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Abstract

After many years of successful operation in military domains, Unmanned

Aerial Systems (UASs) are generating significant interest amongst

civilian operators in sectors such as law enforcement, search and

rescue, aerial photography and mapping. To maximise the benefits

brought by UASs to sectors such as these, a high level of autonomy

is desirable to reduce the need for highly skilled operators. Highly

autonomous UASs require a high level of situation awareness in or-

der to make appropriate decisions. This is of particular importance

to civilian UASs where transparency and equivalence of operation to

current manned aircraft is a requirement, particularly in the terminal

area immediately surrounding an airfield.

This thesis presents an artificial situation awareness system for an

autonomous UAS capable of comprehending both the current contin-

uous and discrete states of traffic vehicles. This estimate forms the

basis of the projection element of situation awareness, predicting the

future states of traffic. Projection is subject to a large degree of un-

certainty in both continuous state variables and in the execution of

intent information by the pilot. Both of these sources of uncertainty

are captured to fully quantify the future positions of traffic.

Based upon the projection of future traffic positions a self separation

system is designed which allows an UAS to quantify its separation

to traffic vehicles up to some future time and manoeuvre appropri-

ately to minimise the potential for conflict. A high fidelity simulation

environment has been developed to test the performance of the arti-

ficial situation awareness and self separation system. The system has

demonstrated good performance under all situations, with an equiva-

lent level of safety to that of a human pilot.
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Chapter 1

Introduction

1.1 Overview

The operation of Unmanned Aerial Systems (UASs) to date has been largely

by military forces wishing to gain a tactical advantage whilst removing human

operators from danger. As these systems have matured and their component

cost reduced, their use in civilian environments has become increasingly attrac-

tive. UASs lend themselves well to scenarios such as law enforcement, search and

rescue, power and pipe line inspection, environmental monitoring, aerial photog-

raphy and mapping, where the use of manned aircraft is costly and requires highly

skilled pilots.

For UASs to be operated in civil National Airspace Systems (NASs) they

must integrate safely and seamlessly with manned vehicles. The scenarios listed

above occur largely in uncontrolled airspace, where aircraft do not require flight

plans and Air Traffic Control (ATC) do not provide any separation assurance.

To safely integrate an UAS in to uncontrolled airspace it must be capable of

maintaining separation from manned vehicles which may be exhibiting complex,

non-deterministic, behaviour. An UAS with a low level of autonomy is only able

to meet these separation requirements to a certain degree, due to the limited and

delayed information available to the remote pilot. In the extreme circumstance

of total communications loss it would be impossible for the pilot to maintain sep-

aration to other vehicles. To mitigate this problem it is necessary for an UAS to
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possess a higher level of autonomy with the ability to operate fully autonomously.

Highly autonomous UASs have the additional benefit of requiring less skilled op-

erators, further reducing the operating costs compared to manned aircraft.

To enable an UAS to autonomously separate from traffic it must possess a high

level of situation awareness, that is an understanding of where traffic vehicles are

and how they will behave in the future. With a high level of situation awareness

an UAS is able to plan its own route so as to minimise conflicts with traffic. Deter-

mining the current position of traffic is aided by technologies such as Automated

Dependant Surveillance - Broadcast (ADS-B), however in uncontrolled airspace

there is often little information available about their future trajectories (such as a

flight plan or ATC instructions) leading to a high degree of uncertainty in future

positions. This thesis is focused on reducing the uncertainty in future positions

by utilising additional knowledge such as the Rules Of The Air (ROTA) and

heuristics governing traffic behaviour.

This thesis identifies the requirement for high situation awareness as being

most critical within the terminal area, that is the airspace immediately surround-

ing an arrival or departure airfield. This is because many aircraft are operating

in a small region of airspace, likely on converging courses, and often manoeuvre

in quick succession. In free airspace, away from the terminal area, it may be

assumed that over a period of a few minutes a traffic aircraft will not manoeu-

vre, but instead maintain its present velocity. In this scenario, uncertainties in

the future position of traffic will accumulate due to inaccuracies in the velocity

measurement or changing wind conditions. In the terminal area however, this as-

sumption of linear trajectories does not hold, as manoeuvres are often performed

in quick succession. Uncertainty in when a vehicle is intending to manoeuvre is

a significant challenge in the attainment of terminal area situation awareness by

an UAS.

This thesis presents a complete situation awareness system, with regards to

traffic vehicles, for an autonomous UAS operating in the terminal area. Firstly,

the levels of situation awareness are identified and the requirements at each level

quantified. For the latter two situation awareness levels of comprehension and

projection, a number of algorithms are designed to construct an artificial situation

awareness system. Comprehension focusses on a novel use of a hybrid estimation
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technique to provide estimates of both continuous and discrete states, allowing the

UAS to infer the intent of the traffic based on the ROTA. Projection extends this

comprehended state by estimating future states of the traffic, allowing the UAS to

plan a conflict free route to maximise flight safety. The projection algorithm treats

the traffic vehicles future position as a Probability Density Function (PDF) and

estimates both the mean and covariance based on heuristics governing terminal

area behaviour. The ability of traffic vehicles to make discrete changes to their

flight paths at unknown future times (such as commencing a turn) presents a

significant challenge to this projection algorithm. The effect of these discrete

uncertainties on future traffic positions has been accounted for by treating the

discrete transitions as probabilistic events and using a novel geometric technique

to realise their impact.

To provide a demonstration of the utility of this artificial situation awareness

system, a rule based decision maker is employed to allow the UAS to plan a

conflict free path. The metrics which govern these decisions correspond to the

separation (either time or distance) between vehicles, this is not immediately

available from the statistical representation of position given by the projection

system. A number of different methods for calculation of these metrics are de-

rived, dependant on the complexity of the position PDF. Some of these require

significant assumptions and approximations in order to make them computation-

ally feasible, resulting in a number of novel techniques for quantifying vehicle

separation being presented.

Figure 1.1 illustrates an overview of the situation awareness and self separation

systems presented in this thesis.

Finally, to test the situation awareness, self separation and decision mak-

ing systems in the most realistic circumstances, a high fidelity simulation and

small scale test environment have been developed. This environment allows any

system coded in MATLAB/Simulink to interact with a Commercial Off The

Shelf (COTS) autopilot system which is controlling either a simulated vehicle

or a real world aircraft. Tests of the system in this environment have shown good

performance, with equivalent levels of safety to that of a human pilot.
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Figure 1.1: An overview of the system presented in this thesis

1.2 Outline

This thesis details the development of an artificial situation awareness system for

an autonomous UAS operating in a crowded terminal area. The contents of each

chapter are outlined below.

Chapter 2 - Literature Review

An in depth review of literature associated with autonomy in UASs, situation

awareness and terminal area operations. Each subject is dealt with individually,

culminating in the situation awareness requirements for an autonomous UAS

operating in the terminal area being defined.

Chapter 3 - Comprehension

The development of the comprehension element of situation awareness for UASs

in the terminal area is detailed. Two distinct forms of comprehension are required

for continuous and discrete states, these are implemented through a hybrid esti-

mation technique.
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Chapter 4 - Projection

Projection of the future states of traffic vehicles by the UAS is detailed, this is the

final element of situation awareness. The major focus of this chapter is dealing

with the inevitable uncertainty which arises from predicting future states.

Chapter 5 - Self Separation

Utilising the artificial situation awareness developed in the previous chapter, a

means of the UAS separating itself from traffic is detailed. This utilises a simple

ruled based decision making framework as it is intended as an illustrative example

only, not a fully developed system.

Chapter 6 - Test Environment

The virtual and real world test environment developed for this project is de-

scribed. The integration of COTS systems is detailed and some initial results

presented.

Chapter 7 - Experimental Results

Results are presented for the entire situation awareness and self separation system,

implemented in the test environment.

Chapter 8 - Conclusions

The thesis is concluded with future research directions discussed.
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of the literature relevant to the project area, with

the discussion broken down into three major areas. Firstly, Section 2.2 considers

the autonomy of UASs which highlights the requirement for an artificial situation

awareness system. Section 2.3 then reviews this area, drawing particular paral-

lels with human decision making. Finally, Section 2.4 discusses the challenges

associated with the terminal area, paying particular attention to the associated

problems with autonomy and situation awareness for an UAS.

2.2 Autonomy

The push for greater autonomy amongst UASs comes as a natural progression

from early vehicles. A major selling point of early UASs was the removal of the

human pilot from so-called Dull, Dirty and Dangerous missions. This function

has proved highly successful but the push in recent years has been to break the

one-to-one relationship between vehicles and operators. Current UASs differ very

little from manned aircraft, the only distinction being that the pilot is in a remote,

ground based location. Whilst this protects the pilot from any harm which may

come to the vehicle, it does not reduce the costs associated with training them.

An increase in the autonomy of the vehicle would allow the operator to perform
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a more supervisory role, a manager rather than a pilot. Ultimately this will

allow a single operator to command a number of vehicles in a similar way to

the oversight exhibited over civil air transport aircraft by air traffic controllers

[Cummings et al., 2010; Department of Defence, 2005]. This would result in a

significant saving in manpower and training as well as allowing the vehicles to

undertake more complex missions owning to their autonomy.

Operation of UASs in NASs also necessitate high levels of autonomy due to

the potential for delayed or interrupted communications. If an UAS with low

autonomy is required to respond to an emergency situation, such as a potential

collision with another vehicle, but experiences a delay in communicating this

information to the pilot a loss of separation or even a collision may occur before

the pilot is able to respond. Furthermore, if a total loss of communication is

experienced a degree of autonomy is required to safely recover the vehicle.

Developments in the field of low level control algorithms for stability augmen-

tation systems and autopilots allow for even current generation UASs to conduct

entire flights without pilot input [Cantwell, 2009]. This ability is aided by recent

advances in path planning technologies which allow an autopilot to accept a set of

waypoints and autonomously plan the most efficient route between them [Belling-

ham et al., 2002; Bottasso et al., 2008; Eele and Richards, 2009]. Such path

planning methods are also able to incorporate basic collision avoidance strategies

provided information about the conflicting object can be adequately perceived

[Eele and Richards, 2009]. These systems represent a huge step towards auton-

omy, however an operator is still required to guide the vehicle (i.e. provide the

waypoints). The current level of autonomous functions must be augmented with

mission level autonomy before UASs can be considered fully autonomous.

Figure 2.1 illustrates the three tiers of a typical Flight Control System (FCS).

Current production UASs utilise fully autonomous stabilisation and control with

a degree of autonomy in path planning; mission planning, however is left wholly

to the operator [Department of Defence, 2005]. The operator, who may still be

termed the pilot, is responsible for all of the tasks attributed to mission plan-

ning shown in Figure 2.1. The pilot will receive a mission brief which must be

translated into a number of discrete objectives. Many objectives may remain the

same for all missions such as ‘Taxi to the runway’, ‘Take-off’, ‘Return to base
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- Accept changes to waypoints from mission planning level

- Ensure vehicle remains stabilised

- Manoeuvre vehicle as appropriate to track planned trajectory

Figure 2.1: Three levels of FCS (modified from [Vachtsevanos et al., 2005])

and land’. Others will be specific to a particular mission such as ‘Follow convoy’

or ‘Monitor for enemy activity’. These objectives are linguistic in nature, that

is they are made up from words of the English language. Before the automated

path planning system can process the objectives, they must be turned into quan-

tifiable waypoints or tasks. A waypoint is simply a location to which the vehicle

must go. Waypoints can be purely spatial or spatiotemporal to represent time

constraints. Tasks are jobs which the vehicle must perform without a specific

location associated, such as tracking a target.

Breaking down a mission brief into objectives and then into waypoints and

tasks represents part of the data flow represented on the left of Figure 2.1. These

waypoints/tasks will then be processed by the path planning algorithms which

will provide reference trajectories for the stabilisation and control system. Not

shown in Figure 2.1 is the flow of data into the mission planning task from

external sources. These include weather forecasts, surveillance information, and

fault diagnosis systems. All of this data is considered with reference to the mission

objectives and appropriate action is taken. Survival of the vehicle may override

mission objectives, however if the mission is considered of high enough important

the vehicle may be sacrificed (owning to its unmanned nature).

Automating the processes currently performed by the pilot would greatly re-

duce the vehicles dependency on said pilot. In such a situation the pilot becomes

a manager with reduced bandwidth requirement [Department of Defence, 2007].
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Figure 2.2: Reducing operator bandwidth

The greater the level of vehicle autonomy, the lower the manager bandwidth and

consequently the greater the number of vehicles which can be managed, Figure

2.2. Whilst this task for a single vehicle may be complex enough, the next natural

progression is for multiple vehicles to become autonomously aware of one another

allowing coordination and cooperation without the need for intermediation by

the manager.

Current UASs include a degree of automation in their lower level tasks there-

fore they can be termed autonomous systems. However they are not fully au-

tonomous as they have only achieved a level of autonomy. In defining guidelines

for the adoption of UASs into NAS the Civil Aviation Authority (CAA) provide

a qualitative description of UAS Autonomy [Civil Aviation Authority, 2010b].

The key points are the ability of an autonomous system to gain situation aware-

ness and to make rational decision based upon this. Both of these attributes are

synonymous with some level of Artificial Intelligence (AI).

In a similar way to Ippolito and Pisanich [2005], Civil Aviation Authority

[2010b] generalises the classical Observe, Orient, Decide, Act (OODA) military

pilot workload loop from Department of Defence [2007] into Perceive, Decide,
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React (PDR). An autonomous UAS is tasked with closing the PDR loop without

human interaction. Perception is the task of creating situation awareness from a

set of sensory and user inputs1. This task is more complex than simply measuring

parameters as they must each be put into context. Combinations of measurements

relating to a particular object (e.g. another aircraft) must be grouped together

to form an understanding of that object, termed perceptual grouping [Moore,

1996]. In addition to the perception of the external situation, internal situation

awareness is also required. This represents a health management system capable

of perceiving problems with the vehicle. In order for an awareness to be cre-

ated from these individual perceptions, a means of computational Knowledge

Representation (KR) is required [Negnevitsky, 2005].

Autonomous reaction is largely covered by the lower level autopilot, leaving

only decision to be tackled from the PDR loop. Autonomous decision making

systems come from within the field of AI. An introduction to the range of tech-

niques available in addition to related fields such as KR and machine learning

is given by Negnevitsky [2005]. An important consequence of an autonomous

decision making system is a requirement for communication [Department of De-

fence, 2007; Negnevitsky, 2005]. For a fully autonomous UAS to be trusted by

its operators it must inform them of any deviations from its flight path (such

as for collision or weather avoidance). Failure to communicate intentions in this

way will result in the operators losing confidence in the UAS ability to make

decisions. This is analogous to the relationship which exists between a manned

aircraft and ATC within Controlled Airspace (CAS) (Civil Aviation Authority

[2009a] details the UK regulations). The controller is aware of the pilot’s inten-

tions as a result of a flight plan, should the pilot wish to deviate from this plan

they are required to inform ATC. The decision is still made by the pilot; however

it is then backed up by ATC who retain confidence in the pilots abilities. Should

a fully autonomous UAS ever be operated within such CAS this communication

ability becomes mandatory so as to abide by the same regulations as manned

aircraft [Civil Aviation Authority, 2010b].

1Not to be confused with the perception element of situation awareness, this ambiguity is
addressed later
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2.2.1 Autonomous functions

It is generally accepted that a fully autonomous UAS is not likely to exist within

the next 20 years [Department of Defence, 2005]. To further the current breed

of UASs toward this goal, it is important to push for the removal of human

interaction incrementally in as many areas as possible. Despite being oriented

toward the battlefield the Department of Defence UAV Roadmap [Department of

Defence, 2007] provides an insight into the functions currently undertaken by a

pilot which would benefit from being automated.

Typical tasks currently undertaken by pilots include teaming (or swarming) of

multiple vehicles, battlefield surveillance/reconnaissance, management of vehicle

health, collision detection and avoidance, target recognition and prioritisation

as well as generic intelligence in order to deal with the unexpected. Additional

functions become important as the UAS autonomy level increases such as natural

language processing to allow a vehicle to communicate its intentions intuitively

and to accept commands. In addition to developing autonomous solutions to

these functions for the current generation of UAS hardware, there is also a push

for miniaturisation to allow Micro Air Vehicles (MAVs) to benefit from the same

level of autonomy.

Swarming

With regards to swarming of UAS, a large amount of work in this field has been

undertaken in recent years [Flint et al., 2002; Kuwata et al., 2007; Pack et al.,

2009; Samek et al., 2007; Sinclair et al., 2008; Weitz et al., 2008]. The majority

of this work has been focused on extending the mid level control problem of

path planning to multi-vehicle platforms [Kuwata et al., 2007; Sinclair et al.,

2008; Weitz et al., 2008] and the associated problems of intra-swarm collision

avoidance [Samek et al., 2007]. Current work is focused on utilising UAS swarms

to achieve decentralised sensing [Department of Defence, 2005] in order to further

Intelligence, Surveillance and Reconnaissance (ISR) abilities [Pack et al., 2009].

It should be noted that the work in swarm collision avoidance is dedicated solely

to avoiding collisions with other vehicles in the swarm. In the vast majority of

cases the location of other vehicles within the swarm should be known, at least
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approximately, by other swarm members making collision avoidance a dynamic

path planning problem.

It has been noted that there is far more work in the field of swarms over sin-

gle vehicle development. Whilst swarms present a major advantage to battlefield

surveillance by providing multiple perspectives and redundancy, a battlefield sce-

nario has minimal requirements for vehicle reliability. Due to the lack of onboard

pilot and the minimal risk posed to civilians (relative to those already posed by

a warzone), the loss of a battlefield UAS is seen as little more than an inconve-

nience [Manning et al., 2004]. Civilian UASs, however, are likely to operate within

a NAS and are therefore required to meet far higher levels of safety. Whilst a

swarm of vehicles may be invaluable in certain civil applications (law enforcement

or search and rescue, for example) they cannot sacrifice safety as in a battlefield

situation. A swarm of vehicles cannot be used within a NAS until the safety of

each vehicle can be guaranteed. A result of this is that when considering civil

UAS, the single vehicle is of far more interest.

Collision avoidance

Collision avoidance of non-cooperative vehicles is a key requirement to enable

flight within a NAS, this is often referred to as ‘sense and avoid’ after the legal

requirement of human pilots to ‘see and avoid’ conflicting traffic within uncon-

trolled airspace [Civil Aviation Authority, 2010a]. If the conflicting vehicle is

broadcasting its position with a system such as ADS-B [RTCA, 2002] and the

UAS is suitably equipped to receive this signal then collision avoidance becomes,

once more, a path planning problem. The CAA remind us in Civil Aviation

Authority [2010b], however, that an automated UAS must abide by the ROTA

[Civil Aviation Authority, 2010a] and therefore give way to objects such as glid-

ers, hang-gliders, paragliders, microlights, balloons and parachutists1 which are

unable to carry a system such as ADS-B (due to cost, weight, and/or power

requirements). This requires an UAS to emulate a humans ‘see and avoid’ ac-

tion, leading to the use of vision processing techniques to detect conflicts [Carnie

et al., 2006]. Vision is preferable to radar or laser systems as it is a passive system

1Assuming the UAS is powered and heavier than air
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requiring far less power. The use of vision systems for collision avoidance also

relaxes the requirement for the UAS to carry ADS-B hardware, this is especially

important for MAVs. A high fidelity vision system is also able to aid vehicle con-

trol in the same way as a pilots eyes are used to augment their vestibular senses,

this can allow smaller, less accurate inertial sensors to be used as in Fowers et al.

[2007].

Midair collisions are presently a rare occurrence, however they are most likely

to occur within the terminal area [Geyer et al., 2008; National Transportation

Safety Board, 2006] due to the convergence of aircraft to one point in space.

Effective collision avoidance within a terminal area must not be purely reactive

because of the relatively low altitudes and airspeeds involved, severely limiting

the ability of a vehicle to manoeuvre. A proactive method must be employed

which utilises a high level of situation awareness to allow an UAS to plan it’s

route around any potentially conflicting traffic. This approach is closely aligned

with the CAA guidelines requiring rational decision making based upon situation

awareness [Civil Aviation Authority, 2010b].

Automated Target Recognition (ATR)

An interesting extension to the collision avoidance requirements is laid out in Civil

Aviation Authority [2010b]. For an UAS to operate within busy civil airspace it is

required to comply with ATC instruction “in the same way and within the same

timeframe that the pilot of a manned aircraft would” [Civil Aviation Authority,

2010b]. Such instructions may include being asked to follow another aircraft

or confirm that the UAS has another aircraft in sight (prior to commencing an

approach to land, for example). In order to achieve these functions the UAS

requires not only the ability to detect (and avoid where necessary) other aircraft

but it must be able to recognise them and broadly interpret their intentions. An

example of such a request can be found in Civil Aviation Authority [2009a]:

Pilot - “G-CD, downwind”

ATC - “G-CD, number two, follow the Cherokee on base”

Pilot - “Number two, Cherokee in sight, G-CD”
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In this example the aircraft G-CD1 is asked by ATC to follow a Cherokee2

which is currently positioned on the base leg of an aerodrome traffic circuit (see

Section 2.4). G-CD must confirm visual contact with the Cherokee and then

proceed as Number two (to land).

An UAS in this situation may currently ‘see’ multiple aircraft and must de-

termine which one the controller is referring to by using information from the

controller (such as relative speed/position, type of aircraft, etc...) as well as in-

terpretation of its intentions (i.e. it has been informed it is about to land so is

likely to be at low altitude with undercarriage and flaps deployed). This level of

processing is synonymous with the military requirements for ATR and extends

it to allow the UAS to make decisions based upon its situation awareness. As

well as being a requirement for civil applications as mentioned above, making

decisions based upon ATR is as important for automated military UAS as it will

allow vehicles to detect and track enemy vehicles in real time.

Forced landing

Whilst collision avoidance and ATR are important factors for civilian UASs. It

should be recognised that whilst the consequences of a midair collision are often

catastrophic they make up a very small number of accidents amongst General

Aviation (GA), who are the current NAS users largely reliant on ‘see and avoid’.

The majority of accidents are caused by mismanagement of the aircraft systems

resulting in a failure, typically of the engine. 45% of the GA accidents in the US

in 2003 were caused by either loss of engine power or other system failure whilst

only 18% were caused by some form of midair collision and only 10% of these

midair collisions were with other aircraft [National Transportation Safety Board,

2006]. Whilst every effort can be made to minimise the chance of powerplant

or other system failure for an UAS it must be capable of dealing with such an

event in order to be certified for use in a NAS. Broadly, this is the field of

vehicle health management [Reichard, 2004]. Following a powerplant failure (of a

single engine vehicle) there is little time to decide which course of action to take.

Inevitably a descent must be made, terminating in a landing at what is most

1G-xx being the standard, shortened, form of UK aircraft registrations
2Referring to a Piper PA-28 Cherokee, a small 4 seat fixed wing aircraft
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likely to be an undesirable location, usually termed a ‘forced landing’ [Fitzgerald

et al., 2005]. Alternatives to forced landings are Ballistic Recovery Systems (BRS)

which enable near vertical landings to be made under a parachute. BRS systems

are undesirable in civil applications as all control of the vehicle is relinquished to

the parachute therefore the landing location is governed solely by the prevailing

wind.

2.3 Situation awareness

Situation awareness is the ability of a system to both perceive its environment

and make inferences about its future states. A number of different definitions

of what constitutes situation awareness exist but that given by Endsley [1988] is

most suited to the conceptual shift from human to artificial situation awareness:

“the perception of the elements in the environment within a volume of time and

space, the comprehension of their meaning and the projection of their status in

the near future” [Endsley, 1988]

Figure 2.3 illustrates the parallels between Endsley’s model and the PDR loop

mentioned previously. It can be seen that Endsley’s model is closely aligned

with the CAA guidelines which base decision making on situation awareness. To

reconcile the PDR loop with this model, it is necessary to encapsulate situation

awareness inside the perception task of PDR. The perceptual task of PDR must

therefore refer to ‘perception’ of elements, ‘perception’ of meaning and ‘percep-

tion’ of future states. This introduces a great deal of ambiguity in the use of the

term perception, therefore the traditional PDR loop will be abandoned in favour

of Endsley’s model. Figure 2.3 also illustrates the factors, both system and indi-

vidual, which play a part in gaining and maintaining situation awareness.
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Figure 2.3: Endsley’s model of situation awareness in dynamic decision making (modified from [Endsley, 1995])
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It is important to realise that remotely piloting a vehicle causes a great loss in

situation awareness due to the loss of tactile and vestibular sensory information

leading to a reduction of the perceptual abilities of the pilot. Whilst automation of

functions within the UAS may be seen as an aid to the pilot’s situation awareness,

it is in fact detrimental [Wickens, 2002]. This is due to the removal of the pilot

from the decision making process of onboard systems. Figure 2.4 illustrates the

disconnection of the pilot from a highly automated UAS. The individual (in

this case the pilot) only has an input to the system at the perceptual level with

decision and action being entirely autonomous. The system, however, maintains

the same level of control over all aspects of the process and, as a result, the pilot

loses awareness of what the system is doing.

This compounded loss of situation awareness amongst UAS pilots is unaccept-

able within civil airspace as the ability to maintain equivalent safety standards

to manned aircraft is lost. A means of artificially recovering the pilots situation

awareness can be obtained by analysing the extreme case of a fully autonomous

UAS. In order to maintain human equivalent safety a fully autonomous UAS must

possess artificial situation awareness. It stands to reason that a semi-autonomous

UAS must possess a degree of situation awareness in order to recover that lost by

its operator [Adams, 2007]. Adams provides an introduction to situation aware-

ness for unmanned vehicles, including a formalised definition given below.

SAS = SAH ∪ SAV (2.1)

SAV = (A× C) ∪ E ∪X (2.2)

SASshared
= SAH ∩ SAV (2.3)

where SAS, SAH , SAV are the situation awareness of the system, human and

vehicle respectively. A×C represents the contribution to vehicle situation aware-

ness brought about by autonomy, with C being the coefficient between this and

the autonomy level A. E represents the environmental characteristics of situa-

tion awareness and X those which are neither autonomous nor environmental.
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Figure 2.5: Human and UAS situation awareness [Adams, 2007]

Finally, the shared awareness of both vehicle and operator, representing common

understanding, is given by SASshared
. Analysing this definition reveals that the

situation awareness of the operator is reduced by increased vehicle autonomy,

therefore the awareness of the vehicle must be increased to maintain the systems

awareness, illustrated by Figure 2.5

Before artificial situation awareness may be considered, a more detailed model

is needed which identifies the tasks performed at each level. Such a model was

produced by Adams, overlaying Endsley’s three situation awareness levels (Fig-

ure 2.3) onto the human information processing model from Wickens et al. [2004],

reproduced in Figure 2.6. Each task identified in Figure 2.6 is described in de-

tail in Wickens et al. [2004] for information processing by the human brain, a

description pertaining to artificial systems is introduced by Adams. The tasks of

perception and thought decision making are of particular interest to autonomous

UAS and are discussed in more detail below.

2.3.1 Level 1 SA - Perceptual encoding

Artificial systems have a wide range of sensing abilities far above those of human

beings, such as infrared imaging and radar. Whilst limited, human sensor ability

benefits from thousands of years of evolution to closely integrate the available

information. Integration of artificial sensory information into a consistent stream

of data is known as sensor fusion. The most widely used sensor fusion method is

that of a Kalman Filter [Welch and Bishop, 2001]. Once a consistent data stream
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Figure 2.6: Adams model of situation awareness [Adams, 2007]
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is available perception can begin. Perception is more than simply detecting an

object within the environment, it also involves generating an understanding of

that object. Wickens et al. [2004] suggest that this occurs through three distinct

processes which may occur in parallel:

1. Bottom-up feature analysis

2. Unitisation

3. Top-down processing

Bottom-up processing starts with the data received from the sensory register

and begins making sense of it. Assessment of individual features in this way

starts to build up a representation of the object being perceived. Unitisation

takes this representation and creates one element from it, a unit. This is done

by referring to a stored database of units, within the long term memory. For

example an object sensed by an UAS vision system will have features such as

size, shape, relative position and velocity, colour. If these features are consistent

with an aircraft they can be unitised as such and the UAS can be said to have

perceived an aircraft. If no such unit exists to explain the features then the UAS

has perceived an unknown object. Unitisation in this way is synonymous with the

computational field of fuzzy logic which enables numerical data to be represented

and processed linguistically [Negnevitsky, 2005]. In the case of an UAS sensing

an aircraft fuzzy logic can be employed to characterise the vehicle by speed. For

example, a vehicle travelling at a similar speed to the UAS is likely to be of a

similar type (size, power, etc...), however a vehicle travelling over the speed of

sound is likely to be a military fast jet.

Top down processing is the ability to fill in gaps in the sensory information

based upon expectations present in the long term memory. A classic example

of top down perception in aviation is radio communication. Pilots perception

of information in radio messages is largely aided by knowledge of the message

contents prior to reception. For example a pilot asking for permission to take off

will receive either a clearance or a request to hold position and not some other

message. As a result the pilot is able to jump straight to a unitised perception of

the message without any bottom up processing. If a message is received which
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was unexpected then bottom up processing must be used to make sense of the

individual parts and construct a meaningful unit.

Within the context of autonomous UAS a great deal of research exists in

the areas of sensing and perception of other vehicles as reviewed in Geyer et al.

[2008]. This work has largely stemmed from the collision avoidance requirements

discussed in Section 2.2.1 and incorporates a number of heuristics such as “big

vehicles are fast” to aid with unitisation and top down processing.

2.3.2 Level 2 SA - Comprehension of meaning

In Figure 2.6 the comprehension element of situation awareness is shown as being

where the outputs of perception are fed into a decision making system. Within

the context of situation awareness decision making refers to making sense of the

currently perceived situation and using this to predict future states. In order

to make sense of the current situation an autonomous UAS which has perceived

another vehicle must make inferences about its intentions. Inference is based upon

experience in a similar way to perceptual unitisation, using stored information

from the long term memory. It may be based upon rules (heuristics) such as

“an aircraft in that position is about to turn right” or social norms such as “an

aircraft in that position normally turns right”. Both heuristics and norms must

be taught to human pilots before they can operate safely within a NAS. UASs

operating within the same NAS must also be made aware of these heuristics and

norms [Civil Aviation Authority, 2010b].

A great deal of work exists in the area of intent inference for large civil aircraft

operating under a ‘free flight’ regime [Hoekstra et al., 2001; Krozel, 2000]. Free

flight involves the derestriction of the NAS systems to allow civil aircraft to fly

optimal paths between departure and arrival airfields in an effort to reduce flight

times with subsequent saving in fuel and reduction in emissions. The importance

of situation awareness within a free flight system has been highlighted in Endsley

[1997] with the important conclusion that not all automation strategies (such

as optimised path generation [Menon et al., 1999]) are beneficial to situation

awareness. Recent work has looked at the implementation of free flight intent

inference methods within a terminal area with the focus being to aid the situation
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awareness of ATC [Seah and Hwang, 2009].

2.3.3 Level 3 SA - Projection of future states

With an observation of the current state of a system and an inference about

its evolution over time it is possible to predict future states. For example, if a

vehicle currently has 100 litres of fuel which it is using at a rate of 20 litres per

hour it is expected that after an hour it will have 80 litres remaining. In this

example the currently observed state is both the fuel quantity and rate of usage

and the inferred evolution is that the rate will remain constant. In reality, the

observations will be subject to error which accumulates quickly as projection time

increases. If the error can be quantified it may be accounted for during projection

to give a predicted state as a probability distribution, rather than an absolute

value [Pfoser and Tryfona, 2001].

The accumulation of observation errors is a problem when projecting the state

of any system. The Traffic Collision Avoidance System (TCAS) system performs

a basic linear extrapolation of vehicle positions in much the same way as the

fuel example above [Kuchar and Drumm, 2007]. When considering vehicles in

the terminal area, however, the ability of the vehicle to manoeuvre must be

considered due to their frequency (more detail on terminal area manoeuvres is

given in Section 2.4). This requires an autonomous UAS to infer the future

intentions of the vehicles, as described in the comprehension section above. These

intentions can then be used to determine the vehicles future path. The task of

predicting future positions of aircraft along arbitrary paths is routinely performed

by ATC professionals, algorithms which quantify the uncertainty present in these

predictions have been developed as an aid to safe operation [Crisostomi et al.,

2007; Liu and Hwang, 2011].

In a similar way to the observation of present position, the inference of in-

tentions will be subject to error which must be quantified during projection to

give a representative prediction. For example, a procedure may dictate that a

pilot performs a turn when five miles from the airfield. An UAS has no addi-

tional information so must use this procedure to infer future states of the vehicle.

However, there is a possibility that the pilot will not manoeuvre at precisely five
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miles, leading to a different set of future positions.

The accumulation of knowledge from perception through comprehension to

projection results in information which is of higher utility to an autonomous

UAS, that is the future states of traffic allow replanning of the UASs path. This

increased utility is balanced by an increase in uncertainty associated with the

errors introduced by each assumption, such as the assumption of the future path

of a vehicle.

2.3.4 Response selection

Once an UAS possesses an acceptable level of situation awareness, it should be

capable of making decisions based upon this information. Knowledge of the

future positions of traffic vehicles allows an UAS to alter its path in order to

minimise potential conflicts. This could become a highly complex optimisation

problem if a large number of traffic vehicles are present resulting in no single best

solution. However, manned aviation has been subject to this same problem in the

terminal area for many years. The result is a number of regulations and heuristics

which aid pilots in making safe decisions with respect to other vehicles, these are

discussed in the next section. These regulations are not only an aid to decision

making by an autonomous UAS, they must be followed to ensure transparency

and equivalence [Civil Aviation Authority, 2010b].

A rule based decision making system is best suited to this highly regulated

framework as it is easy to construct (one rule per regulation) and computation-

ally simple to implement [Negnevitsky, 2005]. A major downside to a rule based

system (over a neural network, for example), is its inability to deal with unex-

pected situations. As it is not anticipated that fully autonomous UAS will operate

entirely without human oversight, it is possible to hand the decision making au-

thority back to a human operator in the case of an unexpected situation for which

the UAS has no rules governing its decision.
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2.4 Terminal area

A terminal area is the airspace immediately surrounding an airfield which is pre-

dominantly used by aircraft arriving at or departing from that airfield. Terminal

areas are often within controlled airspace such as Aerodrome Traffic Zones (ATZs)

or Terminal Manoeuvring Areas (TMAs) to provide protection from aircraft not

in communication with the airfield [Civil Aviation Authority, 2010a,c]. A TMA

(also known internationally as Terminal Control Area (TCA)) is defined by the

International Civil Aviation Organization (ICAO) as being “established at the

confluence of airways in the vicinity of one or more major aerodromes” [Civil

Aviation Authority, 2009a]. This definition alludes to a problem facing terminal

area operations, the convergence of a number of aircraft on a small region of

airspace. It is for this reason that the majority of midair collisions occur within

the terminal area [National Transportation Safety Board, 2006]. It should be

noted that only arriving aircraft are to be considered from this point forward due

to the problems faced by their convergence.

Two primary means of approaching an airfield exist depending on the available

facilities and prevailing weather conditions; visual and instrument approaches. A

visual approach is used at smaller airfield which do not possess instrument landing

facilities (such as radar or Instrument Landing System (ILS) [Thom, 2003]) when

weather conditions permit arriving aircraft to see the airfield and other arriving

traffic, known as Visual Meteorological Conditions (VMC) [Civil Aviation Au-

thority, 2008]. When weather conditions prohibit visual acquisition (Instrument

Meteorological Conditions (IMC) [Civil Aviation Authority, 2008]), airfields with-

out instrument facilities do not operate. Larger airfield with instrument facilities

continue to operate under Instrument Flight Rules (IFR) [Civil Aviation Author-

ity, 2008], where radio navigation equipment is used to guide aircraft and ATC

oversee separation between traffic. The following sections cover the standard

procedures employed for both approach types.

2.4.1 Visual approaches

To facilitate the safe operation of aircraft approaching an airfield under Visual

Flight Rules (VFR) a number of standard procedures have been developed. For
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an airfield which possesses no ATC facilities (an uncontrolled airfield) a typical

procedure is the standard Overhead Join (OHJ), Figure 2.7. An OHJ is a means of

joining an airfield traffic circuit by first flying overhead to observe the conditions

(wind sock and runway surface) and any traffic in the circuit. Once an overflight

has been conducted, a descent to circuit height (usually 1000ft Above Aerodrome

Level (AAL)) is made and the aircraft joins the circuit via the crosswind leg. The

circuit is a rectangular flight path flown by all arriving aircraft which ensures that

the runway and all other traffic remain in sight at all times, shown in white in

Figure 2.7.

26



Extended centreline

Maintain 1000ft above
circuit height and observe
windsock and traffic.
Keep aerodrome suitable
distance on the left of
the aircraft.

Position to cross at (or within
if no other activity) the upwind
end of the runway at circuit
height

Watch for aircraft
taking off, as they
could pose a hazard.

Call downwind

First radio callradio call should be made 
5-10 miles from the aerodrome
and joining checks completed.

BASE LEG

CROSSW IND LEG

DOWNWIND LEG

1000ft

Live Side

FINAL

Extendedcentreline

Dead Side

Make appropriate radioMake appropriate radio
calls on base leg andcalls on base leg and
final as requiredfinal as required

1200ft

1400ft

1800ft

2000ft

400ft

1000ft

800ft

600ft

2000ft

Begin letdown on
dead side if safe.

If unable to ascertain
runway in use continue
circling around the overhead.
When circuit direction is
ascertained call “Overhead, 
joining for runway...”
(All turns must then be in
the circuit direction.)

Correct circuit procedures assist
you to see and be seen, thus
reducing the risk of collision.

an “overhead” join will always be
preferable, especially if the
aerodrome is unfamiliar,
but beware of other activity.

If no other procedure is published,

Joining
Circuit letdown
Circuit
Departure

JOINING PHASES

Ja
n 

20
09

Watch for existing circuit
traffic and adjust your
path to sequence
safely.

1000ft

“                      ”“                      ”

Upwind threshold

Upwind threshold

Into
-w

ind ru
nway

Into
-w

ind ru
nway

th
reshold

th
reshold
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If an airfield is equipped with ATC facilities, it is common for arriving aircraft

not to perform an OHJ but instead join the circuit directly via one of the legs.

If a non-authoritative ATC service is provided such as an Aerodrome Flight In-

formation Service (AFIS) [Civil Aviation Authority, 2009a], an arriving aircraft

would announce its current position and intention to join to which ATC would

provide traffic information allowing the pilot to sequence appropriately1:

Pilot - “G-CD, five miles south east, joining left base for runway 23”

ATC - “G-CD roger, one turning base, one mid-downwind”

At airfields equipped with fully authoritative ATC, an arriving aircraft will

likely be instructed how to join and told how to sequence1:

Pilot - “G-CD, eight miles south west, request joining instructions”

ATC - “G-CD join downwind left hand for runway 27, number 3 to the

Cessna 172 joining base”

Pilot - “Join left downwind for 27, number 3, G-CD”

In this example a joining aircraft is informed that it is the third in the queue

to land, which implies that ATC expect the pilot to obtain visual contact with

the aircraft second in the queue and maintain adequate separation. To aid the

pilot in visually acquiring the traffic, ATC provide information about the aircraft

type and its position.

2.4.2 Instrument approaches

The previous section has covered airfields which are operating under VFR, that is

the weather conditions are defined as VMC and aircraft are expected to navigate

and separate from traffic based on visual acquisition [Civil Aviation Authority,

2008, 2011a]. An airfield operating in weather conditions defined as IMC require

aircraft to operate under IFR as visual acquisition may be impossible. Terminal

area operations under IFR fall in to two distinct categories:

1These examples are shortened to highlight the key points, actual communication would
contain additional information
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� Procedural

– Separation assurance is provided by a set of standard procedures, sim-

ilar to the OHJ and circuit but without the need for visual acquisition.

� Vectored

– Separation assurance is provided ATC using radar vectoring

Figure 2.8 illustrates a typical procedural instrument approach chart used to

communicate the standard procedure to pilots. These charts provide horizontal

and vertical guidance with respect to fixed ground based beacons or augmented

Global Navigation Satellite System (GNSS) [Civil Aviation Authority, 2007]. Pi-

lots provide ATC with position reports at critical points (such as when passing

over a beacon) enabling ATC to ensure separation is maintained between all ve-

hicles. Procedural approaches use holding patterns to separate aircraft vertically

prior to commencement of the final approach, this makes them popular at airfields

without a radar installation as ATC oversight is needed less often.

An airfield equipped with a radar system will primarily use vectored ap-

proaches, that is ATC provide continuous guidance to the pilot. This enables

ATC to position aircraft at the minimum safe separation to ensure maximum run-

way utilisation. Vectored approaches don’t require holding patterns to be used as

ATC can simply vector an aircraft on a longer route to provide increased separa-

tion, this has enabled the proliferation of Continuous Descent Approachs (CDAs)

to help reduce the environmental impact at airfields [Civil Aviation Authority,

2001].

2.4.3 Approach summary

The previous sections have discussed the two primary means of an aircraft arriv-

ing at an airfield. Operation of UASs under IFR has a lower situation awareness

requirement with regards to traffic vehicles because separation assurance is pro-

vided by ATC. It is unlikely, however, that UASs will operate from larger airfields

(equipped with instrument facilities) in the first instance. This is due to the high

volumes of traffic already present and the potential for disruption should an UAS
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malfunction. Additionally, a number of potential UAS users currently operate

from smaller airfields as a means of reducing operating costs, such as UK law

enforcement [Hayles, 2006]. For these reasons, this thesis will focus on the inte-

gration of UAS into a visual terminal area at a small uncontrolled airfield.

In the near term it is possible to envisage civilian UAS operations being en-

tirely segregated from that of manned aircraft. For example prior to arrival of an

UAS, an airfield may become the subject of temporary restricted airspace pre-

venting manned aircraft from operating while the UAS is airborne. This is the

model presently employed by the British Army at Camp Bastion, Afghanistan

[Button, 2009]. This approach will enable UASs to begin operating in civil ap-

plications more quickly, however it does not represent a permanent solution as it

impedes the operation of other aircraft [Civil Aviation Authority, 2010b]. There-

fore, to enable autonomous UASs to operate routinely at small airfields a large

degree of situation awareness is required.

2.4.4 Situation awareness

To facilitate the quantification of situation awareness in aviation professionals,

requirements have been identified for a number of different operators including

fighter pilots [Endsley, 1993], ATC [Endsley and Rodgers, 1994] and commercial

pilots [Endsley et al., 1998]. These requirements detail the information which a

pilot must possess in order to be considered to have good situation awareness. The

information requirements for commercial pilots provide a comprehensive break-

down of what knowledge a pilot must possess to achieve each level of situation

awareness. Of particular interest to UAS operation in a visual terminal area is

knowledge of other vehicles in the vicinity and the impact of their presence on

the desired flight path of the UAS. With this key requirement in mind, the re-

quirements for an artificial system to maintain situation awareness are laid out

below.

� Level 1 - Perception

– Positions of other vehicles

– Types of vehicles (e.g. large jet, small piston, UAS)
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– Clearances issued to ownship and other vehicles

� Level 2 - Comprehension

– Separation from other vehicles

– Relative trajectory of other vehicles

– Intentions of other vehicles

– Hazards currently posed by other aircraft

� Level 3 - Projection

– Trajectory of ownship and other vehicles

– Separation from other vehicles

Referring back to Figure 2.6 it can be seen that a vehicle in possession of the

knowledge listed above is capable of moving beyond situation awareness and into

the response selection and execution, with regards to traffic. The above list can

therefore be said to represent the external situation awareness requirement for

a UAS operating within a terminal area. Additional requirements are present

for internal situation awareness, such as information regarding aircraft systems

operability, but these are beyond the scope of this thesis.

The perception of traffic vehicles by an UAS is broadly similar to the task

of collision avoidance, however in the terminal area an additional Ground Based

Sense And Avoid (GBSAA) system may be employed at the airfield [Lacher et al.,

2010]. It has been noted that a large body of work exists in the field of traffic

detection for collision avoidance purposes. In this thesis it will be assumed that a

means of detecting the positions of traffic aircraft in the vicinity exists, sufficient

to provide the perceptual information to the UAS.

Knowledge of vehicle type is required for the UAS to predict its kinematic

behaviour. This could be obtained via ADS-B [RTCA, 2002], by voice communi-

cation between the UAS [Civil Aviation Authority, 2010a] or visual acquisition.

For this thesis it is assumed the UAS has precise knowledge of the vehicle type

via one of these methods.

Finally, the assumption that the UAS is operating at an uncontrolled airfield

implies that no clearances can be issued by ATC, that is all decisions are the
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responsibility of the individual vehicles [Civil Aviation Authority, 2010a]. This

simplifies the analysis by removing the need to consider interaction with ATC by

the UAS.

Utilising these assumptions, this thesis will focus on the development of com-

prehension and projection methodologies for an autonomous UAS operating in a

visual terminal area at an uncontrolled airfield.

2.5 Summary

This chapter has reviewed the literature in the field of autonomous UASs, with

particular focus on civilian terminal area operations. The benefits and challenges

of autonomy for UASs have been discussed and a number of autonomous functions

already present on production UASs introduced. The requirement for civilian

UASs to posses equivalent levels of situation awareness to human pilots lead to

a detailed discussion on human and artificial situation awareness functions.

Operations in the terminal area were introduced, focusing on the procedures

currently in use by manned aircraft. These procedures allow an UAS to operate

readily at a large airfield utilising ATC as a means of separation assurance, how-

ever operation at smaller airfields requires high levels of situation awareness by

the UAS. The procedures in place at small airfields provide an UAS a great deal

of information about the intentions and future states of traffic vehicles. This al-

lows for a situation awareness system to be developed, the requirements of which

have been discussed.

The three elements of situation awareness have been discussed and their mean-

ing with regards to the terminal area introduced. The perception element has seen

a lot of development over recent years due to the collision avoidance requirements

for UASs, for this thesis it will be assumed adequate perceptual information is

available from such a system. Some work exists in the field of comprehension and

projection as aids to the operation of ATC, none of which has been applied to

the field of autonomous UAS.

The following chapters detail the development of an artificial situation aware-

ness system for a fully autonomous UAS operating within the terminal region at

a small airfield with some degree of ATC oversight, but no radar facilities.
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Chapter 3

Comprehension

The previous chapter introduced the situation awareness requirement for an au-

tonomous UAS operating in the terminal area of a small uncontrolled airfield. Of

primary concern are the current and future states of traffic aircraft in the vicinity,

which an UAS may then use to plan a conflict free path. Due to the large body

of work in the field of vehicle detection by UASs it is assumed that perception

of traffic position is provided by on-board sensors (such as cameras or radar) or

other systems (such as ADS-B). This chapter details the use of these position

observations within a comprehension system to estimate additional state infor-

mation and infer the intent of the vehicle, the requirements laid out in Section

2.3.2. Future chapters use this information to predict future states of the vehicle

and replan a route as appropriate.

Small uncontrolled airfields do not benefit from precisely defined paths which

arriving aircraft follow. Instead a traffic circuit is used, the dimensions of which

are dependant on the type of aircraft and defined with respect to the runway.

This traffic circuit forms the basis of the Circuit Coordinate System (CCS) which

is used to represent perceived traffic positions. Additional state information,

such as the velocity vector of a vehicle, can be estimated from sequential position

estimates. This state information is continuous in nature, that is it can take on

an infinite number of values. However, intent information is inferred based on a

set of discrete modes, or circuit legs. It is necessary, therefore, to estimate the

discrete mode along with the continuous states to enable projection to take place,

detailed in the next chapter.
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The State Dependent Transition Hybrid Estimation (SDTHE) algorithm for

estimating the continuous state and discrete mode of aircraft has been developed

in Seah and Hwang [2009], which forms the basis of this chapter. The SDTHE

algorithm was developed to provide more accurate continuous state measurement

for ATC by incorporating knowledge of its discrete mode from published arrival

procedures at large airfields. Hybrid estimation provides improved continuous

state estimates by tailoring the vehicle models used to specific modes, for example

straight or turning flight. It is well suited to terminal area tracking as each

discrete mode corresponds to a particular manoeuvre whose dynamics can be

captured by the associated model. This chapter extends the SDTHE technique

to an UAS operating at a small uncontrolled airfield where no published routes

exist and discrete modes are defined based on CAA guidelines, airfield layout,

aircraft performance and heuristics (see Section 2.4.1).

The next section defines the CCS and generalised circuit path which will be

used throughout. Section 3.2 introduces the principle of hybrid state estimation

and details its application to the comprehension problem. Finally, Section 3.3

demonstrates the performance of the comprehension element in isolation with a

simple simulation.

3.1 Circuit definitions

3.1.1 Circuit Coordinate System (CCS)

Visual operation within the terminal area is conducted with reference to the active

runway, determined by the current wind direction. The first comprehension task is

to transform the positions of traffic from the Global Coordinate System (GCS) of

latitude (φt), longitude (λt) and altitude (at) to a runway based CCS, illustrated

in Figure 3.1. The upwind axis (u) is defined as along the centreline of the active

runway in the direction of landing and crosswind (c) is defined as pointing toward

the ‘live’ side of the runway which is determined by circuit direction. Height is

not shown in Figure 3.1 but is defined as positive up. The origin of the CCS is

the runway threshold.

Transformation from GCS to CCS is a two stage process. First the position
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Figure 3.1: Coordinate System Transformation

of the traffic (φt, λt) is transformed to a distance and bearing (dt, ψt) from the

runway threshold (φr, λr). This is done using the formulae given in (3.1) and (3.2),

where R is the radius of the Earth (6378km), see Appendix A for derivation. This

polar representation is then resolved into the Cartesian CCS with (3.3) which also

includes the height translation. In addition to performing these translations for

all traffic vehicles, the position of the UAS is also represented in the CCS.

dt = 2R arctan


√

sin2
(
φt−φr

2

)
+ cosφr cosφt sin2

(
λt−λr

2

)√
1− sin2

(
φt−φr

2

)
− cosφr cosφt sin2

(
λt−λr

2

)
 (3.1)

ψt = arctan

(
sin (λt − λr) cos (φt)

cosφt sinφr − sinφr cosφt cos (λt − λr)

)
(3.2)

utct
ht

 = dt

cos (ψr − ψt)
sin (ψr − ψt)
at − er

 (3.3)
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where ht is the height of the traffic above the runway threshold and er is the

elevation of the runway threshold Above Mean Sea Level (AMSL).

3.1.2 Discrete modes

The CCS is used to represent the continuous states of traffic vehicles, such as

position and velocity. To enable intent inference, a number of discrete modes

must also be defined relating to the phase of the circuit in which the traffic

resides. Figure 3.2 illustrates these discrete modes in addition to a number of

Flight Change Points (FCPs) which govern the transition from one state to the

next. For example, FCP4 represents the point at which a vehicle transitions from

the ‘Late Downwind’ state to the ‘Turning on to Base’ state.

3.2 Hybrid state estimation

The perceived position information of traffic, represented in the CCS, will be im-

perfect due to sensor inaccuracies and time delays associated with communication.

A popular means of providing a state estimate based on imperfect measurements

is the Kalman filter, a recursive state estimation technique [Bar-Shalom et al.,

2001]. In addition to uncertainties in traffic state, it is impossible to accurately

define the FCPs a priori as the precise point at which a vehicle is going to ma-

noeuvre is hidden from the UAS. The problem of estimating both aircraft state

and discrete locations is a well suited to an Interacting Multiple Model (IMM)

estimator. Such an estimator contains a number of individual state estimators

optimised for each discrete mode, the covariance of each estimator being used to

determine the likelihood of that discrete mode being correct [Bar-Shalom et al.,

2001].

Typical implementations of IMM estimators assume that transitions between

discrete modes occur with a constant probability, this approach is not well suited

to traffic state estimation within the terminal area. For example a vehicle posi-

tioned early on the downwind leg has a very small (zero) probability of transition-

ing to the base leg, however an IMM estimator would not make this distinction.

An extension to the IMM principle is the SDTHE algorithm which conditions
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Table 3.1: Terminal area discrete modes

Mode Terminating FCP Sub modes Bearing
1. Crosswind FCP1 CV CH 0 < θ ≤ 45
2. Downwind Turn FCP2 CT CH 0 < θ ≤ 45
3. Downwind FCP3 CV CH 45 < θ ≤ 90
4. Late Downwind FCP4 CV CH 90 < θ ≤ 135
5. Base Turn FCP5 CA CD 135 < θ ≤ 180
6. Base FCP6 CV CD 135 < θ ≤ 180
7. Final Turn FCP7 CT CD 135 < θ ≤ 180
8. Final FCP8 CV CD θ = 180
9. Runway - - -

the transition probabilities on the currently estimated state [Seah and Hwang,

2009]. The SDTHE algorithm breaks down each discrete mode into lateral and

vertical planes. In each state a vehicle may be in one of three lateral sub-modes:

Constant Velocity (CV), Constant Turn (CT) or Constant Acceleration (CA) and

one of two vertical sub-modes: Constant Height (CH) or Constant Descent (CD).

Table 3.1 shows the sub-mode combinations for the discrete modes illustrated in

Figure 3.2.

This section details the operation of the SDTHE algorithm as applied to the

circuit pattern in Figure 3.2. The next subsection defines the aircraft models used

for each of the lateral and longitudinal sub-modes. The subsequent subsections

detail the mode transitions and algorithm structure.

3.2.1 Aircraft model

Each of the sub-modes requires an associated flight model to estimate the con-

tinuous states. This model takes the form of a linear discrete time state space

model which forms the basis of a Kalman filter for each mode. The form of the

state update equation is

x(k + 1) = Aix(k) +Wiω(k) (3.4)

where x(k) is the state at time step k, Ai is a coefficient matrix and Wiω(k) is the

process noise of the ith mode. The process noise is modified from the standard
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form to include the coefficient matrix W , this allow an intuitive and consistent

definition of noise to be used across all sub-modes as will be seen later.

The complete state of a traffic vehicle is given as

x(k) =
[
u u̇ ü c ċ c̈ h ḣ

]T
(3.5)

where T denotes the transpose of the vector.

Vertical acceleration can be ignored as changes in vertical velocity occur

quickly when transitioning in to or out of the CD sub-mode, however lateral

accelerations persist during turns (i.e. the CT sub-mode).

Each flight model has the same measurement equation as it is assumed the

same perceptual information is available from (3.3) in each state.

z(k) =

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

x(k) + ν(k) (3.6)

where ν(k) is the measurement noise.

For clarity, each sub-mode will only refer to the relevant elements of the state

vector, either lateral (xl(k)) or vertical (xv(k))

xl(k) =
[
u u̇ ü c ċ c̈

]T
xv(k) =

[
h ḣ

]T
(3.7)

Figure 3.3 illustrates the lateral model. The actual path is shown as a dashed

line which has been discretised at two points, k and k + 1. At each points the

velocity and acceleration vectors are decomposed in to their respective compo-

nents in the CCS. For illustration purposes the time step is assumed to be unity.

The position of the second point has advanced by slightly more than the velocity

vector of the first point due to the acceleration between points. The velocity at

the second point is modified precisely by the acceleration at the first point.

It is clear from (3.6) that neither the velocities nor accelerations of the vehicle

are observed, therefore these must be modelled as random variables. To enable

the same structure of model to be used for each sub-mode the random variables

will represent accelerations in the system, therefore the general form of the lateral
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model is

xl(k + 1) =



1 dt dt2/2 0 0 0

0 1 dt 0 0 0

0 0 1 0 0 0

0 0 0 1 dt dt2/2

0 0 0 0 1 dt

0 0 0 0 0 1


xl(k) +



dt2/2 0

dt 0

1 0

0 dt2/2

0 dt

0 1


[
ωu

ωc

]
(3.8)

where dt is the time-step, ωu and ωc are the random perturbations in accelerations

in each axis which are assumed to be Gaussian with zero mean.

To improve the accuracy of state estimation in each sub-mode, whilst main-

taining the simplicity of a linear model, it is possible to modify (3.8) to account

for the characteristics of that sub-mode. The modified models used for each

sub-mode are detailed in the following sections.

Constant Velocity sub-mode

The CV sub-mode assumes that a vehicle is travelling at a constant speed on

a fixed heading but is subject to random variations in its flight path. Equation
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(3.8) can be modified for this sub-mode by removing the steady state accelerations

(the third and sixth rows of the A matrix). The W matrix remains unmodified as

short term accelerations (such as erroneous measurements or wind disturbances)

do effect velocity and position.

xl(k + 1) =



1 dt 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 dt 0

0 0 0 0 1 0

0 0 0 0 0 0


xl(k) +



dt2/2 0

dt 0

1 0

0 dt2/2

0 dt

0 1


[
ωuCV

ωcCV

]
(3.9)

where ωuCV
and ωcCV

represent the acceleration noise for the CV sub-mode whose

covariance matrix is given as

QCV =

[
σ2
uCV

0

0 σ2
cCV

]
(3.10)

The variance terms σ2
uCV

and σ2
cCV

correspond to how accurately a vehicle is

assumed to hold speed.

Constant Turn sub-mode

The CT sub-mode assumes the vehicle is performing a turn whilst subject to ran-

dom disturbances. To maintain a steady turn a constant acceleration is required

(toward the centre of the turn) despite the magnitude of velocity remaining con-

stant. To allow this steady state acceleration to persist, no modification is made

to (3.8) for the CT sub-mode. The process noise for the CT sub-mode is similar

to that for the CV sub-mode with covariance matrix

QCT =

[
σ2
uCT

0

0 σ2
cCT

]
(3.11)

However, the variance terms now represent both the speed and rate of turn ac-

curacy.
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Constant Acceleration sub-mode

The CA sub-mode assumes the vehicle is accelerating whilst flying on a constant

heading. This sub-mode uses exactly the same state equation as the CT sub-mode

but features a noise covariance matrix which is constrained to allow accelerations

only in the direction of flight, shown below

QCA =

[
(σCA cos(ψl(k)))2 0

0 (σCA sin(ψl(k)))2

]
(3.12)

where ψl(k) is the heading of the vehicle relative to the CCS and is given by

ψl(k) = arctan

(
ċ(k)

u̇(k)

)
(3.13)

Equation (3.12) couples the process noise variances in each axis by assuming

the magnitude is constant (σ2
CA). For example a vehicle heading directly along

the upwind axis will have a covariance matrix of

QCA =

[
σ2
CA 0

0 0

]
(3.14)

allowing accelerations in this direction only.

Constant Height sub-mode

The CH sub-mode assumes that the vehicle is maintaining a constant height but

is subject to random disturbances. The state equation for the CH sub-mode is

given below

xv(k + 1) =

[
1 0

0 0

]
xv(k) +

[
dt

0

]
ωCH (3.15)

As accelerations in height are usually small, these are not considered. Instead

the process noise is given as a velocity which is not propagated forward (much

like the accelerations in the CV sub-mode). Once again the noise covariance may

be tweaked to improve Kalman filter performance.
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Constant Descent sub-mode

The CD sub-mode assumes that a vehicle is descending at a constant rate but

subject to random disturbances. The state equation, given below, is similar to

that of the CH sub-mode, but velocity disturbances are propogated forward.

xv(k + 1) =

[
1 dt

0 1

]
xv(k) +

[
dt

1

]
ωCD (3.16)

As with the CH sub-mode, the process noise is given as a velocity and may

be tweaked as appropriate.

3.2.2 Flight Change Points

Transition between modes (sub-mode pairs) occurs at the FCPs and is assumed

to be Markovian in that it is only conditioned on the previous mode, as shown in

Figure 3.4. For example, referring to Table 3.1, FCP2 represents the transition

from the Downwind Turn to the Downwind Leg and is a transition from the CT

to CV sub-mode (C21) whilst remaining in the CH sub-mode (C44).
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The transition guard conditions (Cij) are dependant on the current state and

are represented in the form

Cij = Lxx+ Lθθ
∗ ≤ 0 (3.17)

where Lx is the coefficient matrix of the continuous state (x) and Lθ is the coef-

ficient matrix of the state of the FCP (θ∗). It is assumed that the FCP state (θ∗)

is not known exactly but instead will be modelled as a Gaussian variable.

The guard condition represents the conditions under which the vehicle remains

in the current mode, such that if these conditions are no longer met the transition

will occur. Referring to Figure 3.2 the guard conditions for each of the FCPs can

be determined.

FCP1 - Crosswind

The crosswind guard condition is

c ≤ c1 (3.18)

which may may be represented in the form (3.17) by setting

Lx =
[
0 0 0 1 0 0 0 0

]
Lθ = −1 θ∗ = c1 (3.19)

FCP2 - Turning Downwind

The guard conditions for turning downwind is based upon vehicle heading which

cannot be used directly as it is not a state variable. Instead, velocities can be

used

ċ ≥ 0 and u̇ ≥ −v (3.20)

where v is the nominal velocity. Therefore, the coefficient matrices are

Lx =

[
0 0 0 0 −1 0 0 0

0 −1 0 0 0 0 0 0

]
Lθ =

[
1 0

0 −1

]
θ∗ =

[
0

v

]
(3.21)

45



FCP3 - Downwind

The downwind guard condition is

u ≤ 0 (3.22)

Therefore

Lx =
[
1 0 0 0 0 0 0 0

]
Lθ = 1 θ∗ = 0 (3.23)

FCP4 - Late Downwind

The guard condition for leaving the downwind leg is conditioned on the relative

position of the runway threshold as indicated in Figure 3.2 and the commencement

of a descent

u ≥ −c
tan (π/4)

and h ≥ hc (3.24)

where hc is the typical circuit height. The coefficient matrices are

Lx =

[
−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

]
Lθ =

[
−1 0

0 1

]
θ∗ =

 c
tan (π/4)

hc


(3.25)

FCP5 - Turning Base

This guard condition is heading based similar to FCP2, the same velocity ap-

proach is used

u̇ ≤ 0 and ċ ≥ −v (3.26)

where v is the nominal velocity. The coefficient matrices are

Lx =

[
0 1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

]
Lθ =

[
−1 0

0 −1

]
θ∗ =

[
0

v

]
(3.27)

FCP6 - Base

The guard condition for base is

c ≥ c2 (3.28)
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Therefore

Lx =
[
0 0 0 −1 0 0 0 0

]
Lθ = 1 θ∗ = c2 (3.29)

FCP7 - Turning Final

This is the final heading based FCP

u̇ ≥ −v and ċ ≤ 0 (3.30)

where v is the nominal velocity. The coefficient matrices are

Lx =

[
0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

]
Lθ =

[
−1 0

0 1

]
θ∗ =

[
v

0

]
(3.31)

FCP8 - Final

This is the final FCP which occurs when the vehicle touches down on the runway.

The guard conditions are

u ≤ 0 and h ≥ 0 (3.32)

Therefore

Lx =

[
1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

]
Lθ =

[
1 0

0 1

]
θ∗ =

[
0

0

]
(3.33)

3.2.3 Discrete mode transition

To capture uncertainty in the continuous state and FCP guard conditions, it

is necessary to treat transitions as probabilistic events. The mode transition

probability to mode j at time k+ 1 can be written as the 8-dimensional integral

p[m(k+1) = j |Mk, Zk] =

∫
<8

p[m(k+1) = j |Mk, Zk, x]p[x(k) = x |Mk, Zk]dx

(3.34)
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where p[m(k+1) = j |Mk, Zk] is the probability of being in mode j at time k+1

given the mode and measurement histories up to k, Mk and Zk respectively, and∫
<8

•dx =

∫ ∞
−∞

. . .

∫ ∞
−∞
•dx1 . . . dx8 (3.35)

which represents integration over the entire (8-dimensional) continuous state vec-

tor x.

Equation (3.34) states that the mode transition is conditioned on the previous

mode and measurement history in addition to the continuous state history. It is

derived by considering a continuous form of the law of total probability which

relates the marginal probability of mode transition to the conditional probability

of mode transition given a continuous state. To simplify the analysis it is assumed

that the mode transition is a Markovian process, therefore the conditional mode

transition probability p[m(k + 1) | Mk, Zk, x] depends only on the mode and

continuous state of the previous time step and not their entire history, therefore

if the mode at time k is i

p[m(k + 1) = j |Mk, Zk] =

∫
<8

πij(x)p[x(k) = x |Mk, Zk]dx (3.36)

where

πij(x) = p[m(k + 1) = j | m(k) = i, x(k)] (3.37)

and is the probability of transition from state i to state j conditioned on the

continuous state. This is assumed to be a Gaussian Multivariate Cumulative

Distribution Function (MVCDF) with mean and covariance evaluated from the

FCP guard condition from mode i to j

πij(x) = Pr[Lx,ijx+ Lθ,ijθ
∗ ≤ 0 | x] (3.38)

It is possible to model the probability of this inequality being satisfied as

a Gaussian MVCDF but first the associated Multivariate Probability Density

Function (MVPDF) must be found. The random variable in (3.38) is θ∗ which

is the uncertain guard condition state and this may be considered as a Gaussian
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Figure 3.5: Single variable cumulative distribution function for mode transition

MVPDF with mean µθ and covariance Σθ. Therefore

p[Lx,ijx+ Lθ,ijθ
∗ | x] = Lx,ijx+ Lθ,ijNq(θ

∗;µθ,Σθ) (3.39)

where Nq represents a q-dimensional MVPDF for θ∗ with mean µθ and covariance

matrix Σθ. By Theorem 2.4.1 from Anderson [1984], (3.39) can be written

p[Lx,ijx+ Lθ,ijθ
∗ | x] = Nq(θ

∗;Lx,ijx+ Lθ,ijµθ, Lθ,ijΣθL
T
θ,ij) (3.40)

This defines a distribution with mean Lx,ijx(k)+Lθ,ijµθ and covariance Lθ,ijΣθL
T
θ,ij.

Figure 3.5 illustrates the one dimensional case of how the transition probabil-

ity can be calculated with these parameters in a MVCDF. Using Φq as the

q-dimensional zero mean MVCDF operator, this gives

πij(x) = Φq(Lx,ijx+ Lθ,ijµθ, Lθ,ijΣθL
T
θ,ij) (3.41)

.

The second term in the integral of (3.36) is the probability of being in state

x at time k which can be assumed to be a Guassian MVPDF with mean x̂i(k)

and covariance Pi(k) where the subscript i represents the estimate made by the
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ith mode Kalman filter. Equation (3.36) can now be written

p[m(k + 1) = j |Mk, Zk] =

∫
<8

πij(x)N8(x; x̂i(k), Pi(k))dx (3.42)

It can be shown (lemmas 1 and 2 in Seah and Hwang [2009]) that this integral

represents a Gaussian MVCDF. Therefore the mode transition probability from

mode i to mode j at time k, termed γij(k), can be written as

γij(k) = Φq(Lx,ijx̂i(k) + Lθ,ijµθ, Lx,ijPi(k)LTx,ij + Lθ,ijΣθL
T
θ,ij) (3.43)

3.2.4 State Dependent Transition Hybrid Estimation al-

gorithm

Figure 3.6 illustrates how the SDTHE algorithm utilises the mode transition

probabilities discussed in the previous section to estimate mode probabilities and

continuous states. The following sections explain the functionality of each of the

components of Figure 3.6 with more detail being found in Seah and Hwang [2009].

The mode probability (α(k)) is used throughout the algorithm and represents

the probability of residing in each mode at time k. In steady state, the elements

of α consists of single unity elements such as

α(k) =
[
0 0 0 1 0 0 0 0

]
(3.44)

which represents the 4th mode (Late Downwind). In this condition it acts simply

to select which Kalman filter is used at various stages as discussed below. During

mode transitions, however a typical value of α may be

α(k) =
[
0 0.4 0.6 0 0 0 0 0

]
(3.45)

which represents a point during transition between modes 2 and 3 (Downwind

Turn and Downwind). In this condition the Kalman filters for these modes are

mixed together according to the mode probabilities.
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Mixing

At each time step, each of the Kalman filters requires an initial state x̂i0(k) and

covariance matrix Pi0(k). These are found by combining the estimates made at

the previous time step, weighted by the mode probability vector.

x̂i0(k) =
8∑
j=1

x̂j(k)ᾱij(k) (3.46)

Pi0(k) =
8∑
j=1

(Pj(k) + (x̂j(k)− x̂i0(k))(x̂j(k)− x̂i0(k))T )ᾱij(k) (3.47)

where

ᾱij(k) =
1

ci
γji(k)αj(k) (3.48)

and ci is a normalising constant.

These equations have the effect of weighting each Kalman filters contribution

based upon the probability of residing in the associated mode.

Kalman Filters

For each of the discrete modes listed in Table 3.1 the governing equations are

made up from a lateral and vertical model defined by their sub-modes. These

sub-mode models can be written as one single model of the form

x(k + 1) = Ax(k) +Ww(k) (3.49)

z(k + 1) = Cx(k) + v(k) (3.50)

where w(k) and v(k) are the process and measurement noise respectively.

These equations are well suited to direct implementation of a typical discrete

time linear Kalman filter as described in Welch and Bishop [2001]. The process

noise covariance Q is modified slightly to accommodate the coefficient matrix W .

Q′ = WQW T (3.51)
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This modification is made simply to allow for a more intuitive definition of

process noise as described in Section 3.2.1.

Mode probability update

To update the mode probabilities the Kalman filter likelihoods and transitions

probabilities are used. The likelihood of the ith Kalman filter is the probability

of the measurement at time k+1 given the ith mode is correct at that time. This

can be calculated from the distributions of the residuals of the Kalman filter

Λi(k + 1) = N3(ri(k + 1); 0, Si(k + 1)) (3.52)

where r and S are the residuals and their covariances respectively.

In addition to the Kalman filter likelihood, the ith mode can only be correct if

a transition has occurred, therefore the current mode and transitions probabilities

must be included

α′i(k + 1) = Λi(k + 1)
8∑
j=1

γji(k)αj(k) (3.53)

α′i(k+ 1) is the non-normalised probability of the ith mode at time k+ 1. To

obtain the normalised vector α simply divide by the sum of α′

α(k + 1) =
α′(k + 1)

Σ8
i=1α

′
i(k + 1)

(3.54)

Output

The output state estimate x̂(k + 1) is calculated as the weighted sum of the

Kalman filter estimates.

x̂(k + 1) =
8∑
i=1

x̂i(k + 1)αi(k + 1) (3.55)
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and its covariance

P (k+ 1) =
8∑
i=1

(Pi(k+ 1) + (x̂i(k+ 1)− x̂(k))(x̂i(k+ 1)− x̂(k))T )αi(k+ 1) (3.56)

The mode probabilities are not directly useful as outputs from the compre-

hension system, therefore the most likely mode is output instead. This is simply

the index of the maximum value in α, for example if

α(k + 1) =
[
0 0 0 0.7 0.3 0 0 0

]
(3.57)

the mode output would be 4 (Late Downwind).

3.3 Results

In order to test the SDTHE algorithm a MATLAB/Simulink simulation was

performed. The algorithm was coded within MATLAB and a Simulink model

was created to simulate the measurement of noisey data from a single traffic

vehicle.

3.3.1 Simulation set up

The nominal flight path of the vehicle is illustrated in Figure 3.7. The vehicle

begins abeam the runway beginning the crosswind leg at a nominal velocity of

40ms−1 and a height of 350m. The FCPs illustrated in Figure 3.7 represent the

nominal conditions, however as discussed in the previous section these must be

modelled as MVPDFs to take account of variability in the flight path of the vehi-

cle. The nominal FCPs are the means of the distribution (µθ) and the covariances

(Σθ) can be determined by observation of the typical variation in flight paths.

Table 3.2 shows the mean and covariance information for each of the FCPs.

The mean vectors take the form of the FCP state vector θ∗ detailed in Section

3.2.2 and the distributions are considered to be decoupled so only the diagonal

terms are present in the covariance matrices. The variances for each parameter

were tuned to achieve the desired performance based upon the variations in the
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simulated flight path.

A more complex model is used for the vehicle than the linear models used

in the SDTHE algorithm so as to allow the vehicles turn rate to be used to

characterise manoeuvres (not required by the filtering process of the SDTHE).
û

ĉ

ĥ

ψ


k+1

=


û

ĉ

ĥ

ψ


k

+


dt cosψ′k 0 0

dt sinψ′k 0 0

0 dt 0

0 0 dt


 vvh
v′ψ


k

(3.58)

where the velocity, vertical velocity and rate of change of heading (
[
v vh vψ

]T
k

)

are set by means of a predefined flight plan. The output of the model which is fed

into the SDTHE includes a small amount of noise which is typically associated
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Table 3.2: FCP means and covariances

FCP Means Covariances
1 µθ = c1 = 1500m Σθ = (100m)2

2 µθ =

[
0
v

]
=

[
0ms−1

40ms−1

]
Σθ =

[
(3ms−1)2 0

0 (2ms−1)2

]
3 µθ = 0m Σθ = (100m)2

4 µθ =

[ c
tan (π/4)

hc

]
=

[ c
tan (π/4)

350m

]
Σθ =

[
(100m)2 0

0 (5m)2

]
5 µθ =

[
0
v

]
=

[
0ms−1

35ms−1

]
Σθ =

[
(2ms−1)2 0

0 (2ms−1)2

]
6 µθ = c2 = 500m Σθ = (100m)2

7 µθ =

[
v
0

]
=

[
30ms−1

0ms−1

]
Σθ =

[
(2ms−1)2 0

0 (2ms−1)2

]
8 µθ =

[
0
0

]
=

[
0m
0m

]
Σθ =

[
(10m)2 0

0 (10m)2

]

with Global Positioning Systems (GPSs)

uc
h


k

=

1 0 0 0

0 1 0 0

0 0 1 0



û

ĉ

ĥ

ψ


k

+N3


uc
h

 ; 0,

(10m)2 0 0

0 (10m)2 0

0 0 (5m)2


 (3.59)

3.3.2 Test 1 - Nominal flight path

In the first test the traffic vehicle is flown along the nominal path, manoeuvring at

each of the FCPs precisely. A plot of the estimated position against the nominal

path can be seen in Figure 3.8. Figure 3.9 shows the estimated discrete modes as

time progresses. It should be noted that the ninth discrete mode is not actively

estimated by the SDTHE, it is simply used to denote that FCP8 has been reached

(the vehicle has landed). It can be seen from Figure 3.9 that all mode transitions

were detected within 10s with most taking less than 5s to detect. Finally, Figure

3.10 shows the errors in the continuous state estimate verses true state. The

measured speed in Figure 3.10 is calculated directly from GPS position by first

order differencing to provide an indication of the improved accuracy. The discrete
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mode changes are marked on Figure 3.10 to highlight the performance differences

between the Kalman filters.
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Estimated �ight path

Real �ight path

Figure 3.8: Plot of the estimated flight path without FCP uncertainty
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Figure 3.9: Plot of the discrete mode estimation without FCP uncertainty
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Figure 3.10: Plot of the errors in the estimated continuous states without FCP uncertainty
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3.3.3 Test 2 - FCP uncertainty

In this test the traffic vehicle flies a path which exhibits a typical level of uncer-

tainty in its FCPs, associated with a pilot not flying precisely as expected (e.g.

turning later than expected). Random variations in heading and FCP position

were used, with variances of 5◦ and 100m respectively. The heading variance is

representative of the typical accuracy with which a human pilot is able to main-

tain a constant heading. Position variance is of the order typically experienced

at a small uncontrolled airfield, this is around 10% of the circuit dimensions. It

can be seen from Figure 3.11 that the vehicle begins on the correct path but

after initiating its turn onto the downwind leg too early continues to exhibit an

abnormal path. Figures 3.12 and 3.13 show the discrete mode transitions and

continuous state errors.
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Figure 3.11: Plot of the estimated flight path with FCP uncertainty
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Figure 3.12: Plot of the discrete mode estimation with FCP uncertainty
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Figure 3.13: Plot of the errors in the estimated continuous states with FCP uncertainty
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Table 3.3: Sensitivity of SDTHE position estimation to parameter variation

HH
HHHHµ

Σ
90% 100% 110%

90% 9.17m 9.18m 9.18m
100% 9.43m 9m 9.14m
110% 9.47m 9.48m 9.47m

Table 3.4: Sensitivity of SDTHE discrete mode estimation to parameter variation

HH
HHHHµ

Σ
90% 100% 110%

90% 11.1% 11.4% 11.4%
100% 5.7% 5.98% 5.98%
110% 5.7% 5.98% 5.98%

3.3.4 Sensitivity study

The parameters listed in Table 3.2 would likely be estimated from recorded data,

a process which is subject to its own sources of error. To test the robustness

of the SDTHE algorithm to errors in these parameters a sensitivity study was

performed. This study varied the means and covariances listed in Table 3.2 from

90% to 110% whilst repeating Test 1 described above.

Table 3.3 illustrates the effect of this variation on the Root Mean Square

(RMS) position estimation error. It is clear that SDTHE position estimation is

relatively insensitive to variation in parameters, with variation in FCP means

having the greatest effect.

Table 3.4 illustrates the effect of parameter variation on discrete mode esti-

mation. The metric used to measure discrete mode estimation performance is

the percentage of the test that the incorrect mode is estimated. The SDTHE

algorithm with unmodified parameters estimates the incorrect mode for 5.98% of

the flight, this is visible as a discrepancy between the two lines in Figure 3.9. As

with position estimation, the discrete mode estimation is insensitive to variation

in FCP covariance, however more sensitive to variations in FCP mean.
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3.3.5 Discussion

The previous sections have presented results for nominal and typical off-nominal

flight paths, in addition to a parameter sensitivity study. Analysis of Figures 3.9

and 3.12 shows the power of the SDTHE algorithm for predicting the discrete

mode transitions. All transitions are detected within 10s of the actual transition

occurring, with many detections being significantly faster. Occasionally, transi-

tions are detected before they actually occur, for example the second transition in

figure 3.12, this suggests that the variances governing these transitions may be too

large. It is believed, however, that the variances used give the best performance

over a wide range of uncertain flight paths.

Figures 3.10 and 3.13 show the benefits of weighting Kalman filters based

upon mode probabilities. When the vehicle is in the CV and CH modes a more

accurate estimate of speed and height is possible by using Kalman filters which

reject changes in these variables. It can be seen that there is little improvement

in the position estimation over the GPS measurement, this is due to the fact that

the noise power of a GPS signal is small and therefore little improvement can be

made. Speed estimation, however, is greatly improved over that obtained by first

order differencing of position. An accurate estimation of speed is important for

both discrete mode estimation and to enable initial flight path projection.

A sensitivity study has shown the SDTHE algorithm to be insensitive to vari-

ations in the FCP covariance parameters. Discrete mode estimation, however, is

relatively sensitive to variations in FCP means. When estimating the FCP pa-

rameters from data, therefore, greater care should be taken to accurately quantify

the mean values so as to ensure best performance from the algorithm.

3.4 Summary

This chapter has considered the problem of traffic state comprehension by an

autonomous UAS operating in the terminal area. Assuming imperfect position

information is available from on-board sensors, the continuous state and discrete

mode of the vehicle are estimated. Referring to Section 2.4.4 it is clear that the

requirements for comprehension have been met as both the separation and relative
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trajectory of traffic are directly available from the continuous state estimate. The

intentions of the traffic and the hazard posed may both be inferred from the

discrete mode information, this is explained in the next chapter.

A CCS has been defined to provide continuous state information for all vehicles

in a convenient reference frame. The problem of coupled continuous state and

discrete mode estimation has been discussed and overcome by the use of the

SDTHE algorithm. This algorithm was designed as an aid to ATC tracking

vehicles on well defined routes, utilising discrete mode estimation to improve

tracking accuracy. This chapter has extended the SDTHE algorithm to a loosely

defined path governed by standards and heuristics which is dependant on the

performance of the vehicle and is represented in the CCS (rather than global

coordinates). The discrete modes associated with this visual circuit pattern have

been defined with respect to aircraft performance parameters and the associated

FCPs guard conditions have been derived. The discrete mode estimate provides

an UAS with the ability to infer future intent of the vehicle based upon the

standard procedures, further extending the algorithm from the ATC environment.

The ability of the SDTHE algorithm to provide filtered continuous state infor-

mation and correctly determine discrete mode transitions based solely on noisy

position measurements has been demonstrated. This allows an autonomous UAS

to fully comprehend the present state of traffic aircraft allowing the projection

element of situation awareness to be undertaken.

The next chapter builds on this comprehension of traffic to provide a projec-

tion system for an autonomous UAS in the terminal area.
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Chapter 4

Projection

4.1 Introduction

The previous chapter discussed the comprehension of the current state of a traffic

vehicle as required in Section 2.4.4. This chapter extends this by performing

projection of the comprehended state to some future time horizon. Traditional

collision avoidance algorithms perform a basic level of projection by assuming

short term continuation of the currently observed state. For example, TCAS

estimates the time to collision between two vehicles under the assumption that

the observed relative velocity remains constant [Kuchar and Drumm, 2007]. This

approach is sufficient for emergency collision avoidance in free airspace (away from

the terminal area) where time to collision is low and the potential for vehicles to

manoeuvre is small.

If this projection method is used for vehicles which do not pose an imminent

risk of collision, small errors in the relative velocity measurement lead to large

prediction errors due to the increased projection times involved. Additionally, if

the vehicle is operating in the terminal area it is unlikely to maintain a constant

velocity for any length of time, making the constant velocity assumption invalid.

This chapter details a novel projection methodology for an autonomous UAS

based upon the hybrid comprehension method discussed in the previous chapter.

With knowledge of the current discrete mode (from comprehension) it is possible

to infer the future trajectory of the vehicle based on the traffic circuit discussed
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in Section 3.1, including all future manoeuvres. It can not be guaranteed, how-

ever, that the vehicle will accurately track the nominal path. The uncertainties

associated with both navigation errors and the ability of the vehicle to conduct

manoeuvres earlier or later than expected must be quantified so as to allow the

worst case conditions to be considered.

The next section discusses the projection along the nominal flight path, as-

suming the traffic behaves exactly as expected, to determine the mean position

at some future time. Section 4.3 covers the sources of uncertainty in projection

and how they are used to calculate a covariance matrix which quantifies both

continuous and discrete uncertainties. Finally, Section 4.4 presents results of the

projection system in isolation to demonstrate its performance.

4.2 Nominal flight path projection

Projection of the nominal future states of traffic vehicles may be abstracted into

two distinct stages, short and long term. Short term projection assumes a con-

tinuation of the current state until the next FCP is reached in a similar way to

that used by TCAS. When the projected path reaches a FCP, the current vehicle

state can provide very little information about the future path. At this point

long term projection takes over by using a simple vehicle model to capture its

dynamics and assuming the nominal circuit path will be flown. The assumption

holds, provided the vehicle has been positively identified as being in the circuit at

the comprehension stage. Once established in the circuit (or more generally, any

published arrivals procedure), a vehicle must follow the associated procedures

in order to present predictable behaviour to any other vehicles [Civil Aviation

Authority, 2009a].

4.2.1 Short term prediction

Short term projection is similar to the function of traditional collision avoidance

systems such as TCAS. The current state of the traffic is known and the velocity

vector is used to predict future positions. For the unaccelerated (CV, CH and
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CD) flight modes, this prediction is given as
u

c

v

h

vh


tST

=


1 0 t cosψ′0 0 0

0 1 t sinψ′0 0 0

0 0 1 0 0

0 0 0 1 t

0 0 0 0 1




u

c

v

h

vh


0

(4.1)

where t is the prediction time measured in seconds, ψ′0 = arctan
(
ċ0
u̇0

)
and v0 =√

u̇0
2 + ċ0

2. The subscript ST indicates that this is a short term prediction

equation.

For the accelerated CA and CT flight modes, it is possible to estimate the

acceleration, or rate of turn, and include this in the prediction; (4.2) and (4.3)

respectively 
u

c

v

h

vh


tST

=


1 0 t cosψ′0 0 0 0

0 1 t sinψ′0 0 0 0

0 0 1 t 0 0

0 0 0 0 1 t

0 0 0 0 0 1





u

c

v

a

h

vh


0

(4.2)

where a0 =
√
ü0

2 + c̈0
2.



u

c

v

ψ′

h

vh


tST

=



1 0 t cosψ′t−1ST
0 0 0 0

0 1 t sinψ′t−1ST
0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 t 0 0

0 0 0 0 0 1 t

0 0 0 0 0 0 1





u

c

v

ψ′

vψ′

h

vh


0

(4.3)

where

vψ′
0

=
c̈0u̇0 − ċ0ü0

u̇0
2 sec2

(
ċ0

u̇0

)
(4.4)

It is important to use separate prediction equations for different flight modes
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as the continuous state estimate will contain small errors in acceleration terms

even in unaccelerated modes. Since projection of the current state does not

benefit from any further measurements, these errors would be magnified as the

prediction horizon increases. Using (4.1) when the current mode is unaccelerated

helps mitigate this problem.

The prediction time t may be increased until the next FCP is reached. De-

termination of the point when the FCP is reached is more complex than during

comprehension due to the inherent uncertainties in the projection process, this

will be discussed later.

4.2.2 Long term prediction

Once the projection time t places the vehicle past its next FCP, little if any of

its current state information is of use to aid further prediction. At this point

the only means of continuing projection forward is to make the assumption that

the vehicle will follow the nominal circuit pattern. Vehicles observed to be in

the circuit must follow these standardised procedures to enable safe operation to

occur [Civil Aviation Authority, 2009a]. Vehicles in the vicinity which are not

in the circuit have an obligation to remain clear and if they fail to do so this

becomes an emergency collision avoidance situation which is beyond the scope of

this thesis, therefore only circuit traffic is considered.

To perform this long term projection, it is necessary to have a rudimentary

model of the vehicle dynamics, given in (4.5)


u

c

v

ψ′

h


tLT

=


1 0 dt cosψ′t−1LT

0 0

0 1 dt sinψ′t−1LT
0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




u

c

v

ψ′

h


t−1LT

+


0 0 0

0 0 0

dt 0 0

0 dt 0

0 0 dt


 a

vψ′

vh


DSn

(4.5)

where dt is the time step, the subscript LT represents long term projection.

The control vector
[
a vψ′ vh

]T
DSn

represents the acceleration and velocities

of the vehicle in the nth discrete state. For example in flight modes CA and CD
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it may take the value
[
(−0.5ms−2) 0 (−1ms−1)

]T
. To determine appropriate

values for this vector in each future discrete state it is necessary for the UAS to

have some knowledge of the aircraft type it is observing. With this information

it is possible to select which model is most suited. Typical models may be ‘mi-

crolight’, ‘twin-engined piston’ or ‘large civil’. These models may be refined in

real-time by observation of manoeuvres as they occur at the comprehension level.

During long term projection the transition between discrete states is trivial as

the vehicle is following the nominal circuit path and will therefore intersect the

FCPs exactly.

4.3 Projection uncertainty

The previous section introduced projection of the traffic vehicle along the nominal

flight path, providing the mean position at some future time. This is subject to

a large degree of uncertainty, however, as a vehicle may not maintain the exact

speeds and heading estimated by the UAS during the comprehension stage and

may transition between discrete states away from the FCPs nominal positions.

To account for these uncertainties, the position of the vehicle can be thought of

as a MVPDF with mean as defined by the nominal flight path and covariance

defined by the uncertainties.

Throughout the majority of section it is assumed that the accumulation of

errors is not bounded by any form of guidance system, therefore they may grow

indefinitely. Bounding uncertainty is considered, however, with regard to assuring

the vehicle reaches the runway and a similar approach can be used to include

guidance laws if required.

4.3.1 Continuous linear uncertainty

Uncertainties arising from the vehicles deviations from the nominal flight path

are continuous in nature. They can be characterised as uncorrelated variances in
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the aircrafts velocity

Σv =

σ
2
vx 0 0

0 σ2
vy 0

0 0 σ2
ḣ

 (4.6)

where σ2
vx , σ2

vy , σ2
ḣ

are the variances in velocity along the longitudinal, lateral and

vertical aircraft axes respectively. Lateral velocity uncertainty may be difficult

to define and can therefore be written in terms of a heading uncertainty

σvy = v̂ tanσψ (4.7)

where v̂ is the nominal velocity and σψ is the variance in heading. This assumes

that σvx is small in proportion to v̂. Also for small values of σψ, σvx = σv, the

velocity variance along the nominal flight path; and tanσψ = σψ . Therefore (4.6)

may be written

Σv =

σ
2
v 0 0

0 (v̂σψ)2 0

0 0 σ2
ḣ

 (4.8)

To calculate positional uncertainty, it is necessary to integrate the velocity

uncertainties along the flight path and then transform into the CCS. It can be

assumed that the velocity uncertainties remain constant throughout any given

discrete state but they may change between states. Due to the uncorrelated

nature of the continuous uncertainty in each discrete state it is possible to perform

this integration as a piecewise summation. Figure 4.1 illustrates a path which has

been deconstructed in to its constituent discrete states. The traffic is currently

in discrete state i, and at projection time t is nominally in discrete state j, the

positional covariance, aligned with the aircraft axis is

Σ′(t) =

σx(t)
2 0 0

0 σy(t)
2 0

0 0 σz(t)
2

 = Σvit
2
i+1+

(
j∑

n=i+1

Σvn(tn+1 − tn)2

)
+Σvj(t−tj)2

(4.9)
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Figure 4.1: Piecewise integration of continuous uncertainty

where Σvn is the nth discrete state velocity covariance defined in (4.8). The

first term represents the accumulation of error between the current position and

the first discrete transition (at ti+1), the summation represents the accumulation

of errors for all intermediate discrete states and the final term represents the

contribution from the state at projection time t (from tj to t).

In order to transform (4.9) into the CCS, it is necessary to rotate the lateral

and longitudinal terms by the heading of the vehicle (relative to the runway direc-

tion), ψ′(t) = arctan
(
ċ(t)
u̇(t)

)
. This approach implicitly linearises the nominal flight

path at each projection time t, which may be an invalid assumption under some

circumstances and a method will be presented in the next section to overcome

this problem. To rotate a MVPDF, its covariance must be transformed by

Σ(t) = RΣ′(t)RT (4.10)

where R is the rotation matrix

R =

cosψ′(t) − sinψ′(t) 0

sinψ′(t) cosψ′(t) 0

0 0 1

 (4.11)

This transformation is analogous to multiplication by the square of the rota-

tion matrix so as to maintain the correct dimensionality of Σ, see Theorem 2.4.1
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from Anderson [1984]. Performing the transformation in (4.10) yields

Σ(t) =

σu(t)
2 σuc(t)

2 0

σuc(t)
2 σc(t)

2 0

0 0 σh(t)
2

 (4.12)

where σu and σc are the upwind and crosswind positional variances respectively

and σuc is their covariance, given by

σu(t)
2 = (σx(t) cosψ′(t))2 + (σy(t) sinψ′(t))2

σc(t)
2 = (σx(t) sinψ′(t))2 + (σy(t) cosψ′(t))2

σuc(t)
2 = (σy(t)

2 − σx(t)2) sinψ′(t) cosψ′(t)

(4.13)

Equation (4.12) together with the nominal flight path projection equations

given in (4.2) provide a means of projecting the continuous states of a traffic

vehicle under the assumption that the path is locally linear. The following sections

will remove this linear restriction and introduce discrete uncertainties such as in

the location of FCPs.

4.3.2 Continuous curvilinear uncertainty

The rotated covariance matrix given in (4.12) aligns the MVPDF with the nom-

inal flight path at projection time t. This assumes that the radius of curvature

of the flight path is large when compared with the longitudinal variance σx(t). A

typical turn may have a radius in the order of 1000m, therefore linearised pro-

jection will perform well for longitudinal uncertainties below 100m. Since σx(t)

is an increasing function with t this implies that linear projection is appropriate

at small projection times and for all straight (or near straight) paths. Figure 4.2

illustrates the error that arises if linear projection is applied to a curved nominal

flight path at a high projection time. Intuitively, this error occurs because a

vehicle traveling at a higher than nominal speed travels further along the nom-

inal trajectory, not along its tangent. This error is mitigated by introducing

curvilinear projection, Figure 4.3.

Curvilinear projection uses the aircraft axis aligned positional uncertainties
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Figure 4.2: Linearisation error during curved flight
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Projected position

at time t
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Figure 4.3: Curvilinear projection illustration
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Figure 4.4: Curvilinear coordinate system

given in (4.9) and assigns them to coordinates along and normal to the nominal

path (distance and crosstrack error axes) as illustrated in Figure 4.4.

ΣCL(t) =

σd(t)
2 0 0

0 σe(t)
2 0

0 0 σh(t)
2

 = Σ′(t) (4.14)

where σd(t)
2 and σe(t)

2 are the distance and crosstrack error variances respectively

and the subscript CL represents curvilinear coordinates.

To represent the nominal path in curvilinear coordinates, an additional pa-

rameter is required, the nominal distance travelled is calculated by

d(t) =

∫ t

0

v(τ)dτ (4.15)

where t is the projection time. No calculation of nominal crosstrack error is
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Figure 4.5: Transformation from curvilinear to CCS coordinates

required as this is zero by definition.

Equation (4.15) has the effect of defining the origin of the curvilinear coor-

dinate system to be the vehicle’s present position and extending the distance

axis out along the nominal path for all future projection times. This introduces

a problem when conducting further analysis on the projected position (such as

path planning for the UAS) because each traffic vehicle posses a unique coordi-

nate system defined by its present position and there is no way to characterise the

position of the UAS in the same frame. To overcome this, the projected position

must be transformed back to the CCS, illustrated in Figure 4.5 and given by[
u(t)

c(t)

]
=

[
û(d(t))

ĉ(d(t))

]
+ e(t)

[
− sin(ψ̂′(d(t)))

cos(ψ̂′(d(t)))

]
(4.16)

where û(d(t)), ĉ(d(t)) and ψ̂′(d(t)) are the nominal upwind and crosswind posi-

tions and runway relative heading at the distance d(t).

It is clear from Figure 4.3 that in the CCS the curvilinear projection distri-

bution is non-Gaussian as it has been mapped to a curved path. This presents

an added challenge to further analysis as operations such as determination of the

cumulative distribution (which are trivial for Gaussians) are much more complex.

However the following sections introduce both discrete and bounded uncertainty

which further increase the non-Gaussian nature of the distribution whilst greatly
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increasing its accuracy, therefore the added complexity is necessary.

4.3.3 Discrete uncertainty

The uncertainties discussed in the previous sections pertain to the build up of

small navigational errors over time which is continuous in nature as it occurs

at all projection times. Discrete actions are also subject to uncertainty during

projection as the exact time at which they will occur is unknown to the UAS.

Within the terminal area the most critical example of these discrete uncertainties

is at the FCPs, when the aircraft will be manoeuvred by the pilot. For example,

the decision of a pilot to commence a turn 5s earlier than anticipated by the UAS

would result in significantly different future trajectories. During terminal area

operations separation of traffic by height is rarely performed therefore discrete

transitions in height are ignored and the problem is treated as two dimensional.

Figure 4.6 illustrates the problem this poses for projection; for clarity the

continuous uncertainties discussed in the previous sections are ignored. In this

example, a vehicle positioned at (0, 500)m heading in the crosswind direction

would be expected to turn after reaching (1300, 500)m, the nominal path in figure

4.6. However a worst case variation of ±800m in the FCP may be observed in

circuit traffic, represented by the early and late turns. The dashed lines represent

contours of constant projection time and show how, should be vehicle turn early,

it will progress further in the upwind direction than the nominal and late turn

cases.

To capture discrete uncertainty, it is first characterised as a univariate Gaus-

sian PDF

di ∼ N(d̂i, d̃
2
i ) (4.17)

where di is the distance along the nominal path that the ith discrete transition

occurs, d̂i is its mean value and d̃2
i its variance. Figures 4.7 and 4.8 illustrate

two effects caused by the inclusion of discrete uncertainty in this way. Figure 4.7

shows how a turn made later than the mean will increase the vehicles crosstrack

error and also delay its progress along the nominal path. These errors in distance
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Figure 4.6: Discrete uncertainty in flight path projection
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Figure 4.7: Effect of discrete transition variance on projection

and crosstrack error are given as

εid =

[
−d̃i

d̃i sin(∆ψi)

]
(4.18)

This leads to the covariance matrix for discrete transitions

Σid = εidε
T
id

=

[
d̃2
i −d̃2

i sin(∆ψi)

−d̃2
i sin(∆ψi) d̃2

i sin2(∆ψi)

]
(4.19)

Figure 4.8 shows the transformation of crosstrack error which occurs during

a discrete transition. The subscript i on the crosstrack error term refers to the

error accumulated between the (i − 1)th and ith discrete transitions which can

be written

ẽi(t) =

{
ψ̃(d̂i − d̂i−1) if i < n

ψ̃(d(t)− d̂i−1) if i = n
(4.20)

where n is the next discrete transition at time t. The first equation in (4.20)

accounts for the accumulation of crosstrack error from all discrete states up to

the previous transition (i = n−1). The second equation represents the continuous

uncertainty in crosstrack error since the last discrete transition was encountered.
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This piecewise continuous representation of crosstrack error is required to capture

the transformation which occurs as each discrete transition is encountered. The

crosstrack error term is then given as

εic =

[
−ẽi sin(∆ψi)

ẽi cos(∆ψi)

]
(4.21)

This leads to a crosstrack error covariance matrix of

Σie = εicε
T
ic =

[
ẽ2
i sin2(∆ψi) −ẽ2

i sin(∆ψi) cos(∆ψi)

−ẽ2
i sin(∆ψi) cos(∆ψi) ẽ2

i cos2(∆ψi)

]
(4.22)

The covariance matrices given in (4.19) and (4.22) completely represent the

distance uncertainty introduced and transformation of crosstrack error caused by

discrete transitions. If the nth discrete transition is next at time t the projection

of a traffic vehicles position is simply the sum of all the discrete transitions to n.

Σtot(t) = Σ0(t) +
n∑
i=1

Pi(d(t))(Σid + Σie(t)) (4.23)

where Pi(d(t)) is the probability of the ith transition having occurred at distance

d(t) along the path given by the Gaussian Cumulative Distribution Function

(CDF)

Pi(d(t)) =

∫ d(t)

−∞
p(x; d̂i, d̃i)dx (4.24)

where p(x; d̂i, d̃i) is the value of the Gaussian PDF at x with mean d̂i and standard

deviation d̃i. The ith transition probability Pi(d(t)) has the effect of switching

on the uncertainties imposed by a transition as it is reached.

The Σ0(t) term in (4.23) is a modified form of the continuous covariance

matrix given in (4.14) with the crosstrack error variance removed (and vertical

dimension ignored).

Σ0(t) =

[
σd(t)

2 0

0 0

]
(4.25)

Despite being continuous in nature, the crosstrack error must not be accounted

for in the continuous covariance matrix as it is included in a piecewise fashion by

84



the discrete transitions in order to preserve the required transformations.

The covariance matrix (4.23) describes the uncertainty in projection of a traffic

vehicle subject to discrete uncertainty in curvilinear coordinates. It accounts for

the continuous uncertainty arising from errors in velocity estimation and discrete

uncertainties arising from the commencement of manoeuvres at uncertainty times.

Transformation to the CCS may be performed by applying (4.16) as before.

Test results

To test the performance of discrete uncertainty projection, a typical terminal area

path simulation was used. A traffic vehicle is positioned at
[
2000m 2000m

]
with

a speed of 50ms−1 and a heading of 180◦. The nominal path consists of a 90◦

left turn at
[
−2000m 2000m

]
followed by a second turn to intercept the upwind

axis.

It is assumed that the traffic vehicle maintains its present speed and heading

with standard deviations of 2ms−1 and 2◦ respectively. Additionally, the discrete

transitions are assumed to have a standard deviation of 200m.

Figure 4.9 shows the curvilinear projection with and without discrete uncer-

tainty compared against a Monte Carlo simulation at three distinct projection

times. Figure 4.9a shows the the full Monte Carlo as 2D histograms. Figure 4.9b

shows the projection without discrete uncertainty with a subset of the Monte

Carlo results overlaid for comparison. It is clear that whilst the mean is well

matched, the general shape of the distributions after encountering the discrete

change is incorrect. Figure 4.9c shows the projection with discrete uncertainty,

it can be seen that distribution capture the major features of the Monte Carlo

results.

It is possible to directly use the Monte Carlo distributions, however the time

taken to calculate each distribution is of the order of 60s. A number of distribu-

tions will be required by UAS in order to assess potential of flight path conflicts,

therefore the Monte Carlo method would seriously limit the real time potential.

Utilising an analytical projection method as presented here reduces the compu-

tational time to around 0.5s per distribution making real time implementation

possible.
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certainty vs Monte Carlo simulation
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4.3.4 Bounded uncertainty

It is clear from (4.23) that the uncertainties in distance and crosstrack error

increase with projection time. The terminal area circuit, however, presents a

unique bound to the uncertainties due to the presence of a runway as the final

waypoint. Whilst it is true that uncertainty in distance continues to increase

with time (due to accumulation of speed errors), uncertainty in crosstrack error

increases to a point and then begins to reduce to almost zero at the runway

threshold. This behavior can be captured either by a constriction applied to

the curvilinear reference frame, Figure 4.10, or by manipulating the covariance

matrix.

Figure 4.10 illustrates the constriction which occurs by applying an exponen-
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Figure 4.11: The result of coordinate constriction

tial decay to the crosstrack term in (4.16) for the final phase of flight.

c′(t) = c(t)e−k1df (t)/d̂f (4.26)

where df (t) is the distance traveled along the final phase, d̂f is the nominal length

of the final phase and k1 is the decay rate.

Figure 4.11 illustrates the effect of coordinate constriction (k1 = 3) on the

projection PDF by reproducing the 135s result from Figure 4.9 with (4.26) ap-

plied after the final turn. Due to the correlation present between crosstrack and

distance uncertainty, it is necessary to check that the exponential decay is suffi-

cient as the projection time tends towards the traffic vehicles ETA, i.e. the mean

position approaches the runway threshold. This is illustrated in Figure 4.12 by

increasing the projection time to 160s, it is apparent that the exponential decay

with k1 = 3 seems sufficient to represent the problem.

An alternative method for representing bounded uncertainty is to alter the
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ETA
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Figure 4.13: The result of variance reduction

covariance matrix to reflect the reduced uncertainty. This can be achieved by ap-

plying a similar exponential decay whilst maintaining positive semi-definitiveness.

Σ′tot(t) =

[
1 0

0 e−k2d̂f (t)/d̂f

]
Σtot(t)

[
1 0

0 e−k2d̂f (t)/d̂f

]T
(4.27)

where k2 is the decay rate and d̂f (t) is the mean distance traveled along the final

leg at time t. Note that this is different from the df (t) term in (4.26) which refers

to the distance of any point in the distribution.

Figures 4.13 and 4.14 are equivalent to Figures 4.11 and 4.12 but for the

variance reduction approach. Whilst reducing the variance in order to effect a

reduction in uncertainty may seem more intuitive than coordinate constriction,

it can be seen that performance is actually impaired. Because the reduction

given in (4.27) acts on the covariance matrix of the Gaussian PDF in curvilinear

coordinates, it effects the whole distribution uniformly even when transferred to
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Figure 4.14: The result of variance reduction for projection times close to ETA
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the global frame. In contrast, the coordinate constriction approach is applied

to each point in the curvilinear system individually as it is transferred to global

coordinates resulting in a non-uniform transformation. These effects are clear

when comparing Figure 4.11 with Figure 4.13 where the former demonstrates a

continual decrease in uncertainty as the runway is approached whereas the latter

shows a one time reduction in uncertainty (visible when compared with the 135s

PDF in Figure 4.9). Comparison of Figure 4.12 with Figure 4.14 illustrates the

same effect.

The reduction given in (4.27) acts on the entire distribution so as to maintain

the PDF as a valid probability distribution. It is possible to recalculate the

covariance matrix at each point in the distribution by replacing d̂f (t) with df (t)

to obtain a result similar to the coordinate constriction case but this is no longer

a valid PDF as the volume under the surface is no longer guaranteed to be unity.

To bound the uncertainty in this way would require the subsequent PDF to be

normalised which is computationally expensive as it requires numerical evaluation

of the CDF, therefore it is proposed that coordinate constriction is used for the

most accurate results. Coordinate constriction always results in a valid PDF as

it uses the unmodified covariance matrix in curvilinear coordinates directly.

4.3.5 Overview

Figure 4.15 illustrates the complete Curvilinear Projection with Discrete Uncer-

tainty (CPDU) system discussed above and how it links to the comprehension

stage discussed previously. The projection bow on the right of Figure 4.15 illus-

trates a single projection time, the algorithm must be executed repeatedly for

additional projection times.

4.4 Results

The previous sections have detailed the development of a method for projecting

the position of a traffic vehicle by incorporating continuous and discrete uncer-

tainties in addition to the bounds imposed by terminal area operations. This

section provides an assessment of the performance of the proposed method by
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comparing its results with those of a Monte Carlo simulation based on a stochas-

tic aircraft model. The uncertainty parameters used in the model are assumed

to be known exactly by the projection method so as to avoid the problems as-

sociated with parameter estimation. This also allows for an infinite number of

test scenarios to be computed. For real world applications this would not be the

case and parameters would have to be estimated from a large data sample. A

sensitivity analysis is presented to determine acceptable tolerances with which

parameters must be estimated in the future.

4.4.1 Stochastic traffic model

To provide a comparison with the projected PDF, a model for a typical traffic

vehicle is required which must be stochastic in nature to mimic the uncertainty

and indeterminism of human navigation decision making. To simplify this model,

only the two dimensional case is considered and it is assumed that the vehicles

maintains a constant speed which is unknown to the UAS but can be estimated

during the comprehension stage. uc
ψ′


t

=

1 0 0

0 1 0

0 0 1


 uc
ψ′


t−1

+

dt cos (ψ′t−1) 0

dt sin (ψ′t−1) 0

0 dt

[ v
vψ

]
t−1

(4.28)
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where v and vψ are control parameters determined with respect to the nominal

path and are both Gaussian random variables. The velocity is a constant sampled

from a Gaussian PDF at t = 0

v0 ∼ N(v̂, ṽ2) (4.29)

where v̂ and ṽ are the mean and standard deviation in speed respectively.

The turn rate is held zero during straight flight and constant during any given

maneuver, this value is also sampled from a Gaussian PDF

vψ ∼ N(v̂ψ, ṽψ
2) (4.30)

where v̂ψ and ṽψ and the mean and standard deviation turn rates respectively. A

maneuver is specified by sampling a distance from (4.17) and as this is reached a

turn rate is sampled from (4.30) and applied to (4.28). Each maneuver also has a

specified target heading which, along with the initial heading, is also a Gaussian

random variable.

ψ′i ∼ N(ψ̂′i, ψ̃
2) (4.31)

where ψ′i is the target heading of the ith discrete phase (relative to runway head-

ing), ψ̂′i is the mean target and ψ̃′ is the standard deviation in heading. Note

that the same standard deviation is used for all transitions hence the subscript i

is omitted.

To ensure the traffic vehicle converges to the runway, the target heading is

modified slightly in the final phase

ψ′thresh = ψ̂′n + tan−1

(
ct
ut

)
(4.32)

ψ′ = ψ′thresh + k(ψ′thresh − ψ̂′n) (4.33)

where ψ′thresh is the target heading to reach the runway threshold, ψ̂′n is the mean

heading of the final (nth) phase (which should always equal 0 or 2π by definition)

and k is a proportional gain for minimising the error between the heading to

the threshold and the runway heading (equal to the heading of the final phase).
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Table 4.1: Testing parameters

v̂ Mean speed 50ms−1

ṽ Speed standard deviation 2ms−1

v̂ψ Mean heading rate 0.1rads−1

ṽψ Heading rate standard deviation 0.02rads−1

Table 4.2: Circuit parameters

u0 Initial upwind position 2000m
c0 Initial crosswind position 2000m

ψ̂′0 Initial heading πrad

ψ̂′1 Heading of base leg 3π/2rad

ψ̂′2 Heading of final leg 2πrad

d̂1 Distance to end of downwind leg 4000m

d̂2 Distance to end of base leg 5750m

ψ̃′ Standard deviation of heading flown 0.035rad

d̃ Standard deviation of discrete changes 200m

This ensures that a vehicle which is initially off the nominal path will reach the

runway threshold with its heading aligned to that of the runway so as to facilitate

a landing. The gain k determines how quickly an off track vehicle converges to

the runway heading, it can be chosen to provide either an aggressive or gentle

manoeuvre (such as by a fast jet or trainer respectively).

4.4.2 Model parameters

To test the projection method against the Monte Carlo model given in the last

section, parameters for a typical light aircraft (e.g. a Cessna 172) were used,

as given in Table 4.1. It is assumed that the vehicle is observed in the early

downwind location at a typical small airfield (e.g. Cranfield), therefore the circuit

is described by the parameters in Table 4.2.

4.4.3 Error calculation

To determine the performance of the projection method verses the Monte Carlo

simulation, it is necessary to define a metric to quantify the error. Due to the
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two dimensional nature of the problem, it is difficult to visualise a histogram of

the Monte Carlo results against a surface plot of the analytical PDF therefore

marginal distributions are used. A marginal distribution is the PDF obtained

by integrating over one or more variables in a MVPDF (i.e. marginalising them

out) leaving only the remaining variables [Anderson, 1984]. By marginalising

along the upwind and crosswind axes independently, two unidimensional PDFs

are obtained which allow for comparisons to be drawn between the analytical and

Monte Carlo approaches.

A 1000 iteration Monte Carlo simulation is used at each projection time.

To marginalise these simulations, two histograms are produced of the upwind

and crosswind coordinates (marginalising the crosswind and upwind axes respec-

tively). Marginalising the analytical distribution is more complex as it is parame-

terised in curvilinear coordinates. A large number of samples must be drawn from

the distribution (in curvilinear coordinates) and their corresponding location in

the CCS must be determined (applying (4.16) and (4.26) where necessary). The

bins of the Monte Carlo histogram are then used as boundaries to sum the prob-

abilities of the PDF across, giving the Probability Mass Functions (PMFs) [Rao,

2009].

P (ui < u ≤ ui+1) =

∑N
n=0 znΓ(ui < un ≤ ui+1)∑N

n=0 zn
(4.34)

P (ci < c ≤ ci+1) =

∑N
n=0 znΓ(ci < cn ≤ ci+1)∑N

n=0 zn
(4.35)

where ui, ui+1, ci and ci+1 represent the boundaries of the ith Monte Carlo his-

togram bin, zn is the value of the nth sample from the PDF, N is the total number

of samples taken and the function Γ is defined as follows.

Γ(a < x ≤ b) =

{
1 if a < x ≤ b

0 otherwise
(4.36)

Comparison of the PMFs given by (4.34) and (4.35) with the Monte Carlo
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histograms allows for an RMS error to be calculated for each marginal.

errorupwind =

√√√√ 1

M

M∑
i=0

(P (ui)− PMC(ui))2 (4.37)

errorcrosswind =

√√√√ 1

M

M∑
i=0

(P (ci)− PMC(ci))2 (4.38)

where (P (ui) and PMC(ui) are the values of the ith bin of the projection and

Monte Carlo PMFs respectively and M is the total number of bins. Therefore

the total error is

error = errorupwind + errorcrosswind (4.39)

The analysis above gives a measure of the error between the analytical pro-

jection method and a Monte Carlo simulation which can be easily visualised (by

plotting the histogram and PMF) and quantified (by calculation of the RMS er-

ror). It is by no means the only method of quantifying the error, however, it is

believed that this metric sufficiently captures the major features of the problem.

4.4.4 Test 1 - Known parameters

The first test evaluates the RMS error at projection times from 30 − 140s in

intervals of 1s with the projection uncertainties (ṽ and ψ̃′) known exactly. Figure

4.16 shows the error plotted against projection time for Linear, Curvilinear and

Curvilinear with Discrete Uncertainty with vertical lines indicating the nominal

discrete transitions.

It is clear that Linear projection is sufficient prior to the first discrete tran-

sition at t = 82s1, however beyond this point its performance degrades due to

discrete uncertainties and the final approach phase. Curvilinear projection only

provides a slight improvement in performance during turns but this is more sig-

nificant in the final phase (t > 118s) due to the coordinate constriction being

applied. Finally, CPDU provides the best performance with the error largely

remaining below 5% with peaks occurring during turns. Henceforth only CPDU

1where t refers to the time along the nominal path
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Figure 4.16: RMS error vs Projection time for first test

will be discussed.

The CPDU error increases as the first discrete transition is approached due

to the effect of (4.24) switching on the discrete uncertainty covariance matrices.

These matrices act to improve CPDU performance during and after discrete tran-

sitions as is demonstrated in Figure 4.16, however before a transition has occurred

they act to increase the covariance uniformly both ahead of the mean position

(where the transition may have begun) and behind the mean position (where it

will not have begun) resulting in an overestimate of the uncertainty. This effect is

undesirable, however, as it only effects a small portion of the projection domain

and will always result in an overestimate of uncertainty (which would cause the

UAS to plan more cautiously) it is not deemed unacceptable.

Figures 4.17 and 4.18 show the distribution and marginal distributions of the

worst case points at the start of discrete transitions. The t = 50s distribution is

given as a baseline comparison as this occurs in the region prior to any curved

trajectories or discrete transitions.
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Table 4.3: Test 2 average error results

HH
HHHHṽ

ψ̃′
90% 100% 110%

90% 0.0088 0.0039 0.0057
100% 0.0012 - 0.0022
110% 0.0026 0.0018 0.0037

Figure 4.16 illustrates a very low (2%) error in the projection method prior to

the first discrete transition. The increased error caused by discrete transitions is

likely due to a number of factors such as the lack of turn rate uncertainty in the

projection method, however a 6% error at these worst case points is acceptable

and a significant improvement over the other methods tested. It is also apparent

from Figure 4.16 that a general upward trend in error is present after the first

transition is encountered, this is likely caused by the accumulation of errors in-

troduced by the discrete transitions. At all times the error remains below 10%

despite projection times of over 2 minutes, this is deemed to be highly acceptable.

4.4.5 Test 2 - Unknown continuous parameters

This test looks at the sensitivity of the projection model to the continuous co-

variance parameters (ṽ and ψ̃′). In a complete system, these are the parameters

which will have been estimated from collected data (such as radar traces) and

therefore are subject to error. By varying the parameters of the stochastic model

by ±10% whilst keeping the projection model values constant the effects of this

inevitable error can be illustrated. Table 4.3 shows the average increase in RMS

error for each parameter combination. This is simply the mean error over the

30-140s period.

Figure 4.19 shows the worst (
[
0.9ṽ 0.9ψ̃′

]
) and best case (

[
1.0ṽ 0.9ψ̃′

]
)

parameter variations compared with the exact values. It is clear that in the

linear region before the first discrete transition, both parameter combinations

result in poorer performance. At and after the discrete transition, the worst case

parameters cause the error to increase whereas the best case causes a reduction.

This reduction in error is what leads to the low average error and is likely a result

of the lower heading uncertainty. With the projection method overestimating
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the heading uncertainty, this will go some way to accounting for the turn rate

uncertainty not captured in the model, hence its effect only appears during the

first turn. An overestimate of velocity uncertainty as in the worst case parameter

set, however, has a more significant increasing effect on the error.

With the 10% continuous parameter variation investigated in this section,

the average increase in RMS error has been shown to be less 1% indicating the

projection methodology is relatively insensitive to parameter estimation. When

estimating the parameters from data, greater refinement should be given to the

velocity variance as the algorithm seems more sensitive to this than heading

variance.

4.4.6 Test 3 - Unknown discrete variance

The previous section tested the sensitivity of projection to variations in the con-

tinuous uncertainty paprameters, this test considers the discrete uncertainties.

To test this, the distance variance in the stochastic model (d̃i) was varied by

both ±10% and ±25%, the results are shown in Figure 4.20.

It can be seen from Figure 4.20 that the 10% variation has only a small effect

on the RMS error. The 25% variations show a worst case increase in error of

around 0.02 between transitions. As with the previous test, at all projection times

the error remains below 10% which is considered to be excellent performance.

4.5 Summary

This chapter has detailed the development of a novel projection methodology for

traffic vehicles in the terminal area. Prediction of the nominal future states based

on comprehension of the current continuous and discrete state was presented and

the sources of uncertainty in this identified. Uncertainty in both continuous and

discrete variables have been captured to provide a system which is capable of

predicting future traffic states and quantifying the inevitable uncertainty.

It has been shown that by considering the curved nature of the path and

including discrete transition uncertainty, a high level of accuracy can be attained

at projection times over 2 minutes. It has also been demonstrated that the
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Figure 4.20: Sensitivity of projection to discrete uncertainty parameter variation

104



parameters representing the navigation uncertainties need not be known precisely

to achieve good performance, this allows the parameters to be estimated from

recorded radar or GPS data.

Referring to Section 2.4.4 it is clear that the requirements for projection have

not been fully met as only the future trajectory of the traffic is now known,

not the separation from the UAS. Separation is derived in the next chapter

as a function of the projection PDFs, providing a complete artificial situation

awareness system.
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Chapter 5

Self Separation

5.1 Introduction

The previous chapters have detailed the development of an artificial situation

awareness system for UASs operating in the terminal area. Firstly, comprehension

has provided an estimate of the continuous and discrete states of traffic vehicles.

This comprehension has allowed the future states of traffic to be predicted and

the inevitable uncertainty present in such a process has been quantified. Based

upon this awareness an autonomous UAS is capable of making decisions about its

future flight path so as to minimise conflicts with traffic. This chapter outlines

the development of a self separation methodology to provide this functionality to

the vehicle.

The next section details a number of separation metrics using basic linear

projection to derive these in terms of a Gaussian PDF. Section 5.3 generalises

this to non-Gaussian distributions, based on the CPDU method described in

the previous chapter. Finally, Section 5.4 uses these metrics as a basis for a

simple decision making system to allow an autonomous UAS to operate safely in

a crowded terminal area.
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5.2 Self separation metrics

Spatial projection of traffic vehicles, such as that discussed in the previous chap-

ters, provides the UAS with knowledge of the future positions of potentially

conflicting aircraft. This information is not useful in its own right as what is

required is a measure of the separation between the UAS and the traffic. Four

different separation metrics can be derived from spatial projection.

1. Distance between vehicles

� ‘Vehicle X is 525m from Vehicle Y’

� Often used for vortex wake separation [Civil Aviation Authority, 2009a]

2. Time separation

� ‘Vehicle X will land 90s before Vehicle Y’

� Often used to separate arriving aircraft [Civil Aviation Authority,

2013]

3. Time to Point of Closest Approach (TPCA)

� ‘Vehicle X will be at its closest to Vehicle Y in 45s’

� Used by TCAS [Burgess et al., 1994]

4. Distance at TPCA

� ‘Vehicle X will get no closer than 350m from Vehicle Y’

� Used by newer collision avoidance techniques in conjunction with TPCA

to eliminate false positives (for example the TCAS III concept [Burgess

et al., 1994])

The following sections will derive relationships between the linear Gaussian

spatial projection and the four separation metrics listed above. Later, these will

be generalised to the non-Gaussian CPDU.
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Figure 5.1: Distance between and known and uncertain point

5.2.1 Distance between vehicles

Calculation of the distance between a pair of two-dimensional vectors is trivial if

both are known precisely, however Figure 5.1 illustrates the problem if one point

is described by a MVPDF. The position of the UAS is assumed to be known

with absolute certainty1 and can be thought of as a point at a particular radius

from the uncertain point . A probability distribution for the radius exists as a

function of the uncertainty of the traffic position and is given by Weil [1954].

The radius distribution equation given by Weil [1954] applies only to an un-

correlated PDF, therefore the entire problem must first be transformed to remove

any correlation. This is done by rotating the coordinate system to align with the

axes of the ellipse described by the PDF shown in Figure 5.2.

Definition Let θ0 be an angle of rotation which reduces the correlation of a

1If the future position of the UAS is uncertain due to ownship navigation errors, these may
be included in the traffic vehicles PDF
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Bivariate Probability Density Function (BVPDF) to zero.

Lemma 5.2.1 Let Σ be the covariance matrix of a BVPDF. Then θ0 is the

required angle of rotation of the coordinate system to reduce the correlation to

zero.

Proof Let X ∼ N2(µ,Σ) and Y = R(θ)X where R(θ) is the 2D rotation matrix

about and angle θ

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(5.1)

then Y ∼ N(R(θ)µ,R(θ)ΣR(θ)T ) by Theorem 2.4.1 from Anderson [1984]. Rewrit-

ing Σ as

Σ =

[
σ2
a σab

σab σ2
b

]
(5.2)

and expanding the covariance term

R(θ)ΣR(θ)T =

[
σ2
ac

2 − 2σabsc+ σ2
bs

2 σ2
asc+ σabc

2 − σabs2 − σ2
bsc

σ2
asc+ σabc

2 − σabs2 − σ2
bsc σ2

as
2 + 2σabsc+ σ2

b c
2

]
(5.3)

where cos θ and sin θ are abbreviated to c and s respectively.

Zero correlation implies the off diagonal terms in (5.3) equate to zero. There-

fore

σ2
a sin θ0 cos θ0 + σab cos θ0

2 − σab sin θ0
2 − σ2

b sin θ0 cos θ0 = 0 (5.4)

Rearranging

(σ2
b − σ2

a) sin θ0 cos θ0 = σab(cos θ0
2 − sin θ0

2) (5.5)

Substituting double angle identities and rearranging

(σ2
b − σ2

a) sin 2θ0 = 2σab cos 2θ0 (5.6)

Solve for θ0

θ0 =
1

2
tan−1

(
2σab

σ2
b − σ2

a

)
(5.7)
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Applying Lemma 5.2.1 to find the required rotation angle and defining the

new coordinates yields [
σ2

1 0

0 σ2
2

]
= R(θ0)ΣR(θ0)T (5.8)

[
µ1

µ2

]
= R(θ0)

[
µu − uUAS
µc − cUAS

]
(5.9)

where Σ, µu and µc are the covariance matrix and mean position of the traffic in

the CCS respectively. uUAS and cUAS is the position of the UAS.

Equation (5.10) describes the radial PDF for r, the distance from the UAS to

the traffic as illustrated in Figure 5.2, after this transformation [Weil, 1954]

p(r) = Ar exp

(
−r2 (σ2

1 + σ2
2)

4σ2
1σ

2
2

)[
I0

(
Br2

)
I0 (Cr) + 2

∞∑
j=1

Ij
(
Br2

)
I2j (Cr) cos(2ja)

]
(5.10)

where

A =
1

σ1σ2

exp

(
−µ2

1σ
2
1 + µ2

2σ
2
2

2σ2
1σ

2
2

)
B =

(σ2
1 − σ2

2)

4σ2
1σ

2
2

C =

√
µ2

1

σ4
1

+
µ2

2

σ4
2

a = tan−1

(
µ2σ

2
1

µ1σ2
2

)
and In is the nth order modified Bessel function of the first kind.

Figure 5.3 illustrates the distribution given in (5.10) against a 1000 execution

Monte Carlo simulation based upon the parameters[
σ2

1 0

0 σ2
2

]
=

[
(500m)2 0

0 (400m)2

]
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Figure 5.3: Comparison of simulated and analytical radial distribution

[
µ1

µ2

]
=

[
600m

−200m

]
It can be seen from Figure 5.3 that the analytical PDF closely matches the

simulation, however it is computationally difficult to evaluate due to the infinite

sum and exponential nature of the Bessel functions. Eckler [1969] demonstrates

that the Wilson-Hilferty transformation [Wilson and Hilferty, 1931] of a weighted

χ2 distribution to a Gaussian variable as shown by Grubbs [1964] can be used

to approximate (5.10) to a standard (zero mean, unit variance) Gaussian distri-

bution. The Wilson-Hilferty transformation for r as given in Eckler [1969] is 1

pr =
(r2/ [(σ2

1 + σ2
2)m])

1
3 − (1− v/ [9m2])

(v/ [9m2])
1
2

(5.11)

where

m = 1 +
µ2

1 + µ2
2

σ2
1 + σ2

2

and

v =
2 (σ4

1 + σ4
2 + 2σ2

1µ
2
1 + 2σ2

2µ
2
2)

(σ2
1 + σ2

2)
2

where pr ∼ N(0, 1).

1Note the erroneous (•)2 in the numerator of v in Eckler [1969]
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Figure 5.4: Comparison of analytical and approximate radial distribution

Figure 5.4 shows a comparison of the analytical radial PDF and the Gaussian

approximation given in (5.11) for the same parameters as the previous figure.

It can be seen that the shape of the distribution is largely correct however the

approximation is skewed to the right. This discrepancy is caused by the highly

non-Gaussian nature of the problem due to the strictly positive nature of the

distribution. The problem arises when the means µ1 and µ2 are of similar size to

the standard deviations (σ1 and σ2) causing a large proportion of the distribution

to appear behind the target point as illustrated in Figure 5.5.

Figure 5.6 shows a comparison when the means are an order of magnitude

greater than the variances (µ1 = 2100m and µ2 = 1500m). It is clear that the

approximation is far better under these conditions as the analytical distribution

tends closer to Gaussian.

Despite the poorer performance of the approximation under certain conditions

the ease of calculation means it is best suited to real time implementation onboard

an UAS. In addition it is clear from Figure 5.5 that the poor performance is

associated with the case where the UAS is within the uncertain region of the

traffic, a condition which is unlikely to occur.
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Figure 5.5: Illustration of large variance relative to mean

Figure 5.6: Comparison of analytical and approximate radial distribution with
large mean relative to variance
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5.2.2 Time separation

The previous section derived a distribution which describes the distance between

an UAS and the projected position of a traffic vehicle. Temporal separation

between vehicles is required as a means of preventing runway conflicts and is

defined as the time taken for a following vehicle to reach the point at which the

leading vehicle is currently positioned. The assumption made by this metric is

that the UAS is intending to fly the same path as the traffic, however for a large

proportion of the terminal area this is likely to be the case. This is beneficial to

considering the relative velocity of the vehicles as the projected velocity of the

traffic is uncertain leading to a ratio distribution problem when coupled with the

spatial distribution derived previously.

To calculate the temporal separation distribution, the mean and covariance

matrices must be modified by the UAS velocity prior to use[
µ1t

µ2t

]
=

1

VUAS

[
µ1

µ2

]
(5.12)

[
σ2

1t 0

0 σ2
2t

]
=

1

V 2
UAS

[
σ2

1 0

0 σ2
2

]
(5.13)

where the subscript t indicates temporal parameters and VUAS is the UAS velocity.

Therefore the Gaussian approximation given in (5.11) may be used for tem-

poral separation by rewriting as

pt =
(t2/ [(σ2

1/V
2
UAS + σ2

2/V
2
UAS)m])

1
3 − (1− v/ [9m2])

(v/ [9m2])
1
2

(5.14)

where m and v are unchanged.

Figures 5.7 and 5.8 illustrate the comparison between (5.14) and a temporally

modified form of (5.10) using the same sets of parameters used in Figures 5.4 and

5.6 respectively and a UAS velocity of 50ms−1. It can be seen from Figure 5.7 that

the breakdown in accuracy encountered by the Gaussian approximation occurs

when the separation time is much less than 30s. Whilst there is no predefined

separation criteria between small aircraft with which UAS are likely to interact
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Figure 5.7: Comparison of analytical and approximate temporal distribution with
comparative mean relative to variance

in the first instance (such as wake vortex separation between larger aircraft),

a sufficient separation must be present to allow a leading vehicle to vacate the

runway prior to the UAS attempting to land. It is proposed that when a UAS is

making routing decisions based upon a prediction of the future state of traffic a

temporal separation of at least 30s is desired to account for errors in the prediction

and allow sufficient time for runway vacation. Figure 5.8 illustrates that the

performance of the Gaussian approximation at separation times closer to the 30s

target is excellent.

A closer look at the discrepancy between the analytical and approximate

solutions in Figure 5.7 shows the approximation to under estimate the probability

on side of the curve closest to the origin. When used in a CDF, see below, this will

have the effect of under accounting for the risk associated with that situation. It is

clear that under no circumstances should the UAS be attempting to position itself

within 10s of another vehicle, but should this situation arise unexpectedly, it must

be able to deal with it safely [Civil Aviation Authority, 2010b]. The Gaussian

approximation shall be used from this point forwards and therefore the proposed

method is not suitable for these short term collision avoidance situations. The

proposed projection method is instead suited to the avoidance of the occurrence

of such situations by keeping the UAS safely separated from all other vehicles.

116



Figure 5.8: Comparison of analytical and approximate radial distribution with
large mean relative to variance

5.2.3 Time to Point of Closest Approach (TPCA)

The concept of TPCA applies to known trajectories as it refers to the time at

which the vehicles are at their minimum separation. For such known trajectories

the TPCA may be found analytically. For uncertain trajectories, however, the

TPCA actually refers to the time at which a particular level of certainty corre-

sponds to the shortest distance between the vehicles. The level of certainty is

obtained by integrating under the PDF to produce a CDF. Figure 5.9 illustrates

an example of TPCA for uncertain trajectories and Figure 5.10 illustrates the

TPCA CDFs for the UAS and traffic aircraft. It is clear that the TPCA (for a

certainty level of 20%) occurs at t = 45s, denoted tP=0.2 = 45s.

Linear TPCA

Calculation of the TPCA in this way is computationally expensive as the spatial

projection for all projection times up to some horizon must be evaluated and the

minimum found. An alternative method may be employed if the flight paths of

both aircraft concerned are linear. If both trajectories were linear and known
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Figure 5.10: Cumulative distribution plot of distance for converging aircraft

absolutely, the TPCA could be evaluated as

tPCA =
−X0 · V
|V |2

(5.15)

where X0 is the initial relative position vector of the traffic to the UAS and V

the relative velocity vector.

If X0 is represented by a Gaussian BVPDF (but assuming V is known), then

the dot product in the numerator of (5.15) can be evaluated as a univariate PDF,

leading to

tPCA ∼ N(V̄ · X̂0, V̄
T X̃0V̄ ) (5.16)

where V̄ = V/|V |2 is the normalised relative velocity vector, X̂0 is the mean

initial relative position and X̃0 is its variance. By utilising an inverse CDF the

TPCA to any probability value may be evaluated from (5.16).

This analytical calculation of the TPCA has limited applicability as it assumes

the relative velocity is known accurately (or at least with significantly higher
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accuracy than the position) and is constant (i.e. the path is linear and the

flight unaccelerated). Additionally, it is assumed that from the time that the

measurement X0 was made the covariance matrix X̃0 remains constant. Despite

these limitations, (5.16) may be used in addition to full spatial projection to

calculate an estimate of the TPCA. For example, spatial projection may be

conducted at intervals of 10s with the TPCA between these intervals evaluated

directly from (5.16).

5.2.4 Distance at TPCA

Based on a TPCA calculated from the previous section it is trivial to determine

the distance at which this occurs. If the TPCA has been evaluated from spatial

projection the distance is already known (see Figure 5.10). If the TPCA was

evaluated from (5.16) then the velocity vector can be used along with the initial

position and tPCA to evaluate the distance.

5.3 Non-Gaussian projection

The previous derivations of separation metrics has focused on linear projection

resulting in Gaussian PDFs. In the case of CPDU, the PDFs describing traffic

position are non-Gaussian and as such require a different approach. This section

covers the numerical methods available to calculate the non-Gaussian separation

metrics in addition to approximations which can be made to reduce the compu-

tational complexity of the problem.

5.3.1 Distance between vehicles

To calculate the distance between the UAS and a traffic aircraft whose position

is described by a CPDU PDF, the distribution must be discretised in the global

frame of reference. Firstly, a random sample ofN points is taken in the curvilinear

frame (Ci for i = 1 : N), distributed by the CPDU PDF. For each of these points

the corresponding probability density fi is found from the CPDU PDF and the

equivalent global location Xi from (4.16). From Xi, with knowledge of the UAS
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position XUAS the distance can be found as

ri = |XUAS −Xi| (5.17)

where | • | denotes the Euclidean norm

The pairs of distance and corresponding probability density {ri, fi} must then

be sorted in ascending order of ri. The unnormalised CDF is given as

P ′(r ≤ rj) =

j∑
i=1

fi (5.18)

This is normalised by

α =
N∑
i=1

P ′(r ≤ ri) (5.19)

therefore

P (r ≤ ri) =
1

α
P ′(r ≤ ri) i ∈ {1, . . . , N} (5.20)

It is preferable not to store N points to characterise the CDF therefore a

Gaussian approximation is performed. The value of r corresponding to probabil-

ities of 0.25, 0.5 and 0.75 are interpolated from the discrete CDF (5.20), denoted

rP=0.25, rP=0.5 and rP=0.75 respectively. Assuming a Gaussian CDF, the mean is

equal to the median and can then be found directly

r̂ = rP=0.5 (5.21)

The standard deviation may be calculated from Theorem 8.7.5 in Patel and Read

[1982], by observing that

1

2
(rP=0.75 − rP=0.25) = 0.6744898r̃ (5.22)

where rP=0.75 − rP=0.25 is the Inter-Quartile Range (IQR) and r̃ the standard

deviation. Therefore

r̃ =
rP=0.75 − rP=0.25

1.3489796
(5.23)

In order to demonstrate the performance of both the numerical (P (r ≤ ri)
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Figure 5.11: Positions of UAS relative to traffic

given above, with N = 1000) and approximate Gaussian distributions, a simula-

tion study was performed which placed the UAS at six different location relative

to the projected traffic, Figure 5.11. Figure 5.12 shows plots of the numerical and

Gaussian CDFs at each UAS location compared with a Monte Carlo simulation of

1000 executions. It can be seen that the PMF follows the Monte Carlo simulation

closely, this is illustrated further by Table 5.1 where a positive error represents a

projected distance greater than the Monte Carlo result. In the majority of cases

the error is smaller than 100m which is of sufficient accuracy for self separation.

Performance can be improved by increasing the number of samples N , however

this is a trade off with computational time. The mean time to calculate a single

distribution on a mid-range performance computer (∼ 7.5 GFLOPS) was 0.21s,

this increased to 0.75s when N was increased to 5000. These computational times

are significant in comparison with the Gaussian distributions discussed previously

which require only 0.01s to calculate.
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Table 5.1: Distance error at P = 0.2

Position Numerical Error Gaussian Error
1 −35m −9m
2 108m 117m
3 35m 89m
4 15m 39m
5 92m −69m
6 17m −8m
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5.3.2 Time separation

The calculation of time separation for non-Gaussian distributions is analogous to

that for Gaussian distributions, modifying the parameters of the distribution to

represent time rather than distance. Specifically (5.20) is modified to

P

(
t ≤ |XUAS −Xi|

VUAS

)
=

1

α
P ′(tVUAS ≤ |XUAS −Xi|) i ∈ {1, . . . , N} (5.24)

where VUAS is the speed of the UAS, P (•) and α are identical to (5.18) and (5.19)

respectively.

The worst case distance error shown in Table 5.1 corresponds to a time error

of 2.34s which is less than 10% of the proposed minimum time separation of 30s.

5.3.3 TPCA and distance at TPCA

The separation metrics relating to TPCA are both derived from the CDF in

exactly the same way as for the Gaussian case. Unlike the Gaussian case, however,

it is not possible to make a linear approximation to simplify calculation under

certain circumstances.

5.4 Decision making

The previous sections have covered the quantification of separation between two

aircraft in general. Due to the number of metrics available and their varying

applicability in different situations, it is not immediately clear how they can

form the basis of a self separation system for an UAS. To demonstrate the

improvements in safety and efficiency which can be gained by artificial situation

awareness, it is necessary to implement a decision making system to perform self

separation of an UAS from terminal area traffic. Whilst this will be used to

demonstrate the utility of the proposed methods, it is not the primary focus of

the work and therefore a simple rule based system is used.
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5.4.1 Circuit constraints

The terminal area at an uncontrolled airfield1 typically follows a standard circuit

pattern which all arriving aircraft must join. Figure 5.13 illustrates a typical

left hand circuit and associated joining procedures from Civil Aviation Authority

[2009b]. Airfields not equipped with radios typically restrict arriving aircraft to

using only the overhead join (often referred to as the Standard Overhead Join

(OHJ)) as this allows pilots to overfly both the circuit and the airfield to observe

other traffic and the prevailing wind direction. Airfields equipped with radios

often do not use (or do not mandate) OHJs as they are less efficient and there

is some evidence to suggest they increase the chances of mid-air collisions due

to all aircraft converging on a small patch of airspace [Civil Aviation Authority

of New Zealand, 1999; Transportation Accident Investigation Commision, 2008].

At such airfields it is possible for arriving aircraft to receive all of the requisite

information regarding the airfield and traffic from either the radio operator or

directly from the pilots of the other aircraft. Additional reasons may also exist

for not permitting overhead joins, for example if both circuit directions are in use

simultaneously, if gliders are being launched via a winch cable or if sky diving is

in progress [Civil Aviation Authority, 2011b]. Typical circuit joining procedures

for an airfield which does not use overhead joins are illustrated in Figure 5.14

[Civil Aviation Authority, 2009a], these will be used for this work.

An UAS joining the circuit will first choose its joining point based upon Figure

5.14. Any traffic observed to be joining the circuit will also be assumed to be

following Figure 5.14. The UAS then has some freedom to manoeuvre in order to

separate itself from any observed traffic [Civil Aviation Authority, 2009a], these

manoeuvres can be broken down into two groups.

1. Pre Circuit

� Delay - Perform an orbit (360◦ turn) well clear of the circuit and other

joining traffic

� Delay - Decrease speed to joining point

1An ‘uncontrolled’ airfield is defined as one which may or may not have a radio but whose
radio operators do not have authority to issue instructions to aircraft, they may only transmit
information and guidance
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� Expedite - Increase speed to joining point

2. In Circuit

� Delay - Increase circuit dimensions

� Delay - Decrease circuit speed

� Expedite - Decrease circuit dimensions

� Expedite - Increase circuit speed

It is also permitted for aircraft to perform orbits whilst in the circuit, however

this is usually reserved for controlled airfields and left to the discretion of ATC

[Civil Aviation Authority, 2009a, 2011b].

Only certain variations in circuit dimensions are permitted, and whilst these

are not defined rigidly, Figure 5.15 illustrates the values to be used. The down-

wind leg can not be moved closer to the runway as this would not leave sufficient

time to descend along the base and final legs.

5.4.2 Self separation rules

Prior to entering the circuit the primary concern of the UAS must be separation

to other joining aircraft whilst also determining its place in the landing sequence.

Separation from circuit traffic and traffic joining at the same point as the UAS

should be quantified by time separation to facilitate landing sequence separation.

For traffic joining at other circuit points, a distance at TPCA is employed to

ensure separation prior to circuit entry, with time separation being used once

either vehicle enters the circuit.

Figure 5.16 illustrates the decision making process followed by the UAS to

ensure separation is maintained whilst outside the circuit. If the UAS determines

a traffic vehicle is joining by a different point than itself (i.e. it is not presently

in the circuit and is not co-joining) it must determine its Distance at Point of

Closest Approach (DPCA). A sufficient value for DPCA may be 500m, however

this depends on factors such as aircraft type and manoeuvrability (for example a

greater separation would be required if the traffic was a large, wake producing,

vehicle). If the DPCA is insufficient the UAS can only orbit to improve separation
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Figure 5.16: Decision making process for a UAS outside of the circuit. T: Traffic,
U: UAS
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Figure 5.17: Example of UAS joining the circuit
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Figure 5.18: Decision making process for a UAS inside the circuit. T: Traffic, U:
UAS

as it is not immediately obvious whether increasing or decreasing speed would be

advantageous as both vehicles are following different courses.

For vehicles in the circuit or co-joining, the UAS is concerned with the time

separation at the point where it will enter the circuit Xjoin. If there is a significant

probability (P > 20%) that this separation will be insufficient to enable the

leading vehicle to clear the runway before the following vehicle then the separation

must be increased so as to avoid a go-around manoeuvre. If the traffic vehicle

is ahead of the UAS (i.e. it is closer to the runway), the UAS must slow down

to improve separation. If the UAS is already operating at its minimum speed

it must orbit instead. For traffic behind the UAS, the UAS should attempt to

expedite (speed up) but if it can not then it must orbit and not attempt to enter

the circuit ahead of the traffic.

An example of this circuit joining separation is shown in Figure 5.17 where

two traffic vehicles (T1 and T2) are already in the circuit. The UAS determines

that it will enter the circuit in 26s (by projecting its own, presumed known, path),

it then projects the positions of the traffic vehicles at this time and subsequently

calculates the time separation for that projection. Since both vehicles are sep-

arated by over 30s the UAS will continue on its current path and perform the

calculation again periodically.
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Figure 5.18 shows a similar decision making process for the UAS inside the

circuit, dealing with aircraft ahead and behind of the UAS separately. When

widening or tightening the circuit the UAS is only permitted to operate at the

outer and inner extents illustrated in Figure 5.15. The process prioritises changes

in UAS velocity over changes of flight path so as to not maneuver needlessly

causing possible confusing for traffic aircraft. The emergency action in the case

that there is no suitable solution is the referral of control back to the UAS pilot.

5.4.3 Practical considerations

Due to the computational complexity in the calculation of the non-Gaussian

separation metrics, it is not possible to continuously determine separation from

all vehicles at a high rate. Traffic outside of the circuit are most likely to route

directly toward their most convenient joining location so as to minimise their

flight time. This fact can be used to simplify the time separation and DPCA

calculation as with a linear flight path the projection PDF remains Gaussian

therefore the distance calculation becomes analytical. To simplify the calculation

process when the UAS is established in the circuit, all traffic vehicles will be

ignored with the exception of the aircraft immediately preceding the UAS. This

is a valid simplification because aircraft behind the UAS or otherwise outside the

circuit are obliged to give way. Likewise, the aircraft immediately ahead of the

UAS must give way to any aircraft ahead of it causing the UAS to do the same.

When in the circuit and calculating the time separation to the aircraft ahead

it is the minimum value that is of interest. This requires the projection PDF

and separation CDF to be evaluated at a number of projection times up to some

horizon. To minimise the computational burden of this, it will only be performed

at a low rate of around 0.1Hz.

5.5 Summary

This section has investigated the means by which artificial situation awareness

may be used to perform self separation of an autonomous UAS from traffic vehicles

in a terminal area circuit pattern. A number of different separation metrics have
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been introduced and examples where each are applicable given. Calculations

of these metrics from uncertain traffic information have been shown to be non-

trivial for even the simplest Gaussian cases. Approximations were necessary to

calculate separation distributions from Gaussian position distributions. These

break down under certain situations but this has been shown to occur well within

the emergency manoeuvre threshold which is beyond the scope of this thesis.

The non-Gaussian, CPDU, case introduces significant computational complex-

ities due to the numerical steps involved in determining a separation distribution

from a position distribution. Approximations have been made where appropriate

to reduce the computation and memory burden of these calculations, however a

computational time of 0.21s is still required to calculate a single distribution.

The two metrics most suited to terminal area operations are time separa-

tion and DPCA. Time separation provides the UAS with a means of separating

from traffic sufficiently to enable the lead vehicle to clear the runway before the

following vehicle attempts to land. It is also trivial to modify the time sepa-

ration criteria to account for wake separation requirements (simply increase the

time separation required). DPCA is used prior to entering the circuit to ensure

separation is not lost with other joining aircraft.

A rule based decision making framework based upon standard circuit pro-

cedures has been developed to give an autonomous UAS freedom to alter its

trajectory in order to maximise separation. These rules have been designed to

minimise the number of separation distribution calculations so as to allow the

system to run in a real time fashion. Nothing in the system design limits the

number of traffic vehicles which a UAS can deal with, however the computational

burden increases in direct proportion to the number of vehicles.

The self separation decision making system designed in this chapter enables

the utility of artificial situation awareness developed previously to be tested. The

remaining chapters of this thesis detail the experimental test bed and results

obtained.
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Chapter 6

Test Environment

6.1 Introduction

The previous chapters have detailed the development of an artificial situation

awareness and self separation system for an autonomous UAS operating in the

terminal area of an uncontrolled airfield. The testing of methods and algorithms

has so far been limited to a MATLAB/Simulink environment as this allows for

rapid prototyping of mathematical and logical techniques. The proposed system,

however, is designed for implementation on real-world UAS which introduces a

number of additional challenges over and above this simple test environment.

Firstly, little consideration has been given to the dynamics of the UAS as

only a simple kinematic model has been used. As soon as dynamics is considered,

however, it is no longer possible to directly control the flight path of a vehicle as

only its attitude may be effected by control actuation. A higher fidelity vehicle

model also requires an autopilot system to abstract the flight path commands

from direct attitude control.

When considering a higher fidelity model and autopilot, it is necessary to bear

in mind the applicability to a real-world system. This chapter details the high

fidelity test environment developed during the course of this project to facilitate

both simulation and small scale real-world test. Extensive use of COTS products

has been made to accelerate development times.

Figure 6.1 presents an expanded version of Figure 1.1 which highlights how
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Figure 6.1: Overview of the systems presented in this thesis within the test
environment context

the artificial situation awareness, self separation and decision making systems

developed in this thesis fit in to the test environment discussed in this chapter.

The next section provides an overview of the test environment and how it

is used in development of autonomous functions for UASs. Sections 6.3 details

the COTS autotpilot system and Section 6.4 covers its communication protocol.

Sections 6.5 and 6.6 discuss the simulation environment and MATLAB/Smulink

interface respectively. Finally, Sections 6.7 and 6.8 detail the real world test bed

and provide some basic test results of the system.

6.2 Environment overview

Three COTS systems form the basis of the test environment: The X-Plane flight

simulator, the ArduPilot Mega (APM) autopilot system and MATLAB/Simulink.

These systems are used during the three phases of development employed by the

test environment.

� Software In the Loop (SIL)

– No physical equipment required
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– X-Plane used to simulate vehicle dynamics

– APM software used to stabilise vehicle

– MATLAB/Simulink used to prototype algorithms

� Hardware In the Loop (HIL)

– No physical vehicle required

– X-Plane used to simulate vehicle dynamics

– APM hardware used to stabilise vehicle

– MATLAB/Simulink used to prototype algorithms

� Real World

– Small aircraft platform used

– APM hardware used to stabilise vehicle

– MATLAB/Simulink used to prototype algorithms

The SIL phase is used to prototype brand new functions with minimal cost

and no risk to real hardware. HIL represents an increase in cost whilst improving

the realism of the test. Finally, real world testing demonstrates functions on a

small scale aerial platform, providing the highest fidelity results possible at the

fundamental research level.

The use of COTS systems to provide the core functionality of the test environ-

ment greatly simplifies its development. It is still necessary, however, to integrate

the COTS systems together to provide the complete environment. Figure 6.2 il-

lustrates the integration of the COTS components into the test environment,

items in green were developed to facilitate integration. The following sections

discuss this development in detail.
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Figure 6.2: X-Plane, APM, Simulink integration
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6.3 Autopilot system - ArduPilot Mega (APM)

The central component of Figure 6.2 is the ArduPilot Mega (APM), an open

source COTS autopilot system for small unmanned aircraft designed by the hob-

byist community [Anderson, 2010]. It consists of a sensor board containing 3-

axis Micro Electromechanical Sensor (MEMS) accelerometers and gyroscopes, a

static pressure sensor and an optional magnetometer. A GPS receiver and dy-

namic pressure sensor are also attached to this board to provide outdoor flight

capability. The autopilot software runs on a separate circuit board containing

an Atmel ATmega 2560 processor running the Arduino bootloader. This board

incorporates a failsafe function to provide a manual override of all control signals

(via conventional Radio Controlled (RC) equipment) in the event of autopilot

failure. The sensor (blue) and autopilot (red) boards can be seen in Figure 6.3.

The APM software is written in C++ and is completely open source allow-

ing for straightforward development of advanced functions. The software has

been optimised for a number of different aerial platforms including fixed-wing,

helicopter and multi-rotor (tri-, quad-, hex- and octirotor) vehicles in addition to

ground vehicles and boats. The initial test environment detailed here focuses only

on fixed-wing platforms, but this is not a fundamental limitation of the system

simply a limitation of scope.

6.3.1 Communication

It is possible to pre-program APM with a mission which is then enabled by

switching to the automatic mode using an RC transmitter. For more advanced

operation, however, a real time data link between the vehicle and the ground

is desirable. This functionality is provided by utilising a pair of XBee Radio

Frequency (RF) modules as a wireless serial link. XBee modules operate at

2.4GHz using the ZigBee communications protocol which is a robust, long range,

serial data link. The maximum data rate supported by XBee is 115,200bps,

however APM is configured to use 57,600bps to improve data integrity (due to

the low speed nature of the ATmega processor).

By installing an XBee module in the vehicle and connecting another to a lap-

top a real time telemetry link is established. Ground station software is provided
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Figure 6.3: The APM autopilot - http://code.google.com/p/

ardupilot-mega/wiki/HardwareDetails

Figure 6.4: The APM ground station - http://code.google.com/p/

ardupilot-mega/wiki/Mission
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by APM, Figure 6.4, and can be used to monitor the flight, update the mission or

ever modify the autopilot parameters (for example control gains or saturations)

in flight. It is possible to replace the default ground station with any software

capable of communicating over a serial connection, this enables advanced UAS

functionality to be prototyped on a laptop and control a real aircraft in flight.

6.3.2 Autpilot functions

In its default configuration APM provides a number of functions desirable for a

test environment. The most commonly used modes are

� Manual

– The pilot has complete control through conventional RC equipment,

all autopilot function is disabled

� Stability Augmentation System (SAS)1

– The pilot commands angular rates through conventional RC equip-

ment, input is saturated

� Carefree Handling (CFH)2

– The pilot commands angular positions through conventional RC equip-

ment, input is saturated

� Autonomous3

– The pilot has no input to the system, a predefined flight plan is exe-

cuted

The SAS operates at 50Hz, far quicker than the human operator, allowing for

rapid yet smooth disturbance rejection when properly tuned. This provides the

ability to conduct flight testing in weather conditions which would otherwise be

unsuitable for small RC vehicles, such as in strong gusty wind.

1Termed Stabilize by APM
2Termed Fly By Wire (FBW) by APM
3Termed Auto by APM
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Figure 6.5: APM auto mode execution logic

The manual, SAS and CFH modes can all be used at the discretion of the pilot

when they are in control of the vehicle. For the test environment it is necessary

to allow an external system (e.g. MATLAB/Simulink) to provide control signals

to APM. This was achieved by modifying the autonomous mode to function

similarly to CFH but with the commands provided from an external system.

This modification includes a failsafe feature to revert to autonomous mode if

no external command is received, this ensures the vehicle returns to its home

location. The failsafe logic is shown in Figure 6.5.
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6.3.3 Prototyping features

To facilitate rapid prototyping of new features APM supports both SIL and HIL

development. In both of these capacities a simulated vehicle is used to provide

APM with state feedback in reaction to its control outputs. SIL mode allows

the APM autopilot software to be compiled on a desktop computer, this enables

fundamental bugs in the code to be eliminated prior to involving any actual

hardware. HIL compiles the software on to the actual APM hardware to test

for any issues which may occur when interacting with the processor, the RC

equipment or the XBee data link.

In addition to prototyping changes to the autopilot software, the SIL mode

is particularly useful for prototyping advanced UAS functionality. This is be-

cause many tests can be conducted in quick succession without risk to any actual

hardware.

6.4 Micro Air Vehicle Communication Protocol

(MAVLink)

MAVLink is a lightweight, efficient message marshalling protocol for data trans-

mission developed by the PIXHAWK project which is employed by the APM

system [Meier et al., 2011]. To ensure that all elements of the test environment

communicate in a consistent manner the MAVLink protocol was used for all cus-

tom components.

MAVLink is written as a header only C library which is easily used by C

or C++ software. All data is transmitted using binary encoding which means

individual bytes are combined in to packets that can be easily interpreted by

a computer but are not human readable. Binary encoding is significantly more

efficient than the alternative, human readable, American Standard Code for In-

formation Interchange (ASCII) encoding. This is illustrated by considering the

transmission π to 14 decimal places. ASCII transmission is human readable,

therefore π would be transmitted as 3.14159265358979. As each character corre-

sponds to a single byte in ASCII, a total of 16 bytes must be transmitted, shown

in Table 6.1.
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Table 6.1: ASCII representation of π (bytes shown in hexadecimal)

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9
33 2F 31 34 31 35 39 32 36 35 33 35 38 39 37 39

Table 6.2: IEEE float (binary) representation of π (bytes shown in hexadecimal)

11 2D 44 54 FB 21 09 40

Binary encoring utilises the fact that decimal numbers (known as floating

point data, or simply floats) are stored in computers using an Institute of Elec-

trical and Electronics Engineers (IEEE) standard requiring only 8 bytes [IEEE,

2008]. Unlike ASCII where each byte has a human readable equivalent character,

binary encoding only provides byte values which must be recombined to form an

IEEE float, shown in Table 6.2.

Floating point values and other data types can be placed in to a single packet

to be transmitted [MAVLink, 2012]. MAVLink defines a number of these packets

such as

� Attitude information (φ, θ, ψ, P , Q, R)

� GPS information (latitude, longitude, altitude, ground speed, track)

� System status (autopilot mode, battery voltage, battery power remaining)

Each packet has a header containing information such as which vehicle the

data has come from and how much data is being transmitted. This is shown in

Figure 6.6, and a full description given in Table 6.3.

6.5 High fidelity flight model - X-Plane

To provide a high fidelity flight model in the test environment, the X-Plane

flight simulator by Laminar Research was used [Laminar Research, 2012b]. X-

0 1 2 3 4 5 n+8n+76 to n+6

Start Length Sequence Component System Message Data Checksum

Figure 6.6: MAVLink packet structure
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Table 6.3: MAVLink packet description

Byte Content Value Details
0 Start 0x55 Indicates start of a new

packet
1 Length 0-255 How much data is in the

message (the value of n)
2 Sequence 0-255 Increments with each

packet sent, allows de-
termination of dropped
packets

3 System 0-255 Identity of the system send-
ing the packet

4 Component 0-255 Identity of the component
sending the packet

5 Message 0-255 Identity of the message be-
ing sent

6
...

n+ 6

 Data Message data

{
n+ 7
n+ 8

}
Checksum ITU X25 hash of bytes

1 to n + 6 (i.e. ex-
cluding start sign) [Interna-
tional Telecommunications
Union, 1996]
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Plane is a COTS flight simulation package which is certified for Federal Aviation

Administration (FAA) flight training and uses blade element theory to power its

flight model. This ensures high accuracy, high fidelity, simulation of a large array

of vehicles across a large range of operating conditions [Craighead et al., 2007].

Included in the X-Plane package is an airfoil and aircraft modelling program

which enables development of custom vehicles to either match real vehicles or

test concept designs.

To integrate X-Plane within the test environment a custom plug-in was re-

quired to expose the required data to the APM system and accept control signals

using the MAVLink protocol as shown in Figure 6.2. This section details the

development of the plug-in.

6.5.1 Software Development Kit (SDK)

X-Plane provides a fully functional SDK allowing custom plug-ins to be created

for a number of purposes. The SDK interfaces with a number of programming

languages, C++ was used to provide maximum flexibility. Each plug-in must be

compiled as a Dynamically Linked Library (DLL) which X-Plane then links with

at runtime to provide the additional functionality. Interaction between X-Plane

and a plug-in is handled in two ways, callbacks and datarefs.

Callbacks

A callback is a special function defined in the plug-in which X-Plane will call at

certain times. Certain callbacks are required for a plug-in to function correctly,

these are

� XPluginStart - Called when X-Plane starts the plug-in

� XPluginStop - Called when X-Plane stops the plug-in

� XPluginReceiveMessage - Called when X-Plane (or another plug-in) sends

a message to the plug-in

The majority of callbacks are optional and their use depends on the purpose of

the plug-in. The callback which contains the majority of the code for the test en-

vironment is the Flight Loop Callback which is called each time X-Plane calculates
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its flight model. This high frequency callback allows a plug-in to communicate

with external software performing autopilot functions.

Data references (datarefs)

Data references (known as datarefs in the SDK) are memory locations where

simulation data can be accessed by the plug-in [Laminar Research, 2012a]. A

vast amount of data is accessible through datarefs, the most useful of which are.

� Control signals for elevator, aileron and rudder. Scaled from -1 to 1.

sim/ j o y s t i c k / y o k e p i t c h r a t i o

sim/ j o y s t i c k / y o k e r o l l r a t i o

sim/ j o y s t i c k / yoke head ing ra t i o

� Throttle signal. Scaled from 0 to 1.

sim/ mul t ip l aye r / c o n t r o l s / e n g i n e t h r o t t l e r e q u e s t

� Latitude, longitude and altitude

sim/ f l i g h t m o d e l / p o s i t i o n / l a t i t u d e

sim/ f l i g h t m o d e l / p o s i t i o n / l ong i tude

sim/ f l i g h t m o d e l / p o s i t i o n / a l t i t u d e

� Horizontal and vertical airspeed

sim/ f l i g h t m o d e l / p o s i t i o n / i n d i c a t e d a i r s p e e d

sim/ f l i g h t m o d e l / p o s i t i o n / vh ind

� GPS speed and track

sim/ f l i g h t m o d e l / p o s i t i o n / groundspeed

sim/ f l i g h t m o d e l / p o s i t i o n /hpath

� Attitude. φ, θ and ψ

sim/ f l i g h t m o d e l / p o s i t i o n / phi

sim/ f l i g h t m o d e l / p o s i t i o n / theta

sim/ f l i g h t m o d e l / p o s i t i o n /magpsi
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� Rotational rates. P , Q and R

sim/ f l i g h t m o d e l / p o s i t i o n /P

sim/ f l i g h t m o d e l / p o s i t i o n /Q

sim/ f l i g h t m o d e l / p o s i t i o n /R

� Normalised Accelerations. ax/g, ay/g and az/g

sim/ f l i g h t m o d e l / f o r c e s / g a x i l

sim/ f l i g h t m o d e l / f o r c e s / g s i d e

sim/ f l i g h t m o d e l / f o r c e s / g nrml

It is clear that the naming convention for datarefs is not always clear or con-

sistent, neither are the units or sign conventions. The MAVLink plug-in performs

conversion of units to International System of Units (SI).

6.5.2 Multiplayer vehicles

X-Plane natively supports up to 20 vehicles, these are conventionally used for

multiplayer gaming (such as formation flying or combat) or as AI traffic aircraft.

The MAVLink plug-in is used to take control of any number of these vehicles

in a similar way to the primary vehicle. This enables the test environment to

simulate a number of traffic vehicles, all of which can be visualised within the

same X-Plane window simultaneously.

6.5.3 Communication

The plug-in utilises the Microsoft Windows Sockets Application Program Inter-

face (API) to provide a Transmission Control Protocol (TCP) network connection

over which MAVLink packets can be transmitted [Microsoft, 2011]. In addition to

a TCP connection, a serial port interface is also provided to allow APM hardware

to connect directly to X-Plane in HIL mode.
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Figure 6.7: Custom Simulink block for MAVLink communication

6.6 MATLAB/Simulink interface

Similar to the X-Plane plug in, a custom Simulink block was created to communi-

cate directly with APM using the MAVLink protocol. Figure 6.7 shows a typical

implementation of this block.

The centre of the block in Figure 6.7 contains information regarding the con-

nection, in this case a TCP connection to a computer with Internet Protocol (IP)

address 131.231.124.191 on port 5013. A number of different input and output

signals are selectable, the most commonly used are shown in Figure 6.7. The

connection information along with the selection of inputs and outputs are config-

urable via a pop up dialogue window.

Multiple instances of the Simulink block can be used to command multiple

vehicles in SIL or HIL modes, in addition to real vehicles.

6.7 Real world environment

To perform small scale, real world testing an airframe was required which met

some basic requirements stemming from risk and operational considerations.
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Figure 6.8: Ripmax Wot4 Foam-E with APM installed

� COTS

� Low cost

� Light weight

� Electric powered

� Robust

� Internal space for APM

Figure 6.8 shows the Ripmax Wot4 Foam-E1 with APM installed internally.

This airframe is constructed from Expanded Polyolefin (EPO) foam which is

lightweight, strong and robust. The wingspan is 1.2m and the operating weight

is 1.25kg with APM installed and a 2600mAh Lithium Polymer (LiPo) battery

which provides around 20 minutes endurance.

1http://www2.ripmax.net/Item.aspx?ItemID=A-CF020&Category=010
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Figure 6.9: X-Plane model of the Wot4 airframe

In order to keep the aerial platform consistent throughout SIL, HIL and real

world tests a model was created using the X-Plane aircraft design program (the

Plane Maker), Figure 6.9.

The architecture of the test environment for real world testing is shown in

Figure 6.10. When compared with Figure 6.2 it is clear that the Simulink interface

requires no modification from that used in SIL and HIL.

6.7.1 Multi vehicle and mixed environment testing

Multi vehicle real world tests may be performed by simply using multiple real

world aircraft. However, additional complexities arise when operating multiple

fixed wing aircraft in close proximity to one another (such as the requirement for

a number of skilled safety pilots), for this reason it is desirable to allow mixed

use of SIL, HIL and real world environments. In all environments, the Simulink

implementation is identical and can be configured to communicate with a SIL

autopilot build, an actual APM in HIL mode or a real world vehicle. Multiple

instances of the Simulink block, operating in any of the three modes, can be

utilised in a Simulink model without restriction. It should be noted, however,

that the computational burden of running X-Plane, the SIL build and Simulink

on a single computer is significant and may produce poor simulation results (due
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Figure 6.10: Real world interface between Simulink and APM

to a lack of real time execution). It is recommended that mixed environment

testing be performed with multiple computers to distribute this load and improve

results.

6.8 Results

To demonstrate the utility of the test environment a number of different experi-

ments have been conducted. These experiments were used to determine both the

accuracy of the X-Plane Wot4 model and the differences which occur between

SIL, HIL and real world testing [Coombes et al., 2012].

6.8.1 Speed hold test

Figure 6.11 illustrates the performance of a simple speed hold controller imple-

mented in Simulink. It can be seen that SIL and HIL results match very closely

with only a slight difference in the time period of the dynamics. Both these

tests use the X-Plane dynamic model, therefore very similar performance is to

be expected. SIL executes the autopilot on a desktop computer which functions

significantly faster than the Arduino processor used for HIL. This difference in

processing is likely to be the cause of the minor difference in transient behaviour.

The real world results can be seen to broadly match those of both the SIL and

HIL, however increased damping is observed. An exact match between simulation
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Figure 6.11: Speed hold test for SIL, HIL and real world

and real world is not expected due to the vastly increased complexity of the real

system, therefore this performance is adequate.

6.8.2 Heading hold test

Figure 6.12 illustrates the performance of a Simulink heading hold controller.

Once again SIL and HIL match very closely with real world results exhibiting a

more damped response. It can be seen from the 30−40s period that the frequency

and amplitude of the short period dynamics are also closely matched1.

At approximately 4s and again at 20s a flat spot in the real world data is

present. This is caused by a drop out in communication between the vehicle

and the ground. Drop outs like these were observed frequently, particularly dur-

ing manoeuvres such as turns. This is due to the change in orientation of the

XBee antenna during the manoeuvre causing a mismatch in polarisation with the

ground antenna, coupled with the relatively low power of the XBee devices. Use

of higher power or multiple antennae radios is a potential means of mitigating

1Short period dynamics are excited in X-Plane by setting the wind conditions to be repre-
sentative of the real world tests
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Figure 6.12: Heading hold test for SIL, HIL and real world

this problem. Alternatively, if the range to the vehicle is kept low, drop outs can

be minimised.

6.8.3 Mixed mode multiple vehicle test

Due to the complexities of real world multiple vehicle testing, the concept of mixed

mode operation was examined. A formation flying experiment was conducted

with a simulated SIL aircraft tasked with following the trajectory of a real vehicle,

seen in Figure 6.13.

This test was broadly successful, however the importance of communication

integrity was highlighted. As with the previous test, drop outs in communication

with the real vehicle occur which cause the following vehicle to lose its reference

trajectory. When this occurs the following vehicle simply continues on a linear

path which may result in a loss of separation if the leader is in fact manoeuvring.

This issue can be resolved by improving the communications integrity as discussed

in the previous section.
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Figure 6.13: Mixed mode (SIL and real) formation flight
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6.9 Conclusion

This chapter has detailed the development of a test environment for autonomous

UASs utilising COTS equipment. The APM autopilot has been shown to be

an easy to use system which allows for SIL, HIL and real world testing to be

conducted with minimal change of infrastructure, including multi vehicle tests.

The X-Plane flight simulation package was used as a high fidelity model due to

its SDK allowing ease of development.

Custom software has been developed to allow X-Plane to provide aircraft dy-

namics information to the APM system for SIL and HIL testing. Additionally, a

custom MATLAB/Simulink block has been created to receive state information

from and send commands to the APM system. These components provide com-

plete integration of the X-Plane and APM system across SIL, HIL and real world

testing.

A number of tests have been performed to demonstrate the utility and per-

formance of the system. Very little difference between SIL and HIL test results

has been observed. This allows initial development of algorithms to focus on the

use of the SIL technique without loss of fidelity. Real world testing has been

completed without any software changes from SIL, demonstrating a high level of

abstraction has been achieved.

Despite a number of successful flight tests, the problems associated with re-

liable data communication have been highlighted. Future development of the

system should focus on replacing the XBee system with higher integrity radios

utilising multiple antennae in addition to higher transmission powers.
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Chapter 7

Experimental Results

7.1 Introduction

This thesis has discussed the development of an artificial situation awareness sys-

tem for UASs capable of providing sufficient information to perform autonomous

navigation through a crowded terminal area. Each stage of the system has been

tested independently using simplified numerical models for the vehicles concerned.

This chapter expands on this by conducting experimental assessment in a high

fidelity SIL environment detailed in the previous chapter. HIL tests were not per-

formed as these are most useful when fundamental control structures are changed,

not for high level assessment. Real world tests were not conducted at this stage

due to the lack of high integrity communication making multiple vehicle testing

unreliable. Despite this, all SIL experiments were conducted so as to be consis-

tent with real world tests. This allows real world testing to be conducted in the

future if the data integrity problems are overcome.

The next section introduces the experimental set up including the software

and hardware implementations. Section 7.3 discusses the test scenarios used.

Section 7.4 discuss the SIL test results.
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Table 7.1: Laptop Specifications

Processor Intel Core i5-2430M
Speed 2.4GHz

FLOPS3 61 GFLOPS
Memory Bandwidth 12GB/s

7.2 Experimental set up

The previous chapter discussed the test environment in detail, this section covers

the specifics of the set up used for the experimental tests. To enable real world

tests in the future, a laptop was used to run the SIL tests, the specifications of

the which are given in Table 7.1.

The X-Plane and MATLAB/Simulink environment run in the native operating

system (Windows 7), however the APM SIL build must be executed from Linux.

To prevent two separate computers being required, the freely available Virtual-

Box1 virtualisation package was used to run an installation of Ubuntu2 Linux

from inside Windows, Figure 7.1. However, an incompatibility between Windows

7 and VirtualBox prohibits direct network communication through TCP sockets

as is required by the SIL environment (as discussed in the previous chapter). To

mitigate this problem the laptop must be connected to a network router and this

connection bridged to VirtualBox, this router is then responsible for handling

the communication between Windows (the host system) and Linux (the guest

system), Figure 7.2.

7.3 Test scenarios

In order to provide a test scenario consistent with future real world tests, the con-

straints which occur during real world testing were also applied to the SIL study.

These constraints are imposed by both the aircraft platform (the Ripmax Wot4

Foam-E, discussed in the previous chapter) and the operating area used for flight

tests. The area used for flight testing is a small field located at the South West

1https://www.virtualbox.org/
2http://www.ubuntu.com/
3Floating Point Operations Per Second
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Figure 7.1: APM SIL build executing in a VirtualBox virtual machine
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Figure 7.2: Network router to provide TCP link for VirtualBox

Table 7.2: Traffic navigation errors, standard deviations

Heading 2◦

Speed 1ms−1

Discrete transition 20m

end of Loughborough University, centred approximately at 52.75603◦N 1.2465◦W.

Figure 7.3 illustrates the test scenario used. The areas shaded in blue are

beyond visual range of the pilot in real world tests, where the location of the the

pilot is indicated by the yellow star. This maximum range has been determined

experimentally to be approximately 225m based on the vehicle being used, flying

beyond this range would not permit the pilot to safely control the vehicle man-

ually should the autopilot fail. The red shaded areas are too close to buildings

and/or persons to allow flights to be conducted safely. The path marked in white

represents the nominal circuit dimensions to be followed by traffic aircraft. The

upwind axis of the circuit (marked U ) is aligned with magnetic heading of 200◦

which is approximately equal to the prevailing wind direction. The crosswind

axis (marked C ) is in the direction of the circuit. The blue path represents a

holding point for the UAS and its subsequent path in to the circuit.

The traffic aircraft is commanded to follow the nominal circuit path with

random navigation errors imposed, given in Table 7.2.

The UAS is commanded to remain in the hold until the traffic aircraft enters
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the downwind leg, indicated by the position of the white aircraft in Figure 7.3.

The UAS will be at a random position in the hold and be commanded to take

the shortest route to the beginning of the base leg. This results in a number of

different possible trajectories, some of which are illustrated in Figure 7.4. These

trajectories provide the opportunity for the UAS to enter the circuit either in

front of or behind the traffic vehicle.

To provide the UAS with freedom to manoeuvre in order to self separate from

the traffic its speed may be varied in the range of 10 − 15ms−1 (where 12ms−1

is nominal) and the position of the base leg may be modified as indicated by the

arrows in Figure 7.3. These variations will be governed by the decision making

rules laid out in Section 5.4.2.

Only a single traffic vehicle is to be investigated as the decision making rules

detailed in Section 5.4.2 make clear that the UAS is only concerned with ve-

hicles immediately ahead or behind. The condition where an aircraft is both

ahead and behind is both complex to set up and presently intractable due to the

computational burden of the situation awareness determination.

It should be noted that the UAS is not given the ability to orbit if required for

self separation (as per Figure 5.16) due to the space constraints present during

real world testing.
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Figure 7.5: SIL results - Test 1

7.4 SIL Results

This section presents results from the SIL study based on the test scenario de-

scribed in the previous section.

7.4.1 Typical trajectories

Figures 7.5 and 7.6 illustrate typical results for the case where the UAS determines

it should follow behind the traffic. Figure 7.5 shows the traffic then delaying its

turn on to base by around 30m, whereas Figure 7.6 shows the traffic turning

early. In both cases the separation between vehicles remains satisfactory. Note

that 50m has been chosen as satisfactory separation which is approximately 50

times the wingspan of the vehicles.

Figure 7.7 illustrates a typical result when the UAS enters the circuit ahead of

the traffic. This case is of less interest because once positioned ahead of the traffic

the UAS may then elect to follow the nominal path and expect the traffic to give

way. The giving way of traffic was not modelled in this study (traffic vehicles

are simply ‘dumb’), therefore infringement of minimum separation after a UAS

has correctly entered the circuit ahead of traffic is not considered a problem. It

can be seen from Figure 7.7 that the UAS elects to enter the circuit ahead of the
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Figure 7.6: SIL results - Test 2
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Figure 7.7: SIL results - Test 3
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traffic only when it exists the hold at a point near the circuit, giving it a short

path to base.

7.4.2 General trends

In addition to the specific examples illustrated in the previous section, this section

highlights some general trends in the performance of the system. Figure 7.8 shows

two stacked histograms illustrating the minimum separation distance between the

UAS and the traffic vehicle over the course of one hundred simulated circuits. It

is clear that the minimum separation criteria of 50m was not met in all cases,

primarily when the UAS enters ahead of the traffic. It was noted in the previous

section that the traffic aircraft are ‘dumb’ and will not separate from the UAS

as is required in reality. The loss of separation when the UAS is ahead of the

traffic is caused when the randomly generated traffic trajectory causes a conflict

long after the UAS has correctly entered the circuit. These data points can be

considered as anomalous as they would not be present in a fully developed system

deployed against manned traffic aircraft (which would separate correctly).

The loss of separation in the case where the UAS is behind the traffic aircraft

is of more interest as this is the responsibility of the UAS. It can be seen from

Figure 7.3 that the limited space available presents the UAS with a finite amount

of freedom to manoeuvre. As an orbit manoeuvre may not be performed (again

due to space constraints) there are situations where the traffic vehicle is flying

sufficiently fast that the UAS can not slow sufficiently to maintain adequate

separation. In a complete system these situations would be considered as the

‘Emergency’ case in Figure 5.18 and the decision making authority referred back

to the operator (or an alternative emergency collision avoidance system).

In the cases where adequate separation is maintained it can be seen that the

majority remain within 100m separation. This behaviour is desirable as within

the terminal region it is beneficial to maintain as minimal a separation as is safe

so as to maximise the airfield utilisation.

The high separation cases are caused when the traffic vehicle opts to fly a

short, fast circuit and the UAS must fly almost entirely round its hold prior to

entering the circuit (see Figure 7.4). In such a scenario it is only desirable for the
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UAS to increase speed if further traffic is present which was not the case during

this test.

7.5 Conclusion

This chapter has detailed the experimental set up and results of a SIL test of

artificial situation awareness for a fully autonomous UAS. HIL tests have not been

performed as these have been shown to match SIL tests very closely in the previous

chapter. Real world tests have not been performed due to the lack of high integrity

communications. At all times during the SIL set up, however, consideration

has been given to constraints imposed by real world tests. It is believed that

once the communications integrity has been improved, real world testing can be
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conducted with no modification to the MATLAB/Simulink implementation of

artificial situation awareness.

SIL results have shown the general trends of the system are very promising,

with the UAS acting as expected in all situations. The reaction of the UAS to

traffic vehicles follows the procedures that a human pilot would be expecting,

demonstrating a high level of transparency and equivalence.

Two situations were encountered where safe separation between the UAS and

traffic was lost, both of which were limitations of the test scenario and not the

system itself. A fully deployed system would not routinely experience ‘dumb’

traffic vehicles which refuse to give way correctly. When this does occur it is

down to the emergency systems on board the UAS to avoid a collision.
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Chapter 8

Conclusions

8.1 Summary

This thesis has approached a key issue regarding the integration of UAS in to

the NAS, that is maintaining equivalent levels of safety to manned aircraft. It

has been shown that to safely separate from manned vehicles it is necessary

for an UAS to posses a high degree of autonomy. This thesis has considered

the extreme case of a fully autonomous UAS, as may be required to mitigate

communications loss. The ability of an autonomous UAS to make safe decisions

about its future path has been shown to require high levels of situation awareness,

that is an understanding of where traffic vehicles are and how they will behave

in the future. Determination of the current state of traffic is aided by emerging

technologies such as ADS-B, however future trajectories are not always available

from flight plans or ATC instruction. To make meaningful predictions about the

future states of traffic, in the absence of future trajectory information, this thesis

has incorporated additional sources of knowledge such as the ROTA and heuristics

governing traffic operation. The most critical phase of flight for high autonomy

and therefore high situation awareness has been identified as the terminal area,

which has been the focus of this thesis.

The situation awareness problem has been broken down in to three distinct

areas, perception, comprehension and projection. It has been assumed a percep-

tion task already exists which can provide position data of traffic vehicles at a
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rate of around 1Hz. A comprehension system has been developed based upon a

existing hybrid estimation technique capable of estimating both continuous and

discrete state information. This novel application of an existing technique allows

an autonomous UAS to estimate the location of a traffic vehicle in the predefined

traffic circuit at an uncontrolled airfield. Knowledge of this information allows

the future intent of the traffic to be inferred based upon the ROTA, this inference

forms the basis of the projection element.

The comprehension of current state and inference of future trajectories has

allowed a projection system to be designed which is able to estimate future traffic

positions to projection times of the order of minutes. It has been shown that

projection of position is subject to a number of uncertainties which must be

quantified to provide a meaningful estimate. Uncertainties in traffic state have

been captured by treating the vehicles position as a PDF whose covariance terms

capture uncertainty in future position. Uncertainty in the intent information,

such as when a vehicle is expected to manoeuvre, has been captured with a novel

geometric approach. Any discrete transition (such as the start of a manoeuvre)

is treated as a probabilistic event and the effect of the variance term on the un-

certainty in future trajectories of traffic is derived geometrically. This additional

uncertainty introduced at each discrete transition is summed together along with

the continuous uncertainty to provide a complete quantification of the accuracy

of the projected position.

To enable the UAS to make decisions based upon the projected positions

of traffic, metrics for separation have been derived in terms of the projection

PDFs. It has been shown that even for simple Gaussian cases (with no discrete

uncertainty), calculation of the distance distribution from a known UAS to a

traffic position PDF is non-trivial. For both Gaussian and non-Gaussian cases

the metrics of distance, time separation, TPCA and DPCA have been derived

by utilising a number of assumptions and approximations where necessary to

maintain computational feasibility. These metrics have then formed the basis of

a rule based decision making system to allow the UAS to safely separate from

traffic vehicles autonomously.

To allow high fidelity testing to be conducted, a test environment was created

based around a number of COTS products. The test environment allows the use
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of MATLAB/Simulink to rapidly prototype advanced autonomous functions for

an UAS. The environment enables the use of a high fidelity flight simulator to

represent vehicle dynamics and the use of small scale vehicles to test the system

in the real world. This environment has been used extensively throughout to

quantify the performance of the artificial situation awareness and self separation

systems, however only simulation studies have been performed to date. Other

projects have made use of the test environment for real world studies and found

the problems associated with low data transmission integrity to be prohibitive.

All testing conducted during this project, however, may be directly transferred

to real world test when this integrity issue is solved.

8.2 Research challenges

As an outcome from this project, a number of future research challenges have

been highlighted. This section introduces these challenges along with possible

techniques to be investigated.

8.2.1 Multiple model projection

The hybrid estimation technique used during the comprehension phase utilises

multiple vehicle models dependant on the current discrete mode. This approach

allows for improved performance by rejecting disturbances not associated with

the mode. Further work should be done to extend this multiple model technique

to the projection system presented in this thesis. A multiple model projection

algorithm would allow for more intuitive quantification of uncertainties (such

as turn rate uncertainty during manoeuvres) and should benefit from similar

performance improvements at the comprehension system.

Using multiple projection models introduces challenges associated with the

integration of uncertainty over time. For example, (4.9) requires the covariance

matrix for each mode to be of the same form. A non-linear turning model which

incorporates turn rate uncertainty, however, would not be compatible with a

linear model of unaccelerated flight.
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8.2.2 Constrained projection

The projection method presented in this thesis includes a small amount of work in

the area of bounded uncertainty, enabling the covariance matrix to be restricted

as the runway is approached. In more complex scenarios bounds may be imposed

on the future trajectory of the vehicle from a number of other sources. These

include guidance systems on-board the vehicle and restricted no-fly zones.

Whilst this thesis assumed that velocity errors may accumulate indefinitely

until the runway is encountered, a real vehicle would likely attempt to minimise

these errors through either manual or automated guidance. The scenarios con-

sidered in this thesis have been over relatively short distances making this effect

small, however, more fully developed scenarios must account for this upper bound

on projection uncertainty.

In addition, it is possible for complex terminal regions to include no-fly zones

imposed by terrain, weather, or restricted airspace. Knowledge of these areas

allow the UAS to further constrain the future trajectories of traffic vehicles by

assuming they will not enter no-fly zones.

8.2.3 Computational complexity

Generation of the projection PDFs presently requires significant computational

effort making a real time implementation limited. By considering a single traffic

vehicle in this thesis and evaluating PDFs in a relatively course manner, this lim-

itation has been mitigated. However, this does not provide a complete solution.

Reducing the computational burden may be realised by utilising a Particle

Filter based technique to recursively determine projection PDFs, retaining infor-

mation from previous calculations. Such a technique also relaxes the assumption

that the initial distributions (of velocity, heading and discrete transition) are

Gaussian, allowing a more generalised solution.

Removing the Gaussian assumption poses additional challenges, however, as

a number of techniques used in this thesis can no longer be applied. The trans-

formation of a Gaussian BVPDF in to a radial error distribution, for example, is

given in (5.10). Creating a radial error distribution from a Particle Filter distri-

bution would require the calculation of radius for each particle, possibly negating
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any computational complexity improvements.

8.2.4 Decision making fidelity

The purpose of this thesis was to develop an artificial situation awareness system

for an autonomous UAS. In order to demonstrate the utility of such a system,

however, it was necessary to implement a decision making system based upon

the situation awareness. The limitations in scalability of the situation awareness

system (due to the computational complexity described above) limited the de-

cision making to considering a single traffic vehicle. In addition, the use of a

ruled based decision making framework limits the ability of the UAS to react to

unusual situations.

A wide array of literature exists in the field of computational decision making,

predominately from the field of AI. Once improvements have been made to the

scalability of the situation awareness system, it may be possible to implement a

more complex decision making system.

8.2.5 Communications integrity

The real world test environment has seen limited use due to the lack of reliable

communication with the vehicle. This is largely due to the limited power of the

XBee radios used.

An improvement to the communications system could be realised by moving

to an IEEE 802.11 based wireless network. Such a network benefits not only from

higher powers, but an increased data rate of up to 3000% compared with XBee.
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Appendix A

Derivation of haversine formulae

A.1 Distance between two points on Earth

To determine the distance between two points on earth given in latitude and

longitude coordinates it is first necessary to find the angle subtended by the

vectors from the centre of the earth to each point. Representing the points in

Cartesian frame with the origin at the centre of the Earth

X1 =

R cosφ1 sinλ1

R cosφ1 cosλ1

R sinφ1

 X2 =

R cosφ2 sinλ2

R cosφ2 cosλ2

R sinφ2

 (A.1)

where R = 6378km is the mean radius of the earth, φ and λ at the latitude and

longitude of the points.

Determine the angle between the vectors extending from the origin to the

points using vector dot product

X1 ·X2 = |X1||X2| cos θ (A.2)

Expanding and noting that both points are on the surface of the Earth, therefore

the magnitude of the vectors is simply R

cosφ1 sinλ1 cosφ2 sinλ2 + cosφ1 cosλ1 cosφ2 cosλ2 + sinφ1 sinφ2 = cos θ (A.3)
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Substituting the identity sinλ1 sinλ2 + cosλ1 cosλ2 = cos ∆λ

cosφ1 cosφ2 cos ∆λ+ sinφ1 sinφ2 = cos θ (A.4)

Whilst this may be solved directly for θ (and subsequently distance), it should

be noted that invoking the cosine function on small angles can introduce numerical

errors due to the relatively shallow gradient of the function at that point. It is

beneficial to utilise the haversine (from half-versed-sine) transform 1 − cos θ =

2 sin2(θ/2) to remove this problem.

First expand the sine product in (A.4) with the identity cos ∆φ−cos(φ1+φ2) =

2 sinφ1 sinφ2

cosφ1 cosφ2 cos ∆λ+
1

2
cos ∆φ− 1

2
cos(φ1 + φ2) = cos θ (A.5)

Now introduce the haversine relationship for cos ∆λ

cosφ1 cosφ2

(
1− 2 sin2 ∆λ

2

)
+

1

2
cos ∆φ− 1

2
cos(φ1 + φ2) = cos θ (A.6)

Expanding the final term on the LHS with cos(φ1+φ2) = cosφ1 cosφ2−sinφ1 sinφ2

cosφ1 cosφ2

(
1− 2 sin2 ∆λ

2

)
+

1

2
cos ∆φ− 1

2
cosφ1 cosφ2 +

1

2
sinφ1 sinφ2 = cos θ

(A.7)

Expanding the brackets

1

2
cosφ1 cosφ2 +

1

2
sinφ1 sinφ2− 2 cosφ1 cosφ2 sin2 ∆λ

2
+

1

2
cos ∆φ = cos θ (A.8)

Replacing the identity cosφ1 cosφ2 + sinφ1 sinφ2 = cos ∆φ

cos ∆φ− 2 cosφ1 cosφ2 sin2 ∆λ

2
= cos θ (A.9)

Introducing the haversine relationship for the remaining cosines of small angles

1− 2 sin2 ∆φ

2
− 2 cosφ1 cosφ2 sin2 ∆λ

2
= 1− 2 sin2 θ

2
(A.10)
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Simplifying

sin2 ∆φ

2
+ cosφ1 cosφ2 sin2 ∆λ

2
= sin2 θ

2
(A.11)

The inverse tangent function is preferred for small angles, therefore replace the

RHS in (A.11) with sin2 θ
2

= 1− cos2 θ
2

and rearrange

1− sin2 ∆φ

2
− cosφ1 cosφ2 sin2 ∆λ

2
= cos2 θ

2
(A.12)

Using (A.11) and (A.12), solve for θ

θ = 2 tan−1

(
sin2 ∆φ

2
+ cosφ1 cosφ2 sin2 ∆λ

2

1− sin2 ∆φ
2
− cosφ1 cosφ2 sin2 ∆λ

2
= cos2 θ

2

)
(A.13)

Finally, multiply by Earths radius to determine distance between points.

d = 2R tan−1

(
sin2 ∆φ

2
+ cosφ1 cosφ2 sin2 ∆λ

2

1− sin2 ∆φ
2
− cosφ1 cosφ2 sin2 ∆λ

2

)
(A.14)

A.2 Initial heading between two points on Earth

Transforming the longitudes of both points described in (A.1) to be relative to

X1 yields

X1 =

 0

R cosφ1

R sinφ1

 X2 =

R cosφ2 sin ∆λ

R cosφ2 cos ∆λ

R sinφ2

 (A.15)

Taking the cross product of X1 with a unit vector in the direction of the north

pole N =
[
0 0 1

]T
N ×X1 =

−R cosφ1

0

0

 (A.16)
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and the two points

X2 ×X1 =

R
2 sinφ1 cosφ2 cos ∆λ−R2 cosφ1 sinφ2

−R2 sinφ1 cosφ2 sin ∆λ

R2 cosφ1 cosφ2 sin ∆λ

 (A.17)

Strictly, the initial bearing is equal to the angle between these normal vectors

(N ×X1 being the normal to the plane NOX1 and X2×X1 being the normal to

the plane X2OX1), this can be found by taking their dot product. It is simpler,

however, to recognise that N ×X1 is parallel to the (minus) x axis, therefore cal-

culating the angle between X2×X1 and the x-axis is sufficient. This is illustrated

in Figure A.1, where a and b are the magnitude of N ×X1 in the yz plane and

along the x axis respectively.

The tangent of the angle between the normal vectors is therefore

tanψ =
−a
b

(A.18)

where a and b can be found from (A.17)

tanψ =
−
√

(−R2 sinφ1 cosφ2 sin ∆λ)2 + (R2 cosφ1 cosφ2 sin ∆λ)2

R2 sinφ1 cosφ2 cos ∆λ−R2 cosφ1 sinφ2

(A.19)

Simplifying the numerator by recognising sin2 φ1 + cos2 φ1 = 1, cancelling R2 and

moving the minus sign to the denominator

tanψ =
cosφ2 sin ∆λ

cosφ1 sinφ2 − sinφ1 cosφ2 cos ∆λ
(A.20)

Therefore the initial bearing is

ψ = tan−1

(
cosφ2 sin ∆λ

cosφ1 sinφ2 − sinφ1 cosφ2 cos ∆λ

)
(A.21)
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Figure A.1: Calculation of initial bearing from normal vectors
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