.4 Let (V, g) be an n-dimensional pseudo-Euclidean vector space with

metric tensor g = antidiag{1, 1, ..., 1}. Then the signature of g is given by

(p, q) =


(
n
2
, n
2

)
if n is even,(

n+1
2
, n−1

2

)
if n is odd.

(3.1.5)

One can easily generalise the present situation as follows. Consider two pseudo-Euclidean

vector spaces (V1, g1) and (V2, g2). Suppose that g1 is of signature (p1, q1) and that g2 is of

signature (p2, q2). Then we can construct the bigger pseudo-Euclidean space V = V1⊕ V2
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with metric tensor

g =

g1 0

0 g2

 ,

which will be of signature (p1 +p2, q1 + q2). Thus, by “forgetting” the metric signature we

simply mean that we shall only consider particular matrix representations for the metric

tensor g.

We define the special orthogonal algebra associated to the nondegenerate bilinear form

g as the set

so(g) = {X ∈ gl(V ) | X∗ = −X}.

In other words, this is the set of all g-skew symmetric endomorphisms of V . This algebra,

and especially its elements, will be much exploited within this thesis. For this reason, we

shall need some working knowledge of this object. By straightforward computations we

summarise it in the following proposition.

Proposition 3.1.6 The matrix representation of so(g) with respect to the canonical basis

(Proposition 3.1.1) is given by the block matrix

X =



X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 · · · · · · Xkk


with entries satisfying Xji = −gjX>ij gi.

Evidently, the relation Xji = −gjX>ij gi readily implies that the diagonal blocks of X

are skew-symmetric matrices with respect to their anti-diagonal. As for the off-diagonal
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entries, we easily perceive the following relation

Xij =


x11 · · · x1nj
...

. . .
...

xni1 · · · xninj

⇐⇒ Xji =


−xninj · · · −x1nj

...
. . .

...

−xni1 · · · −x11

 . (3.1.7)

The moment is now ripe for the following remark. If we bear in mind the signature of the

metric we would rather have spoken about the Lie algebra

so(p, q) = {X ∈ gl(n,R) | X>Ep,q + Ep,qX = 0},

where Ep,q = diag(1,...,1︸ ︷︷ ︸
p

, -1,...,-1︸ ︷︷ ︸
q

). However, this does not represent any different situation

as it is not difficult to comprehend the isomorphism so(p, q) ∼= so(g). Yet again our choice

to “forget” the metric’s signature is being justified. Henceforth we shall only think of and

work with so(g).

We are now ready to define the principal object of investigation of this thesis. Let L be

a linear operator acting on a pseudo-Euclidean vector space (V, g). Then the centraliser

of L in the Lie algebra so(g) is defined as the set

gL = {X ∈ so(g) | XL− LX = 0}.

It is not difficult to observe that gL is a Lie subalgebra of so(g). This fact along with

Proposition 3.1.6 bring about the following proposition.

Proposition 3.1.8 The matrix representation of gL with respect to the canonical basis
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(Proposition 3.1.1) is given by



0 A12 · · · A1k

A21 0
...

...
. . . Ak−1,k

Ak1 · · · Ak,k−1 0


with Aij =



0 · · · 0 α1 α2 · · · αni

0 · · · 0 0 α1

. . .
...

...
. . .

...
...

. . .
. . . α2

0 · · · 0 0 · · · 0 α1


,

for all i < j and ai ∈ R.

Clearly, Aji = −gjA>ijgi is satisfied and Aij is a upper-triangular square matrix whenever

ni = nj. Further, we fix i and j, so that i < j, and write mij for the subspace of gL

consisting of matrices with only non-zero block entries Aij and Aji for fixed i < j . Then

assuming ni < nj, Proposition 3.1.8 has the following corollary.

Corollary 3.1.9 The subspace mij is a commutative subalgebra of gL (i < j) and is of

dimension ni. Furthermore, as a vector space, gL is the direct sum
∑
i<j

mij. In particular,

dim gL =
k∑
i=1

(k − i)ni.

This, elementary at first glance, corollary will later play an important role in our consid-

erations.

At this juncture the following remark needs to be stressed. A linear operator L is

called regular if and only if each of its eigenvalues corresponds to a unique Jordan block.

Otherwise, L will be called singular. Notice that Proposition 3.1.8 makes sense only for

singular g-symmetric operators. If L is a regular g-symmetric operator, then its centraliser

in so(g) is trivial, i.e., gL = {0}. Let us demonstrate this fact in one simple example.
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Assume that we are given

L =



λ 1 0 0

0 λ 0 0

0 0 µ 1

0 0 0 µ


and g =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


.

Let X ∈ so(g). Then, in order to compute gL, we need to solve the matrix equation

XL = LX.

Using Proposition 3.1.6 we write

X =



a 0 c d

0 −a e f

−f −d b 0

−e −c 0 −b


and immediately observe that to find gL we only need to solve, in terms of a, b, c, d, e and

f , the following system of linear equations.



λa = aλ

−a = a

λc+ e = cµ

λd+ f = c+ dµ



0 = 0

−λa = −λa

λe = eµ

λe+ fµ



−fµ− e = −fλ

−dµ− c = −f − dλ

bµ = bµ

−b = b



−eµ = −eλ

−µc = −e− λc

0 = 0

−bµ = −bµ

Evidently, a = b = 0, regardless the values of λ and µ. Furthermore, it is readily seen

that λ 6= µ immediately implies that c = d = e = f = 0. Thus, from now on we shall
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only consider singular operators.

Bearing Propositions 3.1.6 and 3.1.8 in mind, we set up the following convenient

notation. From now on, by the (2; 2) - case we shall understand that L, g, so(g) and gL

have the following matrix representations.

L =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


g =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



so(g) =



x1 0 x2 x3

0 −x1 x4 x5

−x5 −x3 x6 0

−x4 −x2 0 −x6


gL =



0 0 a b

0 0 0 a

−a −b 0 0

0 −a 0 0


For brevity, we shall occasionally write L(2;2) whenever dealing with this case. Similarly,

we shall speak about the (k;n)-case, (k;n; l)-case and so on. Thus, we shall respectively

use the shorthand L(k;n), L(k;n;l), etc. Similarly, for the corresponding centralisers we shall

write g
(k;n)
L , g

(k;n;l)
L , etc.

It is a well-known fact that, for a given vector space V , we naturally identify Λ2V

with so(n). We extend it to the following proposition.

Proposition 3.1.10 For any pseudo-Euclidean vector space (V, g) we have the identifi-

cation Λ2V ∼= so(g).

Proof. One can easily check that for all ui, vi ∈ V, i = 1, 2

[u1 ∧u2, v1 ∧ v2] = g(u2, v1)u1 ∧ v2 + g(u1, v2)u2 ∧ v1− g(u2, v2)u1 ∧ v1− g(u1, v1)u2 ∧ v2,

defines a Lie bracket on Λ2V . Let us consider the map ϕ : Λ2V −→ so(g) defined by
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u ∧ v 7−→ u ⊗ g(v) − v ⊗ g(u) for any u, v ∈ V . To prove that it is well-defined it is

sufficient to show that
(
ϕ(u ∧ v)

)∗
= −ϕ(u ∧ v). This relation is by definition rewritten

as g
(
ϕ(u ∧ v)a, b

)
= g

(
a,−ϕ(u ∧ v)b

)
for all u, v, a, b ∈ V . Thus, writing for brevity

X = ϕ(u ∧ v), we compute

g(Xa, b) = g

((
u⊗ g(v)− v ⊗ g(u)

)
a, b

)
= g

((
u · g(v, a)− v · g(u, a)

)
, b

)

= g
(
u · g(v, a), b

)
− g
(
v · g(u, a), b

)
= g(v, a)g(u, b)− g(u, a)g(v, b).

Similarly, g(Xb, a) = g(v, b)g(u, a)− g(u, b)g(v, a) and therefore our map is well-defined.

Finally, we compute ϕ
(

[u1∧u2, v1∧v2]
)

=
[
ϕ(u1∧u2), ϕ(v1∧v2)

]
and since ϕ is bijective

by definition, we conclude that Λ2V ∼= so(g). �

Note that this identification will play a profound role in the sequel. Namely by its virtue,

we shall be able to view Manakov operators as formal curvature operators.

3.2 A glimpse of holonomy

This section is aimed at acquainting the reader with the concept of holonomy. Alas, by

no means could this notion be unveiled in all of its glory within the scope of a doctoral

dissertation. Thus, we unavoidably endeavour a rather brief discussion on the minimum

background required for our inquiry. More specifically, we define the notion of a holon-

omy group and sketch some of its foremost properties. We thenceforth conclude this

section with a definition of Berger algebras, which are of paramount importance for our

investigation. The exposition herein is mostly influenced by the monographs [Bes] and

[Joy4] to which the reader is referred for a more thorough treatment on this matter. The

well-known text books [KN] and [Sal] are highly recommended as well.

Although, the principal inquiry of this thesis is primarily interested in a smooth con-
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nected pseudo-Riemannian manifold (M, g) equipped with a Levi-Civita connection ∇, we

shall adopt, in this section, the more general language of vector bundles. This, we believe,

will not lead to any confusion as the discussion we are about to embark on can be easily

given in terms of the tangent bundle. Thus, by the end of this section we shall consider

a vector bundle E −→ M over a smooth connected manifold M with connection ∇E. Let

γ : [0, 1] −→ M be a smooth curve in M. We know from the theory of vector bundles

that the pull-back γ∗(E) of E to the interval [0, 1] is a vector bundle over [0, 1] with fibre

Eγ(t) over the points t ∈ [0, 1], where Ex is the fibre of E over x ∈ M. To add rigour,

note that the connection on the bundle γ∗(E) over [0, 1] is the pull back of the connection

∇E. Nevertheless, we shall not use different notation for the pull-back connection as it

should be clear from the context which connection is being used. We shall write s for the

sections of the vector bundle γ∗(E) −→ [0, 1]. The values of s lie on the fibres and are

denoted s(t) ∈ Eγ(t) for each t ∈ [0, 1]. The section s is called parallel if for all t ∈ [0, 1]

we have ∇E
γ̇ s(t) = 0, where γ̇(t) = d

dt
γ(t) ∈ Tγ(t)M. Now, assuming that γ(0) = x and

γ(1) = y, we have that for each e ∈ Ex there exists a unique smooth section s of γ∗(E)

satisfying ∇E
γ̇ s(t) = 0 for all t ∈ [0, 1] and with s(0) = e3. In this language the parallel

transport map along the curve γ is defined as Pγ : Ex −→ Ey with Pγ(e) = s(1). We are

now in a position to establish that the parallel transport map along any piecewise smooth

curve is invertible and that a composition of parallel transports along a concatenation of

two piecewise smooth curves is a parallel transport as well. For this purpose we assume

that for x, y, z ∈ M, α and β are two piecewise smooth curves in M such that α(0) = x,

α(1) = y = β(0) and β(1) = z. Then, we define the inverse of the piecewise smooth curve

α as

α−1(t) = α(1− t),
3It is indeed obvious as ∇E

γ̇ s(t) = 0 is a system of first order ordinary differential equations for s(t)
and the uniqueness of the solution to its initial value problem is a well-known fact.

29



and the composition of α and β as

βα(t) =


α(2t) if 0 6 t 6 1

2
,

β(2t− 1) if 1
2
6 t 6 1.

Clearly, α−1 and βα are piecewise smooth curves in M with α−1(0) = y, α−1(1) = x,

βα(0) = x and βα(1) = z. We can now prove that the parallel transport map is invertible.

To do so, we suppose that ex ∈ Ex and Pα(ex) = ey ∈ Ey. There exists a unique parallel

section s of α−1(E) with s(0) = ex and s(1) = ey. It is not difficult to observe that

s′(t) = s(1 − t) is a parallel section of (α−1)∗(E) and since s′(0) = ey and s′(1) = ex

it immediately follows that Pα−1(ey) = ex. Clearly, the latter justifies the fact that Pα

and Pα−1 are inverse maps. By analogy, we establish the law of composition of parallel

transports, namely Pαβ = Pα ◦ Pβ. We further write

Lp(M) = {γ : [0, 1]→ M | γ(0) = γ(1) = p}

for the set of all smooth loops γ on M based at a point p. It is then apparent that

α−1, αβ ∈ Lp(M) provided α, β ∈ Lp(M). From above we know that Pα−1 = P−1α and

Pαβ = Pα ◦ Pβ. Furthermore, the existence of the identity parallel transport as well

as the fact that the associativity of “◦” is naturally inherited from the one in GL(Ep)

is obvious. Thus, these observations bring about the following definition. The set of all

parallel transports along all smooth loops based at a point p, is called the holonomy group

of the connection ∇E at p. Formally, we write

Holp(∇E) = {Pγ | γ ∈ Lp(M)} ⊂ GL(Ep).

It naturally raises the question of how does the holonomy change at different points on our
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manifold? To answer this question we consider a piecewise smooth path γ : [0, 1] −→ M

with γ(0) = p and γ(1) = q. Let Pγ : Ep −→ Eq be the parallel transport map along γ.

Then, if α is a loop based at the point p, then clearly γαγ−1 is a loop based at the point q.

In our notation this simply means that Pγαγ−1 = Pγ ◦ Pα ◦ P−1γ . Hence, if Pα ∈ Holp(∇E)

then Pγ ◦ Pα ◦ P−1γ ∈ Holp(∇E). We thus perceive that the holonomy groups at different

points are isomorphic by conjugation, that is

Pγ ◦ Holp(∇E) ◦ P−1γ = Holq(∇E). (3.2.1)

Furthermore, suppose that the fibres of E are n-dimensional vector spaces over R. It is

then clear that the identification Ex
∼= Rn induces the isomorphism GL(E) ∼= GL(n,R).

Thus, the holonomy group Holx(∇E) may be thought of as a subgroup H of GL(n,R). If,

in addition, we choose another identification of the fibre Ex with Rn, we instead end up

with the group aHa−1 for some a ∈ GL(n,R). We have therefore proven the following

important property of the holonomy group.

Proposition 3.2.2 Let M be a connected manifold, E a vector bundle over M with fibre

Rn, and ∇E a connection on E. For each p ∈ M, the holonomy group Holp(∇E) may be

regarded as a subgroup GL(n,R) defined up to conjugation in GL(n,R).

This property of the holonomy group tells us that, up to conjugation of groups, Holp(∇E)

is independent of the choice of base point p. Thus, in this sense, the holonomy group

may be regarded as a global invariant of the connection. By virtue of this proposition,

we may also disregard the subscript x and simply denote the holonomy group of ∇E by

Hol(∇E) ⊂ GL(n,R), presuming that two subgroups of GL(n,R) are equivalent provided

they are conjugate in GL(n,R). Next, assuming that M is simply connected, we have the

following result.
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Proposition 3.2.3 Let M be a simply-connected manifold, E a vector bundle over M

with fibre Rn, and ∇E a connection on E. Then Hol(∇E) is a connected Lie subgroup of

GL(n,R).

We shall not dwell on the proof of this statement, which the reader can find in [Joy4].

Nevertheless, the power of this fact will be used immediately. Indeed, the first question

in mind now should be what happens when M is not simply connected? In this case it

is convenient to consider the restricted holonomy group. To define it, we fix x ∈ M and

recall that γ ∈ Lx(M) is called null-homotopic if it can be contracted to the constant loop

at x, which is the point x itself. We shall denote the set of all null-homotopic loops in M

based at the point x as L0
x(M). We then define the restricted holonomy group Hol0x(∇E)

of the connection ∇E to be

Hol0x(∇E) = {Pγ | γ ∈ L0
x(M)} ⊆ GL(Ex).

It immediately follows from this definition that Hol0x(∇E) ⊆ Holx(∇E). Also, as earlier,

we may regard Hol0x(∇E) as a subgroup of GL(n,R) which is independent of the base point

x, and may omit the subscript x and write Hol0(∇E). The most important properties of

the restricted holonomy group are given in the following proposition.

Proposition 3.2.4 Let M be a connected manifold, E a vector bundle over M with fibre

Rn, and ∇E a connection on E. Then Hol0(∇E) is a connected Lie subgroup of GL(n,R).

It is the connected component of the identity of Hol(∇E). Moreover, Hol0(∇E) is a normal

subgroup of Hol(∇E) and there is a natural, surjective group homomorphism

φ : π1(M) −→ Hol(∇E)
/

Hol0(∇E),

where π1(M) is the fundamental group of M.
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Proof. The fact that Hol0(∇E) is a connected Lie subgroup of GL(n,R) is immediately

guaranteed by Proposition 3.2.3. Now, fix x ∈ M and let α ∈ Lx(M), β ∈ L0
x(M). It is

then not difficult to observe that αβα−1 ∈ L0
x(M). This ensures that Pαβα−1 = PαPβPα−1

lies in Hol0(∇E) for Pα ∈ Hol(∇E) and Pβ ∈ Hol0(∇E). Thus, the restricted holonomy

group Hol0(∇E) is a normal subgroup of Hol(∇E). Next we consider γ ∈ Lx(M) and write

[γ] for its corresponding element of the fundamental group π1(M). We then define the

map

φ : π1(M) −→ Hol(∇E)
/

Hol0(∇E)

[γ] 7→ Pγ · Hol0(∇E). (3.2.5)

It is clear that (3.2.5) is by definition surjective. Since P−1γ2
· Hol0(∇E) · Pγ2 = Hol0(∇E),

for any two [γ1], [γ2] ∈ π1(M) we compute

φ([γ1][γ2]) = φ([γ1])φ([γ2]) = Pγ1 · Hol0(∇E) · Pγ2 · Hol0(∇E)

= Pγ1 · Pγ2 · P−1γ2
· Hol0(∇E) · Pγ2 · Hol0(∇E)

= Pγ1 · Pγ2 · Hol0(∇E) = Pγ1γ2 · Hol0(∇E),

and therefore (3.2.5) is a group homomorphism. At this point we recall the fact that

the fundamental group π1(M) is countable. Then, the surjective homomorphism (3.2.5)

implies that the quotient group Hol(∇E)
/

Hol0(∇E) is countable too. Hence the restricted

holonomy group Hol0(∇E) is the connected component of Hol(∇E) containing the iden-

tity. �

Notice that as an immediate corollary we have that if M is a simply-connected manifold

then Hol(∇E) = Hol0(∇E). However, the most important part of this proposition for

the purposes of this section is the fact that Hol0(∇E) is the connected component of the
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identity of Hol(∇E). This enables us to pass from Lie groups to Lie algebras. We define

the holonomy algebra holx(∇E) of the connection ∇E to be the Lie algebra of Hol0(∇E).

It is a Lie subalgebra of the endomorphisms End(Ex) of the fibre Ex. Nevertheless, in

analogy to holonomy groups, it will be convenient to assume Ex
∼= Rn and therefore

the holonomy algebra hol(∇E) of the restricted holonomy group will be regarded as a

Lie subalgebra of gk(n,R) defined up to the adjoint action of GL(n,R). It deserves

to be noticed at this juncture that the Lie algebras of Hol0(∇E) and Hol(∇E) coincide

since the former is the identity component of the latter. For computational reasons,

in this thesis holonomy algebras will be preferred. It now raises the question: How do

we compute holonomy? The answer is given by the famous Ambrose-Singer holonomy

theorem [AS]. We need the following brief discussion before stating the theorem. The

definition of curvature for a connection of a vector bundle is not any different than the

one we already mentioned for the case of a tangent bundle (see Chapter 2). Namely, for

a connection ∇E on a vector bundle E −→ M there exists a unique 2-form R(∇E) such

that it defines the multilinear map R(E) : Γ (TM) × Γ (TM) × Γ (E) −→ Γ (E) given by

R(∇E)(ξ, η)σ = ∇ξ∇ησ − ∇η∇ξσ − ∇[ξ,η]σ. Notice that the values of R(∇E) are in the

endomorphism bundle End(E) = E⊗ E∗, that is R(∇E) ∈ End(E)⊗ Λ2TM∗. Now, for a

given point x ∈ M we consider a piecewise smooth curve γ : [0, 1] −→ M with γ(0) = x

and γ(1) = y and the parallel transport map Pγ : Ex −→ Ey. For ξ, η ∈ TxM we set

Rγ(ξ, η) = P−1γ ◦R(∇E)
(
Pγξ, Pγη

)
◦Pγ which is clearly an endomorphism of the fibre Ex.

With this notation in mind we can now state the Ambrose-Singer holonomy theorem.

Theorem 3.2.6 (Ambrose - Singer Holonomy Theorem) Let M be a manifold, E

a vector bundle over M, and ∇E a connection on E. Fix x ∈ M, so that holx(∇E) is a Lie

subalgebra of End(Ex). Then holx(∇E) is the vector subspace of End(Ex) spanned by the

elements of Rγ(ξ, η) for all piecewise smooth curves γ.

This theorem tells us that the curvature R(∇E) determines the holonomy algebra holx(∇E)
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and hence the restricted holonomy group Hol0(∇E). For instance, if ∇E is flat, then

R(∇E) = 0. This implies holx(∇E) = {0}, which is Hol0(∇E) = {1}.

At this juncture we arrive at the definition of a Berger algebra. Let us first remind

the reader that a map R : Λ2V → gl(V ) is called a formal curvature tensor if it satisfies

the Bianchi identity, which is

R(u ∧ v)w +R(v ∧ w)u+R(w ∧ u)v = 0 for all u, v, w ∈ V.

This definition simply means that R, viewed as a tensor of type (1, 3), satisfies all the

algebraic properties of a curvature tensor of a torsion free connection. According to

the Ambrose-Singer theorem the Lie algebra of the holonomy group is generated by the

operators of the form R(u ∧ v). This motivates the following definition.

Definition 3.2.7 Let h ⊂ gl(V ) be a Lie subalgebra. Consider the set of all formal

curvature tensors R : Λ2V → gl(V ) such that ImR ⊂ h:

R(h) = {R : Λ2V → h | R(u ∧ v)w +R(v ∧ w)u+R(w ∧ u)v = 0, u, v, w ∈ V }.

We say that h is a Berger algebra if it is generated as a vector space by the images of the

formal curvature tensors R ∈ R(h), which is h = span{R(u ∧ v) | R ∈ R(h), u, v ∈ V }.

The Berger’s criterion stated in Chapter 1 in this case can be reformulated as follows. Let

∇ be a Levi-Civita connection on M. Then the Lie algebra hol (∇) of its holonomy group

Hol (∇) is a Berger algebra.

3.3 A scent of integrability: Manakov operators

In this section we shall only take a peek at the vast field of integrable systems. Our

goal is to acquaint the reader with Manakov operators which play a profound role in this
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dissertation. We shall give one particular example of a Manakov operator that will be

much exploited in the next two chapters.

First and foremost, it deserves to be noticed that not only are Manakov operators

interesting in their own right, but they also play an important role in the theory of

integrable systems. For this reason we briefly mention a few words about their origin. It

all goes back to classical mechanics and the problem of describing the motion of a three-

dimensional rigid body around a fixed point. The dynamics of such a body is governed

by a system of six first order ordinary differential equations, which are collectively known

as the Euler-Poisson equations. Their integration turned out to be rather nontrivial and

this resulted in the birth of the theory of Hamiltonian dynamical systems and Liouville

integrability4. We have neither the time nor the room for a thorough discussion and to

cut a long story short, let us consider the special case of motion of a three-dimensional

rigid body fixed at its centre of mass. Now, the dynamics is described by the system of

differential equations

ẋ =
λ1 − λ2
λ1 + λ2

yz, ẏ =
λ3 − λ1
λ3 + λ1

xz, ż =
λ2 − λ3
λ2 + λ3

xy, (3.3.1)

known as the Euler equations. It is a remarkable fact that the system (3.3.1) has an

intimate relationship with the three dimensional Lie algebra so(3) of the rotation group

SO(3). Indeed, we observe that by identifying the vectors (x, y, z) ∈ R3 with the skew-

symmetric matrices

X =


0 x y

−x 0 z

−y −z 0

 ,

we comprehend the isomorphism R3 ∼= so(3). Clearly, by virtue of this observation one

4Not to be confused with the notion of Frobenius integrability which deals with overdetermined dif-
ferential systems.
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may neatly rewrite the Euler equations (3.3.1) in a matrix form. More importantly,

this situation naturally generalises to the n-dimensional case and initiates the study of

Hamiltonian systems on suitable Lie algebras. Indeed, following the famous two-page

paper of Sergey Manakov [Man], we consider a linear operator A : so(n) −→ so(n).

Then, it can be shown that writing AΩ = M for Ω ∈ so(n), the Euler equations are given

by the following matrix equation

Ṁ = [M,Ω]. (3.3.2)

Manakov confined himself to the case of free rotation of a multidimensional body. In that

case we have that

M = JΩ + ΩJ,

where J is symmetric positive-definite matrix and is called the inertia tensor. Thus, the

equation (3.3.2) can be rewritten in the form

JΩ̇ + Ω̇J = [J,Ω2]. (3.3.3)

Under these assumptions, Manakov proved that for any finite dimension n the equation

(3.3.3) has

N(n) =
1

2

[n
2

]
+
n(n− 1)

2

single-valued integrals of motion and that its general solution is expressible in terms of

θ-functions on Riemann surfaces. This was a remarkable result published in a remarkably

short paper. For our purposes, however, the consequences of this paper are more impor-

tant. The work of Manakov swiftly resulted in the introduction of one important class

of operators - the Manakov operators. We say that a linear map R : so(n) −→ so(n) is

a Manakov operator, if R is self-adjoint with respect to the Killing form and satisfies the
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algebraic identity

[R(X), L] = [X,M ], (3.3.4)

for all X ∈ so(n) and some fixed nonzero symmetric matrices L and M .5 Shortly after

his paper, Manakov’s ideas were further developed by A. Mischenko and A. Fomenko

[MF] who proved the following important result. Before stating it, we wish to remind the

reader that B(·, ·) denotes the Killing form of the Lie algebra so(n).

Theorem 3.3.5 (Manakov, Mischenko & Fomenko) Let R : so(n) −→ so(n) be a

Manakov operator and let H = 1
2
B(R(X), X) be a Hamiltonian on so(n). Then the Euler

equations on so(n) have the form

dX

dt
= [R(X), X], (3.3.6)

admit the following Lax representation with a spectral parameter λ

d

dt
(X + λL) = [R(X) + λM,X + λL]

and therefore possess first integrals of the form Tr (X + λL)k. These integrals commute

and, if L is regular, form a complete family in involution so that the Euler equations

(3.3.6) are completely integrable.

The following remark needs to be noticed at this point. The form of the Euler equations

(3.3.6) is not accidental. A general picture in the theory of Hamiltonian dynamics on

semi-simple Lie algebras is the following. A real valued function H : g −→ R on a

semisimple Lie algebra g is called a Hamiltonian. Since the Killing form B(·, ·) on g

induces an isomorphism g ∼= g∗, we have that dH(X) ∈ g for all X ∈ g. Then, it can be

shown that the Euler equations have the form

5Notice that M and M bear absolutely different meanings.
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Ẋ = [dH(X), X]. (3.3.7)

More importantly, Theorem 3.3.5 was generalised for arbitrary semisimple Lie algebras by

Mischenko and Fomenko [MF]. We now know from their work that if so(n) is replaced by

so(p, q) then the construction above essentially remains the same. Thus, for the purposes

of the present work, we shall think of Manakov operators as the maps R : so(g) −→ so(g),

which are self-adjoint with respect to the Killing form on so(g) and obeying the algebraic

identity (3.3.4). We shall not go any further or deeper into the theory of integrable

systems. The reader may consult the books [FT] and [Fom] for more details.

Looking yet again at the algebraic identity (3.3.4), we now wish to derive an explicit

formula for R(X). We first observe that the adjoint invariance of the Killing form on so(g)

and the identity (3.3.4) imply [M,L] = 0. This is immediately seen from the following

simple computation. For all X ∈ so(n) we have

B
(

[M,L], X
)

= −B
(
L, [M,X]

)
= B

(
L, [X,M ]

)
= B

(
L, [R(X), L]

)
= −B

(
L, [L,R(X)]

)
= B

(
[L,L], R(X)

)
≡ 0.

Thus, M can be represented as a polynomial of L. Writing M = p(L) we are motivated

to define the map R : so(g) −→ so(g) given by the formula6

R(X) =
d

dt

∣∣∣
t=0
p
(
L+ tX

)
. (3.3.8)

We shall now show that this map satisfies the identity (3.3.4). To see this, it is sufficient

6Notice that this formula represents only one particular solution of the algebraic identity (3.3.4).

39



to consider the obvious formula

[p(L+ tX), L+ tX] = 0.

Differentiating it with respect to t we quickly get

[ d

dt

∣∣∣
t=0
p(L+ tX), L

]
+ [p(L), X] = 0,

which is [R(X), L] + [M,X] = 0, as required. We are thus in possession of an algebraic

formula defining a Manakov operator. It is this formula (3.3.8) which introduces to

holonomy theory a new method of constructing pseudo-Riemannian metrics of arbitrary

signature with a given holonomy algebra gL.

At this juncture, as we leave this section, we shall re-enter the field of differential

geometry but from a rather unusual perspective. We wish to remind the reader that the

formal curvature tensor for the Lie algebra so(g) is the map R : Λ2V −→ so(g) satisfying

the Bianchi identity. Now, due to the identification of Λ2V with so(g), we can think of the

formal curvature tensor as the map R : so(g) −→ so(g). Further, the symmetry property

Rij,kl = Rkl,ij immediately implies that R is self-adjoint with respect to the Killing form on

so(g). This means that there is a good chance that Manakov operators relate to curvature

in a nice way. We thus naturally raise the question: Do sectional operators satisfy the

Bianchi identity? In Section 4.2 we shall see that the Manakov operator defined by (3.3.8)

does satisfy the Bianchi identity.

3.4 Projectively equivalent metrics

In this section we shift our attention to the theory of projectively equivalent metrics.

Although these will not explicitly be used in the subsequent chapters, they deserve a brief

mention. The reason for this is that the principle motivation for this work stems from
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Theorem 3.5.8 (see next section), which blends together projectively equivalent metrics

with Manakov operators.

To begin our discussion we let (M, g) be a (pseudo)-Riemannian manifold of dimension

n > 2. Let us also choose another metric g̃ on M and look at the geodesics of both metrics

g and g̃ as unparametrised curves. If the geodesics of these two metrics coincide, then

the metric g̃ is said to be projectively equivalent to g. Furthermore, we shall call g and

g̃ affinely equivalent whenever their geodesics coincide as parametrised curves. To secure

a greater clearness of view, we offer one basic example due to Beltrami [Bel]. It possibly

stands as the very first example known in this area. Let us consider the half-sphere S2

and the Euclidean plane E2, respectively defined by

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z < 0} and E2 = {(x, y, z) ∈ R3 | z = −1}.

Traditionally, S2 is centred at the origin O = (0, 0, 0) of some Cartesian coordinate system

in R3. We define, in the usual manner, a stereographic projection f : S2 −→ E2 with

respect to the origin O. Geometrically speaking, every point x ∈ S2 is taken to a point

f(x) ∈ E2 by means of a straight line passing through O,x and f(x). It now must be

intuitive, if not obvious, that f is a diffeomorphism sending the great circles in S2 to the

straight lines in E2. In other words, the round metric on S2 is projectively equivalent

to the Euclidean metric in E2. It is well-known that this example can be generalised for

all dimensions as well as for hyperbolic spaces. Hence, it naturally raises the following

general question.

Problem 1 (Beltrami) Describe all possible projectively equivalent metrics.

Notice that in the example above S2 is a manifold of constant curvature. As a matter of

fact, it has been known for a long time that all spaces of constant curvature are locally

projectively equivalent. The Beltrami problem for Riemannian metrics of non-constant
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curvature was answered in 1896 by a famous theorem of Levi-Civita [Lev]. In order to

state his remarkable result, we need the following definition. Two metrics g and g̃ on

M are called strictly non-proportional at the point x ∈ M if the (1, 1)-tensor g̃−1g has n

different eigenvalues at x. We then have the following theorem.

Theorem 3.4.1 (Levi-Civita) Suppose that there are two metrics g and g̃ on M which

are strictly non-proportional at the point p. Then there exists a sufficiently small local

coordinate system U ∈ M such that the two metrics are projectively equivalent on U if

and only if they are given by

ds2g =
n∑
i=1


∣∣∣∣∣∣∣∣
n∏
j=1
j 6=i

(
Fi(u

i)− Fj(uj)
)∣∣∣∣∣∣∣∣ d(ui)2

 (3.4.2)

and

ds2g̃ =
n∑
i=1

 1

Fi(ui)
∏n

α=1 Fα(uα)

∣∣∣∣∣∣∣∣
n∏
j=1
j 6=i

(
Fi(u

i)− Fj(uj)
)∣∣∣∣∣∣∣∣ d(ui)2

 (3.4.3)

where Fi is a positive function only of the variable ui for all i.

For visual simplicity, let us consider the following two dimensional example. Write u1, u2

for the local coordinates and let F1(u
1) and F2(u

2) be positive functions. Then the metrics

ds2g =

(
F1(u

1)− F2(u
2)

)(
d(u1)2 + d(u2)2

)
(3.4.4)

and

ds2g̃ =

(
1

F2(u2)
− 1

F1(u1)

)(
d(u1)2

F1(u1)
+

d(u2)2

F2(u2)

)
(3.4.5)

are projectively equivalent. It is a straightforward verification that for n = 2 the metrics

(3.4.2) and (3.4.3) respectively reduce to (3.4.4) and (3.4.5). After re-expressing them in
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their respective matrix forms

g =

F1(u
1)− F2(u

2) 0

0 F1(u
1)− F2(u

2)

 and g̃ =

F1(u1)−F2(u2)

F 2
1 (u

1)F2(u2)
0

0 F1(u1)−F2(u2)

F1(u1)F 2
2 (u

2)

 ,

we effortlessly compute

g̃−1g = F1(u
1)F2(u

2)

F1(u
1) 0

0 F2(u
2)

 ,

which guarantees that our metrics are strictly non-proportional. It is here that we must

give a deserved credit to Dini, who actually first proved the two dimensional version of

Theorem 3.4.1 in his work [Din] dating back to 1869. An analogue of Dini’s theorem for

pseudo-Riemannian metrics can be found in [BMP]. We learn from this paper that the

pseudo-Riemannian metrics of the form

ds2g =

(
F1(u

1)− F2(u
2)

)(
d(u1)2 − d(u2)2

)
(3.4.6)

and

ds2g̃ =

(
1

F2(u2)
− 1

F1(u1)

)(
d(u1)2

F1(u1)
− d(u2)2

F2(u2)

)
(3.4.7)

are projectively equivalent7. Unfortunately, apart from this particular case, Theorem

3.4.1 does not have a higher dimensional analogue on pseudo-Riemannian manifolds.

Looking more generally on this matter, one is naturally bound for seeking suitable

transformations on arbitrary (pseudo)-Riemannian manifold (M, g) sending a metric to

its equivalent. This necessitates the following general framework. A diffeomorphism

F : M −→ M is called a projective (an affine) transformation on (M, g) if the pull-

7Compare with the Riemannian metrics (3.4.4) and (3.4.5).
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back metric F ∗g is projectively (affinely) equivalent to g. It is not difficult to convince

ourselves that the set of all projective transformations is a group. Then immediately

arises the question “how does this group differ to the isometry group of (M, g)?” It can be

shown that the group of projective transformations of the standard sphere Sn is bigger

than its isometry group. Whence we arrive at the second most important problem in this

area.

Problem 2 Which (pseudo)-Riemannian manifolds (M, g) admit a group of projective

transformations bigger than their isometry group?

At this moment we shall leave the world of projectively equivalent metrics. For further

details on Problems 1 and 2 the reader is referred to the survey papers [Ami, Mat] as well

as the recent preprint [BM2].

3.5 The Motivation of this thesis

The motivation of a mathematical work of any kind is usually delivered at its beginning.

However, we deliberately violate this custom and proclaim the motivation of this thesis

at a rather later stage. By the end of this section, we hope, the reader would agree with

the author’s opinion that this is indeed the right place for such a discussion.

Recall that in the Preface, we visualised our work with the following diagram

Holonomy

Integrable 

Systems

Projectively 

Equivalent 

Metrics
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In the previous three sections, each of the blocks of this diagram was discussed to an

extent, sufficient for our inquiry. In this section, our goal is to throw some light on the

relationships

Holonomy ←→ Projectively equivalent metrics

and

Integrable Systems ←→ Projectively equivalent metrics8.

To begin with, assume that g and g̃ are two pseudo-Riemannian metrics on a pseudo-

Riemannian manifold M. We write ∇ and ∇̃ for their corresponding Levi-Civita connec-

tions. Recall that the geodesics for g and g̃ are respectively given as the solutions to the

the following second order ordinary differential equations

d2uλ(t)

dt2
+ Γ λ

µν

duµ(t)

dt

duν(t)

dt
= 0,

d2ũλ(t)

dt2
+ Γ̃ λ

µν

dũµ(t)

dt

dũν(t)

dt
= 0.

(3.5.1)

If we now insist that our metrics are affinely equivalent, then equations (3.5.1) immediately

affirm Γ λ
µν = Γ̃ λ

µν . This, in turn, justifies

∇g̃ = 0. (3.5.2)

Furthermore, due to the standard one-to-one correspondence between symmetric bilinear

forms and g-symmetric operators, the metric g̃ can be substituted with a suitable (1, 1)-

tensor field on M in the following sense. For any pair of tangent vectors ξ and η, we

define

g̃(ξ, η) = g(Lξ, η). (3.5.3)

8The relationship Holonomy ←→ Integrable systems will be unveiled in Chapters 4 and 5.
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Now, bearing this identity in mind, it is readily seen that (3.5.2) implies∇L = 0. Thus, by

virtue of (3.5.2) and (3.5.3), we apprehend that the classification of the affinely equivalent

pairs g and g̃ is tantamount to the classification of the pairs g and L, provided∇L = 0 and

L is g-symmetric. This latter problem was partially solved by Kručkovič and Solodovnikov

[KS]. In their approach, however, no use of holonomy was made. It turns out that the

existence of a covariantly constant (1, 1)-tensor field on M is the key, enabling us to look

at the classification of the pairs g and L from the perspective of holonomy. Indeed, one

can easily perceive the truth of the following proposition.

Proposition 3.5.4 Consider the group G0
L = {X ∈ SO0(g) | XLX−1 = L}, where

SO0(g) is the connected component of the identity of the group SO(g). Then, the connec-

tion ∇ admits a covariantly constant (1, 1)-tensor field if and only if Hol(∇) ⊂ G0
L.

Proof. Let γ be an arbitrary smooth curve on M. There exists an appropriate parallel

transport Pγ along γ such that the condition ∇γL = 0 is equivalent to PγLP
−1
γ = L. This

clearly implies PγL = LPγ. Now, as some of these parallel transports will be along closed

loops, we readily conclude that Hol(∇) ⊂ G0
L. �

At this juncture, the following remarks worth mentioning. Firstly, by L we understand

the value of the (1, 1)-tensor field at any fixed point x0 ∈ M. Secondly, the choice of

x0 ∈ M does not play any important role, as L is covariantly constant. Thus, Proposition

3.5.4 naturally raises the question.

Are there any pairs g and L on a pseudo-Riemannian manifold, with ∇L = 0 such that

Hol(∇) ≡ G0
L?

In this thesis we shall give an affirmative answer to this question. Our approach will be

primarily inspired by a remarkable relationship between the areas of integrable systems
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and projectively equivalent metrics. This rather unexpected relationship was recently

noticed by A. Bolsinov, V. Kiosak and V. Matveev [BKM]. Incredibly, the main theorem

of the latter paper is given two alternative proofs. Although this is a result generically

concerned with projective equivalence of pseudo-Riemannian metrics, one of the proofs

offered in [BKM] uses ideas from the theory of integrable systems on semisimple Lie al-

gebras. Thus, in order to achieve a greater clarity, it is necessary to briefly outline the

aforementioned paper. Its main result is the following theorem.

Theorem 3.5.5 (Bolsinov, Kiosak & Matveev) Let g, g̃ and ĝ be three projectively

equivalent metrics on a connected manifold Mn of dimension n > 3. Suppose there exists

a point at which g, g̃ and ĝ are linearly independent. Then, the metrics g, g̃ and ĝ have

constant curvature.

It is worth noting that a local version of this theorem in the case of Riemannian metrics

was known to Fubini [Fub1, Fub2]. His proof, however, was based on the Levi-Civita

theorem (see Theorem 3.4.1) and hence is not applicable in the pseudo-Riemannian case.

We must also note that in the two dimensional case as well as the case of metrics which

are not strictly non-proportional, counterexamples of Theorem 3.5.5 are known (see for

instance [BMM, Koe, Sha, Sol1, Sol2, Sol3]). We also note that, despite the global nature

of Theorem 3.5.5, it is sufficient to give a local proof. This is secured by the following

two facts. Firstly, if the metrics g, g̃ and ĝ are linearly dependent at every point of some

neighbourhood of M, then they are linearly dependent at every point of the manifold.

Secondly, if two projectively equivalent metrics are strictly non-proportional at least at

one point, then they are strictly non-proportional at almost every point. For proofs the

reader may consult [BKM].

A key point for both of the proofs of Theorem 3.5.5 is the following tensor reformulation

of the projective equivalence property of two metrics. Given the metrics g and g̃ we
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consider the (0, 2)-tensor

Lij =

∣∣∣∣det(g̃)

det(g)

∣∣∣∣ 1
n+1

· giαg̃αβgjβ

and the function

λ =
1

2
Lαβg

αβ.

Then, under these assumptions, we have the following criterion for projective equivalence

of two metrics.

Theorem 3.5.6 The metrics g and g̃ are projectively equivalent if and only if

∇kLij =
∂λ

∂ui
gjk +

∂λ

∂uj
gik, (3.5.7)

where the covariant derivative is taken with respect to the metric g.

This reformulation was suggested by Sinjukov [Sin], but the reader may also wish to refer

to [BM1, EM]. Now, the proof of Theorem 3.5.5 mostly constitutes an analysis of the

integrability (compatibility) conditions of (3.5.7). These, being of indirect interest for

our work, are omitted. However, bearing in mind the fact that the Riemann curvature

operator can be thought of as the map R : so(g) −→ so(g), a tedious computation

establishes that the compatibility conditions of (3.5.7) can be rewritten in the form

[R(X), L] = [X,M ].

Thus, we arrive at the following result.

Theorem 3.5.8 (Bolsinov, Kiosak & Matveev) If g and g̃ are projectively equiva-

lent, then the curvature tensor of g considered as a linear map

R : so(g) −→ so(g)
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is a Manakov operator, i.e., it satisfies the identity

[R(X), L] = [X,M ] for all X ∈ so(g)

with L defined by g̃−1g = detL·L and M being the Hessian of 2trL, i.e. M i
j = 2∇i∇jtrL.

The moral of this theorem is twofold. Firstly, it throws some light onto how the areas

of Integrable systems and Projectively equivalent metrics are interrelated. Secondly, if g

and g̃ are affinely equivalent, then L is automatically covariantly constant and therefore

M = 0. Thus, the curvature tensor R satisfies a simpler equation, namely

[R(X), L] = 0.

Notice that formula (3.3.8) still defines a non-trivial operator, if p(t) is a non-trivial

polynomial satisfying p(L) = M = 0, for example, the minimal polynomial for L. Thus,

we may well think of R(X) as an element of the Lie algebra gL, which will be shown to

be the case in the next chapter. To put it another way, Theorem 3.5.8 motivates us to

look for a Manakov operator which can also be thought of as a formal curvature operator.

We shall construct such an example in the next chapter and by exploiting the power of

Manakov operators we shall conclude that gL is a Berger algebra.
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Chapter 4

Berger algebras related to

g-symmetric operators

It is our primary concern in this chapter to prove that for a given g-symmetric operator L,

the Lie algebra gL is a Berger algebra. We begin our exposition with a detailed analysis

of the (2; 2)-case and discuss how Manakov operators miraculously emerge on the horizon

of our quest. We next show that, without loss of generality, we may confine ourselves to

nilpotent g-symmetric operators. Finally, we give a proof of Theorem B.

4.1 The beginning: analysis of the (2;2)-case

Without any doubt, the abstractness and rigour of mathematics is always motivated by

simple examples illustrating its main ideas. We thus initiate this chapter by considering

a basic example first. Computational and straightforward in nature, it will both aid the

reader’s understanding of the problem and enable us to naturally conjecture the foremost

result of this chapter.

For the purposes of the present section it suffices to consider an n-dimensional pseudo-

Euclidean vector space V with standard basis {ei}ni=1. We know from our discussion in

the background Chapter 3 that to show that gL is Berger algebra it is sufficient to find
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a suitable formal curvature operator with image coinciding with gL. Thus, we would

naturally like to be able to resolve the following problem.

Problem 3 Find all maps R : Λ2V −→ gL such that


(♥) R(ei ∧ ej)ek +R(ej ∧ ek)ei +R(ek ∧ ei)ej = 0,

(♣) ImR ≡ gL.

(4.1.1)

Certainly, the solution of this problem splits into solving the system of equations (♥)

and ensuring that the solutions indeed satisfy (♣). It deserves to be noticed that solving

this problem in its full generality is rather difficult and no general solution is known to

the author. The sheer difficulty, particularly lies in finding all formal curvature operators

satisfying the property (♣). For good or ill, we shall not be able to derive a solution of

(4.1.1) with the aid of some standard or algorithmic procedures. Instead, we shall define

a map and check that it is a solution of (4.1.1). Fortunately, to the extent which this

thesis requires, it will suffice to construct just one suitable solution. Approaching this

problem, we observe that R(ei ∧ ej) = −R(ej ∧ ei) holds true for any two basis vectors.

Thus, without loss of generality we may assume i 6 j 6 k. Consequently, the system of

equations (♥) in (4.1.1) reduces to a smaller one. Evidently, this is a system of equations

consisting of
(
n
3

)
equations.

Now, in order to achieve greater clarity, we shall discuss in full detail the simplest

possible non-trivial example, namely the (2; 2)-case. Recall that L(2;2) is a linear operator

acting on a four dimensional space. Then by means of elementary combinatorics, the
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system of equations (♥) reduces to the following four equations

R(e1 ∧ e2)e3 +R(e2 ∧ e3)e1 +R(e3 ∧ e1)e2 = 0,

R(e1 ∧ e2)e4 +R(e2 ∧ e4)e1 +R(e4 ∧ e1)e2 = 0,

R(e1 ∧ e3)e4 +R(e3 ∧ e4)e1 +R(e4 ∧ e1)e3 = 0,

R(e2 ∧ e3)e4 +R(e3 ∧ e4)e2 +R(e4 ∧ e2)e3 = 0.

(4.1.2)

Bearing in mind the standard identification of the space of skew-symmetric matrices with

Λ2V , along with the trivial fact that the ei ∧ ej’s form a basis for the latter, we can

justifiably rewrite the expression

x1e1 ∧ e2 + x2e1 ∧ e3 + x3e1 ∧ e4 + x4e2 ∧ e3 + x5e2 ∧ e4 + x6e3 ∧ e4

as the matrix 

0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

−x3 −x5 −x6 0


.

Now, with the aid of the coefficients xi we prescribe further the quantities a(x) =
6∑
i=1

aixi

and b(x) =
6∑
i=1

bixi, where xi, ai, bi ∈ R. By means of these last expressions we finally

define the map R : Λ2V −→ g
(2;2)
L so that each element of Λ2V is sent to



0 0 a(x) b(x)

0 0 0 a(x)

−a(x) −b(x) 0 0

0 −a(x) 0 0


. (4.1.3)

52



Notice that dim g
(2;2)
L = 2 and a(x) and b(x) are mutually independent quantities - a fact

which will be important for the conclusion of this example.

We observe that, substituting (4.1.3) in the first equation of (4.1.2) we read off



0 0 a1 b1

0 0 0 a1

−a1 −b1 0 0

0 −a1 0 0





0

0

1

0


+



0 0 a4 b4

0 0 0 a4

−a4 −b4 0 0

0 −a4 0 0





1

0

0

0


+



0 0 −a2 −b2

0 0 0 −a2

a2 b2 0 0

0 a2 0 0





0

1

0

0


=



0

0

0

0


only to determine a1 = 0, a2 = 0 and a4 = b2. Treating the rest of the equations in

(4.1.2) in the same manner, we readily conclude that the only non-zero coefficients are

a5 = b3 = b4 6= 0. Furthermore, we observe that the coefficient b5 does not affect our

calculations. It is essentially an arbitrary coefficient. Write for brevity α = a5 = b3 = b4

and b5 = β. Thus, we have shown that there exists a non-trivial linear map, such that

it solves the system of equations (4.1.2). More succinctly, the map R : Λ2V −→ g
(2;2)
L

defined by



0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

−x3 −x5 −x6 0


7−→



0 0 αx5 α(x3 + x4) + βx5

0 0 0 αx5

−αx5 −α(x3 + x4)− βx5 0 0

0 −αx5 0 0


is a formal curvature operator for the Lie algebra g

(2;2)
L . The careful reader may have

already noticed that in fact αx5 and α(x3 + x5) + βx5 are indeed mutually independent

and therefore drawn the conclusion that g
(2;2)
L ≡ ImR. In other words, we have proven

that g
(2;2)
L is Berger algebra.

Following the same idea we compute further a various of higher dimensional cases

only to establish that the corresponding centralisers are indeed Berger algebras. We have
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decided to append some of our results, should the reader require more worked examples.

It is by virtue of these computations that we are naturally in a position to propose the

following conjecture.

Conjecture 1 For any g-symmetric operator L acting on some pseudo-Euclidean space

(V, g) we have that gL is a Berger algebra.

Incredibly, we shall end up with a generic proof of the fact that g
(k;n)
L is a Berger algebra

for any nilpotent g-symmetric operator L(k;n), which will be naturally implemented into

the general proof. Beforehand, however, we shall need to take a look at the main tool

which will enable us to give an affirmative answer to our conjecture. We have arrived

at the point where we shall discuss the intimate relationship between Manakov operators

and formal curvature operators.

4.2 The magic formula

This section aims at acquainting the reader with one simple but fundamentally important

formula. Henceforth, it will be assumed that g is a pseudo-Riemannian metric on V and

L : V −→ V is a g-symmetric operator with minimal polynomial pmin(L). Moreover, the

identification

so(g) ∼= Λ2V given by u ∧ v = v ⊗ g(u)− u⊗ g(v) for any u, v ∈ V, (4.2.1)

will finally be exploited as was promised in the background chapter. It is this identification

which will help us to perceive the earlier mentioned relationship between Manakov oper-

ators and formal curvature operators. Let us define the linear map R : so(g) −→ so(g)

by means of the formula

R(X) =
d

dt

∣∣∣
t=0
pmin(L+ tX), (4.2.2)
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where pmin is the minimal polynomial for the operator L. It has been shown in Section

3.3 that this map is a Manakov operator. We now show that it can be viewed as a formal

curvature operator as well. For this purpose, let us investigate its basic properties. Firstly,

we observe that the image of R is indeed contained in so(g), which is R(X) ∈ so(g) for

any X ∈ so(g). To see this, it suffices to show that R(X)∗ = −R(X). By assumption, we

have that L∗ = L and X∗ = −X, which imply that

(
pmin(L+ tX)

)∗
= pmin(L∗ + tX∗) = pmin(L− tX).

Now, using this last line along with the fact that the operations “ d
dt

” and “ ∗ ” commute,

we compute

R(X)∗ =

(
d

dt

∣∣∣
t=0
pmin(L+ tX)

)∗
=

d

dt

∣∣∣
t=0
pmin(L− tX)

= − d

dt

∣∣∣
t=0
pmin(L+ tX) = −R(X).

We have thus shown that the map (4.2.2) is well-defined. Note that this argument ap-

plies to any polynomial, not necessarily minimal. However, the minimality condition will

shortly be exploited. Secondly, we perceive the truth of the fact that R(X) commutes

with L. In other words, we have that R(X) ∈ gL for all X ∈ so(g). To prove this, we

consider yet again the following identity

[pmin(L+ tX), L+ tX] = 0.

We now only differentiate this last expression and evaluate it at t = 0 to obtain

[
d

dt

∣∣∣
t=0
pmin(L+ tX), L

]
+ [pmin(L), X] = 0.
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Since pmin(L) = 0 we conclude that [R(X), L] = 0. It is this conclusion along with

Λ2V ∼= so(g), which motivates us viewing (4.2.2) as the map R : Λ2V −→ gL. Having

this in mind, it is a natural question to ask whether or not R satisfies the Bianchi identity.

Before proving that it indeed does, we shall derive one useful formula. Assume that L is

a nilpotent operator1 of order k. Clearly, its minimal polynomial is pmin(L) = Lk = 0.

Bearing this in mind we write pmin(L+ tX) = (L+ tX)k and see that

pmin(L+ tX) = Lk + t

k−1∑
p=0

Lk−p−1XLp +O(t2).

As Lk = 0 we rewrite (4.2.2) as

R(X) =
k−1∑
p=0

Lk−p−1XLp = Lk−1X + Lk−2XL+ · · ·+ LXLk−2 +XLk−1. (4.2.3)

This formula will be very helpful in achieving our final goal. Generally speaking, by virtue

of this formula we may think of the operator (4.2.3) as R(X) =
∑
k

CkXDk, where Ck

and Dk are powers of L and certainly g-symmetric operators themselves. To prove that

(4.2.2) is a formal curvature operator it suffices to verify that the Bianchi identity holds

true for operators mapping X to CXD for some g-symmetric operators C and D. To put

it in another way, we only need to show that for any vectors u, v and w we have

C(u ∧ v)Dw + C(v ∧ w)Du+ C(w ∧ u)Dv = 0. (4.2.4)

1We shall see in Section 4.3 that for the purposes of the present inquiry it is sufficient to consider only
nilpotent operators.
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Note that v ⊗ g(u)w = g(u,w)v holds true for any three vectors u, v and w. Then using

the identification (4.2.1) we compute

C(u ∧ v)Dw = C
(
v ⊗ g(u)− u⊗ g(v)

)
Dw = C

(
v ⊗ g(u)Dw − u⊗ g(v)Dw

)
=

= C
(
g(u,Dw) · v − g(v,Dw) · u

)
= g(u,Dw) · Cv − g(v,Dw) · Cu

Similarly, we obtain the following two relations.

C(v ∧ w)Du = g(w,Du) · Cv − g(v,Du) · Cw

C(w ∧ u)Dv = g(u,Dv) · Cw − g(w,Dv) · Cu.

As both C and D are g-symmetric operators we conclude that (4.2.4) is indeed satisfied

by any triple u, v and w. In summary, we have proven the following.

Proposition 4.2.5 Let L : V → V be a nilpotent g-symmetric operator. Then (4.2.2)

defines a formal curvature operator R : Λ2V ' so(g)→ gL for the Lie algebra gL.

This proposition tells us that R satisfies the Bianchi identity and its image is contained in

gL. But this means that the centraliser of our g-symmetric operator L is already a good

candidate for being a Berger algebra. Yet again we have arrived at Conjecture 1. Luckily,

by the end of this chapter we shall confirm that this conjecture is true. The key point of

our proof will be exactly the use of formula (4.2.2). It is kind of magic that a formula

from integrable systems could do so much work in the realm of holonomy, is it not? For

this reason, we shall henceforth refer to (4.2.2) as well as its reincarnation (4.2.3) simply

as the magic formula.
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4.3 Reduction to nilpotent g-symmetric operators

Before embarking onto proving the main result of this chapter, which has been stated as

Theorem B in the introductory chapter, the following point needs to be brought into

prominence. Without loss of generality, it suffices to prove this result only for nilpotent

g-symmetric operators2. The reduction of an arbitrary operator to a nilpotent one is

natural and is an immediate consequence of two well-known facts to be mentioned below.

Firstly, assume that g is a non-degenerate bilinear form on a vector space V . Consider

an arbitrary g-symmetric operator L : V −→ V . Then it is a matter of standard linear

algebra that V decomposes into its L-invariant eigensubspaces, that is

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs.

Each Vi is either a generalised eigensubspace corresponding to a real eigenvalue λi, or

one corresponding to a pair of complex conjugate eigenvalues λj and λj. Moreover, this

decomposition is g-orthogonal, that is for any i 6= j we have

g(Vi, Vj) = 0.

To see this, take the eigensubspace Vi of the eigenvalue λi and consider the operator

(L−λi·Id)k for some k ∈ N. Clearly, (L−λi·Id)kVi = 0. Now, this operator is g-symmetric

and the eigensubspace Vj is invariant under its action, that is (L − λi · Id)kVj = Vj for

i 6= j. We then readily compute

0 = g
(

(L− λi · Id)kVi, Vj

)
= g
(
Vi, (L− λi · Id)kVj

)
= g(Vi, Vj).

2We remind the reader that in this thesis only singular operators are of interest.
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If Vi is a generalised eigensubspace corresponding to a pair of complex conjugate eigen-

values λi and λi, the same argument remains valid if applied to the operator

((
L− λi · Id

)(
L− λi · Id

))k

.

Secondly and more importantly, this decomposition naturally yields a similar decom-

position for gL. To see this, we first observe that any generalised eigensubpace Vj is

invariant under the action of an operator X commuting with L. This immediately justi-

fies

G0
L = G0

1 × · · · ×G0
s, (4.3.1)

where the Lie subgroups G0
i are naturally associated with their corresponding generalised

eigensubspace Vi. Moreover, G0
i is the connected component of the centraliser of Li = L|Vi

in O(g|Vi). Thus, G0
L is reducible and by virtue of the de Rham - Wu splitting theorem

it is a holonomy group if and only if each G0
i is. For our purposes, however, we shall

only need a weaker version. Namely, if each G0
i is a holonomy group then so is G0

L.

Geometrically speaking, our aim will be to realise each G0
i as a holonomy group for

some pseudo-Riemannian manifold (Mi, g|Vi). Then the holonomy group for the pseudo-

Riemannian direct product M = M1 × · · · ×Ms will be exactly G0
L = G0

1 × · · · × G0
s. In

addition, let us suppose that gL and gi are the Lie algebras for G0
L and G0

i respectively.

Consequently, the decomposition (4.3.1) induces

gL = g1 ⊕ · · · ⊕ gs.

Now, it can be shown that if gL is a Berger algebra then all the gis are. Notice that,

bearing Proposition 3.1.1 in mind we actually have gi = gLi .

The moral of the present discussion is now evident. It suffices to prove Theorem B
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for only two special cases:


(♠) L has a single real eigenvalue,

(♦) L has a pair of complex conjugate eigenvalues.

Luckily, the proof of case (♦) is not substantially different to the proof of case (♠). For

this reason we shall devote ourselves to elaborating a complete proof of Theorem B for

the case (♠). Thereafter, we shall be in a position to easily adapt it to the complex case

(♦).

It is obvious that g-symmetric operators with a single real eigenvalue are immediately

nilpotent, provided λ = 0. Furthermore, without loss of generality, for λ 6= 0 we may

consider the operator (L− λ · Id) instead, which is clearly nilpotent. This latter fact will

be modified at the end of the chapter in order to adapt the techniques used in (♠) to (♦).

Thus, we shall henceforth consider g-symmetric operators with a single real eigenvalue,

unless otherwise stated.

4.4 The (k;n) - case

In this section we completely exhaust the (k;n)-case. As a result, not only shall we have

exemplified the principal theorem of this chapter, but also and more importantly, we shall

have laid a firm ground for its general proof.

Lemma 4.4.1 Let L be a nilpotent g-symmetric operator of the type L(k;n), i.e., it consists

of two Jordan blocks. Then its centraliser g
(k;n)
L is a Berger algebra.

For the sake of brevity we shall henceforth write L instead of L(k;n) and gL instead of g
(k;n)
L

throughout this section. Evidently, to prove this lemma it suffices to check that the image

of the formal curvature operator defined by means of the magic formula coincides with

gL. At this juncture, it will also be worth reminding the reader that by virtue of Section
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3.1 the (k;n)-case is determined as follows. With respect to the canonical basis, we shall

write for convenience L =

L1 0

0 L2

 with Lk1 = 0 and Ln2 = 0 for 2 6 k 6 n. Clearly,

the minimal polynomial for L in this case is pmin(t) = tn. Furthermore, the metric g and

the elements of so(g) and gL are given by block matrices of the form

g=

g1 0

0 g2

 , X=

X11 X12

X21 X22

 and

0 A

Ã 0

 ,

where g1, X11 ∈ Mk×k and g2, X22 ∈ Mn×n. More importantly, we also need to bear in

mind that Xji = −gjX>ij gi and Ã = −g2A>g1 hold true. Notice that i, j = 1, 2 label the

blocks in the matrix X and are not indices in the usual sense.

We first observe that with the aid of formula (4.2.3) we can write

R(X) =

 R11(X11) R12(X12)

R21(X21) R22(X22)

 , (4.4.2)

where the following relations are satisfied

R11(X11) = Ln−11 X11 + Ln−21 X11L1 + · · ·+X11L
n−1
1 , (4.4.3)

R12(X12) = Ln−11 X12 + Ln−21 X12L2 + · · ·+X12L
n−1
2 , (4.4.4)

R21(X21) = Ln−12 X21 + Ln−22 X21L1 + · · ·+X21L
n−1
1 , (4.4.5)

R22(X22) = Ln−12 X22 + Ln−22 X22L2 + · · ·+X22L
n−1
2 . (4.4.6)

Now, these relations essentially tell us that the map R : so(g) −→ gL preserves the block-

matrix structure, which means that every blockRij(Xij) depends only on its corresponding

preimage block Xij. Thereby, the proof of Lemma 4.4.1 reduces to showing that the
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following conditions hold true.


R11(X11) = 0, R22(X22) = 0 and R21(X21) = −g>2 R12(X12)g1,

the parameters α1, . . . , αk defining gL are mutually independent.

(4.4.7)

We have shown in Section 4.2 that R is the formal curvature operator for the Lie algebra

gL. This indeed implies that ImR ⊂ gL, whence R11(X11) = R22(X22) = 0 immediately

holds true. We establish the rest of (4.4.7) by straightforward computation. Working out

(4.4.4) we easily obtain the matrix

R12(X12) =



0 · · · 0 α1 α2 α3 · · · αk

0 · · · · · · 0 α1 α2
. . .

...

...
...

...
...

...
. . .

. . . α3

0 · · · · · · · · · · · · · · · α1 α2

0 · · · · · · · · · · · · · · · 0 α1


, (4.4.8)

with entries satisfying the relations

α1 = xk1,

α2 = xk−1,1 + xk2,

α3 = xk−2,1 + xk−1,2 + xk3,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

αk = x11 + x22 + x33 + · · ·+ xkk.
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Evidently, the αis are mutually independent. Similarly, from equation (4.4.5) we derive

R21(X21) =



−α1 −α2 −α3
. . . −αk

0 −α1 −α2 −α3
. . .

0 · · · −α1 −α2 −α3

0 · · · · · · −α1 −α2

0 · · · · · · · · · −α1

0 · · · · · · · · · 0

...
...

...
...

...

0 · · · · · · · · · 0



. (4.4.9)

We now observe that (4.4.8) and (4.4.9) relate precisely as R21(X21) = −g>2 R12(X12)g1,

which settles (4.4.7). This completes the proof of Lemma 4.4.1 and completely exhausts

the (k;n)-case.

4.5 The proof of the general case

Let us begin this section with a brief discussion of the special case when L consists of

k blocks all of the same size. Remarkably, Lemma 4.4.1 can be naturally generalised.

Strictly speaking, we can still define R exactly as in the previous section and no further

modification will be needed. This is due to the fact that we do not observe any “inter-

action” between the different blocks as a result of the action of R on the elements of

so(g).

Let us illustrate this situation with the following example. Assume that L consists of

k blocks each of which is of the form

L0 =

 0 1

0 0

 . (4.5.1)
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Since L2 = 0, by the magic formula we have R(X) = LX+XL. We know from Proposition

3.1.6 that in this case the elements of so(g) have the following block matrix form

X =



B1 X1 X2 · · · · · · Xk−1

X̃1 B2 · · · · · · · · · · · ·

X̃2 · · · B3 · · · · · · · · ·
...

...
...

. . .
...

...

· · · · · · · · · · · · Bk−1 X k(k−1)
2

X̃k−1 · · · · · · · · · X̃ k(k−1)
2

Bk


(4.5.2)

with

Bj =

 βj 0

0 −βj

 , Xi =

 ai bi

ci di

 and X̃i = −

 di bi

ci ai

 , (4.5.3)

for all 1 6 j 6 k and all 1 6 i 6 k(k−1)
2

. Now, X and L are k × k block matrices. Thus

we have that the (ij)thentry of R(X) is given by

R(X)ij = (LX)ij + (XL)ij = L0Xij +XijL0.

Now, a straightforward computation shows that we have the following three possibilities

for the images of Xij.

• For i = j we compute R(X)ij = 0.

• For i < j we have that R(X)ij = L0Xp +XpL0 for some 1 6 p 6 k(k−1)
2

, which yields

R(X)ij =

 cp ap + dp

0 cp

 .
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• For i > j we similarly have R(X)ij = L0X̃p + X̃pL0 for the same p as above and hence

R(X)ij =

 −cp −ap − dp
0 −cp

 .

Apparently, the conclusion that gL is a Berger algebra is now immediate. Unfortunately,

the most general situation is not quite as simple. It turns out that the case of many

blocks of different sizes is different to the one just described. The principle difference lies

in the fact that in this situation we have “interaction” between the different blocks upon

the action of R. This difference is illustrated in two examples in Appendix A.4.

Let us now concentrate on the modification of the definition of R which is necessary

for avoiding the aforesaid “interaction”. Suppose that L and g are of the form (3.1.2)

and that not all the blocks are of the same size. Note, that some blocks may still have

the same size though. Let (V, g) and (V ′, g′) be two pseudo-Euclidean vector spaces such

that V ′ is a subspace of V and g′ = g|V ′ is non-degenerate. Assume that h ⊂ so(g′)

is a Berger subalgebra. Then if we consider the standard embedding so(g′) −→ so(g)

induced by the inclusion V ′ −→ V , h will also be a Berger subalgebra of so(g). Moreover,

if the map R′ : so(g′) −→ so(g′) is a formal curvature tensor, then its trivial extension

R : so(g)→ so(g) defined by

R

X Y

Z W

 =

R′(X) 0

0 0

 (4.5.4)

is a formal curvature tensor too. More importantly, notice that this trivial extension of

the curvature tensor still obeys Lemma 4.4.1. Thus, it is this observation that is the

quintessence of what we are about to explain. Our goal must already be clear - we wish

to build up a bigger curvature tensor out of (4.5.4) so that we could use Lemma 4.4.1
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in a blockwise manner. This will result in circumventing the “interaction” of the blocks

mentioned earlier. In practice, we introduce the operator R̂12 : so(g) −→ so(g) defined

by

R̂12



X11X12 · · · X1k

X21X22 · · · X2k

...
...

. . .
...

Xk1Xk2 · · · Xkk


=



0 R12(X12) · · · 0

R21(X21) 0 · · · 0

...
...

. . .
...

0 0 · · · 0


, (4.5.5)

where the only non zero blocks in the right hand side R12(X12) and R21(X21) are defined

in the very same fashion as in (4.4.4) and (4.4.5). Then R̂12 is a formal curvature tensor

by construction. In addition, by dint of Corollary 3.1.9, its image coincides with the

abelian subalgebra m12 ⊂ gL. Then Lemma 4.4.1 asserts that m12 is a Berger algebra.

Similarly, we introduce the operators R̂ij : so(g) → so(g) for arbitrary labels i < j. We

then naturally define the operator

R =
∑
i<j

R̂ij. (4.5.6)

To add rigour, we define an operator R : so(g) −→ gL via (4.5.6) such that

R



X11X12 · · · X1k

X21X22 · · · X2k

...
...

. . .
...

Xk1Xk2 · · · Xkk


=



0 R12(X12) · · · R1k(X1k)

R21(X21) 0 · · · R2k(X2k)

...
...

. . .
...

Rk1(Xk1) Rk2(Xk2) · · · 0


(4.5.7)

and with the requirement that R acts on each block Xij independently (compare with the

proof of Lemma 4.4.1). Strictly speaking, each of its components Rij : Xij 7→ Rij(Xij) is

defined by

Rij(Xij) = L
nij−1
i Xij + L

nij−2
i XijLj + · · ·+XijL

nij−1
j , (4.5.8)
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where nij = max{ni, nj}, and ni, nj are sizes of the nilpotent Jordan blocks Li and Lj.

Thus, we have finally arrived at the following proposition.

Proposition 4.5.9 The operator R defined by (4.5.7) and (4.5.8) is a formal curvature

tensor. Moreover, ImR = gL and, therefore, gL is a Berger algebra.

Proof. Firstly, by virtue of our construction we have that each R̂ij acts only on the blocks

Xij and Xji and does not interfere with other blocks at all. Secondly, since each R̂ij is a

formal curvature tensor so is R by linearity. Lastly, we have already explained that the

image of R̂ij is the subalgebra mij. Then, by Corollary 3.1.9 we immediately have

ImR =
∑
i<j

Im R̂ij =
∑
i<j

mij = gL,

as required. �

Evidently, the truth of this proposition manifests into the case (♠) of Theorem B. In

other words, the following theorem has been proven so far.

Theorem 4.5.10 Let g be a pseudo-Riemannian metric (not necessarily Lorentzian) and

L be a singular g-symmetric operator with a single real eigenvalue. Then its centraliser

gL in so(g) is a Berger algebra.

Having established this result it now only remains to show that the complex case (♦) does

not constitute any difficulty. Suppose that L : V −→ V is a real g-symmetric operator

with a pair of complex conjugate eigenvalues λ and λ. Since Proposition 3.1.1 is valid for

both real and complex vector spaces, we are naturally motivated to consider the complex

canonical matrix representations for the operator L and the metric g. Thus, we first need

to complexify L and g. We do this in the following manner. It is well-known from linear

algebra that on any real vector space V there exists a canonical complex structure J ,
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which by definition is an automorphism of V so that J2 = −Id|V. Now, the idea is to

define a complex structure on V such that its i and −i eigenspaces in V C respectively

coincide with the generalised eigenspaces Vλ and Vλ of L in V . This can be easily done by

virtue of Proposition 3.1.1 which is still valid for the case of complex conjugate eigenvalues.

Indeed, suppose that L has two complex conjugate eigenvalues with λ = a+ ib and b > 0.

Then with respect to the canonical basis from Proposition 3.1.1 we have that L and J are

given by the matrices

L =



a −b 1 0

b a 0 1

0 0 a b

0 0 −b 0


and J =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


.

This immediately allows us to think of L as a complex operator. Furthermore, as the

complex structure J commutes with the operator L, it is g-symmetric. It is this property

of J that enables us to complexify the metric g. We do this by introducing the bilinear

form

gC : V × V −→ C

defined by

gC(u, v) = g(Ju, v) + ig(u, v). (4.5.11)

We next observe that L viewed as a complex operator is gC-symmetric. Indeed, for any

vectors u, v ∈ V we certainly have

gC(Lu, v) = g(JLu, v)+ig(Lu, v) = g(LJu, v)+ig(u, Lv) = g(Ju, Lv)+ig(u, Lv) = gC(u, Lv).

To put it another way, we consider a complex coordinate system in V with respect to which

68



the complex operator L and the complex metric gC have matrix representations3 given by

Proposition 3.1.1. Moreover, in this complex coordinate system Propositions 3.1.6 and

3.1.8 remain valid for the complex Lie algebras so(gC) and gCL. Notice also the obvious

inclusions gCL ⊂ so(gC) ⊂ so(g). Thus, to show that gCL is a Berger algebra we first need

to establish the (k;n)-case. In fact, Lemma 4.4.1 easily generalises to the complex case.

Being a purely algebraic statement, this lemma does not cease to be valid for a complex

operator L and a complex bilinear form gC. It only necessitates defining R : so(gC) −→ gL

by means of the magic formula for a minimal polynomial pmin(t) = (t − λ)n. However,

in order to complete the proof in the general case, we need to take care of two things.

Firstly, we have to prove the theorem on the larger Lie algebra so(g). This is not a

big issue since we can always define R : so(g) −→ gL and consider its restriction to the

subalgebra so(gC). If the image of the restriction coincides with gL, so will R. Secondly,

and more importantly, the operator R must be real. For this reason we need to consider

the real minimal polynomial pmin(t) = (t− λ)n(t− λ)n instead. Then, thinking of L and

X ∈ so(gC) as complex operators and using (L− λ · Id)n = 0, we compute the following.

R(X) =
d

dt

∣∣∣
t=0

(
(L− λ · Id+ tX)n(L− λ · Id+ tX)n

)

=
d

dt

∣∣∣
t=0

(
(L− λ · Id) + tX

)n
· (L− λ · Id)n +

+ (L− λ · Id)n · d

dt

∣∣∣
t=0

(
(L− λ · Id) + tX

)n

=
d

dt

∣∣∣
t=0

(
(L− λ · Id) + tX

)n
· (L− λ · Id)n.

3Notice that the block-matrix structure for both L and gC remains as in the real case. The only
difference lies in the complex entries.
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We thus reach the following conclusion. The operator in the first bracket is clearly the

same as the one in Lemma 4.4.1 and therefore its image coincides with gL. Furthermore,

multiplying by the non-degenerate matrix (L− λ · Id)n does not change the dimension of

the image of R and thus ImR = gL.

Note that the proof of Proposition 4.5.9 was merely a block-wise generalisation of the

(k;n)-case. Therefore, the truth of its complex counterpart is immediately guaranteed by

the complex version of Lemma 4.4.1 that we have already mentioned above. This clarifies

the complex case (♦) and we close this chapter as it deserves. Namely, we proved the

following theorem.

Theorem B Let g be a pseudo-Riemannian metric (not necessarily Lorentzian) and L be

a singular g-symmetric operator with centraliser gL in so(g). Then gL is a Berger algebra.
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Chapter 5

Pseudo-Riemannian metrics

realising gL as a holonomy algebra

In the present chapter we shall add some geometrical flavour into our work. This en-

deavour of ours will ultimately affirm that gL is indeed a holonomy algebra. We begin

with the recollection of some properties of covariantly constant (1, 1)-tensor fields. In

the second section we give a concise description of the main problem of this chapter and

discuss the strategy for its resolution. We thenceforward elaborate the construction of

the pseudo-Riemannian metrics realising gL as a holonomy algebra.

5.1 Covariantly constant (1, 1)-tensor fields

The covariantly constant (1, 1)-tensor fields will be of paramount importance and of con-

stant use in this chapter. For these reasons, we briefly introduce a few of their properties

relevant to our purposes. At this juncture it is worth reminding the reader that the co-

variant derivative ∇ξ is linear. Furthermore, it satisfies the Leibniz rule as well. This

means that for any two tensor fields T1 and T2 we have the identity

∇ξ

(
T1T2

)
=
(
∇ξT1

)
T2 + T1

(
∇ξT2

)
,
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for any tangent vector ξ. It must be noticed that T1 and T2 can be tensor fields of any

type including vectors (covectors) in particular. To make some good use of this property,

recall that for a given (1, 1)-tensor field L one can define the map

NL : Γ (TM)× Γ (TM) −→ Γ (TM)

by

NL(ξ, η) = [Lξ, Lη]− L[Lξ, η]− L[ξ, Lη] + L2[ξ, η] (5.1.1)

for any ξ, η ∈ Γ (TM). This map is de facto a (1, 2)-tensor and is known in the literature

as the Nijenhuis tensor. In order to prove that NL is indeed a tensor we first observe that

the bilinearity of the commutator [·, ·] immediately implies

NL(ξ1 + ξ2, η) = NL(ξ1, η) + NL(ξ2, η)

for any ξ, η ∈ Γ (TM). Our goal, however, is to show that for any two smooth functions

f1 and f2 we have that

NL(f1ξ1 + f2ξ2, η) = f1NL(ξ1, η) + f2NL(ξ2, η).

Clearly, it is sufficient to establish the truth of

NL(fξ, η) = fNL(ξ, η)

for any smooth function f . It is a straightforward computation to see that for any smooth

function f and any ξ, η ∈ Γ (TM) we have the following identity

[fξ, η] = f [ξ, η]− (ηf)ξ.
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It is by means of this latter that we easily compute

[L(fξ), Lη] = f [ξ, η]− Lη(f)Lξ,

L[L(fξ), η] = fL[Lξ, η]− η(f)L2ξ,

L[fξ, Lη] = fL[ξ, Lη]− Lη(f)Lξ,

L2[fξ, Lη] = fL2[ξ, Lη]− η(f)L2ξ.

It is now obvious that NL(fξ, η) = fNL(ξ, η), hence NL is a tensor. We shall next see that

in our case NL actually vanishes. Since ∇ is torsion-free we have that [ξ, η] = ∇ξη−∇ηξ

and thus naturally rewrite (5.1.1) as

NL(ξ, η) = ∇Lξ(Lη)−∇Lη(Lξ)− L
(
∇Lξη −∇η(Lξ)

)
− L

(
∇ξ(Lη)−∇Lηξ

)
+

+ L2
(
∇ξη −∇ηξ

)
.

Now, using the Leibniz rule for ∇ξ we easily obtain

NL(ξ, η) = L∇Lξη −
(
∇LξL

)
η − L∇Lηξ −

(
∇LηL

)
ξ − L∇Lξη + L2∇ηξ +

+ L
(
∇ηL

)
ξ − L2∇ξη − L

(
∇ξL

)
η + L∇Lηξ + L2∇ξη − L2∇ηξ

= −
(
∇LξL

)
η −

(
∇LηL

)
ξ + L

(
∇ηL

)
ξ − L

(
∇ξL

)
η.

It is obvious that ∇L = 0 implies ∇ξL = 0 for any ξ. But then ∇LξL = 0 as well, hence

NL(ξ, η) = 0.

It is well-known that every operator naturally splits into the sum of its symmetric

and skew-symmetric parts. Write L = Ls + La where Ls and La are the symmetric and

skew-symmetric parts respectively. Now naturally arises the question whether or not

73



both Ls and La are covariantly constant provided that L is? By assumption we have that

∇ξL = 0. Then, it is not difficult to see that (∇ξL)∗ = ∇ξ(L
∗). On the one hand, we

have that

0 = (∇ξL)∗ = (∇ξL
s)∗ + (∇ξL

a)∗ = ∇ξ(L
s)∗ +∇ξ(L

a)∗ = ∇ξL
s −∇ξL

a,

and therefore ∇ξL
s = ∇ξL

a. On the other hand, 0 = ∇ξL = ∇ξ(L
s + La) implies that

∇ξL
s = −∇ξL

a and thus ∇ξL
s = ∇ξL

a = 0.

We next focus our attention on the eigenvalues of L. Are they constant provided

∇L = 0? The answer is that they are. To see this, let us choose a curve γ : [0, 1] −→ M

with ends γ(0) = p and γ(1) = q. Consider TpM and suppose its basis is e1(0), ..., en(0).

Now, let us parallelly transport it along the curve γ to the point q. Then, as parallel

transport is an isomorphism of tangent spaces, we only end up with a basis for TqM,

say e1(1), ..., en(1). Further, as ∇γL = 0 is tantamount to PγL(p)P−1γ = L(q), where

Pγ is precisely the parallel transport just mentioned, we conclude that the matrix of L

remains the same with respect to both the bases e1(0), ..., en(0) and e1(1), ..., en(1). Thus,

the eigenvalues of any covariantly constant (1, 1)-tensor field are necessarily constant. In

summary, we have proven the following theorem.

Theorem 5.1.2 Let M be a manifold with Levi-Civita connection ∇ and suppose that

L : TM −→ TM is a covariantly constant (1, 1)-tensor field, i.e. ∇L = 0. Then

(i) the eigenvalues of L are constant,

(ii) both the symmetric and skew-symmetric parts of L are covariantly constant,

(iii) the Nijenhuis tensor for L vanishes.

It must be noticed that part (i) of this last theorem will be of particular importance for

our approach.

We conclude this section with the following discussion. For the purposes of this in-
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vestigation we need to understand how the curvature operator R(ξ, η) acts upon a given

(1, 1)-tensor field. In order to distinguish this case to the usual one when the curvature

acts on tangent vector fields, we shall write

Rξ,η(L) = ∇ξ∇η(L)−∇η∇ξ(L)−∇[ξ,η](L),

for some arbitrary (1, 1)-tensor field L. Certainly, for the sake of consistency, we shall

write

Rξ,η(ζ) = R(ξ, η)(ζ),

for any tangent vector field ζ. Now, a back of the envelope computation yields

Rξ,η(T1T2) =
(
Rξ,η(T1)

)
T2 + T1

(
Rξ,η(T2)

)
, (5.1.3)

for any two (1, 1)-tensor fields T1 and T2. Since (5.1.3) is nothing but a reincarnation of

the Lebniz rule for the covariant derivative, it holds true for any types of tensor fields.

We make immediate use of this property by proving the following handy proposition.

Proposition 5.1.4 The action of the curvature operator upon a (1, 1)-tensor field L is

determined by Rξ,η(L) = [R(ξ, η), L].

Proof. Let ζ be arbitrary tangent vector field. Then, by notation and virtue of (5.1.3) we

easily have

Rξ,η(L)ζ = Rξ,η(Lζ)− LRξ,η(ζ) =
(
R(ξ, η)L− LR(ξ, η)

)
ζ = [R(ξ, η), L]ζ,

as required. �
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5.2 Description of the problem

In order to achieve the final goal of this dissertation, we need to explicitly construct

pseudo-Riemannian metrics which realise gL as its holonomy algebra. To put it another

way, we shall settle by the end of this chapter the following geometric problem.

Problem 4 Let us consider the linear operator L : Tu0M → Tu0M for a given manifold

M. We then wish to find (locally!) a pseudo-Riemannian metric g on M and a (1, 1)-

tensor field L(u) such that

1. ∇L(u) = 0 with the initial condition L(u0) = L,

2. hol (∇) = gL.

The following three remarks must be brought into prominence. Firstly, the condition

∇L(u) = 0 guarantees that hol (∇) ⊂ gL (see Proposition 3.5.4). Secondly, we have the

inclusion ImR(u0) ⊂ hol (∇) where u0 ∈ M is a fixed point and R is now the Riemann

curvature tensor of g1. Lastly, by virtue of the Ambrose-Singer holonomy theorem, to

show that the second condition holds true it suffices to show that R(u0) coincides with

the formal curvature tensor defined previously by means of the magic formula, i.e.,

d

dt

∣∣∣
t=0
pmin(L+ tX).

Notice that this last remark naturally requires L to be g-symmetric and we shall assume

it as such throughout the entire chapter. Now, having stated the problem let us briefly

describe our strategy towards its solution. We shall rely upon two important geometric

facts.

1Opposed to the previous chapter, by the end of the present chapter R will stand for the Riemann
curvature tensor .
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Proposition 5.2.1 For every metric g there exists a local coordinate system such that

∂gij
∂uα

(0) = 0 for all i, j, α. In particular, in this coordinate system we have Γ k
ij(0) = 0 and

the components of the curvature tensor at u0 = 0 are defined as some combinations of the

second derivatives of g.

This is a standard result and the reader may wish to refer to [CCL] for a proof. Its

usefulness lies in the fact that it enables us to simplify our computations at the point

u0 = 0. This will essentially result in ignoring the linear terms of the metric g. Due

to A. P. Shirokov [Shi], the second geometric result suggests a remarkable property of

covariantly constant (1, 1)-tensor fields.

Theorem 5.2.2 (Shirokov) If L satisfies ∇L = 0 for a symmetric connection ∇, then

there exists a local coordinate system u1, . . . , un in which L is constant.

This theorem is essentially our starting point. Suppose that u1, ...., un is the coordinate

system from the Shirokov theorem. We shall soon see that in such a coordinate system,

the equation ∇L = 0 can be conveniently rewritten in the following form:

(
∂gip
∂uβ
− ∂giβ
∂up

)
Lβk =

(
∂giβ
∂uk
− ∂gik
∂uβ

)
Lβp . (5.2.3)

This equation is obviously linear and therefore if we represent g as a power series in u,

then (5.2.3) must hold true for each term of this expansion. This motivates us to set

L(u) = const and then to look for metrics g(u) in the “constant + quadratic” form,

which in other words is

gij(u) = g0ij +
∑
p,q

Bij,pqupuq. (5.2.4)

Clearly, B satisfies the obvious symmetry relations Bij,pq = Bji,pq and Bij,pq = Bij,qp.

It is this choice of “quadratic” metrics (5.2.4) that enables us to attack Problem 4 by

algebraic means. In other words we are able to translate the original geometric problem
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into a purely algebraic one. This will be done in the following three steps. Firstly, we

shall show the condition that L is g-symmetric reads

Bij,pqLil = Bil,pqLij. (5.2.5)

This simple property will be of constant use in most of our computations. Secondly, we

shall derive one very useful formula for the curvature tensor in terms of B. More precisely,

we shall prove that the curvature tensor of g at the origin u0 = 0 takes the following form

Ri
αβ,k = g0

is
(
Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk

)
. (5.2.6)

In particular, R (at the origin) depends linearly on B, which is

Rλ1B1+λ2B2 = λ1RB1 + λ2RB2 .

Thirdly, and more importantly, we shall show that the condition ∇L = 0 amounts to the

following equation for B

(
Bip,βq − Biβ,pq

)
Lβk =

(
Bβi,kq − Bik,βq

)
Lβp . (5.2.7)

Thus, by virtue of these three facts, the realisation problem reduces to finding a B satis-

fying (5.2.5), (5.2.7) and such that (5.2.6) coincides with the formal curvature tensor as

defined in Theorem 4.5.10. From the formal viewpoint, this is a system of linear equations

on B which needs to be solved.

5.3 Prerequisites and lemmata

In this section, we discuss the technical results needed for our construction. More precisely,

this section explicitly justifies the algebraic reformulation of Problem 4. We shall first
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quickly establish (5.2.5).

Lemma 5.3.1 Let L be a constant g-symmetric operator. Then gαsL
α
k = gαkL

α
s . In

particular, Bαs,pqLαk = Bαk,pqLαs .

Proof. By definition for any two vectors ξ and η, we have

g(Lξ, η) = g(ξ, Lη).

Writing both sides of this equation in coordinates we have the following consecutive

implications

gαβ(Lξ)αηβ = gαβξ
α(Lη)β

⇓

gαβL
α
kξ

kηβ = gαβL
β
s ξ

αηβ

⇓

gαβL
α
kδ

β
s ξ

kηs = gαβL
β
s δ

α
k ξ

kηs

⇓

gαsL
α
k = gkβL

β
s .

Since α and β are summation indices, the first relation holds true. Moreover, it immedi-

ately implies the second, as g0αsL
α
k = g0αkL

α
s holds true as well. �

To continue, let us recall that the Christoffel symbols for a metric g are given by

Γ l
ij =

1

2
glp

(
∂gpj
∂ui

+
∂gip
∂uj
− ∂gij
∂up

)

and that the components of the curvature tensor for g are computed via

Rl
ijk =

∂Γ l
jk

∂ui
− ∂Γ l

ik

∂uj
+ Γ r

jkΓ
l
ir − Γ r

ikΓ
l
jr.

Then using the former we easily settle the following lemma.
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Lemma 5.3.2 The Christoffel’s symbols for the metric gij(u) = g0ij +Bij,pqupuq are given

by

Γ i
βk = g0

is
(
Bsk,βt + Bβs,kt − Bβk,st

)
ut.

Proof. The following straightforward computation affirms the claim.

Γ i
βk =

1

2
g0
is
(∂gsk
∂uβ

+
∂gβs
∂uk

− ∂gβk
∂us

)

=
1

2
g0
is
(
Bsk,rt

∂(urut)

∂uβ
+ Bβs,rt

∂(urut)

∂uk
− Bβk,rt

∂(urut)

∂us

)

=
1

2
g0
is
(
Bsk,rt(δrβut + urδtβ) + Bβs,rt(δrkut + urδtk)− Bβk,rt(δrsut + urδts)

)

= g0
is
(
Bsk,βt + Bβs,kt − Bβk,st

)
ut. �

Now, by means of this lemma, we easily prove further

Lemma 5.3.3 Let gij(u) = g0ij +Bij,pqupuq. Then the components of its curvature tensor

at the origin are given by

Ri
αβ,k = g0

is
(
Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk

)
. (5.3.4)

Proof. By virtue of Proposition 5.2.1 we have that Γα
βγ(0) = 0 for all α, β, γ, and so

Ri
αβ,k =

∂Γ iβk
∂uα
− ∂Γ iαk

∂uβ
. Then using Lemma 5.3.2 we immediately obtain

Ri
αβ,k = g0

is

((
Bsk,βt + Bβs,kt − Bβk,st

)
δtα −

(
Bsk,αt + Bαs,kt − Bαk,st

)
δtβ

)

= g0
is
(
Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk

)
. �
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This Lemma clearly justifies the formula (5.2.6). However, it remains to show that at the

origin R depends linearly on B. We establish this fact with the following proposition.

Proposition 5.3.5 Let g and g̃ be two metrics of the above “quadratic” form with equal

constant terms. Then, at the origin, the curvature tensor for g + g̃ is proportional to the

sum of the curvature tensors for g and g̃ respectively.

Proof. Write Ri
αβ,k and R̃i

αβ,k for the curvature tensors of g and g̃ respectively. Write the

two metrics in coordinates as

gij = g0ij + Bij,pgupuq

and

g̃ij = g0ij + B̃ij,pgupuq.

We then have that the components of the metric g + g̃ are given by

(g + g̃)ij = 2g0ij +
(
Bij,pq + B̃ij,pg

)
upuq.

Thus we compute the curvature tensor for the metric g + g̃, denoted by R̂i
αβ,k.

R̂i
αβ,k = 2g0

is
(
B̂βs,αk + B̂αk,βs − B̂βk,αs − B̂αs,βk

)

= 2g0
is
(
Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk

)
+ 2g0

is
(
B̃βs,αk + B̃αk,βs − B̃βk,αs − B̃αs,βk

)

= 2
(
Ri
αβ,k + R̃i

αβ,k

)
. �

We finally need to settle (5.2.7). Let L be an operator such that in some coordinate system

it is independent of the local coordinates, i.e., ∂L
∂uα

= 0 for all uα. We are interested in
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solving the following system of equations

∇L = 0. (5.3.6)

By solving these equations we mean that L is known and the metric is unknown. Recall

that in components (5.3.6) is written as

∇kL
i
j =

∂Lij
∂uk

+ Γ i
lkL

l
j − Γ l

jkL
i
l = 0. (5.3.7)

Then, as L is constant, we can rewrite our original equation (5.3.6) in the following simpler

form

Γ i
lkL

l
j = Γ l

jkL
i
l. (5.3.8)

Now, working simultaneously on both sides of (5.3.8), we have that

gis
(
∂gks
∂ul

+ ∂gsl
∂uk
− ∂glk

∂us

)
Llj = glp

(
∂gkp
∂uj +

∂gjp
∂uk
− ∂gjk

∂up

)
Lil

⇓

gαi · gis
(
∂gks
∂ul

+ ∂gsl
∂uk
− ∂glk

∂us

)
Llj = gαi · glp

(
∂gkp
∂uj +

∂gjp
∂uk
− ∂gjk

∂up

)
Lil
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Since gαiL
i
l = gliL

i
α, we have further

δsα

(
∂gks
∂ul

+ ∂gsl
∂uk
− ∂glk

∂us

)
Llj = δpi

(
∂gkp
∂uj +

∂gjp
∂uk
− ∂gjk

∂up

)
Liα

⇓(
∂gkα
∂ul

+ ∂gαl
∂uk
− ∂glk

∂uα

)
Llj =

(
∂gki
∂uj +

∂gji
∂uk
− ∂gjk

∂ui

)
Liα

⇓(
∂gkα
∂ul

+ ∂gαl
∂uk
− ∂glk

∂uα

)
δliL

i
j =

(
∂gki
∂uj +

∂gji
∂uk
− ∂gjk

∂ui

)
Liα

⇓(
∂gkα
∂ui + ∂gαi

∂uk
− ∂gik

∂uα

)
Lij =

(
∂gki
∂uj +

∂gji
∂uk
− ∂gjk

∂ui

)
Liα

⇓(
∂gkα
∂ui −

∂gik
∂uα

)
Lij + ∂

∂uk
(gαiL

i
j) =

(
∂gki
∂uj −

∂gjk
∂ui

)
Liα + ∂

∂uk
(gjiL

i
α)

Clearly, ∂
∂uk

(gαiL
i
j) = ∂

∂uk
(gjiL

i
α), and so we obtain the following linear differential equa-

tion for the metric gij

(
∂gkα
∂ui
− ∂gik
∂uα

)
Lij =

(
∂gki
∂uj
− ∂gjk

∂ui

)
Liα.

Putting α = p, i = β, k = i and j = k we have that (5.3.6) reduces to a system of first

order linear differential equations for gij, i.e.,

(
∂gip
∂uβ
− ∂giβ
∂up

)
Lβk =

(
∂giβ
∂uk
− ∂gik
∂uβ

)
Lβp . (5.3.9)
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Since the metric is of the form gij(u) = g0ij + Bij,pqupuq, we have the following

(
∂gip
∂uβ
− ∂giβ
∂up

)
Lβk =

(
Bip,st

∂

∂uβ
(usut)− Biβ,st

∂

∂up
(usut)

)
Lβk

=
(
Bip,st(δsβut + usδtβ)− Biβ,st(δsput + usδtp)

)
Lβk

= 2
(
Bip,βt − Biβ,pt

)
utLβk .

Similarly, we have

(
∂giβ
∂uk
− ∂gik
∂uβ

)
Lβp = 2

(
Biβ,kt − Bik,βt

)
utLβp .

Now, as L does not depend on ut, we easily conclude that (5.3.9) is equivalent to

(
Bip,βt − Biβ,pt

)
Lβk =

(
Biβ,kt − Bik,βt

)
Lβp . (5.3.10)

Conversely, suppose that there exist bilinear forms Bij,pq such that (5.3.10) holds. Then,

by virtue of Lemma 5.3.1 and the symmetry of B’s we have that Bpβ,itLβk = Bβk,itLβp . Thus,

starting from (5.3.10) we have the following

(
Bpβ,it + Bip,βt − Biβ,pt

)
Lβk =

(
Bβk,it + Biβ,kt − Bik,βt

)
Lβp

gjp
(
Bpβ,it + Bip,βt − Biβ,pt

)
Lβku

t = gpj
(
Bβk,it + Biβ,kt − Bik,βt

)
δβj L

j
pu

t

Γ j
iβL

β
k = gpj

(
Bjk,it + Bij,kt − Bik,jt

)
Ljpu

t

Γ j
iβL

β
k = Γ p

ikL
j
p.
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Clearly, the last line is exactly (5.3.8). We have therefore just proven the following

proposition.

Proposition 5.3.11 Let g be a metric of the type gij(u) = g0ij+Bij,pqupuq with Levi-Civita

connection ∇. Suppose that L is a g-symmetric operator which is constant with respect to

our local coordinate system. Then, ∇L = 0 if and only if the following identity holds true

(
Bip,βt − Biβ,pt

)
Lβk =

(
Biβ,kt − Bik,βt

)
Lβp .

5.4 One special case of pseudo-Riemannian metrics

realising gL as a holonomy algebra

We now aim our attention at one very special case. Following the discussion in Section 5.2

we know that in order to complete our inquiry we have to find a suitable Bij,αβ satisfying

the algebraic conditions (5.2.5), (5.2.6) and (5.2.7). It is not difficult to conjecture at this

point that Bij,αβ should be constructed by means of L and g0. But how and where to

start? Considering possibly the simplest example, in the first half of this section we shall

make an “intelligent guess” of what Bij,αβ would be. It will not be very difficult thereafter

to predict the general form for Bij,αβ.

For the purposes of the present section we shall confine ourselves to considering a

linear operator of the type L(2;2). According to the algebraic discussion given in Chapter

4 we have that its formal curvature tensor is given by the formula

R(X) = LX +XL, (5.4.1)

where X = ξ ∧ η = ξ ⊗ g(η)− η ⊗ g(ξ). Under these suppositions we prove the following

lemma.
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Lemma 5.4.2 The components for the formal curvature tensor (5.4.1) are given by

Ri
αβ,k = Liαgβk − Liβgαk + δiαgβsL

s
k − δiβgαsLsk. (5.4.3)

Proof. For any three vectors ξ, η and ζ we have the following

R(ξ ∧ η)ζ = L
(
ξ ⊗ g(η)− η ⊗ g(ξ)

)
ζ +

(
ξ ⊗ g(η)− η ⊗ g(ξ)

)
Lζ

= (Lξ) · g(η, ζ)− (Lη) · g(ξ, ζ) + ξ · g(η, Lζ)− η · g(ξ, Lζ).

Which, written in coordinates, is

(
R(ξ ∧ η)ζ

)i
= Liαξ

αgβkη
βζk − Liβηβgαkξαζk + ξigβkη

β(Lζ)k − ηigαkξα(Lζ)k

= Liαgβkξ
αηβζk − Liβgαkξαηβζk + δiαgβsL

s
kξ
αηβζk − δiβgαsLskξαηβζk

=
(
Liαgβk − Liβgαk + δiαgβsL

s
k − δiβgαsLsk

)
ξαηβζk

≡ Ri
αβ,kξ

αηβζk. �

Now, our intelligent guess is based upon the just proven lemma as well as formula (5.3.4).

By construction Bij,αβ is such that the Riemann curvature tensor for the quadratic metric

gij(u) = g0ij+
∑
α,β

Bij,αβuαuβ coincides with the formal curvature tensor R(X) = LX+XL.

To put it another way, Bij,αβ must satisfy the following system of equations

Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk = Lαsgβk − Lβsgαk + Lβkgαs − Lαkgβs. (5.4.4)

The right hand side of (5.4.4) is obtained from the right hand side of (5.4.9) using the

identity Lij = gisL
s
j . Now, it is a matter of straightforward verification to see that

Bβs,αk = −Lβsgαk and Bβs,αk = −Lαkgβs
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are two particular solutions of (5.4.4). Furthermore, since (5.4.4) is a system of linear

equations then so is a linear combination of its solutions. This observation motivates

us to look for B’s which are linear combinations of Lαkgβs. Thus, our intelligent guess

brought us to the following proposition.

Proposition 5.4.5 Let g0 be some constant metric and L be a g0-symmetric operator

which is constant in the local coordinate system u1, ..., un and is nilpotent of order 2.

Consider the metric

gij(u) = g0ij −
1

2

∑
α,β

(
Lijg

0
αβ + Lαβg

0
ij

)
uαuβ, (5.4.6)

where Lij = g0ikL
k
j . Then L is g-symmetric and ∇L = 0, where ∇ is the Levi-Civita

connection for g. Furthermore, we have that Riemann curvature tensor for the metric

(5.4.6)is given by

R(X) = LX +XL.

Proof. Firstly, we observe that LijL
i
t = g0ikL

k
jL

i
t = LktL

k
j ≡ LitL

i
j. Using further the fact

that L is g0-symmetric we easily compute

Bij,αβLit = −1

2

(
Lijg

0
αβ + Lαβg

0
ij

)
Lit = −1

2

(
Lijg

0
αβL

i
t + Lαβg

0
ijL

i
t

)

= −1

2

(
Litg

0
αβL

i
j + Lαβg

0
ilL

i
j

)
= −1

2

(
Litg

0
αβ + Lαβg

0
il

)
Lij

= Bit,αβLij.

Now, by Lemma 5.3.1 we conclude that L is indeed g-symmetric. Secondly, we already
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know from Proposition 5.3.11 that to prove that ∇L = 0 is to show that

(Bip,βq − Biβ,pq)Lβk = (Bβi,kq −Bik,βq)L
β
p . (5.4.7)

Since L2 = 0 is rewritten in coordinates as LikL
k
j = 0, we first compute

(
Bip,βq − Biβ,pq

)
Lβk =

(
Lipg

0
βq + Lβqg

0
ip

)
Lβk −

(
Liβg

0
pq + Lpqg

0
iβ

)
Lβk

= Lipg
0
βqL

β
k + gqsL

s
βg

0
ipL

β
k − gisL

s
βg

0
pqL

β
k −

− Lpqg
0
iβL

β
k =

(
Lipg

0
βq − Lpqg0iβ

)
Lβk

=
(
Lipg

0
βq − Lpqg0iβ

)
δpkL

β
p =

(
Likg

0
βq − Lkqg0iβ

)
Lβp .

Similarly, we obtain

(
Bβi,kq − Bik,βq

)
Lβp =

(
Lkqg

0
βi − Likg0βq

)
Lβp .

Now, as the indices q and i both run from 1 to n, nothing changes if we swap them and

therefore ∇L = 0. Finally, using formula (5.3.4), we compute the Riemann curvature
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tensor for the metric (5.4.6). Namely,

Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk = −1

2

(
Lβsg

0
αk + Lαkg

0
βs

)
−

− 1

2

(
Lαkg

0
βs + Lβsg

0
αk

)
+

1

2

(
Lβkg

0
αs + Lαsg

0
βk

)
+

1

2

(
Lαsg

0
βk + Lβkg

0
αs

)

= Lαsg
0
βk − Lβsg0αk + Lβkg

0
αs − Lαkg0βs.

This shows that the Riemann curvature tensor is indeed given by R(X) = LX +XL and

the proof is complete. �

At this juncture, the following important remark should be made. On the one hand, we

have just brought into prominence the metrics of the form

gij(u) = g0ij −
1

2
Bij,αβuαuβ. (5.4.8)

On the other hand, the reader may recall the following well-known formula for the metric

tensor in Riemann normal coordinates

gµν(u) = gµν −
1

3
Rµανβu

αuβ + · · · , (5.4.9)

where Rµανβ is the Riemann tensor. Let us briefly outline the difference between the

formulas (5.4.8) and (5.4.9). It is customary in Riemannian geometry to consider the

Taylor expansion of the metric tensor. Indeed, since the metric components are smooth

functions we can expand each component in a Taylor series about a given point p as

gµν(p+ x) = gµν + gµν,αx
α +

1

2!
gµν,αβx

αxβ +
1

3!
gµν,αβγx

αxβxγ + · · · , (5.4.10)
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where gµν is evaluated at the point p and as usual the symbol gµν,αβγ... denotes the partial

derivatives of gµν with respect to xα, xβ, xγ... at the point p. It is clear that the second

order derivatives of the metric possess the following symmetries gµν,αβ = gνµ,αβ = gµν,βα.

Now, at the origin of coordinates such that the first order derivatives of the metric vanish

one can compute for the components of the Riemann tensor

Rµναβ =
1

2

(
gµβ,αν − gµα,νβ − gνβ,µα + gαν,µβ

)
, (5.4.11)

which in our notation2 is equivalent to formula 5.3.4. It is sometimes convenient to work

with Riemann normal coordinates which by definition are such that gµν,α = 0 and with

the following additional symmetries of the second order derivatives of the metric

gab,cd = gcd,ab and gab,cd + gac,db + gad,bc = 0. (5.4.12)

It is due to this symmetries that the expression for the components of the Riemann tensor

simplifies to

Rµναβ =
1

2

(
gµβ,αν − gµα,νβ

)
. (5.4.13)

Notice that (5.4.13) indeed implies (5.4.9) but this is only valid in the case of Riemann

normal coordinates. In contrast, in this thesis we consider coordinates such that only

the first order derivatives of the metric vanish and do not assume the special additional

symmetry for the second order derivatives of the metric. For this reason our formula

(5.4.8) has different second order terms than the second order terms in the well-known

formula (5.4.9).

With Proposition 5.4.5 we have solved Problem 4 for one very special case. At the end

of this section the following remark must be made. A nilpotent operator of degree k > 2

2In our notation Bµν,αβ ≡ 1
2gµν,αβ
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may be of many different types. For instance, the operators of types (m; k), (l;m; k) and

(l;m; k; k; k) are all nilpotent of degree k, provided that k = max(k, l,m). However, this

will not be any obstacle, since we shall first settle Problem 4 for the important (k;n)-case,

which is de facto the main issue (see Section 4.5).

5.5 The general construction

We are now just a step away from the climax of this thesis. In its final section, we shall

discuss the general construction of the class of pseudo-Riemannian metrics realising the

Lie algebra gL as a holonomy algebra. Since the main result herein is of a rather general

nature, it is preferable to work with invariant notation. Thus, in order to avoid the clumsy

coordinate computations, we shall be working within the following framework.

Starting from the metric gij = g0ij + Bij(u, u), we wish to rewrite the bilinear form

Bij(u, u) = Bij,pqupuq in invariant terms. Bearing in mind the discussion in the previous

section we are motivated to write, up to a factor, B =
∑
α

Cα ⊗ Dα, where C and D are

bilinear forms associated with some g0-symmetric operators C and D. For greater clarity,

let us first consider the bilinear form B = C ⊗ D. This expression for B clearly allows us

to write Bij,pq = Cij · Dpq with Cij = (g0)iαC
α
j , Dpq = (g0)pαD

α
q . Henceforth, the “curly”

capitals will denote forms whereas the usual ones their corresponding operators. In this

new language we shall first prove the following proposition.

Proposition 5.5.1 Assuming B = −1
2
C ⊗D, the algebraic identities (5.2.5), (5.2.6) and

(5.2.7) are respectively rewritten as

CL = LC, (5.2.5′)

R(X) = −CXD + (CXD)∗, (5.2.6′)

[CXD,L] + [CXD,L]∗ = 0. (5.2.7′)
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Remark. It must be noted that while (5.2.6′) necessitates X ∈ so(g0), formula (5.2.7′)

holds true for the more general case X ∈ gl(V ).

Proof. Clearly, our goal is to rewrite the algebraic identities (5.2.5), (5.2.6) and (5.2.7) in

an invariant form. Recall that the first one was Bαs,pqLαk = Bαk,pqLαs . We compute for the

left hand side of this last expression

Bαs,pqLαk = g0αaC
a
s g

0
paD

a
qL

α
k = g0αaC

a
sL

α
kg

0
paD

a
q = Ca

sLakg
0
paD

a
q = g0ktC

a
sL

t
ag

0
paD

a
q .

Similarly, the right hand side reduces to

Bαk,pqLαs = g0ktC
t
αL

α
s g

0
paD

a
q .

Thus, Bαs,pqLαk = Bαk,pqLαs is tantamount to Ca
sL

t
a = Ct

αL
α
s , which is precisely CL = LC.

We perceive the truth of (5.2.6′) by virtue of the following computation.

Ri
αβ,kX

αβ = (g0)is
(
Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk

)
Xαβ

= −1

2
(g0)is

(
CβsDαkXαβ + CαkDβsXαβ − CβkDαsXαβ − CαsDβkXαβ

)

= −1

2
(g0)is

(
(DXC)ks + (CXD)ks − (DXC)sk − (CXD)sk

)

= −(g0)is
(

(CXD)sk + (DXC)sk

)
= −

(
(CXD)ik + (DXC)ik

)
.

Notice that we have used the obvious fact that both the forms (CXD)ks and (DXC)ks
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are g0 skew-symmetric. We thus obtain, in invariant terms, the following identity

R(X) = −CXD −DXC.

Now, (5.2.6′) is immediately justified by virtue of (CXD)∗ = −DXC.

Our starting point in proving the last algebraic identity is the fact that the invariant

formula A+A∗ = 0 is rewritten in matrix terms as gA+A>g = 0. Then, by virtue of the

latter, we write (5.2.7′) in coordinates as

g0iα

(
Ci
kX

k
l D

l
jL

j
s − LijC

j
kX

k
l D

l
s

)
+ g0is

(
Ci
kX

k
l D

l
jL

j
α − LijC

j
kX

k
l D

l
α

)
= 0.

Now, using the g0-symmetry of L, which is g0iαL
i
j = g0ijL

i
α, as well as the obvious identity

g0ijL
i
αC

j
k = LiαCik = LjαCjk, we reduce the last expression to

(
CskDjβ − CjkDsβ

)
Ljα =

(
CjkDαβ − CαkDjβ

)
Ljs.

Clearly, this last expression is equivalent to

(
Bsk,jβ − Bjk,sβ

)
Ljα =

(
Bjk,αβ − Bαk,jβ

)
Ljs,

which is precisely (5.2.7) and therefore the proof is complete. �

More generally, if B =
∑
α

Cα ⊗Dα, then the corresponding conditions on B are obtained

from (5.2.5′), (5.2.6′) and (5.2.7′) simply by summing over α. This motivates us to consider

the following general framework. Let B =
∑
α

Cα⊗Dα where Cα and Dα are g0-symmetric

operators. Consider B as the linear map

B : gl(V ) −→ gl(V )
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B(X) =
∑
α

CαXDα.

In other words, B(X) is obtained from B by replacing ⊗ by X. Then the algebraic

identities (5.2.5′), (5.2.6′) and (5.2.7′) can be conveniently rewritten as

[Cα, L] = 0, (5.2.5′′)

R(X) = −B(X) +B(X)∗, (5.2.6′′)

[B(X), L] + [B(X), L]∗ = 0. (5.2.7′′)

It is not difficult to observe that if B(X) = CXD +DXC we are actually in the case of

Proposition 5.4.5. Moreover, we have in this case that B(X) = −B(X)∗ and therefore

formula (5.2.6′′) shows how to reconstruct B from R. Since R(X) = −2B(X) we can easily

guess what is the general form of B. Indeed, replacing X by ⊗ yields B = −1
2
R(⊗). Note

that this last expression simply means that, up to a factor and some permutation of

indices, R and B coincide as tensors of type (2, 2). This simple observation motivates us

to consider

B = −1

2
· d

dt

∣∣∣
t=0
pmin(L+ t · ⊗), (5.5.2)

where pmin(λ) is the minimal polynomial of L. This formula looks a bit strange, but, in

fact, it defines a tensor B of type (2, 2) whose meaning is very simple. If the minimal

polynomial of L is pmin(t) =
n∑

m=0

amt
m, then

B = −1

2
·

n∑
m=0

am

m−1∑
j=0

Lm−1−j ⊗ Lj. (5.5.3)
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This formula is obtained from the right hand side of (4.2.2), i.e.,

d

dt

∣∣∣
t=0

(
n∑

m=0

am

(
L+ t ·X

)m)
=

n∑
m=0

am

m−1∑
j=0

Lm−1−jXLj,

by substituting ⊗ instead of X. With this formula in mind, we are in a position to state

and prove the foremost result of this chapter.

Theorem 5.5.4 Assume that L is a g0-symmetric operator which is constant in coordi-

nates u. Define the quadratic metric g(u) = g0 + B(u, u) with Bij,pq = g0iαg
0
pβB

α,β
j,q , where

B is constructed from L by virtue of (5.5.2) (or, equivalently, by (5.5.3)). Then

1) L is g-symmetric,

2) ∇L = 0, where ∇ is the Levi-Civita connection for g,

3) The Riemann curvature tensor for g at the origin is defined by (4.2.2), i.e.,

R(X) =
d

dt

∣∣∣
t=0
pmin(L+ tX).

Proof. Since B is of the form
∑
α

Cα ⊗Dα, where Cα and Dα are some powers of L, we

shall use the power of formulas (5.2.5′′), (5.2.6′′) and (5.2.7′′). Firstly, statement 1) is

equivalent to (5.2.5′′) and is therefore obvious. Secondly, by virtue of (5.2.7′′), to prove

2) is to show that

[B(X), L] = 0, where B(X) = −1

2
· d

dt

∣∣∣
t=0
pmin(L+ t ·X).

But this has been already done for −2B(X) in Section 4.2. Finally, to compute the

Riemann curvature tensor R at the origin we make use of (5.2.6′′). We have

R(X) = −B(X) +B(X)∗ = −2B(X) =
d

dt

∣∣∣
t=0
pmin(L+ tX),
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as stated. Notice that the discussion in Section 4.2 infers that B(X) belongs to so(g0),

which is B(X) = −B(X)∗. The proof is complete. �

Theorem 5.5.4 along with Theorem B solves Problem 4 for the most important (k;n)-case.

As for the general case, one proceeds in the exactly same fashion as we did in Section

4.5. Namely, one firstly splits L into Jordan blocks and defines for each pair of Jordan

blocks Li and Lj a formal curvature tensor R̂ij (see Section 4.5). Secondly, by virtue of

(5.5.2) this formal curvature tensor can be realised by the appropriate quadratic metric

g(u) = g0 + B̂ij(u, u) satisfying ∇L(i;j) = 0. Finally, setting

g(x) = g0 + B(u, u) with B =
∑
i,j

B̂ij,

we immediately observe that, by linearity, ∇L = 0 holds true. Moreover, the Riemann

curvature tensor for this metric coincides with Rformal =
∑
i<j

R̂ij from Theorem 4.5.10.

Thus, we arrive at the climax of this thesis. For a given smooth connected manifold M

we consider the linear operator L : TpM −→ TpM. We then have the following theorem.

Theorem A Let M be a smooth manifold, p ∈ M be a point and g0 be a symmetric

non-degenerate bilinear form on TpM and L0 : TpM −→ TpM be a g0-symmetric oper-

ator. Then, in a local neighbourhood U of p, there exist a pseudo-Riemannian metric g

and a (1, 1)-tensor field L such that

1)g |TpM= g0,

2)L |TpM= L0,

3)L is g-symmetric,

4) The centraliser gL of L in the Lie algebra so(g) is a holonomy algebra for the Levi-Civita

connection of the metric g.
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Appendix A

A few worked examples of Berger

algebras related to g-symmetric

operators

In this addendum we briefly consider the Lie algebras g
(k1;k2)
L and g

(k1;k2;k3)
L for a few dif-

ferent values of k1, k2 and k3. We know from our discussion in Chapter 4 that these are

all examples of Berger algebras related to the g-symmetric operators of the types L(k1;k2)

and L(k1;k2;k3), respectively. From the computational viewpoint, however, this conclusion

is not always straightforward. While in the former case we can easily draw the conclusion

that g
(k1;k2)
L is indeed a Berger algebra, in the latter we perceive the necessity of a general

formal proof. Following the idea of Section 4.1 we shall present in sections A.1 to A.3

several particular solutions of the following problem.

Find a map R : Λ2V −→ g
(k1;k2)
L such that R(ei ∧ ej)ek + R(ej ∧ ek)ei + R(ek ∧ ei)ej = 0

and ImR ≡ g
(k1;k2)
L .

We already know that the solution of this problem asserts that g
(k1;k2)
L is a Berger al-
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gebra. For the sake of brevity we shall only give the upshot of our computations in a

tabular form. Recall that the above problem was stated as Problem 3 in Section 4.1

and we discussed in detail one special solution for the (2; 2)-case. In brief, we used the

standard identification of the space of skew-symmetric matrices with Λ2V and considered

the map R : Λ2V −→ g
(2;2)
L defined by



0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

−x3 −x5 −x6 0


7−→



0 0 a(x) b(x)

0 0 0 a(x)

−a(x) −b(x) 0 0

0 −a(x) 0 0


,

where a(x) =
6∑
i=1

aixi, b(x) =
6∑
i=1

bixi, and xi, ai, bi ∈ R. Through straightforward

computation we showed that the map



0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

−x3 −x5 −x6 0


7−→



0 0 αx5 α(x3 + x4) + βx5

0 0 0 αx5

−αx5 −α(x3 + x4)− βx5 0 0

0 −αx5 0 0


,

where α = a5 = b3 = b4 and β = b5 were the only non-zero coefficients in a(x) and b(x),

solves the problem above. We also remind the reader that β was an arbitrary coefficient

which did not appear in our computations. We shall now demonstrate that the outcome

of this computation can be neatly represented in a tabular form. The entry of the first

row of our table will clearly indicate the case we are interested in. In this particular case

we shall simply write (2; 2)-case. The coefficients ai form the second row, followed by the

row of their corresponding values. Similarly, for the coefficients bi and their values. We

thus have the following table.
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(2;2) - case

a1 a2 a3 a4 a5 a6

0 0 0 0 α 0

b1 b2 b3 b4 b5 b6

0 0 α α β 0

Now, bearing in mind our definition of R as well as the matrix representation of g
(2;2)
L ,

we easily reach the same conclusion as before - g
(2;2)
L is a Berger algebra. It turns out

that similar conclusions could be swiftly drawn from the corresponding tables of the

(k1; k2)-case for arbitrary values of k1 and k2. The map R will be defined in the same

manner as above but the dimension and the matrix structure of g
(2;2)
L will be different.

For this reason we adopt the following simple convention. Write a(x) =

n
2
(n−1)∑
i=1

aixi for the

diagonal elements of the upper right block of the matrix of g
(2;2)
L , where n is the dimension

of the underlying vector space V . We write further b(x) =

n
2
(n−1)∑
i=1

bixi, c(x) =

n
2
(n−1)∑
i=1

cixi,

d(x) =

n
2
(n−1)∑
i=1

dixi and so on for the consecutive respective upper diagonals. Suppose for

instance that we are working in the (4; 4)-case. Then the elements of g
(4;4)
L are written as



0 0 0 0 a(x) b(x) c(x) d(x)

0 0 0 0 0 a(x) b(x) c(x)

0 0 0 0 0 0 a(x) b(x)

0 0 0 0 0 0 0 a(x)

−a(x) −b(x) −c(x) −d(x) 0 0 0 0

0 −a(x) −b(x) −c(x) 0 0 0 0

0 0 −a(x) −b(x) 0 0 0 0

0 0 0 −a(x) 0 0 0 0



.
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Now, with this in mind, the reader must be able to read the tables in sections A.1

to A.3 and to see that they indeed imply that g
(2;k)
L , g

(k;2)
L and g

(k1;k2)
L are examples of

Berger algebras related to the g-symmetric operators of the types L(2;k), L(k;2) and L(k1;k2),

respectively. A certain pattern for every different case is clearly recognisable. This pattern

allows us to quickly find more solutions of the aforementioned problem without doing all

the calculations - we only need to follow the patterns. Moreover, the patterns appearing

in sections A.1 and A.2 clearly display the isomorphism g
(2;k)
L
∼= g

(k;2)
L . We remind the

reader that we have already used this fact in Chapter 4. Alas, the general situation is

far more complex. To demonstrate this we consider in section A.4 two examples for the

(k1; k2; k3)-case. We now define R as above but such that the elements of its image are of

the form 

0 0 0 a(x) b(x) 0 0 c(x) d(x)

0 0 0 0 a(x) 0 0 0 c(x)

−a(x) −b(x) 0 0 0 0 e(x) f(x) g(x)

0 −a(x) 0 0 0 0 0 e(x) f(x)

0 0 0 0 0 0 0 0 e(x)

−c(x) −d(x) −e(x) −f(x) −g(x) 0 0 0 0

0 −c(x) 0 −e(x) −f(x) 0 0 0 0

0 0 0 0 −e(x) 0 0 0 0

0 0 0 0 0 0 0 0 0



.

The quantities a(x) to g(x) are defined just as before. Then the tables given in section

A.4 represent formal curvature operators for the corresponding Lie algebras g
(k1;k2;k3)
L .

However, there is neither a pattern amongst them nor an easy way to see that the images

of these formal curvature operators coincide with g
(k1;k2;k3)
L .
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A.1 First four examples of the (2;k)-case

(2;2) - case

a1 a2 a3 a4 a5 a6

0 0 0 0 α 0

b1 b2 b3 b4 b5 b6

0 0 α α β 0

(2;3) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0 0 0 0 0 0 α 0 0 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0 0 α 0 α β 0 0 0

(2;4) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

0 0 0 0 0 0 0 0 α 0 0 0 0 0 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

0 0 0 0 α 0 0 α β 0 0 0 0 0 0

(2;5) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21

0 0 0 0 0 0 0 0 0 0 α 0 0 0 0 0 0 0 0 0 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21

0 0 0 0 0 α 0 0 0 α β 0 0 0 0 0 0 0 0 0 0
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A.2 First four examples of the (k;2)-case

(2;2) - case

a1 a2 a3 a4 a5 a6

0 0 0 0 α 0

b1 b2 b3 b4 b5 b6

0 0 α α β 0

(3;2) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0 0 0 0 0 0 0 0 α 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0 0 0 0 0 α α β 0

(4;2) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

0 0 0 0 0 0 0 0 0 0 0 0 0 α 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

0 0 0 0 0 0 0 0 0 0 0 α α β 0

(5;2) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α α β 0
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A.3 First three examples of the (k;k)-case

(2;2) - case

a1 a2 a3 a4 a5 a6

0 0 0 0 α 0

b1 b2 b3 b4 b5 b6

0 0 α α β 0

(3;3) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

0 0 0 0 0 0 0 0 0 0 0 α 0 0 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

0 0 0 0 0 0 0 0 α 0 α β 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

0 0 0 0 α 0 0 α β α β γ 0 0 0

(4;4) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α 0 0 0 0 0 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α 0 0 α β 0 0 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27 c28

0 0 0 0 0 0 0 0 0 0 0 0 α 0 0 0 α β 0 α β γ 0 0 0 0 0 0

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28

0 0 0 0 0 0 α 0 0 0 0 α β 0 0 α β γ α β γ δ 0 0 0 0 0 0
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A.4 Two examples of the (k1; k2; k3)-case.

(2;3;2) - case

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21

0 0 0 0 0 0 0 0 ρ 0 β 0 0 0 0 0 0 α γ ϕ 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21

0 0 0 0 0 0 0 0 0 0 ψ 0 0 0 0 0 0 0 0 0 0

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21

0 0 0 0 0 ψ 0 0 β ψ σ 0 0 0 0 0 0 0 0 ω 0

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21

0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0 0 0 χ 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21

0 0 0 α 0 0 0 γ ϕ 0 ω 0 0 0 0 0 0 χ χ τ 0
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[Her] H. Hertz, The principles of mechanics presented in a new form, London, Macmil-

lan (1899). (English translation of Die prinzipien der mechanik in neuem zusam-

menhängen dargestellt, Leipzig, posthumously published in 1894).

[HO] J. Hano, H. Ozeki,On the holonomy group of linear connections, Nagoya Math. Jour.

10 (1956) 97-100.

[Ike1] A. Ikemakhen, Examples of indecomposable non-irreducible Lorentzian manifolds,
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[Sch] L. Schwachhöfer, Connections with irreducible holonomy representations, Adv. Math.

160 (2001) no.1, 1–80.

111



[Sha] I. G. Shandra, On the geodesic mobility of Riemannian spaces, Math. Notes 68 (2000),

no.3-4 528-532.

[Shi] A. P. Shirokov, On a property of covariantly constant affinors, Dokl. Akad. Nauk SSSR

(N.S.) 102 (1955) 461–464 (in Russian).

[Sin] N. S. Sinjukov, Geodesic mappings of Riemannian spaces, Nauka, Moscow, (1979), (in

Russian).

[Sol1] A. S. Solodovnikov, Projective transformations of Riemannian spaces, Uspehi Mat.

Nauk (N.S.) 11 (1956) no. 4 (70), 45-116 (in Russian).

[Sol2] A. S. Solodovnikov, Spaces with common geodesics, Trudy Sem. Vektor.Tenzor. Anal.

11 (1961), 43-102.

[Sol3] A. S. Solodovnikov, Geometric description of all posssible representtions of a Rie-

mannian metric in Levi-Civita form, Trudy Sem. Vektor. Tenzor. Anal. 12 (1963)

131-173.

[Tho] G. Thompson, The integrability of a field of endomorphisms, Mathematica Bohemica,

127 (2002) No. 4, 605–611.

[Wu] H. Wu, On the de Rham decomposition theorem, Illinois.J.Math. 8 (1964) 291-311.

112


